WO2018154893A1 - Optical device, optical system, and method for manufacturing optical device - Google Patents

Optical device, optical system, and method for manufacturing optical device Download PDF

Info

Publication number
WO2018154893A1
WO2018154893A1 PCT/JP2017/042319 JP2017042319W WO2018154893A1 WO 2018154893 A1 WO2018154893 A1 WO 2018154893A1 JP 2017042319 W JP2017042319 W JP 2017042319W WO 2018154893 A1 WO2018154893 A1 WO 2018154893A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
light
electrode layer
optical device
Prior art date
Application number
PCT/JP2017/042319
Other languages
French (fr)
Japanese (ja)
Inventor
井出 伸弘
太田 益幸
裕子 鈴鹿
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018154893A1 publication Critical patent/WO2018154893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to an optical device, an optical system, and a method for manufacturing the optical device.
  • An optical device capable of changing the transmission state of external light such as sunlight incident from the outside is known.
  • Patent Document 1 discloses a liquid crystal optical element having a pair of transparent substrates, a pair of transparent electrodes formed on each of the pair of transparent substrates, and a prism layer and a liquid crystal layer sandwiched between the pair of transparent electrodes. It is disclosed.
  • the liquid crystal optical element changes the refractive index of the liquid crystal layer by a voltage applied to the pair of transparent electrodes, thereby changing the refraction angle of light passing through the interface between the inclined surface of the prism and the liquid crystal layer.
  • the traveling direction of the light bent by the prism layer is substantially the same as the incident direction of the light. For this reason, light is distributed in completely different directions when light is incident from the front and when light is incident from an oblique direction. Therefore, for example, when the direction of incident light (sunlight) changes due to the diurnal motion or annual motion of the sun, the light distribution also changes. That is, the light distribution changes with time of the incident light.
  • the light distribution means a distribution in an emission direction (light distribution direction) of outgoing light (light distribution) when incident light is distributed.
  • the present invention provides an optical device that can broaden the light distribution of light and can adjust the change of the light distribution with respect to the temporal change of incident light, an optical system including the optical device, and the An object of the present invention is to provide a method for manufacturing an optical device.
  • an optical device includes a first base material having translucency, and a second base having translucency, which is disposed to face the first base material.
  • a concavo-convex structure having a plurality of convex portions each having a reflection surface capable of reflecting the light, the light distribution layer being disposed between the two electrode layers and distributing the incident light.
  • a refractive index variable layer that is disposed so as to fill a space between the plurality of convex portions and has a refractive index that changes according to a voltage applied between the first electrode layer and the second electrode layer,
  • the light distribution layer is divided into a plurality of regions having different light distribution directions in plan view, and the direction of the reflecting surface is different for each region.
  • the optical system includes a control unit that controls the optical state of the light distribution layer for each region by selectively applying a potential to the optical device and the plurality of electrode pieces. Prepare.
  • the method for manufacturing an optical device includes a step of forming a first electrode layer having a light-transmitting property on a first substrate having a light-transmitting property, and an unevenness having a plurality of convex portions.
  • a step of forming a plurality of structural layers, a step of attaching a plurality of the concavo-convex structure layers on the first electrode layer via an adhesive layer, and a translucent second base material A step of forming a second electrode layer, a step of filling a refractive index variable material whose refractive index changes according to an applied electric field between the plurality of convex portions, the first electrode layer and the first electrode Bonding the first base material and the second base material so that two electrode layers face each other with a plurality of the concavo-convex structure layers interposed therebetween.
  • One of the concavo-convex structure layers is pasted with the arrangement direction of the convex portions different from the other one.
  • an optical device or the like that can broaden the light distribution of light and can adjust the change of the light distribution with respect to the time change of the incident light.
  • FIG. 1 is a cross-sectional view of an optical device according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device according to the embodiment.
  • FIG. 3A is a plan view schematically showing an example of the concavo-convex structure layer of the optical device according to the embodiment.
  • FIG. 3B is a plan view schematically showing another example of the uneven structure layer of the optical device according to the embodiment.
  • FIG. 4 is an exploded perspective view showing the arrangement of the regions of the concavo-convex structure layer of the optical device according to the embodiment and the electrode pieces of the electrode layer.
  • FIG. 5A is a diagram for explaining an action (light distribution state) when the optical device operates in the non-application mode when the optical device according to the embodiment is installed in a window.
  • FIG. 5A is a diagram for explaining an action (light distribution state) when the optical device operates in the non-application mode when the optical device according to the embodiment is installed in a window.
  • FIG. 5B is a diagram for explaining an action (transparent state) when the optical device operates in the voltage application mode when the optical device according to the embodiment is installed in a window.
  • FIG. 6A is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the embodiment.
  • FIG. 6B is an enlarged cross-sectional view for explaining a voltage application mode (transparent state) of the optical device according to the embodiment.
  • FIG. 7A is a diagram schematically illustrating optical characteristics of each region of the uneven structure layer of the optical device according to the embodiment.
  • FIG. 7B is a diagram schematically illustrating optical characteristics of each region of the uneven structure layer of the optical device according to the embodiment.
  • FIG. 8 is a diagram illustrating an operation mode of each region of the concavo-convex structure layer for each time zone of the optical device according to the embodiment.
  • FIG. 9A is a diagram illustrating a light distribution in the daytime mode when light is incident obliquely on the optical device according to the embodiment.
  • FIG. 9B is a diagram illustrating a light distribution in the morning mode when light is incident on the optical device according to the embodiment from an oblique direction.
  • FIG. 10A is a perspective view showing a first electrode layer forming step in the method of manufacturing an optical device according to the embodiment.
  • FIG. 10B is a perspective view showing a process of forming a plurality of concavo-convex structure layers in the method for manufacturing an optical device according to the embodiment.
  • FIG. 10C is a perspective view illustrating a bonding process for each region of the concavo-convex structure layer in the method for manufacturing an optical device according to the embodiment.
  • FIG. 10D is a perspective view illustrating a formation step of the second electrode layer in the method for manufacturing an optical device according to the embodiment.
  • FIG. 10E is a perspective view illustrating a liquid crystal material injection step in the method of manufacturing an optical device according to the embodiment.
  • FIG. 10F is a perspective view illustrating a base material bonding step in the method of manufacturing an optical device according to the embodiment.
  • FIG. 11 is an enlarged cross-sectional view of an optical device according to a modification of the embodiment.
  • FIG. 10C is a perspective view illustrating a bonding process for each region of the concavo-convex structure layer in the method for manufacturing an optical device according to the embodiment.
  • FIG. 10D is a perspective view illustrating a formation step of the second electrode layer in the method for manufacturing an optical device according to the embodiment.
  • FIG. 12A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of an optical device according to a modification of the embodiment.
  • FIG. 12B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of an optical device according to a modification of the embodiment.
  • the x axis, the y axis, and the z axis indicate the three axes of the three-dimensional orthogonal coordinate system.
  • the z-axis direction is the vertical direction
  • the direction perpendicular to the z-axis is the horizontal direction.
  • the positive direction of the z-axis is vertically upward.
  • the “thickness direction” means the thickness direction of the optical device, which is a direction perpendicular to the main surfaces of the first base material and the second base material
  • plane view means , When viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
  • FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by a one-dot chain line in FIG.
  • the optical device 1 is a light control device that controls light incident on the optical device 1.
  • the optical device 1 is a light distribution element that can change the traveling direction of light incident on the optical device 1 (that is, distribute light) and emit the light.
  • the optical device 1 is comprised so that the incident light may be permeate
  • the light distribution layer 30 is divided into a plurality of regions in plan view, and emits light in different light distribution directions for each region.
  • the first electrode layer 40, the adhesive layer 60, the light distribution layer 30, and the second electrode layer 50 are arranged in the thickness direction in this order between the paired first base material 10 and second base material 20. It is the structure arranged along. In order to maintain the distance between the first base material 10 and the second base material 20, a plurality of particulate spacers may be dispersed in the plane, or a columnar structure may be formed. .
  • the 1st base material 10 and the 2nd base material 20 are translucent base materials which have translucency.
  • a glass substrate or a resin substrate can be used, for example.
  • Examples of the material for the glass substrate include soda glass, alkali-free glass, and high refractive index glass.
  • Examples of the material for the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA acrylic
  • the glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage of less scattering at the time of destruction.
  • the first base material 10 and the second base material 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board
  • the second base material 20 is an opposing base material that opposes the first base material 10 and is disposed at a position that opposes the first base material 10.
  • the first base material 10 and the second base material 20 are arranged substantially in parallel with a predetermined distance of, for example, 10 ⁇ m to 30 ⁇ m.
  • the 1st base material 10 and the 2nd base material 20 are adhere
  • planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it is not restricted to this, Even if it is a polygon other than a circle or a rectangle Well, any shape can be employed.
  • the light distribution layer 30 is disposed between the first electrode layer 40 and the second electrode layer 50.
  • the light distribution layer 30 has translucency and transmits incident light.
  • the light distribution layer 30 distributes the incident light. That is, the light distribution layer 30 changes the traveling direction of light when the light passes through the light distribution layer 30.
  • the light distribution layer 30 includes a concavo-convex structure layer 31 having a plurality of convex portions 33 and a refractive index variable layer 32.
  • the light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
  • the light distribution layer 30 is divided into a plurality of regions having different light distribution directions in plan view. In each region, the direction of the side surface 35 that is the reflecting surface of the convex portion 33 is different.
  • FIG. 3A is a plan view schematically showing an example of the light distribution layer 30 of the optical device 1 according to the present embodiment.
  • the stripe pattern given to each region indicates the direction in which the convex portion 33 of each region extends. The same applies to FIG. 3B.
  • the light distribution layer 30 is divided into three regions including a first region 30a, a second region 30b, and a third region 30c.
  • Each of the first region 30a, the second region 30b, and the third region 30c is a strip-like region extending in the x-axis direction.
  • the planar view shapes and sizes of the first region 30a, the second region 30b, and the third region 30c are, for example, the same.
  • the first region 30a and the second region 30b are alternately and repeatedly arranged along the z-axis direction.
  • a third region 30c is disposed between the first region 30a and the second region 30b.
  • region of the light distribution layer 30 is not restricted to the example shown to FIG. 3A.
  • FIG. 3B shows an example in which each of the first region 30a, the second region 30b, and the third region 30c extends in the z-axis direction.
  • the planar view shape of the 1st field 30a, the 2nd field 30b, and the 3rd field 30c is a square, and may be arranged in matrix form. Since each region is dispersed in the plane of the light distribution layer 30, the in-plane uniformity of the optical device 1 can be improved.
  • the number of the third regions 30c is equal to the sum of the number of the first regions 30a and the number of the second regions 30b, but is not limited thereto.
  • the number of each of the first region 30a, the second region 30b, and the third region 30c may be equal to each other.
  • the size (area) and shape of each region are the same, but the present invention is not limited to this.
  • the size and shape of each of the first region 30a, the second region 30b, and the third region 30c may be different from each other.
  • optical characteristics (light distribution direction) of each region will be described later with reference to FIGS. 7A and 7B.
  • the uneven structure layer 31 is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven.
  • the concavo-convex structure layer 31 includes a plurality of convex portions 33 having side surfaces 35 that are reflective surfaces capable of reflecting incident light, and a plurality of concave portions 34.
  • the concavo-convex structure layer 31 is a concavo-convex structure formed by a plurality of micro-order sized convex portions 33. Between the plurality of convex portions 33 are a plurality of concave portions 34. That is, one concave portion 34 is formed between two adjacent convex portions 33.
  • the first region 30a is provided with a first uneven structure layer 31a having a plurality of first protrusions 33a arranged in the first direction.
  • the second region 30b is provided with a second uneven structure layer 31b having a plurality of second protrusions 33b arranged in the second direction.
  • the third region 30c is provided with a third uneven structure layer 31c having a plurality of third protrusions 33c arranged in the third direction.
  • the concavo-convex structure layer 31 is composed of a first concavo-convex structure layer 31a, a second concavo-convex structure layer 31b, and a third concavo-convex structure layer 31c.
  • the arrangement direction (first direction) of the plurality of first protrusions 33a of the first uneven structure layer 31a is an oblique direction with respect to the x-axis and the z-axis.
  • the plurality of first protrusions 33a are formed in a stripe shape.
  • a side surface (reflective surface) 35 of the first convex portion 33a extends along the direction in which the stripe extends (direction orthogonal to the first direction).
  • the extending direction of the side surface 35 is represented by an angle (inclination angle ⁇ a) with respect to the x axis in the xz plane.
  • the inclination angle ⁇ a is a positive number (+) when inclined toward the positive side of the z-axis as it goes toward the positive side of the x-axis, and is inclined toward the negative side of the z-axis as it goes toward the negative side of the x-axis.
  • the case is a negative number (-).
  • the inclination angle ⁇ a of the side surface 35 of the first convex portion 33a is, for example, ⁇ 30 °, but is not limited thereto.
  • the inclination angle ⁇ a is, for example, in a range greater than 0 ° and not greater than ⁇ 45 °.
  • the arrangement direction (second direction) of the plurality of second convex portions 33b of the second uneven structure layer 31b is an oblique direction with respect to the x axis and the z axis.
  • the plurality of second convex portions 33b are formed in a stripe shape.
  • a side surface (reflective surface) 35 of the second convex portion 33b extends along the direction in which the stripe extends (direction orthogonal to the second direction).
  • the inclination angle ⁇ b of the side surface 35 of the second convex portion 33b is, for example, + 30 °, but is not limited thereto.
  • the inclination angle ⁇ b is, for example, in a range greater than 0 ° and less than + 45 °.
  • the arrangement direction (third direction) that is the plurality of third protrusions 33c of the third uneven structure layer 31c is a direction different from the first direction and the second direction, and is parallel to the z-axis direction.
  • the plurality of third convex portions 33c are formed in a stripe shape.
  • a side surface (reflective surface) 35 of the third convex portion 33c extends along the direction in which the stripe extends (the direction orthogonal to the third direction). That is, the inclination angle ⁇ c of the side surface 35 of the third convex portion 33c is 0 °. Note that the inclination angle ⁇ c does not have to be 0 °, and may be inclined within a range of ⁇ 45 ° to + 45 °.
  • the first region 30a and the second region 30b are paired.
  • the first region 30a and the second region 30b have a line-symmetric relationship with respect to a line parallel to the direction in which the third region 30c extends (the x-axis direction in FIG. 3A and the z-axis direction in FIG. 3B).
  • the planar view shape of the plurality of first protrusions 33a is a line-symmetric shape with the planar view shape of the plurality of second protrusions 33b.
  • the axis of symmetry at this time is a line parallel to the direction in which the third protrusions 33c are arranged (that is, the z-axis direction).
  • FIG. 2 shows a yz section of the third region 30c.
  • the cross-sectional structure of the third region 30c will be described as an example on behalf of each region.
  • each of the plurality of convex portions 33 has a shape that tapers from the root to the tip.
  • the cross-sectional shape of each of the plurality of convex portions 33 is a tapered shape tapered along a direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20.
  • the cross-sectional shape (yz cross-section) of the convex portion 33 is a triangle, but is not limited thereto.
  • the cross-sectional shape of the convex portion 33 may be a trapezoid, other polygons, or a polygon including a curve.
  • each of the plurality of convex portions 33 has a pair of side surfaces 35 and 36 extending perpendicular to the direction in which the convex portions 33 are arranged.
  • the pair of side surfaces 35 and 36 are surfaces that intersect the z-axis direction.
  • Each of the pair of side surfaces 35 and 36 is an inclined surface that is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 35 and 36 (the width of the convex portion 33 (z-axis direction)). )) Gradually decreases from the first base material 10 toward the second base material 20.
  • the side surface 35 is, for example, the side surface (upper side surface) on the vertically upper side among the plurality of side surfaces constituting the convex portion 33.
  • the side surface 35 is a reflection surface (total reflection surface) that reflects (total reflection) incident light.
  • the side surface 36 is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33.
  • the side surface 36 is a refracting surface that refracts incident light.
  • the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is an elongated convex portion that extends linearly along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a triangular cross-sectional shape and an elongated substantially triangular prism shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction. . Each of the plurality of convex portions 33 has the same shape, but may have different shapes.
  • the height (the length in the y-axis direction) of each of the plurality of convex portions 33 is, for example, 2 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the width (length in the z-axis direction) of the plurality of convex portions 33 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but is not limited thereto.
  • the distance between adjacent convex portions 33 that is, the width of the concave portion 34 (z-axis direction) is, for example, 0 ⁇ m to 100 ⁇ m. That is, the two adjacent convex portions 33 may be disposed at a predetermined interval without being in contact with each other, or may be disposed in contact with each other. Note that the interval between the adjacent convex portions 33 is not limited to 0 ⁇ m to 100 ⁇ m.
  • the material of the convex portion 33 for example, a resin material having optical transparency such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
  • the convex portion 33 is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
  • the concavo-convex structure layer 31 can form, for example, a concavo-convex structure having a triangular cross section using an acrylic resin having a refractive index of 1.5 by mold embossing.
  • the height of the convex portion 33 is, for example, 10 ⁇ m, and the plurality of convex portions 33 are arranged in the z-axis direction at regular intervals with an interval of 2 ⁇ m.
  • the thickness of the base of the convex portion 33 is, for example, 5 ⁇ m.
  • the distance between the bases of the adjacent convex portions 33 can take a value of 0 ⁇ m to 5 ⁇ m, for example.
  • the refractive index variable layer 32 is disposed so as to fill a space between the plurality of convex portions 33 (that is, the concave portion 34) of the concavo-convex structure layer 31.
  • the refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 32 fills the gap between the convex portion 33 and the second electrode layer 50. Be placed.
  • the convex portion 33 and the second electrode layer 50 may be in contact with each other. In this case, the refractive index variable layer 32 may be provided separately for each concave portion 34.
  • the refractive index of the refractive index variable layer 32 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 32 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light region when an electric field is applied.
  • the refractive index variable layer 32 is composed of a liquid crystal having liquid crystal molecules 37 having electric field responsiveness, the orientation state of the liquid crystal molecules 37 is changed by applying an electric field to the light distribution layer 30 to change the refractive index.
  • the refractive index of the variable layer 32 changes.
  • the birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 37 having birefringence.
  • a liquid crystal for example, a nematic liquid crystal, a smectic liquid crystal, or a cholesteric liquid crystal in which the liquid crystal molecules 37 are rod-like molecules can be used.
  • the material of the refractive index variable layer 32 has an ordinary light refractive index (no) of 1.5 and an extraordinary light refractive index (ne) of 1.7.
  • a positive type liquid crystal can be used.
  • the refractive index variable layer 32 includes, for example, end portions of the first base material 10 on which the first electrode layer 40 and the uneven structure layer 31 are formed and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method with the outer periphery sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by bonding the second substrate 20 after dropping the liquid crystal material on the first electrode layer 40 and the concavo-convex structure layer 31 of the first substrate 10.
  • FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 6A described later), and the liquid crystal molecules 37 are aligned so that the major axis is substantially parallel to the x-axis.
  • a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 37 are aligned so that the major axis is substantially parallel to the y-axis (see FIG. 6B described later). .
  • an electric field may be applied to the refractive index variable layer 32 by AC power, or an electric field may be applied by DC power.
  • the voltage waveform may be a sine wave or a rectangular wave.
  • first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 are paired not only electrically but also in arrangement, so that they face each other between the first base material 10 and the second base material 20. Has been placed. Specifically, the first electrode layer 40 and the second electrode layer 50 are arranged so as to sandwich the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 are translucent and transmit incident light.
  • the first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers.
  • a conductor-containing resin made of a resin containing a conductor such as a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), silver nanowires or conductive particles, or A metal thin film such as a silver thin film can be used.
  • the 1st electrode layer 40 and the 2nd electrode layer 50 may be these single layer structures, and these laminated structures (for example, laminated structure of a transparent metal oxide and a metal thin film) may be sufficient as them.
  • each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
  • the first electrode layer 40 is disposed between the first base material 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
  • the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second substrate 20. Specifically, the second electrode layer 50 is formed on the surface of the second base material 20 on the light distribution layer 30 side.
  • the 1st electrode layer 40 and the 2nd electrode layer 50 are comprised so that electrical connection with an external power supply is attained, for example.
  • electrode pads or the like for connecting to an external power supply may be formed on the first base material 10 and the second base material 20 by being drawn from each of the first electrode layer 40 and the second electrode layer 50.
  • At least one of the first electrode layer 40 and the second electrode layer 50 is composed of a plurality of electrode pieces. Specifically, both the first electrode layer 40 and the second electrode layer 50 are composed of a plurality of electrode pieces. The plurality of electrode pieces correspond to each of a plurality of regions dividing the light distribution layer 30.
  • FIG. 4 is an exploded perspective view showing the arrangement of the regions of the light distribution layer 30 of the optical device 1 according to the present embodiment and the electrode pieces of the first electrode layer 40 and the second electrode layer 50.
  • 4 shows only a part of the optical device 1, specifically, the first region 30a, the second region 30b, and the two third regions 30c. 4 shows the uneven structure layer 31, the first electrode layer 40, and the second electrode layer 50 of the light distribution layer 30, and the first base material 10, the adhesive layer 60, the refractive index variable layer 32, Other members such as the second base material 20 are not shown.
  • the first electrode layer 40 includes a first electrode piece 40a, a second electrode piece 40b, and a third electrode piece 40c.
  • the second electrode layer 50 includes a first electrode piece 50a, a second electrode piece 50b, and a third electrode piece 50c.
  • the first electrode piece 40a and the first electrode piece 50a are provided corresponding to the first region 30a and are paired electrically and in arrangement. Specifically, the planar view shapes of the first electrode piece 40a and the first electrode piece 50a are substantially the same as the planar view shape of the first region 30a.
  • a voltage is applied to the first electrode piece 40a and the first electrode piece 50a, the orientation of the liquid crystal molecules 37 located in the first region 30a is controlled, and the light distribution in the first region 30a is controlled.
  • the second electrode piece 40b and the second electrode piece 50b are provided corresponding to the second region 30b and are paired electrically and in arrangement. Specifically, the planar view shapes of the second electrode piece 40b and the second electrode piece 50b are substantially the same as the planar view shape of the second region 30b.
  • a voltage is applied to the second electrode piece 40b and the second electrode piece 50b, the orientation of the liquid crystal molecules 37 located in the second region 30b is controlled, and the light distribution in the second region 30b is controlled.
  • the third electrode piece 40c and the third electrode piece 50c are provided corresponding to the third region 30c, and are paired electrically and in arrangement. Specifically, the planar view shapes of the third electrode piece 40c and the third electrode piece 50c are substantially the same as the planar view shape of the third region 30c.
  • a voltage is applied to the third electrode piece 40c and the third electrode piece 50c, the orientation of the liquid crystal molecules 37 located in the third region 30c is controlled, and the light distribution in the third region 30c is controlled.
  • the first electrode layer 40 and the second electrode layer 50 are each formed by, for example, vapor deposition or sputtering.
  • the first electrode layer 40 and the second electrode layer 50 may be divided into a plurality of electrode pieces by, for example, forming a conductive film such as ITO and then patterning by etching or the like, or may be made of a conductive material. It may be formed by patterning application.
  • the adhesive layer 60 is an adhesive layer that bonds the uneven structure layer 31 and the first electrode layer 40.
  • the adhesive layer 60 is provided, for example, one-to-one with respect to each of the plurality of first concavo-convex structure layers 31a, the plurality of second concavo-convex structure layers 31b, and the plurality of third concavo-convex structure layers 31c constituting the concavo-convex structure layer 31. ing.
  • the adhesive layer 60 may be formed on the first electrode layer 40 in a single sheet shape.
  • the adhesive layer 60 is formed using a resin material having translucency and adhesiveness (tackiness).
  • optical state of optical device Subsequently, the optical state (operation mode) of the optical device 1 will be described with reference to an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 5A and 5B.
  • FIGS. 5A and 5B are diagrams each showing an example in which an optical system 70 including the optical device 1 according to the present embodiment is applied to a building 90.
  • FIG. Specifically, FIGS. 5A and 5B are diagrams for explaining the operation when the optical device 1 operates in each operation mode when the optical device 1 is installed in the window 91.
  • each of the uneven structure layer 31, the first electrode layer 40, and the second electrode layer 50 is divided into a plurality of regions. For this reason, the optical device 1 can operate in different operation modes for each region.
  • the optical state of the optical device 1 will be described focusing on the third region 30c. Differences in the light distribution directions of the first region 30a, the second region 30b, and the third region 30c will be described later.
  • the optical system 70 includes the optical device 1 and a control unit 71.
  • the area shaded with dots extending from the optical device 1 indicates an area through which light (specifically, S-polarized light component) that has passed through the optical device 1 passes.
  • the optical device 1 can transmit incident light.
  • the optical device 1 can be realized as a window with a light distribution function by being installed in the window 91 of the building 90.
  • the optical device 1 is bonded to the existing window 91 via an adhesive layer, for example.
  • the optical device 1 is installed in the window 91 in a posture in which the main surfaces of the first base material 10 and the second base material 20 are parallel to the vertical direction (z-axis direction).
  • the optical device 1 has the first base material 10 on the outdoor side and the second base material 20 on the indoor side, and The third projections 33c of the third region 30c are arranged such that the side surface 35 is on the ceiling 92 side and the side surface 36 is on the floor 93 side.
  • control unit 71 is installed on the floor 93, this is schematically illustrated, and the installation location of the control unit 71 is not particularly limited.
  • the control unit 71 may be configured integrally with the optical device 1 and fixed to the window frame of the window 91 or the like.
  • the control unit 71 may be embedded in a ceiling 92, a floor 93, a wall, or the like of the building 90.
  • the control unit 71 is a control unit that drives the optical device 1. Specifically, the control unit 71 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50. In the present embodiment, the controller 71 distributes light by selectively applying a potential to the plurality of electrode pieces constituting the first electrode layer 40 and the plurality of electrode pieces constituting the second electrode layer 50. The optical state of the layer 30 is controlled for each region.
  • the control unit 71 includes the first electrode piece 40a and the first electrode piece 50a, the second electrode piece 40b and the second electrode piece 50b, and the third electrode piece 40c and the third electrode piece 50c. A voltage is selectively applied to each of the two.
  • the controller 71 has two operation modes corresponding to the voltage application state between the first electrode layer 40 and the second electrode layer 50 for each region of the light distribution layer 30.
  • the two operation modes are a non-application mode in which no voltage is applied and a voltage application mode in which a voltage is applied between electrode layers.
  • the control unit 71 performs switching between the two operation modes based on a user operation or predetermined schedule information.
  • the orientation of the liquid crystal molecules 37 included in the refractive index variable layer 32 changes according to the electric field applied to the light distribution layer 30.
  • the liquid crystal molecules 37 are rod-like liquid crystal molecules having birefringence, the refractive index received by the light varies depending on the polarization state of the incident light.
  • the refractive index of the convex portion 33 is 1.5
  • the liquid crystal molecule 37 is a positive type in which the ordinary light refractive index (no) is 1.5 and the extraordinary light refractive index (ne) is 1.7.
  • the case of the liquid crystal molecules will be described as an example.
  • Light such as sunlight incident on the optical device 1 includes P-polarized light (P-polarized component) and S-polarized light (S-polarized component).
  • the vibration direction of the P-polarized light is substantially parallel to the minor axis of the liquid crystal molecules 37 in both the non-application mode and the voltage application mode.
  • the refractive index of the liquid crystal molecules 37 for P-polarized light does not depend on the operation mode, and is the ordinary light refractive index (no), specifically 1.5.
  • the refractive index for P-polarized light does not depend on the operation mode and is substantially constant in the light distribution layer 30, so that the P-polarized light travels straight through the light distribution layer 30 as it is.
  • the refractive index of the liquid crystal molecules 37 for S-polarized light changes depending on the operation mode.
  • the optical device 1 when the optical device 1 is driven in the non-application mode, the optical device 1 enters a light distribution state in which the traveling direction of the incident light L (S-polarized light) is changed.
  • the optical device 1 When the optical device 1 is driven in the voltage application mode, the optical device 1 enters a light-transmitting (transparent) state that allows the incident light L (S-polarized light) to pass as it is (without changing the traveling direction).
  • both P-polarized light and S-polarized light travel in the same direction.
  • the traveling direction of both P-polarized light and S-polarized light can be bent by refraction and total reflection to realize a light distribution state.
  • FIGS. 6A and 6B are enlarged cross-sectional views for describing each operation mode of the optical device 1 according to the present embodiment.
  • the light incident from the front is light that has an incident angle of 0 ° when viewed in the xy section.
  • the path of the light L (for example, sunlight) incident on the optical device 1 is indicated by a thick arrow.
  • the light L is refracted when it enters the first base material 10 and when it exits from the second base material 20, but the path change due to these refractions is not shown.
  • FIG. 6A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of the light L that passes through the optical device 1.
  • the controller 71 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when the optical device 1 is operated in the non-application mode. Specifically, an electric field is not applied to the light distribution layer 30 because the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, ground potential). For this reason, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the refractive index received by the light L (S-polarized light) is 1.5 for the convex portion 33, whereas the refractive index variable layer 32 is 1.7.
  • the light L incident obliquely on the optical device 1 is refracted by the side surface 36 of the convex portion 33 and the traveling direction is changed, and then reflected by the side surface 35 of the convex portion 33 ( Total reflection).
  • the light reflected by the side surface 35 is emitted obliquely upward.
  • the optical device 1 emits the light L incident obliquely downward and obliquely upward. Therefore, as illustrated in FIG. 5A, the light L such as sunlight incident obliquely downward is bent in the traveling direction by the optical device 1 and irradiates the ceiling 92 of the building 90.
  • the refractive index of the refractive index variable layer 32 may be in a state of greater than 1.5 and less than 1.7. At this time, the direction of refraction of the light L on the side surface 36 of the convex portion 33 is different from the case where the refractive index of the refractive index variable layer 32 is 1.5, so that the other direction of the ceiling 92 can be irradiated as necessary. it can.
  • the angle of the light distribution by the optical device 1 is made smaller by reducing the applied voltage than in the case where the optical device 1 is in the transparent state in the voltage application mode, compared to the case in the light distribution state (non-application mode). can do.
  • the light can be advanced to the far side in the interior of the building 90.
  • the light distribution direction can be changed according to the magnitude of the applied voltage.
  • FIG. 6B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of the light L that passes through the optical device 1.
  • the controller 71 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when the optical device 1 is operated in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the refractive index received by the light L is 1.5 for both the convex portion 33 and the refractive index variable layer 32.
  • the light L incident on the optical device 1 obliquely passes through the optical device 1 as it is. That is, the optical device 1 emits the light L incident obliquely downward as it is obliquely downward. Therefore, as shown in FIG. 5B, light L such as sunlight incident obliquely downward passes through the optical device 1 as it is and irradiates a portion near the window 91 of the floor 93 of the building 90.
  • the optical device 1 is optically dependent on the electric field (voltage applied between the first electrode layer 40 and the second electrode layer 50) applied to the light distribution layer 30.
  • the state can be changed.
  • the transparent state and the light distribution state are switched, but an intermediate optical state between the light distribution state and the transparent state can be formed according to the applied voltage.
  • a plurality of voltage levels to be applied may be set and switched as appropriate.
  • An intermediate optical state is formed by making the applied voltage smaller than that in the transparent state.
  • the angle of light distribution by the optical device 1 is smaller than in the light distribution state.
  • the third region 30c has been described, but the same applies to the first region 30a and the second region 30b. That is, in the cross section parallel to the arrangement direction of the convex portions 33 of each of the first region 30a and the second region 30b, as shown in FIGS. 6A and 6B, light travels according to each mode.
  • FIGS. 7A and 7B are diagrams schematically showing the optical characteristics of each region of the concavo-convex structure layer 31 of the optical device 1 according to the present embodiment. Specifically, FIGS. 7A and 7B show the light distribution in the left-right direction (x-axis direction) of the light L incident on the optical device 1 when each region of the optical device 1 is viewed from the z-axis direction. ing.
  • FIG. 7A shows a path of light L incident on the optical device 1 from the front, that is, along the thickness direction (y-axis direction) of the optical device 1.
  • the extending direction of the third convex portion 33c is substantially parallel to the x-axis.
  • the side surface 35 of the third convex portion 33c that functions as a reflecting surface is substantially parallel to the x-axis, the light L travels in the left-right direction without bending the light.
  • the light L incident obliquely downward is emitted obliquely upward without changing the course in the left-right direction.
  • the extending direction of the first convex portion 33a is inclined with respect to the x-axis. Specifically, since the side surface 35 of the first convex portion 33a that functions as a reflecting surface is inclined with respect to the xy plane, the light L is bent in the inclined direction (left direction in the figure).
  • the second region 30b has a shape symmetrical with the first region 30a, the light L incident on the second region 30b is bent in the direction opposite to the first region 30a (rightward in the drawing). .
  • the optical device 1 can distribute light toward a wider range of the ceiling 92 and a wall positioned in the left-right direction with respect to the window 91.
  • FIG. 7B shows a path of light L incident on the optical device 1 from an oblique direction (left side).
  • the light L travels as it is as in the case of FIG. 7A.
  • the light is bent left and right with reference to the emission direction of the third region 30c. For this reason, the light L incident on the first region 30a is emitted in a direction closer to the y-axis direction (the thickness direction of the optical device 1) than in the case illustrated in FIG. 7A.
  • the light L incident on the second region 30b is emitted to the right side as compared with the case shown in FIG. 7A.
  • the light may be bent more than necessary depending on the angle of the light incident on the optical device 1 (for example, the second region of FIG. 7B). 30b).
  • the control part 71 switches an operation mode for every area
  • control unit 71 switches on / off of voltage application and the voltage level of the applied voltage for each region having a different light distribution direction. Specifically, the control unit 71 controls the optical state of the light distribution layer 30 for each region by selectively applying a potential to the plurality of electrode pieces.
  • FIG. 8 is a diagram showing an operation mode of each region of the concavo-convex structure layer for each time zone of the optical device 1 according to the present embodiment.
  • the control unit 71 switches the operation mode of each area for each time period.
  • the combination of the operation mode shown in FIG. 8 has shown as an example the case where the optical device 1 is installed in the surface of the south side of the building 90.
  • the control unit 71 performs switching between the morning mode, the daytime mode, and the evening mode.
  • the morning mode is an example of a first operation mode in which the first region 30a is in a light distribution state and the second region 30b is in a transparent state.
  • the evening mode is an example of a second operation mode in which the first region 30a is in a transparent state and the second region 30b is in a light distribution state.
  • the control unit 71 switches each operation mode according to the time zone.
  • the control unit 71 may include a sensor that detects the incident direction of light, and may switch each operation mode based on the detected incident direction. Or the control part 71 may switch each operation mode based on the instruction
  • the controller 71 operates the first region 30a and the third region 30c in the no-application mode and operates the second region 30b in the voltage application mode as the morning mode. That is, the first region 30a and the third region 30c are in a light distribution state, and the second region 30b is in a transparent state. Thereby, light incident obliquely from the left side (east side) of the optical device 1 can be effectively distributed toward the ceiling 92. Details will be described later with reference to FIGS. 9A and 9B.
  • the control unit 71 operates the entire area in the non-application mode as the day mode. That is, all regions are in a light distribution state.
  • the first region 30a and the second region 30b may be operated in the voltage application mode, and the first region 30a and the second region 30b may be in a transparent state.
  • Which is operated and the light distribution direction by the applied voltage control may be set according to the user's preference or the amount of incident light, for example. Thereby, the light incident from the front (south side) of the optical device 1 can be effectively distributed toward the ceiling 92.
  • the control unit 71 operates the second region 30b and the third region 30c in the no-application mode and operates the first region 30a in the application mode as the evening mode. That is, the second region 30b and the third region 30c are in a light distribution state, and the first region 30a is in a transparent state. Thereby, the light incident obliquely from the right side (west side) of the optical device 1 can be effectively distributed toward the ceiling 92.
  • the evening mode realizes a symmetric light distribution state of the morning mode.
  • the difference between the morning mode and the daytime mode will be described with reference to FIGS. 9A and 9B, taking as an example a time zone such as morning in which light is incident on the optical device 1 from an oblique direction.
  • the shaded area of the dots indicates the range irradiated by the light L from the sun 95.
  • FIGS. 9A and 9B are diagrams showing light distributions in the daytime mode and the morning mode when light is incident on the optical device 1 from an oblique direction, respectively.
  • the daytime mode here, a case where both the first region 30a and the second region 30b are in a transparent state is shown.
  • the P-polarized light LP of the light L from the sun 95 is refracted and reflected by the optical device 1 as it passes through the optical device 1. Since the optical action is not received, the floor 93 is passed as it is and the floor 93 is irradiated.
  • the S-polarized light of the light L from the sun 95 is subjected to different optical actions for each region when passing through the optical device 1. Specifically, the S-polarized light LS3 that passes through the third region 30c is reflected by the side surface 35 of the third convex portion 33c and is emitted toward the ceiling 92. The S-polarized light LS1 and LS2 passing through the first region 30a and the second region 30b irradiate the floor 93 as they are because the first region 30a and the second region 30b are in a transparent state.
  • the S-polarized light LS3 that passes through the third region 30c out of the S-polarized light L from the sun 95 is reflected by the side surface 35 of the third convex portion 33c, and the ceiling. It is emitted toward 92.
  • the S-polarized light LS1 passing through the first region 30a is reflected by the side surface 35 of the first convex portion 33a and is emitted toward the ceiling 92.
  • the S-polarized light LS2 passing through the second region 30b irradiates the floor 93 as it is because the second region 30b is in a transparent state.
  • the optical device 1 can efficiently distribute light incident obliquely in the left-right direction toward the ceiling 92. Therefore, for example, the control unit 71 can realize light distribution according to incident light by selectively controlling the operation mode for each region according to the time zone.
  • FIGS. 10A to 10F are perspective views showing respective steps in the method for manufacturing the optical device 1 according to the present embodiment.
  • FIGS. 10A to 10F respectively show a step of forming the first electrode layer 40, a step of forming the concavo-convex structure layer 31, a step of attaching each region of the concavo-convex structure layer 31, and a step of forming the second electrode layer 50.
  • the liquid crystal material 38 injection step and the base material bonding step are shown.
  • a first electrode layer 40 having translucency is formed on a first substrate 10 having translucency.
  • a first base material 10 such as a PET film is prepared, and a transparent conductive film such as ITO is formed by sputtering or the like.
  • the first electrode layer 40 is formed by patterning the formed transparent conductive film by dry etching or the like. Thereby, a plurality of first electrode pieces 40a, second electrode pieces 40b, and third electrode pieces 40c are formed.
  • a plurality of uneven structure layers having a plurality of protrusions 33 are formed. Specifically, a plurality of first concavo-convex structure layers 31a, second concavo-convex structure layers 31b, and third concavo-convex structure layers 31c having different arrangement directions (or extending directions) of the protrusions 33 are formed.
  • Each concavo-convex structure layer is formed by, for example, molding.
  • a plurality of uneven structure layers may be formed by cutting each region. By making the cutting direction and the cutting position different, it is possible to form a plurality of concavo-convex structure layers having different directions and sizes of the protrusions 33 from one concavo-convex structure layer.
  • a plurality of concavo-convex structure layers are bonded onto the first electrode layer 40 via the adhesive layer 60.
  • the adhesive layer 60 is attached to the lower surface of the third concavo-convex structure layer 31c and placed on the third electrode piece 40c of the first electrode layer 40.
  • the 3rd uneven structure layer 31c is fixed on the 3rd electrode piece 40c.
  • one of the plurality of concavo-convex structure layers is attached with the arrangement direction of the protrusions 33 being different from the other one.
  • the concavo-convex structure layer 31 is attached to each of the plurality of regions. This makes it possible to easily change the arrangement and shape of the uneven structure layer 31.
  • a second electrode layer 50 having translucency is formed on the second substrate 20 having translucency.
  • a specific method is the same as the method of forming the first electrode layer 40.
  • a plurality of first electrode pieces 50a, second electrode pieces 50b, and third electrode pieces 50c are formed.
  • the formation process of the 2nd electrode layer 50 should just be performed before the bonding process of the following base material, for example, may be performed simultaneously with formation of the 1st electrode layer 40.
  • a liquid crystal material 38 whose refractive index changes according to the applied electric field is filled between the plurality of convex portions 33.
  • the liquid crystal material 38 containing the liquid crystal molecules 37 is dropped, so that the liquid crystal material 38 is uniformly filled between the convex portions 33.
  • the first base material 10 and the second base material 20 are disposed so that the first electrode layer 40 and the second electrode layer 50 face each other with the plurality of uneven structure layers 31 therebetween. And paste together.
  • an annular sealing member is formed along at least one of the first base material 10 and the second base material 20 and the other is bonded.
  • the sealing member for example, a thermoplastic resin or a thermosetting resin is used. After bonding the 1st base material 10 and the 2nd base material 20, a sealing member is hardened.
  • the liquid crystal material 38 may be injected after the substrates are bonded.
  • an injection port may be provided in a part of the annular sealing member, and the liquid crystal material 38 may be injected between the substrates by a vacuum injection method.
  • several base materials which have the different types of convex part 33 were prepared, and in the case of use Of course, it is possible to use these base materials side by side and affix them to a window.
  • the optical device 1 includes the first base material 10 having translucency, and the second base material having translucency disposed so as to face the first base material 10. 20, the first electrode layer 40 and the second electrode layer 50 having translucency and disposed between the first base material 10 and the second base material 20 so as to face each other, and the first electrode layer 40
  • the light distribution layer 30 is disposed between the second electrode layer 50 and distributes incident light.
  • the light distribution layer 30 is disposed so as to fill the space between the plurality of protrusions 33 and the uneven structure layer 31 having the plurality of protrusions 33 each having a reflection surface capable of reflecting light, and the first electrode layer 40 and And a refractive index variable layer 32 whose refractive index changes according to the voltage applied between the second electrode layers 50.
  • the light distribution layer 30 is divided into a plurality of regions having different light distribution directions in plan view, and the direction of the reflecting surface is different for each region.
  • the light distribution layer 30 is divided into a plurality of regions having different light distribution directions, light can be distributed not only in one direction but also in a plurality of directions.
  • the direction of the side surface 35 that functions as a light reflecting surface is different for each region, light can be distributed in a direction according to the angle of the side surface 35.
  • the optical device 1 can distribute light not only in the vertical direction but also in the horizontal direction.
  • the light distribution of light can be widened.
  • the incident direction of the incident light (sunlight) with respect to the optical device 1 changes depending on the daily motion or the annual motion.
  • the light distribution direction according to the incident direction of light it is possible to adjust the change in the light distribution with respect to the temporal change of the incident light.
  • the same light distribution as when light is incident from the front can be realized even when light is incident obliquely.
  • the same (similar) light distribution can be realized.
  • the plurality of regions include a plurality of first protrusions 33a arranged side by side in the first direction, and each of the reflection surfaces extends in a direction orthogonal to the first direction.
  • a first region 30a having a convex portion 33a and a plurality of second convex portions 33b arranged side by side in a second direction different from the first direction, each reflecting surface being in a direction orthogonal to the second direction
  • a second region 30b having a plurality of extending second convex portions 33b.
  • the planar view shape of the plurality of first convex portions 33a is a line-symmetric shape with the planar view shape of the multiple second convex portions 33b.
  • the light distribution direction can be made symmetrical between the first region 30a and the second region 30b. For this reason, for example, not only the light incident on the optical device 1 from the left side but also the light incident from the right side can be distributed in a desired direction.
  • the plurality of regions further includes a plurality of third convex portions 33c arranged in a third direction different from the first direction and the second direction, and each reflecting surface has a third direction.
  • region 30c which has the some 3rd convex part 33c extended in the direction orthogonal to is included.
  • the planar view shape of the plurality of first convex portions 33a is a line-symmetric shape having a line parallel to the third direction as the symmetry axis of the planar view shape of the multiple second convex portions 33b.
  • At least one of the first electrode layer 40 and the second electrode layer 50 is composed of a plurality of electrode pieces.
  • the plurality of electrode pieces correspond to each of the plurality of regions.
  • the optical device 1 further includes an adhesive layer 60 that adheres the uneven structure layer 31 and the first electrode layer 40.
  • the optical system 70 includes the optical device 1 and a controller 71 that controls the optical state of the light distribution layer 30 for each region by selectively applying a potential to the plurality of electrode pieces. .
  • the optical device 1 includes a time zone such as in the morning in which light is incident on the optical device 1 from one left and right direction and a time zone such as an evening in which light is incident on the optical device 1 from other left and right directions.
  • the light distribution state of can be changed.
  • control unit 71 sets the first region 30a to a light distribution state, sets the second region 30b to a transparent state, and sets the first region 30a to a transparent state, and sets the first region 30a to a transparent state. It switches and performs the 2nd operation mode (evening mode) which makes 30b a light distribution state.
  • the optical state of the optical device 1 can be changed to an appropriate state by switching the operation mode according to the incident direction of light.
  • the first electrode layer 40 having a light transmitting property is formed on the first base material 10 having a light transmitting property, and a plurality of protrusions are formed.
  • a step of forming a plurality of concavo-convex structure layers 31 having a portion 33, a step of attaching a plurality of concavo-convex structure layers 31 to the first electrode layer 40 via an adhesive layer 60, and a second base material having translucency A step of forming a translucent second electrode layer 50 on 20, a step of filling a liquid crystal material 38 whose refractive index changes according to an applied electric field between the plurality of convex portions 33, and A step of bonding the first base material 10 and the second base material 20 so that the first electrode layer 40 and the second electrode layer 50 face each other with the plurality of concavo-convex structure layers 31 interposed therebetween.
  • one of the plurality of concavo-convex is formed on the first base material 10 having a light transmitting property, and a plurality of protru
  • the optical device 1 can be manufactured by forming a plurality of concavo-convex structure layers separately and then affixing them to the first electrode layer 40 via the adhesive layer 60. For this reason, the some optical device 1 from which arrangement
  • the refractive index variable material is not limited to the liquid crystal material.
  • an electrophoretic material is used as the refractive index variable material.
  • FIG. 11 is an enlarged cross-sectional view of an optical device 101 according to this modification.
  • the overall configuration of the optical device 101 according to the present modification is the same as that of the optical device 1 shown in FIG.
  • FIG. 11 shows a cross section corresponding to a region II surrounded by a one-dot chain line in FIG.
  • the optical device 101 includes a first base material 10, a second base material 20, a light distribution layer 130, a first electrode layer 40, and a second electrode layer 50.
  • the configuration other than the light distribution layer 130 is the same as that of the embodiment.
  • the light distribution layer 130 is disposed between the first electrode layer 40 and the second electrode layer 50.
  • the light distribution layer 130 has a light-transmitting property and transmits incident light. Further, the light distribution layer 130 changes the traveling direction of light when the light passes through the light distribution layer 130.
  • the light distribution layer 130 includes an uneven structure layer 31 and a refractive index variable layer 132.
  • the uneven structure layer 31 has the same configuration as the uneven structure layer 31 of the optical device 1 according to the embodiment. That is, also in this modified example, a plurality of concavo-convex structure layers having different alignment directions of the protrusions 33 are provided for each region of the first light distribution layer 130. Specifically, the detailed configuration of the concavo-convex structure layer 31 of the first light distribution layer 130 is the same as that shown in FIG. 3A and FIG.
  • the refractive index variable layer 132 includes an insulating liquid 137 and nanoparticles 138 included in the insulating liquid 137.
  • the refractive index variable layer 132 is a nanoparticle dispersion layer in which countless nanoparticles 138 are dispersed in an insulating liquid 137.
  • the insulating liquid 137 is a transparent liquid having insulating properties, and is a solvent serving as a dispersion medium in which the nanoparticles 138 are dispersed as a dispersoid.
  • a material having a refractive index (solvent refractive index) of about 1.3 to about 1.6 can be used.
  • an insulating liquid 137 having a refractive index of about 1.4 is used.
  • the kinematic viscosity of the insulating liquid 137 is preferably about 100 mm 2 / s. Further, the insulating liquid 137 has a low dielectric constant (for example, less than the dielectric constant of the concavo-convex structure layer 31), non-flammability (for example, a high flash point having a flash point of 250 ° C. or higher), and low volatility. Also good.
  • the insulating liquid 137 is a hydrocarbon such as an aliphatic hydrocarbon, naphtha, and other petroleum solvents, a low molecular weight halogen-containing polymer, or a mixture thereof.
  • the insulating liquid 137 is a halogenated hydrocarbon such as a fluorinated hydrocarbon. Note that silicone oil or the like can be used as the insulating liquid 137.
  • a plurality of nanoparticles 138 are dispersed in the insulating liquid 137.
  • the nanoparticles 138 are fine particles having a particle size of nano-order size. Specifically, when the wavelength of incident light is ⁇ , the particle size of the nanoparticles 138 is preferably ⁇ / 4 or less. By setting the particle size of the nanoparticles 138 to ⁇ / 4 or less, light scattering by the nanoparticles 138 can be reduced, and an average refractive index of the nanoparticles 138 and the insulating liquid 137 can be obtained.
  • the particle size of the nanoparticles 138 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
  • the nanoparticles 138 are made of, for example, a high refractive index material. Specifically, the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137. In this modification, the refractive index of the nanoparticles 138 is higher than the refractive index of the uneven structure layer 31.
  • nanoparticles 138 for example, metal oxide fine particles can be used.
  • the nanoparticles 138 may be made of a material with high transmittance.
  • transparent zirconia particles having a refractive index of 2.1 and made of zirconium oxide (ZrO 2 ) are used as the nanoparticles 138.
  • the nanoparticles 138 are not limited to zirconium oxide, and may be composed of titanium oxide (TiO 2 : refractive index 2.5) or the like.
  • the nanoparticles 138 are charged particles that are charged.
  • the nanoparticle 138 can be charged positively (plus) or negatively (minus). In this modification, the nanoparticles 138 are positively (plus) charged.
  • the refractive index variable layer 132 configured in this manner, charged nanoparticles 138 are dispersed throughout the insulating liquid 137.
  • zirconia particles having a refractive index of 2.1 are used as the nanoparticles 138 and the nanoparticles 138 are dispersed in an insulating liquid 137 having a solvent refractive index of about 1.4. It is said.
  • the overall refractive index (average refractive index) of the refractive index variable layer 132 is set to be substantially the same as the refractive index of the uneven structure layer 31 in a state where the nanoparticles 138 are uniformly dispersed in the insulating liquid 137. In this variation, it is about 1.5.
  • the overall refractive index of the refractive index variable layer 132 can be changed by adjusting the concentration (amount) of the nanoparticles 138 dispersed in the insulating liquid 137.
  • the amount of the nanoparticles 138 is, for example, such that it is buried in the recess 34 of the uneven structure layer 31. In this case, the concentration of the nanoparticles 138 with respect to the insulating liquid 137 is about 10% to about 30%.
  • the refractive index variable layer 132 is disposed between the uneven structure layer 31 and the second electrode layer 50. Specifically, the refractive index variable layer 132 is in contact with the uneven structure layer 31. That is, the contact surface of the refractive index variable layer 132 with the concave / convex surface of the concave / convex structure layer 31 is an interface between the refractive index variable layer 132 and the concave / convex surface of the concave / convex structure layer 31.
  • the refractive index variable layer 132 is also in contact with the second electrode layer 50, but another layer (film) may be interposed between the refractive index variable layer 132 and the second electrode layer 50.
  • the refractive index of the refractive index variable layer 132 changes according to the applied electric field.
  • the electric field changes according to the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 132 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light region when an electric field is applied. For example, a DC voltage is applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 132 Since the nanoparticles 138 dispersed in the insulating liquid 137 are charged, when an electric field is applied to the refractive index variable layer 132, the nanoparticles 138 migrate in the insulating liquid 137 in accordance with the electric field distribution, and the insulating liquid 137 is unevenly distributed. As a result, the particle distribution of the nanoparticles 138 in the refractive index variable layer 132 is changed, and the concentration distribution of the nanoparticles 138 can be provided in the refractive index variable layer 132, so that the refractive index in the refractive index variable layer 132 is increased. Distribution changes. That is, the refractive index of the refractive index variable layer 132 changes partially. As described above, the refractive index variable layer 132 mainly functions as a refractive index adjustment layer capable of adjusting the refractive index with respect to light in the visible light region.
  • each of the first electrode layer 40 and the second electrode layer 50 may be divided into a plurality of electrode pieces.
  • the concentration distribution of the nanoparticles 138 can be varied for each region.
  • a refractive index can be varied for every area
  • the refractive index variable layer 132 is disposed between the first base material 10 and the second base material 20. Specifically, the insulating liquid 137 in which the nanoparticles 138 are dispersed is sealed between the first base material 10 and the second base material 20.
  • the method for forming the refractive index variable layer 132 is the same as in the embodiment.
  • the thickness of the refractive index variable layer 132 is, for example, 1 ⁇ m to 100 ⁇ m, but is not limited thereto. As an example, when the height of the convex portion 33 of the concavo-convex structure layer 31 is 10 ⁇ m, the thickness of the refractive index variable layer 132 is, for example, 40 ⁇ m.
  • optical state Subsequently, an optical state of the optical device 101 according to this modification and an operation mode for forming the optical state will be described.
  • light that enters the optical device 101 from the front and passes through the third region 30c among the plurality of regions of the first light distribution layer 130 will be described.
  • the first region 30a and the second region 30b also have the same optical state as described below depending on the mode of the applied voltage, except that the slopes of the convex portions 33 are different.
  • the light path for each region is the same as that in the embodiment as shown in FIGS. 7A and 7B.
  • FIG. 12A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the optical device 101 according to this modification.
  • FIG. 12A no voltage is applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the first electrode layer 40 and the second electrode layer 50 are equipotential with each other. In this case, since no electric field is applied to the refractive index variable layer 132, the nanoparticles 138 are dispersed throughout the insulating liquid 137.
  • the refractive index of the refractive index variable layer 132 in a state where the nanoparticles 138 are dispersed throughout the insulating liquid 137 is about 1.5.
  • the refractive index of the convex part 33 of the concavo-convex structure layer 31 is about 1.5. That is, the entire refractive index of the refractive index variable layer 132 is equal to the refractive index of the convex portion 33 of the concavo-convex structure layer 131. Therefore, the refractive index is uniform throughout the light distribution layer 130.
  • FIG. 12B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the optical device 101 according to this modification.
  • a voltage is applied between the first electrode layer 40 and the second electrode layer 50.
  • a potential difference of about several tens of volts is applied to the first electrode layer 40 and the second electrode layer 50.
  • a predetermined electric field is applied to the refractive index variable layer 132, and in the refractive index variable layer 132, the charged nanoparticles 138 migrate in the insulating liquid 137 according to the electric field distribution. That is, the nanoparticles 138 perform electrophoresis in the insulating liquid 137.
  • the second electrode layer 50 has a higher potential than the first electrode layer 40. For this reason, the positively charged nanoparticles 138 migrate toward the first electrode layer 40, enter the concave portion 34 of the concave-convex structure layer 31, and accumulate.
  • the nanoparticles 138 are unevenly distributed on the uneven structure layer 31 side in the refractive index variable layer 132, whereby the particle distribution of the nanoparticles 138 is changed, and the refractive index distribution in the refractive index variable layer 132 is not uniform. Disappear. Specifically, as shown in FIG. 12B, a concentration distribution of nanoparticles 138 is formed in the refractive index variable layer 132.
  • the concentration of the nanoparticles 138 is high, and in the region 132b on the second electrode layer 50 side, the concentration of the nanoparticles 138 is low. Therefore, a difference in refractive index occurs between the region 132a and the region 132b.
  • the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137.
  • the refractive index of the region 132a where the concentration of the nanoparticles 138 is high is higher than the refractive index of the region 132b where the concentration of the nanoparticles 138 is low, that is, the proportion of the insulating liquid 137 is high.
  • the refractive index of the region 132a is greater than about 1.5 to about 1.8 depending on the concentration of the nanoparticles 138.
  • the refractive index of the region 132b is a value less than about 1.4 to less than about 1.5 depending on the concentration of the nanoparticles 138.
  • the refractive index of the plurality of convex portions 33 is about 1.5
  • the convex portion 33 is interposed between the convex portion 33 and the region 132a.
  • FIG. 12B when the light L is incident from an oblique direction, the light L is refracted by the side surface 36 of the convex portion 33 and then totally reflected by the side surface 35.
  • the light L incident obliquely downward is bent in the traveling direction by the optical device 101 and is applied to the indoor ceiling surface or the like.
  • each member such as an interface between the first base material 10 and the first electrode layer 40 or an interface between the refractive index variable layer 132 and the second electrode layer 50 is used.
  • the light L is refracted in accordance with the refractive index difference at the interface where there is a refractive index difference.
  • the light distribution layer 130 is divided into a plurality of regions having different light distribution directions. Light can be distributed. Specifically, since the direction of the side surface 35 that functions as a light reflecting surface is different for each region, light can be distributed in a direction according to the angle of the side surface 35.
  • the optical device 101 can distribute light not only in the vertical direction but also in the horizontal direction. Thus, according to the optical device 101, the light distribution of light can be widened.
  • optical device As described above, the optical device, the optical system, and the manufacturing method of the optical device according to the present invention have been described based on the above-described embodiment and its modifications. However, the present invention is limited to the above-described embodiment. It is not a thing.
  • the control unit 71 switches the operation mode for each region, but is not limited thereto.
  • the present invention is not limited thereto. Only one of the first electrode layer 40 and the second electrode layer 50 may be composed of a plurality of electrode pieces. Alternatively, both the first electrode layer 40 and the second electrode layer 50 may not be divided. In this case, although it becomes impossible to switch the light distribution state and the transparent state for each region, the light distribution direction of light in the light distribution state can be expanded.
  • the uneven structure layer 31 is individually manufactured for each region and then pasted on the first electrode layer 40 via the adhesive layer 60.
  • the uneven structure layer 31 may be integrally formed.
  • the concavo-convex structure layer 31 may be collectively formed by using a mold having a plurality of shapes in which the alignment direction of the convex portions 33 is different.
  • the uneven structure layer 31 may be formed directly on the first electrode layer 40, and the optical device 1 may not include the adhesive layer 60.
  • the uneven structure layer 31 may be formed by imprinting after forming a thin film made of a resin material generally called a primer on the first electrode layer 40.
  • the example in which the first region 30a and the second region 30b have a line-symmetric relationship has been described.
  • the optical device 1 faces the window 91 facing south. This is particularly useful when installed. Therefore, for example, when the optical device 1 is installed in a window that faces other than true south, such as south-southwest, the first region 30a and the second region 30b may not have a line-symmetric relationship.
  • the inclination angle of the side surface (reflection surface) 35 in the first region 30a and the inclination angle of the side surface 35 in the second region 30b may be different from each other. Further, the side surface 35 in the third region 30c may not extend in a direction parallel to the ground, and may be inclined.
  • first base material 10 and the second base material 20 may be separated for each region. That is, a plurality of optical devices that can be individually driven for each region may be arranged in the plane.
  • a positive liquid crystal material is used as the liquid crystal material constituting the refractive index variable layer 32, but a negative liquid crystal material may be used.
  • the optical device is arranged in the window so that the longitudinal direction of the third convex portion 33c is the x-axis direction, but the present invention is not limited to this.
  • the optical device may be arranged in the window so that the longitudinal direction of the third convex portion 33c is the z-axis direction.
  • each of the plurality of convex portions 33 may not be a straight stripe shape.
  • each of the plurality of convex portions 33 may have a wave shape, a wavy line shape, or a zigzag shape.
  • the plurality of convex portions 33 may include convex portions having different shapes.
  • a plurality of different tilt angles may be mixed in at least one of the tilt angles ⁇ a, ⁇ b, and ⁇ c.
  • the shape of the convex portion 33 in each of the first region 30a, the second region 30b, and the third region 30c may be different for each region.
  • the first convex portion 33a of the first region 30a is wave-shaped
  • the second convex portion 33b of the second region 30b is divided into dots
  • the third convex portion 33c of the third region 30c is striped. There may be.
  • each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but is not limited thereto.
  • the plurality of convex portions 33 may be arranged so as to be scattered in a matrix or the like. That is, you may arrange
  • each of the plurality of convex portions 33 has the same shape, but is not limited thereto, and may have different shapes within the plane, for example.
  • the inclination angles of the side surfaces 35 or 36 of the plurality of convex portions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
  • the height of the plurality of convex portions 33 is constant, but is not limited thereto.
  • the height of the plurality of convex portions 33 may be different at random. By doing in this way, it can suppress that the light which permeate
  • the refractive index of the nanoparticles 138 may be lower than the refractive index of the insulating liquid 137.
  • a transparent state and a light distribution state can be realized by appropriately adjusting the voltage to be applied according to the refractive index of the nanoparticles 138 and the like.
  • the nanoparticles 138 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 138 may be negatively charged.
  • a direct voltage is applied between the first electrode layer 40 and the second electrode layer 50 by applying a positive potential to the first electrode layer 40 and applying a negative potential to the second electrode layer 50. Good.
  • the plurality of nanoparticles 138 may include a plurality of types of nanoparticles having different optical characteristics.
  • a transparent first nanoparticle charged positively and an opaque (black or the like) second nanoparticle charged negatively may be included.
  • the optical device 101 may have a light shielding function by aggregating and unevenly distributing the second nanoparticles.
  • the sunlight is exemplified as the light incident on the optical device 1, but the present invention is not limited to this.
  • the light incident on the optical device 1 may be light emitted from a light emitting device such as a lighting device.
  • the optical device 1 is attached to the indoor side surface of the window 91, but may be attached to the outdoor side surface of the window 91. By pasting on the indoor side, deterioration of the optical element can be suppressed. Further, although the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself.
  • the optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed, for example, in a car window.
  • the optical device 1 can also be used for a light distribution control member such as a light-transmitting cover of a lighting fixture, for example.
  • the optical device 1 can also be used as a blindfold member that utilizes light scattering at the interface of the concavo-convex structure.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Abstract

An optical device (1) comprises: a first translucent base material (10); a second translucent base material (20) arranged facing the first base material (10); first and second translucent electrode layers (40, 50) arranged facing each other between the first base material (10) and the second base material (20); and a light distribution layer (30) arranged between the first electrode layer (40) and the second electrode layer (50) for distributing incident light. The light distribution layer (30) includes an uneven structure layer (31) having a plurality of projections (33) each having a side face (35) capable of reflecting light and a variable-refractive-index layer (32) filling the spaces between the plurality of projections (33) for varying the refractive index according to a voltage applied between the first electrode layer (40) and the second electrode layer (50). The light distribution layer (30) is divided into a plurality of regions having different light distribution directions in plan view with each region having the side face (35) facing a different direction.

Description

光学デバイス、光学システム、及び、光学デバイスの製造方法Optical device, optical system, and optical device manufacturing method
 本発明は、光学デバイス、光学システム、及び、光学デバイスの製造方法に関する。 The present invention relates to an optical device, an optical system, and a method for manufacturing the optical device.
 屋外から入射する太陽光などの外光の透過状態を変化させることができる光学デバイスが知られている。 An optical device capable of changing the transmission state of external light such as sunlight incident from the outside is known.
 例えば、特許文献1には、一対の透明基板と、一対の透明基板の各々に形成された一対の透明電極と、一対の透明電極に挟まれたプリズム層及び液晶層とを有する液晶光学素子が開示されている。当該液晶光学素子は、一対の透明電極に印加される電圧によって液晶層の屈折率を変化させて、プリズムの斜面と液晶層との界面を通過する光の屈折角を変化させる。 For example, Patent Document 1 discloses a liquid crystal optical element having a pair of transparent substrates, a pair of transparent electrodes formed on each of the pair of transparent substrates, and a prism layer and a liquid crystal layer sandwiched between the pair of transparent electrodes. It is disclosed. The liquid crystal optical element changes the refractive index of the liquid crystal layer by a voltage applied to the pair of transparent electrodes, thereby changing the refraction angle of light passing through the interface between the inclined surface of the prism and the liquid crystal layer.
特開2012-173534号公報JP 2012-173534 A
 しかしながら、上記従来の液晶光学素子では、プリズム層によって曲げられる光の進行方向は、光の入射方向に対して概ね同一方向である。このため、正面から光が入射した場合と、斜め方向から光が入射した場合とでは、全く異なる方向に光が配光される。したがって、例えば、太陽の日周運動又は年周運動によって入射光(太陽光)の方向が変化した場合、配光分布も変化する。すなわち、入射光の時間変化に対して、配光分布も変化する。なお、配光分布は、入射光を配光したときの出射光(配光)の出射方向(配光方向)の分布を意味する。 However, in the conventional liquid crystal optical element, the traveling direction of the light bent by the prism layer is substantially the same as the incident direction of the light. For this reason, light is distributed in completely different directions when light is incident from the front and when light is incident from an oblique direction. Therefore, for example, when the direction of incident light (sunlight) changes due to the diurnal motion or annual motion of the sun, the light distribution also changes. That is, the light distribution changes with time of the incident light. The light distribution means a distribution in an emission direction (light distribution direction) of outgoing light (light distribution) when incident light is distributed.
 そこで、本発明は、光の配光分布を広げることができ、かつ、入射光の時間変化に対する配光分布の変化を調整することができる光学デバイス、当該光学デバイスを備える光学システム、及び、当該光学デバイスの製造方法を提供することを目的とする。 Accordingly, the present invention provides an optical device that can broaden the light distribution of light and can adjust the change of the light distribution with respect to the temporal change of incident light, an optical system including the optical device, and the An object of the present invention is to provide a method for manufacturing an optical device.
 上記目的を達成するため、本発明の一態様に係る光学デバイスは、透光性を有する第1基材と、前記第1基材に対向して配置された、透光性を有する第2基材と、前記第1基材と前記第2基材との間に互いに対向して配置された、透光性を有する第1電極層及び第2電極層と、前記第1電極層と前記第2電極層との間に配置され、入射した光を配光する配光層とを備え、前記配光層は、前記光を反射可能な反射面を各々が有する複数の凸部を有する凹凸構造層と、前記複数の凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、前記配光層は、平面視において配光方向が異なる複数の領域に区分され、領域毎に前記反射面の向きが異なっている。 In order to achieve the above object, an optical device according to one embodiment of the present invention includes a first base material having translucency, and a second base having translucency, which is disposed to face the first base material. A first electrode layer and a second electrode layer having translucency, disposed between the material, the first base material, and the second base material, and the first electrode layer and the first base material. A concavo-convex structure having a plurality of convex portions each having a reflection surface capable of reflecting the light, the light distribution layer being disposed between the two electrode layers and distributing the incident light. A refractive index variable layer that is disposed so as to fill a space between the plurality of convex portions and has a refractive index that changes according to a voltage applied between the first electrode layer and the second electrode layer, The light distribution layer is divided into a plurality of regions having different light distribution directions in plan view, and the direction of the reflecting surface is different for each region.
 また、本発明の一態様に係る光学システムは、前記光学デバイスと、前記複数の電極片に選択的に電位を与えることで、前記配光層の光学状態を前記領域毎に制御する制御部を備える。 The optical system according to an aspect of the present invention includes a control unit that controls the optical state of the light distribution layer for each region by selectively applying a potential to the optical device and the plurality of electrode pieces. Prepare.
 また、本発明の一態様に係る光学デバイスの製造方法は、透光性を有する第1基材上に、透光性を有する第1電極層を形成する工程と、複数の凸部を有する凹凸構造層を複数形成する工程と、前記第1電極層上に、接着層を介して複数の前記凹凸構造層を貼り付ける工程と、透光性を有する第2基材上に、透光性を有する第2電極層を形成する工程と、印加される電界に応じて屈折率が変化する屈折率可変材料を、前記複数の凸部の間に充填する工程と、前記第1電極層と前記第2電極層とが複数の前記凹凸構造層を間に挟んで対向するように、前記第1基材と前記第2基材とを貼り合わせる工程とを含み、前記貼り付ける工程では、複数の前記凹凸構造層の1つを、他の1つとは前記凸部の並び方向を異ならせて貼り付ける。 The method for manufacturing an optical device according to one embodiment of the present invention includes a step of forming a first electrode layer having a light-transmitting property on a first substrate having a light-transmitting property, and an unevenness having a plurality of convex portions. A step of forming a plurality of structural layers, a step of attaching a plurality of the concavo-convex structure layers on the first electrode layer via an adhesive layer, and a translucent second base material A step of forming a second electrode layer, a step of filling a refractive index variable material whose refractive index changes according to an applied electric field between the plurality of convex portions, the first electrode layer and the first electrode Bonding the first base material and the second base material so that two electrode layers face each other with a plurality of the concavo-convex structure layers interposed therebetween. One of the concavo-convex structure layers is pasted with the arrangement direction of the convex portions different from the other one.
 本発明によれば、光の配光分布を広げることができ、かつ、入射光の時間変化に対する配光分布の変化を調整することができる光学デバイスなどを提供することができる。 According to the present invention, it is possible to provide an optical device or the like that can broaden the light distribution of light and can adjust the change of the light distribution with respect to the time change of the incident light.
図1は、実施の形態に係る光学デバイスの断面図である。FIG. 1 is a cross-sectional view of an optical device according to an embodiment. 図2は、実施の形態に係る光学デバイスの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the optical device according to the embodiment. 図3Aは、実施の形態に係る光学デバイスの凹凸構造層の一例を模式的に示す平面図である。FIG. 3A is a plan view schematically showing an example of the concavo-convex structure layer of the optical device according to the embodiment. 図3Bは、実施の形態に係る光学デバイスの凹凸構造層の別の例を模式的に示す平面図である。FIG. 3B is a plan view schematically showing another example of the uneven structure layer of the optical device according to the embodiment. 図4は、実施の形態に係る光学デバイスの凹凸構造層の各領域と電極層の電極片との配置を示す分解斜視図である。FIG. 4 is an exploded perspective view showing the arrangement of the regions of the concavo-convex structure layer of the optical device according to the embodiment and the electrode pieces of the electrode layer. 図5Aは、実施の形態に係る光学デバイスを窓に設置した場合において、光学デバイスが無印加モードで動作したときの作用(配光状態)を説明するための図である。FIG. 5A is a diagram for explaining an action (light distribution state) when the optical device operates in the non-application mode when the optical device according to the embodiment is installed in a window. 図5Bは、実施の形態に係る光学デバイスを窓に設置した場合において、光学デバイスが電圧印加モードで動作したときの作用(透明状態)を説明するための図である。FIG. 5B is a diagram for explaining an action (transparent state) when the optical device operates in the voltage application mode when the optical device according to the embodiment is installed in a window. 図6Aは、実施の形態に係る光学デバイスの無印加モード(配光状態)を説明するための拡大断面図である。FIG. 6A is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the embodiment. 図6Bは、実施の形態に係る光学デバイスの電圧印加モード(透明状態)を説明するための拡大断面図である。FIG. 6B is an enlarged cross-sectional view for explaining a voltage application mode (transparent state) of the optical device according to the embodiment. 図7Aは、実施の形態に係る光学デバイスの凹凸構造層の各領域の光学特性を模式的に示す図である。FIG. 7A is a diagram schematically illustrating optical characteristics of each region of the uneven structure layer of the optical device according to the embodiment. 図7Bは、実施の形態に係る光学デバイスの凹凸構造層の各領域の光学特性を模式的に示す図である。FIG. 7B is a diagram schematically illustrating optical characteristics of each region of the uneven structure layer of the optical device according to the embodiment. 図8は、実施の形態に係る光学デバイスの時間帯毎の凹凸構造層の各領域の動作モードを示す図である。FIG. 8 is a diagram illustrating an operation mode of each region of the concavo-convex structure layer for each time zone of the optical device according to the embodiment. 図9Aは、実施の形態に係る光学デバイスに対して斜めから光が入射した場合の日中モードにおける配光分布を示す図である。FIG. 9A is a diagram illustrating a light distribution in the daytime mode when light is incident obliquely on the optical device according to the embodiment. 図9Bは、実施の形態に係る光学デバイスに対して斜めから光が入射した場合の午前モードにおける配光分布を示す図である。FIG. 9B is a diagram illustrating a light distribution in the morning mode when light is incident on the optical device according to the embodiment from an oblique direction. 図10Aは、実施の形態に係る光学デバイスの製造方法における第1電極層の形成工程を示す斜視図である。FIG. 10A is a perspective view showing a first electrode layer forming step in the method of manufacturing an optical device according to the embodiment. 図10Bは、実施の形態に係る光学デバイスの製造方法における複数の凹凸構造層の形成工程を示す斜視図である。FIG. 10B is a perspective view showing a process of forming a plurality of concavo-convex structure layers in the method for manufacturing an optical device according to the embodiment. 図10Cは、実施の形態に係る光学デバイスの製造方法における凹凸構造層の領域毎の貼り付け工程を示す斜視図である。FIG. 10C is a perspective view illustrating a bonding process for each region of the concavo-convex structure layer in the method for manufacturing an optical device according to the embodiment. 図10Dは、実施の形態に係る光学デバイスの製造方法における第2電極層の形成工程を示す斜視図である。FIG. 10D is a perspective view illustrating a formation step of the second electrode layer in the method for manufacturing an optical device according to the embodiment. 図10Eは、実施の形態に係る光学デバイスの製造方法における液晶材料の注入工程を示す斜視図である。FIG. 10E is a perspective view illustrating a liquid crystal material injection step in the method of manufacturing an optical device according to the embodiment. 図10Fは、実施の形態に係る光学デバイスの製造方法における基材の貼り合わせ工程を示す斜視図である。FIG. 10F is a perspective view illustrating a base material bonding step in the method of manufacturing an optical device according to the embodiment. 図11は、実施の形態の変形例に係る光学デバイスの拡大断面図である。FIG. 11 is an enlarged cross-sectional view of an optical device according to a modification of the embodiment. 図12Aは、実施の形態の変形例に係る光学デバイスの無印加モード(透明状態)を説明するための拡大断面図である。FIG. 12A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of an optical device according to a modification of the embodiment. 図12Bは、実施の形態の変形例に係る光学デバイスの電圧印加モード(配光状態)を説明するための拡大断面図である。FIG. 12B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of an optical device according to a modification of the embodiment.
 以下では、本発明の実施の形態に係る光学デバイス、光学システム及び光学デバイスの製造方法について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, an optical device, an optical system, and an optical device manufacturing method according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code | symbol is attached | subjected about the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を鉛直方向とし、z軸に垂直な方向(xy平面に平行な方向)を水平方向としている。なお、z軸の正方向を鉛直上方としている。また、本明細書において、「厚み方向」とは、光学デバイスの厚み方向を意味し、第1基材及び第2基材の主面に垂直な方向のことであり、「平面視」とは、第1基材又は第2基材の主面に対して垂直な方向から見たときのことをいう。 In the present specification and drawings, the x axis, the y axis, and the z axis indicate the three axes of the three-dimensional orthogonal coordinate system. In each embodiment, the z-axis direction is the vertical direction, and the direction perpendicular to the z-axis (the direction parallel to the xy plane) is the horizontal direction. Note that the positive direction of the z-axis is vertically upward. In the present specification, the “thickness direction” means the thickness direction of the optical device, which is a direction perpendicular to the main surfaces of the first base material and the second base material, and “plan view” means , When viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
 (実施の形態)
 [構成]
 まず、本実施の形態に係る光学デバイス1の構成について、図1及び図2を用いて説明する。図1は、本実施の形態に係る光学デバイス1の断面図である。図2は、本実施の形態に係る光学デバイス1の拡大断面図であり、図1の一点鎖線で囲まれる領域IIの拡大断面図である。
(Embodiment)
[Constitution]
First, the configuration of the optical device 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by a one-dot chain line in FIG.
 光学デバイス1は、光学デバイス1に入射する光を制御する光制御デバイスである。具体的には、光学デバイス1は、光学デバイス1に入射する光の進行方向を変更して(つまり、配光して)出射させることができる配光素子である。 The optical device 1 is a light control device that controls light incident on the optical device 1. Specifically, the optical device 1 is a light distribution element that can change the traveling direction of light incident on the optical device 1 (that is, distribute light) and emit the light.
 図1及び図2に示すように、光学デバイス1は、入射する光を透過するように構成されており、第1基材10と、第2基材20と、配光層30と、第1電極層40と、第2電極層50と、接着層60とを備える。本実施の形態では、配光層30は、平面視において複数の領域に区分されており、領域毎に異なる配光方向に光を出射する。 As shown in FIG.1 and FIG.2, the optical device 1 is comprised so that the incident light may be permeate | transmitted, and the 1st base material 10, the 2nd base material 20, the light distribution layer 30, and the 1st An electrode layer 40, a second electrode layer 50, and an adhesive layer 60 are provided. In the present embodiment, the light distribution layer 30 is divided into a plurality of regions in plan view, and emits light in different light distribution directions for each region.
 光学デバイス1は、対をなす第1基材10及び第2基材20の間に、第1電極層40、接着層60、配光層30及び第2電極層50がこの順で厚み方向に沿って配置された構成である。なお、第1基材10と第2基材20との間の距離を保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されていてもよい。 In the optical device 1, the first electrode layer 40, the adhesive layer 60, the light distribution layer 30, and the second electrode layer 50 are arranged in the thickness direction in this order between the paired first base material 10 and second base material 20. It is the structure arranged along. In order to maintain the distance between the first base material 10 and the second base material 20, a plurality of particulate spacers may be dispersed in the plane, or a columnar structure may be formed. .
 以下、光学デバイス1の各構成部材について、図1及び図2を参照して詳細に説明する。 Hereinafter, each component of the optical device 1 will be described in detail with reference to FIGS. 1 and 2.
 [第1基材及び第2基材]
 第1基材10及び第2基材20は、透光性を有する透光性基材である。第1基材10及び第2基材20としては、例えばガラス基板又は樹脂基板を用いることができる。
[First substrate and second substrate]
The 1st base material 10 and the 2nd base material 20 are translucent base materials which have translucency. As the 1st base material 10 and the 2nd base material 20, a glass substrate or a resin substrate can be used, for example.
 ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。 Examples of the material for the glass substrate include soda glass, alkali-free glass, and high refractive index glass. Examples of the material for the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy. The glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage of less scattering at the time of destruction.
 第1基材10と第2基材20とは、同じ材料で構成されていてもよく、あるいは、異なる材料で構成されていてもよい。また、第1基材10及び第2基材20は、リジッド基板に限るものではなく、可撓性を有するフレキシブル基板でもよい。本実施の形態において、第1基材10及び第2基材20は、PET樹脂からなる透明樹脂基板である。 The first base material 10 and the second base material 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board | substrate, The flexible board | substrate which has flexibility may be sufficient. In the present embodiment, the first base material 10 and the second base material 20 are transparent resin substrates made of PET resin.
 第2基材20は、第1基材10に対向する対向基材であり、第1基材10に対向する位置に配置される。第1基材10と第2基材20とは、例えば、10μm~30μmなどの所定距離を空けて略平行に配置されている。第1基材10と第2基材20とは、互いの端部外周に額縁状に形成された接着剤などのシール樹脂によって接着されている。 The second base material 20 is an opposing base material that opposes the first base material 10 and is disposed at a position that opposes the first base material 10. The first base material 10 and the second base material 20 are arranged substantially in parallel with a predetermined distance of, for example, 10 μm to 30 μm. The 1st base material 10 and the 2nd base material 20 are adhere | attached by sealing resin, such as the adhesive agent formed in the frame shape at the outer periphery of each other.
 なお、第1基材10及び第2基材20の平面視形状は、例えば、正方形又は長方形などの矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。 In addition, although the planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it is not restricted to this, Even if it is a polygon other than a circle or a rectangle Well, any shape can be employed.
 [配光層]
 図1及び図2に示すように、配光層30は、第1電極層40と第2電極層50との間に配置される。配光層30は、透光性を有しており、入射した光を透過させる。また、配光層30は、入射した光を配光する。つまり、配光層30は、配光層30を光が通過する際に、その光の進行方向を変更する。
[Light distribution layer]
As shown in FIGS. 1 and 2, the light distribution layer 30 is disposed between the first electrode layer 40 and the second electrode layer 50. The light distribution layer 30 has translucency and transmits incident light. The light distribution layer 30 distributes the incident light. That is, the light distribution layer 30 changes the traveling direction of light when the light passes through the light distribution layer 30.
 配光層30は、複数の凸部33を有する凹凸構造層31と、屈折率可変層32とを有する。配光層30は、凹凸構造層31と屈折率可変層32との屈折率の差によって光を配光することができる。 The light distribution layer 30 includes a concavo-convex structure layer 31 having a plurality of convex portions 33 and a refractive index variable layer 32. The light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
 本実施の形態では、図3Aに示すように、配光層30は、平面視において、配光方向が異なる複数の領域に区分されている。各領域において、凸部33が有する反射面である側面35の向きが異なっている。 In the present embodiment, as shown in FIG. 3A, the light distribution layer 30 is divided into a plurality of regions having different light distribution directions in plan view. In each region, the direction of the side surface 35 that is the reflecting surface of the convex portion 33 is different.
 図3Aは、本実施の形態に係る光学デバイス1の配光層30の一例を模式的に示す平面図である。図3Aにおいて、各領域に付されたストライプ模様は、各領域の凸部33が延びる方向を示している。なお、図3Bについても同様である。 FIG. 3A is a plan view schematically showing an example of the light distribution layer 30 of the optical device 1 according to the present embodiment. In FIG. 3A, the stripe pattern given to each region indicates the direction in which the convex portion 33 of each region extends. The same applies to FIG. 3B.
 例えば、図3Aに示すように、配光層30は、第1領域30aと、第2領域30bと、第3領域30cとを含む3つの領域に区分されている。第1領域30a、第2領域30b及び第3領域30cはそれぞれ、x軸方向に延びる帯状の領域である。第1領域30a、第2領域30b及び第3領域30cの平面視形状及び大きさは、例えば互いに同じである。第1領域30aと第2領域30bとは、z軸方向に沿って交互に繰り返し並んでいる。第1領域30aと第2領域30bとの間に、第3領域30cが配置されている。 For example, as shown in FIG. 3A, the light distribution layer 30 is divided into three regions including a first region 30a, a second region 30b, and a third region 30c. Each of the first region 30a, the second region 30b, and the third region 30c is a strip-like region extending in the x-axis direction. The planar view shapes and sizes of the first region 30a, the second region 30b, and the third region 30c are, for example, the same. The first region 30a and the second region 30b are alternately and repeatedly arranged along the z-axis direction. A third region 30c is disposed between the first region 30a and the second region 30b.
 なお、配光層30の各領域の平面視形状は、図3Aに示した例に限らない。例えば、図3Bには、第1領域30a、第2領域30b及び第3領域30cの各々がz軸方向に延びる例を示している。あるいは、第1領域30a、第2領域30b及び第3領域30cの平面視形状は正方形であり、行列状に配置されていてもよい。各領域が配光層30の面内で分散されていることで、光学デバイス1の面内均一性を高めることができる。 In addition, the planar view shape of each area | region of the light distribution layer 30 is not restricted to the example shown to FIG. 3A. For example, FIG. 3B shows an example in which each of the first region 30a, the second region 30b, and the third region 30c extends in the z-axis direction. Or the planar view shape of the 1st field 30a, the 2nd field 30b, and the 3rd field 30c is a square, and may be arranged in matrix form. Since each region is dispersed in the plane of the light distribution layer 30, the in-plane uniformity of the optical device 1 can be improved.
 また、本実施の形態では、第3領域30cの個数が、第1領域30aの個数と第2領域30bの個数との合計に等しいが、これに限らない。第1領域30a、第2領域30b及び第3領域30cの各々の個数が互いに等しくてもよい。 In the present embodiment, the number of the third regions 30c is equal to the sum of the number of the first regions 30a and the number of the second regions 30b, but is not limited thereto. The number of each of the first region 30a, the second region 30b, and the third region 30c may be equal to each other.
 また、配光層30を平面視した場合に、各領域の大きさ(面積)及び形状が互いに同じであるが、これに限らない。第1領域30a、第2領域30b及び第3領域30cの各々の大きさ及び形状は、互いに異なっていてもよい。 In addition, when the light distribution layer 30 is viewed in plan, the size (area) and shape of each region are the same, but the present invention is not limited to this. The size and shape of each of the first region 30a, the second region 30b, and the third region 30c may be different from each other.
 各領域の光学特性(配光方向)については、図7A及び図7Bを用いて後で説明する。 The optical characteristics (light distribution direction) of each region will be described later with reference to FIGS. 7A and 7B.
 [凹凸構造層]
 凹凸構造層31は、屈折率可変層32の表面(界面)を凹凸にするために設けられた微細形状層である。凹凸構造層31は、図2に示すように、入射する光を反射可能な反射面である側面35を有する複数の凸部33と、複数の凹部34とを有する。具体的には、凹凸構造層31は、マイクロオーダサイズの複数の凸部33によって構成された凹凸構造体である。複数の凸部33の間が、複数の凹部34である。すなわち、隣り合う2つの凸部33の間が、1つの凹部34である。
[Uneven structure layer]
The uneven structure layer 31 is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven. As shown in FIG. 2, the concavo-convex structure layer 31 includes a plurality of convex portions 33 having side surfaces 35 that are reflective surfaces capable of reflecting incident light, and a plurality of concave portions 34. Specifically, the concavo-convex structure layer 31 is a concavo-convex structure formed by a plurality of micro-order sized convex portions 33. Between the plurality of convex portions 33 are a plurality of concave portions 34. That is, one concave portion 34 is formed between two adjacent convex portions 33.
 本実施の形態では、配光層30の領域毎に、凸部33の並び方向が異なる複数の凹凸構造層が設けられている。具体的には、図3A及び図3Bに示すように、第1領域30aには、第1方向に並んだ複数の第1凸部33aを有する第1凹凸構造層31aが設けられている。第2領域30bには、第2方向に並んだ複数の第2凸部33bを有する第2凹凸構造層31bが設けられている。第3領域30cには、第3方向に並んだ複数の第3凸部33cを有する第3凹凸構造層31cが設けられている。すなわち、本実施の形態では、凹凸構造層31は、第1凹凸構造層31a、第2凹凸構造層31b及び第3凹凸構造層31cから構成されている。 In the present embodiment, for each region of the light distribution layer 30, a plurality of concavo-convex structure layers having different alignment directions of the convex portions 33 are provided. Specifically, as shown in FIGS. 3A and 3B, the first region 30a is provided with a first uneven structure layer 31a having a plurality of first protrusions 33a arranged in the first direction. The second region 30b is provided with a second uneven structure layer 31b having a plurality of second protrusions 33b arranged in the second direction. The third region 30c is provided with a third uneven structure layer 31c having a plurality of third protrusions 33c arranged in the third direction. That is, in the present embodiment, the concavo-convex structure layer 31 is composed of a first concavo-convex structure layer 31a, a second concavo-convex structure layer 31b, and a third concavo-convex structure layer 31c.
 まず、領域毎の凹凸構造層の平面視形状について説明する。 First, the planar view shape of the uneven structure layer for each region will be described.
 第1凹凸構造層31aの複数の第1凸部33aの並び方向(第1方向)は、x軸及びz軸に対して斜めの方向である。複数の第1凸部33aは、ストライプ状に形成されている。ストライプの延びる方向(第1方向に直交する方向)に沿って、第1凸部33aの側面(反射面)35が延在している。 The arrangement direction (first direction) of the plurality of first protrusions 33a of the first uneven structure layer 31a is an oblique direction with respect to the x-axis and the z-axis. The plurality of first protrusions 33a are formed in a stripe shape. A side surface (reflective surface) 35 of the first convex portion 33a extends along the direction in which the stripe extends (direction orthogonal to the first direction).
 側面35の延在方向は、xz面内において、x軸を基準とする角度(傾斜角θa)で表される。ここでは、傾斜角θaは、x軸の正側に向かうにつれてz軸の正側に傾斜する場合を正の数(+)とし、x軸の負側に向かうにつれてz軸の負側に傾斜する場合を負の数(-)としている。なお、後述する第2凸部33bの側面35の傾斜角θb及び第3凸部33cの側面35の傾斜角θcについても同様である。 The extending direction of the side surface 35 is represented by an angle (inclination angle θa) with respect to the x axis in the xz plane. Here, the inclination angle θa is a positive number (+) when inclined toward the positive side of the z-axis as it goes toward the positive side of the x-axis, and is inclined toward the negative side of the z-axis as it goes toward the negative side of the x-axis. The case is a negative number (-). The same applies to the inclination angle θb of the side surface 35 of the second convex portion 33b and the inclination angle θc of the side surface 35 of the third convex portion 33c, which will be described later.
 第1凸部33aの側面35の傾斜角θaは、例えば-30°であるが、これに限らない。傾斜角θaは、例えば、0°より大きく-45°以下の範囲である。 The inclination angle θa of the side surface 35 of the first convex portion 33a is, for example, −30 °, but is not limited thereto. The inclination angle θa is, for example, in a range greater than 0 ° and not greater than −45 °.
 第2凹凸構造層31bの複数の第2凸部33bの並び方向(第2方向)は、x軸及びz軸に対して斜めの方向である。複数の第2凸部33bは、ストライプ状に形成されている。ストライプの延びる方向(第2方向に直交する方向)に沿って、第2凸部33bの側面(反射面)35が延在している。 The arrangement direction (second direction) of the plurality of second convex portions 33b of the second uneven structure layer 31b is an oblique direction with respect to the x axis and the z axis. The plurality of second convex portions 33b are formed in a stripe shape. A side surface (reflective surface) 35 of the second convex portion 33b extends along the direction in which the stripe extends (direction orthogonal to the second direction).
 第2凸部33bの側面35の傾斜角θbは、例えば+30°であるが、これに限らない。傾斜角θbは、例えば、0°より大きく+45°以下の範囲である。 The inclination angle θb of the side surface 35 of the second convex portion 33b is, for example, + 30 °, but is not limited thereto. The inclination angle θb is, for example, in a range greater than 0 ° and less than + 45 °.
 第3凹凸構造層31cの複数の第3凸部33cである並び方向(第3方向)は、第1方向及び第2方向とは異なる方向であり、z軸方向に平行である。複数の第3凸部33cは、ストライプ状に形成されている。ストライプの延びる方向(第3方向に直交する方向)に沿って、第3凸部33cの側面(反射面)35が延在している。すなわち、第3凸部33cの側面35の傾斜角θcは、0°である。なお、傾斜角θcは0°でなくてもよく、-45°以上+45°以下の範囲で傾斜していてもよい。 The arrangement direction (third direction) that is the plurality of third protrusions 33c of the third uneven structure layer 31c is a direction different from the first direction and the second direction, and is parallel to the z-axis direction. The plurality of third convex portions 33c are formed in a stripe shape. A side surface (reflective surface) 35 of the third convex portion 33c extends along the direction in which the stripe extends (the direction orthogonal to the third direction). That is, the inclination angle θc of the side surface 35 of the third convex portion 33c is 0 °. Note that the inclination angle θc does not have to be 0 °, and may be inclined within a range of −45 ° to + 45 °.
 本実施の形態では、一例として、第1領域30a及び第2領域30bは、対になっている。第1領域30a及び第2領域30bは、第3領域30cの延びる方向(図3Aではx軸方向、図3Bではz軸方向)に平行な線を基準として線対称の関係を有する。具体的には、複数の第1凸部33aの平面視形状は、複数の第2凸部33bの平面視形状の線対称な形状である。このときの対称軸は、第3凸部33cの並び方向に平行な線(すなわち、z軸方向)である。 In the present embodiment, as an example, the first region 30a and the second region 30b are paired. The first region 30a and the second region 30b have a line-symmetric relationship with respect to a line parallel to the direction in which the third region 30c extends (the x-axis direction in FIG. 3A and the z-axis direction in FIG. 3B). Specifically, the planar view shape of the plurality of first protrusions 33a is a line-symmetric shape with the planar view shape of the plurality of second protrusions 33b. The axis of symmetry at this time is a line parallel to the direction in which the third protrusions 33c are arranged (that is, the z-axis direction).
 このように、各領域において、凸部33の並び方向が異なっているが、各々の並び方向に沿って切断したときの凸部33の断面構成は、各領域で略同じになる。例えば、図2は、第3領域30cのyz断面を示している。以下では、各領域を代表して第3領域30cの断面構造を例に挙げて説明する。 As described above, the alignment direction of the protrusions 33 is different in each region, but the sectional configuration of the protrusions 33 when cut along each alignment direction is substantially the same in each region. For example, FIG. 2 shows a yz section of the third region 30c. Hereinafter, the cross-sectional structure of the third region 30c will be described as an example on behalf of each region.
 図2に示すように、複数の凸部33の各々は、根元から先端にかけて先細る形状を有する。本実施の形態において、複数の凸部33の各々の断面形状は、第1基材10から第2基材20に向かう方向(厚み方向、y軸正方向)に沿って先細りのテーパ形状である。具体的には、凸部33の断面形状(yz断面)は、三角形であるが、これに限らない。凸部33の断面形状は、台形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。 As shown in FIG. 2, each of the plurality of convex portions 33 has a shape that tapers from the root to the tip. In the present embodiment, the cross-sectional shape of each of the plurality of convex portions 33 is a tapered shape tapered along a direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20. . Specifically, the cross-sectional shape (yz cross-section) of the convex portion 33 is a triangle, but is not limited thereto. The cross-sectional shape of the convex portion 33 may be a trapezoid, other polygons, or a polygon including a curve.
 具体的には、図2に示すように、複数の凸部33の各々は、凸部33の並び方向に直交する延在する一対の側面35及び36を有する。一対の側面35及び36は、z軸方向に交差する面である。一対の側面35及び36の各々は、厚み方向(y軸方向)に対して所定の傾斜角で傾斜する傾斜面であり、一対の側面35及び36の間隔(凸部33の幅(z軸方向の長さ))は、第1基材10から第2基材20に向かって漸次小さくなっている。 Specifically, as shown in FIG. 2, each of the plurality of convex portions 33 has a pair of side surfaces 35 and 36 extending perpendicular to the direction in which the convex portions 33 are arranged. The pair of side surfaces 35 and 36 are surfaces that intersect the z-axis direction. Each of the pair of side surfaces 35 and 36 is an inclined surface that is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 35 and 36 (the width of the convex portion 33 (z-axis direction)). )) Gradually decreases from the first base material 10 toward the second base material 20.
 側面35は、例えば、凸部33を構成する複数の側面のうち、鉛直上方側の側面(上側面)である。側面35は、入射光を反射(全反射)させる反射面(全反射面)である。側面36は、例えば、凸部33を構成する複数の側面のうち、鉛直下方側の側面(下側面)である。側面36は、入射光を屈折させる屈折面である。 The side surface 35 is, for example, the side surface (upper side surface) on the vertically upper side among the plurality of side surfaces constituting the convex portion 33. The side surface 35 is a reflection surface (total reflection surface) that reflects (total reflection) incident light. The side surface 36 is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33. The side surface 36 is a refracting surface that refracts incident light.
 本実施の形態において、複数の凸部33は、x軸方向に延びたストライプ状に形成されている。つまり、複数の凸部33の各々は、x軸方向に沿って直線状に延びる長尺状の凸部である。具体的には、複数の凸部33の各々は、断面形状が三角形でx軸方向に延在する長尺状の略三角柱形状であり、z軸方向に沿って略等間隔に配列されている。複数の凸部33の各々は、同じ形状を有するが、互いに異なる形状を有してもよい。 In the present embodiment, the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is an elongated convex portion that extends linearly along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a triangular cross-sectional shape and an elongated substantially triangular prism shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction. . Each of the plurality of convex portions 33 has the same shape, but may have different shapes.
 複数の凸部33の各々の高さ(y軸方向の長さ)は、例えば2μm~100μmであるが、これに限らない。複数の凸部33の幅(z軸方向の長さ)は、例えば、1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、隣り合う凸部33の間の距離、すなわち、凹部34の幅(z軸方向)は、例えば0μm~100μmである。つまり、隣り合う2つの凸部33は、接触することなく所定の間隔をあけて配置されていてもよく、接触して配置されていてもよい。なお、隣り合う凸部33の間隔は、0μm~100μmに限らない。 The height (the length in the y-axis direction) of each of the plurality of convex portions 33 is, for example, 2 μm to 100 μm, but is not limited thereto. The width (length in the z-axis direction) of the plurality of convex portions 33 is, for example, 1 μm to 20 μm, and preferably 10 μm or less, but is not limited thereto. Further, the distance between adjacent convex portions 33, that is, the width of the concave portion 34 (z-axis direction) is, for example, 0 μm to 100 μm. That is, the two adjacent convex portions 33 may be disposed at a predetermined interval without being in contact with each other, or may be disposed in contact with each other. Note that the interval between the adjacent convex portions 33 is not limited to 0 μm to 100 μm.
 凸部33の材料としては、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。凸部33は、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。 As the material of the convex portion 33, for example, a resin material having optical transparency such as an acrylic resin, an epoxy resin, or a silicone resin can be used. The convex portion 33 is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
 凹凸構造層31は、例えば、屈折率が1.5のアクリル樹脂を用いて断面が三角形の凹凸構造を、モールド型押しにより形成することができる。凸部33の高さは、例えば10μmであり、複数の凸部33は、間隔が2μmで等間隔にz軸方向に並んで配置されている。凸部33の根元の厚さは、例えば5μmである。隣り合う凸部33の根元間の距離は、例えば0μm~5μmの値をとりうる。 The concavo-convex structure layer 31 can form, for example, a concavo-convex structure having a triangular cross section using an acrylic resin having a refractive index of 1.5 by mold embossing. The height of the convex portion 33 is, for example, 10 μm, and the plurality of convex portions 33 are arranged in the z-axis direction at regular intervals with an interval of 2 μm. The thickness of the base of the convex portion 33 is, for example, 5 μm. The distance between the bases of the adjacent convex portions 33 can take a value of 0 μm to 5 μm, for example.
 [屈折率可変層]
 屈折率可変層32は、凹凸構造層31の複数の凸部33の間(すなわち、凹部34)を充填するように配置されている。屈折率可変層32は、第1電極層40と第2電極層50との間に形成される隙間を充填するように配置されている。例えば、図2に示すように、凸部33と第2電極層50とが離れているので、屈折率可変層32は、凸部33と第2電極層50との間の隙間を埋めるように配置される。なお、凸部33と第2電極層50とは接触していてもよく、この場合、屈折率可変層32は、凹部34毎に分離して設けられていてもよい。
[Refractive index variable layer]
The refractive index variable layer 32 is disposed so as to fill a space between the plurality of convex portions 33 (that is, the concave portion 34) of the concavo-convex structure layer 31. The refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50. For example, as shown in FIG. 2, since the convex portion 33 and the second electrode layer 50 are separated from each other, the refractive index variable layer 32 fills the gap between the convex portion 33 and the second electrode layer 50. Be placed. The convex portion 33 and the second electrode layer 50 may be in contact with each other. In this case, the refractive index variable layer 32 may be provided separately for each concave portion 34.
 屈折率可変層32は、第1電極層40及び第2電極層50間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層32は、電界が与えられることによって可視光領域での屈折率が調整可能な屈折率調整層として機能する。例えば、屈折率可変層32は、電界応答性を有する液晶分子37を有する液晶によって構成されているので、配光層30に電界が与えられることで液晶分子37の配向状態が変化して屈折率可変層32の屈折率が変化する。 The refractive index of the refractive index variable layer 32 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the refractive index variable layer 32 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light region when an electric field is applied. For example, since the refractive index variable layer 32 is composed of a liquid crystal having liquid crystal molecules 37 having electric field responsiveness, the orientation state of the liquid crystal molecules 37 is changed by applying an electric field to the light distribution layer 30 to change the refractive index. The refractive index of the variable layer 32 changes.
 屈折率可変層32の複屈折材料は、例えば、複屈折性を有する液晶分子37を含む液晶である。このような液晶としては、例えば、液晶分子37が棒状分子からなるネマティック液晶、スメクティック液晶又はコレステリック液晶などを用いることができる。例えば、凸部33の屈折率が1.5である場合、屈折率可変層32の材料としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶を用いることができる。 The birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 37 having birefringence. As such a liquid crystal, for example, a nematic liquid crystal, a smectic liquid crystal, or a cholesteric liquid crystal in which the liquid crystal molecules 37 are rod-like molecules can be used. For example, when the refractive index of the convex portion 33 is 1.5, the material of the refractive index variable layer 32 has an ordinary light refractive index (no) of 1.5 and an extraordinary light refractive index (ne) of 1.7. A positive type liquid crystal can be used.
 屈折率可変層32は、例えば、第1電極層40及び凹凸構造層31が形成された第1基材10と、第2電極層50が形成された第2基材20との各々の端部外周をシール樹脂で封止した状態で、液晶材料を真空注入法で注入することで形成される。あるいは、屈折率可変層32は、第1基材10の第1電極層40及び凹凸構造層31上に液晶材料を滴下した後に第2基材20を貼り合わせることで形成されてもよい。 The refractive index variable layer 32 includes, for example, end portions of the first base material 10 on which the first electrode layer 40 and the uneven structure layer 31 are formed and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method with the outer periphery sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by bonding the second substrate 20 after dropping the liquid crystal material on the first electrode layer 40 and the concavo-convex structure layer 31 of the first substrate 10.
 なお、図2では、電圧が無印加の状態(後述する図6Aも同様)を示しており、液晶分子37は、長軸がx軸に略平行になるように配向されている。第1電極層40及び第2電極層50間に電圧が印加された場合には、液晶分子37は、長軸がy軸に略平行になるように配向される(後述する図6Bを参照)。 Note that FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 6A described later), and the liquid crystal molecules 37 are aligned so that the major axis is substantially parallel to the x-axis. When a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 37 are aligned so that the major axis is substantially parallel to the y-axis (see FIG. 6B described later). .
 また、屈折率可変層32には、交流電力によって電界が与えられてもよく、直流電力によって電界が与えられてもよい。交流電力の場合には、電圧波形は、正弦波でもよく、矩形波でもよい。 Further, an electric field may be applied to the refractive index variable layer 32 by AC power, or an electric field may be applied by DC power. In the case of AC power, the voltage waveform may be a sine wave or a rectangular wave.
 [第1電極層及び第2電極層]
 図1及び図2に示すように、第1電極層40及び第2電極層50は、電気的に対となっており、配光層30に電界を与えることができるように構成されている。第1電極層40と第2電極層50とは、電気的だけではなく配置的にも対になっており、第1基材10と第2基材20との間に、互いに対向するように配置されている。具体的には、第1電極層40及び第2電極層50は、配光層30を挟むように配置されている。
[First electrode layer and second electrode layer]
As shown in FIGS. 1 and 2, the first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30. The first electrode layer 40 and the second electrode layer 50 are paired not only electrically but also in arrangement, so that they face each other between the first base material 10 and the second base material 20. Has been placed. Specifically, the first electrode layer 40 and the second electrode layer 50 are arranged so as to sandwich the light distribution layer 30.
 第1電極層40及び第2電極層50は、透光性を有し、入射した光を透過する。第1電極層40及び第2電極層50は、例えば透明導電層である。透明導電層の材料としては、ITO(Indium Tin Oxide)若しくはIZO(Indium Zinc Oxide)などの透明金属酸化物、銀ナノワイヤ若しくは導電性粒子などの導電体を含有する樹脂からなる導電体含有樹脂、又は、銀薄膜などの金属薄膜などを用いることができる。なお、第1電極層40及び第2電極層50は、これらの単層構造でよく、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)でもよい。本実施の形態では、第1電極層40及び第2電極層50はそれぞれ、厚さ100nmのITOである。 The first electrode layer 40 and the second electrode layer 50 are translucent and transmit incident light. The first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers. As a material of the transparent conductive layer, a conductor-containing resin made of a resin containing a conductor such as a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), silver nanowires or conductive particles, or A metal thin film such as a silver thin film can be used. In addition, the 1st electrode layer 40 and the 2nd electrode layer 50 may be these single layer structures, and these laminated structures (for example, laminated structure of a transparent metal oxide and a metal thin film) may be sufficient as them. In the present embodiment, each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
 第1電極層40は、第1基材10と凹凸構造層31との間に配置されている。具体的には、第1電極層40は、第1基材10の配光層30側の面に形成されている。 The first electrode layer 40 is disposed between the first base material 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
 一方、第2電極層50は、屈折率可変層32と第2基材20との間に配置されている。具体的には、第2電極層50は、第2基材20の配光層30側の面に形成されている。 On the other hand, the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second substrate 20. Specifically, the second electrode layer 50 is formed on the surface of the second base material 20 on the light distribution layer 30 side.
 なお、第1電極層40及び第2電極層50は、例えば、外部電源との電気接続が可能となるように構成されている。例えば、外部電源に接続するための電極パッドなどが、第1電極層40及び第2電極層50の各々から引き出されて第1基材10及び第2基材20に形成されていてもよい。 In addition, the 1st electrode layer 40 and the 2nd electrode layer 50 are comprised so that electrical connection with an external power supply is attained, for example. For example, electrode pads or the like for connecting to an external power supply may be formed on the first base material 10 and the second base material 20 by being drawn from each of the first electrode layer 40 and the second electrode layer 50.
 本実施の形態では、第1電極層40及び第2電極層50の少なくとも一方は、複数の電極片から構成されている。具体的には、第1電極層40及び第2電極層50の両方が、複数の電極片から構成されている。複数の電極片は、配光層30を区分する複数の領域の各々に対応している。 In the present embodiment, at least one of the first electrode layer 40 and the second electrode layer 50 is composed of a plurality of electrode pieces. Specifically, both the first electrode layer 40 and the second electrode layer 50 are composed of a plurality of electrode pieces. The plurality of electrode pieces correspond to each of a plurality of regions dividing the light distribution layer 30.
 図4は、本実施の形態に係る光学デバイス1の配光層30の各領域と第1電極層40及び第2電極層50の各々の電極片との配置を示す分解斜視図である。なお、図4では、光学デバイス1の一部のみ、具体的には、第1領域30aと、第2領域30bと、2つの第3領域30cとを示している。また、図4には、配光層30の凹凸構造層31と第1電極層40と第2電極層50とを示しており、第1基材10、接着層60、屈折率可変層32、第2基材20などの他の部材は図示していない。 FIG. 4 is an exploded perspective view showing the arrangement of the regions of the light distribution layer 30 of the optical device 1 according to the present embodiment and the electrode pieces of the first electrode layer 40 and the second electrode layer 50. 4 shows only a part of the optical device 1, specifically, the first region 30a, the second region 30b, and the two third regions 30c. 4 shows the uneven structure layer 31, the first electrode layer 40, and the second electrode layer 50 of the light distribution layer 30, and the first base material 10, the adhesive layer 60, the refractive index variable layer 32, Other members such as the second base material 20 are not shown.
 第1電極層40は、図4に示すように、第1電極片40aと、第2電極片40bと、第3電極片40cとを備える。第2電極層50は、第1電極片50aと、第2電極片50bと、第3電極片50cとを備える。 As shown in FIG. 4, the first electrode layer 40 includes a first electrode piece 40a, a second electrode piece 40b, and a third electrode piece 40c. The second electrode layer 50 includes a first electrode piece 50a, a second electrode piece 50b, and a third electrode piece 50c.
 第1電極片40a及び第1電極片50aは、第1領域30aに対応して設けられており、電気的及び配置的に対になっている。具体的には、第1電極片40a及び第1電極片50aの平面視形状は、第1領域30aの平面視形状と略同じである。第1電極片40aと第1電極片50aとに電圧が印加された場合、第1領域30aに位置する液晶分子37の配向が制御されて、第1領域30aの配光が制御される。 The first electrode piece 40a and the first electrode piece 50a are provided corresponding to the first region 30a and are paired electrically and in arrangement. Specifically, the planar view shapes of the first electrode piece 40a and the first electrode piece 50a are substantially the same as the planar view shape of the first region 30a. When a voltage is applied to the first electrode piece 40a and the first electrode piece 50a, the orientation of the liquid crystal molecules 37 located in the first region 30a is controlled, and the light distribution in the first region 30a is controlled.
 第2電極片40b及び第2電極片50bは、第2領域30bに対応して設けられており、電気的及び配置的に対になっている。具体的には、第2電極片40b及び第2電極片50bの平面視形状は、第2領域30bの平面視形状と略同じである。第2電極片40bと第2電極片50bとに電圧が印加された場合、第2領域30bに位置する液晶分子37の配向が制御されて、第2領域30bの配光が制御される。 The second electrode piece 40b and the second electrode piece 50b are provided corresponding to the second region 30b and are paired electrically and in arrangement. Specifically, the planar view shapes of the second electrode piece 40b and the second electrode piece 50b are substantially the same as the planar view shape of the second region 30b. When a voltage is applied to the second electrode piece 40b and the second electrode piece 50b, the orientation of the liquid crystal molecules 37 located in the second region 30b is controlled, and the light distribution in the second region 30b is controlled.
 第3電極片40c及び第3電極片50cは、第3領域30cに対応して設けられており、電気的及び配置的に対になっている。具体的には、第3電極片40c及び第3電極片50cの平面視形状は、第3領域30cの平面視形状と略同じである。第3電極片40cと第3電極片50cとに電圧が印加された場合、第3領域30cに位置する液晶分子37の配向が制御されて、第3領域30cの配光が制御される。 The third electrode piece 40c and the third electrode piece 50c are provided corresponding to the third region 30c, and are paired electrically and in arrangement. Specifically, the planar view shapes of the third electrode piece 40c and the third electrode piece 50c are substantially the same as the planar view shape of the third region 30c. When a voltage is applied to the third electrode piece 40c and the third electrode piece 50c, the orientation of the liquid crystal molecules 37 located in the third region 30c is controlled, and the light distribution in the third region 30c is controlled.
 第1電極層40及び第2電極層50はそれぞれ、例えば、蒸着、スパッタリングなどにより形成される。第1電極層40及び第2電極層50は、例えば、ITOなどの導電膜を成膜した後、エッチングなどによりパターニングすることで、複数の電極片に分割されてもよく、あるいは、導電材料のパターニング塗布によって形成されてもよい。 The first electrode layer 40 and the second electrode layer 50 are each formed by, for example, vapor deposition or sputtering. The first electrode layer 40 and the second electrode layer 50 may be divided into a plurality of electrode pieces by, for example, forming a conductive film such as ITO and then patterning by etching or the like, or may be made of a conductive material. It may be formed by patterning application.
 [接着層]
 接着層60は、凹凸構造層31と第1電極層40とを接着する接着層である。接着層60は、例えば、凹凸構造層31を構成する複数の第1凹凸構造層31a、複数の第2凹凸構造層31b及び複数の第3凹凸構造層31cの各々に対して一対一で設けられている。なお、接着層60は、第1電極層40上に1枚のシート状に形成されていてもよい。接着層60は、透光性及び接着性(粘着性)を有する樹脂材料を用いて形成されている。
[Adhesive layer]
The adhesive layer 60 is an adhesive layer that bonds the uneven structure layer 31 and the first electrode layer 40. The adhesive layer 60 is provided, for example, one-to-one with respect to each of the plurality of first concavo-convex structure layers 31a, the plurality of second concavo-convex structure layers 31b, and the plurality of third concavo-convex structure layers 31c constituting the concavo-convex structure layer 31. ing. The adhesive layer 60 may be formed on the first electrode layer 40 in a single sheet shape. The adhesive layer 60 is formed using a resin material having translucency and adhesiveness (tackiness).
 [光学デバイスの光学状態]
 続いて、本実施の形態に係る光学デバイス1の使用例を示しながら、光学デバイス1の光学状態(動作モード)について説明する。具体的には、光学デバイス1を備える光学システムについて、図5A及び図5Bを用いて説明する。
[Optical state of optical device]
Subsequently, the optical state (operation mode) of the optical device 1 will be described with reference to an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 5A and 5B.
 図5A及び図5Bはそれぞれ、本実施の形態に係る光学デバイス1を備える光学システム70を建物90に適用した例を示す図である。具体的には、図5A及び図5Bは、光学デバイス1を窓91に設置した場合において、光学デバイス1が各動作モードで動作したときの作用を説明するための図である。 5A and 5B are diagrams each showing an example in which an optical system 70 including the optical device 1 according to the present embodiment is applied to a building 90. FIG. Specifically, FIGS. 5A and 5B are diagrams for explaining the operation when the optical device 1 operates in each operation mode when the optical device 1 is installed in the window 91.
 上述したように、本実施の形態に係る光学デバイス1は、凹凸構造層31、第1電極層40及び第2電極層50の各々が、複数の領域に区分されている。このため、光学デバイス1は、領域毎に異なる動作モードで動作可能である。以下では、まず、第3領域30cに着目して光学デバイス1の光学状態について説明する。第1領域30a、第2領域30b及び第3領域30cの各々の配光方向の差異については、後で説明する。 As described above, in the optical device 1 according to the present embodiment, each of the uneven structure layer 31, the first electrode layer 40, and the second electrode layer 50 is divided into a plurality of regions. For this reason, the optical device 1 can operate in different operation modes for each region. In the following, first, the optical state of the optical device 1 will be described focusing on the third region 30c. Differences in the light distribution directions of the first region 30a, the second region 30b, and the third region 30c will be described later.
 図5A及び図5Bに示すように、光学システム70は、光学デバイス1と、制御部71とを備える。なお、各図において、光学デバイス1から延びるドットの網掛けが付された領域は、光学デバイス1を通過した光(具体的にはS偏光成分)が通過する領域を示している。 As shown in FIGS. 5A and 5B, the optical system 70 includes the optical device 1 and a control unit 71. In each figure, the area shaded with dots extending from the optical device 1 indicates an area through which light (specifically, S-polarized light component) that has passed through the optical device 1 passes.
 光学デバイス1は、入射した光を透過させることができる。例えば、光学デバイス1は、建物90の窓91に設置することで、配光機能付き窓として実現することができる。光学デバイス1は、例えば、粘着層を介して既存の窓91に貼り合わされる。この場合、光学デバイス1は、第1基材10及び第2基材20の主面が鉛直方向(z軸方向)に平行になる姿勢で窓91に設置される。 The optical device 1 can transmit incident light. For example, the optical device 1 can be realized as a window with a light distribution function by being installed in the window 91 of the building 90. The optical device 1 is bonded to the existing window 91 via an adhesive layer, for example. In this case, the optical device 1 is installed in the window 91 in a posture in which the main surfaces of the first base material 10 and the second base material 20 are parallel to the vertical direction (z-axis direction).
 なお、図5A及び図5Bでは、光学デバイス1の詳細な構造は図示されていないが、光学デバイス1は、第1基材10が屋外側で第2基材20が屋内側になり、かつ、第3領域30cの第3凸部33cの側面35が天井92側で側面36が床93側になるように配置されている。 5A and 5B, the detailed structure of the optical device 1 is not shown, but the optical device 1 has the first base material 10 on the outdoor side and the second base material 20 on the indoor side, and The third projections 33c of the third region 30c are arranged such that the side surface 35 is on the ceiling 92 side and the side surface 36 is on the floor 93 side.
 また、制御部71が床93上に設置されているが、これは模式的に図示したものであり、制御部71の設置場所には特に限定されない。例えば、制御部71は、光学デバイス1と一体に構成され、窓91の窓枠などに固定されていてもよい。あるいは、制御部71は、建物90の天井92、床93又は壁などに埋め込まれていてもよい。 Further, although the control unit 71 is installed on the floor 93, this is schematically illustrated, and the installation location of the control unit 71 is not particularly limited. For example, the control unit 71 may be configured integrally with the optical device 1 and fixed to the window frame of the window 91 or the like. Alternatively, the control unit 71 may be embedded in a ceiling 92, a floor 93, a wall, or the like of the building 90.
 制御部71は、光学デバイス1を駆動する制御部である。具体的には、制御部71は、第1電極層40と第2電極層50との間に所定の電圧を印加することで、配光層30に電界を印加する。本実施の形態では、制御部71は、第1電極層40を構成する複数の電極片と、第2電極層50を構成する複数の電極片とに選択的に電位を与えることで、配光層30の光学状態を領域毎に制御する。例えば、制御部71は、第1電極片40aと第1電極片50aとの間、第2電極片40bと第2電極片50bとの間、及び、第3電極片40cと第3電極片50cとの間の各々に選択的に電圧を印加する。 The control unit 71 is a control unit that drives the optical device 1. Specifically, the control unit 71 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50. In the present embodiment, the controller 71 distributes light by selectively applying a potential to the plurality of electrode pieces constituting the first electrode layer 40 and the plurality of electrode pieces constituting the second electrode layer 50. The optical state of the layer 30 is controlled for each region. For example, the control unit 71 includes the first electrode piece 40a and the first electrode piece 50a, the second electrode piece 40b and the second electrode piece 50b, and the third electrode piece 40c and the third electrode piece 50c. A voltage is selectively applied to each of the two.
 本実施の形態では、制御部71は、配光層30の領域毎に、第1電極層40及び第2電極層50間への電圧の印加状態に応じた2つの動作モードを有する。具体的には、2つの動作モードは、電圧を印加しない無印加モードと、電極層間に電圧を印加する電圧印加モードとである。制御部71は、ユーザ操作又は予め定められたスケジュール情報などに基づいて、2つの動作モードを切り替えて実行する。 In the present embodiment, the controller 71 has two operation modes corresponding to the voltage application state between the first electrode layer 40 and the second electrode layer 50 for each region of the light distribution layer 30. Specifically, the two operation modes are a non-application mode in which no voltage is applied and a voltage application mode in which a voltage is applied between electrode layers. The control unit 71 performs switching between the two operation modes based on a user operation or predetermined schedule information.
 光学デバイス1では、配光層30に印加される電界に応じて、屈折率可変層32に含まれる液晶分子37の配向が変化する。なお、液晶分子37は、複屈折性を有する棒状の液晶分子であるので、入射する光の偏光状態に応じて、当該光が受ける屈折率が異なる。ここでは、例えば、凸部33の屈折率が1.5であり、液晶分子37としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶分子である場合を例に挙げて説明する。 In the optical device 1, the orientation of the liquid crystal molecules 37 included in the refractive index variable layer 32 changes according to the electric field applied to the light distribution layer 30. Since the liquid crystal molecules 37 are rod-like liquid crystal molecules having birefringence, the refractive index received by the light varies depending on the polarization state of the incident light. Here, for example, the refractive index of the convex portion 33 is 1.5, and the liquid crystal molecule 37 is a positive type in which the ordinary light refractive index (no) is 1.5 and the extraordinary light refractive index (ne) is 1.7. The case of the liquid crystal molecules will be described as an example.
 光学デバイス1に入射する太陽光などの光は、P偏光(P偏光成分)とS偏光(S偏光成分)とを含んでいる。P偏光は、無印加モード及び電圧印加モードのいずれのモードにおいても、その振動方向が液晶分子37の短軸に対して略平行になる。このため、P偏光についての液晶分子37の屈折率は、動作モードに依存せず、常光屈折率(no)であって、具体的には1.5である。このため、P偏光についての屈折率は、動作モードに依存せず、配光層30内で略一定になるので、P偏光は、配光層30をそのまま直進する。 Light such as sunlight incident on the optical device 1 includes P-polarized light (P-polarized component) and S-polarized light (S-polarized component). The vibration direction of the P-polarized light is substantially parallel to the minor axis of the liquid crystal molecules 37 in both the non-application mode and the voltage application mode. For this reason, the refractive index of the liquid crystal molecules 37 for P-polarized light does not depend on the operation mode, and is the ordinary light refractive index (no), specifically 1.5. For this reason, the refractive index for P-polarized light does not depend on the operation mode and is substantially constant in the light distribution layer 30, so that the P-polarized light travels straight through the light distribution layer 30 as it is.
 一方で、S偏光についての液晶分子37の屈折率は、動作モードに応じて変化する。 On the other hand, the refractive index of the liquid crystal molecules 37 for S-polarized light changes depending on the operation mode.
 具体的には、光学デバイス1は、無印加モードで駆動された場合に、入射する光L(S偏光)の進行方向を変更させる配光状態になる。光学デバイス1は、電圧印加モードで駆動された場合に、入射する光L(S偏光)をそのまま(進行方向を変更することなく)通過させる透光(透明)状態になる。 Specifically, when the optical device 1 is driven in the non-application mode, the optical device 1 enters a light distribution state in which the traveling direction of the incident light L (S-polarized light) is changed. When the optical device 1 is driven in the voltage application mode, the optical device 1 enters a light-transmitting (transparent) state that allows the incident light L (S-polarized light) to pass as it is (without changing the traveling direction).
 なお、屈折率可変材料として電気泳動材料(後述する)を用いた場合には、P偏光及びS偏光のいずれも同じ方向に進行する。例えば、P偏光及びS偏光の両方の進行方向が屈折及び全反射によって曲げられて配光状態を実現することができる。 When an electrophoretic material (described later) is used as the refractive index variable material, both P-polarized light and S-polarized light travel in the same direction. For example, the traveling direction of both P-polarized light and S-polarized light can be bent by refraction and total reflection to realize a light distribution state.
 以下では、各動作モードの詳細について、図5A及び図5Bを適宜参照しながら、図6A及び図6Bを用いて説明する。図6A及び図6Bはそれぞれ、本実施の形態に係る光学デバイス1の各動作モードを説明するための拡大断面図である。 Hereinafter, details of each operation mode will be described with reference to FIGS. 6A and 6B while appropriately referring to FIGS. 5A and 5B. 6A and 6B are enlarged cross-sectional views for describing each operation mode of the optical device 1 according to the present embodiment.
 ここでは、光学デバイス1に対して正面から入射し、第3領域30cを通過する光について説明する。なお、正面から入射する光とは、xy断面で見たときの入射角が0°になる光である。 Here, light that enters the optical device 1 from the front and passes through the third region 30c will be described. The light incident from the front is light that has an incident angle of 0 ° when viewed in the xy section.
 ここで、図6A及び図6Bでは、光学デバイス1に入射する光L(例えば太陽光)の経路を太線の矢印で示している。なお、実際には、光Lは、第1基材10に入射する際、及び、第2基材20から出射する際に屈折するが、これらの屈折による経路の変化は図示していない。 Here, in FIGS. 6A and 6B, the path of the light L (for example, sunlight) incident on the optical device 1 is indicated by a thick arrow. In practice, the light L is refracted when it enters the first base material 10 and when it exits from the second base material 20, but the path change due to these refractions is not shown.
 <無印加モード(配光状態)>
 図6Aは、無印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光Lの経路とを模式的に示している。
<Non-application mode (light distribution state)>
FIG. 6A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of the light L that passes through the optical device 1.
 制御部71は、光学デバイス1を無印加モードで動作させる場合、第1電極層40と第2電極層50との間に電圧を印加しない。具体的には、第1電極層40と第2電極層50とが略等しい電位(例えば接地電位)になることで、配光層30には電界が印加されない。このため、屈折率可変層32の屈折率を面内で略均一にすることができる。 The controller 71 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when the optical device 1 is operated in the non-application mode. Specifically, an electric field is not applied to the light distribution layer 30 because the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, ground potential). For this reason, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 この場合、光L(S偏光)が受ける屈折率は、凸部33が1.5であるのに対して、屈折率可変層32が1.7になる。このため、図6Aに示すように、光学デバイス1に対して斜めに入射する光Lは、凸部33の側面36で屈折して進行方向が変化した後、凸部33の側面35で反射(全反射)される。側面35で反射された光は、斜め上方に向けて出射される。すなわち、光学デバイス1は、斜め下方に入射した光Lを、斜め上方に向けて出射する。したがって、図5Aに示すように、斜め下方に入射する太陽光などの光Lは、光学デバイス1によって進行方向が曲げられて、建物90の天井92を照射する。 In this case, the refractive index received by the light L (S-polarized light) is 1.5 for the convex portion 33, whereas the refractive index variable layer 32 is 1.7. For this reason, as shown in FIG. 6A, the light L incident obliquely on the optical device 1 is refracted by the side surface 36 of the convex portion 33 and the traveling direction is changed, and then reflected by the side surface 35 of the convex portion 33 ( Total reflection). The light reflected by the side surface 35 is emitted obliquely upward. In other words, the optical device 1 emits the light L incident obliquely downward and obliquely upward. Therefore, as illustrated in FIG. 5A, the light L such as sunlight incident obliquely downward is bent in the traveling direction by the optical device 1 and irradiates the ceiling 92 of the building 90.
 また、屈折率可変層32の屈折率が1.5より大きく1.7未満の状態にしてもよい。このとき、凸部33の側面36における光Lの屈折方向が屈折率可変層32の屈折率が1.5の場合とは異なるので、必要に応じて天井92の他の方向を照射することができる。 Also, the refractive index of the refractive index variable layer 32 may be in a state of greater than 1.5 and less than 1.7. At this time, the direction of refraction of the light L on the side surface 36 of the convex portion 33 is different from the case where the refractive index of the refractive index variable layer 32 is 1.5, so that the other direction of the ceiling 92 can be irradiated as necessary. it can.
 例えば、電圧印加モードにおいて光学デバイス1を透明状態にする場合よりも、印加する電圧を小さくすることで、配光状態(無印加モード)の場合よりも、光学デバイス1による配光の角度を小さくすることができる。この場合、例えば、建物90の屋内のより奥側にまで光を進行させることができる。このように、光学デバイス1では、印加する電圧の大きさによって配光方向を変化させることができる。 For example, the angle of the light distribution by the optical device 1 is made smaller by reducing the applied voltage than in the case where the optical device 1 is in the transparent state in the voltage application mode, compared to the case in the light distribution state (non-application mode). can do. In this case, for example, the light can be advanced to the far side in the interior of the building 90. Thus, in the optical device 1, the light distribution direction can be changed according to the magnitude of the applied voltage.
 <電圧印加モード(透明状態)>
 図6Bは、電圧印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光Lの経路とを模式的に示している。
<Voltage application mode (transparent state)>
FIG. 6B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of the light L that passes through the optical device 1.
 制御部71は、光学デバイス1を電圧印加モードで動作させる場合、第1電極層40と第2電極層50との間に所定の電圧を印加する。これにより、配光層30に印加される電界が面内で略均一になり、屈折率可変層32の屈折率を面内で略均一にすることができる。 The controller 71 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when the optical device 1 is operated in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 この場合、光L(S偏光)が受ける屈折率は、凸部33及び屈折率可変層32ともに1.5となる。このため、図6Bに示すように、光学デバイス1に対して斜めに入射する光Lは、そのまま光学デバイス1を通過する。つまり、光学デバイス1は、斜め下方に入射した光Lを、そのまま斜め下方に出射する。したがって、図5Bに示すように、斜め下方に入射する太陽光などの光Lは、光学デバイス1をそのまま通過して、建物90の床93の窓91に近い部分を照射する。 In this case, the refractive index received by the light L (S-polarized light) is 1.5 for both the convex portion 33 and the refractive index variable layer 32. For this reason, as shown in FIG. 6B, the light L incident on the optical device 1 obliquely passes through the optical device 1 as it is. That is, the optical device 1 emits the light L incident obliquely downward as it is obliquely downward. Therefore, as shown in FIG. 5B, light L such as sunlight incident obliquely downward passes through the optical device 1 as it is and irradiates a portion near the window 91 of the floor 93 of the building 90.
 以上のように、本実施の形態に係る光学デバイス1によれば、配光層30に与えられる電界(第1電極層40及び第2電極層50の間に印加する電圧)に応じて、光学状態を変化させることができる。ここでは、透明状態と配光状態とを切り替えているが、印加する電圧に応じて、配光状態と透明状態との中間の光学状態を形成することができる。 As described above, according to the optical device 1 according to the present embodiment, the optical device 1 is optically dependent on the electric field (voltage applied between the first electrode layer 40 and the second electrode layer 50) applied to the light distribution layer 30. The state can be changed. Here, the transparent state and the light distribution state are switched, but an intermediate optical state between the light distribution state and the transparent state can be formed according to the applied voltage.
 例えば、印加する電圧水準を複数設定し、適宜切り替えを行ってもよい。印加する電圧を、透明状態の場合よりも小さくすることで、中間の光学状態が形成される。中間の光学状態では、配光状態の場合よりも、光学デバイス1による配光の角度が小さくなる。これにより、例えば、建物90の屋内のより奥側にまで光を進行させることができる。 For example, a plurality of voltage levels to be applied may be set and switched as appropriate. An intermediate optical state is formed by making the applied voltage smaller than that in the transparent state. In the intermediate optical state, the angle of light distribution by the optical device 1 is smaller than in the light distribution state. Thereby, for example, light can be advanced to the far side of the interior of the building 90.
 ここでは、第3領域30cについて説明したが、第1領域30a及び第2領域30bについても同様である。すなわち、第1領域30a及び第2領域30bの各々の凸部33の並び方向に平行な断面において、図6A及び図6Bで示したように、各モードに応じて光が進行する。 Here, the third region 30c has been described, but the same applies to the first region 30a and the second region 30b. That is, in the cross section parallel to the arrangement direction of the convex portions 33 of each of the first region 30a and the second region 30b, as shown in FIGS. 6A and 6B, light travels according to each mode.
 [領域毎の配光特性]
 続いて、第1領域30a、第2領域30b及び第3領域30cの各々の左右方向への(xy平面における)配光方向の違いについて説明する。ここでは、各領域には電界が印加されておらず、各領域は、図6Aで示したように、配光状態になっている。
[Light distribution characteristics for each area]
Next, the difference in the light distribution direction in the left-right direction (in the xy plane) of each of the first region 30a, the second region 30b, and the third region 30c will be described. Here, an electric field is not applied to each region, and each region is in a light distribution state as shown in FIG. 6A.
 図7A及び図7Bは、本実施の形態に係る光学デバイス1の凹凸構造層31の各領域の光学特性を模式的に示す図である。具体的には、図7A及び図7Bは、光学デバイス1の各領域をz軸方向から見た場合に、光学デバイス1の入射する光Lの左右方向(x軸方向)への配光を示している。 7A and 7B are diagrams schematically showing the optical characteristics of each region of the concavo-convex structure layer 31 of the optical device 1 according to the present embodiment. Specifically, FIGS. 7A and 7B show the light distribution in the left-right direction (x-axis direction) of the light L incident on the optical device 1 when each region of the optical device 1 is viewed from the z-axis direction. ing.
 図7Aは、光学デバイス1に対して正面から、すなわち、光学デバイス1の厚み方向(y軸方向)に沿って入射する光Lの経路を示している。 FIG. 7A shows a path of light L incident on the optical device 1 from the front, that is, along the thickness direction (y-axis direction) of the optical device 1.
 第3領域30cでは、第3凸部33cの延びる方向がx軸に略平行である。具体的には、反射面として機能する第3凸部33cの側面35がx軸に略平行になるので、光Lは、左右方向には光を曲げずに進行する。具体的には、図6Aで示したように、斜め下方に入射した光Lは、左右方向へは進路を変えることなく、斜め上方に向けて出射される。 In the third region 30c, the extending direction of the third convex portion 33c is substantially parallel to the x-axis. Specifically, since the side surface 35 of the third convex portion 33c that functions as a reflecting surface is substantially parallel to the x-axis, the light L travels in the left-right direction without bending the light. Specifically, as shown in FIG. 6A, the light L incident obliquely downward is emitted obliquely upward without changing the course in the left-right direction.
 一方で、第1領域30aでは、第1凸部33aの延びる方向がx軸に対して傾斜している。具体的には、反射面として機能する第1凸部33aの側面35がxy平面に対して傾斜しているので、光Lは、傾斜した方向(図中、左方向)に曲げられる。 On the other hand, in the first region 30a, the extending direction of the first convex portion 33a is inclined with respect to the x-axis. Specifically, since the side surface 35 of the first convex portion 33a that functions as a reflecting surface is inclined with respect to the xy plane, the light L is bent in the inclined direction (left direction in the figure).
 また、第2領域30bでは、第1領域30aと線対称な形状を有するので、第2領域30bに入射する光Lは、第1領域30aとは反対方向(図中、右方向)に曲げられる。 Further, since the second region 30b has a shape symmetrical with the first region 30a, the light L incident on the second region 30b is bent in the direction opposite to the first region 30a (rightward in the drawing). .
 以上のように、光学デバイス1に対して正面から入射される光は、各領域を通過する際に左右方向に広げられて進行する。このため、光学デバイス1は、天井92のより広い範囲、及び、窓91に対して左右方向に位置する壁に向けて光を配光することができる。 As described above, the light incident on the optical device 1 from the front proceeds while being spread in the left-right direction when passing through each region. For this reason, the optical device 1 can distribute light toward a wider range of the ceiling 92 and a wall positioned in the left-right direction with respect to the window 91.
 一方で、図7Bは、光学デバイス1に対して斜め方向(左側)から入射する光Lの経路を示している。この場合、第3領域30cでは、図7Aの場合と同様に、光Lはそのまま進行する。 On the other hand, FIG. 7B shows a path of light L incident on the optical device 1 from an oblique direction (left side). In this case, in the third region 30c, the light L travels as it is as in the case of FIG. 7A.
 第1領域30a及び第2領域30bではそれぞれ、第3領域30cの出射方向を基準として左右に光が曲げられる。このため、第1領域30aに入射した光Lは、図7Aに示す場合よりもy軸方向(光学デバイス1の厚み方向)に近い方向に出射される。第2領域30bに入射した光Lは、図7Aに示す場合よりも、より右側に出射される。 In each of the first region 30a and the second region 30b, the light is bent left and right with reference to the emission direction of the third region 30c. For this reason, the light L incident on the first region 30a is emitted in a direction closer to the y-axis direction (the thickness direction of the optical device 1) than in the case illustrated in FIG. 7A. The light L incident on the second region 30b is emitted to the right side as compared with the case shown in FIG. 7A.
 [領域毎の動作モードの切り替え]
 ここで、本実施の形態に係る光学デバイス1の領域毎の動作モードの切り替えについて説明する。
[Switch operation mode for each area]
Here, switching of the operation mode for each region of the optical device 1 according to the present embodiment will be described.
 図7A及び図7Bに示したように、光学デバイス1に対して入射する光の左右方向の角度によっては、光が必要以上に大きく曲げられてしまう場合がある(例えば、図7Bの第2領域30b)。このため、本実施の形態では、一例として、制御部71は、光学デバイス1に対して入射する光の角度に応じて、領域毎に動作モードを切り替える。 As shown in FIGS. 7A and 7B, the light may be bent more than necessary depending on the angle of the light incident on the optical device 1 (for example, the second region of FIG. 7B). 30b). For this reason, in this Embodiment, the control part 71 switches an operation mode for every area | region according to the angle of the light which injects with respect to the optical device 1 as an example.
 本実施の形態では、制御部71は、配光方向が異なる領域毎に、電圧の印加のオンオフ及び印加電圧の電圧水準を切り替える。具体的には、制御部71は、複数の電極片に選択的に電位を与えることで、配光層30の光学状態を領域毎に制御する。 In the present embodiment, the control unit 71 switches on / off of voltage application and the voltage level of the applied voltage for each region having a different light distribution direction. Specifically, the control unit 71 controls the optical state of the light distribution layer 30 for each region by selectively applying a potential to the plurality of electrode pieces.
 図8は、本実施の形態に係る光学デバイス1の時間帯毎の凹凸構造層の各領域の動作モードを示す図である。 FIG. 8 is a diagram showing an operation mode of each region of the concavo-convex structure layer for each time zone of the optical device 1 according to the present embodiment.
 本実施の形態では、制御部71は、時間帯毎に各領域の動作モードを切り替える。なお、図8に示す動作モードの組み合わせは、光学デバイス1が建物90の南側の面に設置された場合を一例として示している。具体的には、日中の所定時刻(太陽の南中時刻)において、光学デバイス1には、正面から光が入射する場合を示している。 In the present embodiment, the control unit 71 switches the operation mode of each area for each time period. In addition, the combination of the operation mode shown in FIG. 8 has shown as an example the case where the optical device 1 is installed in the surface of the south side of the building 90. FIG. Specifically, a case is shown in which light is incident on the optical device 1 from the front at a predetermined time during the daytime (sunlight time in the sun).
 例えば、制御部71は、午前モード、日中モード、及び、夕方モードを切り替えて実行する。午前モードは、第1領域30aを配光状態にし、第2領域30bを透明状態にする第1動作モードの一例である。夕方モードは、第1領域30aを透明状態にし、第2領域30bを配光状態にする第2動作モードの一例である。制御部71は、各動作モードを時間帯に応じて切り替える。なお、制御部71は、光の入射方向を検出するセンサを備え、検出した入射方向に基づいて各動作モードを切り替えてもよい。あるいは、制御部71は、ユーザからの指示に基づいて各動作モードを切り替えてもよい。 For example, the control unit 71 performs switching between the morning mode, the daytime mode, and the evening mode. The morning mode is an example of a first operation mode in which the first region 30a is in a light distribution state and the second region 30b is in a transparent state. The evening mode is an example of a second operation mode in which the first region 30a is in a transparent state and the second region 30b is in a light distribution state. The control unit 71 switches each operation mode according to the time zone. The control unit 71 may include a sensor that detects the incident direction of light, and may switch each operation mode based on the detected incident direction. Or the control part 71 may switch each operation mode based on the instruction | indication from a user.
 具体的には、午前中には、制御部71は、午前モードとして、第1領域30a及び第3領域30cを無印加モードで動作させ、第2領域30bを電圧印加モードで動作させる。つまり、第1領域30a及び第3領域30cを配光状態とし、第2領域30bを透明状態とする。これにより、光学デバイス1の左側(東側)から斜めに入射する光を効果的に天井92に向けて配光することができる。詳細については、図9A及び図9Bを用いて後で説明する。 Specifically, in the morning, the controller 71 operates the first region 30a and the third region 30c in the no-application mode and operates the second region 30b in the voltage application mode as the morning mode. That is, the first region 30a and the third region 30c are in a light distribution state, and the second region 30b is in a transparent state. Thereby, light incident obliquely from the left side (east side) of the optical device 1 can be effectively distributed toward the ceiling 92. Details will be described later with reference to FIGS. 9A and 9B.
 例えば、日中には、制御部71は、日中モードとして、全ての領域を無印加モードで動作させる。つまり、全ての領域を配光状態とする。あるいは、日中モードでは、第1領域30a及び第2領域30bを電圧印加モードで動作させ、第1領域30a及び第2領域30bを透明状態としてもよい。いずれで動作させるか、及び、印加電圧制御による配光方向は、例えば、ユーザの嗜好又は入射する光の量などに応じて設定されてもよい。これにより、光学デバイス1の正面(南側)から入射する光を効果的に天井92に向けて配光することができる。 For example, during the day, the control unit 71 operates the entire area in the non-application mode as the day mode. That is, all regions are in a light distribution state. Alternatively, in the daytime mode, the first region 30a and the second region 30b may be operated in the voltage application mode, and the first region 30a and the second region 30b may be in a transparent state. Which is operated and the light distribution direction by the applied voltage control may be set according to the user's preference or the amount of incident light, for example. Thereby, the light incident from the front (south side) of the optical device 1 can be effectively distributed toward the ceiling 92.
 また、例えば、夕方には、制御部71は、夕方モードとして、第2領域30b及び第3領域30cを無印加モードで動作させ、第1領域30aを印加モードで動作させる。つまり、第2領域30b及び第3領域30cを配光状態とし、第1領域30aを透明状態とする。これにより、光学デバイス1の右側(西側)から斜めに入射する光を効果的に天井92に向けて配光することができる。 For example, in the evening, the control unit 71 operates the second region 30b and the third region 30c in the no-application mode and operates the first region 30a in the application mode as the evening mode. That is, the second region 30b and the third region 30c are in a light distribution state, and the first region 30a is in a transparent state. Thereby, the light incident obliquely from the right side (west side) of the optical device 1 can be effectively distributed toward the ceiling 92.
 なお、本実施の形態では、第1領域30aと第2領域30bとが線対称であるため、夕方モードは、午前モードの対称な配光状態を実現する。 In the present embodiment, since the first region 30a and the second region 30b are line symmetric, the evening mode realizes a symmetric light distribution state of the morning mode.
 ここで、光が光学デバイス1に対して斜め方向から入射する午前中などの時間帯を例に挙げて、午前モードと日中モードとの違いについて図9A及び図9Bを用いて説明する。なお、図9A及び図9Bにおいて、ドットの網掛けが付された領域は太陽95からの光Lによって照射される範囲を示している。 Here, the difference between the morning mode and the daytime mode will be described with reference to FIGS. 9A and 9B, taking as an example a time zone such as morning in which light is incident on the optical device 1 from an oblique direction. 9A and 9B, the shaded area of the dots indicates the range irradiated by the light L from the sun 95.
 図9A及び図9Bはそれぞれ、光学デバイス1に対して斜めから光が入射した場合の日中モード及び午前モードにおける配光分布を示す図である。なお、ここでの日中モードでは、第1領域30a及び第2領域30bの両方が透明状態である場合を示している。 9A and 9B are diagrams showing light distributions in the daytime mode and the morning mode when light is incident on the optical device 1 from an oblique direction, respectively. In the daytime mode here, a case where both the first region 30a and the second region 30b are in a transparent state is shown.
 図9A及び図9Bに示すように、日中モード及び午前モードのいずれの場合も、太陽95からの光LのP偏光LPは、光学デバイス1を通過する際に、光学デバイス1による屈折及び反射などの光学作用を受けないので、そのまま通過して床93を照射する。 As shown in FIGS. 9A and 9B, in both the daytime mode and the morning mode, the P-polarized light LP of the light L from the sun 95 is refracted and reflected by the optical device 1 as it passes through the optical device 1. Since the optical action is not received, the floor 93 is passed as it is and the floor 93 is irradiated.
 一方で、図9Aに示すように、日中モードでは、太陽95からの光LのS偏光は、光学デバイス1を通過する際に、領域毎で異なる光学作用を受ける。具体的には、第3領域30cを通過するS偏光LS3は、第3凸部33cの側面35によって反射されて、天井92に向けて出射される。第1領域30a及び第2領域30bの各々を通過するS偏光LS1及びLS2は、第1領域30a及び第2領域30bが透明状態であるため、そのまま床93を照射する。 On the other hand, as shown in FIG. 9A, in the daytime mode, the S-polarized light of the light L from the sun 95 is subjected to different optical actions for each region when passing through the optical device 1. Specifically, the S-polarized light LS3 that passes through the third region 30c is reflected by the side surface 35 of the third convex portion 33c and is emitted toward the ceiling 92. The S-polarized light LS1 and LS2 passing through the first region 30a and the second region 30b irradiate the floor 93 as they are because the first region 30a and the second region 30b are in a transparent state.
 また、図9Bに示すように、午前モードでは、太陽95からの光LのS偏光のうち、第3領域30cを通過するS偏光LS3は、第3凸部33cの側面35によって反射されて天井92に向けて出射される。第1領域30aを通過するS偏光LS1も同様に、第1凸部33aの側面35によって反射されて天井92に向けて出射される。第2領域30bを通過するS偏光LS2は、第2領域30bが透明状態であるため、そのまま床93を照射する。 As shown in FIG. 9B, in the morning mode, the S-polarized light LS3 that passes through the third region 30c out of the S-polarized light L from the sun 95 is reflected by the side surface 35 of the third convex portion 33c, and the ceiling. It is emitted toward 92. Similarly, the S-polarized light LS1 passing through the first region 30a is reflected by the side surface 35 of the first convex portion 33a and is emitted toward the ceiling 92. The S-polarized light LS2 passing through the second region 30b irradiates the floor 93 as it is because the second region 30b is in a transparent state.
 このとき、第1凸部33aの側面35は、第3凸部33cの側面35とは傾斜が異なっているため、図7Bで示したように、S偏光LS1は、S偏光LS3の斜め方向に出射される。このため、図9Bに示すように、S偏光LS1によって、天井92のより広い範囲が照射される。 At this time, since the side surface 35 of the first convex portion 33a has a different inclination from the side surface 35 of the third convex portion 33c, as shown in FIG. Emitted. For this reason, as shown to FIG. 9B, the wider range of the ceiling 92 is irradiated by S polarized light LS1.
 このように、光学デバイス1は、左右方向の斜めから入射する光を効率良く天井92に向けて配光することができる。したがって、例えば、制御部71は、時間帯に合わせて領域毎の動作モードを選択的に制御することで、入射光に合わせた配光を実現することができる。 As described above, the optical device 1 can efficiently distribute light incident obliquely in the left-right direction toward the ceiling 92. Therefore, for example, the control unit 71 can realize light distribution according to incident light by selectively controlling the operation mode for each region according to the time zone.
 [製造方法]
 続いて、本実施の形態に係る光学デバイス1の製造方法について、図10A~図10Fを用いて説明する。図10A~図10Fはそれぞれ、本実施の形態に係る光学デバイス1の製造方法における各工程を示す斜視図である。具体的には、図10A~図10Fはそれぞれ、第1電極層40の形成工程、凹凸構造層31の形成工程、凹凸構造層31の領域毎の貼り付け工程、第2電極層50の形成工程、液晶材料38の注入工程、及び、基材の貼り合わせ工程を示している。
[Production method]
Next, a method for manufacturing the optical device 1 according to the present embodiment will be described with reference to FIGS. 10A to 10F. 10A to 10F are perspective views showing respective steps in the method for manufacturing the optical device 1 according to the present embodiment. Specifically, FIGS. 10A to 10F respectively show a step of forming the first electrode layer 40, a step of forming the concavo-convex structure layer 31, a step of attaching each region of the concavo-convex structure layer 31, and a step of forming the second electrode layer 50. The liquid crystal material 38 injection step and the base material bonding step are shown.
 まず、図10Aに示すように、透光性を有する第1基材10上に、透光性を有する第1電極層40を形成する。例えば、PETフィルムなどの第1基材10を準備し、スパッタリングなどによってITOなどの透明導電膜を形成する。形成した透明導電膜をドライエッチングなどによりパターニングすることで第1電極層40を形成する。これにより、第1電極片40a、第2電極片40b及び第3電極片40cがそれぞれ複数形成される。 First, as shown in FIG. 10A, a first electrode layer 40 having translucency is formed on a first substrate 10 having translucency. For example, a first base material 10 such as a PET film is prepared, and a transparent conductive film such as ITO is formed by sputtering or the like. The first electrode layer 40 is formed by patterning the formed transparent conductive film by dry etching or the like. Thereby, a plurality of first electrode pieces 40a, second electrode pieces 40b, and third electrode pieces 40c are formed.
 次に、図10Bに示すように、複数の凸部33を有する凹凸構造層を複数形成する。具体的には、凸部33の並び方向(又は、延在方向)が異なる第1凹凸構造層31a、第2凹凸構造層31b及び第3凹凸構造層31cを複数形成する。各々の凹凸構造層は、例えば、モールド成形などによって形成される。このとき、1枚の大きな凹凸構造層を形成した後、領域毎に切断することで、複数の凹凸構造層を形成してもよい。切断する方向及び切断位置を異ならせることで、1枚の凹凸構造層から、凸部33の延びる方向、及び、大きさが異なる複数の凹凸構造層を形成することができる。 Next, as shown in FIG. 10B, a plurality of uneven structure layers having a plurality of protrusions 33 are formed. Specifically, a plurality of first concavo-convex structure layers 31a, second concavo-convex structure layers 31b, and third concavo-convex structure layers 31c having different arrangement directions (or extending directions) of the protrusions 33 are formed. Each concavo-convex structure layer is formed by, for example, molding. At this time, after forming one large uneven structure layer, a plurality of uneven structure layers may be formed by cutting each region. By making the cutting direction and the cutting position different, it is possible to form a plurality of concavo-convex structure layers having different directions and sizes of the protrusions 33 from one concavo-convex structure layer.
 次に、第1電極層40上に、接着層60を介して複数の凹凸構造層を貼り付ける。例えば、図10Cに示すように、第3凹凸構造層31cの下面に接着層60を貼り付けた状態で、第1電極層40の第3電極片40c上に載置する。これにより、第3凹凸構造層31cが第3電極片40c上に固定される。本実施の形態では、複数の凹凸構造層の1つを、他の1つとは凸部33の並び方向を異ならせて貼り付ける。複数の領域毎に、凹凸構造層31を貼り付ける。これにより、凹凸構造層31の配置及び形状などを容易に変更することが可能になる。 Next, a plurality of concavo-convex structure layers are bonded onto the first electrode layer 40 via the adhesive layer 60. For example, as shown in FIG. 10C, the adhesive layer 60 is attached to the lower surface of the third concavo-convex structure layer 31c and placed on the third electrode piece 40c of the first electrode layer 40. Thereby, the 3rd uneven structure layer 31c is fixed on the 3rd electrode piece 40c. In the present embodiment, one of the plurality of concavo-convex structure layers is attached with the arrangement direction of the protrusions 33 being different from the other one. The concavo-convex structure layer 31 is attached to each of the plurality of regions. This makes it possible to easily change the arrangement and shape of the uneven structure layer 31.
 次に、図10Dに示すように、透光性を有する第2基材20上に、透光性を有する第2電極層50を形成する。具体的な方法は、第1電極層40の形成方法と同じである。これにより、第1電極片50a、第2電極片50b及び第3電極片50cがそれぞれ複数形成される。なお、第2電極層50の形成工程は、次の基材の貼り合わせ工程より前に行われていればよく、例えば、第1電極層40の形成と同時に行ってもよい。 Next, as shown in FIG. 10D, a second electrode layer 50 having translucency is formed on the second substrate 20 having translucency. A specific method is the same as the method of forming the first electrode layer 40. Thereby, a plurality of first electrode pieces 50a, second electrode pieces 50b, and third electrode pieces 50c are formed. In addition, the formation process of the 2nd electrode layer 50 should just be performed before the bonding process of the following base material, for example, may be performed simultaneously with formation of the 1st electrode layer 40.
 次に、図10Eに示すように、印加される電界に応じて屈折率が変化する液晶材料38を、複数の凸部33の間に充填する。例えば、液晶分子37を含む液晶材料38を滴下することにより、凸部33間に均一に液晶材料38を充填する。 Next, as shown in FIG. 10E, a liquid crystal material 38 whose refractive index changes according to the applied electric field is filled between the plurality of convex portions 33. For example, the liquid crystal material 38 containing the liquid crystal molecules 37 is dropped, so that the liquid crystal material 38 is uniformly filled between the convex portions 33.
 最後に、図10Fに示すように、第1電極層40と第2電極層50とが複数の凹凸構造層31を間に挟んで対向するように、第1基材10と第2基材20とを貼り合わせる。具体的には、第1基材10及び第2基材20の少なくとも一方に、外周に沿って環状の封止部材を形成し、他方を貼り合わせる。封止部材としては、例えば、熱可塑性樹脂又は熱硬化性樹脂などを用いる。第1基材10と第2基材20とを貼り合わせた後、封止部材を硬化させる。 Finally, as shown in FIG. 10F, the first base material 10 and the second base material 20 are disposed so that the first electrode layer 40 and the second electrode layer 50 face each other with the plurality of uneven structure layers 31 therebetween. And paste together. Specifically, an annular sealing member is formed along at least one of the first base material 10 and the second base material 20 and the other is bonded. As the sealing member, for example, a thermoplastic resin or a thermosetting resin is used. After bonding the 1st base material 10 and the 2nd base material 20, a sealing member is hardened.
 なお、液晶材料38の注入は、基材の貼り合わせ後に行ってもよい。例えば、環状に設けられた封止部材の一部に注入口を設けておき、真空注入法によって液晶材料38を基材間に注入してもよい。また、上記実施の形態においては、1つの基材上に位置によって異なる複数の種類の凸部33を形成したが、異なる種類の凸部33を有する基材を複数枚用意し、使用の際にこれらの基材を並置して窓に貼り付けるなどの使い方ももちろん可能である。 The liquid crystal material 38 may be injected after the substrates are bonded. For example, an injection port may be provided in a part of the annular sealing member, and the liquid crystal material 38 may be injected between the substrates by a vacuum injection method. Moreover, in the said embodiment, although the several types of convex part 33 which differs with positions was formed on one base material, several base materials which have the different types of convex part 33 were prepared, and in the case of use Of course, it is possible to use these base materials side by side and affix them to a window.
 [効果など]
 以上のように、本実施の形態に係る光学デバイス1は、透光性を有する第1基材10と、第1基材10に対向して配置された、透光性を有する第2基材20と、第1基材10と第2基材20との間に互いに対向して配置された、透光性を有する第1電極層40及び第2電極層50と、第1電極層40と第2電極層50との間に配置され、入射した光を配光する配光層30とを備える。配光層30は、光を反射可能な反射面を各々が有する複数の凸部33を有する凹凸構造層31と、複数の凸部33間を充填するように配置され、第1電極層40及び第2電極層50間に印加される電圧に応じて屈折率が変化する屈折率可変層32とを含む。配光層30は、平面視において配光方向が異なる複数の領域に区分され、領域毎に反射面の向きが異なっている。
[Effects, etc.]
As described above, the optical device 1 according to the present embodiment includes the first base material 10 having translucency, and the second base material having translucency disposed so as to face the first base material 10. 20, the first electrode layer 40 and the second electrode layer 50 having translucency and disposed between the first base material 10 and the second base material 20 so as to face each other, and the first electrode layer 40 The light distribution layer 30 is disposed between the second electrode layer 50 and distributes incident light. The light distribution layer 30 is disposed so as to fill the space between the plurality of protrusions 33 and the uneven structure layer 31 having the plurality of protrusions 33 each having a reflection surface capable of reflecting light, and the first electrode layer 40 and And a refractive index variable layer 32 whose refractive index changes according to the voltage applied between the second electrode layers 50. The light distribution layer 30 is divided into a plurality of regions having different light distribution directions in plan view, and the direction of the reflecting surface is different for each region.
 これにより、配光方向が異なる複数の領域に配光層30が区分されているので、一方向だけでなく複数の方向に光を配光させることができる。具体的には、光反射面として機能する側面35の向きが領域毎に異なっているので、側面35の角度に応じた方向に光を配光させることができる。例えば、光学デバイス1は、上下方向だけでなく左右方向に光を配光することができる。このように、光学デバイス1によれば、光の配光分布を広げることができる。 Thereby, since the light distribution layer 30 is divided into a plurality of regions having different light distribution directions, light can be distributed not only in one direction but also in a plurality of directions. Specifically, since the direction of the side surface 35 that functions as a light reflecting surface is different for each region, light can be distributed in a direction according to the angle of the side surface 35. For example, the optical device 1 can distribute light not only in the vertical direction but also in the horizontal direction. Thus, according to the optical device 1, the light distribution of light can be widened.
 また、光学デバイス1が窓91に設置されて太陽光などを採り入れる場合、光学デバイス1に対する入射光(太陽光)は、日周運動又は年周運動によって、入射方向が変化する。このとき、例えば、光の入射方向に応じて配光方向を制御することで、入射光の時間変化に対する配光分布の変化を調整することができる。例えば、正面から光が入射した場合と同様の配光分布を、斜めから光が入射した場合にも実現することができる。このように、光の入射方向が異なる場合でも、互いに同様(類似)の配光分布を実現することができる。 In addition, when the optical device 1 is installed in the window 91 and adopts sunlight or the like, the incident direction of the incident light (sunlight) with respect to the optical device 1 changes depending on the daily motion or the annual motion. At this time, for example, by controlling the light distribution direction according to the incident direction of light, it is possible to adjust the change in the light distribution with respect to the temporal change of the incident light. For example, the same light distribution as when light is incident from the front can be realized even when light is incident obliquely. Thus, even when the incident directions of light are different, the same (similar) light distribution can be realized.
 また、例えば、複数の領域には、第1方向に並んで配置された複数の第1凸部33aであって、各々の反射面が第1方向に直交する方向に延在する複数の第1凸部33aを有する第1領域30aと、第1方向とは異なる第2方向に並んで配置された複数の第2凸部33bであって、各々の反射面が第2方向に直交する方向に延在する複数の第2凸部33bを有する第2領域30bとが含まれる。複数の第1凸部33aの平面視形状は、複数の第2凸部33bの平面視形状の線対称な形状である。 Further, for example, the plurality of regions include a plurality of first protrusions 33a arranged side by side in the first direction, and each of the reflection surfaces extends in a direction orthogonal to the first direction. A first region 30a having a convex portion 33a and a plurality of second convex portions 33b arranged side by side in a second direction different from the first direction, each reflecting surface being in a direction orthogonal to the second direction And a second region 30b having a plurality of extending second convex portions 33b. The planar view shape of the plurality of first convex portions 33a is a line-symmetric shape with the planar view shape of the multiple second convex portions 33b.
 これにより、第1領域30aと第2領域30bとで配光方向を対称にすることができる。このため、例えば、光学デバイス1に対して左側から入射した光だけでなく、右側から入射した光も所望の方向に配光させることができる。 Thereby, the light distribution direction can be made symmetrical between the first region 30a and the second region 30b. For this reason, for example, not only the light incident on the optical device 1 from the left side but also the light incident from the right side can be distributed in a desired direction.
 また、例えば、複数の領域には、さらに、第1方向及び第2方向とは異なる第3方向に並んで配置された複数の第3凸部33cであって、各々の反射面が第3方向に直交する方向に延在する複数の第3凸部33cを有する第3領域30cが含まれる。複数の第1凸部33aの平面視形状は、複数の第2凸部33bの平面視形状の、第3方向に平行な線を対称軸とする線対称な形状である。 In addition, for example, the plurality of regions further includes a plurality of third convex portions 33c arranged in a third direction different from the first direction and the second direction, and each reflecting surface has a third direction. 3rd area | region 30c which has the some 3rd convex part 33c extended in the direction orthogonal to is included. The planar view shape of the plurality of first convex portions 33a is a line-symmetric shape having a line parallel to the third direction as the symmetry axis of the planar view shape of the multiple second convex portions 33b.
 これにより、配光方向が異なる3つの領域が設けられているので、配光分布をより広くすることができる。 Thereby, since three regions having different light distribution directions are provided, the light distribution can be made wider.
 また、例えば、第1電極層40及び第2電極層50の少なくとも一方は、複数の電極片から構成されている。複数の電極片は、複数の領域の各々に対応している。 Further, for example, at least one of the first electrode layer 40 and the second electrode layer 50 is composed of a plurality of electrode pieces. The plurality of electrode pieces correspond to each of the plurality of regions.
 これにより、領域毎に光学状態を変化させることができる。したがって、例えば、光学デバイス1に対して入射する光の角度に応じて配光状態を変化させることができるので、所望の配光状態を容易に実現することができる。 This makes it possible to change the optical state for each region. Therefore, for example, since the light distribution state can be changed according to the angle of light incident on the optical device 1, a desired light distribution state can be easily realized.
 また、例えば、光学デバイス1は、さらに、凹凸構造層31と第1電極層40とを接着する接着層60を備える。 Further, for example, the optical device 1 further includes an adhesive layer 60 that adheres the uneven structure layer 31 and the first electrode layer 40.
 これにより、凹凸構造層31と第1電極層40との固着強度が高められて、信頼性の高い光学デバイス1を実現することができる。 Thereby, the adhesion strength between the concavo-convex structure layer 31 and the first electrode layer 40 is increased, and the optical device 1 with high reliability can be realized.
 また、本実施の形態に係る光学システム70は、光学デバイス1と、複数の電極片に選択的に電位を与えることで、配光層30の光学状態を領域毎に制御する制御部71を備える。 In addition, the optical system 70 according to the present embodiment includes the optical device 1 and a controller 71 that controls the optical state of the light distribution layer 30 for each region by selectively applying a potential to the plurality of electrode pieces. .
 これにより、領域毎に光学状態を変化させることができる。例えば、光学デバイス1に対して左右の一方向から光が入射する午前中などの時間帯と、光学デバイス1に対して左右の他方向から光が入射する夕方などの時間帯とで光学デバイス1の配光状態を変化させることができる。 This makes it possible to change the optical state for each region. For example, the optical device 1 includes a time zone such as in the morning in which light is incident on the optical device 1 from one left and right direction and a time zone such as an evening in which light is incident on the optical device 1 from other left and right directions. The light distribution state of can be changed.
 また、例えば、制御部71は、第1領域30aを配光状態にし、第2領域30bを透明状態にする第1動作モード(午前モード)と、第1領域30aを透明状態にし、第2領域30bを配光状態にする第2動作モード(夕方モード)とを切り替えて実行する。 In addition, for example, the control unit 71 sets the first region 30a to a light distribution state, sets the second region 30b to a transparent state, and sets the first region 30a to a transparent state, and sets the first region 30a to a transparent state. It switches and performs the 2nd operation mode (evening mode) which makes 30b a light distribution state.
 これにより、光の入射方向などに応じて動作モードを切り替えることで、光学デバイス1の光学状態を適切な状態に変化させることができる。 Thus, the optical state of the optical device 1 can be changed to an appropriate state by switching the operation mode according to the incident direction of light.
 また、例えば、本実施の形態に係る光学デバイス1の製造方法は、透光性を有する第1基材10上に、透光性を有する第1電極層40を形成する工程と、複数の凸部33を有する凹凸構造層31を複数形成する工程と、第1電極層40上に、接着層60を介して複数の凹凸構造層31を貼り付ける工程と、透光性を有する第2基材20上に、透光性を有する第2電極層50を形成する工程と、印加される電界に応じて屈折率が変化する液晶材料38を、複数の凸部33の間に充填する工程と、第1電極層40と第2電極層50とが複数の凹凸構造層31を間に挟んで対向するように、第1基材10と第2基材20とを貼り合わせる工程とを含んでいる。貼り付ける工程では、複数の凹凸構造層31の1つを、他の1つとは凸部33の並び方向を異ならせて貼り付ける。 In addition, for example, in the method for manufacturing the optical device 1 according to the present embodiment, the first electrode layer 40 having a light transmitting property is formed on the first base material 10 having a light transmitting property, and a plurality of protrusions are formed. A step of forming a plurality of concavo-convex structure layers 31 having a portion 33, a step of attaching a plurality of concavo-convex structure layers 31 to the first electrode layer 40 via an adhesive layer 60, and a second base material having translucency A step of forming a translucent second electrode layer 50 on 20, a step of filling a liquid crystal material 38 whose refractive index changes according to an applied electric field between the plurality of convex portions 33, and A step of bonding the first base material 10 and the second base material 20 so that the first electrode layer 40 and the second electrode layer 50 face each other with the plurality of concavo-convex structure layers 31 interposed therebetween. . In the pasting step, one of the plurality of concavo-convex structure layers 31 is pasted with the arrangement direction of the protrusions 33 being different from the other one.
 これにより、複数の凹凸構造層を別体で形成した後、接着層60を介して第1電極層40に貼り付けることで光学デバイス1を製造することができる。このため、各領域の配置、大きさ及び形状の異なる複数の光学デバイス1を容易に実現することができる。 Thus, the optical device 1 can be manufactured by forming a plurality of concavo-convex structure layers separately and then affixing them to the first electrode layer 40 via the adhesive layer 60. For this reason, the some optical device 1 from which arrangement | positioning of each area | region, a magnitude | size, and a shape differs can be implement | achieved easily.
 (変形例)
 以下では、上記実施の形態の変形例について説明する。
(Modification)
Below, the modification of the said embodiment is demonstrated.
 上記実施の形態では、屈折率可変材料として液晶材料を用いる場合について説明したが、屈折率可変材料は、液晶材料に限らない。例えば、本変形例では、屈折率可変材料として、電気泳動材料を用いる場合を説明する。以下の説明において、上記実施の形態と異なる点を中心に説明し、共通点の説明を省略又は簡略化する。 In the above embodiment, the case where the liquid crystal material is used as the refractive index variable material has been described, but the refractive index variable material is not limited to the liquid crystal material. For example, in this modification, a case where an electrophoretic material is used as the refractive index variable material will be described. In the following description, differences from the above embodiment will be mainly described, and description of common points will be omitted or simplified.
 [構成]
 図11は、本変形例に係る光学デバイス101の拡大断面図である。なお、本変形例に係る光学デバイス101の全体的な構成は、図1に示す光学デバイス1と同様である。図11は、図1の一点鎖線で囲まれる領域IIに相当する断面を示している。
[Constitution]
FIG. 11 is an enlarged cross-sectional view of an optical device 101 according to this modification. The overall configuration of the optical device 101 according to the present modification is the same as that of the optical device 1 shown in FIG. FIG. 11 shows a cross section corresponding to a region II surrounded by a one-dot chain line in FIG.
 図11に示すように、光学デバイス101は、第1基材10と、第2基材20と、配光層130と、第1電極層40と、第2電極層50とを備える。配光層130以外の構成は、実施の形態と同様である。 As shown in FIG. 11, the optical device 101 includes a first base material 10, a second base material 20, a light distribution layer 130, a first electrode layer 40, and a second electrode layer 50. The configuration other than the light distribution layer 130 is the same as that of the embodiment.
 配光層130は、第1電極層40と第2電極層50との間に配置される。配光層130は、透光性を有しており、入射した光を透過させる。また、配光層130は、配光層130を光が通過する際に、その光の進行方向を変更する。 The light distribution layer 130 is disposed between the first electrode layer 40 and the second electrode layer 50. The light distribution layer 130 has a light-transmitting property and transmits incident light. Further, the light distribution layer 130 changes the traveling direction of light when the light passes through the light distribution layer 130.
 配光層130は、凹凸構造層31と、屈折率可変層132とを有する。凹凸構造層31は、実施の形態に係る光学デバイス1の凹凸構造層31と同じ構成を有する。つまり、本変形例においても、第1配光層130の領域毎に、凸部33の並び方向が異なる複数の凹凸構造層が設けられている。具体的には、第1配光層130の凹凸構造層31の詳細な構成は、図3A及び図3Bなどで示したものと同じであるため、以下では説明を省略する。 The light distribution layer 130 includes an uneven structure layer 31 and a refractive index variable layer 132. The uneven structure layer 31 has the same configuration as the uneven structure layer 31 of the optical device 1 according to the embodiment. That is, also in this modified example, a plurality of concavo-convex structure layers having different alignment directions of the protrusions 33 are provided for each region of the first light distribution layer 130. Specifically, the detailed configuration of the concavo-convex structure layer 31 of the first light distribution layer 130 is the same as that shown in FIG. 3A and FIG.
 本変形例では、図11に示すように、屈折率可変層132は、絶縁性液体137と、絶縁性液体137に含まれるナノ粒子138とを有する。屈折率可変層132は、無数のナノ粒子138が絶縁性液体137に分散されたナノ粒子分散層である。 In the present modification, as shown in FIG. 11, the refractive index variable layer 132 includes an insulating liquid 137 and nanoparticles 138 included in the insulating liquid 137. The refractive index variable layer 132 is a nanoparticle dispersion layer in which countless nanoparticles 138 are dispersed in an insulating liquid 137.
 絶縁性液体137は、絶縁性を有する透明な液体であり、分散質としてナノ粒子138が分散される分散媒となる溶媒である。絶縁性液体137としては、例えば、屈折率(溶媒屈折率)が約1.3~約1.6の材料を用いることができる。本変形例では、屈折率が約1.4の絶縁性液体137を用いている。 The insulating liquid 137 is a transparent liquid having insulating properties, and is a solvent serving as a dispersion medium in which the nanoparticles 138 are dispersed as a dispersoid. As the insulating liquid 137, for example, a material having a refractive index (solvent refractive index) of about 1.3 to about 1.6 can be used. In this modification, an insulating liquid 137 having a refractive index of about 1.4 is used.
 なお、絶縁性液体137の動粘度は、100mm/s程度であるとよい。また、絶縁性液体137は、低誘電率(例えば、凹凸構造層31の誘電率以下)で、非引火性(例えば、引火点が250℃以上の高引火点)及び低揮発性を有してもよい。具体的には、絶縁性液体137は、脂肪族炭化水素、ナフサ、及びその他の石油系溶剤などの炭化水素、低分子量ハロゲン含有ポリマー、又は、これらの混合物などである。一例として、絶縁性液体137は、フッ化炭化水素などのハロゲン化炭化水素である。なお、絶縁性液体137としては、シリコーンオイルなどを用いることもできる。 Note that the kinematic viscosity of the insulating liquid 137 is preferably about 100 mm 2 / s. Further, the insulating liquid 137 has a low dielectric constant (for example, less than the dielectric constant of the concavo-convex structure layer 31), non-flammability (for example, a high flash point having a flash point of 250 ° C. or higher), and low volatility. Also good. Specifically, the insulating liquid 137 is a hydrocarbon such as an aliphatic hydrocarbon, naphtha, and other petroleum solvents, a low molecular weight halogen-containing polymer, or a mixture thereof. As an example, the insulating liquid 137 is a halogenated hydrocarbon such as a fluorinated hydrocarbon. Note that silicone oil or the like can be used as the insulating liquid 137.
 ナノ粒子138は、絶縁性液体137に複数分散されている。ナノ粒子138は、粒径がナノオーダサイズの微粒子である。具体的には、入射光の波長をλとすると、ナノ粒子138の粒径は、λ/4以下であるとよい。ナノ粒子138の粒径をλ/4以下にすることで、ナノ粒子138による光散乱を少なくして、ナノ粒子138と絶縁性液体137との平均的な屈折率を得ることができる。ナノ粒子138の粒径は、小さい程よく、好ましくは100nm以下、より好ましくは、数nm~数十nmである。 A plurality of nanoparticles 138 are dispersed in the insulating liquid 137. The nanoparticles 138 are fine particles having a particle size of nano-order size. Specifically, when the wavelength of incident light is λ, the particle size of the nanoparticles 138 is preferably λ / 4 or less. By setting the particle size of the nanoparticles 138 to λ / 4 or less, light scattering by the nanoparticles 138 can be reduced, and an average refractive index of the nanoparticles 138 and the insulating liquid 137 can be obtained. The particle size of the nanoparticles 138 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
 ナノ粒子138は、例えば、高屈折率材料によって構成されている。具体的には、ナノ粒子138の屈折率は、絶縁性液体137の屈折率よりも高い。本変形例において、ナノ粒子138の屈折率は、凹凸構造層31の屈折率よりも高い。 The nanoparticles 138 are made of, for example, a high refractive index material. Specifically, the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137. In this modification, the refractive index of the nanoparticles 138 is higher than the refractive index of the uneven structure layer 31.
 ナノ粒子138としては、例えば、金属酸化物微粒子を用いることができる。また、ナノ粒子138は、透過率が高い材料で構成されていてもよい。本変形例では、ナノ粒子138として、酸化ジルコニウム(ZrO)によって構成された屈折率が2.1の透明なジルコニア粒子を用いている。なお、ナノ粒子138は、酸化ジルコニウムに限らず、酸化チタン(TiO:屈折率2.5)などによって構成されていてもよい。 As the nanoparticles 138, for example, metal oxide fine particles can be used. The nanoparticles 138 may be made of a material with high transmittance. In this modification, transparent zirconia particles having a refractive index of 2.1 and made of zirconium oxide (ZrO 2 ) are used as the nanoparticles 138. The nanoparticles 138 are not limited to zirconium oxide, and may be composed of titanium oxide (TiO 2 : refractive index 2.5) or the like.
 また、ナノ粒子138は、帯電している荷電粒子である。例えば、ナノ粒子138の表面を修飾することで、ナノ粒子138を正(プラス)又は負(マイナス)に帯電させることができる。本変形例において、ナノ粒子138は、正(プラス)に帯電している。 Further, the nanoparticles 138 are charged particles that are charged. For example, by modifying the surface of the nanoparticle 138, the nanoparticle 138 can be charged positively (plus) or negatively (minus). In this modification, the nanoparticles 138 are positively (plus) charged.
 このように構成された屈折率可変層132では、帯電したナノ粒子138が絶縁性液体137の全体に分散されている。本変形例では、ナノ粒子138として屈折率が2.1のジルコニア粒子を用いて、ナノ粒子138を溶媒屈折率が約1.4の絶縁性液体137に分散させたものを屈折率可変層132としている。 In the refractive index variable layer 132 configured in this manner, charged nanoparticles 138 are dispersed throughout the insulating liquid 137. In this modification, zirconia particles having a refractive index of 2.1 are used as the nanoparticles 138 and the nanoparticles 138 are dispersed in an insulating liquid 137 having a solvent refractive index of about 1.4. It is said.
 また、屈折率可変層132の全体の屈折率(平均屈折率)は、ナノ粒子138が絶縁性液体137内に均一に分散された状態において、凹凸構造層31の屈折率と略同一に設定されており、本変形例では、約1.5である。なお、屈折率可変層132の全体の屈折率は、絶縁性液体137に分散するナノ粒子138の濃度(量)を調整することによって変えることができる。詳細は後述するが、ナノ粒子138の量は、例えば、凹凸構造層31の凹部34に埋まる程度である。この場合、絶縁性液体137に対するナノ粒子138の濃度は、約10%~約30%である。 Further, the overall refractive index (average refractive index) of the refractive index variable layer 132 is set to be substantially the same as the refractive index of the uneven structure layer 31 in a state where the nanoparticles 138 are uniformly dispersed in the insulating liquid 137. In this variation, it is about 1.5. Note that the overall refractive index of the refractive index variable layer 132 can be changed by adjusting the concentration (amount) of the nanoparticles 138 dispersed in the insulating liquid 137. Although details will be described later, the amount of the nanoparticles 138 is, for example, such that it is buried in the recess 34 of the uneven structure layer 31. In this case, the concentration of the nanoparticles 138 with respect to the insulating liquid 137 is about 10% to about 30%.
 屈折率可変層132は、凹凸構造層31と第2電極層50との間に配置されている。具体的には、屈折率可変層132は、凹凸構造層31に接している。つまり、屈折率可変層132における凹凸構造層31の凹凸表面との接触面は、屈折率可変層132と凹凸構造層31の凹凸表面との界面である。なお、屈折率可変層132は、第2電極層50にも接しているが、屈折率可変層132と第2電極層50との間に他の層(膜)が介在していてもよい。 The refractive index variable layer 132 is disposed between the uneven structure layer 31 and the second electrode layer 50. Specifically, the refractive index variable layer 132 is in contact with the uneven structure layer 31. That is, the contact surface of the refractive index variable layer 132 with the concave / convex surface of the concave / convex structure layer 31 is an interface between the refractive index variable layer 132 and the concave / convex surface of the concave / convex structure layer 31. The refractive index variable layer 132 is also in contact with the second electrode layer 50, but another layer (film) may be interposed between the refractive index variable layer 132 and the second electrode layer 50.
 また、屈折率可変層132は、与えられる電界に応じて屈折率が変化する。電界は、第1電極層40及び第2電極層50間に印加される電圧に応じて変化する。具体的には、屈折率可変層132は、電界が与えられることによって可視光領域での屈折率が調整可能な屈折率調整層として機能する。例えば、第1電極層40と第2電極層50との間には直流電圧が印加される。 Also, the refractive index of the refractive index variable layer 132 changes according to the applied electric field. The electric field changes according to the voltage applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the refractive index variable layer 132 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light region when an electric field is applied. For example, a DC voltage is applied between the first electrode layer 40 and the second electrode layer 50.
 絶縁性液体137中に分散するナノ粒子138は帯電しているので、屈折率可変層132に電界が与えられると、ナノ粒子138は、電界分布に従って絶縁性液体137中を泳動し、絶縁性液体137内で偏在する。これにより、屈折率可変層132内のナノ粒子138の粒子分布が変化して屈折率可変層132内にナノ粒子138の濃度分布を持たせることができるので、屈折率可変層132内の屈折率分布が変化する。つまり、屈折率可変層132の屈折率が部分的に変化する。このように、屈折率可変層132は、主に可視光領域の光に対する屈折率を調整することができる屈折率調整層として機能する。 Since the nanoparticles 138 dispersed in the insulating liquid 137 are charged, when an electric field is applied to the refractive index variable layer 132, the nanoparticles 138 migrate in the insulating liquid 137 in accordance with the electric field distribution, and the insulating liquid 137 is unevenly distributed. As a result, the particle distribution of the nanoparticles 138 in the refractive index variable layer 132 is changed, and the concentration distribution of the nanoparticles 138 can be provided in the refractive index variable layer 132, so that the refractive index in the refractive index variable layer 132 is increased. Distribution changes. That is, the refractive index of the refractive index variable layer 132 changes partially. As described above, the refractive index variable layer 132 mainly functions as a refractive index adjustment layer capable of adjusting the refractive index with respect to light in the visible light region.
 なお、本変形例においても、第1電極層40及び第2電極層50の各々が複数の電極片に区分されていてもよい。この場合、実施の形態と同様に、電極片間に挟まれた領域(例えば、第1領域30a、第2領域30b及び第3領域30cなど)毎に、異なる電界を与えることが可能になり、ナノ粒子138の濃度分布を領域毎に異ならせることができる。これにより、電極片間に挟まれた領域毎に屈折率を異ならせることができる。 In this modification, each of the first electrode layer 40 and the second electrode layer 50 may be divided into a plurality of electrode pieces. In this case, as in the embodiment, it is possible to apply different electric fields for each region (for example, the first region 30a, the second region 30b, and the third region 30c) sandwiched between the electrode pieces, The concentration distribution of the nanoparticles 138 can be varied for each region. Thereby, a refractive index can be varied for every area | region pinched | interposed between electrode pieces.
 屈折率可変層132は、第1基材10と第2基材20との間に配置されている。具体的には、ナノ粒子138が分散された絶縁性液体137が第1基材10と第2基材20との間に封止されている。屈折率可変層132の形成方法は、実施の形態と同様である。 The refractive index variable layer 132 is disposed between the first base material 10 and the second base material 20. Specifically, the insulating liquid 137 in which the nanoparticles 138 are dispersed is sealed between the first base material 10 and the second base material 20. The method for forming the refractive index variable layer 132 is the same as in the embodiment.
 屈折率可変層132の厚さは、例えば1μm~100μmであるが、これに限らない。一例として、凹凸構造層31の凸部33の高さが10μmである場合、屈折率可変層132の厚さは、例えば40μmである。 The thickness of the refractive index variable layer 132 is, for example, 1 μm to 100 μm, but is not limited thereto. As an example, when the height of the convex portion 33 of the concavo-convex structure layer 31 is 10 μm, the thickness of the refractive index variable layer 132 is, for example, 40 μm.
 [光学状態]
 続いて、本変形例に係る光学デバイス101の光学状態、及び、光学状態を形成する動作モードについて説明する。本変形例では、光学デバイス101に対して正面から入射し、第1配光層130の複数の領域のうち第3領域30cを通過する光について説明する。なお、第1領域30a及び第2領域30bについても各々の凸部33の傾斜が異なるだけで、印加される電圧の態様に応じて、以下の説明と同様の光学状態が形成される。本変形例において、領域毎の光の経路については、図7A及び図7Bで示した通り、実施の形態と同様である。
[Optical state]
Subsequently, an optical state of the optical device 101 according to this modification and an operation mode for forming the optical state will be described. In the present modification, light that enters the optical device 101 from the front and passes through the third region 30c among the plurality of regions of the first light distribution layer 130 will be described. The first region 30a and the second region 30b also have the same optical state as described below depending on the mode of the applied voltage, except that the slopes of the convex portions 33 are different. In this modification, the light path for each region is the same as that in the embodiment as shown in FIGS. 7A and 7B.
 <透明状態(無印加モード)>
 図12Aは、本変形例に係る光学デバイス101の無印加モード(透明状態)を説明するための拡大断面図である。
<Transparent state (non-application mode)>
FIG. 12A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the optical device 101 according to this modification.
 図12Aにおいて、第1電極層40及び第2電極層50間には電圧が印加されていない。具体的には、第1電極層40と第2電極層50とは、互いに等電位となっている。この場合、屈折率可変層132には電界が与えられないので、ナノ粒子138は、絶縁性液体137の全体にわたって分散された状態となる。 In FIG. 12A, no voltage is applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the first electrode layer 40 and the second electrode layer 50 are equipotential with each other. In this case, since no electric field is applied to the refractive index variable layer 132, the nanoparticles 138 are dispersed throughout the insulating liquid 137.
 このとき、本変形例では、上述したように、ナノ粒子138が絶縁性液体137の全体に分散された状態の屈折率可変層132の屈折率は、約1.5である。また、凹凸構造層31の凸部33の屈折率は、約1.5である。つまり、屈折率可変層132の全体の屈折率は、凹凸構造層131の凸部33の屈折率と同等になる。したがって、配光層130の全体で、屈折率が均一になる。 At this time, in this modification, as described above, the refractive index of the refractive index variable layer 132 in a state where the nanoparticles 138 are dispersed throughout the insulating liquid 137 is about 1.5. Moreover, the refractive index of the convex part 33 of the concavo-convex structure layer 31 is about 1.5. That is, the entire refractive index of the refractive index variable layer 132 is equal to the refractive index of the convex portion 33 of the concavo-convex structure layer 131. Therefore, the refractive index is uniform throughout the light distribution layer 130.
 このため、図12Aに示すように、斜め方向から光Lが入射した場合、屈折率可変層132と凹凸構造層31(凸部33)との界面には屈折率差がないので、光Lがまっすぐに進行する。 For this reason, as shown in FIG. 12A, when light L is incident from an oblique direction, there is no refractive index difference at the interface between the refractive index variable layer 132 and the concavo-convex structure layer 31 (convex portion 33). Proceed straight.
 <配光状態(電圧印加モード)>
 図12Bは、本変形例に係る光学デバイス101の電圧印加モード(配光状態)を説明するための拡大断面図である。
<Light distribution state (voltage application mode)>
FIG. 12B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the optical device 101 according to this modification.
 図12Bにおいて、第1電極層40及び第2電極層50間に電圧が印加されている。例えば、第1電極層40と第2電極層50とには、数十V程度の電位差が印加されている。これにより、屈折率可変層132には所定の電界が与えられるので、屈折率可変層132では、帯電したナノ粒子138がその電界分布に従って絶縁性液体137内を泳動する。つまり、ナノ粒子138は、絶縁性液体137内を電気泳動する。 In FIG. 12B, a voltage is applied between the first electrode layer 40 and the second electrode layer 50. For example, a potential difference of about several tens of volts is applied to the first electrode layer 40 and the second electrode layer 50. As a result, a predetermined electric field is applied to the refractive index variable layer 132, and in the refractive index variable layer 132, the charged nanoparticles 138 migrate in the insulating liquid 137 according to the electric field distribution. That is, the nanoparticles 138 perform electrophoresis in the insulating liquid 137.
 図12Bに示す例では、第2電極層50は、第1電極層40よりも高電位になっている。このため、プラスに帯電したナノ粒子138は、第1電極層40に向かって泳動し、凹凸構造層31の凹部34に入り込んで集積していく。 In the example shown in FIG. 12B, the second electrode layer 50 has a higher potential than the first electrode layer 40. For this reason, the positively charged nanoparticles 138 migrate toward the first electrode layer 40, enter the concave portion 34 of the concave-convex structure layer 31, and accumulate.
 このように、ナノ粒子138が屈折率可変層132内の凹凸構造層31側に偏在することで、ナノ粒子138の粒子分布が変化し、屈折率可変層132内の屈折率分布が一様ではなくなる。具体的には、図12Bに示すように、屈折率可変層132内でナノ粒子138の濃度分布が形成される。 Thus, the nanoparticles 138 are unevenly distributed on the uneven structure layer 31 side in the refractive index variable layer 132, whereby the particle distribution of the nanoparticles 138 is changed, and the refractive index distribution in the refractive index variable layer 132 is not uniform. Disappear. Specifically, as shown in FIG. 12B, a concentration distribution of nanoparticles 138 is formed in the refractive index variable layer 132.
 例えば、凹凸構造層31側の領域132aでは、ナノ粒子138の濃度が高くなり、第2電極層50側の領域132bでは、ナノ粒子138の濃度が低くなる。したがって、領域132aと領域132bとには、屈折率差が生じる。 For example, in the region 132a on the uneven structure layer 31 side, the concentration of the nanoparticles 138 is high, and in the region 132b on the second electrode layer 50 side, the concentration of the nanoparticles 138 is low. Therefore, a difference in refractive index occurs between the region 132a and the region 132b.
 本変形例では、ナノ粒子138の屈折率が絶縁性液体137の屈折率よりも高い。このため、ナノ粒子138の濃度が高い領域132aの屈折率は、ナノ粒子138の濃度が低い、すなわち、絶縁性液体137の割合が多い領域132bの屈折率よりも高くなる。例えば、領域132aの屈折率は、ナノ粒子138の濃度に応じて約1.5より大きい値~約1.8になる。領域132bの屈折率は、ナノ粒子138の濃度に応じて約1.4~約1.5より小さい値になる。 In this modification, the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137. For this reason, the refractive index of the region 132a where the concentration of the nanoparticles 138 is high is higher than the refractive index of the region 132b where the concentration of the nanoparticles 138 is low, that is, the proportion of the insulating liquid 137 is high. For example, the refractive index of the region 132a is greater than about 1.5 to about 1.8 depending on the concentration of the nanoparticles 138. The refractive index of the region 132b is a value less than about 1.4 to less than about 1.5 depending on the concentration of the nanoparticles 138.
 複数の凸部33の屈折率が約1.5であるので、第1電極層40と第2電極層50との間に電圧が印加されている場合、凸部33と領域132aとの間には、屈折率差が生じる。このため、図12Bに示すように、斜め方向から光Lが入射した場合、光Lは、凸部33の側面36で屈折した後、側面35で全反射される。これにより、斜め下方に入射する光Lは、光学デバイス101によって進行方向が曲げられて、屋内の天井面などに照射される。 Since the refractive index of the plurality of convex portions 33 is about 1.5, when a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the convex portion 33 is interposed between the convex portion 33 and the region 132a. Causes a difference in refractive index. For this reason, as shown in FIG. 12B, when the light L is incident from an oblique direction, the light L is refracted by the side surface 36 of the convex portion 33 and then totally reflected by the side surface 35. As a result, the light L incident obliquely downward is bent in the traveling direction by the optical device 101 and is applied to the indoor ceiling surface or the like.
 また、印加する電圧によって屈折率を変化させることで、配光方向を変化させることも可能である。なお、屈折率可変材料として液晶を用いた場合には、液晶の有する複屈折性に由来し、S偏光とP偏光とで振る舞いは異なるが、電気泳動材料を用いた場合には複屈折率性が抑えられるため、ほぼ全ての光を配光制御することが可能となる。 It is also possible to change the light distribution direction by changing the refractive index according to the applied voltage. When liquid crystal is used as the refractive index variable material, it is derived from the birefringence of the liquid crystal, and the behavior differs between S-polarized light and P-polarized light. Therefore, it is possible to control light distribution of almost all light.
 なお、図12A及び図12Bにおいて、詳細は図示していないが、第1基材10と第1電極層40との界面又は屈折率可変層132と第2電極層50との界面など、各部材間の界面で屈折率差が存在する箇所においては、光Lは、その界面で屈折率差に応じて屈折することになる。 12A and 12B, although not shown in detail, each member such as an interface between the first base material 10 and the first electrode layer 40 or an interface between the refractive index variable layer 132 and the second electrode layer 50 is used. The light L is refracted in accordance with the refractive index difference at the interface where there is a refractive index difference.
 本変形例においても、図3A及び図3Bに示した実施の形態と同様に、配光方向が異なる複数の領域に配光層130が区分されているので、一方向だけでなく複数の方向に光を配光させることができる。具体的には、光反射面として機能する側面35の向きが領域毎に異なっているので、側面35の角度に応じた方向に光を配光させることができる。例えば、光学デバイス101は、上下方向だけでなく左右方向に光を配光することができる。このように、光学デバイス101によれば、光の配光分布を広げることができる。 Also in this modified example, as in the embodiment shown in FIGS. 3A and 3B, the light distribution layer 130 is divided into a plurality of regions having different light distribution directions. Light can be distributed. Specifically, since the direction of the side surface 35 that functions as a light reflecting surface is different for each region, light can be distributed in a direction according to the angle of the side surface 35. For example, the optical device 101 can distribute light not only in the vertical direction but also in the horizontal direction. Thus, according to the optical device 101, the light distribution of light can be widened.
 (その他)
 以上、本発明に係る光学デバイス、光学システム、及び、光学デバイスの製造方法について、上記の実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As described above, the optical device, the optical system, and the manufacturing method of the optical device according to the present invention have been described based on the above-described embodiment and its modifications. However, the present invention is limited to the above-described embodiment. It is not a thing.
 例えば、上記の実施の形態では、制御部71は、領域毎に動作モードを切り替えたが、これに限らない。例えば、第1電極層40及び第2電極層50の両方が複数の電極片に分割されている例について示したが、これに限らない。第1電極層40及び第2電極層50の一方のみが複数の電極片から構成されていてもよい。あるいは、第1電極層40及び第2電極層50の両方が分割されていなくてもよい。この場合、領域毎の配光状態及び透明状態の切り替えができなくなるが、配光状態における光の配光方向を広げることができる。 For example, in the above embodiment, the control unit 71 switches the operation mode for each region, but is not limited thereto. For example, although an example in which both the first electrode layer 40 and the second electrode layer 50 are divided into a plurality of electrode pieces has been shown, the present invention is not limited thereto. Only one of the first electrode layer 40 and the second electrode layer 50 may be composed of a plurality of electrode pieces. Alternatively, both the first electrode layer 40 and the second electrode layer 50 may not be divided. In this case, although it becomes impossible to switch the light distribution state and the transparent state for each region, the light distribution direction of light in the light distribution state can be expanded.
 また、例えば、上記の実施の形態では、凹凸構造層31を領域毎に個別に作製した後、接着層60を介して第1電極層40上に貼り付けたが、これに限らない。凹凸構造層31は、一体に形成されていてもよい。具体的には、凸部33の並び方向が異なる複数の形状を備えたモールドを用いて、一括して凹凸構造層31を形成してもよい。 Further, for example, in the above-described embodiment, the uneven structure layer 31 is individually manufactured for each region and then pasted on the first electrode layer 40 via the adhesive layer 60. However, the present invention is not limited to this. The uneven structure layer 31 may be integrally formed. Specifically, the concavo-convex structure layer 31 may be collectively formed by using a mold having a plurality of shapes in which the alignment direction of the convex portions 33 is different.
 また、例えば、凹凸構造層31は、第1電極層40上に直接形成されていてもよく、光学デバイス1は、接着層60を備えなくてもよい。例えば、凹凸構造層31は、一般的にプライマーと称される樹脂材料からなる薄膜を第1電極層40上に形成した後、凹凸構造層31をインプリントで形成してもよい。 For example, the uneven structure layer 31 may be formed directly on the first electrode layer 40, and the optical device 1 may not include the adhesive layer 60. For example, the uneven structure layer 31 may be formed by imprinting after forming a thin film made of a resin material generally called a primer on the first electrode layer 40.
 また、例えば、上記の実施の形態では、第1領域30aと第2領域30bとにおいて、線対称な関係を有する例について説明したが、これは、光学デバイス1が真南に面する窓91に設置された場合に特に有用である。したがって、例えば、南南西などの真南以外に面する窓に光学デバイス1が設置された場合には、第1領域30aと第2領域30bとは、線対称な関係を有しなくてもよい。第1領域30aにおける側面(反射面)35の傾斜角と、第2領域30bにおける側面35の傾斜角とは、互いに異なっていてもよい。また、第3領域30cにおける側面35も地面に平行な方向に延在していなくてもよく、傾斜していてもよい。 Further, for example, in the above-described embodiment, the example in which the first region 30a and the second region 30b have a line-symmetric relationship has been described. However, this is because the optical device 1 faces the window 91 facing south. This is particularly useful when installed. Therefore, for example, when the optical device 1 is installed in a window that faces other than true south, such as south-southwest, the first region 30a and the second region 30b may not have a line-symmetric relationship. The inclination angle of the side surface (reflection surface) 35 in the first region 30a and the inclination angle of the side surface 35 in the second region 30b may be different from each other. Further, the side surface 35 in the third region 30c may not extend in a direction parallel to the ground, and may be inclined.
 また、例えば、領域毎に、第1基材10及び第2基材20も分離していてもよい。つまり、領域毎に個別に駆動可能な複数の光学デバイスを面内に並べてもよい。 Further, for example, the first base material 10 and the second base material 20 may be separated for each region. That is, a plurality of optical devices that can be individually driven for each region may be arranged in the plane.
 また、例えば、上記の実施の形態では、屈折率可変層32を構成する液晶材料としてポジ型の液晶材料を用いたが、ネガ型の液晶材料を用いてもよい。 Further, for example, in the above embodiment, a positive liquid crystal material is used as the liquid crystal material constituting the refractive index variable layer 32, but a negative liquid crystal material may be used.
 また、例えば、上記の実施の形態では、第3凸部33cの長手方向がx軸方向となるように光学デバイスを窓に配置したが、これに限らない。例えば、第3凸部33cの長手方向がz軸方向となるように光学デバイスを窓に配置してもよい。 For example, in the above embodiment, the optical device is arranged in the window so that the longitudinal direction of the third convex portion 33c is the x-axis direction, but the present invention is not limited to this. For example, the optical device may be arranged in the window so that the longitudinal direction of the third convex portion 33c is the z-axis direction.
 また、例えば、複数の凸部33は、直線のストライプ形状でなくてもよい。例えば、複数の凸部33の各々は、ウェーブ形状、波線形状又はジグザグ形状であってもよい。 Further, for example, the plurality of convex portions 33 may not be a straight stripe shape. For example, each of the plurality of convex portions 33 may have a wave shape, a wavy line shape, or a zigzag shape.
 また、第1領域30a、第2領域30b及び第3領域30cの各々において、複数の凸部33には、互いに形状の異なる凸部が混在していてもよい。例えば、傾斜角θa、θb及びθcの少なくとも1つには、複数の異なる傾斜角が混在していてもよない。また、例えば、第1領域30a、第2領域30b及び第3領域30cの各々における凸部33の形状は、領域毎に異なっていてもよい。例えば、第1領域30aの第1凸部33aがウェーブ形状で、第2領域30bの第2凸部33bがドット状に分割されており、第3領域30cの第3凸部33cがストライプ形状であってもよい。 Further, in each of the first region 30a, the second region 30b, and the third region 30c, the plurality of convex portions 33 may include convex portions having different shapes. For example, a plurality of different tilt angles may be mixed in at least one of the tilt angles θa, θb, and θc. For example, the shape of the convex portion 33 in each of the first region 30a, the second region 30b, and the third region 30c may be different for each region. For example, the first convex portion 33a of the first region 30a is wave-shaped, the second convex portion 33b of the second region 30b is divided into dots, and the third convex portion 33c of the third region 30c is striped. There may be.
 また、例えば、上記の実施の形態では、凹凸構造層31を構成する複数の凸部33の各々は、長尺状であったが、これに限らない。例えば、複数の凸部33は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の凸部33を、ドット状に点在するように配置してもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but is not limited thereto. For example, the plurality of convex portions 33 may be arranged so as to be scattered in a matrix or the like. That is, you may arrange | position the some convex part 33 so that it may be dotted in dot shape.
 また、例えば、上記の実施の形態では、複数の凸部33の各々は、同じ形状としたが、これに限るものではなく、例えば、面内において異なる形状であってもよい。例えば、光学デバイス1におけるz軸方向の上半分と下半分とで複数の凸部33の側面35又は36の傾斜角を異ならせてもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 has the same shape, but is not limited thereto, and may have different shapes within the plane, for example. For example, the inclination angles of the side surfaces 35 or 36 of the plurality of convex portions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
 また、例えば、上記の実施の形態では、複数の凸部33の高さは、一定としたが、これに限るものではない。例えば、複数の凸部33の高さは、ランダムに異なっていてもよい。このようにすることで、光学デバイスを透過する光が虹色に見えてしまうことを抑制できる。つまり、複数の凸部33の高さをランダムに異ならせることで、凹凸界面での微小な回折光や散乱光が波長で平均化されて出射光の色付きが抑制される。 In addition, for example, in the above-described embodiment, the height of the plurality of convex portions 33 is constant, but is not limited thereto. For example, the height of the plurality of convex portions 33 may be different at random. By doing in this way, it can suppress that the light which permeate | transmits an optical device looks rainbow color. In other words, by randomly varying the height of the plurality of convex portions 33, minute diffracted light and scattered light at the concave / convex interface are averaged by wavelength, and coloring of the emitted light is suppressed.
 また、例えば、上記の実施の形態の変形例において、ナノ粒子138の屈折率が絶縁性液体137の屈折率より低くてもよい。ナノ粒子138の屈折率などに応じて印加する電圧を適宜調整することで、透明状態及び配光状態を実現することができる。 For example, in the modification of the above embodiment, the refractive index of the nanoparticles 138 may be lower than the refractive index of the insulating liquid 137. A transparent state and a light distribution state can be realized by appropriately adjusting the voltage to be applied according to the refractive index of the nanoparticles 138 and the like.
 また、例えば、上記の実施の形態の変形例において、ナノ粒子138はプラスに帯電させたが、これに限らない。つまり、ナノ粒子138をマイナスに帯電させてもよい。この場合、第1電極層40にはプラス電位を印加し、第2電極層50にはマイナス電位を印加することで、第1電極層40と第2電極層50との間に直流電圧を印加するとよい。 For example, in the modification of the above embodiment, the nanoparticles 138 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 138 may be negatively charged. In this case, a direct voltage is applied between the first electrode layer 40 and the second electrode layer 50 by applying a positive potential to the first electrode layer 40 and applying a negative potential to the second electrode layer 50. Good.
 また、複数のナノ粒子138には、光学特性の異なる複数種類のナノ粒子が含まれてもよい。例えば、プラスに帯電させた透明の第1ナノ粒子と、マイナスに帯電させた不透明(黒色など)の第2ナノ粒子とを含んでもよい。例えば、第2ナノ粒子を凝集させて偏在させることで、光学デバイス101に遮光機能を持たせてもよい。 In addition, the plurality of nanoparticles 138 may include a plurality of types of nanoparticles having different optical characteristics. For example, a transparent first nanoparticle charged positively and an opaque (black or the like) second nanoparticle charged negatively may be included. For example, the optical device 101 may have a light shielding function by aggregating and unevenly distributing the second nanoparticles.
 また、上記の実施の形態では、光学デバイス1に入射する光として太陽光を例示したが、これに限らない。例えば、光学デバイス1に入射する光は、照明装置などの発光装置が発する光であってもよい。 In the above embodiment, the sunlight is exemplified as the light incident on the optical device 1, but the present invention is not limited to this. For example, the light incident on the optical device 1 may be light emitted from a light emitting device such as a lighting device.
 また、上記の実施の形態では、光学デバイス1は、窓91の屋内側の面に貼り付けたが、窓91の屋外側の面に貼り付けてもよい。屋内側に貼り付けることで、光学素子の劣化を抑制することができる。また、光学デバイス1を窓91に貼り付けたが、光学デバイスを建物90の窓そのものとして用いてもよい。また、光学デバイス1は、建物90の窓91に設置する場合に限るものではなく、例えば車の窓などに設置してもよい。また、光学デバイス1は、例えば、照明器具の透光カバーなどの配光制御部材などに利用することもできる。あるいは、光学デバイス1は、凹凸構造の界面での光の散乱を利用した目隠し部材としても利用することができる。 In the above embodiment, the optical device 1 is attached to the indoor side surface of the window 91, but may be attached to the outdoor side surface of the window 91. By pasting on the indoor side, deterioration of the optical element can be suppressed. Further, although the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself. The optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed, for example, in a car window. The optical device 1 can also be used for a light distribution control member such as a light-transmitting cover of a lighting fixture, for example. Alternatively, the optical device 1 can also be used as a blindfold member that utilizes light scattering at the interface of the concavo-convex structure.
 なお、これらの変形例は、他の実施の形態及び変形例にも適用できる。 Note that these modified examples can be applied to other embodiments and modified examples.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1、101 光学デバイス
10 第1基材
20 第2基材
30、130 配光層
30a 第1領域
30b 第2領域
30c 第3領域
31 凹凸構造層
32、132 屈折率可変層
33 凸部
33a 第1凸部
33b 第2凸部
33c 第3凸部
38 液晶材料(屈折率可変材料)
40 第1電極層
40a、50a 第1電極片
40b、50b 第2電極片
40c、50c 第3電極片
50 第2電極層
60 接着層
70 光学システム
71 制御部
DESCRIPTION OF SYMBOLS 1,101 Optical device 10 1st base material 20 2nd base material 30, 130 Light distribution layer 30a 1st area | region 30b 2nd area | region 30c 3rd area | region 31 Uneven structure layer 32, 132 Refractive index variable layer 33 Convex part 33a 1st Convex part 33b Second convex part 33c Third convex part 38 Liquid crystal material (refractive index variable material)
40 1st electrode layer 40a, 50a 1st electrode piece 40b, 50b 2nd electrode piece 40c, 50c 3rd electrode piece 50 2nd electrode layer 60 Adhesive layer 70 Optical system 71 Control part

Claims (8)

  1.  透光性を有する第1基材と、
     前記第1基材に対向して配置された、透光性を有する第2基材と、
     前記第1基材と前記第2基材との間に互いに対向して配置された、透光性を有する第1電極層及び第2電極層と、
     前記第1電極層と前記第2電極層との間に配置され、入射した光を配光する配光層とを備え、
     前記配光層は、
     前記光を反射可能な反射面を各々が有する複数の凸部を有する凹凸構造層と、
     前記複数の凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、
     前記配光層は、平面視において配光方向が異なる複数の領域に区分され、領域毎に前記反射面の向きが異なっている
     光学デバイス。
    A first base material having translucency;
    A second substrate having translucency, disposed opposite to the first substrate;
    A first electrode layer and a second electrode layer having translucency, disposed opposite to each other between the first base material and the second base material;
    A light distribution layer disposed between the first electrode layer and the second electrode layer for distributing incident light;
    The light distribution layer is
    A concavo-convex structure layer having a plurality of convex portions each having a reflective surface capable of reflecting the light;
    A refractive index variable layer that is arranged so as to fill a space between the plurality of convex portions, and whose refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer,
    The light distribution layer is divided into a plurality of regions having different light distribution directions in plan view, and the direction of the reflecting surface is different for each region.
  2.  前記複数の領域には、
     第1方向に並んで配置された複数の第1凸部であって、各々の前記反射面が前記第1方向に直交する方向に延在する複数の第1凸部を有する第1領域と、
     前記第1方向とは異なる第2方向に並んで配置された複数の第2凸部であって、各々の前記反射面が前記第2方向に直交する方向に延在する複数の第2凸部を有する第2領域とが含まれ、
     前記複数の第1凸部の平面視形状は、前記複数の第2凸部の平面視形状の線対称な形状である
     請求項1に記載の光学デバイス。
    In the plurality of regions,
    A plurality of first protrusions arranged side by side in a first direction, each of the reflective surfaces having a plurality of first protrusions extending in a direction perpendicular to the first direction;
    A plurality of second protrusions arranged side by side in a second direction different from the first direction, each of the reflection surfaces extending in a direction perpendicular to the second direction. And a second region having
    2. The optical device according to claim 1, wherein the plurality of first protrusions in a plan view shape is a line-symmetric shape of the plurality of second protrusions in a plan view shape.
  3.  前記複数の領域には、さらに、
     前記第1方向及び前記第2方向とは異なる第3方向に並んで配置された複数の第3凸部であって、各々の前記反射面が前記第3方向に直交する方向に延在する複数の第3凸部を有する第3領域が含まれる
     請求項1又は2に記載の光学デバイス。
    The plurality of regions further includes
    A plurality of third convex portions arranged in a third direction different from the first direction and the second direction, each reflecting surface extending in a direction orthogonal to the third direction. The optical device according to claim 1, wherein a third region having the third convex portion is included.
  4.  前記第1電極層及び前記第2電極層の少なくとも一方は、複数の電極片から構成され、
     前記複数の電極片は、前記複数の領域の各々に対応している
     請求項1~3のいずれか1項に記載の光学デバイス。
    At least one of the first electrode layer and the second electrode layer is composed of a plurality of electrode pieces,
    The optical device according to any one of claims 1 to 3, wherein the plurality of electrode pieces correspond to each of the plurality of regions.
  5.  さらに、
     前記凹凸構造層と前記第1電極層とを接着する接着層を備える
     請求項1~4のいずれか1項に記載の光学デバイス。
    further,
    The optical device according to any one of claims 1 to 4, further comprising an adhesive layer that adheres the uneven structure layer and the first electrode layer.
  6.  請求項4に記載の光学デバイスと、
     前記複数の電極片に選択的に電位を与えることで、前記配光層の光学状態を前記領域毎に制御する制御部とを備える
     光学システム。
    An optical device according to claim 4,
    An optical system comprising: a control unit that controls the optical state of the light distribution layer for each of the regions by selectively applying a potential to the plurality of electrode pieces.
  7.  前記制御部は、
     前記第1領域を配光状態にし、前記第2領域を透明状態にする第1動作モードと、
     前記第1領域を透明状態にし、前記第2領域を配光状態にする第2動作モードとを切り替えて実行する
     請求項6に記載の光学システム。
    The controller is
    A first operation mode in which the first region is in a light distribution state and the second region is in a transparent state;
    The optical system according to claim 6, wherein the optical system is executed by switching between a second operation mode in which the first region is in a transparent state and the second region is in a light distribution state.
  8.  透光性を有する第1基材上に、透光性を有する第1電極層を形成する工程と、
     複数の凸部を有する凹凸構造層を複数形成する工程と、
     前記第1電極層上に、接着層を介して複数の前記凹凸構造層を貼り付ける工程と、
     透光性を有する第2基材上に、透光性を有する第2電極層を形成する工程と、
     印加される電界に応じて屈折率が変化する屈折率可変材料を、前記複数の凸部の間に充填する工程と、
     前記第1電極層と前記第2電極層とが複数の前記凹凸構造層を間に挟んで対向するように、前記第1基材と前記第2基材とを貼り合わせる工程とを含み、
     前記貼り付ける工程では、複数の前記凹凸構造層の1つを、他の1つとは前記凸部の並び方向を異ならせて貼り付ける
     光学デバイスの製造方法。
    Forming a light-transmitting first electrode layer on a light-transmitting first substrate;
    Forming a plurality of concavo-convex structure layers having a plurality of convex portions;
    A step of attaching a plurality of the concavo-convex structure layers on the first electrode layer via an adhesive layer;
    Forming a translucent second electrode layer on the translucent second substrate; and
    Filling a refractive index variable material whose refractive index changes according to an applied electric field between the plurality of convex portions;
    Bonding the first base material and the second base material so that the first electrode layer and the second electrode layer face each other with a plurality of the concavo-convex structure layers interposed therebetween,
    In the attaching step, one of the plurality of concavo-convex structure layers is attached with a different arrangement direction of the convex portions from the other one. An optical device manufacturing method.
PCT/JP2017/042319 2017-02-24 2017-11-27 Optical device, optical system, and method for manufacturing optical device WO2018154893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033604A JP2020064089A (en) 2017-02-24 2017-02-24 Optical device, optical system and manufacturing method of optical device
JP2017-033604 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154893A1 true WO2018154893A1 (en) 2018-08-30

Family

ID=63253223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042319 WO2018154893A1 (en) 2017-02-24 2017-11-27 Optical device, optical system, and method for manufacturing optical device

Country Status (2)

Country Link
JP (1) JP2020064089A (en)
WO (1) WO2018154893A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850682A (en) * 1986-07-14 1989-07-25 Advanced Environmental Research Group Diffraction grating structures
JPH09506445A (en) * 1994-10-06 1997-06-24 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Display device
WO2013161304A1 (en) * 2012-04-26 2013-10-31 パナソニック株式会社 Optical deflection element and image display device using this
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device
WO2016132732A1 (en) * 2015-02-18 2016-08-25 パナソニックIpマネジメント株式会社 Display panel
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850682A (en) * 1986-07-14 1989-07-25 Advanced Environmental Research Group Diffraction grating structures
JPH09506445A (en) * 1994-10-06 1997-06-24 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Display device
WO2013161304A1 (en) * 2012-04-26 2013-10-31 パナソニック株式会社 Optical deflection element and image display device using this
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device
WO2016132732A1 (en) * 2015-02-18 2016-08-25 パナソニックIpマネジメント株式会社 Display panel
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device

Also Published As

Publication number Publication date
JP2020064089A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2017122245A1 (en) Optical device, and window with light distribution function
WO2018150673A1 (en) Optical device
JP2020003643A (en) Optical device
WO2018150662A1 (en) Optical device and optical system
WO2018154893A1 (en) Optical device, optical system, and method for manufacturing optical device
JP2017161735A (en) Optical device
JP6628167B2 (en) Optical device
JP6402959B2 (en) Optical device
JP2019204064A (en) Optical device
JP6681588B2 (en) Optical device and method of manufacturing optical device
WO2018150674A1 (en) Optical device
WO2018150675A1 (en) Optical device and optical system
JP2020016707A (en) Light distribution control device
JP6807553B2 (en) Optical device
JP2019184756A (en) Light distribution control device
WO2019123967A1 (en) Light distribution control device
WO2018150663A1 (en) Optical device
WO2019188191A1 (en) Light distribution control device
JP2019168573A (en) Optical device
WO2019163377A1 (en) Light distribution control device
WO2019021576A1 (en) Optical device and optical system
JP2020016860A (en) Light distribution control device and manufacturing method therefor
WO2018154855A1 (en) Optical device
JP2018136432A (en) Optical device
WO2019163474A1 (en) Light distribution control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP