WO2018150663A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2018150663A1
WO2018150663A1 PCT/JP2017/040735 JP2017040735W WO2018150663A1 WO 2018150663 A1 WO2018150663 A1 WO 2018150663A1 JP 2017040735 W JP2017040735 W JP 2017040735W WO 2018150663 A1 WO2018150663 A1 WO 2018150663A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical device
light
electrode layer
refractive index
Prior art date
Application number
PCT/JP2017/040735
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 北村
伊藤 宜弘
井出 伸弘
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018150663A1 publication Critical patent/WO2018150663A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to optical devices.
  • a daylighting film that takes outside light such as sunlight incident from the outside into the room (see, for example, Patent Document 1).
  • the daylighting film described in Patent Document 1 includes a daylighting layer laminated to a support layer.
  • the light collection layer includes a plurality of transparent portions and a plurality of void portions disposed one by one between adjacent transparent portions, and reflects light at the interface between the transparent portion and the void portions.
  • the void is provided inside the light distribution layer, the strength is low. Moreover, since the optical state of the daylighting film is fixed in a state where the incident light is reflected, scattering of the incident light is increased and the transparency is lowered.
  • an object of the present invention is to provide an optical device capable of switching an optical state and having an increased intensity.
  • an optical device includes a light-transmitting first substrate, a light-transmitting second substrate facing the first substrate, and a light-transmitting second substrate.
  • a light distribution layer disposed between the first base material and the second base material and configured to distribute incident light, and a first electrode layer and a second electrode layer disposed opposite to each other with the light distribution layer interposed therebetween;
  • the light distribution layer includes a two-electrode layer, and the light distribution layer is disposed so as to fill the space between the plurality of projections and the concavo-convex structure layer having the plurality of projections, and between the first electrode layer and the second electrode layer.
  • a refractive index variable layer whose refractive index changes according to an applied voltage, and the uneven structure layer includes a reinforcing layer that reinforces between the plurality of convex portions.
  • an optical device capable of switching the optical state and having an increased intensity.
  • FIG. 1 is a cross-sectional view of an optical device according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device according to the embodiment.
  • FIG. 3A is a diagram for describing an operation (light distribution state) when the optical device operates in the non-application mode when the optical device according to the embodiment is installed in a window.
  • FIG. 3B is a diagram for describing an operation (a light transmitting state) when the optical device is operated in the voltage application mode when the optical device according to the embodiment is installed in the window.
  • FIG. 4A is an enlarged sectional view for explaining a non-application mode (light distribution state) of the optical device according to the embodiment.
  • FIG. 4B is an enlarged cross-sectional view for explaining a voltage application mode (light transmission state) of the optical device according to the embodiment.
  • FIG. 5 is a view showing the relationship between the thickness ratio of the reinforcing layer of the optical device according to the embodiment and the haze.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • the x-axis, the y-axis and the z-axis indicate three axes of the three-dimensional orthogonal coordinate system.
  • the z-axis direction is the vertical direction
  • the direction perpendicular to the z-axis is the horizontal direction.
  • the positive direction of the z axis is vertically upward.
  • the “thickness direction” means the thickness direction of the optical device, and is a direction perpendicular to the main surfaces of the first base and the second base, “plan view” When it sees from the direction perpendicular to the principal surface of the 1st substrate or the 2nd substrate.
  • FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
  • the optical device 1 is a light control device that controls light incident on the optical device 1.
  • the optical device 1 is a light distribution element capable of changing the traveling direction of light incident on the optical device 1 (that is, distributing light) and causing the light to be emitted.
  • the optical device 1 is configured to transmit incident light, and includes a first base 10, a second base 20, a light distribution layer 30, and a first light.
  • An electrode layer 40 and a second electrode layer 50 are provided.
  • An adhesion layer may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side in order to bring the first electrode layer 40 into close contact with the uneven structure layer 31 of the light distribution layer 30.
  • the adhesion layer is, for example, a translucent adhesive sheet, or a resin material generally referred to as a primer.
  • the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the first base material 10 and the second base material 20 forming a pair. Configuration.
  • a plurality of particulate spacers may be dispersed in a plane, and a columnar structure may be formed. .
  • the first base 10 and the second base 20 are translucent substrates having translucency.
  • a glass substrate or a resin substrate can be used as the first base 10 and the second base 20.
  • the material of the glass substrate examples include soda glass, alkali-free glass and high refractive index glass.
  • the material of the resin substrate examples include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA) or epoxy.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA acrylic
  • the glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage that scattering at the time of breakage is small.
  • the first base 10 and the second base 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board
  • the second base material 20 is an opposing base material facing the first base material 10 and is disposed at a position facing the first base material 10.
  • the first base 10 and the second base 20 are disposed substantially in parallel at a predetermined distance such as 10 ⁇ m to 30 ⁇ m, for example.
  • the first base material 10 and the second base material 20 are bonded by a sealing resin such as an adhesive formed in the shape of a frame on the outer periphery of each end.
  • planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it does not restrict to this, Even if it is polygons other than a circle or a square Well, any shape may be employed.
  • the light distribution layer 30 is disposed between the first base 10 and the second base 20.
  • the light distribution layer 30 has translucency, and transmits incident light.
  • the light distribution layer 30 distributes the incident light. That is, when light passes through the light distribution layer 30, the light distribution layer 30 changes the traveling direction of the light.
  • the light distribution layer 30 has a concavo-convex structure layer 31 and a refractive index variable layer 32.
  • the light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
  • the uneven structure layer 31 is a fine shape layer provided to make the surface (interface) of the variable-refractive-index layer 32 uneven.
  • the uneven structure layer 31 has a plurality of convex portions 33 and a plurality of concave portions 34, as shown in FIG.
  • the concavo-convex structure layer 31 is a concavo-convex structure constituted by a plurality of convex portions 33 of micro order size.
  • a plurality of concave portions 34 are between the plurality of convex portions 33. That is, one concave portion 34 is between two adjacent convex portions 33.
  • the plurality of protrusions 33 are a plurality of protrusions arranged in the z-axis direction (first direction) parallel to the main surface of the first base material 10 (the surface on which the first electrode layer 40 is provided). . That is, in the present embodiment, the z-axis direction is the direction in which the plurality of convex portions 33 are arranged.
  • Each of the plurality of projections 33 has a tapered shape from the root to the tip.
  • the cross-sectional shape of each of the plurality of projections 33 is a tapered shape that tapers along the direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20 .
  • the cross-sectional shape (yz cross section) of the convex part 33 is a trapezoid specifically, it is not restricted to this.
  • the cross-sectional shape of the convex portion 33 may be a triangle, another polygon, or a polygon including a curve.
  • a gap may be provided between the tip of the convex portion 33 and the second electrode layer 50.
  • the gap is filled with the variable-refractive-index layer 32.
  • each of the plurality of protrusions 33 has a pair of side surfaces 33 a and 33 b facing the recess 34.
  • the pair of side surfaces 33a and 33b are surfaces intersecting in the z-axis direction.
  • Each of the pair of side surfaces 33a and 33b is an inclined surface which is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 33a and 33b (the width of the convex portion 33 (z-axis direction ) Is gradually reduced from the first base 10 to the second base 20.
  • the side surface 33 a is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33.
  • the side surface 33a is a refractive surface that refracts incident light.
  • the side surface 33 b is, for example, a side surface (upper side surface) on the vertically upper side among a plurality of side surfaces constituting the convex portion 33.
  • the side surface 33 b is a reflection surface (total reflection surface) that reflects incident light (total reflection).
  • the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is a long convex portion linearly extending along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a trapezoidal cross-sectional shape and is an elongated substantially square pole shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction There is. Each of the plurality of protrusions 33 has the same shape, but may have different shapes.
  • the height H (the length in the y-axis direction) of each of the plurality of protrusions 33 is, for example, 2 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • height H of the convex part 33 is corresponded to the length of the part which protruded in the thickness direction from the reinforcement layer 35, as shown in FIG.
  • the width W (length in the z-axis direction) of the plurality of protrusions 33 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but not limited thereto.
  • the width P (z-axis direction) of the recess 34 is, for example, 0 ⁇ m to 100 ⁇ m.
  • the two adjacent convex portions 33 may be disposed at a predetermined distance without contacting with each other, or may be disposed in contact with each other.
  • the distance between the adjacent convex portions 33 is not limited to 0 ⁇ m to 100 ⁇ m.
  • the aspect ratio of the convex portion 33 is 2 or more.
  • the aspect ratio of the convex portion 33 is the height H of the convex portion 33 with respect to the width W at the root of the convex portion 33.
  • the cross-sectional shape of the convex portion 33 is elongated in the thickness direction.
  • the concavo-convex structure layer 31 includes a reinforcing layer 35 that reinforces between the plurality of convex portions 33.
  • the reinforcing layer 35 connects between the plurality of convex portions 33. That is, the reinforcing layer 35 connects the roots of the adjacent convex portions 33 and is provided so as to fill the bottom of the concave portion 34.
  • the reinforcing layer 35 is formed in a stripe shape extending in the x-axis direction, similarly to the convex portion 33.
  • the reinforcing layer 35 is provided at the bottom of the recess 34, the variable-refractive-index layer 32 is not in contact with the first electrode layer 40 or the first base material 10.
  • the reinforcing layer 35 may be provided discretely, such as in the form of dots, and in this case, the gap between the reinforcing layers 35 may be filled with a liquid crystal material or the like constituting the refractive index variable layer 32. .
  • the thickness ratio of the reinforcing layer 35 is expressed by T / (T + H).
  • the thickness ratio T / (T + H) is 0.5 or less. That is, the thickness T of the reinforcing layer 35 is equal to or less than half the height H of the convex portion 33.
  • thickness T of reinforcement layer 35 is 2 micrometers, it is not restricted to this.
  • the reinforcing layer 35 and the plurality of convex portions 33 are formed using the same material. That is, the reinforcing layer 35 and the plurality of convex portions 33 are integrally formed.
  • the resin material which has light transmittances such as an acrylic resin, an epoxy resin, or a silicone resin
  • the convex portion 33 and the reinforcing layer 35 are formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
  • the concavo-convex structure layer 31 can form the concavo-convex structure whose cross section has a trapezoidal shape by mold pressing, for example, using an acrylic resin having a refractive index of 1.5.
  • the height of the projections 33 is, for example, 10 ⁇ m, and the plurality of projections 33 are arranged at equal intervals of 2 ⁇ m in the z-axis direction at equal intervals.
  • the thickness of the root of the convex portion 33 is 5 ⁇ m, for example.
  • the distance between the roots of adjacent convex portions 33 can take, for example, a value of 0 ⁇ m to 5 ⁇ m.
  • the refractive index variable layer 32 is disposed so as to fill the gaps 34 between the plurality of convex portions 33 of the uneven structure layer 31.
  • the refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index of the variable-refractive-index layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 32 functions as a refractive index adjustment layer whose refractive index in the visible light band can be adjusted by application of an electric field.
  • the variable-refractive-index layer 32 is formed of liquid crystal having liquid crystal molecules 36 having electric field responsiveness, application of an electric field to the light distribution layer 30 changes the alignment state of the liquid crystal molecules 36 to change the refractive index.
  • the refractive index of the variable layer 32 changes.
  • the birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 36 having birefringence.
  • a liquid crystal for example, nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, or the like in which liquid crystal molecules 36 are rod-like molecules can be used.
  • an ordinary light refractive index (no) is 1.5
  • an extraordinary light refractive index (ne) is 1.7
  • a positive liquid crystal can be used.
  • the refractive index variable layer 32 is, for example, an end portion of each of the first base material 10 on which the first electrode layer 40 and the concavo-convex structure layer 31 are formed, and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method in a state where the outer periphery is sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by dropping the liquid crystal material onto the first electrode layer 40 and the concavo-convex structure layer 31 of the first base material 10 and then bonding the second base material 20 together.
  • FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 4A described later), and the liquid crystal molecules 36 are aligned such that the major axis is substantially parallel to the x axis.
  • a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 36 are aligned so that the major axis is substantially parallel to the y axis (see FIG. 4B described later) ).
  • an electric field may be applied to the refractive index variable layer 32 by AC power, and an electric field may be applied by DC power.
  • the voltage waveform may be a sine wave or a square wave.
  • first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 are not only electrically but also arranged in a pair, so as to face each other between the first base material 10 and the second base material 20. It is arranged. Specifically, the first electrode layer 40 and the second electrode layer 50 are disposed to sandwich the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 have translucency and transmit incident light.
  • the first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers.
  • the material of the transparent conductive layer is a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductor containing resin made of a resin containing a conductor such as silver nanowire or conductive particles, or And metal thin films such as silver thin films can be used.
  • the first electrode layer 40 and the second electrode layer 50 may have a single-layer structure of these, or a laminated structure of these (for example, a laminated structure of a transparent metal oxide and a metal thin film).
  • each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
  • the first electrode layer 40 is disposed between the first base 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
  • the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second base material 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
  • the first electrode layer 40 and the second electrode layer 50 are configured, for example, to enable electrical connection with an external power supply.
  • an electrode pad or the like for connection to an external power source may be drawn out from each of the first electrode layer 40 and the second electrode layer 50 and formed on the first base 10 and the second base 20.
  • the first electrode layer 40 and the second electrode layer 50 are each formed by depositing a conductive film such as ITO by, for example, vapor deposition or sputtering.
  • optical state of optical device Subsequently, the optical state (operation mode) of the optical device 1 will be described while showing an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 3A and 3B.
  • FIGS. 3A and 3B each show an example in which an optical system 60 including the optical device 1 according to the present embodiment is applied to a building 90.
  • FIG. Specifically, FIGS. 3A and 3B are diagrams for explaining the operation when the optical device 1 is operated in each operation mode when the optical device 1 is installed in the window 91.
  • the optical system 60 includes the optical device 1 and a controller 61.
  • the shaded area of the dot extending from the optical device 1 indicates the area through which the light (specifically, the S polarization component) which has passed through the optical device 1 passes.
  • the optical device 1 can transmit incident light. For example, by installing the optical device 1 in the window 91 of the building 90, it can be realized as a window with a light distribution function.
  • the optical device 1 is bonded, for example, to the existing window 91 via the adhesive layer.
  • the optical device 1 is installed in the window 91 such that the main surfaces of the first base 10 and the second base 20 are parallel to the vertical direction (z-axis direction).
  • the first base 10 is on the outdoor side
  • the second base 20 is on the indoor side
  • the side surface 33 b of the convex portion 33 is disposed on the ceiling 92 side and the side surface 33 a is on the floor 93 side.
  • control part 61 is installed on the floor 93, this is illustrated typically and it is not specifically limited to the installation place of the control part 61.
  • the control unit 61 may be integrally formed with the optical device 1 and may be fixed to a window frame of the window 91 or the like.
  • the control unit 61 may be embedded in the ceiling 92, the floor 93 or a wall of the building 90.
  • the control unit 61 is a control unit that drives the optical device 1. Specifically, the control unit 61 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50.
  • control unit 61 has two operation modes according to the application state of the voltage between first electrode layer 40 and second electrode layer 50. Specifically, the two operation modes are a non-application mode (first operation mode) in which no voltage is applied and a voltage application mode (second operation mode) in which a voltage is substantially uniformly applied between the electrode layers.
  • the control unit 61 switches and executes two operation modes based on user operation or predetermined schedule information.
  • the orientation of the liquid crystal molecules 36 contained in the refractive index variable layer 32 changes in accordance with the electric field applied to the light distribution layer 30.
  • the liquid crystal molecules 36 are rod-like liquid crystal molecules having birefringence, the refractive index that the light receives varies depending on the polarization state of the incident light.
  • the refractive index of the convex portion 33 is 1.5
  • the ordinary light refractive index (no) is 1.5
  • the extraordinary light refractive index (ne) is The case of a positive-type liquid crystal molecule of 1.7 will be described as an example.
  • Light such as sunlight incident on the optical device 1 includes P-polarization (P-polarization component) and S-polarization (S-polarization component).
  • the vibration direction of the P-polarized light is substantially parallel to the short axis of the liquid crystal molecule 36 in either the non-application mode or the voltage application mode.
  • the refractive index of the liquid crystal molecules 36 for P-polarization does not depend on the operation mode, and is the ordinary refractive index (no), specifically 1.5.
  • the refractive index for P-polarization does not depend on the operation mode and becomes substantially constant in the light distribution layer 30, so the P-polarization goes straight through the light distribution layer 30 as it is.
  • the refractive index of the liquid crystal molecules 36 for S-polarization changes in accordance with the operation mode.
  • the optical device 1 when driven in the non-application mode, the optical device 1 is in a light distribution state in which the traveling direction of incident light (S polarization) is changed. When driven in the voltage application mode, the optical device 1 is in a light transmitting (transparent) state that allows incident light (S-polarized light) to pass as it is (without changing the traveling direction).
  • FIGS. 4A and 4B are each an enlarged sectional view for explaining each operation mode of the optical device 1 according to the present embodiment.
  • FIGS. 4A and 4B paths of light L (for example, sunlight) incident on the optical device 1 are indicated by thick arrows. Note that, in fact, the light L is refracted when entering the first base material 10 and exiting from the second base material 20, but the change of the path due to the refraction is not shown.
  • L for example, sunlight
  • FIG. 4A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of the light L passing through the optical device 1.
  • the control unit 61 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the non-application mode. Specifically, when the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, the ground potential), no electric field is applied to the light distribution layer 30. Therefore, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the refractive index received by the light L is 1.5 for the convex portion 33, while the refractive index variable layer 32 is 1.7. Therefore, as shown in FIG. 4A, the light L incident obliquely to the optical device 1 is refracted by the side surface 33a of the convex portion 33 and then reflected (totally reflected) by the side surface 33b. The light reflected by the side surface 33 b is emitted obliquely upward. That is, the optical device 1 emits the light L incident obliquely downward toward the obliquely upward.
  • the light L such as sunlight incident obliquely downward is bent in its traveling direction by the optical device 1 and illuminates the ceiling 92 of the building 90.
  • FIG. 4B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of the light L passing through the optical device 1.
  • the control unit 61 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
  • the refractive index received by the light L (S polarized light) is 1.5 for both the convex portion 33 and the refractive index variable layer 32. Therefore, as shown in FIG. 4B, the light L obliquely incident on the optical device 1 passes through the optical device 1 as it is. That is, the optical device 1 emits the light L incident obliquely downward as it is downward. Therefore, as shown to FIG. 3B, light L, such as sunlight which enters diagonally downward, passes the optical device 1 as it is, and irradiates the part near the window 91 of the floor 93 of the building 90. As shown in FIG.
  • the optical device 1 it is possible to use the optical device according to the electric field applied to the light distribution layer 30 (the voltage applied between the first electrode layer 40 and the second electrode layer 50). It is possible to change the state.
  • the light transmission state and the light distribution state are switched, it is possible to form an intermediate optical state between the light distribution state and the light transmission state according to the applied voltage.
  • a plurality of voltage levels to be applied may be set and switching may be performed as appropriate.
  • the angle of light distribution by the optical device 1 is smaller in the intermediate optical state than in the light distribution state. For example, light can travel to the far side of the interior of the building 90.
  • the light distribution state and the light transmission (transparent) state can be switched. For this reason, in the transparent state, it is required that the transparency of the optical device 1 be sufficiently high.
  • the strength of the convex portion 33 is weak and the shape of the convex portion 33 is broken, the light distribution efficiency is lowered. Therefore, it is required to maintain the strength of the convex portion 33 while enhancing the transparency of the optical device 1 in the transparent state.
  • the reinforcing layer 35 is provided in order to increase the strength of the convex portion 33 of the concavo-convex structure layer 31, the reinforcing layer 35 is provided. As the thickness T of the reinforcing layer 35 is increased, the strength of the convex portion 33 can be enhanced.
  • the thickness T of the reinforcing layer 35 becomes larger, the partial pressure of the voltage applied between the first electrode layer 40 and the second electrode layer 50 to the reinforcing layer 35 becomes larger. Therefore, the electric field applied to the refractive index variable layer 32 becomes small, and the liquid crystal molecules 36 are difficult to be properly aligned. If the orientation of the liquid crystal molecules 36 becomes insufficient, the refractive index within the light distribution layer 30 will not be uniform, and light scattering will occur. For this reason, the transparency of the optical device 1 is reduced.
  • FIG. 5 is a view showing the relationship between the thickness ratio of the reinforcing layer 35 of the optical device 1 according to the present embodiment and the haze.
  • the horizontal axis indicates the thickness ratio T / (T + H) of the reinforcing layer 35
  • the vertical axis indicates the haze [%] in the light transmission (transparent) state of the optical device 1.
  • the haze is a parameter indicating the transparency of the optical device 1. As the haze is smaller, the optical device 1 is more transparent, and as the haze is larger, the optical device 1 looks more cloudy.
  • the haze is smaller and the optical device 1 becomes closer to transparent.
  • the thickness ratio is 0.5
  • the haze is about 11%.
  • the turbidity when the optical device 1 is in the transparent state is easily noticeable.
  • the thickness ratio is 0.5 or less
  • the haze can be reduced and the transparency of the optical device 1 in the transparent state can be increased.
  • the haze is approximately the same at about 6 to 7% when the thickness ratio is 0.15 and 0.25.
  • the thickness ratio may be, for example, 0.15 or more or 0.25 or more.
  • the optical device 1 includes the light-transmitting first base material 10, the second base material 20 facing the first base material 10, and the light-transmitting property, A light distribution layer 30 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer 40 disposed opposite to each other with the light distribution layer 30 interposed therebetween. And a second electrode layer 50.
  • the light distribution layer 30 is disposed so as to fill the space between the plurality of convex portions 33 with the uneven structure layer 31 having the plurality of convex portions 33, and a voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the variable-refractive-index layer 32 whose refractive index changes according to.
  • the uneven structure layer 31 includes a reinforcing layer 35 that reinforces between the plurality of convex portions 33.
  • the refractive index of the refractive index variable layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50, so that the optical state of the optical device 1 can be changed.
  • the optical device 1 can be made to be in a light transmitting (transparent) state.
  • the refractive index of the refractive index variable layer 32 different from the refractive index of the concavo-convex structure layer 31, it is possible to make a light distribution state in which light is reflected by the side surface 33b and emitted in a predetermined direction.
  • the optical state can be changed.
  • the optical device 1 is used by being attached to, for example, a window 91 or the like. At this time, in order to prevent a gap (bubble) from being formed between the optical device 1 and the window 91, the optical device 1 is strongly pressed against the window 91 using a jig or the like to release the bubble to the outside. Is done.
  • the reinforcing layer 35 for reinforcing between the plurality of convex portions 33 is provided, even when a strong force is applied from the outside, It is possible to suppress the collapse of the shape.
  • the optical device 1 capable of switching the optical state and enhancing the intensity.
  • T / (T + H) which is the thickness ratio of the reinforcing layer 35, is 0.5 or less.
  • the thickness ratio is 0.5 or less, the haze when the optical device 1 is in the transparent state can be made smaller than about 11%. Therefore, the transparency of the optical device 1 can be increased.
  • the aspect ratio indicating the height H to the width W at the root of the convex portion 33 is 2 or more.
  • the side surface 33b which functions as a reflective surface of light can be enlarged, and light distribution can be increased.
  • the aspect ratio of the convex portion 33 is increased, the force from the outside is weakened. For this reason, the reinforcing effect by the reinforcing layer 35 is more effectively exhibited.
  • the reinforcing layer 35 and the plurality of convex portions 33 are formed using the same material.
  • the convex portion 33 and the reinforcing layer 35 are integrally formed, the stress applied to the convex portion 33 can be efficiently dissipated to the reinforcing layer 35, so that the reinforcing effect can be further enhanced.
  • the reinforcing layer 35 connects between the plurality of convex portions 33.
  • optical device concerning the present invention was explained based on the above-mentioned embodiment, the present invention is not limited to the above-mentioned embodiment.
  • the reinforcing layer 35 may not connect two adjacent convex portions 33 to each other. That is, the reinforcing layer 35 may be provided for each of the convex portions 33 and may be formed in a bowl shape protruding laterally (z-axis direction) from the root. For example, between the reinforcing layer 35 provided on the side surface 33 a side of one of the two adjacent convex portions 33 and the reinforcing layer 35 provided on the other side surface 33 b side of the two adjacent convex portions 33, A gap may be provided between the reinforcing layer 35 provided on the side surface 33 a side of one of the two adjacent convex portions 33 and the reinforcing layer 35 provided on the other side surface 33 b side of the two adjacent convex portions 33. A gap may be provided between the reinforcing layer 35 provided on the side surface 33 a side of one of the two adjacent convex portions 33 and the reinforcing layer 35 provided on the other side surface 33 b side of the two adjacent convex portions 33.
  • a gap
  • the reinforcing layer 35 may be formed separately from the convex portion 33.
  • the reinforcing layer 35 may be formed using a material different from that of the convex portion 33.
  • the optical device is disposed in the window so that the longitudinal direction of the convex portion 33 is the x-axis direction, but the present invention is not limited to this.
  • the optical device may be disposed in the window such that the longitudinal direction of the convex portion 33 is the z-axis direction.
  • each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but the present invention is not limited to this.
  • the plurality of convex portions 33 may be arranged to be dispersed in a matrix or the like. That is, the plurality of convex portions 33 may be arranged in a dotted manner.
  • the reinforcing layer 35 may also be provided in a dot shape for each convex portion 33.
  • each of the plurality of convex portions 33 has the same shape.
  • the shapes may be different in the plane.
  • the inclination angles of the side surfaces 33a or 33b of the plurality of protrusions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
  • the heights of the plurality of convex portions 33 are fixed, but the present invention is not limited to this.
  • the heights of the plurality of protrusions 33 may be randomly different. By doing this, it is possible to suppress that the light transmitted through the optical device appears iridescent. That is, by randomly changing the heights of the plurality of convex portions 33, minute diffracted light and scattered light at the concavo-convex interface are averaged by the wavelength, and coloring of the emitted light is suppressed.
  • sunlight was illustrated as light which injects into the optical device 1 in said embodiment, it does not restrict to this.
  • the light incident on the optical device 1 may be light emitted by a light emitting device such as a lighting device.
  • the optical device 1 is attached to the indoor surface of the window 91.
  • the optical device 1 may be attached to the outdoor surface of the window 91. By sticking on the indoor side, deterioration of the optical element can be suppressed.
  • the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself. Further, the optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed in, for example, a window of a car.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

An optical device (1) equipped with a translucent first substrate (10), a translucent second substrate (20) that faces the first substrate (10), a light distribution layer (30) which distributes incident light and is positioned between the first substrate (10) and the second substrate (20), and a first electrode layer (40) and a second electrode layer (50) which are positioned so as to face one another with the light distribution layer (30) sandwiched therebetween, wherein: the light distribution layer (30) includes a relief structure layer (31) having a plurality of projecting sections (33), and also includes a variable refractive index layer (32) which is positioned so as to fill the intervals between the plurality of projecting sections (33), and in which the refractive index changes according to the voltage applied between the first electrode layer (40) and the second electrode layer (50); and the relief structure layer (31) includes a reinforcing layer (35) for reinforcing the intervals between the plurality of projecting sections (33).

Description

光学デバイスOptical device
 本発明は、光学デバイスに関する。 The present invention relates to optical devices.
 従来、屋外から入射する太陽光などの外光を屋内に採り入れる採光フィルムが知られている(例えば、特許文献1を参照)。特許文献1に記載の採光フィルムは、支持層に積層された採光層を備える。採光層は、複数の透明部と、隣り合う透明部の間に1つずつ配置される複数の空隙部とを備え、透明部と空隙部との界面で光を反射させている。 BACKGROUND Conventionally, a daylighting film is known that takes outside light such as sunlight incident from the outside into the room (see, for example, Patent Document 1). The daylighting film described in Patent Document 1 includes a daylighting layer laminated to a support layer. The light collection layer includes a plurality of transparent portions and a plurality of void portions disposed one by one between adjacent transparent portions, and reflects light at the interface between the transparent portion and the void portions.
国際公開第2016/088445号WO 2016/088445
 しかしながら、上記従来の採光フィルムでは、配光層の内部に空隙部が設けられているので、強度が低い。また、採光フィルムの光学状態が、入射される光が反射される状態で固定されているため、入射する光の散乱が増加し、透明度が低くなる。 However, in the above conventional light collecting film, since the void is provided inside the light distribution layer, the strength is low. Moreover, since the optical state of the daylighting film is fixed in a state where the incident light is reflected, scattering of the incident light is increased and the transparency is lowered.
 そこで、本発明は、光学状態を切り替えることができ、かつ、強度が高められた光学デバイスを提供することを目的とする。 Then, an object of the present invention is to provide an optical device capable of switching an optical state and having an increased intensity.
 上記目的を達成するため、本発明の一態様に係る光学デバイスは、透光性を有する第1基材と、前記第1基材に対向し、透光性を有する第2基材と、前記第1基材及び前記第2基材の間に配置され、入射した光を配光する配光層と、前記配光層を間に挟んで互いに対向して配置された第1電極層及び第2電極層とを備え、前記配光層は、複数の凸部を有する凹凸構造層と、前記複数の凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、前記凹凸構造層は、前記複数の凸部間を補強する補強層を含む。 In order to achieve the above object, an optical device according to an aspect of the present invention includes a light-transmitting first substrate, a light-transmitting second substrate facing the first substrate, and a light-transmitting second substrate. A light distribution layer disposed between the first base material and the second base material and configured to distribute incident light, and a first electrode layer and a second electrode layer disposed opposite to each other with the light distribution layer interposed therebetween; The light distribution layer includes a two-electrode layer, and the light distribution layer is disposed so as to fill the space between the plurality of projections and the concavo-convex structure layer having the plurality of projections, and between the first electrode layer and the second electrode layer. And a refractive index variable layer whose refractive index changes according to an applied voltage, and the uneven structure layer includes a reinforcing layer that reinforces between the plurality of convex portions.
 本発明によれば、光学状態を切り替えることができ、かつ、強度が高められた光学デバイスを提供することができる。 According to the present invention, it is possible to provide an optical device capable of switching the optical state and having an increased intensity.
図1は、実施の形態に係る光学デバイスの断面図である。FIG. 1 is a cross-sectional view of an optical device according to an embodiment. 図2は、実施の形態に係る光学デバイスの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the optical device according to the embodiment. 図3Aは、実施の形態に係る光学デバイスを窓に設置した場合において、光学デバイスが無印加モードで動作したときの作用(配光状態)を説明するための図である。FIG. 3A is a diagram for describing an operation (light distribution state) when the optical device operates in the non-application mode when the optical device according to the embodiment is installed in a window. 図3Bは、実施の形態に係る光学デバイスを窓に設置した場合において、光学デバイスが電圧印加モードで動作したときの作用(透光状態)を説明するための図である。FIG. 3B is a diagram for describing an operation (a light transmitting state) when the optical device is operated in the voltage application mode when the optical device according to the embodiment is installed in the window. 図4Aは、実施の形態に係る光学デバイスの無印加モード(配光状態)を説明するための拡大断面図である。FIG. 4A is an enlarged sectional view for explaining a non-application mode (light distribution state) of the optical device according to the embodiment. 図4Bは、実施の形態に係る光学デバイスの電圧印加モード(透光状態)を説明するための拡大断面図である。FIG. 4B is an enlarged cross-sectional view for explaining a voltage application mode (light transmission state) of the optical device according to the embodiment. 図5は、実施の形態に係る光学デバイスの補強層の厚み比率とヘイズとの関係を示す図である。FIG. 5 is a view showing the relationship between the thickness ratio of the reinforcing layer of the optical device according to the embodiment and the haze.
 以下では、本発明の実施の形態に係る光学デバイスについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, an optical device according to an embodiment of the present invention will be described in detail with reference to the drawings. Each embodiment described below shows one specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を鉛直方向とし、z軸に垂直な方向(xy平面に平行な方向)を水平方向としている。なお、z軸の正方向を鉛直上方としている。また、本明細書において、「厚み方向」とは、光学デバイスの厚み方向を意味し、第1基材及び第2基材の主面に垂直な方向のことであり、「平面視」とは、第1基材又は第2基材の主面に対して垂直な方向から見たときのことをいう。 Moreover, in the present specification and drawings, the x-axis, the y-axis and the z-axis indicate three axes of the three-dimensional orthogonal coordinate system. In each embodiment, the z-axis direction is the vertical direction, and the direction perpendicular to the z-axis (the direction parallel to the xy plane) is the horizontal direction. Note that the positive direction of the z axis is vertically upward. Moreover, in the present specification, the “thickness direction” means the thickness direction of the optical device, and is a direction perpendicular to the main surfaces of the first base and the second base, “plan view” When it sees from the direction perpendicular to the principal surface of the 1st substrate or the 2nd substrate.
 (実施の形態)
 [構成]
 まず、本実施の形態に係る光学デバイス1の構成について、図1及び図2を用いて説明する。図1は、本実施の形態に係る光学デバイス1の断面図である。図2は、本実施の形態に係る光学デバイス1の拡大断面図であり、図1の一点鎖線で囲まれる領域IIの拡大断面図である。
Embodiment
[Constitution]
First, the configuration of the optical device 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of an optical device 1 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view of the optical device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
 光学デバイス1は、光学デバイス1に入射する光を制御する光制御デバイスである。具体的には、光学デバイス1は、光学デバイス1に入射する光の進行方向を変更して(つまり、配光して)出射させることができる配光素子である。 The optical device 1 is a light control device that controls light incident on the optical device 1. Specifically, the optical device 1 is a light distribution element capable of changing the traveling direction of light incident on the optical device 1 (that is, distributing light) and causing the light to be emitted.
 図1及び図2に示すように、光学デバイス1は、入射する光を透過するように構成されており、第1基材10と、第2基材20と、配光層30と、第1電極層40と、第2電極層50とを備える。 As shown in FIGS. 1 and 2, the optical device 1 is configured to transmit incident light, and includes a first base 10, a second base 20, a light distribution layer 30, and a first light. An electrode layer 40 and a second electrode layer 50 are provided.
 なお、第1電極層40の配光層30側の面には、第1電極層40と配光層30の凹凸構造層31とを密着させるための密着層が設けられていてもよい。密着層は、例えば、透光性の接着シート、又は、一般的にプライマーと称される樹脂材料などである。 An adhesion layer may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side in order to bring the first electrode layer 40 into close contact with the uneven structure layer 31 of the light distribution layer 30. The adhesion layer is, for example, a translucent adhesive sheet, or a resin material generally referred to as a primer.
 光学デバイス1は、対をなす第1基材10及び第2基材20の間に、第1電極層40、配光層30及び第2電極層50がこの順で厚み方向に沿って配置された構成である。なお、第1基材10と第2基材20との間の距離を保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されていてもよい。 In the optical device 1, the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the first base material 10 and the second base material 20 forming a pair. Configuration. In addition, in order to maintain the distance between the first base material 10 and the second base material 20, a plurality of particulate spacers may be dispersed in a plane, and a columnar structure may be formed. .
 以下、光学デバイス1の各構成部材について、図1及び図2を参照して詳細に説明する。 Hereinafter, each component of the optical device 1 will be described in detail with reference to FIGS. 1 and 2.
 [第1基材及び第2基材]
 第1基材10及び第2基材20は、透光性を有する透光性基材である。第1基材10及び第2基材20としては、例えばガラス基板又は樹脂基板を用いることができる。
[First base and second base]
The first base 10 and the second base 20 are translucent substrates having translucency. For example, a glass substrate or a resin substrate can be used as the first base 10 and the second base 20.
 ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。 Examples of the material of the glass substrate include soda glass, alkali-free glass and high refractive index glass. Examples of the material of the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA) or epoxy. The glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage that scattering at the time of breakage is small.
 第1基材10と第2基材20とは、同じ材料で構成されていてもよく、あるいは、異なる材料で構成されていてもよい。また、第1基材10及び第2基材20は、リジッド基板に限るものではなく、可撓性を有するフレキシブル基板でもよい。本実施の形態において、第1基材10及び第2基材20は、PET樹脂からなる透明樹脂基板である。 The first base 10 and the second base 20 may be made of the same material, or may be made of different materials. Moreover, the 1st base material 10 and the 2nd base material 20 are not restricted to a rigid board | substrate, You may be a flexible substrate which has flexibility. In the present embodiment, the first base 10 and the second base 20 are transparent resin substrates made of PET resin.
 第2基材20は、第1基材10に対向する対向基材であり、第1基材10に対向する位置に配置される。第1基材10と第2基材20とは、例えば、10μm~30μmなどの所定距離を空けて略平行に配置されている。第1基材10と第2基材20とは、互いの端部外周に額縁状に形成された接着剤などのシール樹脂によって接着されている。 The second base material 20 is an opposing base material facing the first base material 10 and is disposed at a position facing the first base material 10. The first base 10 and the second base 20 are disposed substantially in parallel at a predetermined distance such as 10 μm to 30 μm, for example. The first base material 10 and the second base material 20 are bonded by a sealing resin such as an adhesive formed in the shape of a frame on the outer periphery of each end.
 なお、第1基材10及び第2基材20の平面視形状は、例えば、正方形又は長方形などの矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。 In addition, although the planar view shape of the 1st base material 10 and the 2nd base material 20 is rectangular shapes, such as a square or a rectangle, for example, it does not restrict to this, Even if it is polygons other than a circle or a square Well, any shape may be employed.
 [配光層]
 図1及び図2に示すように、配光層30は、第1基材10と第2基材20との間に配置される。配光層30は、透光性を有しており、入射した光を透過させる。また、配光層30は、入射した光を配光する。つまり、配光層30は、配光層30を光が通過する際に、その光の進行方向を変更する。
[Light distribution layer]
As shown in FIGS. 1 and 2, the light distribution layer 30 is disposed between the first base 10 and the second base 20. The light distribution layer 30 has translucency, and transmits incident light. In addition, the light distribution layer 30 distributes the incident light. That is, when light passes through the light distribution layer 30, the light distribution layer 30 changes the traveling direction of the light.
 配光層30は、凹凸構造層31と、屈折率可変層32とを有する。配光層30は、凹凸構造層31と屈折率可変層32との屈折率の差によって光を配光することができる。 The light distribution layer 30 has a concavo-convex structure layer 31 and a refractive index variable layer 32. The light distribution layer 30 can distribute light by the difference in refractive index between the uneven structure layer 31 and the refractive index variable layer 32.
 [凹凸構造層]
 凹凸構造層31は、屈折率可変層32の表面(界面)を凹凸にするために設けられた微細形状層である。凹凸構造層31は、図2に示すように、複数の凸部33と、複数の凹部34とを有する。具体的には、凹凸構造層31は、マイクロオーダサイズの複数の凸部33によって構成された凹凸構造体である。複数の凸部33の間が、複数の凹部34である。すなわち、隣り合う2つの凸部33の間が、1つの凹部34である。
[Uneven structure layer]
The uneven structure layer 31 is a fine shape layer provided to make the surface (interface) of the variable-refractive-index layer 32 uneven. The uneven structure layer 31 has a plurality of convex portions 33 and a plurality of concave portions 34, as shown in FIG. Specifically, the concavo-convex structure layer 31 is a concavo-convex structure constituted by a plurality of convex portions 33 of micro order size. A plurality of concave portions 34 are between the plurality of convex portions 33. That is, one concave portion 34 is between two adjacent convex portions 33.
 複数の凸部33は、第1基材10の主面(第1電極層40が設けられた面)に平行なz軸方向(第1方向)に並んで配置された複数の凸部である。すなわち、本実施の形態では、z軸方向は、複数の凸部33の並び方向である。 The plurality of protrusions 33 are a plurality of protrusions arranged in the z-axis direction (first direction) parallel to the main surface of the first base material 10 (the surface on which the first electrode layer 40 is provided). . That is, in the present embodiment, the z-axis direction is the direction in which the plurality of convex portions 33 are arranged.
 複数の凸部33の各々は、根元から先端にかけて先細る形状を有する。本実施の形態において、複数の凸部33の各々の断面形状は、第1基材10から第2基材20に向かう方向(厚み方向、y軸正方向)に沿って先細りのテーパ形状である。具体的には、凸部33の断面形状(yz断面)は、台形であるが、これに限らない。凸部33の断面形状は、三角形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。また、凸部33の先端が第2電極層50に接触しているが、凸部33の先端と第2電極層50との間には、隙間が設けられていてもよい。この場合、当該隙間は、屈折率可変層32によって充填されている。 Each of the plurality of projections 33 has a tapered shape from the root to the tip. In the present embodiment, the cross-sectional shape of each of the plurality of projections 33 is a tapered shape that tapers along the direction (thickness direction, y-axis positive direction) from the first base material 10 toward the second base material 20 . Although the cross-sectional shape (yz cross section) of the convex part 33 is a trapezoid specifically, it is not restricted to this. The cross-sectional shape of the convex portion 33 may be a triangle, another polygon, or a polygon including a curve. Further, although the tip of the convex portion 33 is in contact with the second electrode layer 50, a gap may be provided between the tip of the convex portion 33 and the second electrode layer 50. In this case, the gap is filled with the variable-refractive-index layer 32.
 図2に示すように、複数の凸部33の各々は、凹部34に面する一対の側面33a及び33bを有する。一対の側面33a及び33bは、z軸方向に交差する面である。一対の側面33a及び33bの各々は、厚み方向(y軸方向)に対して所定の傾斜角で傾斜する傾斜面であり、一対の側面33a及び33bの間隔(凸部33の幅(z軸方向の長さ))は、第1基材10から第2基材20に向かって漸次小さくなっている。 As shown in FIG. 2, each of the plurality of protrusions 33 has a pair of side surfaces 33 a and 33 b facing the recess 34. The pair of side surfaces 33a and 33b are surfaces intersecting in the z-axis direction. Each of the pair of side surfaces 33a and 33b is an inclined surface which is inclined at a predetermined inclination angle with respect to the thickness direction (y-axis direction), and the distance between the pair of side surfaces 33a and 33b (the width of the convex portion 33 (z-axis direction ) Is gradually reduced from the first base 10 to the second base 20.
 側面33aは、例えば、凸部33を構成する複数の側面のうち、鉛直下方側の側面(下側面)である。側面33aは、入射光を屈折させる屈折面である。側面33bは、例えば、凸部33を構成する複数の側面のうち、鉛直上方側の側面(上側面)である。側面33bは、入射光を反射(全反射)させる反射面(全反射面)である。 The side surface 33 a is, for example, a side surface (lower side surface) on the vertically lower side among a plurality of side surfaces constituting the convex portion 33. The side surface 33a is a refractive surface that refracts incident light. The side surface 33 b is, for example, a side surface (upper side surface) on the vertically upper side among a plurality of side surfaces constituting the convex portion 33. The side surface 33 b is a reflection surface (total reflection surface) that reflects incident light (total reflection).
 本実施の形態において、複数の凸部33は、x軸方向に延びたストライプ状に形成されている。つまり、複数の凸部33の各々は、x軸方向に沿って直線状に延びる長尺状の凸部である。具体的には、複数の凸部33の各々は、断面形状が台形でx軸方向に延在する長尺状の略四角柱形状であり、z軸方向に沿って略等間隔に配列されている。複数の凸部33の各々は、同じ形状を有するが、互いに異なる形状を有してもよい。 In the present embodiment, the plurality of convex portions 33 are formed in a stripe shape extending in the x-axis direction. That is, each of the plurality of convex portions 33 is a long convex portion linearly extending along the x-axis direction. Specifically, each of the plurality of convex portions 33 has a trapezoidal cross-sectional shape and is an elongated substantially square pole shape extending in the x-axis direction, and is arranged at substantially equal intervals along the z-axis direction There is. Each of the plurality of protrusions 33 has the same shape, but may have different shapes.
 複数の凸部33の各々の高さH(y軸方向の長さ)は、例えば2μm~100μmであるが、これに限らない。なお、凸部33の高さHは、図2に示すように、補強層35より厚み方向に突出した部分の長さに相当する。複数の凸部33の幅W(z軸方向の長さ)は、例えば、1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、凹部34の幅P(z軸方向)は、例えば0μm~100μmである。つまり、隣り合う2つの凸部33は、接触することなく所定の間隔をあけて配置されていてもよく、接触して配置されていてもよい。なお、隣り合う凸部33の間隔は、0μm~100μmに限らない。 The height H (the length in the y-axis direction) of each of the plurality of protrusions 33 is, for example, 2 μm to 100 μm, but is not limited thereto. In addition, height H of the convex part 33 is corresponded to the length of the part which protruded in the thickness direction from the reinforcement layer 35, as shown in FIG. The width W (length in the z-axis direction) of the plurality of protrusions 33 is, for example, 1 μm to 20 μm, and preferably 10 μm or less, but not limited thereto. The width P (z-axis direction) of the recess 34 is, for example, 0 μm to 100 μm. That is, the two adjacent convex portions 33 may be disposed at a predetermined distance without contacting with each other, or may be disposed in contact with each other. The distance between the adjacent convex portions 33 is not limited to 0 μm to 100 μm.
 本実施の形態では、凸部33のアスペクト比は、2以上である。凸部33のアスペクト比は、凸部33の根元における幅Wに対する凸部33の高さHである。図2に示すように、凸部33の断面形状は、厚み方向に長尺である。 In the present embodiment, the aspect ratio of the convex portion 33 is 2 or more. The aspect ratio of the convex portion 33 is the height H of the convex portion 33 with respect to the width W at the root of the convex portion 33. As shown in FIG. 2, the cross-sectional shape of the convex portion 33 is elongated in the thickness direction.
 本実施の形態では、図2に示すように、凹凸構造層31は、複数の凸部33間を補強する補強層35を含んでいる。補強層35は、複数の凸部33間を接続している。すなわち、補強層35は、隣り合う凸部33の根元同士を繋ぎ、凹部34の底を埋めるように設けられている。具体的には、補強層35は、凸部33と同様に、x軸方向に延びたストライプ状に形成されている。 In the present embodiment, as shown in FIG. 2, the concavo-convex structure layer 31 includes a reinforcing layer 35 that reinforces between the plurality of convex portions 33. The reinforcing layer 35 connects between the plurality of convex portions 33. That is, the reinforcing layer 35 connects the roots of the adjacent convex portions 33 and is provided so as to fill the bottom of the concave portion 34. Specifically, the reinforcing layer 35 is formed in a stripe shape extending in the x-axis direction, similarly to the convex portion 33.
 本実施の形態では、補強層35が凹部34の底に設けられているので、屈折率可変層32は、第1電極層40又は第1基材10とは接触していない。なお、補強層35は、ドット状など離散的に設けられていてもよく、この場合、補強層35間の隙間には、屈折率可変層32を構成する液晶材料などが充填されていてもよい。 In the present embodiment, since the reinforcing layer 35 is provided at the bottom of the recess 34, the variable-refractive-index layer 32 is not in contact with the first electrode layer 40 or the first base material 10. The reinforcing layer 35 may be provided discretely, such as in the form of dots, and in this case, the gap between the reinforcing layers 35 may be filled with a liquid crystal material or the like constituting the refractive index variable layer 32. .
 補強層35の厚みをTとし、凸部33の高さをHとした場合、補強層35の厚み比率は、T/(T+H)で表される。本実施の形態では、厚み比率T/(T+H)は、0.5以下となる。つまり、補強層35の厚さTは、凸部33の高さHの半分以下である。例えば、補強層35の厚さTは、2μmであるが、これに限らない。 Assuming that the thickness of the reinforcing layer 35 is T and the height of the projections 33 is H, the thickness ratio of the reinforcing layer 35 is expressed by T / (T + H). In the present embodiment, the thickness ratio T / (T + H) is 0.5 or less. That is, the thickness T of the reinforcing layer 35 is equal to or less than half the height H of the convex portion 33. For example, although thickness T of reinforcement layer 35 is 2 micrometers, it is not restricted to this.
 本実施の形態では、補強層35と複数の凸部33とは、同じ材料を用いて形成されている。すなわち、補強層35と複数の凸部33とは一体に形成されている。 In the present embodiment, the reinforcing layer 35 and the plurality of convex portions 33 are formed using the same material. That is, the reinforcing layer 35 and the plurality of convex portions 33 are integrally formed.
 凸部33及び補強層35の材料としては、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。凸部33及び補強層35は、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。 As a material of the convex part 33 and the reinforcement layer 35, the resin material which has light transmittances, such as an acrylic resin, an epoxy resin, or a silicone resin, can be used, for example. The convex portion 33 and the reinforcing layer 35 are formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
 凹凸構造層31は、例えば、屈折率が1.5のアクリル樹脂を用いて断面が台形の凹凸構造を、モールド型押しにより形成することができる。凸部33の高さは、例えば10μmであり、複数の凸部33は、間隔が2μmで等間隔にz軸方向に並んで配置されている。凸部33の根元の厚さは、例えば5μmである。隣り合う凸部33の根元間の距離は、例えば0μm~5μmの値をとりうる。 The concavo-convex structure layer 31 can form the concavo-convex structure whose cross section has a trapezoidal shape by mold pressing, for example, using an acrylic resin having a refractive index of 1.5. The height of the projections 33 is, for example, 10 μm, and the plurality of projections 33 are arranged at equal intervals of 2 μm in the z-axis direction at equal intervals. The thickness of the root of the convex portion 33 is 5 μm, for example. The distance between the roots of adjacent convex portions 33 can take, for example, a value of 0 μm to 5 μm.
 [屈折率可変層]
 屈折率可変層32は、凹凸構造層31の複数の凸部33の間、すなわち、凹部34を充填するように配置されている。屈折率可変層32は、第1電極層40と第2電極層50との間に形成される隙間を充填するように配置されている。
[Refractive index variable layer]
The refractive index variable layer 32 is disposed so as to fill the gaps 34 between the plurality of convex portions 33 of the uneven structure layer 31. The refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50.
 屈折率可変層32は、第1電極層40及び第2電極層50の間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層32は、電界が与えられることによって可視光帯域での屈折率が調整可能な屈折率調整層として機能する。例えば、屈折率可変層32は、電界応答性を有する液晶分子36を有する液晶によって構成されているので、配光層30に電界が与えられることで液晶分子36の配向状態が変化して屈折率可変層32の屈折率が変化する。 The refractive index of the variable-refractive-index layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the refractive index variable layer 32 functions as a refractive index adjustment layer whose refractive index in the visible light band can be adjusted by application of an electric field. For example, since the variable-refractive-index layer 32 is formed of liquid crystal having liquid crystal molecules 36 having electric field responsiveness, application of an electric field to the light distribution layer 30 changes the alignment state of the liquid crystal molecules 36 to change the refractive index. The refractive index of the variable layer 32 changes.
 屈折率可変層32の複屈折材料は、例えば、複屈折性を有する液晶分子36を含む液晶である。このような液晶としては、例えば、液晶分子36が棒状分子からなるネマティック液晶、スメクティック液晶又はコレステリック液晶などを用いることができる。例えば、凸部33の屈折率が1.5である場合、屈折率可変層32の材料としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶を用いることができる。 The birefringent material of the refractive index variable layer 32 is, for example, a liquid crystal including liquid crystal molecules 36 having birefringence. As such a liquid crystal, for example, nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, or the like in which liquid crystal molecules 36 are rod-like molecules can be used. For example, when the refractive index of the convex portion 33 is 1.5, as a material of the refractive index variable layer 32, an ordinary light refractive index (no) is 1.5 and an extraordinary light refractive index (ne) is 1.7 A positive liquid crystal can be used.
 屈折率可変層32は、例えば、第1電極層40及び凹凸構造層31が形成された第1基材10と、第2電極層50が形成された第2基材20との各々の端部外周をシール樹脂で封止した状態で、液晶材料を真空注入法で注入することで形成される。あるいは、屈折率可変層32は、第1基材10の第1電極層40及び凹凸構造層31上に液晶材料を滴下した後に第2基材20を貼り合わせることで形成されてもよい。 The refractive index variable layer 32 is, for example, an end portion of each of the first base material 10 on which the first electrode layer 40 and the concavo-convex structure layer 31 are formed, and the second base material 20 on which the second electrode layer 50 is formed. It is formed by injecting a liquid crystal material by a vacuum injection method in a state where the outer periphery is sealed with a sealing resin. Alternatively, the refractive index variable layer 32 may be formed by dropping the liquid crystal material onto the first electrode layer 40 and the concavo-convex structure layer 31 of the first base material 10 and then bonding the second base material 20 together.
 なお、図2では、電圧が無印加の状態(後述する図4Aも同様)を示しており、液晶分子36は、長軸がx軸に略平行になるように配向されている。第1電極層40及び第2電極層50の間に電圧が印加された場合には、液晶分子36は、長軸がy軸に略平行になるように配向される(後述する図4Bを参照)。 Note that FIG. 2 shows a state in which no voltage is applied (the same applies to FIG. 4A described later), and the liquid crystal molecules 36 are aligned such that the major axis is substantially parallel to the x axis. When a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the liquid crystal molecules 36 are aligned so that the major axis is substantially parallel to the y axis (see FIG. 4B described later) ).
 また、屈折率可変層32には、交流電力によって電界が与えられてもよく、直流電力によって電界が与えられてもよい。交流電力の場合には、電圧波形は、正弦波でもよく、矩形波でもよい。 Further, an electric field may be applied to the refractive index variable layer 32 by AC power, and an electric field may be applied by DC power. In the case of AC power, the voltage waveform may be a sine wave or a square wave.
 [第1電極層及び第2電極層]
 図1及び図2に示すように、第1電極層40及び第2電極層50は、電気的に対となっており、配光層30に電界を与えることができるように構成されている。第1電極層40と第2電極層50とは、電気的だけではなく配置的にも対になっており、第1基材10と第2基材20との間に、互いに対向するように配置されている。具体的には、第1電極層40及び第2電極層50は、配光層30を挟むように配置されている。
[First electrode layer and second electrode layer]
As shown in FIGS. 1 and 2, the first electrode layer 40 and the second electrode layer 50 are electrically paired and configured to be able to apply an electric field to the light distribution layer 30. The first electrode layer 40 and the second electrode layer 50 are not only electrically but also arranged in a pair, so as to face each other between the first base material 10 and the second base material 20. It is arranged. Specifically, the first electrode layer 40 and the second electrode layer 50 are disposed to sandwich the light distribution layer 30.
 第1電極層40及び第2電極層50は、透光性を有し、入射した光を透過する。第1電極層40及び第2電極層50は、例えば透明導電層である。透明導電層の材料としては、ITO(Indium Tin Oxide)若しくはIZO(Indium Zinc Oxide)などの透明金属酸化物、銀ナノワイヤ若しくは導電性粒子などの導電体を含有する樹脂からなる導電体含有樹脂、又は、銀薄膜などの金属薄膜などを用いることができる。なお、第1電極層40及び第2電極層50は、これらの単層構造でよく、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)でもよい。本実施の形態では、第1電極層40及び第2電極層50はそれぞれ、厚さ100nmのITOである。 The first electrode layer 40 and the second electrode layer 50 have translucency and transmit incident light. The first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers. The material of the transparent conductive layer is a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductor containing resin made of a resin containing a conductor such as silver nanowire or conductive particles, or And metal thin films such as silver thin films can be used. The first electrode layer 40 and the second electrode layer 50 may have a single-layer structure of these, or a laminated structure of these (for example, a laminated structure of a transparent metal oxide and a metal thin film). In the present embodiment, each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
 第1電極層40は、第1基材10と凹凸構造層31との間に配置されている。具体的には、第1電極層40は、第1基材10の配光層30側の面に形成されている。 The first electrode layer 40 is disposed between the first base 10 and the uneven structure layer 31. Specifically, the first electrode layer 40 is formed on the surface of the first base material 10 on the light distribution layer 30 side.
 一方、第2電極層50は、屈折率可変層32と第2基材20との間に配置されている。具体的には、第2電極層50は、第2基材20の配光層30側の面に形成されている。 On the other hand, the second electrode layer 50 is disposed between the refractive index variable layer 32 and the second base material 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
 なお、第1電極層40及び第2電極層50は、例えば、外部電源との電気接続が可能となるように構成されている。例えば、外部電源に接続するための電極パッドなどが、第1電極層40及び第2電極層50の各々から引き出されて第1基材10及び第2基材20に形成されていてもよい。 The first electrode layer 40 and the second electrode layer 50 are configured, for example, to enable electrical connection with an external power supply. For example, an electrode pad or the like for connection to an external power source may be drawn out from each of the first electrode layer 40 and the second electrode layer 50 and formed on the first base 10 and the second base 20.
 第1電極層40及び第2電極層50はそれぞれ、例えば、蒸着、スパッタリングなどにより、ITOなどの導電膜を成膜することで形成される。 The first electrode layer 40 and the second electrode layer 50 are each formed by depositing a conductive film such as ITO by, for example, vapor deposition or sputtering.
 [光学デバイスの光学状態]
 続いて、本実施の形態に係る光学デバイス1の使用例を示しながら、光学デバイス1の光学状態(動作モード)について説明する。具体的には、光学デバイス1を備える光学システムについて、図3A及び図3Bを用いて説明する。
[Optical state of optical device]
Subsequently, the optical state (operation mode) of the optical device 1 will be described while showing an example of use of the optical device 1 according to the present embodiment. Specifically, an optical system including the optical device 1 will be described with reference to FIGS. 3A and 3B.
 図3A及び図3Bはそれぞれ、本実施の形態に係る光学デバイス1を備える光学システム60を建物90に適用した例を示す図である。具体的には、図3A及び図3Bは、光学デバイス1を窓91に設置した場合において、光学デバイス1が各動作モードで動作したときの作用を説明するための図である。 FIGS. 3A and 3B each show an example in which an optical system 60 including the optical device 1 according to the present embodiment is applied to a building 90. FIG. Specifically, FIGS. 3A and 3B are diagrams for explaining the operation when the optical device 1 is operated in each operation mode when the optical device 1 is installed in the window 91.
 図3A及び図3Bに示すように、光学システム60は、光学デバイス1と、制御部61とを備える。なお、各図において、光学デバイス1から延びるドットの網掛けが付された領域は、光学デバイス1を通過した光(具体的にはS偏光成分)が通過する領域を示している。 As shown in FIGS. 3A and 3B, the optical system 60 includes the optical device 1 and a controller 61. In each of the drawings, the shaded area of the dot extending from the optical device 1 indicates the area through which the light (specifically, the S polarization component) which has passed through the optical device 1 passes.
 光学デバイス1は、入射した光を透過させることができる。例えば、光学デバイス1は、建物90の窓91に設置することで、配光機能付き窓として実現することができる。光学デバイス1は、例えば、粘着層を介して既存の窓91に貼り合わされる。この場合、光学デバイス1は、第1基材10及び第2基材20の主面が鉛直方向(z軸方向)に平行になる姿勢で窓91に設置される。 The optical device 1 can transmit incident light. For example, by installing the optical device 1 in the window 91 of the building 90, it can be realized as a window with a light distribution function. The optical device 1 is bonded, for example, to the existing window 91 via the adhesive layer. In this case, the optical device 1 is installed in the window 91 such that the main surfaces of the first base 10 and the second base 20 are parallel to the vertical direction (z-axis direction).
 なお、図3A及び図3Bでは、光学デバイス1の詳細な構造は図示されていないが、光学デバイス1は、第1基材10が屋外側で第2基材20が屋内側になり、かつ、凸部33の側面33bが天井92側で側面33aが床93側になるように配置されている。 Although the detailed structure of the optical device 1 is not shown in FIGS. 3A and 3B, in the optical device 1, the first base 10 is on the outdoor side, the second base 20 is on the indoor side, and The side surface 33 b of the convex portion 33 is disposed on the ceiling 92 side and the side surface 33 a is on the floor 93 side.
 また、制御部61が床93上に設置されているが、これは模式的に図示したものであり、制御部61の設置場所には特に限定されない。例えば、制御部61は、光学デバイス1と一体に構成され、窓91の窓枠などに固定されていてもよい。あるいは、制御部61は、建物90の天井92、床93又は壁などに埋め込まれていてもよい。 Moreover, although the control part 61 is installed on the floor 93, this is illustrated typically and it is not specifically limited to the installation place of the control part 61. FIG. For example, the control unit 61 may be integrally formed with the optical device 1 and may be fixed to a window frame of the window 91 or the like. Alternatively, the control unit 61 may be embedded in the ceiling 92, the floor 93 or a wall of the building 90.
 制御部61は、光学デバイス1を駆動する制御部である。具体的には、制御部61は、第1電極層40と第2電極層50との間に所定の電圧を印加することで、配光層30に電界を与える。 The control unit 61 is a control unit that drives the optical device 1. Specifically, the control unit 61 applies an electric field to the light distribution layer 30 by applying a predetermined voltage between the first electrode layer 40 and the second electrode layer 50.
 本実施の形態では、制御部61は、第1電極層40及び第2電極層50間への電圧の印加状態に応じた2つの動作モードを有する。具体的には、2つの動作モードは、電圧を印加しない無印加モード(第1動作モード)と、電極層間に略均一に電圧を印加する電圧印加モード(第2動作モード)とである。制御部61は、ユーザ操作又は予め定められたスケジュール情報などに基づいて、2つの動作モードを切り替えて実行する。 In the present embodiment, control unit 61 has two operation modes according to the application state of the voltage between first electrode layer 40 and second electrode layer 50. Specifically, the two operation modes are a non-application mode (first operation mode) in which no voltage is applied and a voltage application mode (second operation mode) in which a voltage is substantially uniformly applied between the electrode layers. The control unit 61 switches and executes two operation modes based on user operation or predetermined schedule information.
 光学デバイス1では、配光層30に与えられる電界に応じて、屈折率可変層32に含まれる液晶分子36の配向が変化する。なお、液晶分子36は、複屈折性を有する棒状の液晶分子であるので、入射する光の偏光状態に応じて、当該光が受ける屈折率が異なる。ここでは、例えば、入射光に対して、凸部33の屈折率が1.5であり、液晶分子36としては、常光屈折率(no)が1.5で、異常光屈折率(ne)が1.7のポジ型の液晶分子である場合を例に挙げて説明する。 In the optical device 1, the orientation of the liquid crystal molecules 36 contained in the refractive index variable layer 32 changes in accordance with the electric field applied to the light distribution layer 30. Since the liquid crystal molecules 36 are rod-like liquid crystal molecules having birefringence, the refractive index that the light receives varies depending on the polarization state of the incident light. Here, for example, for incident light, the refractive index of the convex portion 33 is 1.5, and as the liquid crystal molecules 36, the ordinary light refractive index (no) is 1.5 and the extraordinary light refractive index (ne) is The case of a positive-type liquid crystal molecule of 1.7 will be described as an example.
 光学デバイス1に入射する太陽光などの光は、P偏光(P偏光成分)とS偏光(S偏光成分)とを含んでいる。P偏光は、無印加モード及び電圧印加モードのいずれのモードにおいても、その振動方向が液晶分子36の短軸に対して略平行になる。このため、P偏光についての液晶分子36の屈折率は、動作モードに依存せず、常光屈折率(no)であって、具体的には1.5である。このため、P偏光についての屈折率は、動作モードに依存せず、配光層30内で略一定になるので、P偏光は、配光層30をそのまま直進する。 Light such as sunlight incident on the optical device 1 includes P-polarization (P-polarization component) and S-polarization (S-polarization component). The vibration direction of the P-polarized light is substantially parallel to the short axis of the liquid crystal molecule 36 in either the non-application mode or the voltage application mode. For this reason, the refractive index of the liquid crystal molecules 36 for P-polarization does not depend on the operation mode, and is the ordinary refractive index (no), specifically 1.5. For this reason, the refractive index for P-polarization does not depend on the operation mode and becomes substantially constant in the light distribution layer 30, so the P-polarization goes straight through the light distribution layer 30 as it is.
 一方で、S偏光についての液晶分子36の屈折率は、動作モードに応じて変化する。 On the other hand, the refractive index of the liquid crystal molecules 36 for S-polarization changes in accordance with the operation mode.
 具体的には、光学デバイス1は、無印加モードで駆動された場合に、入射する光(S偏光)の進行方向を変更させる配光状態になる。光学デバイス1は、電圧印加モードで駆動された場合に、入射する光(S偏光)をそのまま(進行方向を変更することなく)通過させる透光(透明)状態になる。 Specifically, when driven in the non-application mode, the optical device 1 is in a light distribution state in which the traveling direction of incident light (S polarization) is changed. When driven in the voltage application mode, the optical device 1 is in a light transmitting (transparent) state that allows incident light (S-polarized light) to pass as it is (without changing the traveling direction).
 以下では、各動作モードの詳細について、図3A及び図3Bを適宜参照しながら、図4A及び図4Bを用いて説明する。図4A及び図4Bはそれぞれ、本実施の形態に係る光学デバイス1の各動作モードを説明するための拡大断面図である。 Hereinafter, details of each operation mode will be described using FIGS. 4A and 4B with reference to FIGS. 3A and 3B as appropriate. FIG. 4A and FIG. 4B are each an enlarged sectional view for explaining each operation mode of the optical device 1 according to the present embodiment.
 なお、図4A及び図4Bでは、光学デバイス1に入射する光L(例えば太陽光)の経路を太線の矢印で示している。なお、実際には、光Lは、第1基材10に入射する際、及び、第2基材20から出射する際に屈折するが、これらの屈折による経路の変化は図示していない。 In FIGS. 4A and 4B, paths of light L (for example, sunlight) incident on the optical device 1 are indicated by thick arrows. Note that, in fact, the light L is refracted when entering the first base material 10 and exiting from the second base material 20, but the change of the path due to the refraction is not shown.
 <無印加モード(配光状態)>
 図4Aは、無印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光Lの経路とを模式的に示している。
<No-application mode (light distribution state)>
FIG. 4A schematically shows the state of the optical device 1 when driven in the non-application mode and the path of the light L passing through the optical device 1.
 制御部61は、光学デバイス1を無印加モードで動作させる場合、第1電極層40と第2電極層50との間に電圧を印加しない。具体的には、第1電極層40と第2電極層50とが略等しい電位(例えば接地電位)になることで、配光層30には電界が与えられない。このため、屈折率可変層32の屈折率を面内で略均一にすることができる。 The control unit 61 does not apply a voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the non-application mode. Specifically, when the first electrode layer 40 and the second electrode layer 50 have substantially the same potential (for example, the ground potential), no electric field is applied to the light distribution layer 30. Therefore, the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 この場合、光L(S偏光)が受ける屈折率は、凸部33が1.5であるのに対して、屈折率可変層32が1.7になる。このため、図4Aに示すように、光学デバイス1に対して斜めに入射する光Lは、凸部33の側面33aで屈折された後、側面33bで反射(全反射)される。側面33bで反射された光は、斜め上方に向けて出射される。すなわち、光学デバイス1は、斜め下方に入射した光Lを、斜め上方に向けて出射する。 In this case, the refractive index received by the light L (S-polarized light) is 1.5 for the convex portion 33, while the refractive index variable layer 32 is 1.7. Therefore, as shown in FIG. 4A, the light L incident obliquely to the optical device 1 is refracted by the side surface 33a of the convex portion 33 and then reflected (totally reflected) by the side surface 33b. The light reflected by the side surface 33 b is emitted obliquely upward. That is, the optical device 1 emits the light L incident obliquely downward toward the obliquely upward.
 したがって、図3Aに示すように、斜め下方に入射する太陽光などの光Lは、光学デバイス1によって進行方向が曲げられて、建物90の天井92を照射する。 Therefore, as shown in FIG. 3A, the light L such as sunlight incident obliquely downward is bent in its traveling direction by the optical device 1 and illuminates the ceiling 92 of the building 90.
 <電圧印加モード(透光状態)>
 図4Bは、電圧印加モードで駆動された場合の光学デバイス1の状態と、光学デバイス1を通過する光Lの経路とを模式的に示している。
<Voltage application mode (light transmission state)>
FIG. 4B schematically shows the state of the optical device 1 when driven in the voltage application mode and the path of the light L passing through the optical device 1.
 制御部61は、光学デバイス1を電圧印加モードで動作させる場合、第1電極層40と第2電極層50との間に所定の電圧を印加する。これにより、配光層30に与えられる電界が面内で略均一になり、屈折率可変層32の屈折率を面内で略均一にすることができる。 The control unit 61 applies a predetermined voltage between the first electrode layer 40 and the second electrode layer 50 when operating the optical device 1 in the voltage application mode. Thereby, the electric field applied to the light distribution layer 30 becomes substantially uniform in the plane, and the refractive index of the refractive index variable layer 32 can be made substantially uniform in the plane.
 この場合、光L(S偏光)が受ける屈折率は、凸部33及び屈折率可変層32ともに1.5となる。このため、図4Bに示すように、光学デバイス1に対して斜めに入射する光Lは、そのまま光学デバイス1を通過する。つまり、光学デバイス1は、斜め下方に入射した光Lを、そのまま斜め下方に出射する。したがって、図3Bに示すように、斜め下方に入射する太陽光などの光Lは、光学デバイス1をそのまま通過して、建物90の床93の窓91に近い部分を照射する。 In this case, the refractive index received by the light L (S polarized light) is 1.5 for both the convex portion 33 and the refractive index variable layer 32. Therefore, as shown in FIG. 4B, the light L obliquely incident on the optical device 1 passes through the optical device 1 as it is. That is, the optical device 1 emits the light L incident obliquely downward as it is downward. Therefore, as shown to FIG. 3B, light L, such as sunlight which enters diagonally downward, passes the optical device 1 as it is, and irradiates the part near the window 91 of the floor 93 of the building 90. As shown in FIG.
 以上のように、本実施の形態に係る光学デバイス1によれば、配光層30に与えられる電界(第1電極層40及び第2電極層50の間に印加する電圧)に応じて、光学状態を変化させることができる。ここでは、透光状態と配光状態とを切り替えているが、印加する電圧に応じて、配光状態と透光状態との中間の光学状態を形成することができる。 As described above, according to the optical device 1 according to the present embodiment, it is possible to use the optical device according to the electric field applied to the light distribution layer 30 (the voltage applied between the first electrode layer 40 and the second electrode layer 50). It is possible to change the state. Here, although the light transmission state and the light distribution state are switched, it is possible to form an intermediate optical state between the light distribution state and the light transmission state according to the applied voltage.
 例えば、電圧印加モードでは、印加する電圧水準を複数設定し、適宜切り替えを行ってもよい。電圧印加モードにおいて、印加する電圧を小さくすることで、中間の光学状態では、配光状態の場合よりも、光学デバイス1による配光の角度が小さくなる。例えば、建物90の屋内のより奥側にまで光を進行させることができる。 For example, in the voltage application mode, a plurality of voltage levels to be applied may be set and switching may be performed as appropriate. In the voltage application mode, by reducing the voltage to be applied, the angle of light distribution by the optical device 1 is smaller in the intermediate optical state than in the light distribution state. For example, light can travel to the far side of the interior of the building 90.
 [補強層の厚みとヘイズとの関係]
 上述したように、本実施の形態に係る光学デバイス1では、配光状態と透光(透明)状態とを切り替えることができる。このため、透明状態においては、光学デバイス1の透明度が十分に高いことが要求される。一方で、凸部33の強度が弱く、凸部33の形状が崩れた場合には、配光効率が低下する。そこで、透明状態における光学デバイス1の透明度を高めつつ、凸部33の強度を保つことが求められる。
[Relation between thickness of reinforcing layer and haze]
As described above, in the optical device 1 according to the present embodiment, the light distribution state and the light transmission (transparent) state can be switched. For this reason, in the transparent state, it is required that the transparency of the optical device 1 be sufficiently high. On the other hand, when the strength of the convex portion 33 is weak and the shape of the convex portion 33 is broken, the light distribution efficiency is lowered. Therefore, it is required to maintain the strength of the convex portion 33 while enhancing the transparency of the optical device 1 in the transparent state.
 本実施の形態では、凹凸構造層31の凸部33の強度を高めるために、補強層35が設けられている。補強層35の厚さTを大きくする程、凸部33の強度を高めることができる。 In the present embodiment, in order to increase the strength of the convex portion 33 of the concavo-convex structure layer 31, the reinforcing layer 35 is provided. As the thickness T of the reinforcing layer 35 is increased, the strength of the convex portion 33 can be enhanced.
 一方で、補強層35の厚さTが大きくなる程、第1電極層40及び第2電極層50の間に印加した電圧の補強層35への分圧が大きくなる。このため、屈折率可変層32に与えられる電界が小さくなって、液晶分子36が適切に配向されにくくなる。液晶分子36の配向が不十分になれば、配光層30内での屈折率が均一にならずに光の散乱が発生する。このため、光学デバイス1の透明度が低下する。 On the other hand, as the thickness T of the reinforcing layer 35 becomes larger, the partial pressure of the voltage applied between the first electrode layer 40 and the second electrode layer 50 to the reinforcing layer 35 becomes larger. Therefore, the electric field applied to the refractive index variable layer 32 becomes small, and the liquid crystal molecules 36 are difficult to be properly aligned. If the orientation of the liquid crystal molecules 36 becomes insufficient, the refractive index within the light distribution layer 30 will not be uniform, and light scattering will occur. For this reason, the transparency of the optical device 1 is reduced.
 図5は、本実施の形態に係る光学デバイス1の補強層35の厚み比率とヘイズとの関係を示す図である。図5において、横軸は補強層35の厚み比率T/(T+H)を示し、縦軸は光学デバイス1の透光(透明)状態におけるヘイズ[%]を示している。 FIG. 5 is a view showing the relationship between the thickness ratio of the reinforcing layer 35 of the optical device 1 according to the present embodiment and the haze. In FIG. 5, the horizontal axis indicates the thickness ratio T / (T + H) of the reinforcing layer 35, and the vertical axis indicates the haze [%] in the light transmission (transparent) state of the optical device 1.
 ヘイズは、光学デバイス1の透明性を示すパラメータである。ヘイズが小さい程、光学デバイス1が透明であり、ヘイズが大きい程、光学デバイス1が濁って見える。 The haze is a parameter indicating the transparency of the optical device 1. As the haze is smaller, the optical device 1 is more transparent, and as the haze is larger, the optical device 1 looks more cloudy.
 図5に示すように、補強層35の厚み比率が小さい程、ヘイズが小さくなり、光学デバイス1が透明に近くなる。例えば、厚み比率が0.5の場合に、ヘイズが約11%となる。ヘイズが約11%より大きくなると、光学デバイス1を透明状態にしたときの濁りが目立ちやすくなる。このため、本実施の形態に係る光学デバイス1では、厚み比率を0.5以下にすることで、ヘイズを小さくし、光学デバイス1の透明状態における透明度を高めることができる。 As shown in FIG. 5, as the thickness ratio of the reinforcing layer 35 is smaller, the haze is smaller and the optical device 1 becomes closer to transparent. For example, when the thickness ratio is 0.5, the haze is about 11%. When the haze is larger than about 11%, the turbidity when the optical device 1 is in the transparent state is easily noticeable. For this reason, in the optical device 1 according to the present embodiment, by setting the thickness ratio to 0.5 or less, the haze can be reduced and the transparency of the optical device 1 in the transparent state can be increased.
 また、厚み比率が0.15である場合と、0.25である場合とでは、ヘイズは約6~7%で略同じになっている。厚み比率が小さすぎると、凸部33の強度が弱くなる。このため、厚み比率は、例えば、0.15以上、又は、0.25以上であってもよい。 Further, the haze is approximately the same at about 6 to 7% when the thickness ratio is 0.15 and 0.25. When the thickness ratio is too small, the strength of the convex portion 33 becomes weak. Therefore, the thickness ratio may be, for example, 0.15 or more or 0.25 or more.
 [効果など]
 以上のように、本実施の形態に係る光学デバイス1は、透光性を有する第1基材10と、第1基材10に対向し、透光性を有する第2基材20と、第1基材10及び第2基材20の間に配置され、入射した光を配光する配光層30と、配光層30を間に挟んで互いに対向して配置された第1電極層40及び第2電極層50とを備える。配光層30は、複数の凸部33を有する凹凸構造層31と、複数の凸部33間を充填するように配置され、第1電極層40及び第2電極層50間に印加される電圧に応じて屈折率が変化する屈折率可変層32とを含む。凹凸構造層31は、複数の凸部33間を補強する補強層35を含む。
[Effect, etc.]
As described above, the optical device 1 according to the present embodiment includes the light-transmitting first base material 10, the second base material 20 facing the first base material 10, and the light-transmitting property, A light distribution layer 30 disposed between the first base material 10 and the second base material 20 for distributing incident light, and a first electrode layer 40 disposed opposite to each other with the light distribution layer 30 interposed therebetween. And a second electrode layer 50. The light distribution layer 30 is disposed so as to fill the space between the plurality of convex portions 33 with the uneven structure layer 31 having the plurality of convex portions 33, and a voltage applied between the first electrode layer 40 and the second electrode layer 50. And the variable-refractive-index layer 32 whose refractive index changes according to. The uneven structure layer 31 includes a reinforcing layer 35 that reinforces between the plurality of convex portions 33.
 これにより、第1電極層40及び第2電極層50の間に印加する電圧に応じて屈折率可変層32の屈折率が変化するので、光学デバイス1の光学状態を変化させることができる。例えば、屈折率可変層32の屈折率を凹凸構造層31の屈折率に略等しくすることで、光学デバイス1を透光(透明)状態にすることができる。また、屈折率可変層32の屈折率を凹凸構造層31の屈折率と異ならせることで、光を側面33bで反射させて所定の方向に出射させる配光状態にすることができる。このように、本実施の形態に係る光学デバイス1によれば、光学状態を変化させることができる。 Thereby, the refractive index of the refractive index variable layer 32 changes in accordance with the voltage applied between the first electrode layer 40 and the second electrode layer 50, so that the optical state of the optical device 1 can be changed. For example, by making the refractive index of the refractive index variable layer 32 substantially equal to the refractive index of the concavo-convex structure layer 31, the optical device 1 can be made to be in a light transmitting (transparent) state. Further, by making the refractive index of the refractive index variable layer 32 different from the refractive index of the concavo-convex structure layer 31, it is possible to make a light distribution state in which light is reflected by the side surface 33b and emitted in a predetermined direction. Thus, according to the optical device 1 according to the present embodiment, the optical state can be changed.
 さらに、光学デバイス1は、図3A及び図3Bなどで示したように、例えば、窓91などに貼り付けて使用される。このとき、光学デバイス1と窓91との間に隙間(気泡)が形成されるのを防ぐために、治具などを利用して光学デバイス1を強く窓91に押し当てて気泡を外へ逃がすことが行われる。本実施の形態に係る光学デバイス1では、複数の凸部33間を補強する補強層35が設けられているので、外部から強い力が加えられた場合であっても、複数の凸部33の形状が崩れるのを抑制することができる。 Furthermore, as shown in FIGS. 3A and 3B and the like, the optical device 1 is used by being attached to, for example, a window 91 or the like. At this time, in order to prevent a gap (bubble) from being formed between the optical device 1 and the window 91, the optical device 1 is strongly pressed against the window 91 using a jig or the like to release the bubble to the outside. Is done. In the optical device 1 according to the present embodiment, since the reinforcing layer 35 for reinforcing between the plurality of convex portions 33 is provided, even when a strong force is applied from the outside, It is possible to suppress the collapse of the shape.
 このように、本実施の形態によれば、光学状態を切り替えることができ、かつ、強度が高められた光学デバイス1を実現することができる。 As described above, according to the present embodiment, it is possible to realize the optical device 1 capable of switching the optical state and enhancing the intensity.
 また、例えば、補強層35の厚みをTとし、凸部33の高さをHとした場合に、補強層35の厚み比率であるT/(T+H)は、0.5以下である。 Further, for example, when the thickness of the reinforcing layer 35 is T and the height of the projections 33 is H, T / (T + H), which is the thickness ratio of the reinforcing layer 35, is 0.5 or less.
 これにより、厚み比率が0.5以下であるので、光学デバイス1が透明状態である場合のヘイズを約11%より小さくすることができる。このため、光学デバイス1の透明度を高めることができる。 Thereby, since the thickness ratio is 0.5 or less, the haze when the optical device 1 is in the transparent state can be made smaller than about 11%. Therefore, the transparency of the optical device 1 can be increased.
 また、例えば、凸部33の根元における幅Wに対する高さHを示すアスペクト比は、2以上である。 Further, for example, the aspect ratio indicating the height H to the width W at the root of the convex portion 33 is 2 or more.
 これにより、凸部33のアスペクト比が2以上であるので、光の反射面として機能する側面33bを大きくすることができ、配光量を増やすことができる。一方で、凸部33のアスペクト比が大きくなることで、外部からの力に弱くなる。このため、補強層35による補強効果がより有効に発揮される。 Since the aspect ratio of the convex part 33 is two or more by this, the side surface 33b which functions as a reflective surface of light can be enlarged, and light distribution can be increased. On the other hand, when the aspect ratio of the convex portion 33 is increased, the force from the outside is weakened. For this reason, the reinforcing effect by the reinforcing layer 35 is more effectively exhibited.
 また、例えば、補強層35と複数の凸部33とは、同じ材料を用いて形成されている。 Further, for example, the reinforcing layer 35 and the plurality of convex portions 33 are formed using the same material.
 これにより、例えば、ナノインプリント又はモールド成形などにより一体に形成することができるので、製造工程を簡略化することができる。また、凸部33と補強層35とが一体に形成されることにより、凸部33にかかる応力を効率良く補強層35に逃がすことができるので、補強効果をより高めることができる。 Thereby, for example, since it can form integrally by nanoimprint, molding, etc., a manufacturing process can be simplified. In addition, since the convex portion 33 and the reinforcing layer 35 are integrally formed, the stress applied to the convex portion 33 can be efficiently dissipated to the reinforcing layer 35, so that the reinforcing effect can be further enhanced.
 また、例えば、補強層35は、複数の凸部33間を接続している。 Further, for example, the reinforcing layer 35 connects between the plurality of convex portions 33.
 これにより、隣り合う凸部33間を補強層35が接続することで、凸部33にかかる応力を効率良く補強層35に逃がすことができる。また、補強層35と第1電極層40との接着面積も大きくなるので、凹凸構造層31と第1電極層40との接着強度も高めることができる。したがって、補強効果をより高めることができる。 As a result, by connecting the reinforcing layers 35 between adjacent convex portions 33, stress applied to the convex portions 33 can be efficiently released to the reinforcing layer 35. Further, since the adhesion area between the reinforcing layer 35 and the first electrode layer 40 is also increased, the adhesion strength between the uneven structure layer 31 and the first electrode layer 40 can also be enhanced. Therefore, the reinforcing effect can be further enhanced.
 (その他)
 以上、本発明に係る光学デバイスについて、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Others)
As mentioned above, although the optical device concerning the present invention was explained based on the above-mentioned embodiment, the present invention is not limited to the above-mentioned embodiment.
 例えば、補強層35は、隣り合う2つの凸部33同士を接続していなくてもよい。つまり、補強層35は、凸部33毎に設けられ、根元から側方(z軸方向)に張り出した鍔状に形成されていてもよい。例えば、隣り合う2つの凸部33の一方の側面33a側に設けられた補強層35と、隣り合う2つの凸部33の他方の側面33b側に設けられた補強層35との間には、隙間が設けられていてもよい。当該隙間には、屈折率可変層32を構成する液晶材料が充填されていてもよい。 For example, the reinforcing layer 35 may not connect two adjacent convex portions 33 to each other. That is, the reinforcing layer 35 may be provided for each of the convex portions 33 and may be formed in a bowl shape protruding laterally (z-axis direction) from the root. For example, between the reinforcing layer 35 provided on the side surface 33 a side of one of the two adjacent convex portions 33 and the reinforcing layer 35 provided on the other side surface 33 b side of the two adjacent convex portions 33, A gap may be provided. The gap may be filled with a liquid crystal material constituting the refractive index variable layer 32.
 また、例えば、補強層35は、凸部33と別体で形成されていてもよい。具体的には、補強層35は、凸部33とは異なる材料を用いて形成されていてもよい。 Also, for example, the reinforcing layer 35 may be formed separately from the convex portion 33. Specifically, the reinforcing layer 35 may be formed using a material different from that of the convex portion 33.
 また、例えば、上記の実施の形態では、凸部33の長手方向がx軸方向となるように光学デバイスを窓に配置したが、これに限らない。例えば、凸部33の長手方向がz軸方向となるように光学デバイスを窓に配置してもよい。 Also, for example, in the above embodiment, the optical device is disposed in the window so that the longitudinal direction of the convex portion 33 is the x-axis direction, but the present invention is not limited to this. For example, the optical device may be disposed in the window such that the longitudinal direction of the convex portion 33 is the z-axis direction.
 また、例えば、上記の実施の形態では、凹凸構造層31を構成する複数の凸部33の各々は、長尺状であったが、これに限らない。例えば、複数の凸部33は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の凸部33を、ドット状に点在するように配置してもよい。この場合、補強層35も凸部33毎にドット状に設けられていてもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 constituting the concavo-convex structure layer 31 has a long shape, but the present invention is not limited to this. For example, the plurality of convex portions 33 may be arranged to be dispersed in a matrix or the like. That is, the plurality of convex portions 33 may be arranged in a dotted manner. In this case, the reinforcing layer 35 may also be provided in a dot shape for each convex portion 33.
 また、例えば、上記の実施の形態では、複数の凸部33の各々は、同じ形状としたが、これに限るものではなく、例えば、面内において異なる形状であってもよい。例えば、光学デバイス1におけるz軸方向の上半分と下半分とで複数の凸部33の側面33a又は33bの傾斜角を異ならせてもよい。 Further, for example, in the above-described embodiment, each of the plurality of convex portions 33 has the same shape. However, the present invention is not limited thereto. For example, the shapes may be different in the plane. For example, the inclination angles of the side surfaces 33a or 33b of the plurality of protrusions 33 may be different between the upper half and the lower half in the z-axis direction of the optical device 1.
 また、例えば、上記の実施の形態では、複数の凸部33の高さは、一定としたが、これに限るものではない。例えば、複数の凸部33の高さは、ランダムに異なっていてもよい。このようにすることで、光学デバイスを透過する光が虹色に見えてしまうことを抑制できる。つまり、複数の凸部33の高さをランダムに異ならせることで、凹凸界面での微小な回折光や散乱光が波長で平均化されて出射光の色付きが抑制される。 Further, for example, in the above embodiment, the heights of the plurality of convex portions 33 are fixed, but the present invention is not limited to this. For example, the heights of the plurality of protrusions 33 may be randomly different. By doing this, it is possible to suppress that the light transmitted through the optical device appears iridescent. That is, by randomly changing the heights of the plurality of convex portions 33, minute diffracted light and scattered light at the concavo-convex interface are averaged by the wavelength, and coloring of the emitted light is suppressed.
 また、上記の実施の形態では、光学デバイス1に入射する光として太陽光を例示したが、これに限らない。例えば、光学デバイス1に入射する光は、照明装置などの発光装置が発する光であってもよい。 Moreover, although sunlight was illustrated as light which injects into the optical device 1 in said embodiment, it does not restrict to this. For example, the light incident on the optical device 1 may be light emitted by a light emitting device such as a lighting device.
 また、上記の実施の形態では、光学デバイス1は、窓91の屋内側の面に貼り付けたが、窓91の屋外側の面に貼り付けてもよい。屋内側に貼り付けることで、光学素子の劣化を抑制することができる。また、光学デバイス1を窓91に貼り付けたが、光学デバイスを建物90の窓そのものとして用いてもよい。また、光学デバイス1は、建物90の窓91に設置する場合に限るものではなく、例えば車の窓などに設置してもよい。 In the above embodiment, the optical device 1 is attached to the indoor surface of the window 91. However, the optical device 1 may be attached to the outdoor surface of the window 91. By sticking on the indoor side, deterioration of the optical element can be suppressed. Further, although the optical device 1 is attached to the window 91, the optical device may be used as the window of the building 90 itself. Further, the optical device 1 is not limited to being installed in the window 91 of the building 90, and may be installed in, for example, a window of a car.
 なお、これらの変形例は、他の実施の形態及び変形例にも適用できる。 Note that these modifications can be applied to other embodiments and modifications.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
1 光学デバイス
10 第1基材
20 第2基材
30 配光層
31 凹凸構造層
32 屈折率可変層
33 凸部
35 補強層
40 第1電極層
50 第2電極層
DESCRIPTION OF SYMBOLS 1 optical device 10 1st base material 20 2nd base material 30 light distribution layer 31 concavo-convex structure layer 32 refractive index variable layer 33 convex part 35 reinforcement layer 40 1st electrode layer 50 2nd electrode layer

Claims (5)

  1.  透光性を有する第1基材と、
     前記第1基材に対向し、透光性を有する第2基材と、
     前記第1基材及び前記第2基材の間に配置され、入射した光を配光する配光層と、
     前記配光層を間に挟んで互いに対向して配置された第1電極層及び第2電極層とを備え、
     前記配光層は、
     複数の凸部を有する凹凸構造層と、
     前記複数の凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、
     前記凹凸構造層は、前記複数の凸部間を補強する補強層を含む
     光学デバイス。
    A translucent first substrate,
    A light transmitting second substrate facing the first substrate;
    A light distribution layer disposed between the first base and the second base for distributing incident light;
    And a first electrode layer and a second electrode layer disposed opposite to each other with the light distribution layer interposed therebetween,
    The light distribution layer is
    An uneven structure layer having a plurality of convex portions,
    And a refractive index variable layer which is disposed so as to fill the spaces between the plurality of convex portions and whose refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer,
    The uneven structure layer includes a reinforcing layer that reinforces between the plurality of convex portions. Optical device.
  2.  前記補強層の厚みをTとし、前記凸部の高さをHとした場合に、前記補強層の厚み比率であるT/(T+H)は、0.5以下である
     請求項1に記載の光学デバイス。
    The thickness ratio of the reinforcing layer, T / (T + H), is 0.5 or less, where T is the thickness of the reinforcing layer and H is the height of the convex portion. device.
  3.  前記凸部の根元における幅に対する高さを示すアスペクト比は、2以上である
     請求項1又は2に記載の光学デバイス。
    The optical device according to claim 1, wherein an aspect ratio indicating a height to a width at a root of the convex portion is 2 or more.
  4.  前記補強層と前記複数の凸部とは、同じ材料を用いて形成されている
     請求項1~3のいずれか1項に記載の光学デバイス。
    The optical device according to any one of claims 1 to 3, wherein the reinforcing layer and the plurality of convex portions are formed using the same material.
  5.  前記補強層は、前記複数の凸部間を接続している
     請求項1~4のいずれか1項に記載の光学デバイス。
    The optical device according to any one of claims 1 to 4, wherein the reinforcing layer connects between the plurality of convex portions.
PCT/JP2017/040735 2017-02-17 2017-11-13 Optical device WO2018150663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028358A JP2020064083A (en) 2017-02-17 2017-02-17 Optical device
JP2017-028358 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150663A1 true WO2018150663A1 (en) 2018-08-23

Family

ID=63170218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040735 WO2018150663A1 (en) 2017-02-17 2017-11-13 Optical device

Country Status (2)

Country Link
JP (1) JP2020064083A (en)
WO (1) WO2018150663A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850682A (en) * 1986-07-14 1989-07-25 Advanced Environmental Research Group Diffraction grating structures
JP2015175141A (en) * 2014-03-14 2015-10-05 大和ハウス工業株式会社 Daylighting surface material and opening structure of building
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device
WO2016185692A1 (en) * 2015-05-21 2016-11-24 パナソニックIpマネジメント株式会社 Optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850682A (en) * 1986-07-14 1989-07-25 Advanced Environmental Research Group Diffraction grating structures
JP2015175141A (en) * 2014-03-14 2015-10-05 大和ハウス工業株式会社 Daylighting surface material and opening structure of building
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device
WO2016185692A1 (en) * 2015-05-21 2016-11-24 パナソニックIpマネジメント株式会社 Optical device

Also Published As

Publication number Publication date
JP2020064083A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2017098687A1 (en) Optical device
WO2017122245A1 (en) Optical device, and window with light distribution function
JP2020064085A (en) Optical device
WO2018150662A1 (en) Optical device and optical system
WO2018150663A1 (en) Optical device
JP2017161735A (en) Optical device
JP6628167B2 (en) Optical device
JP6402959B2 (en) Optical device
WO2018154893A1 (en) Optical device, optical system, and method for manufacturing optical device
JP2018136432A (en) Optical device
JP6681588B2 (en) Optical device and method of manufacturing optical device
WO2019021576A1 (en) Optical device and optical system
WO2018150674A1 (en) Optical device
WO2018037632A1 (en) Optical device and production method for optical device
US10712602B2 (en) Optical drive
JP2019023706A (en) Optical device
WO2018154850A1 (en) Optical device
JP6807553B2 (en) Optical device
JP2019184756A (en) Light distribution control device
WO2019123967A1 (en) Light distribution control device
JP2020064080A (en) Optical device and optical system
JP2020016707A (en) Light distribution control device
JP2019168573A (en) Optical device
JP2017156632A (en) Optical device
JP2020003577A (en) Light distribution control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP