WO2018150662A1 - Optical device and optical system - Google Patents

Optical device and optical system Download PDF

Info

Publication number
WO2018150662A1
WO2018150662A1 PCT/JP2017/040734 JP2017040734W WO2018150662A1 WO 2018150662 A1 WO2018150662 A1 WO 2018150662A1 JP 2017040734 W JP2017040734 W JP 2017040734W WO 2018150662 A1 WO2018150662 A1 WO 2018150662A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical device
light
electrode layer
blue
Prior art date
Application number
PCT/JP2017/040734
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 北村
太田 益幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018150662A1 publication Critical patent/WO2018150662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to an optical device and an optical system provided with the optical device.
  • a daylighting film in which external light such as sunlight incident from the outside is taken indoors (see, for example, Patent Document 1).
  • this invention aims at providing an optical device which can make transmitted light into a desired color, and an optical system provided with the said optical device.
  • an optical device includes a light-transmitting first substrate, a light-transmitting second substrate facing the first substrate, and a light-transmitting second substrate.
  • a first light distribution layer disposed between the first base material and the second base material and arranged opposite to each other with the first light distribution layer interposed therebetween and the first light distribution layer distributing light incident thereon
  • An electrode layer and a second electrode layer wherein the first light distribution layer is filled with a first concave-convex structure layer having a plurality of first convex portions and a first concave portion between the plurality of first convex portions
  • a first variable-refractive-index layer which is disposed in such a manner that the refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer, and a blue layer provided in the first recess Including.
  • An optical system includes a first optical device that is the optical device, and a second optical device that is disposed side by side with the first optical device in a plane along the vertical direction.
  • the second optical device includes a light transmitting third base, a fourth base facing the third base, and a light transmitting third base and the fourth base. And a third electrode layer and a fourth electrode layer disposed opposite to each other with the second light distribution layer interposed therebetween.
  • the second light distribution layer is disposed so as to fill a second concave / convex structure layer having a plurality of second convex portions and a second concave portion between the plurality of second convex portions, and the third electrode A second variable-refractive-index layer whose refractive index changes in accordance with a voltage applied between the layer and the fourth electrode layer; Vice is located above the said second optical device.
  • FIG. 1 is a cross-sectional view of the optical device according to the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device according to the first embodiment.
  • FIG. 3A is a diagram for describing an operation (light distribution state) when the optical device operates in the non-application mode when the optical device according to the first embodiment is installed in a window.
  • FIG. 3B is a diagram for describing an operation (transparent state) when the optical device is operated in the voltage application mode when the optical device according to the first embodiment is installed in the window.
  • FIG. 4A is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the first embodiment.
  • FIG. 4B is an enlarged cross-sectional view for illustrating a voltage application mode (transparent state) of the optical device according to Embodiment 1.
  • FIG. 5 is an enlarged cross-sectional view of an optical device according to a modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of the optical device according to the second embodiment.
  • FIG. 7 is an enlarged cross-sectional view of the optical device according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the second embodiment.
  • FIG. 9 is an enlarged cross-sectional view of an optical device according to the first modification of the second embodiment.
  • FIG. 10 is an enlarged cross-sectional view of an optical device according to the second modification of the second embodiment.
  • FIG. 11 is a cross-sectional view showing the configuration of the optical system according to the third embodiment.
  • FIG. 12 is a schematic view for explaining a light distribution state of the optical system according to the third embodiment.
  • FIG. 13 is an enlarged cross-sectional view of an optical system according to a modification of the embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • the x-axis, the y-axis and the z-axis indicate three axes of the three-dimensional orthogonal coordinate system.
  • the z-axis direction is the vertical direction
  • the direction perpendicular to the z-axis is the horizontal direction.
  • the positive direction of the z axis is vertically upward.
  • the “thickness direction” means the thickness direction of the optical device, and is a direction perpendicular to the main surfaces of the first base and the second base, “plan view” When it sees from the direction perpendicular to the principal surface of the 1st substrate or the 2nd substrate.
  • FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
  • the optical device 1 is a light control device that controls light incident on the optical device 1.
  • the optical device 1 is a light distribution element capable of changing the traveling direction of light incident on the optical device 1 (that is, distributing light) and causing the light to be emitted.
  • the optical device 1 is configured to transmit incident light, and includes a first base 10, a second base 20, a light distribution layer 30, and a first light.
  • An electrode layer 40 and a second electrode layer 50 are provided.
  • An adhesion layer may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side in order to bring the first electrode layer 40 into close contact with the uneven structure layer 31 of the light distribution layer 30.
  • the adhesion layer is, for example, a translucent adhesive sheet, or a resin material generally referred to as a primer.
  • the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the first base material 10 and the second base material 20 forming a pair. Configuration.
  • a plurality of particulate spacers may be dispersed in a plane, or a columnar structure may be formed.
  • the first base 10 and the second base 20 are translucent substrates having translucency.
  • a glass substrate or a resin substrate can be used as the first base 10 and the second base 20.
  • the material of the glass substrate examples include soda glass, alkali-free glass and high refractive index glass.
  • the material of the resin substrate examples include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA) or epoxy.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA acrylic
  • the glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage that scattering at the time of breakage is small.
  • the first base 10 and the second base 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board
  • the second base material 20 is an opposing base material facing the first base material 10 and is disposed at a position facing the first base material 10.
  • the first base 10 and the second base 20 are disposed substantially in parallel at a predetermined distance such as 10 ⁇ m to 30 ⁇ m, for example.
  • the first base material 10 and the second base material 20 are bonded by a sealing resin such as an adhesive formed in the shape of a frame on the outer periphery of each end.
  • planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it does not restrict to this, Even if it is polygons other than a circle or a square Well, any shape may be employed.
  • the light distribution layer 30 is disposed between the first base 10 and the second base 20.
  • the light distribution layer 30 has translucency, and transmits incident light.
  • the light distribution layer 30 distributes the incident light. That is, when light passes through the light distribution layer 30, the light distribution layer 30 changes the traveling direction of the light.
  • the light distribution layer 30 has a concavo-convex structure layer 31, a refractive index variable layer 32, and a blue layer 36.
  • the light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
  • the uneven structure layer 31 is a fine shape layer provided to make the surface (interface) of the variable-refractive-index layer 32 uneven.
  • the uneven structure layer 31 has a plurality of convex portions 33 and a plurality of concave portions 34, as shown in FIG.
  • the concavo-convex structure layer 31 is a concavo-convex structure constituted by a plurality of convex portions 33 of micro order size.
  • a plurality of concave portions 34 are between the plurality of convex portions 33. That is, one concave portion 34 is between two adjacent convex portions 33.
  • the plurality of protrusions 33 are a plurality of protrusions arranged in the z-axis direction (first direction) parallel to the main surface of the first base material 10 (the surface on which the first electrode layer 40 is provided). . That is, in the present embodiment, the z-axis direction is the direction in which the plurality of convex portions 33 are arranged.
  • Each of the plurality of projections 33 has a tapered shape from the root to the tip.
  • the cross-sectional shape of each of the plurality of projections 33 is a tapered shape that tapers along the direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20 .
  • the cross-sectional shape (yz cross section) of the convex part 33 is a trapezoid specifically, it is not restricted to this.
  • the cross-sectional shape of the convex portion 33 may be a triangle, another polygon, or a polygon including a curve.
  • a gap may be provided between the tip of the convex portion 33 and the second electrode layer 50.
  • the gap is filled with the variable-refractive-index layer 32.
  • each of the plurality of protrusions 33 has a pair of side surfaces 33 a and 33 b facing the recess 34.
  • the pair of side surfaces 33a and 33b are surfaces intersecting in the z-axis direction.
  • Each of the pair of side surfaces 33a and 33b is an inclined surface which is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 33a and 33b (the width of the convex portion 33 (z-axis direction ) Is gradually reduced from the first base 10 to the second base 20.
  • the side surface 33 a is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33.
  • the side surface 33a is a refractive surface that refracts incident light.
  • the side surface 33 b is, for example, a side surface (upper side surface) on the vertically upper side among a plurality of side surfaces constituting the convex portion 33.
  • the side surface 33 b is a reflection surface (total reflection surface) that reflects incident light (total reflection).
  • the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is a long convex portion linearly extending along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a trapezoidal cross-sectional shape and is an elongated substantially square pole shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction There is. Each of the plurality of protrusions 33 has the same shape, but may have different shapes.
  • the height (length in the y-axis direction) of each of the plurality of protrusions 33 is, for example, 2 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the width (length in the z-axis direction) of each of the plurality of protrusions 33 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but not limited thereto.
  • the width (z-axis direction) of the recess 34 is, for example, 0 ⁇ m to 100 ⁇ m. That is, the two adjacent convex portions 33 may be disposed at a predetermined distance without contacting with each other, or may be disposed in contact with each other. The distance between the adjacent convex portions 33 is not limited to 0 ⁇ m to 100 ⁇ m.
  • a material of the convex portion 33 for example, a light transmitting resin material such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
  • the convex portion 33 is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
  • the concavo-convex structure layer 31 can form the concavo-convex structure whose cross section has a trapezoidal shape by mold pressing, for example, using an acrylic resin having a refractive index of 1.5.
  • the height of the projections 33 is, for example, 10 ⁇ m, and the plurality of projections 33 are arranged at equal intervals of 2 ⁇ m in the z-axis direction at equal intervals.
  • the thickness of the root of the convex portion 33 is 5 ⁇ m, for example.
  • the distance between the roots of adjacent convex portions 33 can take, for example, a value of 0 ⁇ m to 5 ⁇ m.
  • the refractive index variable layer 32 is disposed so as to fill the gaps 34 between the plurality of convex portions 33 of the uneven structure layer 31.
  • the refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index of the variable-refractive-index layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 32 functions as a refractive index adjustment layer whose refractive index in the visible light band can be adjusted by application of an electric field.
  • an electric field is applied to the light distribution layer 30 to change the alignment state of the liquid crystal molecules 35 to change the refractive index.
  • the refractive index of the variable layer 32 changes.
  • the birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 35 having birefringence.
  • a liquid crystal for example, nematic liquid crystal, smectic liquid crystal, or cholesteric liquid crystal in which liquid crystal molecules 35 are rod-like molecules can be used.
  • an ordinary light refractive index (no) is 1.5
  • an extraordinary light refractive index (ne) is 1.7
  • a positive liquid crystal can be used.
  • the refractive index variable layer 32 is, for example, an end portion of each of the first base material 10 on which the first electrode layer 40 and the concavo-convex structure layer 31 are formed, and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method in a state where the outer periphery is sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by dropping the liquid crystal material onto the first electrode layer 40 and the concavo-convex structure layer 31 of the first base material 10 and then bonding the second base material 20 together.
  • FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 4A described later), and the liquid crystal molecules 35 are aligned such that the major axis is substantially parallel to the x axis.
  • a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 35 are aligned so that the major axis is substantially parallel to the y axis (see FIG. 4B described later) ).
  • an electric field may be applied to the refractive index variable layer 32 by AC power, and an electric field may be applied by DC power.
  • the voltage waveform may be a sine wave or a square wave.
  • the blue layer 36 is provided in the plurality of recesses 34.
  • the blue layer 36 is provided along the side surface 33 b of each of the plurality of convex portions 33.
  • the blue layer 36 is formed in a thin film on the side surface 33 b with a predetermined film thickness.
  • the film thickness of the blue layer 36 is, for example, 1 ⁇ m, but is not limited to this.
  • the blue layer 36 is formed in a stripe shape extending in the x-axis direction along the side surface 33 b.
  • the blue layer 36 is provided on the side surfaces 33 b of all the convex portions 33, but the present invention is not limited to this.
  • the blue layer 36 may be provided every n (n is a natural number of 1 or more) of the plurality of convex portions 33 arranged along the z-axis direction.
  • the blue layer 36 may be provided discretely (in the form of dots) on the side surface 33 b.
  • the blue layer 36 contains, for example, a blue pigment.
  • a blue pigment Prussian blue or phthalocyanine blue can be used.
  • the blue layer 36 is formed by forming a coating film including a blue pigment on the entire surface of the concavo-convex structure layer 31 along the concavo-convex surface and then removing the coating film located at the bottom of the recess 34 by etching or the like.
  • the blue layer 36 may be formed by an anodic oxidation method or the like.
  • a transparent oxide film may be formed on the surface of the blue layer 36.
  • An oxide film (not shown) can suppress mixing of the blue layer 36 with the refractive index variable layer 32 (liquid crystal).
  • the oxide film is, for example, a silicon oxide film (SiO 2 ).
  • the blue layer 36 may also contain a wavelength conversion material that converts ultraviolet light into blue light.
  • the blue layer 36 may contain a blue phosphor material such as BAM (BaMgAl 10 O 17 : Eu 2+ ).
  • BAM blue phosphor material
  • the transmitted light can be made bluish while suppressing the transmission of the ultraviolet light.
  • first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 are not only electrically but also arranged in a pair, so as to face each other between the first base material 10 and the second base material 20. It is arranged. Specifically, the first electrode layer 40 and the second electrode layer 50 are disposed to sandwich the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 have translucency and transmit incident light.
  • the first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers.
  • the material of the transparent conductive layer is a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductor containing resin made of a resin containing a conductor such as silver nanowire or conductive particles, or And metal thin films such as silver thin films can be used.
  • the first electrode layer 40 and the second electrode layer 50 may have a single-layer structure of these, or a laminated structure of these (for example, a laminated structure of a transparent metal oxide and a metal thin film).
  • each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
  • the first electrode layer 40 is disposed between the first base 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
  • the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second base material 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
  • the first electrode layer 40 and the second electrode layer 50 are configured, for example, to enable electrical connection with an external power supply.
  • an electrode pad or the like for connection to an external power source may be drawn out from each of the first electrode layer 40 and the second electrode layer 50 and formed on the first base 10 and the second base 20.
  • the first electrode layer 40 and the second electrode layer 50 are each formed by depositing a conductive film such as ITO by, for example, vapor deposition or sputtering.
  • optical state of optical device Subsequently, the optical state (operation mode) of the optical device 1 will be described while showing an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 3A and 3B.
  • FIGS. 3A and 3B each show an example in which an optical system 60 including the optical device 1 according to the present embodiment is applied to a building 90.
  • FIG. Specifically, FIGS. 3A and 3B are diagrams for explaining the operation when the optical device 1 is operated in each operation mode when the optical device 1 is installed in the window 91.
  • the optical system 60 includes the optical device 1 and a controller 61.
  • the shaded area of the dot extending from the optical device 1 indicates the area through which the light (specifically, the S polarization component) which has passed through the optical device 1 passes.
  • the optical device 1 can transmit incident light. For example, by installing the optical device 1 in the window 91 of the building 90, it can be realized as a window with a light distribution function.
  • the optical device 1 is bonded, for example, to the existing window 91 via the adhesive layer.
  • the optical device 1 is installed in the window 91 such that the main surfaces of the first base 10 and the second base 20 are parallel to the vertical direction (z-axis direction).
  • the first base 10 is on the outdoor side
  • the second base 20 is on the indoor side
  • the side surface 33 b of the convex portion 33 is disposed on the ceiling 92 side and the side surface 33 a is on the floor 93 side.
  • control part 61 is installed on the floor 93, this is illustrated typically and it is not specifically limited to the installation place of the control part 61.
  • the control unit 61 may be integrally formed with the optical device 1 and may be fixed to a window frame of the window 91 or the like.
  • the control unit 61 may be embedded in the ceiling 92, the floor 93 or a wall of the building 90.
  • the control unit 61 is a control unit that drives the optical device 1. Specifically, the control unit 61 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50.
  • control unit 61 has two operation modes according to the application state of the voltage between first electrode layer 40 and second electrode layer 50. Specifically, the two operation modes are a non-application mode (first operation mode) in which no voltage is applied and a voltage application mode (second operation mode) in which a voltage is substantially uniformly applied between the electrode layers.
  • the control unit 61 switches and executes two operation modes based on user operation or predetermined schedule information.
  • the orientation of the liquid crystal molecules 35 contained in the refractive index variable layer 32 changes in accordance with the electric field applied to the light distribution layer 30.
  • the liquid crystal molecules 35 are rod-like liquid crystal molecules having birefringence, the refractive index that the light receives varies depending on the polarization state of the incident light.
  • the refractive index of the convex portion 33 is 1.5
  • the ordinary light refractive index (no) is 1.5
  • the extraordinary light refractive index (ne) is The case of a positive-type liquid crystal molecule of 1.7 will be described as an example.
  • FIGS. 4A and 4B are each an enlarged sectional view for explaining each operation mode of the optical device 1 according to the present embodiment.
  • FIGS. 4A and 4B paths of light (for example, sunlight) incident on the optical device 1 are indicated by thick arrows. Although light is actually refracted when entering the first base material 10 and exiting from the second base material 20, changes in the path due to these refractions are not shown.
  • light for example, sunlight
  • FIG. 4A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of light passing through the optical device 1.
  • the optical device 1 When driven in the non-application mode, the optical device 1 is in a light distribution state in which the traveling direction of incident light is changed.
  • the control unit 61 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the non-application mode. Specifically, when the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, the ground potential), an electric field is not applied to the light distribution layer 30. Therefore, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the light incident on the optical device 1 includes P-polarization (P-polarization component) and S-polarization (S-polarization component).
  • P-polarization component P-polarization component
  • S-polarization component S-polarization component
  • the oscillation direction of the P-polarized light LP1 and LP2 is substantially parallel to the short axis of the liquid crystal molecule 35 in any of the non-application mode and the voltage application mode.
  • the refractive index of the liquid crystal molecules 35 for the P-polarized light LP1 and LP2 does not depend on the operation mode, and is the ordinary refractive index (no), specifically 1.5.
  • the refractive index for the P-polarized light LP1 and LP2 does not depend on the operation mode and becomes substantially constant in the light distribution layer 30, so as shown in FIG. 4A, the P-polarized light LP1 and LP2 Continue straight ahead at 30.
  • the refractive index of the liquid crystal molecule 35 for the S-polarized light LS1 and LS2 changes in accordance with the operation mode.
  • the refractive index received by the S-polarized light LS1 and LS2 is 1.5 for the convex portion 33, while the refractive index variable layer 32 is 1.7. Therefore, as shown in FIG. 4A, the S-polarized light LS1 of the light obliquely incident on the optical device 1 is refracted by the side surface 33a of the convex portion 33 to change its traveling direction, and then the side surface 33b of the convex portion 33 Is reflected (total reflection). The light reflected by the side surface 33 b is emitted obliquely upward. That is, the optical device 1 emits the S-polarized light LS1 of the light that has entered obliquely downward, obliquely upward. Therefore, as shown in FIG. 3A, the s-polarized light LS1 of light such as sunlight incident obliquely downward is bent in its traveling direction by the optical device 1 and illuminates the ceiling 92 of the building 90.
  • the S-polarized light LS2 of the light incident substantially perpendicularly to the optical device 1 from the front does not pass through the side surface 33a and the side surface 33b. For this reason, since the optical device 1 is passed as it is, the person outside the building 90 can see the outside scenery as it is.
  • FIG. 4B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of light passing through the optical device 1.
  • the optical device 1 When driven in the voltage application mode, the optical device 1 is in a light transmission (transparent) state in which incident light is passed (transmitted) as it is (without changing the traveling direction).
  • the control unit 61 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the refractive index received by the incident light is 1.5 for both the convex portion 33 and the refractive index variable layer 32 in both of the P polarized light and the S polarized light. Therefore, as shown in FIG. 4B, light obliquely incident on the optical device 1 passes through the optical device 1 as it is for both the P-polarized light LP1 and the S-polarized light LS1. That is, the optical device 1 emits the light incident obliquely downward as it is obliquely downward. Therefore, as shown to FIG. 3B, light, such as sunlight which enters diagonally downward, passes the optical device 1 as it is, and irradiates the part near the window 91 of the floor 93 of the building 90. As shown in FIG.
  • polarized-light LS2 pass the optical device 1 as it is. For this reason, since the optical device 1 is passed as it is, the person outside the building 90 can see the outside scenery as it is.
  • the optical state according to the electric field applied to the light distribution layer 30 (voltage applied between the first electrode layer 40 and the second electrode layer 50) Can change.
  • the transparent state and the light distribution state are switched, it is possible to form an intermediate optical state between the light distribution state and the transparent state according to the applied voltage.
  • a plurality of voltage levels to be applied may be set and switching may be performed as appropriate.
  • the angle of light distribution by the optical device 1 is smaller in the intermediate optical state than in the light distribution state. For example, light can travel to the far side of the interior of the building 90.
  • the S-polarized light LS1 passes through the blue layer 36 formed on the side surface 33b. Therefore, the S-polarized light LS1 emitted from the optical device 1 is bluish light. That is, the light distributed by the optical device 1 becomes bluish light.
  • the P-polarized light LP1 also passes through the blue layer 36, the P-polarized light LP1 also becomes bluish light. Further, even in the voltage application mode, as shown in FIG. 4B, since the P-polarized light LP1 and the S-polarized light LS1 pass through the blue layer 36, they become bluish light.
  • the optical device 1 when a person indoors looks at the optical device 1 from below, he can see bluish light. For example, the blue sky can be viewed as a clearer blue sky.
  • the P-polarized light LP2 and the S-polarized light LS2 do not pass through the blue layer 36 formed on the side surface 33b. Therefore, the bluishness of the P-polarized light LP2 and the S-polarized light LS2 emitted from the optical device 1 is suppressed.
  • part of light incident from the front passes through the side surface 33a or the side surface 33b, so that the traveling direction of the light is bent by refraction or reflection.
  • the light passing through the side surface 33 b also passes through the blue layer 36 and thus becomes bluish light.
  • the optical device 1 includes the light-transmitting first base material 10, the second base material 20 facing the first base material 10, and the light-transmitting property, A light distribution layer 30 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer 40 disposed opposite to each other with the light distribution layer 30 interposed therebetween. And a second electrode layer 50.
  • the light distribution layer 30 is disposed so as to fill the concavo-convex structure layer 31 having the plurality of convex portions 33 and the concave portions 34 between the plurality of convex portions 33, and the light distribution layer 30 includes the first electrode layer 40 and the second electrode layer 50. It includes a refractive index variable layer 32 whose refractive index changes in accordance with a voltage applied between them, and a blue layer 36 provided in the recess 34.
  • the blue layer 36 is provided in the recess 34, even if the short wavelength component (blue component) is absorbed by the first base material 10 and the second base material 20, the light passes through the blue layer 36. You can make up for it. Therefore, the light transmitted through the optical device 1 can be made into a desired color (for example, bluish light). In addition, since the light passing through the optical device 1 becomes white light with a high color temperature, the luxury of the optical device 1 can also be enhanced.
  • the blue layer 36 is provided along the side surface 33 b of the plurality of convex portions 33 facing the concave portion 34.
  • the blue layer 36 is provided on the side surface 33b functioning as a reflection surface, so the light distributed by the optical device 1 (specifically, the S-polarized light LS1 shown in FIG. 4A) is bluish It can be light.
  • the transmitted light of the optical device 1 specifically, P-polarized light LP1 shown in FIGS. 4A and 4B, etc. looks bluish when viewed from below Become a light.
  • the blue sky can be viewed as a clearer blue sky.
  • the blue layer 36 may contain a wavelength conversion material that converts ultraviolet light into blue light.
  • the transmitted light can be made bluish while suppressing the transmission of the ultraviolet light.
  • FIG. 5 is an enlarged cross-sectional view of an optical device 1a according to this modification.
  • An optical device 1a shown in FIG. 5 includes a light distribution layer 30a.
  • the light distribution layer 30 a newly includes a light shielding layer 37 as compared to the light distribution layer 30 according to the first embodiment.
  • light scattering may occur at the interface between the first electrode layer 40 and the refractive index variable layer 32 in the non-application mode (light distribution state).
  • scattered light When scattered light is generated, it appears as a streak (sunlight column) of light extending in the direction in which the convex portions 33 are arranged (z-axis direction), which causes local glare.
  • the light shielding layer 37 is provided on the bottom of the recess 34.
  • the light shielding layer 37 shields at least a part of the incident light.
  • light blocking means not only blocking incident light completely but also blocking only a part and transmitting the rest.
  • blocking refers to a state in which blocking is dominant over transmission of light.
  • the transmittance of the light shielding layer 37 to visible light may be less than 50%, preferably 20% or less, or 10% or less.
  • the light shielding layer 37 is provided at the bottom of the recess 34.
  • the light shielding layer 37 is formed on the first electrode layer 40 at the bottom of the recess 34. That is, the light shielding layer 37 is disposed between the first electrode layer 40 and the refractive index variable layer 32.
  • the light shielding layer 37 contains a black pigment.
  • the black aqueous ink is applied in the recess 34 using a bar coater, the light shielding layer 37 is formed by drying under an environment of 100 ° C. Thereafter, a light shielding layer 37 is formed by forming an oxide film such as SiO 2 on the surface by sputtering.
  • the light shielding layer 37 provided in the recess 34 can suppress scattered light generated between the first electrode layer 40 and the refractive index variable layer 32. Therefore, it can suppress that a sunlight pillar generate
  • FIG. 6 is a cross-sectional view of the optical device 101 according to the present embodiment.
  • FIG. 7 is an enlarged cross-sectional view of the optical device 101 according to the present embodiment, and is an enlarged cross-sectional view of a region VII surrounded by an alternate long and short dash line in FIG.
  • the optical device 101 according to the present embodiment has a light distribution layer 130 instead of the light distribution layer 30 as compared to the optical device 1 according to the first embodiment. It is different. Specifically, the light distribution layer 130 includes the blue layer 136 instead of the blue layer 36. In the following, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • the blue layer 136 is provided on the bottom of the recess 34, not on the side surface 33b, as shown in FIG.
  • the blue layer 136 is provided on the first electrode layer 40 so as to connect the roots of the adjacent convex portions 33.
  • the thickness of the blue layer 136 is, for example, 1 ⁇ m to 2 ⁇ m, but is not limited thereto.
  • the blue layer 136 is formed in a stripe shape extending in the x-axis direction.
  • the blue layer 136 is provided in all the recesses 34, but the present invention is not limited to this.
  • the blue layer 136 may be provided every n (n is a natural number of 1 or more) of the plurality of recesses 34 arranged along the z-axis direction.
  • the blue layer 136 may be provided discretely (in the form of dots) in the x-axis direction.
  • a blue aqueous ink is applied to the inside of the recess 34 using a bar coater, and then dried under an environment of 100.degree. Thereafter, a blue layer 136 is formed by forming an oxide film such as SiO 2 on the surface by sputtering.
  • the color of the transmitted light when driven in the voltage application mode and the optical device 101 is in the transparent state is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • FIG. 8 is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device 101 according to the present embodiment.
  • a non-application mode light distribution state
  • FIG. 8 shows that light incident obliquely downward on the optical device 101 is reflected by the side surface 33 b and emitted obliquely upward.
  • the S-polarized light LS 1 passes through the blue layer 136 formed at the bottom of the recess 34. Therefore, the S-polarized light LS1 emitted from the optical device 101 is bluish light. That is, the light distributed by the optical device 101 becomes bluish light.
  • the P-polarized light LP1 passes through the blue layer 136, the P-polarized light LP1 also becomes bluish light. Therefore, when a person indoors looks at the optical device 101 from below, he can see bluish light. For example, the blue sky can be viewed as a clearer blue sky.
  • FIG. 8 also shows the path of the S-polarized light LS3 refracted by the side surface 33a.
  • the S-polarized light LS 3 has not passed through the blue layer 136.
  • some of the light to be distributed does not pass through the blue layer 136 as in the S-polarized light LS3. Therefore, compared to the first embodiment, the color of the distributed light is reduced in bluish color.
  • the P-polarized light LP2 and the S-polarized light LS2 passing through the recess 34 pass through the blue layer 136 formed at the bottom of the recess 34. Therefore, the P-polarized light LP2 and the S-polarized light LS2 emitted from the optical device 101 become bluish light.
  • the P-polarized light LP 4 and the S-polarized light LS 4 passing through the convex portion 33 do not pass through the blue layer 136 formed at the bottom of the concave portion 34. Therefore, the bluishness of the P-polarized light LP4 and the S-polarized light LS4 emitted from the optical device 101 is suppressed.
  • the area of the blue layer 136 is larger when the optical device 101 is viewed in plan. Therefore, when viewed from the front of the optical device 101, it looks bluish, so the sense of quality can be further enhanced.
  • the blue layer 136 is provided at the bottom of the recess 34.
  • the transmitted light of the optical device 101 can be made into a desired color (for example, a bluish color).
  • the blue layer 136 is provided at the bottom of the recess 34, that is, between the first electrode layer 40 and the variable-refractive-index layer 32. For this reason, when light injects into the refractive index variable layer 32 from the 1st electrode layer 40, the scattered light which arises at an interface can be suppressed.
  • Modification of Embodiment 2 Subsequently, modified examples 1 and 2 of the second embodiment will be described.
  • the configuration of the blue layer of the optical device is different compared to the second embodiment.
  • the configuration other than the blue layer of the optical device, the operation, and the like are the same as in the second embodiment.
  • differences from the second embodiment will be mainly described, and the description of the common points will be omitted or simplified.
  • FIG. 9 is an enlarged cross-sectional view of an optical device 101a according to the present modification.
  • An optical device 101a shown in FIG. 9 includes a light distribution layer 130a.
  • the light distribution layer 130 a includes a blue layer 136 a instead of the blue layer 136 as compared to the light distribution layer 130 according to the second embodiment.
  • the blue layer 136a is a layer containing a blue pigment as in the second embodiment.
  • the blue layer 136a further contains a light shielding material 137 which shields at least a part of the incident light.
  • the light shielding material 137 is, for example, a black pigment.
  • a black pigment for example, a carbon-based black pigment such as carbon black or an oxide-based black pigment can be used.
  • the blue layer 136a contains the light shielding material 137 that shields at least a part of the incident light.
  • the transmitted light of the optical device 101a can be made into a desired color (for example, a bluish color). Furthermore, according to the present modification, since the light shielding material 137 is included in the blue layer 136, the generation of a solar column can be more strongly suppressed as in the modification of the first embodiment.
  • FIG. 10 is an enlarged cross-sectional view of an optical device 101b according to the present modification.
  • An optical device 101b shown in FIG. 10 includes a light distribution layer 130b.
  • the light distribution layer 130 b further includes a light shielding layer 37 as compared to the light distribution layer 130 according to the second embodiment.
  • the light shielding layer 37 is provided on the bottom of the recess 34 and shields at least a part of the incident light, as in the modification of the first embodiment.
  • the light shielding layer 37 is stacked on the blue layer 136.
  • the light shielding layer 37 is formed on the first electrode layer 40 at the bottom of the recess 34. That is, the light shielding layer 37 is disposed between the first electrode layer 40 and the blue layer 136.
  • the blue layer 136 may be formed on the first electrode layer 40 and disposed between the first electrode layer 40 and the light shielding layer 37.
  • the light shielding layer 37 which is laminated to the blue layer 136 and shields at least part of incident light, is further provided on the bottom of the recess 34. ing.
  • the transmitted light of the optical device 101b can be made into a desired color (for example, a bluish color). Furthermore, according to the present modification, since the light shielding layer 37 is provided, the generation of the sunlight pillar can be more strongly suppressed as in the modification of the first embodiment.
  • FIG. 11 is a cross-sectional view showing the configuration of an optical system 200 according to the present embodiment.
  • the optical system 200 includes the optical device 1, an optical device 201, and a control unit 261.
  • the optical device 1 is an example of a first optical device, and is the same as the optical device 1 shown in the first embodiment.
  • the optical system 200 may include the optical device 1a or the optical device 101, 101a or 101b instead of the optical device 1.
  • the optical device 201 is an example of a second optical device, and differs from the optical device 1 in that the light distribution layer 230 is provided instead of the light distribution layer 30.
  • the light distribution layer 230 is an example of a second light distribution layer, and is different from the light distribution layer 30 in that the blue layer 36 is not provided.
  • the optical device 201 includes a first base (third base) 10, a second base (fourth base) 20, a first electrode layer (third electrode layer) 40, and a third base. And a second electrode layer (fourth electrode layer) 50.
  • the optical device 201 is disposed side by side with the optical device 1 in a plane along the vertical direction.
  • the optical device 1 is located above the optical device 201.
  • the optical device 1 and the optical device 201 are attached to the window 91 as shown in FIG.
  • the vertical direction is, for example, the vertical direction, but is not limited thereto.
  • the window 91 may be inclined obliquely to the vertical direction.
  • the control unit 261 controls each of the optical device 1 and the optical device 201. Specifically, the control unit 261 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 of the optical device 1. Further, the control unit 261 applies an electric field to the light distribution layer 230 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 of the optical device 201.
  • the optical device 1 and the optical device 201 differ only in the presence or absence of the blue layer 36, they will be in the same optical state if the electric field applied to each of the light distribution layer 30 and the light distribution layer 230 is the same. For example, when no electric field is applied to the light distribution layer 30 and the light distribution layer 230 (that is, in the non-application mode), the optical device 1 and the optical device 201 distribute incident light in the same direction. As the electric field applied to each of the light distribution layer 30 and the light distribution layer 230 increases, the light distribution angle decreases, and the optical device 1 and the optical device 201 approach a transparent state.
  • the control unit 261 operates the optical device between the first electrode layer 40 and the second electrode layer 50 of the optical device 1 when operating the optical device 1 and the optical device 201 in the same optical state.
  • a voltage greater than the potential difference between the first electrode layer 40 and the second electrode layer 50 of 201 is applied. That is, the light distribution angle of the optical device 1 is made smaller than the light distribution angle of the optical device 201.
  • the control unit 261 operates the optical device 201 in the non-application mode (light distribution state) and operates the optical device 1 in the voltage application mode. The voltage applied between the electrode layers of the optical device 1 at this time is smaller than the voltage for making the optical device 1 in a transparent state.
  • FIG. 12 is a schematic view for explaining a light distribution state of the optical system 200 according to the present embodiment. By adjusting the light distribution direction of the bluish light and the yellowish light, it is possible to adjust the degree of mixing of the light.
  • the optical system 200 includes, for example, the optical device 1 and the optical device 201 arranged in parallel with the optical device 1 in a plane along the vertical direction.
  • the optical device 201 includes a light-transmitting first base material (third base material) 10 and a light-transmitting second base material (fourth base material) 20 facing the first base material 10;
  • a light distribution layer 230 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer disposed opposite to each other with the light distribution layer 230 interposed therebetween (Third electrode layer) 40 and second electrode layer (fourth electrode layer) 50 are provided.
  • the light distribution layer 230 is filled with a concavo-convex structure layer (second concavo-convex structure layer) 31 having a plurality of convex portions (second convex portions) 33 and a concave portion (second concave portion) 34 between the plural convex portions 33. And a variable-refractive-index layer (second variable-refractive-index layer) 32 whose refractive index changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the optical device 1 is located above the optical device 201.
  • the optical device 1 for emitting bluish light is disposed on the upper side, so that the blue sky can be seen more beautifully.
  • the optical system 200 further includes a control unit 261 that controls each of the optical device 1 and the optical device 201, and the control unit 261 operates the optical device 1 and the optical device 201 in the same optical state.
  • a voltage greater than the potential difference between the first electrode layer 40 and the second electrode layer 50 of the optical device 201 is applied between the first electrode layer 40 and the second electrode layer 50 of the optical device 1.
  • the degree of mixing of light can be adjusted by adjusting the light distribution direction of the bluish light and the yellowish light.
  • the optical device 1 and the optical device 201 are separately configured, but the optical device 1 and the optical device 201 may be integrally configured. That is, the first base 10 and the second base 20 of each of the optical devices 1 and 210 may be formed as a single substrate.
  • control unit 261 may operate the optical device 1 and the optical device 201 in the same manner. Specifically, the control unit 261 applies a voltage to each electrode layer so that the electric field applied to the light distribution layer 30 of the optical device 1 and the electric field applied to the light distribution layer 230 of the optical device 201 become the same. You may Thereby, the advancing direction of the light which passed each of the optical device 1 and the optical device 201 can be made the same.
  • the recess 34 may be provided with a colored layer other than blue.
  • the color of the colored layer may be, for example, red, yellow, green or the like.
  • FIG. 13 is an enlarged cross-sectional view of an optical system according to a modification of the embodiment.
  • the concavo-convex structure layer 331 includes a thin film layer 338 formed on the first base 10 side, and a plurality of convex portions 33 protruding from the thin film layer 338.
  • the thin film layer 338 may be formed intentionally, or may be formed as a residual film when forming the plurality of projections 33.
  • the thickness of the thin film layer 338 is, for example, 1 ⁇ m, but is not limited thereto.
  • the optical device is disposed in the window so that the longitudinal direction of the convex portion 33 is the x-axis direction, but the present invention is not limited to this.
  • the optical device may be disposed in the window such that the longitudinal direction of the convex portion 33 is the z-axis direction.
  • each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but the present invention is not limited to this.
  • the plurality of convex portions 33 may be arranged to be dispersed in a matrix or the like. That is, the plurality of convex portions 33 may be arranged in a dotted manner.
  • each of the plurality of convex portions 33 has the same shape.
  • the shapes may be different in the plane.
  • the inclination angles of the side surfaces 33a or 33b of the plurality of protrusions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
  • the heights of the plurality of convex portions 33 are fixed, but the present invention is not limited to this.
  • the heights of the plurality of protrusions 33 may be randomly different. By doing this, it is possible to suppress that the light transmitted through the optical device appears iridescent. That is, by randomly changing the heights of the plurality of convex portions 33, minute diffracted light and scattered light at the concavo-convex interface are averaged by the wavelength, and coloring of the emitted light is suppressed.
  • a material containing a polymer such as a polymer structure may be used besides the liquid crystal material.
  • the polymer structure is, for example, a network-like structure, and the arrangement of liquid crystal molecules between the polymer structures (network) enables adjustment of the refractive index.
  • a liquid crystal material containing a polymer for example, a polymer dispersed liquid crystal (PDLC) or a polymer network liquid crystal (PNLC) can be used.
  • sunlight was illustrated as light which injects into the optical device 1 in said embodiment, it does not restrict to this.
  • the light incident on the optical device 1 may be light emitted by a light emitting device such as a lighting device.
  • the optical device 1 is attached to the indoor surface of the window 91.
  • the optical device 1 may be attached to the outdoor surface of the window 91. By sticking on the indoor side, deterioration of the optical element can be suppressed.
  • the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself. Further, the optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed in, for example, a window of a car.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.
  • First base material 20 Second base material 30, 30a, 130, 130a, 130b Light distribution layer (first light distribution layer) 31 Uneven structure layer (first uneven structure layer, second uneven structure layer) 32 Refractive index variable layer (first refractive index variable layer, second refractive index variable layer) 33 convex part (first convex part, second convex part) 33b side 34 concave (first concave, second concave) 36, 136, 136a Blue layer 37 Light shielding layer 40 First electrode layer (third electrode layer) 50 Second electrode layer (fourth electrode layer) 137 Light shielding material 200 Optical system 230 Light distribution layer (second light distribution layer) 261 Control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

This optical device (1) is equipped with: a translucent first substrate (10); a translucent second substrate (20) that faces the first substrate (10); a light distribution layer (30) that distributes incident light and is positioned between the first substrate (10) and the second substrate (20); and a first electrode layer (40) and a second electrode layer (50) that are positioned so as to face one another with the light distribution layer (30) interposed therebetween. The light distribution layer (30) includes: a first relief structure layer (31) that has a plurality of projecting sections (33); a variable refractive index layer (32) that is positioned so as to fill recessed sections (34) between the plurality of projecting sections (33), and where the refractive index varies according to the voltage imparted between the first electrode layer (40) and the second electrode layer (50); and a blue layer (36) that is provided to the recessed sections (34).

Description

光学デバイス及び光学システムOptical device and optical system
 本発明は、光学デバイス、及び、当該光学デバイスを備える光学システムに関する。 The present invention relates to an optical device and an optical system provided with the optical device.
 従来、屋外から入射する太陽光などの外光を屋内に採り込む採光フィルムが知られている(例えば、特許文献1を参照)。 Conventionally, a daylighting film is known in which external light such as sunlight incident from the outside is taken indoors (see, for example, Patent Document 1).
国際公開第2015/194499号International Publication No. 2015/194499
 しかしながら、上記従来の採光フィルムでは、太陽光に含まれる短波長成分が基材によって吸収される。このため、屋内に採り込まれる光が黄色みを帯び、古ぼけた色合いに感じられる。 However, in the above-mentioned conventional daylighting film, the short wavelength component contained in sunlight is absorbed by the substrate. For this reason, the light introduced into the room is yellowish, and it is felt that it is an old-fashioned color.
 そこで、本発明は、透過光を所望の色にすることができる光学デバイス、及び、当該光学デバイスを備える光学システムを提供することを目的とする。 Then, this invention aims at providing an optical device which can make transmitted light into a desired color, and an optical system provided with the said optical device.
 上記目的を達成するため、本発明の一態様に係る光学デバイスは、透光性を有する第1基材と、前記第1基材に対向し、透光性を有する第2基材と、前記第1基材及び前記第2基材の間に配置され、入射した光を配光する第1配光層と、前記第1配光層を間に挟んで互いに対向して配置された第1電極層及び第2電極層とを備え、前記第1配光層は、複数の第1凸部を有する第1凹凸構造層と、前記複数の第1凸部の間である第1凹部を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する第1屈折率可変層と、前記第1凹部に設けられた青色層とを含む。 In order to achieve the above object, an optical device according to an aspect of the present invention includes a light-transmitting first substrate, a light-transmitting second substrate facing the first substrate, and a light-transmitting second substrate. A first light distribution layer disposed between the first base material and the second base material and arranged opposite to each other with the first light distribution layer interposed therebetween and the first light distribution layer distributing light incident thereon An electrode layer and a second electrode layer, wherein the first light distribution layer is filled with a first concave-convex structure layer having a plurality of first convex portions and a first concave portion between the plurality of first convex portions A first variable-refractive-index layer, which is disposed in such a manner that the refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer, and a blue layer provided in the first recess Including.
 また、本発明の一態様に係る光学システムは、前記光学デバイスである第1光学デバイスと、上下方向に沿った平面内で前記第1光学デバイスと並んで配置される第2光学デバイスとを備え、前記第2光学デバイスは、透光性を有する第3基材と、前記第3基材に対向し、透光性を有する第4基材と、前記第3基材及び前記第4基材の間に配置され、入射した光を配光する第2配光層と、前記第2配光層を間に挟んで互いに対向して配置された第3電極層及び第4電極層とを備え、前記第2配光層は、複数の第2凸部を有する第2凹凸構造層と、前記複数の第2凸部の間である第2凹部を充填するように配置され、前記第3電極層及び前記第4電極層間に印加される電圧に応じて屈折率が変化する第2屈折率可変層とを含み、前記第1光学デバイスは、前記第2光学デバイスより上側に位置している。 An optical system according to an aspect of the present invention includes a first optical device that is the optical device, and a second optical device that is disposed side by side with the first optical device in a plane along the vertical direction. The second optical device includes a light transmitting third base, a fourth base facing the third base, and a light transmitting third base and the fourth base. And a third electrode layer and a fourth electrode layer disposed opposite to each other with the second light distribution layer interposed therebetween. The second light distribution layer is disposed so as to fill a second concave / convex structure layer having a plurality of second convex portions and a second concave portion between the plurality of second convex portions, and the third electrode A second variable-refractive-index layer whose refractive index changes in accordance with a voltage applied between the layer and the fourth electrode layer; Vice is located above the said second optical device.
 本発明によれば、透過光を所望の色にすることができる。 According to the present invention, it is possible to make transmitted light into a desired color.
図1は、実施の形態1に係る光学デバイスの断面図である。FIG. 1 is a cross-sectional view of the optical device according to the first embodiment. 図2は、実施の形態1に係る光学デバイスの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the optical device according to the first embodiment. 図3Aは、実施の形態1に係る光学デバイスを窓に設置した場合において、光学デバイスが無印加モードで動作したときの作用(配光状態)を説明するための図である。FIG. 3A is a diagram for describing an operation (light distribution state) when the optical device operates in the non-application mode when the optical device according to the first embodiment is installed in a window. 図3Bは、実施の形態1に係る光学デバイスを窓に設置した場合において、光学デバイスが電圧印加モードで動作したときの作用(透明状態)を説明するための図である。FIG. 3B is a diagram for describing an operation (transparent state) when the optical device is operated in the voltage application mode when the optical device according to the first embodiment is installed in the window. 図4Aは、実施の形態1に係る光学デバイスの無印加モード(配光状態)を説明するための拡大断面図である。FIG. 4A is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the first embodiment. 図4Bは、実施の形態1に係る光学デバイスの電圧印加モード(透明状態)を説明するための拡大断面図である。FIG. 4B is an enlarged cross-sectional view for illustrating a voltage application mode (transparent state) of the optical device according to Embodiment 1. 図5は、実施の形態1の変形例に係る光学デバイスの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of an optical device according to a modification of the first embodiment. 図6は、実施の形態2に係る光学デバイスの断面図である。FIG. 6 is a cross-sectional view of the optical device according to the second embodiment. 図7は、実施の形態2に係る光学デバイスの拡大断面図である。FIG. 7 is an enlarged cross-sectional view of the optical device according to the second embodiment. 図8は、実施の形態2に係る光学デバイスの無印加モード(配光状態)を説明するための拡大断面図である。FIG. 8 is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device according to the second embodiment. 図9は、実施の形態2の変形例1に係る光学デバイスの拡大断面図である。FIG. 9 is an enlarged cross-sectional view of an optical device according to the first modification of the second embodiment. 図10は、実施の形態2の変形例2に係る光学デバイスの拡大断面図である。FIG. 10 is an enlarged cross-sectional view of an optical device according to the second modification of the second embodiment. 図11は、実施の形態3に係る光学システムの構成を示す断面図である。FIG. 11 is a cross-sectional view showing the configuration of the optical system according to the third embodiment. 図12は、実施の形態3に係る光学システムの配光状態を説明するための模式図である。FIG. 12 is a schematic view for explaining a light distribution state of the optical system according to the third embodiment. 図13は、実施の形態の変形例に係る光学システムの拡大断面図である。FIG. 13 is an enlarged cross-sectional view of an optical system according to a modification of the embodiment.
 以下では、本発明の実施の形態に係る光学デバイス及び光学システムについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, an optical device and an optical system according to an embodiment of the present invention will be described in detail with reference to the drawings. Each embodiment described below shows one specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を鉛直方向とし、z軸に垂直な方向(xy平面に平行な方向)を水平方向としている。なお、z軸の正方向を鉛直上方としている。また、本明細書において、「厚み方向」とは、光学デバイスの厚み方向を意味し、第1基材及び第2基材の主面に垂直な方向のことであり、「平面視」とは、第1基材又は第2基材の主面に対して垂直な方向から見たときのことをいう。 Moreover, in the present specification and drawings, the x-axis, the y-axis and the z-axis indicate three axes of the three-dimensional orthogonal coordinate system. In each embodiment, the z-axis direction is the vertical direction, and the direction perpendicular to the z-axis (the direction parallel to the xy plane) is the horizontal direction. Note that the positive direction of the z axis is vertically upward. Moreover, in the present specification, the “thickness direction” means the thickness direction of the optical device, and is a direction perpendicular to the main surfaces of the first base and the second base, “plan view” When it sees from the direction perpendicular to the principal surface of the 1st substrate or the 2nd substrate.
 (実施の形態1)
 [構成]
 まず、本実施の形態に係る光学デバイス1の構成について、図1及び図2を用いて説明する。図1は、本実施の形態に係る光学デバイス1の断面図である。図2は、本実施の形態に係る光学デバイス1の拡大断面図であり、図1の一点鎖線で囲まれる領域IIの拡大断面図である。
Embodiment 1
[Constitution]
First, the configuration of the optical device 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
 光学デバイス1は、光学デバイス1に入射する光を制御する光制御デバイスである。具体的には、光学デバイス1は、光学デバイス1に入射する光の進行方向を変更して(つまり、配光して)出射させることができる配光素子である。 The optical device 1 is a light control device that controls light incident on the optical device 1. Specifically, the optical device 1 is a light distribution element capable of changing the traveling direction of light incident on the optical device 1 (that is, distributing light) and causing the light to be emitted.
 図1及び図2に示すように、光学デバイス1は、入射する光を透過するように構成されており、第1基材10と、第2基材20と、配光層30と、第1電極層40と、第2電極層50とを備える。 As shown in FIGS. 1 and 2, the optical device 1 is configured to transmit incident light, and includes a first base 10, a second base 20, a light distribution layer 30, and a first light. An electrode layer 40 and a second electrode layer 50 are provided.
 なお、第1電極層40の配光層30側の面には、第1電極層40と配光層30の凹凸構造層31とを密着させるための密着層が設けられていてもよい。密着層は、例えば、透光性の接着シート、又は、一般的にプライマーと称される樹脂材料などである。 An adhesion layer may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side in order to bring the first electrode layer 40 into close contact with the uneven structure layer 31 of the light distribution layer 30. The adhesion layer is, for example, a translucent adhesive sheet, or a resin material generally referred to as a primer.
 光学デバイス1は、対をなす第1基材10及び第2基材20の間に、第1電極層40、配光層30及び第2電極層50がこの順で厚み方向に沿って配置された構成である。なお、第1基材10と第2基材20との間の距離を保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されてもよい。 In the optical device 1, the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the first base material 10 and the second base material 20 forming a pair. Configuration. In addition, in order to maintain the distance between the first base material 10 and the second base material 20, a plurality of particulate spacers may be dispersed in a plane, or a columnar structure may be formed.
 以下、光学デバイス1の各構成部材について、図1及び図2を参照して詳細に説明する。 Hereinafter, each component of the optical device 1 will be described in detail with reference to FIGS. 1 and 2.
 [第1基材及び第2基材]
 第1基材10及び第2基材20は、透光性を有する透光性基材である。第1基材10及び第2基材20としては、例えばガラス基板又は樹脂基板を用いることができる。
[First base and second base]
The first base 10 and the second base 20 are translucent substrates having translucency. For example, a glass substrate or a resin substrate can be used as the first base 10 and the second base 20.
 ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。 Examples of the material of the glass substrate include soda glass, alkali-free glass and high refractive index glass. Examples of the material of the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA) or epoxy. The glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage that scattering at the time of breakage is small.
 第1基材10と第2基材20とは、同じ材料で構成されていてもよく、あるいは、異なる材料で構成されていてもよい。また、第1基材10及び第2基材20は、リジッド基板に限るものではなく、可撓性を有するフレキシブル基板でもよい。本実施の形態において、第1基材10及び第2基材20は、PET樹脂からなる透明樹脂基板である。 The first base 10 and the second base 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board | substrate, You may be a flexible substrate which has flexibility. In the present embodiment, the first base 10 and the second base 20 are transparent resin substrates made of PET resin.
 第2基材20は、第1基材10に対向する対向基材であり、第1基材10に対向する位置に配置される。第1基材10と第2基材20とは、例えば、10μm~30μmなどの所定距離を空けて略平行に配置されている。第1基材10と第2基材20とは、互いの端部外周に額縁状に形成された接着剤などのシール樹脂によって接着されている。 The second base material 20 is an opposing base material facing the first base material 10 and is disposed at a position facing the first base material 10. The first base 10 and the second base 20 are disposed substantially in parallel at a predetermined distance such as 10 μm to 30 μm, for example. The first base material 10 and the second base material 20 are bonded by a sealing resin such as an adhesive formed in the shape of a frame on the outer periphery of each end.
 なお、第1基材10及び第2基材20の平面視形状は、例えば、正方形又は長方形などの矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。 In addition, although the planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it does not restrict to this, Even if it is polygons other than a circle or a square Well, any shape may be employed.
 [配光層]
 図1及び図2に示すように、配光層30は、第1基材10と第2基材20との間に配置される。配光層30は、透光性を有しており、入射した光を透過させる。また、配光層30は、入射した光を配光する。つまり、配光層30は、配光層30を光が通過する際に、その光の進行方向を変更する。
[Light distribution layer]
As shown in FIGS. 1 and 2, the light distribution layer 30 is disposed between the first base 10 and the second base 20. The light distribution layer 30 has translucency, and transmits incident light. In addition, the light distribution layer 30 distributes the incident light. That is, when light passes through the light distribution layer 30, the light distribution layer 30 changes the traveling direction of the light.
 配光層30は、凹凸構造層31と、屈折率可変層32と、青色層36とを有する。配光層30は、凹凸構造層31と屈折率可変層32との屈折率の差によって光を配光することができる。 The light distribution layer 30 has a concavo-convex structure layer 31, a refractive index variable layer 32, and a blue layer 36. The light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
 [凹凸構造層]
 凹凸構造層31は、屈折率可変層32の表面(界面)を凹凸にするために設けられた微細形状層である。凹凸構造層31は、図2に示すように、複数の凸部33と、複数の凹部34とを有する。具体的には、凹凸構造層31は、マイクロオーダサイズの複数の凸部33によって構成された凹凸構造体である。複数の凸部33の間が、複数の凹部34である。すなわち、隣り合う2つの凸部33の間が、1つの凹部34である。
[Uneven structure layer]
The uneven structure layer 31 is a fine shape layer provided to make the surface (interface) of the variable-refractive-index layer 32 uneven. The uneven structure layer 31 has a plurality of convex portions 33 and a plurality of concave portions 34, as shown in FIG. Specifically, the concavo-convex structure layer 31 is a concavo-convex structure constituted by a plurality of convex portions 33 of micro order size. A plurality of concave portions 34 are between the plurality of convex portions 33. That is, one concave portion 34 is between two adjacent convex portions 33.
 複数の凸部33は、第1基材10の主面(第1電極層40が設けられた面)に平行なz軸方向(第1方向)に並んで配置された複数の凸部である。すなわち、本実施の形態では、z軸方向は、複数の凸部33の並び方向である。 The plurality of protrusions 33 are a plurality of protrusions arranged in the z-axis direction (first direction) parallel to the main surface of the first base material 10 (the surface on which the first electrode layer 40 is provided). . That is, in the present embodiment, the z-axis direction is the direction in which the plurality of convex portions 33 are arranged.
 複数の凸部33の各々は、根元から先端にかけて先細る形状を有する。本実施の形態において、複数の凸部33の各々の断面形状は、第1基材10から第2基材20に向かう方向(厚み方向、y軸正方向)に沿って先細りのテーパ形状である。具体的には、凸部33の断面形状(yz断面)は、台形であるが、これに限らない。凸部33の断面形状は、三角形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。また、凸部33の先端が第2電極層50に接触しているが、凸部33の先端と第2電極層50との間には、隙間が設けられていてもよい。この場合、当該隙間は、屈折率可変層32によって充填されている。 Each of the plurality of projections 33 has a tapered shape from the root to the tip. In the present embodiment, the cross-sectional shape of each of the plurality of projections 33 is a tapered shape that tapers along the direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20 . Although the cross-sectional shape (yz cross section) of the convex part 33 is a trapezoid specifically, it is not restricted to this. The cross-sectional shape of the convex portion 33 may be a triangle, another polygon, or a polygon including a curve. Further, although the tip of the convex portion 33 is in contact with the second electrode layer 50, a gap may be provided between the tip of the convex portion 33 and the second electrode layer 50. In this case, the gap is filled with the variable-refractive-index layer 32.
 図2に示すように、複数の凸部33の各々は、凹部34に面する一対の側面33a及び33bを有する。一対の側面33a及び33bは、z軸方向に交差する面である。一対の側面33a及び33bの各々は、厚み方向(y軸方向)に対して所定の傾斜角で傾斜する傾斜面であり、一対の側面33a及び33bの間隔(凸部33の幅(z軸方向の長さ))は、第1基材10から第2基材20に向かって漸次小さくなっている。 As shown in FIG. 2, each of the plurality of protrusions 33 has a pair of side surfaces 33 a and 33 b facing the recess 34. The pair of side surfaces 33a and 33b are surfaces intersecting in the z-axis direction. Each of the pair of side surfaces 33a and 33b is an inclined surface which is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 33a and 33b (the width of the convex portion 33 (z-axis direction ) Is gradually reduced from the first base 10 to the second base 20.
 側面33aは、例えば、凸部33を構成する複数の側面のうち、鉛直下方側の側面(下側面)である。側面33aは、入射光を屈折させる屈折面である。側面33bは、例えば、凸部33を構成する複数の側面のうち、鉛直上方側の側面(上側面)である。側面33bは、入射光を反射(全反射)させる反射面(全反射面)である。 The side surface 33 a is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33. The side surface 33a is a refractive surface that refracts incident light. The side surface 33 b is, for example, a side surface (upper side surface) on the vertically upper side among a plurality of side surfaces constituting the convex portion 33. The side surface 33 b is a reflection surface (total reflection surface) that reflects incident light (total reflection).
 本実施の形態において、複数の凸部33は、x軸方向に延びたストライプ状に形成されている。つまり、複数の凸部33の各々は、x軸方向に沿って直線状に延びる長尺状の凸部である。具体的には、複数の凸部33の各々は、断面形状が台形でx軸方向に延在する長尺状の略四角柱形状であり、z軸方向に沿って略等間隔に配列されている。複数の凸部33の各々は、同じ形状を有するが、互いに異なる形状を有してもよい。 In the present embodiment, the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is a long convex portion linearly extending along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a trapezoidal cross-sectional shape and is an elongated substantially square pole shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction There is. Each of the plurality of protrusions 33 has the same shape, but may have different shapes.
 複数の凸部33の各々の高さ(y軸方向の長さ)は、例えば2μm~100μmであるが、これに限らない。複数の凸部33の各々の幅(z軸方向の長さ)は、例えば、1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、凹部34の幅(z軸方向)は、例えば0μm~100μmである。つまり、隣り合う2つの凸部33は、接触することなく所定の間隔をあけて配置されていてもよく、接触して配置されていてもよい。なお、隣り合う凸部33の間隔は、0μm~100μmに限らない。 The height (length in the y-axis direction) of each of the plurality of protrusions 33 is, for example, 2 μm to 100 μm, but is not limited thereto. The width (length in the z-axis direction) of each of the plurality of protrusions 33 is, for example, 1 μm to 20 μm, and preferably 10 μm or less, but not limited thereto. The width (z-axis direction) of the recess 34 is, for example, 0 μm to 100 μm. That is, the two adjacent convex portions 33 may be disposed at a predetermined distance without contacting with each other, or may be disposed in contact with each other. The distance between the adjacent convex portions 33 is not limited to 0 μm to 100 μm.
 凸部33の材料としては、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。凸部33は、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。 As a material of the convex portion 33, for example, a light transmitting resin material such as an acrylic resin, an epoxy resin, or a silicone resin can be used. The convex portion 33 is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
 凹凸構造層31は、例えば、屈折率が1.5のアクリル樹脂を用いて断面が台形の凹凸構造を、モールド型押しにより形成することができる。凸部33の高さは、例えば10μmであり、複数の凸部33は、間隔が2μmで等間隔にz軸方向に並んで配置されている。凸部33の根元の厚さは、例えば5μmである。隣り合う凸部33の根元間の距離は、例えば0μm~5μmの値をとりうる。 The concavo-convex structure layer 31 can form the concavo-convex structure whose cross section has a trapezoidal shape by mold pressing, for example, using an acrylic resin having a refractive index of 1.5. The height of the projections 33 is, for example, 10 μm, and the plurality of projections 33 are arranged at equal intervals of 2 μm in the z-axis direction at equal intervals. The thickness of the root of the convex portion 33 is 5 μm, for example. The distance between the roots of adjacent convex portions 33 can take, for example, a value of 0 μm to 5 μm.
 [屈折率可変層]
 屈折率可変層32は、凹凸構造層31の複数の凸部33の間、すなわち、凹部34を充填するように配置されている。屈折率可変層32は、第1電極層40と第2電極層50との間に形成される隙間を充填するように配置されている。
[Refractive index variable layer]
The refractive index variable layer 32 is disposed so as to fill the gaps 34 between the plurality of convex portions 33 of the uneven structure layer 31. The refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50.
 屈折率可変層32は、第1電極層40及び第2電極層50の間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層32は、電界が与えられることによって可視光帯域での屈折率が調整可能な屈折率調整層として機能する。例えば、屈折率可変層32は、電界応答性を有する液晶分子35を有する液晶によって構成されているので、配光層30に電界が与えられることで液晶分子35の配向状態が変化して屈折率可変層32の屈折率が変化する。 The refractive index of the variable-refractive-index layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the refractive index variable layer 32 functions as a refractive index adjustment layer whose refractive index in the visible light band can be adjusted by application of an electric field. For example, since the refractive index variable layer 32 is formed of a liquid crystal having liquid crystal molecules 35 having electric field responsiveness, an electric field is applied to the light distribution layer 30 to change the alignment state of the liquid crystal molecules 35 to change the refractive index. The refractive index of the variable layer 32 changes.
 屈折率可変層32の複屈折材料は、例えば、複屈折性を有する液晶分子35を含む液晶である。このような液晶としては、例えば、液晶分子35が棒状分子からなるネマティック液晶、スメクティック液晶又はコレステリック液晶などを用いることができる。例えば、凸部33の屈折率が1.5である場合、屈折率可変層32の材料としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶を用いることができる。 The birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 35 having birefringence. As such a liquid crystal, for example, nematic liquid crystal, smectic liquid crystal, or cholesteric liquid crystal in which liquid crystal molecules 35 are rod-like molecules can be used. For example, when the refractive index of the convex portion 33 is 1.5, as a material of the refractive index variable layer 32, an ordinary light refractive index (no) is 1.5 and an extraordinary light refractive index (ne) is 1.7 A positive liquid crystal can be used.
 屈折率可変層32は、例えば、第1電極層40及び凹凸構造層31が形成された第1基材10と、第2電極層50が形成された第2基材20との各々の端部外周をシール樹脂で封止した状態で、液晶材料を真空注入法で注入することで形成される。あるいは、屈折率可変層32は、第1基材10の第1電極層40及び凹凸構造層31上に液晶材料を滴下した後に第2基材20を貼り合わせることで形成されてもよい。 The refractive index variable layer 32 is, for example, an end portion of each of the first base material 10 on which the first electrode layer 40 and the concavo-convex structure layer 31 are formed, and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method in a state where the outer periphery is sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by dropping the liquid crystal material onto the first electrode layer 40 and the concavo-convex structure layer 31 of the first base material 10 and then bonding the second base material 20 together.
 なお、図2では、電圧が無印加の状態(後述する図4Aも同様)を示しており、液晶分子35は、長軸がx軸に略平行になるように配向されている。第1電極層40及び第2電極層50の間に電圧が印加された場合には、液晶分子35は、長軸がy軸に略平行になるように配向される(後述する図4Bを参照)。 Note that FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 4A described later), and the liquid crystal molecules 35 are aligned such that the major axis is substantially parallel to the x axis. When a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 35 are aligned so that the major axis is substantially parallel to the y axis (see FIG. 4B described later) ).
 また、屈折率可変層32には、交流電力によって電界が与えられてもよく、直流電力によって電界が与えられてもよい。交流電力の場合には、電圧波形は、正弦波でもよく、矩形波でもよい。 Further, an electric field may be applied to the refractive index variable layer 32 by AC power, and an electric field may be applied by DC power. In the case of AC power, the voltage waveform may be a sine wave or a square wave.
 [青色層]
 青色層36は、複数の凹部34に設けられている。本実施の形態では、青色層36は、複数の凸部33の各々の側面33bに沿って設けられている。青色層36は、側面33b上に所定の膜厚で薄膜状に形成されている。青色層36の膜厚は、例えば1μmであるが、これに限らない。
[Blue layer]
The blue layer 36 is provided in the plurality of recesses 34. In the present embodiment, the blue layer 36 is provided along the side surface 33 b of each of the plurality of convex portions 33. The blue layer 36 is formed in a thin film on the side surface 33 b with a predetermined film thickness. The film thickness of the blue layer 36 is, for example, 1 μm, but is not limited to this.
 青色層36は、側面33bに沿ってx軸方向に延びるストライプ状に形成されている。本実施の形態では、全ての凸部33の側面33bに青色層36が設けられているが、これに限らない。例えば、z軸方向に沿って並ぶ複数の凸部33のn個置き(nは1以上の自然数)に青色層36が設けられていてもよい。また、青色層36は、側面33b上に離散的に(ドット状)に設けられていてもよい。 The blue layer 36 is formed in a stripe shape extending in the x-axis direction along the side surface 33 b. In the present embodiment, the blue layer 36 is provided on the side surfaces 33 b of all the convex portions 33, but the present invention is not limited to this. For example, the blue layer 36 may be provided every n (n is a natural number of 1 or more) of the plurality of convex portions 33 arranged along the z-axis direction. Also, the blue layer 36 may be provided discretely (in the form of dots) on the side surface 33 b.
 青色層36は、例えば、青色顔料を含んでいる。青色顔料としては、プルシアンブルー又はフタロシアニン青などを用いることができる。例えば、青色層36は、青色顔料を含む塗膜を凹凸構造層31の全面に凹凸表面に沿って形成した後、凹部34の底に位置する塗膜をエッチングなどによって除去することで形成される。あるいは、青色層36は、陽極酸化法などによって形成されてもよい。 The blue layer 36 contains, for example, a blue pigment. As a blue pigment, Prussian blue or phthalocyanine blue can be used. For example, the blue layer 36 is formed by forming a coating film including a blue pigment on the entire surface of the concavo-convex structure layer 31 along the concavo-convex surface and then removing the coating film located at the bottom of the recess 34 by etching or the like. . Alternatively, the blue layer 36 may be formed by an anodic oxidation method or the like.
 なお、青色層36の表面には、透明な酸化膜が形成されてもよい。酸化膜(図示せず)は、青色層36が屈折率可変層32(液晶)と混ざるのを抑制することができる。酸化膜は、例えば、シリコン酸化膜(SiO)である。 A transparent oxide film may be formed on the surface of the blue layer 36. An oxide film (not shown) can suppress mixing of the blue layer 36 with the refractive index variable layer 32 (liquid crystal). The oxide film is, for example, a silicon oxide film (SiO 2 ).
 また、青色層36は、紫外光を青色光に変換する波長変換材料を含有していてもよい。例えば、青色層36は、BAM(BaMgAl1017:Eu2+)などの青色蛍光体材料を含有していてもよい。これにより、紫外光の透過を抑制しつつ、透過光を、青みを帯びた光にすることができる。 The blue layer 36 may also contain a wavelength conversion material that converts ultraviolet light into blue light. For example, the blue layer 36 may contain a blue phosphor material such as BAM (BaMgAl 10 O 17 : Eu 2+ ). Thus, the transmitted light can be made bluish while suppressing the transmission of the ultraviolet light.
 [第1電極層及び第2電極層]
 図1及び図2に示すように、第1電極層40及び第2電極層50は、電気的に対となっており、配光層30に電界を与えることができるように構成されている。第1電極層40と第2電極層50とは、電気的だけではなく配置的にも対になっており、第1基材10と第2基材20との間に、互いに対向するように配置されている。具体的には、第1電極層40及び第2電極層50は、配光層30を挟むように配置されている。
[First electrode layer and second electrode layer]
As shown in FIGS. 1 and 2, the first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30. The first electrode layer 40 and the second electrode layer 50 are not only electrically but also arranged in a pair, so as to face each other between the first base material 10 and the second base material 20. It is arranged. Specifically, the first electrode layer 40 and the second electrode layer 50 are disposed to sandwich the light distribution layer 30.
 第1電極層40及び第2電極層50は、透光性を有し、入射した光を透過する。第1電極層40及び第2電極層50は、例えば透明導電層である。透明導電層の材料としては、ITO(Indium Tin Oxide)若しくはIZO(Indium Zinc Oxide)などの透明金属酸化物、銀ナノワイヤ若しくは導電性粒子などの導電体を含有する樹脂からなる導電体含有樹脂、又は、銀薄膜などの金属薄膜などを用いることができる。なお、第1電極層40及び第2電極層50は、これらの単層構造でよく、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)でもよい。本実施の形態では、第1電極層40及び第2電極層50はそれぞれ、厚さ100nmのITOである。 The first electrode layer 40 and the second electrode layer 50 have translucency and transmit incident light. The first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers. The material of the transparent conductive layer is a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductor containing resin made of a resin containing a conductor such as silver nanowire or conductive particles, or And metal thin films such as silver thin films can be used. The first electrode layer 40 and the second electrode layer 50 may have a single-layer structure of these, or a laminated structure of these (for example, a laminated structure of a transparent metal oxide and a metal thin film). In the present embodiment, each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
 第1電極層40は、第1基材10と凹凸構造層31との間に配置されている。具体的には、第1電極層40は、第1基材10の配光層30側の面に形成されている。 The first electrode layer 40 is disposed between the first base 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
 一方、第2電極層50は、屈折率可変層32と第2基材20との間に配置されている。具体的には、第2電極層50は、第2基材20の配光層30側の面に形成されている。 On the other hand, the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second base material 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
 なお、第1電極層40及び第2電極層50は、例えば、外部電源との電気接続が可能となるように構成されている。例えば、外部電源に接続するための電極パッドなどが、第1電極層40及び第2電極層50の各々から引き出されて第1基材10及び第2基材20に形成されていてもよい。 The first electrode layer 40 and the second electrode layer 50 are configured, for example, to enable electrical connection with an external power supply. For example, an electrode pad or the like for connection to an external power source may be drawn out from each of the first electrode layer 40 and the second electrode layer 50 and formed on the first base 10 and the second base 20.
 第1電極層40及び第2電極層50はそれぞれ、例えば、蒸着、スパッタリングなどにより、ITOなどの導電膜を成膜することで形成される。 The first electrode layer 40 and the second electrode layer 50 are each formed by depositing a conductive film such as ITO by, for example, vapor deposition or sputtering.
 [光学デバイスの光学状態]
 続いて、本実施の形態に係る光学デバイス1の使用例を示しながら、光学デバイス1の光学状態(動作モード)について説明する。具体的には、光学デバイス1を備える光学システムについて、図3A及び図3Bを用いて説明する。
[Optical state of optical device]
Subsequently, the optical state (operation mode) of the optical device 1 will be described while showing an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 3A and 3B.
 図3A及び図3Bはそれぞれ、本実施の形態に係る光学デバイス1を備える光学システム60を建物90に適用した例を示す図である。具体的には、図3A及び図3Bは、光学デバイス1を窓91に設置した場合において、光学デバイス1が各動作モードで動作したときの作用を説明するための図である。 FIGS. 3A and 3B each show an example in which an optical system 60 including the optical device 1 according to the present embodiment is applied to a building 90. FIG. Specifically, FIGS. 3A and 3B are diagrams for explaining the operation when the optical device 1 is operated in each operation mode when the optical device 1 is installed in the window 91.
 図3A及び図3Bに示すように、光学システム60は、光学デバイス1と、制御部61とを備える。なお、各図において、光学デバイス1から延びるドットの網掛けが付された領域は、光学デバイス1を通過した光(具体的にはS偏光成分)が通過する領域を示している。 As shown in FIGS. 3A and 3B, the optical system 60 includes the optical device 1 and a controller 61. In each of the drawings, the shaded area of the dot extending from the optical device 1 indicates the area through which the light (specifically, the S polarization component) which has passed through the optical device 1 passes.
 光学デバイス1は、入射した光を透過させることができる。例えば、光学デバイス1は、建物90の窓91に設置することで、配光機能付き窓として実現することができる。光学デバイス1は、例えば、粘着層を介して既存の窓91に貼り合わされる。この場合、光学デバイス1は、第1基材10及び第2基材20の主面が鉛直方向(z軸方向)に平行になる姿勢で窓91に設置される。 The optical device 1 can transmit incident light. For example, by installing the optical device 1 in the window 91 of the building 90, it can be realized as a window with a light distribution function. The optical device 1 is bonded, for example, to the existing window 91 via the adhesive layer. In this case, the optical device 1 is installed in the window 91 such that the main surfaces of the first base 10 and the second base 20 are parallel to the vertical direction (z-axis direction).
 なお、図3A及び図3Bでは、光学デバイス1の詳細な構造は図示されていないが、光学デバイス1は、第1基材10が屋外側で第2基材20が屋内側になり、かつ、凸部33の側面33bが天井92側で側面33aが床93側になるように配置されている。 Although the detailed structure of the optical device 1 is not shown in FIGS. 3A and 3B, in the optical device 1, the first base 10 is on the outdoor side, the second base 20 is on the indoor side, and The side surface 33 b of the convex portion 33 is disposed on the ceiling 92 side and the side surface 33 a is on the floor 93 side.
 また、制御部61が床93上に設置されているが、これは模式的に図示したものであり、制御部61の設置場所には特に限定されない。例えば、制御部61は、光学デバイス1と一体に構成され、窓91の窓枠などに固定されていてもよい。あるいは、制御部61は、建物90の天井92、床93又は壁などに埋め込まれていてもよい。 Moreover, although the control part 61 is installed on the floor 93, this is illustrated typically and it is not specifically limited to the installation place of the control part 61. FIG. For example, the control unit 61 may be integrally formed with the optical device 1 and may be fixed to a window frame of the window 91 or the like. Alternatively, the control unit 61 may be embedded in the ceiling 92, the floor 93 or a wall of the building 90.
 制御部61は、光学デバイス1を駆動する制御部である。具体的には、制御部61は、第1電極層40と第2電極層50との間に所定の電圧を印加することで、配光層30に電界を与える。 The control unit 61 is a control unit that drives the optical device 1. Specifically, the control unit 61 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50.
 本実施の形態では、制御部61は、第1電極層40及び第2電極層50間への電圧の印加状態に応じた2つの動作モードを有する。具体的には、2つの動作モードは、電圧を印加しない無印加モード(第1動作モード)と、電極層間に略均一に電圧を印加する電圧印加モード(第2動作モード)とである。制御部61は、ユーザ操作又は予め定められたスケジュール情報などに基づいて、2つの動作モードを切り替えて実行する。 In the present embodiment, control unit 61 has two operation modes according to the application state of the voltage between first electrode layer 40 and second electrode layer 50. Specifically, the two operation modes are a non-application mode (first operation mode) in which no voltage is applied and a voltage application mode (second operation mode) in which a voltage is substantially uniformly applied between the electrode layers. The control unit 61 switches and executes two operation modes based on user operation or predetermined schedule information.
 光学デバイス1では、配光層30に与えられる電界に応じて、屈折率可変層32に含まれる液晶分子35の配向が変化する。なお、液晶分子35は、複屈折性を有する棒状の液晶分子であるので、入射する光の偏光状態に応じて、当該光が受ける屈折率が異なる。ここでは、例えば、入射光に対して、凸部33の屈折率が1.5であり、液晶分子35としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶分子である場合を例に挙げて説明する。 In the optical device 1, the orientation of the liquid crystal molecules 35 contained in the refractive index variable layer 32 changes in accordance with the electric field applied to the light distribution layer 30. Since the liquid crystal molecules 35 are rod-like liquid crystal molecules having birefringence, the refractive index that the light receives varies depending on the polarization state of the incident light. Here, for example, for incident light, the refractive index of the convex portion 33 is 1.5, and as the liquid crystal molecules 35, the ordinary light refractive index (no) is 1.5 and the extraordinary light refractive index (ne) is The case of a positive-type liquid crystal molecule of 1.7 will be described as an example.
 以下では、各動作モードの詳細について、図3A及び図3Bを適宜参照しながら、図4A及び図4Bを用いて説明する。図4A及び図4Bはそれぞれ、本実施の形態に係る光学デバイス1の各動作モードを説明するための拡大断面図である。 Hereinafter, details of each operation mode will be described using FIGS. 4A and 4B with reference to FIGS. 3A and 3B as appropriate. FIG. 4A and FIG. 4B are each an enlarged sectional view for explaining each operation mode of the optical device 1 according to the present embodiment.
 なお、図4A及び図4Bでは、光学デバイス1に入射する光(例えば太陽光)の経路を太線の矢印で示している。なお、実際には、光は、第1基材10に入射する際、及び、第2基材20から出射する際に屈折するが、これらの屈折による経路の変化は図示していない。 In FIGS. 4A and 4B, paths of light (for example, sunlight) incident on the optical device 1 are indicated by thick arrows. Although light is actually refracted when entering the first base material 10 and exiting from the second base material 20, changes in the path due to these refractions are not shown.
 <無印加モード(配光状態)>
 図4Aは、無印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光の経路とを模式的に示している。光学デバイス1は、無印加モードで駆動された場合に、入射する光の進行方向を変更させる配光状態になる。
<No-application mode (light distribution state)>
FIG. 4A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of light passing through the optical device 1. When driven in the non-application mode, the optical device 1 is in a light distribution state in which the traveling direction of incident light is changed.
 制御部61は、光学デバイス1を無印加モードで動作させる場合、第1電極層40と第2電極層50との間に電圧を印加しない。具体的には、第1電極層40と第2電極層50とが略等しい電位(例えば接地電位)になることで、配光層30には電界が印加されない。このため、屈折率可変層32の屈折率を面内で略均一にすることができる。 The control unit 61 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the non-application mode. Specifically, when the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, the ground potential), an electric field is not applied to the light distribution layer 30. Therefore, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 なお、光学デバイス1に入射する光は、P偏光(P偏光成分)とS偏光(S偏光成分)とを含んでいる。図4Aには、光学デバイス1に対して斜め下方に入射する光のP偏光LP1及びS偏光LS1と、光学デバイス1に対して正面から略垂直に入射する光のP偏光LP2及びS偏光LS2とを示している。 The light incident on the optical device 1 includes P-polarization (P-polarization component) and S-polarization (S-polarization component). In FIG. 4A, P-polarized light LP1 and S-polarized light LS1 of light incident obliquely downward to the optical device 1 and P-polarized LP2 and S-polarized light LS2 of light incident substantially perpendicularly to the optical device 1 from the front Is shown.
 P偏光LP1及びLP2は、無印加モード及び電圧印加モードのいずれのモードにおいても、その振動方向が液晶分子35の短軸に対して略平行になる。このため、P偏光LP1及びLP2についての液晶分子35の屈折率は、動作モードに依存せず、常光屈折率(no)であって、具体的には1.5である。このため、P偏光LP1及びLP2についての屈折率は、動作モードに依存せず、配光層30内で略一定になるので、図4Aに示すように、P偏光LP1及びLP2は、配光層30をそのまま直進する。 The oscillation direction of the P-polarized light LP1 and LP2 is substantially parallel to the short axis of the liquid crystal molecule 35 in any of the non-application mode and the voltage application mode. For this reason, the refractive index of the liquid crystal molecules 35 for the P-polarized light LP1 and LP2 does not depend on the operation mode, and is the ordinary refractive index (no), specifically 1.5. For this reason, the refractive index for the P-polarized light LP1 and LP2 does not depend on the operation mode and becomes substantially constant in the light distribution layer 30, so as shown in FIG. 4A, the P-polarized light LP1 and LP2 Continue straight ahead at 30.
 一方で、S偏光LS1及びLS2についての液晶分子35の屈折率は、動作モードに応じて変化する。 On the other hand, the refractive index of the liquid crystal molecule 35 for the S-polarized light LS1 and LS2 changes in accordance with the operation mode.
 この場合、S偏光LS1及びLS2が受ける屈折率は、凸部33が1.5であるのに対して、屈折率可変層32が1.7になる。このため、図4Aに示すように、光学デバイス1に対して斜めに入射する光のS偏光LS1は、凸部33の側面33aで屈折して進行方向が変化した後、凸部33の側面33bで反射(全反射)される。側面33bで反射された光は、斜め上方に向けて出射される。すなわち、光学デバイス1は、斜め下方に入射した光のS偏光LS1を、斜め上方に向けて出射する。したがって、図3Aに示すように、斜め下方に入射する太陽光などの光のS偏光LS1は、光学デバイス1によって進行方向が曲げられて、建物90の天井92を照射する。 In this case, the refractive index received by the S-polarized light LS1 and LS2 is 1.5 for the convex portion 33, while the refractive index variable layer 32 is 1.7. Therefore, as shown in FIG. 4A, the S-polarized light LS1 of the light obliquely incident on the optical device 1 is refracted by the side surface 33a of the convex portion 33 to change its traveling direction, and then the side surface 33b of the convex portion 33 Is reflected (total reflection). The light reflected by the side surface 33 b is emitted obliquely upward. That is, the optical device 1 emits the S-polarized light LS1 of the light that has entered obliquely downward, obliquely upward. Therefore, as shown in FIG. 3A, the s-polarized light LS1 of light such as sunlight incident obliquely downward is bent in its traveling direction by the optical device 1 and illuminates the ceiling 92 of the building 90.
 一方で、光学デバイス1に対して正面から略垂直に入射する光のS偏光LS2は、図4Aに示すように、側面33a及び側面33bを通過しない。このため、光学デバイス1をそのまま通過するので、建物90の屋内に居る人物からは外の景色をそのまま見ることができる。 On the other hand, as shown in FIG. 4A, the S-polarized light LS2 of the light incident substantially perpendicularly to the optical device 1 from the front does not pass through the side surface 33a and the side surface 33b. For this reason, since the optical device 1 is passed as it is, the person outside the building 90 can see the outside scenery as it is.
 <電圧印加モード(透明状態)>
 図4Bは、電圧印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光の経路とを模式的に示している。光学デバイス1は、電圧印加モードで駆動された場合に、入射する光をそのまま(進行方向を変更することなく)通過(透過)させる透光(透明)状態になる。
<Voltage application mode (transparent state)>
FIG. 4B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of light passing through the optical device 1. When driven in the voltage application mode, the optical device 1 is in a light transmission (transparent) state in which incident light is passed (transmitted) as it is (without changing the traveling direction).
 制御部61は、光学デバイス1を電圧印加モードで動作させる場合、第1電極層40と第2電極層50との間に所定の電圧を印加する。これにより、配光層30に与えられる電界が面内で略均一になり、屈折率可変層32の屈折率を面内で略均一にすることができる。 The control unit 61 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 この場合、入射する光が受ける屈折率は、P偏光及びS偏光のいずれの場合も、凸部33及び屈折率可変層32ともに1.5となる。このため、図4Bに示すように、光学デバイス1に対して斜めに入射する光は、P偏光LP1及びS偏光LS1のいずれも、そのまま光学デバイス1を通過する。つまり、光学デバイス1は、斜め下方に入射した光を、そのまま斜め下方に出射する。したがって、図3Bに示すように、斜め下方に入射する太陽光などの光は、光学デバイス1をそのまま通過して、建物90の床93の窓91に近い部分を照射する。 In this case, the refractive index received by the incident light is 1.5 for both the convex portion 33 and the refractive index variable layer 32 in both of the P polarized light and the S polarized light. Therefore, as shown in FIG. 4B, light obliquely incident on the optical device 1 passes through the optical device 1 as it is for both the P-polarized light LP1 and the S-polarized light LS1. That is, the optical device 1 emits the light incident obliquely downward as it is obliquely downward. Therefore, as shown to FIG. 3B, light, such as sunlight which enters diagonally downward, passes the optical device 1 as it is, and irradiates the part near the window 91 of the floor 93 of the building 90. As shown in FIG.
 また、光学デバイス1に対して正面から略垂直に入射する光についても、P偏光LP2及びS偏光LS2のいずれも、光学デバイス1をそのまま通過する。このため、光学デバイス1をそのまま通過するので、建物90の屋内に居る人物からは外の景色をそのまま見ることができる。 Moreover, also about the light which injects substantially perpendicularly | vertically from the front with respect to the optical device 1, both P polarization | polarized-light LP2 and S polarization | polarized-light LS2 pass the optical device 1 as it is. For this reason, since the optical device 1 is passed as it is, the person outside the building 90 can see the outside scenery as it is.
 以上のように、本実施の形態に係る光学デバイス1によれば、配光層30に与える電界(第1電極層40及び第2電極層50の間に印加する電圧)に応じて、光学状態を変化させることができる。ここでは、透明状態と配光状態とを切り替えているが、印加する電圧に応じて、配光状態と透明状態との中間の光学状態を形成することができる。 As described above, according to the optical device 1 according to the present embodiment, the optical state according to the electric field applied to the light distribution layer 30 (voltage applied between the first electrode layer 40 and the second electrode layer 50) Can change. Here, although the transparent state and the light distribution state are switched, it is possible to form an intermediate optical state between the light distribution state and the transparent state according to the applied voltage.
 例えば、電圧印加モードでは、印加する電圧水準を複数設定し、適宜切り替えを行ってもよい。電圧印加モードにおいて、印加する電圧を小さくすることで、中間の光学状態では、配光状態の場合よりも、光学デバイス1による配光の角度が小さくなる。例えば、建物90の屋内のより奥側にまで光を進行させることができる。 For example, in the voltage application mode, a plurality of voltage levels to be applied may be set and switching may be performed as appropriate. In the voltage application mode, by reducing the voltage to be applied, the angle of light distribution by the optical device 1 is smaller in the intermediate optical state than in the light distribution state. For example, light can travel to the far side of the interior of the building 90.
 [光学デバイスの透過光の色合い]
 ここで、光学デバイス1の透過光の色合いについて説明する。具体的には、建物90の屋内に居る人物が光学デバイス1を見たときの光の色合いについて説明する。
[Color tone of transmitted light of optical device]
Here, the hue of the transmitted light of the optical device 1 will be described. Specifically, the color of light when a person present indoors in the building 90 looks at the optical device 1 will be described.
 まず、光学デバイス1に対して斜めに入射する光について説明する。 First, light obliquely incident on the optical device 1 will be described.
 無印加モードでは、図4Aに示すように、S偏光LS1は、側面33b上に形成された青色層36を通過している。このため、光学デバイス1から出射されるS偏光LS1は、青みを帯びた光となる。つまり、光学デバイス1によって配光された光は、青みを帯びた光になる。 In the non-application mode, as shown in FIG. 4A, the S-polarized light LS1 passes through the blue layer 36 formed on the side surface 33b. Therefore, the S-polarized light LS1 emitted from the optical device 1 is bluish light. That is, the light distributed by the optical device 1 becomes bluish light.
 同様に、P偏光LP1も青色層36を通過しているため、P偏光LP1も青みを帯びた光となる。また、電圧印加モードでも、図4Bに示すように、P偏光LP1及びS偏光LS1は、青色層36を通過しているため、青みを帯びた光となる。 Similarly, since the P-polarized light LP1 also passes through the blue layer 36, the P-polarized light LP1 also becomes bluish light. Further, even in the voltage application mode, as shown in FIG. 4B, since the P-polarized light LP1 and the S-polarized light LS1 pass through the blue layer 36, they become bluish light.
 したがって、屋内に居る人物が光学デバイス1を下方から見上げるように見た場合、青みがかった光を見ることができる。例えば、青空がよりきれいな青空として見ることができる。 Therefore, when a person indoors looks at the optical device 1 from below, he can see bluish light. For example, the blue sky can be viewed as a clearer blue sky.
 次に、光学デバイス1に対して正面から略垂直に入射する光について説明する。 Next, light incident substantially perpendicularly to the optical device 1 from the front will be described.
 無印加モード及び電圧印加モードのいずれの場合においても、図4A及び図4Bに示すように、P偏光LP2及びS偏光LS2は、側面33b上に形成された青色層36を通過しない。このため、光学デバイス1から出射されるP偏光LP2及びS偏光LS2の青みは抑えられる。 In either the non-application mode or the voltage application mode, as shown in FIGS. 4A and 4B, the P-polarized light LP2 and the S-polarized light LS2 do not pass through the blue layer 36 formed on the side surface 33b. Therefore, the bluishness of the P-polarized light LP2 and the S-polarized light LS2 emitted from the optical device 1 is suppressed.
 なお、図示しないが、正面から入射する光の一部は、側面33a又は側面33bを通過するため、屈折又は反射により光の進行方向が曲げられる。側面33bを通過する光は、青色層36も通過するので、青みを帯びた光となる。 Although not shown, part of light incident from the front passes through the side surface 33a or the side surface 33b, so that the traveling direction of the light is bent by refraction or reflection. The light passing through the side surface 33 b also passes through the blue layer 36 and thus becomes bluish light.
 [効果など]
 以上のように、本実施の形態に係る光学デバイス1は、透光性を有する第1基材10と、第1基材10に対向し、透光性を有する第2基材20と、第1基材10及び第2基材20の間に配置され、入射した光を配光する配光層30と、配光層30を間に挟んで互いに対向して配置された第1電極層40及び第2電極層50とを備える。配光層30は、複数の凸部33を有する凹凸構造層31と、複数の凸部33の間である凹部34を充填するように配置され、第1電極層40及び第2電極層50の間に印加される電圧に応じて屈折率が変化する屈折率可変層32と、凹部34に設けられた青色層36とを含む。
[Effect, etc.]
As described above, the optical device 1 according to the present embodiment includes the light-transmitting first base material 10, the second base material 20 facing the first base material 10, and the light-transmitting property, A light distribution layer 30 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer 40 disposed opposite to each other with the light distribution layer 30 interposed therebetween. And a second electrode layer 50. The light distribution layer 30 is disposed so as to fill the concavo-convex structure layer 31 having the plurality of convex portions 33 and the concave portions 34 between the plurality of convex portions 33, and the light distribution layer 30 includes the first electrode layer 40 and the second electrode layer 50. It includes a refractive index variable layer 32 whose refractive index changes in accordance with a voltage applied between them, and a blue layer 36 provided in the recess 34.
 これにより、凹部34に青色層36が設けられているので、第1基材10及び第2基材20などによって短波長成分(青色成分)が吸収されたとしても、青色層36を光が通過する際に補うことができる。このため、光学デバイス1を透過する光を、所望の色(例えば青みを帯びた光)にすることができる。また、光学デバイス1を通過する光が高色温度の白色光になるので、光学デバイス1の高級感を高めることもできる。 Thereby, since the blue layer 36 is provided in the recess 34, even if the short wavelength component (blue component) is absorbed by the first base material 10 and the second base material 20, the light passes through the blue layer 36. You can make up for it. Therefore, the light transmitted through the optical device 1 can be made into a desired color (for example, bluish light). In addition, since the light passing through the optical device 1 becomes white light with a high color temperature, the luxury of the optical device 1 can also be enhanced.
 また、例えば、青色層36は、複数の凸部33の各々の、凹部34に面する側面33bに沿って設けられている。 Also, for example, the blue layer 36 is provided along the side surface 33 b of the plurality of convex portions 33 facing the concave portion 34.
 これにより、反射面として機能する側面33bに青色層36が設けられているので、光学デバイス1によって配光された光(具体的には、図4Aに示すS偏光LS1)を、青みを帯びた光にすることができる。また、光学デバイス1が窓91に設置された場合に、下方から見上げたとき、光学デバイス1の透過光(具体的には、図4A及び図4Bに示すP偏光LP1など)が青みを帯びた光になる。このため、例えば、青空をよりきれいな青空として見ることができる。 Thus, the blue layer 36 is provided on the side surface 33b functioning as a reflection surface, so the light distributed by the optical device 1 (specifically, the S-polarized light LS1 shown in FIG. 4A) is bluish It can be light. In addition, when the optical device 1 is installed in the window 91, the transmitted light of the optical device 1 (specifically, P-polarized light LP1 shown in FIGS. 4A and 4B, etc.) looks bluish when viewed from below Become a light. Thus, for example, the blue sky can be viewed as a clearer blue sky.
 また、例えば、青色層36は、紫外光を青色光に変換する波長変換材料を含有していてもよい。 Also, for example, the blue layer 36 may contain a wavelength conversion material that converts ultraviolet light into blue light.
 これにより、紫外光の透過を抑制しつつ、透過光を、青みを帯びた光にすることができる。 Thus, the transmitted light can be made bluish while suppressing the transmission of the ultraviolet light.
 (実施の形態1の変形例)
 以下では、実施の形態1の変形例について図5を用いて説明する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Modification of Embodiment 1)
Below, the modification of Embodiment 1 is demonstrated using FIG. In the following, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 図5は、本変形例に係る光学デバイス1aの拡大断面図である。図5に示す光学デバイス1aは、配光層30aを備える。配光層30aは、実施の形態1に係る配光層30と比較して、新たに、遮光層37を備える。 FIG. 5 is an enlarged cross-sectional view of an optical device 1a according to this modification. An optical device 1a shown in FIG. 5 includes a light distribution layer 30a. The light distribution layer 30 a newly includes a light shielding layer 37 as compared to the light distribution layer 30 according to the first embodiment.
 実施の形態1では、無印加モード(配光状態)において、第1電極層40と屈折率可変層32との界面で光の散乱が発生する恐れがある。散乱光が発生した場合、凸部33の並び方向(z軸方向)に延びる光の筋(太陽光柱)となって現れ、局所的な眩しさの原因となる。 In the first embodiment, light scattering may occur at the interface between the first electrode layer 40 and the refractive index variable layer 32 in the non-application mode (light distribution state). When scattered light is generated, it appears as a streak (sunlight column) of light extending in the direction in which the convex portions 33 are arranged (z-axis direction), which causes local glare.
 そこで、本変形例に係る光学デバイス1aでは、凹部34の底に遮光層37が設けられている。遮光層37は、入射した光の少なくとも一部を遮光する。なお、本明細書において、「遮光」とは、入射した光を完全に遮断することだけでなく、一部のみを遮断し、残りを透過させることも意味する。例えば、「遮光」は、光の透過よりも遮断が支配的な状態を言う。具体的には、遮光層37の可視光に対する透過率は、50%より低く、好ましくは、20%以下、又は、10%以下でもよい。 Therefore, in the optical device 1a according to the present modification, the light shielding layer 37 is provided on the bottom of the recess 34. The light shielding layer 37 shields at least a part of the incident light. In the present specification, "light blocking" means not only blocking incident light completely but also blocking only a part and transmitting the rest. For example, "blocking" refers to a state in which blocking is dominant over transmission of light. Specifically, the transmittance of the light shielding layer 37 to visible light may be less than 50%, preferably 20% or less, or 10% or less.
 遮光層37は、凹部34の底に設けられている。遮光層37は、凹部34の底であって、第1電極層40上に形成されている。すなわち、遮光層37は、第1電極層40と屈折率可変層32との間に配置されている。 The light shielding layer 37 is provided at the bottom of the recess 34. The light shielding layer 37 is formed on the first electrode layer 40 at the bottom of the recess 34. That is, the light shielding layer 37 is disposed between the first electrode layer 40 and the refractive index variable layer 32.
 遮光層37は、黒色顔料を含んでいる。例えば、黒色水性インクを凹部34内にバーコーターを用いて塗布した後、100℃の環境下で乾燥させることで、遮光層37が形成される。その後、スパッタ法により表面にSiOなどの酸化膜を形成することで、遮光層37が形成される。 The light shielding layer 37 contains a black pigment. For example, after the black aqueous ink is applied in the recess 34 using a bar coater, the light shielding layer 37 is formed by drying under an environment of 100 ° C. Thereafter, a light shielding layer 37 is formed by forming an oxide film such as SiO 2 on the surface by sputtering.
 本実施の形態に係る光学デバイス1aによれば、凹部34に設けられた遮光層37が第1電極層40と屈折率可変層32との間で発生する散乱光を抑制することができる。したがって、太陽光柱が光学デバイス1aに発生するのを抑制することができる。 According to the optical device 1 a according to the present embodiment, the light shielding layer 37 provided in the recess 34 can suppress scattered light generated between the first electrode layer 40 and the refractive index variable layer 32. Therefore, it can suppress that a sunlight pillar generate | occur | produces in the optical device 1a.
 (実施の形態2)
 続いて、実施の形態2に係る光学デバイスについて説明する。
Second Embodiment
Subsequently, an optical device according to Embodiment 2 will be described.
 [構成]
 図6は、本実施の形態に係る光学デバイス101の断面図である。図7は、本実施の形態に係る光学デバイス101の拡大断面図であり、図6の一点鎖線で囲まれる領域VIIの拡大断面図である。
[Constitution]
FIG. 6 is a cross-sectional view of the optical device 101 according to the present embodiment. FIG. 7 is an enlarged cross-sectional view of the optical device 101 according to the present embodiment, and is an enlarged cross-sectional view of a region VII surrounded by an alternate long and short dash line in FIG.
 図6及び図7に示すように、本実施の形態に係る光学デバイス101は、実施の形態1に係る光学デバイス1と比較して、配光層30の代わりに配光層130を備える点が相違する。具体的には、配光層130は、青色層36の代わりに青色層136を備える。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 As shown in FIGS. 6 and 7, the optical device 101 according to the present embodiment has a light distribution layer 130 instead of the light distribution layer 30 as compared to the optical device 1 according to the first embodiment. It is different. Specifically, the light distribution layer 130 includes the blue layer 136 instead of the blue layer 36. In the following, differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 青色層136は、図7に示すように、側面33b上ではなく、凹部34の底に設けられている。青色層136は、隣り合う凸部33の根元を接続するように第1電極層40上に設けられている。青色層136の厚さは、例えば、1μm~2μmであるが、これに限らない。 The blue layer 136 is provided on the bottom of the recess 34, not on the side surface 33b, as shown in FIG. The blue layer 136 is provided on the first electrode layer 40 so as to connect the roots of the adjacent convex portions 33. The thickness of the blue layer 136 is, for example, 1 μm to 2 μm, but is not limited thereto.
 具体的には、青色層136は、凹凸構造層31と同様に、x軸方向に延びるストライプ状に形成されている。本実施の形態では、全ての凹部34に青色層136が設けられているが、これに限らない。例えば、z軸方向に沿って並ぶ複数の凹部34のn個置き(nは1以上の自然数)に青色層136が設けられていてもよい。また、青色層136は、x軸方向に離散的に(ドット状)に設けられていてもよい。 Specifically, similarly to the concavo-convex structure layer 31, the blue layer 136 is formed in a stripe shape extending in the x-axis direction. In the present embodiment, the blue layer 136 is provided in all the recesses 34, but the present invention is not limited to this. For example, the blue layer 136 may be provided every n (n is a natural number of 1 or more) of the plurality of recesses 34 arranged along the z-axis direction. Also, the blue layer 136 may be provided discretely (in the form of dots) in the x-axis direction.
 例えば、青色水性インクを凹部34内にバーコーターを用いて塗布した後、100℃の環境下で乾燥させる。その後、スパッタ法により表面にSiOなどの酸化膜を形成することで、青色層136が形成される。 For example, a blue aqueous ink is applied to the inside of the recess 34 using a bar coater, and then dried under an environment of 100.degree. Thereafter, a blue layer 136 is formed by forming an oxide film such as SiO 2 on the surface by sputtering.
 [光学デバイスの透過光の色合い]
 ここで、光学デバイス101の透過光の色合いについて説明する。具体的には、建物90の屋内に居る人物が光学デバイス101を見たときの光の色合いについて説明する。
[Color tone of transmitted light of optical device]
Here, the hue of the transmitted light of the optical device 101 will be described. Specifically, the color of light when a person present indoors in the building 90 looks at the optical device 101 will be described.
 なお、電圧印加モードで駆動され、光学デバイス101が透明状態になっている場合の透過光の色は、実施の形態1と同じであるので、ここでは説明を省略する。 The color of the transmitted light when driven in the voltage application mode and the optical device 101 is in the transparent state is the same as that of the first embodiment, and thus the description thereof is omitted here.
 図8は、本実施の形態に係る光学デバイス101の無印加モード(配光状態)を説明するための拡大断面図である。無印加モードでは、図8に示すように、光学デバイス101に対して斜め下方に向けて入射する光は、側面33bで反射されて斜め上方に向けて出射される。 FIG. 8 is an enlarged cross-sectional view for explaining a non-application mode (light distribution state) of the optical device 101 according to the present embodiment. In the non-application mode, as shown in FIG. 8, light incident obliquely downward on the optical device 101 is reflected by the side surface 33 b and emitted obliquely upward.
 まず、光学デバイス101に対して斜めに入射する光について説明する。 First, light obliquely incident on the optical device 101 will be described.
 無印加モードでは、図8に示すように、S偏光LS1は、凹部34の底に形成された青色層136を通過している。このため、光学デバイス101から出射されるS偏光LS1は、青みを帯びた光となる。つまり、光学デバイス101によって配光された光は、青みを帯びた光になる。 In the non-application mode, as shown in FIG. 8, the S-polarized light LS 1 passes through the blue layer 136 formed at the bottom of the recess 34. Therefore, the S-polarized light LS1 emitted from the optical device 101 is bluish light. That is, the light distributed by the optical device 101 becomes bluish light.
 同様に、P偏光LP1も青色層136を通過しているため、P偏光LP1も青みを帯びた光となる。したがって、屋内に居る人物が光学デバイス101を下方から見上げるように見た場合、青みがかった光を見ることができる。例えば、青空がよりきれいな青空として見ることができる。 Similarly, since the P-polarized light LP1 passes through the blue layer 136, the P-polarized light LP1 also becomes bluish light. Therefore, when a person indoors looks at the optical device 101 from below, he can see bluish light. For example, the blue sky can be viewed as a clearer blue sky.
 なお、図8には、実施の形態1と同様に、側面33aで屈折されるS偏光LS3の経路も図示している。図8に示すように、S偏光LS3は、青色層136を通過していない。このため、本実施の形態では、配光される光の一部は、S偏光LS3のように青色層136を通過しないものも含まれる。したがって、実施の形態1に比べて、配光された光の色は、青みが抑えられている。 As in the first embodiment, FIG. 8 also shows the path of the S-polarized light LS3 refracted by the side surface 33a. As shown in FIG. 8, the S-polarized light LS 3 has not passed through the blue layer 136. For this reason, in the present embodiment, some of the light to be distributed does not pass through the blue layer 136 as in the S-polarized light LS3. Therefore, compared to the first embodiment, the color of the distributed light is reduced in bluish color.
 次に、光学デバイス101に対して正面から略垂直に入射する光について説明する。 Next, light incident substantially perpendicularly to the optical device 101 from the front will be described.
 図8に示すように、凹部34を通過するP偏光LP2及びS偏光LS2は、凹部34の底に形成された青色層136を通過している。このため、光学デバイス101から出射されるP偏光LP2及びS偏光LS2は、青みを帯びた光になる。 As shown in FIG. 8, the P-polarized light LP2 and the S-polarized light LS2 passing through the recess 34 pass through the blue layer 136 formed at the bottom of the recess 34. Therefore, the P-polarized light LP2 and the S-polarized light LS2 emitted from the optical device 101 become bluish light.
 一方で、凸部33を通過するP偏光LP4及びS偏光LS4は、凹部34の底に形成された青色層136を通過してない。このため、光学デバイス101から出射されるP偏光LP4及びS偏光LS4の青みは抑えられる。 On the other hand, the P-polarized light LP 4 and the S-polarized light LS 4 passing through the convex portion 33 do not pass through the blue layer 136 formed at the bottom of the concave portion 34. Therefore, the bluishness of the P-polarized light LP4 and the S-polarized light LS4 emitted from the optical device 101 is suppressed.
 このように、本実施の形態では、実施の形態1と比べて、光学デバイス101を平面視したときに青色層136の面積が大きくなっている。したがって、光学デバイス101を正面視したときにも青みがかって見えるため、高級感をより高めることができる。 As described above, in the present embodiment, compared to the first embodiment, the area of the blue layer 136 is larger when the optical device 101 is viewed in plan. Therefore, when viewed from the front of the optical device 101, it looks bluish, so the sense of quality can be further enhanced.
 [効果など]
 以上のように、本実施の形態に係る光学デバイス101では、例えば、青色層136は、凹部34の底に設けられている。
[Effect, etc.]
As described above, in the optical device 101 according to the present embodiment, for example, the blue layer 136 is provided at the bottom of the recess 34.
 これにより、実施の形態1と同様に、光学デバイス101の透過光を所望の色(例えば、青みがかった色)にすることができる。また、本実施の形態では、凹部34の底、すなわち、第1電極層40と屈折率可変層32との間に青色層136が設けられている。このため、第1電極層40から屈折率可変層32に光が入射する際に界面で生じる散乱光を抑制することができる。 Thus, as in the first embodiment, the transmitted light of the optical device 101 can be made into a desired color (for example, a bluish color). Further, in the present embodiment, the blue layer 136 is provided at the bottom of the recess 34, that is, between the first electrode layer 40 and the variable-refractive-index layer 32. For this reason, when light injects into the refractive index variable layer 32 from the 1st electrode layer 40, the scattered light which arises at an interface can be suppressed.
 (実施の形態2の変形例)
 続いて、実施の形態2の変形例1及び2について説明する。各変形例では、実施の形態2と比較して、光学デバイスの青色層の構成が相違している。光学デバイスの青色層以外の構成、及び、動作などは、実施の形態2と同様である。以下では、実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Modification of Embodiment 2)
Subsequently, modified examples 1 and 2 of the second embodiment will be described. In each modification, the configuration of the blue layer of the optical device is different compared to the second embodiment. The configuration other than the blue layer of the optical device, the operation, and the like are the same as in the second embodiment. In the following, differences from the second embodiment will be mainly described, and the description of the common points will be omitted or simplified.
 [変形例1]
 まず、変形例1について図9を用いて説明する。図9は、本変形例に係る光学デバイス101aの拡大断面図である。図9に示す光学デバイス101aは、配光層130aを備える。配光層130aは、実施の形態2に係る配光層130と比較して、青色層136の代わりに、青色層136aを備える。
[Modification 1]
First, the first modification will be described with reference to FIG. FIG. 9 is an enlarged cross-sectional view of an optical device 101a according to the present modification. An optical device 101a shown in FIG. 9 includes a light distribution layer 130a. The light distribution layer 130 a includes a blue layer 136 a instead of the blue layer 136 as compared to the light distribution layer 130 according to the second embodiment.
 青色層136aは、実施の形態2と同様に、青色顔料を含む層である。本実施の形態では、青色層136aは、図9に示すように、さらに、入射した光の少なくとも一部を遮光する遮光材料137を含有している。 The blue layer 136a is a layer containing a blue pigment as in the second embodiment. In the present embodiment, as shown in FIG. 9, the blue layer 136a further contains a light shielding material 137 which shields at least a part of the incident light.
 遮光材料137は、例えば、黒色顔料である。黒色顔料としては、例えば、カーボンブラックなどの炭素系黒色顔料、又は、酸化物系黒色顔料などを用いることができる。 The light shielding material 137 is, for example, a black pigment. As the black pigment, for example, a carbon-based black pigment such as carbon black or an oxide-based black pigment can be used.
 以上のように、本変形例に係る光学デバイス101aでは、例えば、青色層136aは、入射した光の少なくとも一部を遮光する遮光材料137を含有している。 As described above, in the optical device 101a according to the present modification, for example, the blue layer 136a contains the light shielding material 137 that shields at least a part of the incident light.
 これにより、実施の形態2と同様に、光学デバイス101aの透過光を所望の色(例えば、青みがかった色)にすることができる。さらに、本変形例によれば、青色層136に遮光材料137が含まれているので、実施の形態1の変形例と同様に、太陽光柱の発生をより強く抑制することができる。 Thus, as in the second embodiment, the transmitted light of the optical device 101a can be made into a desired color (for example, a bluish color). Furthermore, according to the present modification, since the light shielding material 137 is included in the blue layer 136, the generation of a solar column can be more strongly suppressed as in the modification of the first embodiment.
 [変形例2]
 次に、変形例2について図10を用いて説明する。図10は、本変形例に係る光学デバイス101bの拡大断面図である。図10に示す光学デバイス101bは、配光層130bを備える。配光層130bは、実施の形態2に係る配光層130と比較して、さらに、遮光層37を備える。
[Modification 2]
Next, Modification 2 will be described using FIG. FIG. 10 is an enlarged cross-sectional view of an optical device 101b according to the present modification. An optical device 101b shown in FIG. 10 includes a light distribution layer 130b. The light distribution layer 130 b further includes a light shielding layer 37 as compared to the light distribution layer 130 according to the second embodiment.
 遮光層37は、実施の形態1の変形例と同様に、凹部34の底に設けられ、入射した光の少なくとも一部を遮光する。本変形例では、遮光層37は、青色層136に積層されている。具体的には、遮光層37は、凹部34の底であって、第1電極層40上に形成されている。すなわち、遮光層37は、第1電極層40と青色層136との間に配置されている。なお、青色層136が、第1電極層40上に形成され、第1電極層40と遮光層37との間に配置されていてもよい。 The light shielding layer 37 is provided on the bottom of the recess 34 and shields at least a part of the incident light, as in the modification of the first embodiment. In the present modification, the light shielding layer 37 is stacked on the blue layer 136. Specifically, the light shielding layer 37 is formed on the first electrode layer 40 at the bottom of the recess 34. That is, the light shielding layer 37 is disposed between the first electrode layer 40 and the blue layer 136. The blue layer 136 may be formed on the first electrode layer 40 and disposed between the first electrode layer 40 and the light shielding layer 37.
 以上のように、本変形例に係る光学デバイス101bでは、例えば、凹部34の底には、さらに、青色層136に積層された、入射した光の少なくとも一部を遮光する遮光層37が設けられている。 As described above, in the optical device 101b according to the present modification, for example, the light shielding layer 37, which is laminated to the blue layer 136 and shields at least part of incident light, is further provided on the bottom of the recess 34. ing.
 これにより、実施の形態2と同様に、光学デバイス101bの透過光を所望の色(例えば、青みがかった色)にすることができる。さらに、本変形例によれば、遮光層37が設けられているので、実施の形態1の変形例と同様に、太陽光柱の発生をより強く抑制することができる。 Thus, as in the second embodiment, the transmitted light of the optical device 101b can be made into a desired color (for example, a bluish color). Furthermore, according to the present modification, since the light shielding layer 37 is provided, the generation of the sunlight pillar can be more strongly suppressed as in the modification of the first embodiment.
 (実施の形態3)
 続いて、実施の形態3に係る光学システムについて説明する。
Third Embodiment
Subsequently, an optical system according to the third embodiment will be described.
 図11は、本実施の形態に係る光学システム200の構成を示す断面図である。図11に示すように、光学システム200は、光学デバイス1と、光学デバイス201と、制御部261とを備える。 FIG. 11 is a cross-sectional view showing the configuration of an optical system 200 according to the present embodiment. As shown in FIG. 11, the optical system 200 includes the optical device 1, an optical device 201, and a control unit 261.
 光学デバイス1は、第1光学デバイスの一例であり、実施の形態1で示した光学デバイス1と同じである。なお、本実施の形態では、光学システム200は、光学デバイス1の代わりに、光学デバイス1a、又は、光学デバイス101、101a若しくは101bを備えてもよい。 The optical device 1 is an example of a first optical device, and is the same as the optical device 1 shown in the first embodiment. In the present embodiment, the optical system 200 may include the optical device 1a or the optical device 101, 101a or 101b instead of the optical device 1.
 光学デバイス201は、第2光学デバイスの一例であり、光学デバイス1と比較して、配光層30の代わりに配光層230を備える点が相違している。配光層230は、第2配光層の一例であり、配光層30と比較して、青色層36を備えていない点が相違している。具体的には、光学デバイス201は、第1基材(第3基材)10と、第2基材(第4基材)20と、第1電極層(第3電極層)40と、第2電極層(第4電極層)50とを備える。 The optical device 201 is an example of a second optical device, and differs from the optical device 1 in that the light distribution layer 230 is provided instead of the light distribution layer 30. The light distribution layer 230 is an example of a second light distribution layer, and is different from the light distribution layer 30 in that the blue layer 36 is not provided. Specifically, the optical device 201 includes a first base (third base) 10, a second base (fourth base) 20, a first electrode layer (third electrode layer) 40, and a third base. And a second electrode layer (fourth electrode layer) 50.
 光学デバイス201は、上下方向に沿った平面内で光学デバイス1と並んで配置されている。本実施の形態では、光学デバイス1が、光学デバイス201より上側に位置している。具体的には、光学デバイス1及び光学デバイス201は、図11に示すように、窓91に貼り付けられている。上下方向は、例えば鉛直方向であるが、これに限らない。例えば、窓91は、鉛直方向に対して斜めに傾斜していてもよい。 The optical device 201 is disposed side by side with the optical device 1 in a plane along the vertical direction. In the present embodiment, the optical device 1 is located above the optical device 201. Specifically, the optical device 1 and the optical device 201 are attached to the window 91 as shown in FIG. The vertical direction is, for example, the vertical direction, but is not limited thereto. For example, the window 91 may be inclined obliquely to the vertical direction.
 制御部261は、光学デバイス1及び光学デバイス201の各々を制御する。具体的には、制御部261は、光学デバイス1の第1電極層40と第2電極層50との間に所定の電圧を印加することで、配光層30に電界を与える。さらに、制御部261は、光学デバイス201の第1電極層40と第2電極層50との間に所定の電圧を印加することで、配光層230に電界を与える。 The control unit 261 controls each of the optical device 1 and the optical device 201. Specifically, the control unit 261 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 of the optical device 1. Further, the control unit 261 applies an electric field to the light distribution layer 230 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 of the optical device 201.
 光学デバイス1と光学デバイス201とは、青色層36の有無のみが異なっているので、配光層30及び配光層230の各々に与えられる電界が同じであれば、同じ光学状態になる。例えば、配光層30及び配光層230に電界が与えられない場合(すなわち、無印加モード)では、光学デバイス1と光学デバイス201とは、入射する光を同じ方向に配光する。配光層30及び配光層230の各々に与える電界を大きくするほど、配光の角度が小さくなり、光学デバイス1及び光学デバイス201は、透明状態に近付く。 Since the optical device 1 and the optical device 201 differ only in the presence or absence of the blue layer 36, they will be in the same optical state if the electric field applied to each of the light distribution layer 30 and the light distribution layer 230 is the same. For example, when no electric field is applied to the light distribution layer 30 and the light distribution layer 230 (that is, in the non-application mode), the optical device 1 and the optical device 201 distribute incident light in the same direction. As the electric field applied to each of the light distribution layer 30 and the light distribution layer 230 increases, the light distribution angle decreases, and the optical device 1 and the optical device 201 approach a transparent state.
 本実施の形態では、制御部261は、光学デバイス1と光学デバイス201とを同じ光学状態で動作させる場合に、光学デバイス1の第1電極層40及び第2電極層50の間に、光学デバイス201の第1電極層40及び第2電極層50の間の電位差より大きい電圧を印加する。すなわち、光学デバイス1の配光の角度を、光学デバイス201の配光の角度より小さくする。例えば、制御部261は、光学デバイス201を無印加モード(配光状態)で動作させ、光学デバイス1を電圧印加モードで動作させる。このときの光学デバイス1の電極層間に印加する電圧は、光学デバイス1を透明状態にする電圧よりも小さい。 In the present embodiment, the control unit 261 operates the optical device between the first electrode layer 40 and the second electrode layer 50 of the optical device 1 when operating the optical device 1 and the optical device 201 in the same optical state. A voltage greater than the potential difference between the first electrode layer 40 and the second electrode layer 50 of 201 is applied. That is, the light distribution angle of the optical device 1 is made smaller than the light distribution angle of the optical device 201. For example, the control unit 261 operates the optical device 201 in the non-application mode (light distribution state) and operates the optical device 1 in the voltage application mode. The voltage applied between the electrode layers of the optical device 1 at this time is smaller than the voltage for making the optical device 1 in a transparent state.
 これにより、図12に示すように、光学デバイス1によって配光された青みを帯びた光と、光学デバイス201によって配光された黄色みを帯びた光とを同じ領域に集光させることができる。なお、図12は、本実施の形態に係る光学システム200の配光状態を説明するための模式図である。青みを帯びた光と黄色みを帯びた光との配光方向を調整することで、光の混ざり具合を調整することができる。 As a result, as shown in FIG. 12, the bluish light distributed by the optical device 1 and the yellowish light distributed by the optical device 201 can be collected in the same area. . FIG. 12 is a schematic view for explaining a light distribution state of the optical system 200 according to the present embodiment. By adjusting the light distribution direction of the bluish light and the yellowish light, it is possible to adjust the degree of mixing of the light.
 [効果など]
 以上のように、本実施の形態に係る光学システム200は、例えば、光学デバイス1と、上下方向に沿った平面内で光学デバイス1と並んで配置される光学デバイス201とを備える。光学デバイス201は、透光性を有する第1基材(第3基材)10と、第1基材10に対向し、透光性を有する第2基材(第4基材)20と、第1基材10及び第2基材20の間に配置され、入射した光を配光する配光層230と、配光層230を間に挟んで互いに対向して配置された第1電極層(第3電極層)40及び第2電極層(第4電極層)50とを備える。配光層230は、複数の凸部(第2凸部)33を有する凹凸構造層(第2凹凸構造層)31と、複数の凸部33の間である凹部(第2凹部)34を充填するように配置され、第1電極層40及び第2電極層50の間に印加される電圧に応じて屈折率が変化する屈折率可変層(第2屈折率可変層)32とを含む。光学デバイス1は、光学デバイス201より上側に位置している。
[Effect, etc.]
As described above, the optical system 200 according to the present embodiment includes, for example, the optical device 1 and the optical device 201 arranged in parallel with the optical device 1 in a plane along the vertical direction. The optical device 201 includes a light-transmitting first base material (third base material) 10 and a light-transmitting second base material (fourth base material) 20 facing the first base material 10; A light distribution layer 230 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer disposed opposite to each other with the light distribution layer 230 interposed therebetween (Third electrode layer) 40 and second electrode layer (fourth electrode layer) 50 are provided. The light distribution layer 230 is filled with a concavo-convex structure layer (second concavo-convex structure layer) 31 having a plurality of convex portions (second convex portions) 33 and a concave portion (second concave portion) 34 between the plural convex portions 33. And a variable-refractive-index layer (second variable-refractive-index layer) 32 whose refractive index changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50. The optical device 1 is located above the optical device 201.
 これにより、建物90の屋内に居る人物が窓91を見上げた場合に、青みを帯びた光を出射する光学デバイス1が上側に配置されているので、青空をよりきれいに見せることができる。 Thus, when the person in the building 90 looks up at the window 91, the optical device 1 for emitting bluish light is disposed on the upper side, so that the blue sky can be seen more beautifully.
 また、例えば、光学システム200は、さらに、光学デバイス1及び光学デバイス201の各々を制御する制御部261を備え、制御部261は、光学デバイス1と光学デバイス201とを同じ光学状態で動作させる場合に、光学デバイス1の第1電極層40及び第2電極層50の間に、光学デバイス201の第1電極層40及び第2電極層50の間の電位差より大きい電圧を印加する。 In addition, for example, the optical system 200 further includes a control unit 261 that controls each of the optical device 1 and the optical device 201, and the control unit 261 operates the optical device 1 and the optical device 201 in the same optical state. A voltage greater than the potential difference between the first electrode layer 40 and the second electrode layer 50 of the optical device 201 is applied between the first electrode layer 40 and the second electrode layer 50 of the optical device 1.
 これにより、図12に示したように、青みを帯びた光と黄色みを帯びた光との配光方向を調整することで、光の混ざり具合を調整することができる。 As a result, as shown in FIG. 12, the degree of mixing of light can be adjusted by adjusting the light distribution direction of the bluish light and the yellowish light.
 なお、本実施の形態では、光学デバイス1と光学デバイス201とが別体で構成されている例について示したが、光学デバイス1と光学デバイス201とは、一体に構成されていてもよい。すなわち、光学デバイス1及び210の各々の第1基材10及び第2基材20は、1枚の基板として形成されていてもよい。 In the present embodiment, an example is shown in which the optical device 1 and the optical device 201 are separately configured, but the optical device 1 and the optical device 201 may be integrally configured. That is, the first base 10 and the second base 20 of each of the optical devices 1 and 210 may be formed as a single substrate.
 また、制御部261は、光学デバイス1と光学デバイス201とを全く同じように動作させてもよい。具体的には、制御部261は、光学デバイス1の配光層30に与える電界と、光学デバイス201の配光層230に与える電界とが同じになるように、各々の電極層に電圧を印加してもよい。これにより、光学デバイス1及び光学デバイス201の各々を通過した光の進行方向を同じにすることができる。 In addition, the control unit 261 may operate the optical device 1 and the optical device 201 in the same manner. Specifically, the control unit 261 applies a voltage to each electrode layer so that the electric field applied to the light distribution layer 30 of the optical device 1 and the electric field applied to the light distribution layer 230 of the optical device 201 become the same. You may Thereby, the advancing direction of the light which passed each of the optical device 1 and the optical device 201 can be made the same.
 (その他)
 以上、本発明に係る光学デバイス及び光学システムについて、上記の実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Others)
Although the optical device and the optical system according to the present invention have been described above based on the above embodiment and the modification thereof, the present invention is not limited to the above embodiment.
 例えば、上記の実施の形態では、凹部34に青色層が設けられている例について示したが、これに限らない。凹部34には、青色以外の有色層が設けられていてもよい。有色層の色は、例えば、赤色、黄色、緑色などでもよい。有色層を設けることで、透過光を所望の色合いにすることができる。 For example, although the above-mentioned embodiment showed an example in which the blue layer is provided in the recess 34, the present invention is not limited to this. The recess 34 may be provided with a colored layer other than blue. The color of the colored layer may be, for example, red, yellow, green or the like. By providing a colored layer, it is possible to make transmitted light into a desired color tone.
 また、例えば、上記の実施の形態では、複数の凸部33が互いに分離している例について示したが、これに限らない。例えば、図13に示す光学デバイス301では、配光層330の凹凸構造層331は、互いに連結されている。なお、図13は、実施の形態の変形例に係る光学システムの拡大断面図である。 Further, for example, in the above-described embodiment, although the example in which the plurality of convex portions 33 are separated from each other is shown, the present invention is not limited to this. For example, in the optical device 301 shown in FIG. 13, the concavo-convex structure layers 331 of the light distribution layer 330 are connected to each other. FIG. 13 is an enlarged cross-sectional view of an optical system according to a modification of the embodiment.
 具体的には、図13に示すように、凹凸構造層331は、第1基材10側に形成された薄膜層338と、薄膜層338から突出する複数の凸部33とを備える。薄膜層338は、意図的に形成してもよく、あるいは、複数の凸部33を形成する際の残渣膜として形成されてもよい。薄膜層338の厚さは、例えば1μmであるが、これに限らない。 Specifically, as shown in FIG. 13, the concavo-convex structure layer 331 includes a thin film layer 338 formed on the first base 10 side, and a plurality of convex portions 33 protruding from the thin film layer 338. The thin film layer 338 may be formed intentionally, or may be formed as a residual film when forming the plurality of projections 33. The thickness of the thin film layer 338 is, for example, 1 μm, but is not limited thereto.
 また、例えば、上記の実施の形態では、凸部33の長手方向がx軸方向となるように光学デバイスを窓に配置したが、これに限らない。例えば、凸部33の長手方向がz軸方向となるように光学デバイスを窓に配置してもよい。 Also, for example, in the above embodiment, the optical device is disposed in the window so that the longitudinal direction of the convex portion 33 is the x-axis direction, but the present invention is not limited to this. For example, the optical device may be disposed in the window such that the longitudinal direction of the convex portion 33 is the z-axis direction.
 また、例えば、上記の実施の形態では、凹凸構造層31を構成する複数の凸部33の各々は、長尺状であったが、これに限らない。例えば、複数の凸部33は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の凸部33を、ドット状に点在するように配置してもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but the present invention is not limited to this. For example, the plurality of convex portions 33 may be arranged to be dispersed in a matrix or the like. That is, the plurality of convex portions 33 may be arranged in a dotted manner.
 また、例えば、上記の実施の形態では、複数の凸部33の各々は、同じ形状としたが、これに限るものではなく、例えば、面内において異なる形状であってもよい。例えば、光学デバイス1におけるz軸方向の上半分と下半分とで複数の凸部33の側面33a又は33bの傾斜角を異ならせてもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 has the same shape. However, the present invention is not limited to this. For example, the shapes may be different in the plane. For example, the inclination angles of the side surfaces 33a or 33b of the plurality of protrusions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
 また、例えば、上記の実施の形態では、複数の凸部33の高さは、一定としたが、これに限るものではない。例えば、複数の凸部33の高さは、ランダムに異なっていてもよい。このようにすることで、光学デバイスを透過する光が虹色に見えてしまうことを抑制できる。つまり、複数の凸部33の高さをランダムに異ならせることで、凹凸界面での微小な回折光や散乱光が波長で平均化されて出射光の色付きが抑制される。 Further, for example, in the above embodiment, the heights of the plurality of convex portions 33 are fixed, but the present invention is not limited to this. For example, the heights of the plurality of protrusions 33 may be randomly different. By doing this, it is possible to suppress that the light transmitted through the optical device appears iridescent. That is, by randomly changing the heights of the plurality of convex portions 33, minute diffracted light and scattered light at the concavo-convex interface are averaged by the wavelength, and coloring of the emitted light is suppressed.
 また、例えば、上記の実施の形態では、配光層30の屈折率可変層32の材料として、液晶材料以外にポリマー構造などの高分子を含むものを用いてもよい。ポリマー構造は、例えば、網目状の構造であり、ポリマー構造(網目)の間に液晶分子が配置されることによって屈折率の調整が可能となる。高分子を含む液晶材料としては、例えば、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)又はポリマーネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)などを用いることができる。 Also, for example, in the above embodiment, as the material of the refractive index variable layer 32 of the light distribution layer 30, a material containing a polymer such as a polymer structure may be used besides the liquid crystal material. The polymer structure is, for example, a network-like structure, and the arrangement of liquid crystal molecules between the polymer structures (network) enables adjustment of the refractive index. As a liquid crystal material containing a polymer, for example, a polymer dispersed liquid crystal (PDLC) or a polymer network liquid crystal (PNLC) can be used.
 また、上記の実施の形態では、光学デバイス1に入射する光として太陽光を例示したが、これに限らない。例えば、光学デバイス1に入射する光は、照明装置などの発光装置が発する光であってもよい。 Moreover, although sunlight was illustrated as light which injects into the optical device 1 in said embodiment, it does not restrict to this. For example, the light incident on the optical device 1 may be light emitted by a light emitting device such as a lighting device.
 また、上記の実施の形態では、光学デバイス1は、窓91の屋内側の面に貼り付けたが、窓91の屋外側の面に貼り付けてもよい。屋内側に貼り付けることで、光学素子の劣化を抑制することができる。また、光学デバイス1を窓91に貼り付けたが、光学デバイスを建物90の窓そのものとして用いてもよい。また、光学デバイス1は、建物90の窓91に設置する場合に限るものではなく、例えば車の窓などに設置してもよい。 In the above embodiment, the optical device 1 is attached to the indoor surface of the window 91. However, the optical device 1 may be attached to the outdoor surface of the window 91. By sticking on the indoor side, deterioration of the optical element can be suppressed. Further, although the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself. Further, the optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed in, for example, a window of a car.
 なお、これらの変形例は、他の実施の形態及び変形例にも適用できる。 Note that these modifications can be applied to other embodiments and modifications.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
1、1a、101、101a、101b、201 光学デバイス
10 第1基材
20 第2基材
30、30a、130、130a、130b 配光層(第1配光層)
31 凹凸構造層(第1凹凸構造層、第2凹凸構造層)
32 屈折率可変層(第1屈折率可変層、第2屈折率可変層)
33 凸部(第1凸部、第2凸部)
33b 側面
34 凹部(第1凹部、第2凹部)
36、136、136a 青色層
37 遮光層
40 第1電極層(第3電極層)
50 第2電極層(第4電極層)
137 遮光材料
200 光学システム
230 配光層(第2配光層)
261 制御部
1, 1a, 101, 101a, 101b, 201 Optical device 10 First base material 20 Second base material 30, 30a, 130, 130a, 130b Light distribution layer (first light distribution layer)
31 Uneven structure layer (first uneven structure layer, second uneven structure layer)
32 Refractive index variable layer (first refractive index variable layer, second refractive index variable layer)
33 convex part (first convex part, second convex part)
33b side 34 concave (first concave, second concave)
36, 136, 136a Blue layer 37 Light shielding layer 40 First electrode layer (third electrode layer)
50 Second electrode layer (fourth electrode layer)
137 Light shielding material 200 Optical system 230 Light distribution layer (second light distribution layer)
261 Control unit

Claims (8)

  1.  透光性を有する第1基材と、
     前記第1基材に対向し、透光性を有する第2基材と、
     前記第1基材及び前記第2基材の間に配置され、入射した光を配光する第1配光層と、
     前記第1配光層を間に挟んで互いに対向して配置された第1電極層及び第2電極層とを備え、
     前記第1配光層は、
     複数の第1凸部を有する第1凹凸構造層と、
     前記複数の第1凸部の間である第1凹部を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する第1屈折率可変層と、
     前記第1凹部に設けられた青色層とを含む
     光学デバイス。
    A translucent first substrate,
    A light transmitting second substrate facing the first substrate;
    A first light distribution layer disposed between the first base and the second base for distributing incident light;
    And a first electrode layer and a second electrode layer disposed opposite to each other with the first light distribution layer interposed therebetween,
    The first light distribution layer is
    A first uneven structure layer having a plurality of first protrusions;
    A first refractive index, which is arranged to fill a first concave portion between the plurality of first convex portions, and whose refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer With a variable layer,
    An optical device comprising: a blue layer provided in the first recess.
  2.  前記青色層は、前記複数の第1凸部の各々の、前記第1凹部に面する側面に沿って設けられている
     請求項1に記載の光学デバイス。
    The optical device according to claim 1, wherein the blue layer is provided along a side surface of each of the plurality of first protrusions facing the first recess.
  3.  前記青色層は、前記第1凹部の底に設けられている
     請求項1又は2に記載の光学デバイス。
    The optical device according to claim 1, wherein the blue layer is provided at the bottom of the first recess.
  4.  前記第1凹部の底には、さらに、前記青色層に積層された、入射した光の少なくとも一部を遮光する遮光層が設けられている
     請求項3に記載の光学デバイス。
    The optical device according to claim 3, further comprising a light shielding layer laminated to the blue layer and shielding at least a part of the incident light, at a bottom of the first concave portion.
  5.  前記青色層は、入射した光の少なくとも一部を遮光する遮光材料を含有している
     請求項3に記載の光学デバイス。
    The optical device according to claim 3, wherein the blue layer contains a light shielding material that shields at least a part of incident light.
  6.  前記青色層は、紫外光を青色光に変換する波長変換材料を含有している
     請求項1~5のいずれか1項に記載の光学デバイス。
    The optical device according to any one of claims 1 to 5, wherein the blue layer contains a wavelength conversion material that converts ultraviolet light into blue light.
  7.  請求項1~6のいずれか1項に記載の光学デバイスである第1光学デバイスと、
     上下方向に沿った平面内で前記第1光学デバイスと並んで配置される第2光学デバイスとを備え、
     前記第2光学デバイスは、
     透光性を有する第3基材と、
     前記第3基材に対向し、透光性を有する第4基材と、
     前記第3基材及び前記第4基材の間に配置され、入射した光を配光する第2配光層と、
     前記第2配光層を間に挟んで互いに対向して配置された第3電極層及び第4電極層とを備え、
     前記第2配光層は、
     複数の第2凸部を有する第2凹凸構造層と、
     前記複数の第2凸部の間である第2凹部を充填するように配置され、前記第3電極層及び前記第4電極層間に印加される電圧に応じて屈折率が変化する第2屈折率可変層とを含み、
     前記第1光学デバイスは、前記第2光学デバイスより上側に位置している
     光学システム。
    A first optical device, which is the optical device according to any one of claims 1 to 6.
    And a second optical device disposed side by side with the first optical device in a plane along the vertical direction.
    The second optical device is
    A third base material having translucency,
    A light transmitting fourth substrate facing the third substrate;
    A second light distribution layer disposed between the third base and the fourth base for distributing incident light;
    And a third electrode layer and a fourth electrode layer disposed opposite to each other with the second light distribution layer interposed therebetween,
    The second light distribution layer is
    A second uneven structure layer having a plurality of second protrusions;
    A second refractive index, which is disposed to fill a second concave portion between the plurality of second convex portions, and whose refractive index changes according to a voltage applied between the third electrode layer and the fourth electrode layer Including a variable layer,
    An optical system, wherein the first optical device is located above the second optical device.
  8.  さらに、前記第1光学デバイス及び前記第2光学デバイスの各々を制御する制御部を備え、
     前記制御部は、前記第1光学デバイスと前記第2光学デバイスとを同じ光学状態で動作させる場合に、前記第1電極層及び前記第2電極層間に、前記第3電極層及び前記第4電極層間の電位差より大きい電圧を印加する
     請求項7に記載の光学システム。
    And a control unit configured to control each of the first optical device and the second optical device.
    The control unit, when operating the first optical device and the second optical device in the same optical state, includes the third electrode layer and the fourth electrode between the first electrode layer and the second electrode layer. The optical system according to claim 7, which applies a voltage larger than the potential difference between layers.
PCT/JP2017/040734 2017-02-17 2017-11-13 Optical device and optical system WO2018150662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028442A JP2020064084A (en) 2017-02-17 2017-02-17 Optical device and optical system
JP2017-028442 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150662A1 true WO2018150662A1 (en) 2018-08-23

Family

ID=63169225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040734 WO2018150662A1 (en) 2017-02-17 2017-11-13 Optical device and optical system

Country Status (2)

Country Link
JP (1) JP2020064084A (en)
WO (1) WO2018150662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552107A (en) * 2020-05-21 2020-08-18 Tcl华星光电技术有限公司 Optical film, preparation method and application of optical film
US11442199B2 (en) 2020-05-21 2022-09-13 Tcl China Star Optoelectronics Technology Co., Ltd. Optical film, manufacturing method, and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186724A (en) * 1984-10-04 1986-05-02 Canon Inc Grating type optical controlling element
JP2000137294A (en) * 1998-10-29 2000-05-16 Matsushita Electric Ind Co Ltd Visual field control sheet, back surface projection type screen and back surface projection type display
JP2009251247A (en) * 2008-04-04 2009-10-29 Sony Corp Liquid crystal display device, backlight source and optical film
JP2010266610A (en) * 2009-05-13 2010-11-25 Sony Corp Liquid crystal display
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device
WO2016185692A1 (en) * 2015-05-21 2016-11-24 パナソニックIpマネジメント株式会社 Optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186724A (en) * 1984-10-04 1986-05-02 Canon Inc Grating type optical controlling element
JP2000137294A (en) * 1998-10-29 2000-05-16 Matsushita Electric Ind Co Ltd Visual field control sheet, back surface projection type screen and back surface projection type display
JP2009251247A (en) * 2008-04-04 2009-10-29 Sony Corp Liquid crystal display device, backlight source and optical film
JP2010266610A (en) * 2009-05-13 2010-11-25 Sony Corp Liquid crystal display
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device
WO2016185692A1 (en) * 2015-05-21 2016-11-24 パナソニックIpマネジメント株式会社 Optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552107A (en) * 2020-05-21 2020-08-18 Tcl华星光电技术有限公司 Optical film, preparation method and application of optical film
CN111552107B (en) * 2020-05-21 2021-06-22 苏州华星光电技术有限公司 Optical film, preparation method and application of optical film
WO2021232481A1 (en) * 2020-05-21 2021-11-25 Tcl华星光电技术有限公司 Optical film, and manufacturing method and application of optical film
US11442199B2 (en) 2020-05-21 2022-09-13 Tcl China Star Optoelectronics Technology Co., Ltd. Optical film, manufacturing method, and application thereof

Also Published As

Publication number Publication date
JP2020064084A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2017122245A1 (en) Optical device, and window with light distribution function
WO2017098687A1 (en) Optical device
WO2018150662A1 (en) Optical device and optical system
WO2018150673A1 (en) Optical device
JP2017161735A (en) Optical device
JP6402959B2 (en) Optical device
JP6628167B2 (en) Optical device
WO2018154844A1 (en) Optical device
WO2018150663A1 (en) Optical device
JP6681588B2 (en) Optical device and method of manufacturing optical device
WO2018150674A1 (en) Optical device
WO2018154850A1 (en) Optical device
JP2019204064A (en) Optical device
US10712602B2 (en) Optical drive
WO2018154893A1 (en) Optical device, optical system, and method for manufacturing optical device
WO2018037632A1 (en) Optical device and production method for optical device
WO2019123967A1 (en) Light distribution control device
WO2018150675A1 (en) Optical device and optical system
JP2018136432A (en) Optical device
WO2019021576A1 (en) Optical device and optical system
JP2019184756A (en) Light distribution control device
JP2020016707A (en) Light distribution control device
JP2017156632A (en) Optical device
JP2019023706A (en) Optical device
JP2017156687A (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP