WO2016157448A1 - Motor-integrated compressor - Google Patents

Motor-integrated compressor Download PDF

Info

Publication number
WO2016157448A1
WO2016157448A1 PCT/JP2015/060243 JP2015060243W WO2016157448A1 WO 2016157448 A1 WO2016157448 A1 WO 2016157448A1 JP 2015060243 W JP2015060243 W JP 2015060243W WO 2016157448 A1 WO2016157448 A1 WO 2016157448A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
integrated compressor
shaft
compressor
stator
Prior art date
Application number
PCT/JP2015/060243
Other languages
French (fr)
Japanese (ja)
Inventor
山本 健太郎
原島 寿和
康輔 貞方
西村 仁
土屋 豪
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2015/060243 priority Critical patent/WO2016157448A1/en
Priority to JP2017509448A priority patent/JP6458134B2/en
Priority to PCT/JP2016/057038 priority patent/WO2016158225A1/en
Publication of WO2016157448A1 publication Critical patent/WO2016157448A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • the present invention relates to a motor-integrated compressor integrally including a motor and a compressor, and more particularly to a motor-integrated compressor using an axial gap motor.
  • a radial gap motor for example, Patent Document 1 in which a motor rotor and a stator are concentrically arranged has been adopted.
  • the radial gap motor cannot be reduced in size in the axial direction due to its structure, and it has been difficult to reduce the size.
  • the adoption of an axial gap motor is being studied. Since the axial gap motor is arranged so that the motor rotor and the stator face each other in the axial direction (axial direction), the axial dimension can be reduced, and the compressor can be used more than when a radial gap motor is used. Can be downsized.
  • motor cooling often depends on heat dissipation from the outer circumferential surface of the motor casing.
  • An axial gap motor that expands in the radial direction and has a tendency to reduce the outer peripheral area of the motor casing in the radial direction tends to increase in temperature more easily than a conventional radial gap motor.
  • the compressor is integrally configured by such an axial gap motor and the compressor main body, the temperature of the central portion sandwiched between the two heat generating elements is relatively higher than that of the other portions.
  • the motor rotor is arranged between the stator and the compressor body, the temperature increase of the motor rotor may cause demagnetization, and the motor efficiency may be reduced.
  • the heat of the motor rotor is transmitted to the suction side bearing and the suction chamber of the compressor body, and the temperature of the oil and the suction gas for cooling the suction side bearing is increased, so that the compression efficiency may be lowered.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a motor-integrated compressor that can improve motor efficiency, compression efficiency, or both by efficiently cooling an axial gap motor.
  • a motor-integrated compressor that can improve motor efficiency, compression efficiency, or both by efficiently cooling an axial gap motor.
  • a motor-integrated compressor including a compressor main body and an axial gap motor that drives the compressor main body, wherein the axial gap motor includes a shaft as a rotating shaft and a motor casing that houses the shaft.
  • a stator fixed to the inner surface of the motor casing and annularly arranged at a predetermined interval from the outer peripheral surface of the shaft; and a stator connected to the shaft and spaced from the stator in the axial direction of the shaft.
  • the motor casing has an intake port formed on the output side of the axial gap motor and an exhaust port formed on the non-output side of the axial gap motor.
  • the motor efficiency, the compression efficiency, or both of the motor-integrated compressor can be improved by efficiently cooling the axial gap motor.
  • FIG. 3 is a perspective view showing the output-side motor rotor and the counter-output-side motor rotor from the side facing the stator in the motor-integrated compressor according to the first embodiment of the present invention.
  • the motor integrated compressor which concerns on Example 1 of this invention, it is a perspective view which shows the other example of an output side motor rotor and a counter output side motor rotor from the opposing surface side with a stator. It is an AA cross-sectional view of the output side motor rotor shown in FIG. 3A.
  • Example 1 of this invention it is a perspective view which shows the other example of the output side motor rotor from the surface opposite to a stator. It is a figure which shows the flow of the air which passes the inside of a motor, and the flow of the air which passes a compressor main body in the longitudinal cross-section of the motor integrated compressor which concerns on Example 1 of this invention. It is a figure which shows the flow of the air which passes the inside of a motor, and the flow of the air which passes a compressor main body in the longitudinal cross-section of the motor integrated compressor which concerns on the modification of Example 1 of this invention. It is a figure which shows the other example of an output side motor rotor in the motor integrated compressor which concerns on the modification of Example 1 of this invention.
  • FIG. 1 is a longitudinal sectional view of a motor-integrated compressor 100 according to Embodiment 1 of the present invention.
  • the motor-integrated compressor 100 includes an oil-cooled screw air compressor (hereinafter referred to as “compressor main body”) 10 and an axial gap motor (hereinafter simply referred to as “motor”) that drives the compressor main body 10. 20 are integrally provided.
  • the motor 20 will be described using a configuration in which the shaft 21 described later is disposed on the upper portion of the compressor body 10 so as to face the vertical direction, but the present invention is not limited to this, and the shaft You may comprise so that 21 may face the horizontal direction or the direction which inclines.
  • the compressor body 10 includes a compressor body casing 11, a male screw rotor (hereinafter simply referred to as “screw rotor”) 13 disposed so as to mesh with the screw rotor housing chamber 12 of the compressor body casing 11, and not shown.
  • a female screw rotor and a suction side bearing holding portion 14 that closes the suction side of the screw rotor housing chamber 12 are provided.
  • a suction side end of the screw rotor 13 (an output side end of the shaft 21 described later) is rotatably supported by a suction side bearing 15 provided in the suction side bearing holding portion 14.
  • the discharge-side end portion of the screw rotor 13 is rotatably supported by a discharge-side bearing 16 provided in the compressor body casing 11.
  • a suction chamber 17 communicating with the suction side of the screw rotor housing chamber 12 is formed on the side surface portion on the suction side of the compressor body 10 by the compressor body casing 11 and the suction side bearing holding portion 14. Compressed air is guided to the suction chamber 17 through a suction communication path (not shown).
  • a discharge port 18 that communicates with the discharge side of the screw rotor storage chamber 12 is formed in the side surface portion on the discharge side of the compressor body casing 11.
  • the screw rotor 13 is rotationally driven by the motor 20, compresses and discharges the compression air guided to the suction chamber 17 and discharges it from the port 18.
  • the motor 20 includes a shaft 21 formed integrally with the suction side of the screw rotor 13, an output side motor rotor 22 ⁇ / b> A attached to the output side of the shaft 21, and a counter output side motor rotor 22 ⁇ / b> B attached to the counter output side of the shaft 21.
  • a cylindrical motor casing main body 23 that accommodates the shaft 21 and the motor rotors 22A and 22B, and a stator 24 that is fixed to the inner peripheral surface of the motor casing main body 23 and disposed between the motor rotors 22A and 22B. ing.
  • the output side of the motor casing main body 23 is closed by the suction side bearing holding portion 14 of the compressor main body 10, and the opposite output side of the motor casing main body 23 is closed by the end bracket 25.
  • the motor casing main body 23 constitutes a motor casing of the motor 20 together with the suction side bearing holding portion 14 and the end bracket 25.
  • the output side bracket becomes unnecessary because the suction side bearing holding part 14 which is a part of the compressor body 10 closes the output side of the motor casing body 23, and is supported by the compressor body 10. Since the screw rotor 13 and the shaft 21 are integrally formed, a bearing inside the motor 20 is not necessary, and the motor 20 can be downsized. In addition, this invention is not limited to this structure, The structure which installs a bearing inside the motor 20 may be sufficient.
  • the stator 24 is composed of a plurality of cores (cores) that are annularly arranged at a predetermined interval from the outer peripheral surface of the shaft 21, and a coil is wound around each of the plurality of cores. Magnetic flux is generated in the iron core by the current flowing through the coil, and a magnetic field that loops in the axial direction is formed.
  • the output side motor rotor 22A has a yoke 26A connected to the shaft 21 and a plurality of magnets 27A arranged so as to face the output side end face of the stator 24 with a predetermined interval by the yoke 26A.
  • the non-output-side motor rotor 22B includes a yoke 26B connected to the shaft 21 and a plurality of magnets 27B arranged so as to face the output-side end surface of the stator 24 with a predetermined interval by the yoke 26B.
  • the motor rotors 22A and 22B and the shaft 21 are rotationally driven by the interaction between the magnetic fields of the magnets 27A and 27B and the magnetic field of the stator 24.
  • FIG. 2 is a perspective view showing the output-side motor rotor 22A and the counter-output-side motor rotor 22B from the side facing the stator 24.
  • FIG. 2 As shown in FIG. 2, since the motor rotors 22A and 22B have substantially the same configuration, the output side motor rotor 22A will be mainly described below.
  • the motor rotor 22A has a disk-shaped yoke 26A and a plurality of magnets 27A.
  • the plurality of magnets 27A are each magnetized in the axial direction, and are arranged on the surface of the yoke 26A facing the stator 24 so that the magnetization directions (S poles or N poles) are alternately reversed in the circumferential direction. Has been.
  • the yoke 26A has a hole having an inner diameter larger than the outer diameter of the shaft 21 at the center, and the annular coupling member 29A is supported at the center of the hole by a plurality of support posts 28A that are spaced apart in the circumferential direction. ing.
  • a plurality of through holes 26Aa penetrating in the axial direction are formed by partitioning the inner side surface of the central hole of the yoke 26A and the outer end surface of the annular coupling member 29A by a plurality of support posts 28A.
  • the inner diameter of the annular connecting member 29A substantially matches the outer diameter of the shaft 21, and the output side motor rotor 22A is connected to the shaft 21 by inserting the shaft 21 into the annular connecting member 29A and fixing it.
  • Each of the plurality of support columns 28A is formed in a blade shape inclined with respect to the rotation direction, and air that passes through the plurality of through holes 26Aa in the axial direction from the intake holes 14a toward the stator 24 as the motor rotor 22A rotates.
  • the annular connecting member 29A and the plurality of support columns 28A are preferably formed integrally with the magnet support member 26A.
  • the struts 28A and 28B formed on the yokes 26A and 26B can have various configurations as long as they generate an airflow in the axial direction as they rotate.
  • FIG. 3A, 3B, and 3C show other examples of the column 28A and the like.
  • FIG. 3A is a perspective view showing another example of the output-side motor rotor 22A and the counter-output-side motor rotor 22B from the side facing the stator 24.
  • FIG. 3B is an AA cross-sectional view of the output side motor rotor 22A shown in FIG. 3A.
  • FIG. 3C is a perspective view showing another example of the output side motor rotor 22A from the side opposite to the stator 24.
  • the front end in the rotation direction of the support column 28A is inclined in a streamline shape in the direction opposite to the stator 24 side (see FIG. 3B).
  • the tip in the rotation direction becomes the stator 24 side and flows in the counter-rotation direction toward the back surface of the yoke 26B.
  • the shape is a linear slope.
  • the side of the support 28A opposite to the stator 24 has a thick shape that is parallel or horizontal to the back surface of the yoke 26A. That is, the structure is such that the strength of the support column 28A is increased by increasing the thickness of the counter-rotation direction side of the support column 28A.
  • the support 28B has a thick shape in which the stator 24 side is parallel or horizontal to the radial surface of the magnet 27.
  • the suction-side bearing holding portion 14 that closes the output side of the motor casing main body portion 23 penetrates in the axial direction below the output-side motor rotor 22 ⁇ / b> A, and the motor-side compressor and the interior on the output side of the motor 20.
  • a plurality of air inlets 14 a communicating with the outside of 100 are provided.
  • the intake port 14a is preferably formed close to the through hole 26Aa of the output side motor rotor 22A.
  • the end bracket 25 that closes the non-output side of the motor casing body 23 penetrates in the axial direction above the yoke 26B of the non-output side motor rotor 22B, and the inside of the non-output side of the motor 20 and the motor-integrated compressor 100.
  • the exhaust port 25a is preferably formed close to the through hole 26Ba of the counter-output side motor rotor 22B.
  • FIG. 4 is a diagram showing the flow of air passing through the motor 20 and the flow of air passing through the compressor body 10 in the longitudinal section of the motor-integrated compressor 100 according to the present embodiment.
  • the air inside the motor 20 is heated by the heat generated by the stator 24 (coil) and the compressor body 10 and is externally supplied from an exhaust port 25a that opens to the upper side (counter output side) of the motor 20 To be discharged.
  • external air flows from the intake port 14 a that opens to the lower side (output side) of the motor 20.
  • the air flowing in from the intake port 14a passes through the through hole 26Aa of the output side motor rotor 22A, the gap 30 between the shaft 21 and the stator 24, and the through hole 26Ba of the counter output side motor rotor 22B, and is discharged from the exhaust port 25a.
  • the motor-integrated compressor 100 is configured so that the shaft 21 faces the vertical direction, and thus is provided on the lower side (output side) of the motor 20. Since the cooling air taken in from the intake port 14a is discharged from the exhaust port 25a provided on the upper side (opposite output side) of the motor 20 by natural convection, the motor 20 can be efficiently cooled.
  • the props 28A and 28B of the motor rotors 22A and 22B can be formed in a blade shape so as to actively suck air and forcibly discharge air.
  • circulates the inside of the motor 20 increases, and the cooling effect of the motor 20 improves.
  • the motor-integrated compressor 100 is configured such that the shaft 21 faces the horizontal direction, air can be circulated from the output side of the motor 20 to the non-output side without depending on natural convection. This enables the motor 20 to be efficiently cooled.
  • the intake-side bearing 15 is made up of the intake air 14b generated when air is sucked into the intake port 14a.
  • the oil to be cooled and the air in the suction chamber 17 are cooled, and a decrease in compression efficiency is suppressed.
  • a configuration in which a one-stator-to-rotor axial gap motor is used as the motor 20 is shown.
  • the present invention is not limited to this.
  • a one-rotor / one-stator or a three-stator / two-rotor axial gap motor is used.
  • the present invention can also be applied to a configuration using.
  • the blade-like support columns 28A and 28B are provided on both the output side yoke 26A and the counter output side yoke 26B. However, only one of them may be provided.
  • FIG. 1 shows a configuration in which the through holes 26Aa and 26Ba are provided in the yokes 26A and 26B of the motor rotors 22A and 22B, as shown in FIG. 4, the through holes 26Aa and 26Ba are formed in the yokes 26A and 26B of the motor rotors 22A and 22B. It is also possible to adopt a configuration in which no is provided.
  • the air flowing in from the intake port 14a is a gap 31 between the outer peripheral end of the output side motor rotor 22A and the inner surface of the motor casing main body 23, a gap 32 between the output side motor rotor 22A and the stator 24, a stator 24 and a shaft. 21, a gap 33 between the stator 24 and the magnet 27B, a gap 34 between the outer peripheral end of the counter-output side motor rotor 22B and the inner wall of the motor casing body 23, and a gap between the end bracket 25 and the counter-output side motor rotor 22B. It passes in order of 35 and is discharged
  • the motor 20 since the cooling air taken in from the intake port 14a provided on the lower side of the motor 20 is discharged from the exhaust port 25a provided on the upper side of the motor 20 by natural convection, the motor 20 is efficiently operated. Can be cooled to. Furthermore, the centrifugal strength of the motor rotors 22A and 22B is improved by providing the motor rotors 22A and 22B with no through holes 26Aa and 26Ba.
  • the yoke 26A may be provided with a blade that generates an air flow.
  • FIG. 6 shows a configuration in which a blade is provided in the yoke 26A or the like without forming the through hole 26Aa.
  • a plurality of blades 37 are arranged along the radial outer periphery of the yoke 26A.
  • the blade 37 has a tip in the rotation direction inclined toward the output side, and generates an airflow that flows from the output side to the stator 24 as it rotates.
  • similar blades 37 are also formed on the yoke 26B on the counter-output side.
  • Fig. 7 shows another example.
  • a plurality of convex blades 38 extending in the axial direction are arranged on the back surface of the yoke 26A.
  • the blade 38 has a linear shape in which the outer peripheral side is arranged in the counter-rotating direction and the shaft 21 side is arranged toward a position that is phased in the rotating direction. An air flow from the shaft 21 side toward the outer peripheral side is generated by the centrifugal force accompanying the rotation. Further, the tip of the blade 38 on the shaft 21 side is disposed so as to be in the vicinity of or intersecting with the axial projection surface of the intake port 14a or on the outer peripheral side thereof, and from the intake port 14a to the motor casing against the air flow generated by the blade 38. A flow of cooling air toward the outer periphery is easily generated.
  • the blades 38 are not limited to a linear shape, but may have a curved shape that gradually phase toward the counter-rotating direction toward the outer peripheral side.
  • FIG. 8 is a longitudinal sectional view of the motor-integrated compressor 101 according to the second embodiment of the present invention.
  • the difference from the motor-integrated compressor 100 according to the first embodiment (see FIG. 1) is that the motor casing body 23 is located near the upper end in place of the plurality of exhaust ports 25 a provided in the end bracket 25.
  • a plurality of exhaust ports 23a penetrating in the radial direction are provided, and a plurality of protrusions 27 are provided on a surface (hereinafter referred to as “rear surface”) of the yoke 26B of the counter-output-side motor rotor 22B opposite to the stator 24. is there.
  • FIG. 9 is a perspective view showing the non-output side motor rotor 22B from the back side.
  • the plurality of protrusions 27 are each made of a prismatic member, and are arranged radially on the back surface of the motor rotor 22 ⁇ / b> B around the rotation axis. Note that the number, shape, arrangement, and the like of the protrusions 27 can be changed as appropriate.
  • FIG. 10 is a diagram showing the flow of air passing through the motor and the flow of air passing through the compressor body 10 in the longitudinal section of the motor-integrated compressor according to the present embodiment.
  • the air that has passed through the through hole 26Ba of the yoke 26B flows in the outer diameter direction by the protrusion 27 that rotates together with the counter-output side motor rotor 22B, and is discharged from the exhaust port 23a.
  • the same effect as the motor-integrated compressor 100 according to the first embodiment can be obtained, and the exhaust port 23a is opened in the side surface portion of the motor 20. Intrusion of droplets or dust into the motor 20 can be suppressed.
  • FIG. 11 is a longitudinal sectional view of the motor-integrated compressor 102 according to the third embodiment of the present invention.
  • the difference from the motor-integrated compressor 100 (see FIG. 1) according to the first embodiment is that the diameter of the portion of the shaft 21 surrounded by the stator 24 is smaller than the diameter of the other portions.
  • a stepped portion 21 a is formed on the outer peripheral surface of the shaft 21.
  • the same effect as the motor-integrated compressor 100 according to the first embodiment can be obtained, and the gap 30 between the shaft 21 and the stator 24 can be increased.
  • the air flowing in from the output side of the motor 20 can be efficiently sent out to the non-output side, and the cooling performance of the motor 20 is further improved.
  • FIG. 12 is a schematic configuration diagram of a compressor unit 200 according to Embodiment 4 of the present invention.
  • the compressor unit 200 includes a motor-integrated compressor 100 (see FIG. 1) according to the first embodiment, a suction filter 40, a suction throttle valve 41, and a unit case 42.
  • the suction filter 40 is provided in the suction communication passage 43 that guides the compressed air from the outside of the unit case 42 to the suction chamber 17, and removes dust contained in the compressed air sucked from the outside of the unit case 42.
  • the suction throttle valve 41 is provided on the downstream side of the suction filter 40 in the suction communication passage 43, and adjusts the flow rate of the compression air that flows into the suction chamber 17.
  • a part of the compressed air that has passed through the suction filter 40 is guided to the intake port 14a of the motor-integrated compressor 100 via the intake communication passage 44 branched from the suction filter 40 downstream side of the suction communication passage 43.
  • the air discharged from the exhaust port 25 a of the motor-integrated compressor 100 is guided to the outside of the unit case 42 via the exhaust communication path 45.
  • the same effect as that of the motor-integrated compressor 100 according to the first embodiment can be obtained, and a part of the compressed air that has passed through the suction filter 40 can be supplied to the intake port 14a. By guiding, dust can be prevented from entering the motor 20.
  • the compressor unit 200 according to the present embodiment is configured to include the motor-integrated compressor 100 according to the first embodiment, but may be configured to include the motor-integrated compressor according to other embodiments.
  • the compressor unit 200 has a configuration in which a part of the compressed air that has passed through the suction filter 40 is guided to the intake port 14a as motor cooling air.
  • the motor cooling air is used as the compressed air. May be independently taken into the unit case 42 and passed through a suction filter provided separately from the suction filter 40 and guided to the intake port 14a.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, or the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided is a motor-integrated compressor capable of exhibiting improved motor efficiency and compression efficiency through efficient cooling of an axial-gap motor. The motor-integrated compressor (100) is provided with a compressor body (10) and an axial-gap motor (20) for driving the compressor body. The axial-gap motor is provided with a shaft (21) which serves as a rotary shaft, a motor casing (14, 23, 25) for housing the shaft, a stator (24) that is fixed to the inner surface of the motor casing and annularly disposed with a predetermined gap from the outer periphery of the shaft, and motor rotors (22A, 22B) that are connected to the shaft and respectively disposed with a predetermined gap from the stator in the axial direction of the shaft. The motor casing has an intake port (14a) that is formed on the output side of the axial-gap motor and an exhaust port (25a) that is formed on the opposite side of the axial-gap motor from the output side.

Description

モータ一体型圧縮機Motor integrated compressor
 本発明は、モータと圧縮機とを一体に備えたモータ一体型圧縮機に関し、特にアキシャルギャップモータを用いたモータ一体型圧縮機に関する。 The present invention relates to a motor-integrated compressor integrally including a motor and a compressor, and more particularly to a motor-integrated compressor using an axial gap motor.
 近年、工場では、用途に応じた圧縮機を生産ライン近傍の各所に配置する分散配置が進められている。このような分散配置では、圧縮機の設置スペースが限られているため、圧縮機の小型化が求められている。 In recent years, in factories, distributed arrangements in which compressors according to applications are arranged in various places near the production line have been promoted. In such a distributed arrangement, since the installation space for the compressor is limited, downsizing of the compressor is required.
 従来、圧縮機のモータとしては、モータロータとステータとが同心円状に配置されたラジアルギャップモータ(例えば特許文献1)が採用されていた。しかし、ラジアルギャップモータは、その構造上、軸方向の寸法を小さくできず、小型化に難があった。 Conventionally, as a motor of a compressor, a radial gap motor (for example, Patent Document 1) in which a motor rotor and a stator are concentrically arranged has been adopted. However, the radial gap motor cannot be reduced in size in the axial direction due to its structure, and it has been difficult to reduce the size.
 そこで、ラジアルギャップモータに代えて、アキシャルギャップモータの採用が検討されている。アキシャルギャップモータは、モータロータとステータとが軸方向(アキシャル方向)で対向するように配置されているため、軸方向の寸法を小さくすることができ、ラジアルギャップモータを採用した場合よりも圧縮機を小型化できる。 Therefore, in place of the radial gap motor, the adoption of an axial gap motor is being studied. Since the axial gap motor is arranged so that the motor rotor and the stator face each other in the axial direction (axial direction), the axial dimension can be reduced, and the compressor can be used more than when a radial gap motor is used. Can be downsized.
特開2002-165406号公報JP 2002-165406 A
 一般に、モータの冷却はモータケーシングの径方向外周面による放熱に依存する割合が少なくない。径方向に拡大し、それに応じてモータケーシングの径方向外周面積が小型化する傾向にあるアキシャルギャップモータは、従来のラジアルギャップモータよりも温度が上昇しやすい傾向にある。このようなアキシャルギャップモータと、圧縮機本体とで圧縮機を一体的に構成した場合、両発熱体に挟まれる中央部分は比較的温度上昇も他の部分よりも高くなる。特に、ステータと、圧縮機本体との間にモータロータが配置される構成の場合には、モータロータの温度上昇が減磁を招来し、モータ効率が低下するおそれがある。さらに、このモータロータの熱が圧縮機本体の吸込み側軸受や吸込み室に伝わり、吸込み側軸受を冷却する油や吸込みガスの温度が上昇することにより、圧縮効率が低下するおそれもある。 In general, motor cooling often depends on heat dissipation from the outer circumferential surface of the motor casing. An axial gap motor that expands in the radial direction and has a tendency to reduce the outer peripheral area of the motor casing in the radial direction tends to increase in temperature more easily than a conventional radial gap motor. When the compressor is integrally configured by such an axial gap motor and the compressor main body, the temperature of the central portion sandwiched between the two heat generating elements is relatively higher than that of the other portions. In particular, in the case where the motor rotor is arranged between the stator and the compressor body, the temperature increase of the motor rotor may cause demagnetization, and the motor efficiency may be reduced. Further, the heat of the motor rotor is transmitted to the suction side bearing and the suction chamber of the compressor body, and the temperature of the oil and the suction gas for cooling the suction side bearing is increased, so that the compression efficiency may be lowered.
 本発明は、上記事柄に鑑みてなされたものであり、アキシャルギャップモータを効率的に冷却することにより、モータ効率、圧縮効率或いはその両方を向上できるモータ一体型圧縮機を提供することを課題の一つとするものである。 The present invention has been made in view of the above, and it is an object of the present invention to provide a motor-integrated compressor that can improve motor efficiency, compression efficiency, or both by efficiently cooling an axial gap motor. One thing.
 上記課題を達成するために、例えば、請求の範囲に記載の構成を適用する。すなわち、圧縮機本体と、前記圧縮機本体を駆動するアキシャルギャップモータとを備えたモータ一体型圧縮機であって、前記アキシャルギャップモータは、回転軸としてのシャフトと、前記シャフトを収容するモータケーシングと、前記モータケーシングの内側面に固定され、前記シャフトの外周面から所定の間隔を隔てて環状に配置されたステータと、前記シャフトに連結され、前記シャフトの軸方向で前記ステータから所定の間隔を隔てて配置されたモータロータとを備え、前記モータケーシングは、前記アキシャルギャップモータの出力側に形成された吸気口と、前記アキシャルギャップモータの反出力側に形成された排気口とを有する。 In order to achieve the above problem, for example, the configuration described in the claims is applied. That is, a motor-integrated compressor including a compressor main body and an axial gap motor that drives the compressor main body, wherein the axial gap motor includes a shaft as a rotating shaft and a motor casing that houses the shaft. A stator fixed to the inner surface of the motor casing and annularly arranged at a predetermined interval from the outer peripheral surface of the shaft; and a stator connected to the shaft and spaced from the stator in the axial direction of the shaft. And the motor casing has an intake port formed on the output side of the axial gap motor and an exhaust port formed on the non-output side of the axial gap motor.
 本発明の一側面によれば、アキシャルギャップモータを効率的に冷却することにより、モータ一体型圧縮機のモータ効率、圧縮効率或いはその両方を向上できる。 According to one aspect of the present invention, the motor efficiency, the compression efficiency, or both of the motor-integrated compressor can be improved by efficiently cooling the axial gap motor.
 なお、本発明の他の課題及び効果は、以下の記載から更に明らかになる。 Note that other problems and effects of the present invention will become more apparent from the following description.
本発明の実施例1に係るモータ一体型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the motor integrated compressor which concerns on Example 1 of this invention. 本発明の実施例1に係るモータ一体型圧縮機において、出力側モータロータ及び反出力側モータロータをステータとの対向面側から示す斜視図である。FIG. 3 is a perspective view showing the output-side motor rotor and the counter-output-side motor rotor from the side facing the stator in the motor-integrated compressor according to the first embodiment of the present invention. 本発明の実施例1に係るモータ一体型圧縮機において、出力側モータロータ及び反出力側モータロータの他の例をステータとの対向面側から示す斜視図である。In the motor integrated compressor which concerns on Example 1 of this invention, it is a perspective view which shows the other example of an output side motor rotor and a counter output side motor rotor from the opposing surface side with a stator. 図3Aに示す出力側モータロータのAA断面矢視図である。It is an AA cross-sectional view of the output side motor rotor shown in FIG. 3A. 本発明の実施例1に係るモータ一体型圧縮機において、出力側モータロータの他の例をステータとの反対向面側から示す斜視図である。In the motor integrated compressor which concerns on Example 1 of this invention, it is a perspective view which shows the other example of the output side motor rotor from the surface opposite to a stator. 本発明の実施例1に係るモータ一体型圧縮機の縦断面において、モータ内部を通過する空気の流れ、及び圧縮機本体を通過する空気の流れを示す図である。It is a figure which shows the flow of the air which passes the inside of a motor, and the flow of the air which passes a compressor main body in the longitudinal cross-section of the motor integrated compressor which concerns on Example 1 of this invention. 本発明の実施例1の変形例に係るモータ一体型圧縮機の縦断面において、モータ内部を通過する空気の流れ、及び圧縮機本体を通過する空気の流れを示す図である。It is a figure which shows the flow of the air which passes the inside of a motor, and the flow of the air which passes a compressor main body in the longitudinal cross-section of the motor integrated compressor which concerns on the modification of Example 1 of this invention. 本発明の実施例1の変形例に係るモータ一体型圧縮機において、出力側モータロータの他の例を示す図である。It is a figure which shows the other example of an output side motor rotor in the motor integrated compressor which concerns on the modification of Example 1 of this invention. 本発明の実施例1の変形例に係るモータ一体型圧縮機において、出力側モータロータの更に他の例を示す図である。It is a figure which shows the further another example of an output side motor rotor in the motor integrated compressor which concerns on the modification of Example 1 of this invention. 本発明の実施例2に係るモータ一体型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the motor integrated compressor which concerns on Example 2 of this invention. 本発明の実施例2に係る反出力側モータロータをステータとの反対向面側から示す斜視図である。It is a perspective view which shows the non-output side motor rotor which concerns on Example 2 of this invention from the anti-opposite surface side with a stator. 本発明の実施例2に係るモータ一体型圧縮機の縦断面において、モータ内部を通過する空気の流れ、及び圧縮機本体を通過する空気の流れを示す図である。It is a figure which shows the flow of the air which passes the inside of a motor, and the flow of the air which passes a compressor main body in the longitudinal cross-section of the motor integrated compressor which concerns on Example 2 of this invention. 本発明の実施例3に係るモータ一体型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the motor integrated compressor which concerns on Example 3 of this invention. 本発明の実施例4に係るモータ一体型圧縮機ユニットの概略構成図である。It is a schematic block diagram of the motor integrated compressor unit which concerns on Example 4 of this invention.
 以下、本発明の実施例を図面を用いて説明する。なお、各図中、同一又は相当する部材には同一の符号を付し、重複した説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or equivalent member, and the overlapping description is abbreviate | omitted suitably.
 図1は、本発明の実施例1に係るモータ一体型圧縮機100の縦断面図である。モータ一体型圧縮機100は、油冷式のスクリュー空気圧縮機(以下、「圧縮機本体」という。)10と、圧縮機本体10を駆動するアキシャルギャップモータ(以下、単に「モータ」という。)20とを一体に備えている。本実施例では、モータ20が、後述するシャフト21が鉛直方向を向くように圧縮機本体10の上部に配置されている構成を用いて説明するが、本発明はこれに限定するものではなくシャフト21が水平方向や傾斜する方向を向くように構成してもよい。 FIG. 1 is a longitudinal sectional view of a motor-integrated compressor 100 according to Embodiment 1 of the present invention. The motor-integrated compressor 100 includes an oil-cooled screw air compressor (hereinafter referred to as “compressor main body”) 10 and an axial gap motor (hereinafter simply referred to as “motor”) that drives the compressor main body 10. 20 are integrally provided. In the present embodiment, the motor 20 will be described using a configuration in which the shaft 21 described later is disposed on the upper portion of the compressor body 10 so as to face the vertical direction, but the present invention is not limited to this, and the shaft You may comprise so that 21 may face the horizontal direction or the direction which inclines.
 圧縮機本体10は、圧縮機本体ケーシング11と、圧縮機本体ケーシング11のスクリューロータ収容室12に互いに噛み合うように配置された雄スクリューロータ(以下、単に「スクリューロータ」という。)13及び図示しない雌スクリューロータと、スクリューロータ収容室12の吸込み側を閉塞する吸込み側軸受保持部14とを備える。スクリューロータ13の吸込み側端部(後述するシャフト21の出力側端部)は、吸込み側軸受保持部14に設けられた吸込み側軸受15によって回転可能に支持される。スクリューロータ13の吐出し側端部は、圧縮機本体ケーシング11に設けられた吐出し側軸受16によって回転可能に支持される。 The compressor body 10 includes a compressor body casing 11, a male screw rotor (hereinafter simply referred to as “screw rotor”) 13 disposed so as to mesh with the screw rotor housing chamber 12 of the compressor body casing 11, and not shown. A female screw rotor and a suction side bearing holding portion 14 that closes the suction side of the screw rotor housing chamber 12 are provided. A suction side end of the screw rotor 13 (an output side end of the shaft 21 described later) is rotatably supported by a suction side bearing 15 provided in the suction side bearing holding portion 14. The discharge-side end portion of the screw rotor 13 is rotatably supported by a discharge-side bearing 16 provided in the compressor body casing 11.
 圧縮機本体10の吸込み側の側面部には、圧縮機本体ケーシング11と、吸込み側軸受保持部14とによって、スクリューロータ収容室12の吸込み側に連通する吸込み室17が形成されている。吸込み室17には、図示しない吸込み連通路を介して圧縮用空気が導かれる。圧縮機本体ケーシング11の吐出し側の側面部には、スクリューロータ収容室12の吐出し側に連通する吐出しポート18が形成される。スクリューロータ13は、モータ20によって回転駆動され、吸込み室17に導かれた圧縮用空気を圧縮して吐出しポート18から吐出するようになっている。 A suction chamber 17 communicating with the suction side of the screw rotor housing chamber 12 is formed on the side surface portion on the suction side of the compressor body 10 by the compressor body casing 11 and the suction side bearing holding portion 14. Compressed air is guided to the suction chamber 17 through a suction communication path (not shown). A discharge port 18 that communicates with the discharge side of the screw rotor storage chamber 12 is formed in the side surface portion on the discharge side of the compressor body casing 11. The screw rotor 13 is rotationally driven by the motor 20, compresses and discharges the compression air guided to the suction chamber 17 and discharges it from the port 18.
 モータ20は、スクリューロータ13の吸込み側と一体に形成されたシャフト21と、シャフト21の出力側に取り付けられた出力側モータロータ22Aと、シャフト21の反出力側に取り付けられた反出力側モータロータ22Bと、シャフト21及びモータロータ22A,22Bを収容する円筒状のモータケーシング本体部23と、モータケーシング本体部23の内周面に固定され、モータロータ22A,22Bの間に配置されたステータ24とを備えている。モータケーシング本体部23の出力側は、圧縮機本体10の吸込み側軸受保持部14によって閉塞されており、モータケーシング本体部23の反出力側は、エンドブラケット25によって閉塞されている。このように、モータケーシング本体部23は、吸込み側軸受保持部14及びエンドブラケット25と一体となってモータ20のモータケーシングを構成している。 The motor 20 includes a shaft 21 formed integrally with the suction side of the screw rotor 13, an output side motor rotor 22 </ b> A attached to the output side of the shaft 21, and a counter output side motor rotor 22 </ b> B attached to the counter output side of the shaft 21. A cylindrical motor casing main body 23 that accommodates the shaft 21 and the motor rotors 22A and 22B, and a stator 24 that is fixed to the inner peripheral surface of the motor casing main body 23 and disposed between the motor rotors 22A and 22B. ing. The output side of the motor casing main body 23 is closed by the suction side bearing holding portion 14 of the compressor main body 10, and the opposite output side of the motor casing main body 23 is closed by the end bracket 25. As described above, the motor casing main body 23 constitutes a motor casing of the motor 20 together with the suction side bearing holding portion 14 and the end bracket 25.
 このように、圧縮機本体10の一部である吸込み側軸受保持部14によってモータケーシング本体部23の出力側を閉塞したことで出力側ブラケットが不要となり、また、圧縮機本体10に支持されたスクリューロータ13と、シャフト21とを一体に形成したことでモータ20内部の軸受が不要となるため、モータ20を小型化することができる。なお、本発明はこの構成に限定するものではなく、モータ20内部に軸受を設置する構成であってもよい。 Thus, the output side bracket becomes unnecessary because the suction side bearing holding part 14 which is a part of the compressor body 10 closes the output side of the motor casing body 23, and is supported by the compressor body 10. Since the screw rotor 13 and the shaft 21 are integrally formed, a bearing inside the motor 20 is not necessary, and the motor 20 can be downsized. In addition, this invention is not limited to this structure, The structure which installs a bearing inside the motor 20 may be sufficient.
 ステータ24は、シャフト21の外周面から所定の間隔を隔てて環状に配置された複数の鉄心(コア)によって構成され、複数の鉄心のそれぞれにはコイルが巻き回されている。コイルに流れる電流によって鉄心に磁束が生じ、軸方向にループする磁界が形成される。出力側モータロータ22Aは、シャフト21に連結されたヨーク26Aと、このヨーク26Aによってステータ24の出力側端面と所定の間隔を隔てて対向するように配置された複数の磁石27Aとを有する。反出力側モータロータ22Bは、シャフト21に連結されたヨーク26Bと、このヨーク26Bによってステータ24の出力側端面と所定の間隔を隔てて対向するように配置された複数の磁石27Bとを有する。磁石27A,27Bの磁界と、ステータ24の磁界との相互作用によってモータロータ22A,22B及びシャフト21が回転駆動されるようになっている。 The stator 24 is composed of a plurality of cores (cores) that are annularly arranged at a predetermined interval from the outer peripheral surface of the shaft 21, and a coil is wound around each of the plurality of cores. Magnetic flux is generated in the iron core by the current flowing through the coil, and a magnetic field that loops in the axial direction is formed. The output side motor rotor 22A has a yoke 26A connected to the shaft 21 and a plurality of magnets 27A arranged so as to face the output side end face of the stator 24 with a predetermined interval by the yoke 26A. The non-output-side motor rotor 22B includes a yoke 26B connected to the shaft 21 and a plurality of magnets 27B arranged so as to face the output-side end surface of the stator 24 with a predetermined interval by the yoke 26B. The motor rotors 22A and 22B and the shaft 21 are rotationally driven by the interaction between the magnetic fields of the magnets 27A and 27B and the magnetic field of the stator 24.
 図2は、出力側モータロータ22A及び反出力側モータロータ22Bをステータ24との対向面側から示す斜視図である。図2に示すように、モータロータ22A,22Bは略同一の構成を有するため、以下、出力側モータロータ22Aについて主に説明する。モータロータ22Aは、円盤形状のヨーク26Aと、複数の磁石27Aとを有する。複数の磁石27Aは、それぞれ軸方向に磁化されており、ヨーク26Aのステータ24と対向する側の面に、周方向で磁化方向(S極又はN極)が交互に逆向きとなるように配置されている。ヨーク26Aは、シャフト21の外径より大きい内径の穴を中央部に有し、この穴の中央には、周方向に離間して配置された複数の支柱28Aによって、環状連結部材29Aが支持されている。ヨーク26Aの中央穴の内側面と、環状連結部材29Aの外側端面との間が複数の支柱28Aによって仕切られることにより、軸方向に貫通する複数の貫通穴26Aaが形成される。環状連結部材29Aの内径はシャフト21の外径とほぼ一致しており、この環状連結部材29Aにシャフト21を挿通して固定することにより、出力側モータロータ22Aがシャフト21に連結される。複数の支柱28Aのそれぞれは回転方向に対して傾斜した羽根状に形成されており、モータロータ22Aの回転と共に、吸気穴14aからステータ24に向かって、複数の貫通穴26Aaを軸方向に通過する空気の流れを発生させる。なお、モータロータ22Aの遠心強度を考慮すると、環状連結部材29A及び複数の支柱28Aは、磁石支持部材26Aと一体に形成するのも好ましい。 FIG. 2 is a perspective view showing the output-side motor rotor 22A and the counter-output-side motor rotor 22B from the side facing the stator 24. FIG. As shown in FIG. 2, since the motor rotors 22A and 22B have substantially the same configuration, the output side motor rotor 22A will be mainly described below. The motor rotor 22A has a disk-shaped yoke 26A and a plurality of magnets 27A. The plurality of magnets 27A are each magnetized in the axial direction, and are arranged on the surface of the yoke 26A facing the stator 24 so that the magnetization directions (S poles or N poles) are alternately reversed in the circumferential direction. Has been. The yoke 26A has a hole having an inner diameter larger than the outer diameter of the shaft 21 at the center, and the annular coupling member 29A is supported at the center of the hole by a plurality of support posts 28A that are spaced apart in the circumferential direction. ing. A plurality of through holes 26Aa penetrating in the axial direction are formed by partitioning the inner side surface of the central hole of the yoke 26A and the outer end surface of the annular coupling member 29A by a plurality of support posts 28A. The inner diameter of the annular connecting member 29A substantially matches the outer diameter of the shaft 21, and the output side motor rotor 22A is connected to the shaft 21 by inserting the shaft 21 into the annular connecting member 29A and fixing it. Each of the plurality of support columns 28A is formed in a blade shape inclined with respect to the rotation direction, and air that passes through the plurality of through holes 26Aa in the axial direction from the intake holes 14a toward the stator 24 as the motor rotor 22A rotates. Generate a flow of In consideration of the centrifugal strength of the motor rotor 22A, the annular connecting member 29A and the plurality of support columns 28A are preferably formed integrally with the magnet support member 26A.
 ヨーク26A、26Bに形成された支柱28A、28Bは、回転に伴って軸方向の気流を発生させるものであれば種々の構成が適用できる。 The struts 28A and 28B formed on the yokes 26A and 26B can have various configurations as long as they generate an airflow in the axial direction as they rotate.
 図3A、図3B及び図3Cに、支柱28A等の他の例を示す。図3Aは、出力側モータロータ22A及び反出力側モータロータ22Bの他の例をステータ24との対向面側から示す斜視図である。図3Bは、図3Aに示す出力側モータロータ22AのAA断面矢視図である。図3Cは、出力側モータロータ22Aの他の例をステータ24との反対向面側から示す斜視図である。本変形例では支柱28Aの回転方向先端が、ステータ24側と反対方向に向かって流線型に傾斜する形状となる(図3B参照)。なお、図示は省略するが、反出力側モータロータ22Bの支柱28Bは外部に排気する流れを形成する必要から、その回転方向先端がステータ24側となり、ヨーク26Bの背面に向かって反回転方向に流線形状の傾斜となる形状となる。 3A, 3B, and 3C show other examples of the column 28A and the like. FIG. 3A is a perspective view showing another example of the output-side motor rotor 22A and the counter-output-side motor rotor 22B from the side facing the stator 24. FIG. 3B is an AA cross-sectional view of the output side motor rotor 22A shown in FIG. 3A. FIG. 3C is a perspective view showing another example of the output side motor rotor 22A from the side opposite to the stator 24. As shown in FIG. In this modification, the front end in the rotation direction of the support column 28A is inclined in a streamline shape in the direction opposite to the stator 24 side (see FIG. 3B). Although not shown, since the support 28B of the counter-output side motor rotor 22B needs to form a flow that exhausts to the outside, the tip in the rotation direction becomes the stator 24 side and flows in the counter-rotation direction toward the back surface of the yoke 26B. The shape is a linear slope.
 また、本変形例では、図3B又は図3Cに示す様に、支柱28Aのステータ24と反対側は、ヨーク26Aの背面と平行或いは水平となる肉厚形状となっている。即ち支柱28Aの反回転方向側を肉厚にし、支柱としての強度をより確保できる構成となっている。なお、支柱28Bは、ステータ24側が磁石27の径方向面と平行或いは水平となる肉厚形状となる。 Further, in this modification, as shown in FIG. 3B or 3C, the side of the support 28A opposite to the stator 24 has a thick shape that is parallel or horizontal to the back surface of the yoke 26A. That is, the structure is such that the strength of the support column 28A is increased by increasing the thickness of the counter-rotation direction side of the support column 28A. Note that the support 28B has a thick shape in which the stator 24 side is parallel or horizontal to the radial surface of the magnet 27.
 図1に戻り、モータケーシング本体部23の出力側を閉塞する吸込み側軸受保持部14は、出力側モータロータ22Aの下方において軸方向に貫通し、モータ20の出力側の内部とモータ一体型圧縮機100の外部とを連通する複数の吸気口14aを有する。吸気口14aは、出力側モータロータ22Aの貫通穴26Aaに近づけて形成することが好ましい。モータケーシング本体部23の反出力側を閉塞するエンドブラケット25は、反出力側モータロータ22Bのヨーク26Bの上方において軸方向に貫通し、モータ20の反出力側の内部と、モータ一体型圧縮機100の外部とを連通する複数の排気口25aを有する。排気口25aは、反出力側モータロータ22Bの貫通穴26Baに近づけて形成することが好ましい。 Returning to FIG. 1, the suction-side bearing holding portion 14 that closes the output side of the motor casing main body portion 23 penetrates in the axial direction below the output-side motor rotor 22 </ b> A, and the motor-side compressor and the interior on the output side of the motor 20. A plurality of air inlets 14 a communicating with the outside of 100 are provided. The intake port 14a is preferably formed close to the through hole 26Aa of the output side motor rotor 22A. The end bracket 25 that closes the non-output side of the motor casing body 23 penetrates in the axial direction above the yoke 26B of the non-output side motor rotor 22B, and the inside of the non-output side of the motor 20 and the motor-integrated compressor 100. There are a plurality of exhaust ports 25a communicating with the outside. The exhaust port 25a is preferably formed close to the through hole 26Ba of the counter-output side motor rotor 22B.
 図4は、本実施例に係るモータ一体型圧縮機100の縦断面において、モータ20内部を通過する空気の流れ及び圧縮機本体10を通過する空気の流れを示す図である。 FIG. 4 is a diagram showing the flow of air passing through the motor 20 and the flow of air passing through the compressor body 10 in the longitudinal section of the motor-integrated compressor 100 according to the present embodiment.
 モータ一体型圧縮機100が駆動すると、モータ20内部の空気は、ステータ24(コイル)や圧縮機本体10の発熱によって熱せられ、モータ20の上側(反出力側)に開口する排気口25aから外部に排出される。それに伴い、モータ20の下側(出力側)に開口する吸気口14aから外部の空気が流入する。吸気口14aから流入した空気は、出力側モータロータ22Aの貫通穴26Aaと、シャフト21とステータ24との間隙30と、反出力側モータロータ22Bの貫通穴26Baとを通過し、排気口25aから排出される。 When the motor-integrated compressor 100 is driven, the air inside the motor 20 is heated by the heat generated by the stator 24 (coil) and the compressor body 10 and is externally supplied from an exhaust port 25a that opens to the upper side (counter output side) of the motor 20 To be discharged. Along with this, external air flows from the intake port 14 a that opens to the lower side (output side) of the motor 20. The air flowing in from the intake port 14a passes through the through hole 26Aa of the output side motor rotor 22A, the gap 30 between the shaft 21 and the stator 24, and the through hole 26Ba of the counter output side motor rotor 22B, and is discharged from the exhaust port 25a. The
 本実施例に係るモータ一体型圧縮機100によれば、先ず、シャフト21が鉛直方向を向くようにモータ一体型圧縮機100を構成したことにより、モータ20の下側(出力側)に設けられた吸気口14aから取り込まれた冷却用空気が、自然対流によってモータ20の上側(反出力側)に設けられた排気口25aから排出されるため、モータ20を効率的に冷却することができる。 According to the motor-integrated compressor 100 according to the present embodiment, first, the motor-integrated compressor 100 is configured so that the shaft 21 faces the vertical direction, and thus is provided on the lower side (output side) of the motor 20. Since the cooling air taken in from the intake port 14a is discharged from the exhaust port 25a provided on the upper side (opposite output side) of the motor 20 by natural convection, the motor 20 can be efficiently cooled.
さらに、モータロータ22A,22Bの支柱28A,28Bを羽根状に形成し、積極的に空気を吸い込み、かつ強制的に空気を排出することができる。これにより、モータ20内部を流通する空気の流量が増大し、モータ20の冷却効果が向上する。あるいは、シャフト21が水平方向を向くようにモータ一体型圧縮機100を構成した場合であっても、自然対流によらずにモータ20の出力側から反出力側に向けて空気を流通させることが可能となり、モータ20を効率的に冷却することができる。 Furthermore, the props 28A and 28B of the motor rotors 22A and 22B can be formed in a blade shape so as to actively suck air and forcibly discharge air. Thereby, the flow volume of the air which distribute | circulates the inside of the motor 20 increases, and the cooling effect of the motor 20 improves. Alternatively, even when the motor-integrated compressor 100 is configured such that the shaft 21 faces the horizontal direction, air can be circulated from the output side of the motor 20 to the non-output side without depending on natural convection. This enables the motor 20 to be efficiently cooled.
 さらに、吸気口14aが圧縮機本体10の吸込み側軸受15や吸込み室17の近傍に設けられているため、吸気口14aに空気が吸入される際に生じる吸気風14bによって、吸込み側軸受15を冷却する油や吸込み室17内の空気が冷却され、圧縮効率の低下が抑制される。 Further, since the intake port 14a is provided in the vicinity of the suction-side bearing 15 and the suction chamber 17 of the compressor body 10, the intake-side bearing 15 is made up of the intake air 14b generated when air is sucked into the intake port 14a. The oil to be cooled and the air in the suction chamber 17 are cooled, and a decrease in compression efficiency is suppressed.
 なお、本実施例では、モータ20としてワンステータ・ツーロータのアキシャルギャップモータを用いた構成を示したが、本発明はこれに限定されず、例えばワンロータ・ワンステータやスリーステータ・ツーロータのアキシャルギャップモータを用いた構成にも適用可能である。 In the present embodiment, a configuration in which a one-stator-to-rotor axial gap motor is used as the motor 20 is shown. However, the present invention is not limited to this. For example, a one-rotor / one-stator or a three-stator / two-rotor axial gap motor is used. The present invention can also be applied to a configuration using.
 また、本実施例では、出力側のヨーク26A、反出力側のヨーク26Bの両方に羽根形状の支柱28A,28Bを設けた構成としたが、何れか一方のみ設ける構成であってもよい。 In the present embodiment, the blade- like support columns 28A and 28B are provided on both the output side yoke 26A and the counter output side yoke 26B. However, only one of them may be provided.
 また、本実施例では、圧縮機本体10として油冷式のスクリュー空気圧縮機を用いた構成を示したが、本発明はこれに限らず、オイルフリースクリュー圧縮機や作動室に水を供給する水潤滑圧縮機にも適用可能である。 Moreover, although the structure which used the oil-cooled screw air compressor as the compressor main body 10 was shown in the present Example, this invention is not restricted to this, Water is supplied to an oil free screw compressor and a working chamber. It is also applicable to water lubricated compressors.
 (変形例)
 図1では、モータロータ22A,22Bのヨーク26A,26Bに貫通穴26Aa,26Baを設けた構成を示したが、図4に示すように、モータロータ22A,22Bのヨーク26A,26Bに貫通穴26Aa,26Baを設けない構成とすることも可能である。
(Modification)
Although FIG. 1 shows a configuration in which the through holes 26Aa and 26Ba are provided in the yokes 26A and 26B of the motor rotors 22A and 22B, as shown in FIG. 4, the through holes 26Aa and 26Ba are formed in the yokes 26A and 26B of the motor rotors 22A and 22B. It is also possible to adopt a configuration in which no is provided.
 図5において、吸気口14aから流入した空気は、出力側モータロータ22Aの外周端とモータケーシング本体部23の内側面との間隙31、出力側モータロータ22Aとステータ24との間隙32、ステータ24とシャフト21との間隙30、ステータ24と磁石27Bとの間隙33、反出力側モータロータ22Bの外周端とモータケーシング本体部23の内壁との間隙34、及びエンドブラケット25と反出力側モータロータ22Bとの間隙35の順に通過し、排気口25aから排出される。 In FIG. 5, the air flowing in from the intake port 14a is a gap 31 between the outer peripheral end of the output side motor rotor 22A and the inner surface of the motor casing main body 23, a gap 32 between the output side motor rotor 22A and the stator 24, a stator 24 and a shaft. 21, a gap 33 between the stator 24 and the magnet 27B, a gap 34 between the outer peripheral end of the counter-output side motor rotor 22B and the inner wall of the motor casing body 23, and a gap between the end bracket 25 and the counter-output side motor rotor 22B. It passes in order of 35 and is discharged | emitted from the exhaust port 25a.
 この場合も、モータ20の下側に設けられた吸気口14aから取り込まれた冷却用空気が、自然対流によってモータ20の上側に設けられた排気口25aから排出されるため、モータ20を効率的に冷却することができる。さらに、モータロータ22A,22Bに貫通穴26Aa,26Baを設けない構成としたことにより、モータロータ22A,22Bの遠心強度が向上する。 Also in this case, since the cooling air taken in from the intake port 14a provided on the lower side of the motor 20 is discharged from the exhaust port 25a provided on the upper side of the motor 20 by natural convection, the motor 20 is efficiently operated. Can be cooled to. Furthermore, the centrifugal strength of the motor rotors 22A and 22B is improved by providing the motor rotors 22A and 22B with no through holes 26Aa and 26Ba.
 なお、上記構成において、ヨーク26Aに気流を発生させる羽根を付けてもよい。図6に、ヨーク26A等に、貫通穴26Aaを形成せずに羽根を有する構成を示す。ヨーク26Aの径方向外周に沿って、複数の羽根37を配置する。羽根37は、回転方向先端が出力側に傾斜し、回転に伴って出力側からステータ24側に流れる気流を生成する。なお、図示は省略するが、反出力側のヨーク26Bにも同様な羽根37を形成する。 In the above configuration, the yoke 26A may be provided with a blade that generates an air flow. FIG. 6 shows a configuration in which a blade is provided in the yoke 26A or the like without forming the through hole 26Aa. A plurality of blades 37 are arranged along the radial outer periphery of the yoke 26A. The blade 37 has a tip in the rotation direction inclined toward the output side, and generates an airflow that flows from the output side to the stator 24 as it rotates. Although not shown, similar blades 37 are also formed on the yoke 26B on the counter-output side.
 図7に、更に他の例を示す。本変形例は、ヨーク26Aの背面に軸方向に延伸する凸形状の羽根38を複数配置する構成である。羽根38は、外周側が反回転方向に配置されると共にシャフト21側が回転方向に位相する位置に向かって配置された直線形状を有する。回転に伴う遠心力により、シャフト21側から外周側に向かう気流を発生させるようになっている。また、羽根38のシャフト21側先端は、吸気口14aの軸方向投影面と交差する付近或いはその外周側となるように配置され、羽根38が発生させる気流に対して、吸気口14aからモータケーシング外周に向かっての冷却風の流れを生じ易くするようになっている。なお、羽根38は、直線形状に限らず、外周側に向かって徐々に反回転方向に向かって位相する曲線形状であってもよい。 Fig. 7 shows another example. In this modification, a plurality of convex blades 38 extending in the axial direction are arranged on the back surface of the yoke 26A. The blade 38 has a linear shape in which the outer peripheral side is arranged in the counter-rotating direction and the shaft 21 side is arranged toward a position that is phased in the rotating direction. An air flow from the shaft 21 side toward the outer peripheral side is generated by the centrifugal force accompanying the rotation. Further, the tip of the blade 38 on the shaft 21 side is disposed so as to be in the vicinity of or intersecting with the axial projection surface of the intake port 14a or on the outer peripheral side thereof, and from the intake port 14a to the motor casing against the air flow generated by the blade 38. A flow of cooling air toward the outer periphery is easily generated. The blades 38 are not limited to a linear shape, but may have a curved shape that gradually phase toward the counter-rotating direction toward the outer peripheral side.
 図8は、本発明の実施例2に係るモータ一体型圧縮機101の縦断面図である。図8において、実施例1に係るモータ一体型圧縮機100(図1参照)との相違点は、エンドブラケット25に設けた複数の排気口25aに代えて、モータケーシング本体部23の上端付近に径方向に貫通する複数の排気口23aを設け、反出力側モータロータ22Bが有するヨーク26Bのステータ24との反対向面(以下、「背面」という)に複数の突起部27を設けている点である。 FIG. 8 is a longitudinal sectional view of the motor-integrated compressor 101 according to the second embodiment of the present invention. 8, the difference from the motor-integrated compressor 100 according to the first embodiment (see FIG. 1) is that the motor casing body 23 is located near the upper end in place of the plurality of exhaust ports 25 a provided in the end bracket 25. A plurality of exhaust ports 23a penetrating in the radial direction are provided, and a plurality of protrusions 27 are provided on a surface (hereinafter referred to as “rear surface”) of the yoke 26B of the counter-output-side motor rotor 22B opposite to the stator 24. is there.
 図9は、反出力側モータロータ22Bを背面側から示す斜視図である。図9に示すように、複数の突起部27は、それぞれ角柱形状の部材からなり、モータロータ22Bの背面に、回転軸を中心とする放射状に配置されている。なお、突起部27の数、形状、配置等は、適宜変更可能である。 FIG. 9 is a perspective view showing the non-output side motor rotor 22B from the back side. As shown in FIG. 9, the plurality of protrusions 27 are each made of a prismatic member, and are arranged radially on the back surface of the motor rotor 22 </ b> B around the rotation axis. Note that the number, shape, arrangement, and the like of the protrusions 27 can be changed as appropriate.
 図10は、本実施例に係るモータ一体型圧縮機の縦断面において、モータ内部を通過する空気の流れ及び圧縮機本体10を通過する空気の流れを示す図である。ヨーク26Bの貫通穴26Baを通過した空気は、反出力側モータロータ22Bと共に回転する突起部27によって外径方向に流れ、排気口23aから排出される。 FIG. 10 is a diagram showing the flow of air passing through the motor and the flow of air passing through the compressor body 10 in the longitudinal section of the motor-integrated compressor according to the present embodiment. The air that has passed through the through hole 26Ba of the yoke 26B flows in the outer diameter direction by the protrusion 27 that rotates together with the counter-output side motor rotor 22B, and is discharged from the exhaust port 23a.
 本実施例に係るモータ一体型圧縮機101によれば、実施例1に係るモータ一体型圧縮機100と同様の効果が得られると共に、排気口23aをモータ20の側面部に開口させたことにより、モータ20内への液滴や粉塵の侵入を抑制することができる。 According to the motor-integrated compressor 101 according to the present embodiment, the same effect as the motor-integrated compressor 100 according to the first embodiment can be obtained, and the exhaust port 23a is opened in the side surface portion of the motor 20. Intrusion of droplets or dust into the motor 20 can be suppressed.
 図11は、本発明の実施例3に係るモータ一体型圧縮機102の縦断面図である。図11において、実施例1に係るモータ一体型圧縮機100(図1参照)との相違点は、シャフト21のうちステータ24に外周を囲まれた部分の径がその他の部分の径よりも小さくなるように、シャフト21の外周面に段差部21aが形成されている点である。 FIG. 11 is a longitudinal sectional view of the motor-integrated compressor 102 according to the third embodiment of the present invention. In FIG. 11, the difference from the motor-integrated compressor 100 (see FIG. 1) according to the first embodiment is that the diameter of the portion of the shaft 21 surrounded by the stator 24 is smaller than the diameter of the other portions. Thus, a stepped portion 21 a is formed on the outer peripheral surface of the shaft 21.
 本実施例に係るモータ一体型圧縮機102によれば、実施例1に係るモータ一体型圧縮機100と同様の効果が得られると共に、シャフト21とステータ24との間隙30が大きくなることで、モータ20の出力側から流入した空気を反出力側に効率良く送り出すことが可能となり、モータ20の冷却性能が更に向上する。 According to the motor-integrated compressor 102 according to the present embodiment, the same effect as the motor-integrated compressor 100 according to the first embodiment can be obtained, and the gap 30 between the shaft 21 and the stator 24 can be increased. The air flowing in from the output side of the motor 20 can be efficiently sent out to the non-output side, and the cooling performance of the motor 20 is further improved.
 図12は、本発明の実施例4に係る圧縮機ユニット200の概略構成図である。図12において、圧縮機ユニット200は、実施例1に係るモータ一体型圧縮機100(図1参照)と、吸込みフィルタ40と、吸込み絞り弁41と、ユニットケース42とを備えている。 FIG. 12 is a schematic configuration diagram of a compressor unit 200 according to Embodiment 4 of the present invention. In FIG. 12, the compressor unit 200 includes a motor-integrated compressor 100 (see FIG. 1) according to the first embodiment, a suction filter 40, a suction throttle valve 41, and a unit case 42.
 吸込みフィルタ40は、ユニットケース42の外部から吸込み室17に圧縮用空気を導く吸込み連通路43に設けられ、ユニットケース42の外部から吸入した圧縮用空気に含まれる粉塵を除去する。吸込み絞り弁41は、吸込み連通路43の吸込みフィルタ40下流側に設けられ、吸込み室17に流入させる圧縮用空気の流量を調節する。吸込みフィルタ40を通過した圧縮用空気の一部は、吸込み連通路43の吸込みフィルタ40下流側から分岐した吸気連通路44を介して、モータ一体型圧縮機100の吸気口14aに導かれる。モータ一体型圧縮機100の排気口25aから排出された空気は排気連通路45を介してユニットケース42の外部に導かれる。 The suction filter 40 is provided in the suction communication passage 43 that guides the compressed air from the outside of the unit case 42 to the suction chamber 17, and removes dust contained in the compressed air sucked from the outside of the unit case 42. The suction throttle valve 41 is provided on the downstream side of the suction filter 40 in the suction communication passage 43, and adjusts the flow rate of the compression air that flows into the suction chamber 17. A part of the compressed air that has passed through the suction filter 40 is guided to the intake port 14a of the motor-integrated compressor 100 via the intake communication passage 44 branched from the suction filter 40 downstream side of the suction communication passage 43. The air discharged from the exhaust port 25 a of the motor-integrated compressor 100 is guided to the outside of the unit case 42 via the exhaust communication path 45.
 本実施例に係る圧縮機ユニット200によれば、実施例1に係るモータ一体型圧縮機100と同様の効果が得られると共に、吸込みフィルタ40を通過した圧縮用空気の一部を吸気口14aに導くことにより、モータ20内部への粉塵の侵入を防ぐことができる。 According to the compressor unit 200 according to the present embodiment, the same effect as that of the motor-integrated compressor 100 according to the first embodiment can be obtained, and a part of the compressed air that has passed through the suction filter 40 can be supplied to the intake port 14a. By guiding, dust can be prevented from entering the motor 20.
 なお、本実施例に係る圧縮機ユニット200は、実施例1に係るモータ一体型圧縮機100を備える構成としたが、その他の実施例に係るモータ一体型圧縮機を備える構成としても良い。 The compressor unit 200 according to the present embodiment is configured to include the motor-integrated compressor 100 according to the first embodiment, but may be configured to include the motor-integrated compressor according to other embodiments.
 また、本実施例に係る圧縮機ユニット200は、吸込みフィルタ40を通過した圧縮用空気の一部をモータ冷却用空気として吸気口14aに導く構成としたが、モータ冷却用空気を圧縮用空気とは独立してユニットケース42内に取り込み、吸込みフィルタ40とは別に設けた吸込みフィルタを通過させて吸気口14aに導く構成としても良い。 In addition, the compressor unit 200 according to the present embodiment has a configuration in which a part of the compressed air that has passed through the suction filter 40 is guided to the intake port 14a as motor cooling air. However, the motor cooling air is used as the compressed air. May be independently taken into the unit case 42 and passed through a suction filter provided separately from the suction filter 40 and guided to the intake port 14a.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、あるいは、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, or the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
10…圧縮機本体、11…圧縮機本体ケーシング、12…スクリューロータ収容室、13…スクリューロータ、14…吸込み側軸受保持部(モータケーシング)、14a…吸気口、14b…吸気風、15…吸込み側軸受、16…吐出し側軸受、17…吸込み室、18…吐出しポート、20…モータ(アキシャルギャップモータ)、21…シャフト、21a…段差部、22A,22B…モータロータ、23…モータケーシング本体部(モータケーシング)、23a…排気口、24…ステータ、25…エンドブラケット(モータケーシング)、25a…排気口、26A,26B…ヨーク、26Aa,26Ba…貫通穴、27A,27B…磁石、28A,28B…支柱、29A,29B…環状連結部材、27…突起部、30,31,32,33,34,35…間隙、37,38…羽根、40…吸込みフィルタ、41…吸込み絞り弁、42…ユニットケース、43…吸込み連通路、44…吸気連通路、45…排気連通路、100,101,102…モータ一体型圧縮機、200…圧縮機ユニット DESCRIPTION OF SYMBOLS 10 ... Compressor main body, 11 ... Compressor main body casing, 12 ... Screw rotor storage chamber, 13 ... Screw rotor, 14 ... Suction side bearing holding part (motor casing), 14a ... Intake port, 14b ... Intake air, 15 ... Suction Side bearing, 16 ... discharge side bearing, 17 ... suction chamber, 18 ... discharge port, 20 ... motor (axial gap motor), 21 ... shaft, 21a ... stepped portion, 22A, 22B ... motor rotor, 23 ... motor casing body Part (motor casing), 23a ... exhaust port, 24 ... stator, 25 ... end bracket (motor casing), 25a ... exhaust port, 26A, 26B ... yoke, 26Aa, 26Ba ... through hole, 27A, 27B ... magnet, 28A, 28B ... support, 29A, 29B ... annular connecting member, 27 ... projection, 30, 31, 32, 33, 3 35 ... Gap, 37,38 ... Vane, 40 ... Suction filter, 41 ... Suction throttle valve, 42 ... Unit case, 43 ... Suction communication passage, 44 ... Intake communication passage, 45 ... Exhaust communication passage, 100, 101,102 ... Compressor with integrated motor, 200 ... Compressor unit

Claims (10)

  1.  圧縮機本体と、前記圧縮機本体を駆動するアキシャルギャップモータとを備えたモータ一体型圧縮機であって、
     前記アキシャルギャップモータは、
     回転軸としてのシャフトと、
     前記シャフトを収容するモータケーシングと、
     前記モータケーシングの内側面に固定され、前記シャフトの外周面から所定の間隔を隔てて環状に配置されたステータと、
     前記シャフトに連結され、前記シャフトの軸方向で前記ステータから所定の間隔を隔てて配置されたモータロータとを備え、
     前記モータケーシングは、
     前記アキシャルギャップモータの出力側に形成された吸気口と、
     前記アキシャルギャップモータの反出力側に形成された排気口とを有することを特徴とするモータ一体型圧縮機。
    A motor-integrated compressor comprising a compressor body and an axial gap motor that drives the compressor body,
    The axial gap motor is
    A shaft as a rotation axis;
    A motor casing that houses the shaft;
    A stator fixed to the inner surface of the motor casing and annularly arranged at a predetermined interval from the outer peripheral surface of the shaft;
    A motor rotor coupled to the shaft and disposed at a predetermined interval from the stator in the axial direction of the shaft;
    The motor casing is
    An intake port formed on the output side of the axial gap motor;
    A motor-integrated compressor having an exhaust port formed on a non-output side of the axial gap motor.
  2.  請求項1に記載のモータ一体型圧縮機であって、
     前記アキシャルギャップモータが前記圧縮機の上部に配置され、前記シャフトが鉛直方向を向くように構成されたことを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 1,
    The motor-integrated compressor, wherein the axial gap motor is arranged at an upper portion of the compressor and the shaft is oriented in a vertical direction.
  3.  請求項1に記載のモータ一体型圧縮機であって、
     前記モータロータは、前記シャフトの軸方向に空気を流通させる貫通穴を有することを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 1,
    The motor-integrated compressor, wherein the motor rotor has a through hole through which air flows in the axial direction of the shaft.
  4.  請求項3に記載のモータ一体型圧縮機であって、
     前記モータロータは、前記シャフトの周りに環状に配置された複数の前記貫通穴を有し、
     前記モータロータのうち隣り合って配置された2つの前記貫通孔の間の部分が羽根状に形成されたことを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 3,
    The motor rotor has a plurality of the through holes arranged annularly around the shaft,
    A motor-integrated compressor, wherein a portion between two adjacent through-holes of the motor rotor is formed in a blade shape.
  5.  請求項1に記載のモータ一体型圧縮機であって、
     前記シャフトのうち前記ステータに外周を囲まれた部分の径がその他の部分の径よりも小さいことを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 1,
    The motor-integrated compressor, wherein a diameter of a portion of the shaft surrounded by the stator is smaller than a diameter of other portions.
  6.  請求項1に記載のモータ一体型圧縮機であって、
     前記モータロータは、回転に伴って出力軸側から反出力軸側に気流を発生させる少なくとも1つの羽根を径方向外周に有することを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 1,
    A motor-integrated compressor, wherein the motor rotor has at least one blade on the outer periphery in the radial direction for generating an air flow from the output shaft side to the non-output shaft side with rotation.
  7.  請求項1に記載のモータ一体型圧縮機であって、
     前記モータロータは、回転に伴って出力軸側から反出力軸側に気流を発生させる少なくとも1つの羽根を、前記ステータと対向する面と軸方向で反対の面に有することを特徴とするモータ一体型圧縮機。
    The motor-integrated compressor according to claim 1,
    The motor rotor has at least one blade for generating an air flow from the output shaft side to the non-output shaft side with rotation on a surface opposite to the surface facing the stator in the axial direction. Compressor.
  8.  請求項1に記載のモータ一体型圧縮機と、
     前記モータ一体型圧縮機を収容するユニットケースと、
     前記ユニットケースの外部から前記吸気口に空気を導く吸気連通路と、
     前記吸気連通路に設けられた吸込みフィルタと
     を備えたことを特徴とする圧縮機ユニット。
    The motor-integrated compressor according to claim 1,
    A unit case for housing the motor-integrated compressor;
    An intake communication path for guiding air from the outside of the unit case to the intake port;
    A compressor unit comprising: a suction filter provided in the intake communication passage.
  9.  請求項1~8の何れか一項に記載のモータ一体型圧縮機であって、
     前記モータロータは、前記ステータよりも出力側に配置されたものであることを特徴とするモータ一体型圧縮機。
    A motor-integrated compressor according to any one of claims 1 to 8,
    The motor-integrated compressor, wherein the motor rotor is disposed on the output side of the stator.
  10.  請求項1~8の何れか一項に記載のモータ一体型圧縮機であって、
     前記モータロータは、前記ステータを挟んで軸方向に2つ設置されたものであることを特徴とするモータ一体型圧縮機。
    A motor-integrated compressor according to any one of claims 1 to 8,
    2. The motor-integrated compressor, wherein two motor rotors are installed in the axial direction across the stator.
PCT/JP2015/060243 2015-03-31 2015-03-31 Motor-integrated compressor WO2016157448A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/060243 WO2016157448A1 (en) 2015-03-31 2015-03-31 Motor-integrated compressor
JP2017509448A JP6458134B2 (en) 2015-03-31 2016-03-07 Motor integrated compressor
PCT/JP2016/057038 WO2016158225A1 (en) 2015-03-31 2016-03-07 Motor-integrated compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060243 WO2016157448A1 (en) 2015-03-31 2015-03-31 Motor-integrated compressor

Publications (1)

Publication Number Publication Date
WO2016157448A1 true WO2016157448A1 (en) 2016-10-06

Family

ID=57005445

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/060243 WO2016157448A1 (en) 2015-03-31 2015-03-31 Motor-integrated compressor
PCT/JP2016/057038 WO2016158225A1 (en) 2015-03-31 2016-03-07 Motor-integrated compressor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057038 WO2016158225A1 (en) 2015-03-31 2016-03-07 Motor-integrated compressor

Country Status (2)

Country Link
JP (1) JP6458134B2 (en)
WO (2) WO2016157448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480469A4 (en) * 2016-07-04 2020-01-29 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor
JP2020133402A (en) * 2019-02-12 2020-08-31 ナブテスコ株式会社 Air compression device and method for preventing dust for motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087405U (en) * 1973-12-14 1975-07-25
JPS57154276U (en) * 1981-03-23 1982-09-28
JPS6233674U (en) * 1985-04-22 1987-02-27
WO2004112222A1 (en) * 2003-06-10 2004-12-23 Briggs & Stratton Corporation Electrical machine having a cooling system
JP2007040289A (en) * 2005-06-30 2007-02-15 Hitachi Ltd Package type compressor
JP2008017543A (en) * 2006-07-03 2008-01-24 Daikin Ind Ltd Motor magnetization method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283602A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Compressor
JP2010167956A (en) * 2009-01-23 2010-08-05 Fuji Heavy Ind Ltd Driving device of hybrid vehicle
JP2015047034A (en) * 2013-08-29 2015-03-12 株式会社東芝 Axial gap type power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087405U (en) * 1973-12-14 1975-07-25
JPS57154276U (en) * 1981-03-23 1982-09-28
JPS6233674U (en) * 1985-04-22 1987-02-27
WO2004112222A1 (en) * 2003-06-10 2004-12-23 Briggs & Stratton Corporation Electrical machine having a cooling system
JP2007040289A (en) * 2005-06-30 2007-02-15 Hitachi Ltd Package type compressor
JP2008017543A (en) * 2006-07-03 2008-01-24 Daikin Ind Ltd Motor magnetization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480469A4 (en) * 2016-07-04 2020-01-29 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor
JP2020133402A (en) * 2019-02-12 2020-08-31 ナブテスコ株式会社 Air compression device and method for preventing dust for motor

Also Published As

Publication number Publication date
WO2016158225A1 (en) 2016-10-06
JP6458134B2 (en) 2019-01-23
JPWO2016158225A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US9859773B2 (en) Ceiling fan motor
JP2008245356A (en) Axial gap engine driven generator
EP3438463A1 (en) Centrifugal pump
WO2013176028A1 (en) Vacuum pump
JPWO2018158930A1 (en) Rotor, electric motor, compressor and blower
JP6878255B2 (en) Centrifugal pump
WO2016157448A1 (en) Motor-integrated compressor
WO2021199750A1 (en) Centrifugal compressor
KR102018260B1 (en) A cooling structure of motor in a electric compressor
JPH08214475A (en) Motor-operated water pump
JP2006283602A (en) Compressor
JP2017085740A (en) Motor and compressor including the same
KR101781877B1 (en) Spoke tipe rotor, and Motor and Dishwasher having the Same
JP2020159538A (en) Thrust magnetic bearing and turbo compressor equipped with the same
JP6351819B1 (en) Rotating device
KR101372322B1 (en) Turbo machinary
KR101942422B1 (en) Cooling structure for permanent magnet motor of turbo blower
KR102191563B1 (en) Stator and motor and compressor therewith
JP2009074470A (en) Pump
JP2005295612A (en) Dual rotor motor
JP7416161B2 (en) Series axial fan
JP6791421B2 (en) Impeller and supercharger
KR20110128680A (en) Structure of driving part in electromotive scroll compressor
JP2010540823A (en) Fuel pump for pumping fuel from the tank to the internal combustion engine
JP5171307B2 (en) Claw pole type motor and pump equipped with the motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP