WO2018154886A1 - 粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法 - Google Patents

粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法 Download PDF

Info

Publication number
WO2018154886A1
WO2018154886A1 PCT/JP2017/041774 JP2017041774W WO2018154886A1 WO 2018154886 A1 WO2018154886 A1 WO 2018154886A1 JP 2017041774 W JP2017041774 W JP 2017041774W WO 2018154886 A1 WO2018154886 A1 WO 2018154886A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
flow path
particle
particles
capturing
Prior art date
Application number
PCT/JP2017/041774
Other languages
English (en)
French (fr)
Inventor
健介 小嶋
増原 慎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP17897855.7A priority Critical patent/EP3587552A4/en
Priority to US16/481,717 priority patent/US11135587B2/en
Priority to JP2019501052A priority patent/JPWO2018154886A1/ja
Publication of WO2018154886A1 publication Critical patent/WO2018154886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads

Definitions

  • the present technology relates to a particle capturing chip, a particle capturing apparatus, and a particle capturing method.
  • Patent Document 1 discloses a structure in which a well in which a cell enters is engraved in a flow path through which a cell-containing sample flows, and a cell is sucked by providing a slit in the well (FIG. 23). , FIG. 25 etc.).
  • the main object of the present technology is to provide a particle capturing chip having a structure for capturing particles and preventing the captured particles from being greatly deformed by a suction force.
  • the present technology includes a first flow path, a second flow path, a first recess opening on the first flow path side, and a second recess provided in parallel with the first recess.
  • a particle trapping chip comprising: a connecting portion that connects the first concave portion and the second concave portion; and a communication portion that communicates the second concave portion and the second flow path.
  • the particle capturing chip may include a plug member accommodated in the second recess.
  • the plug member may be a bead.
  • a binding substance that binds to the test substance may be immobilized on the surface of the plugging member.
  • the connecting portion may be formed of an elastic member.
  • a joint portion between the second recess and the communication portion may be provided below the second recess.
  • a joint portion between the second recess and the communication portion may be provided on a side of the second recess.
  • the lower surface of the first channel may have a corrugated structure including a peak and a valley, and the first recess may be provided at the top of the peak.
  • the present technology also includes a first flow path, a second flow path, a first recess opening to the first flow path side, and a second recess provided in parallel with the first recess.
  • a particle-supplementing chip comprising: a connecting part that connects the first concave part and the second concave part; and a communication part that communicates the second concave part and the second flow path.
  • the particle capturing apparatus may include a waste liquid part.
  • the particle capturing apparatus may include an observation unit that observes the first recess.
  • the particle capturing apparatus may include a liquid feeding control unit that controls the liquid feeding unit.
  • the present technology also includes a first flow path, a second flow path, a first recess opening to the first flow path side, and a second recess provided in parallel with the first recess.
  • a particle supplementing chip comprising: a connecting portion that connects the first concave portion and the second concave portion; and a communicating portion that communicates the second concave portion and the second flow path.
  • a sample containing a plug member is fed to the first flow path, the plug member is captured in the first recess, and the captured plug member is sucked through the communication portion to the second recess.
  • a particle capturing method for transporting a sample containing particles to the first channel and capturing the particles in the first recess.
  • the present technology also includes a first flow path, a second flow path, a first recess opening to the first flow path side, and a second recess provided in parallel with the first recess.
  • a connecting portion that connects the first concave portion and the second concave portion, a communication portion that communicates the second concave portion and the second flow path, and a plug accommodated in the second concave portion.
  • a particle capturing method is provided in which a sample containing particles is fed to the first flow path and the particles are captured in the first recess. The particle capturing method may include causing the liquid to flow backward.
  • the present technology also includes a first flow path, a second flow path, a first recess opening to the first flow path side, and a second recess provided in parallel with the first recess.
  • a particle supplementing chip comprising: a connecting portion that connects the first concave portion and the second concave portion; and a communicating portion that communicates the second concave portion and the second flow path.
  • a sample containing a plug member in which a binding substance that binds to the test substance is immobilized is fed to the first channel, and the plug member is captured in the first recess, and the captured plug member is And, after moving to the second recess by suction through the communication portion, feeding a sample containing particles to the first channel and capturing the particles in the first recess; Reacting the test substance derived from the particles with the binding substance, and removing the plugging member from the second recess. It includes, to provide a method of obtaining test substance.
  • the present technology also includes a first flow path, a second flow path, a first recess opening to the first flow path side, and a second recess provided in parallel with the first recess.
  • a connecting portion that connects the first concave portion and the second concave portion, a communication portion that communicates the second concave portion and the second flow path, and the second concave portion.
  • a particle-capturing tip comprising a plugging member on which a binding substance that binds to a test substance is fixed, a sample containing particles is fed into the first channel, and the particles are transferred to the first recess.
  • a method for acquiring a test substance comprising: a step of capturing; a process of reacting the test substance derived from the particles with the binding substance; and a step of removing the plug member from the second recess. I will provide a.
  • the stopper member may be taken out from the second recess using a capillary.
  • a liquid flow in a direction opposite to the suction direction is generated to cause the plug member to flow out from the second recess to the first flow path, and then plugged from the first flow path.
  • the member-containing liquid may be collected, and the plug member may be taken out from the plug member-containing liquid.
  • a particle capturing chip having a structure for capturing particles while preventing the captured particles from being greatly deformed by a suction force.
  • the effect of this technique is not necessarily limited to the effect described here, The effect described in this specification may be sufficient.
  • Particle Capture Chip The type of particles targeted by the particle capture chip of the present technology is not particularly limited. Examples include bio-related particles such as cells, microorganisms, and liposomes, synthetic particles such as latex particles and gel particles, industrial particles, or semiconductor chips, micro bumps as terminals of semiconductor connection parts, and bead type solar cells. It is done. Further, the size and shape of the particles are not particularly limited.
  • FIG. 1 is a cross-sectional view of the particle capturing chip 1
  • FIG. 2 is a perspective view of the particle capturing chip 1.
  • the particle capturing chip 1 includes a first flow path 11 in a substrate 10.
  • the first flow path 11 is formed on the upper surface side of the substrate 10. A sample flows through the first flow path 11.
  • the material of the substrate 10 is not particularly limited.
  • Resin such as polydimethylsiloxane, glass, metal and the like.
  • the particle trapping chip 1 of the present technology includes a first recess 13 that opens to the first flow path 11 side, a second recess 14 that is arranged in parallel with the first recess 13, and a first recess 13. And a connecting portion 15 that connects the second recessed portion 14.
  • the first recess 13 is formed on the lower surface of the first flow path 11. Particles contained in the sample flowing through the first channel 11 can be captured in the first recess 13.
  • the second recess 14 is provided on the lower surface side of the first recess 13 and is connected to the first recess 13 via the connecting portion 15.
  • the particle capturing chip 1 includes a second flow path 12 and a communication section 16 that communicates the second recess 14 and the second flow path 12.
  • the second flow path 12 is formed on the lower surface side of the substrate 10.
  • a plug member can be accommodated in the second recess 14 (details will be described later).
  • FIG. 3 is a schematic view showing an example of particle trapping in the particle trapping chip 1.
  • the first flow path 11 and the second flow path 12 are connected, and a valve 21 is provided at the connection portion.
  • the sample S including the particles 30 proceeds in the liquid flow direction 22, and further proceeds downstream when the valve 21 is opened.
  • the first recess 13 opened to the first flow path 11 side, the second recess 14 connected to the first recess 13, and the second recess 14 and the second flow path 12 are connected.
  • a suction force 23 by positive pressure is generated from the first flow path 11 to the second flow path 12 through the communicating portion 16 that communicates. Due to the suction force 23, the particles 30 are attracted toward the first recess 13 and are captured inside the first recess 13.
  • valve installation is not limited to this.
  • a valve for flowing a sample upstream of the first flow path 11 may be installed, and a valve for sucking the sample downstream of the second flow path 12 may be installed.
  • the particle capturing chip 1 When capturing the single particle, the particle capturing chip 1 preferably has a corrugated structure 20 including a peak portion 17 and a valley portion 18 on the lower surface of the first flow path 11. It is preferable that the first concave portion 13 is formed in the top portion 19. By having the corrugated structure 20, it becomes difficult for other particles to adhere to the particles trapped in the first recess 13 located at the top 19, and particle deposition can be prevented. Thereby, it is possible to avoid a state where two or more particles are captured in one first recess 13.
  • FIG. 4 is a schematic diagram showing an example of particle trapping in the first flow path 11.
  • the liquid flow of the sample S is a laminar flow in the first flow path 11, and the flow velocity at the center of the first flow path 11 is always faster than the vicinity of the flow path side surface. There is. Therefore, by providing the first concave portion 13 at the top portion 19 of the corrugated structure 20, it is possible to prevent doublets in which two or more particles try to enter the first concave portion 13 (dotted circle).
  • the flow rate is fast, so it is considered that the second and subsequent particles are less likely to enter the central laminar flow.
  • the central laminar flow is about 20% faster than the overall flow rate of the liquid flow.
  • the width and height of the first flow path 11 and the second flow path 12 are not particularly limited, depending on the size, shape and type of particles to be captured, or the amount and viscosity of the sample flowing through the flow path. Can be determined.
  • the shape of the 1st recessed part 13 and the 2nd recessed part 14 is not specifically limited, For example, circular shape, truncated cone shape, inverted truncated cone shape, elliptic cylinder shape, elliptical truncated cone shape, inverted elliptical truncated cone shape, taper shape, reverse A taper shape, a polygonal column more than a triangular column, etc. are mentioned.
  • the depth of the first recess 13 is preferably equal to or smaller than the particle size of the target particles. With such a depth, it is possible to prevent doublets of particles in the first recess 13 and other particles from being deposited on the captured particles.
  • the “particle size” of the particle means the average value of the major axis diameter and minor axis diameter of the particle.
  • the particle diameter can be calculated by measuring a considerable number (for example, 100) of arbitrary fine particles using image processing software or the like using a microscope and obtaining the number average.
  • the depth of the first recess 13 can be preferably 2 or less, more preferably 1 or less, as a ratio to the particle size of the particles to be captured. Or the depth of the 1st recessed part 13 becomes like this. Preferably it is 2 or less by ratio with the diameter of the inscribed circle in the opening part of the 1st recessed part 13, More preferably, it is 1 or less.
  • the 1st flow path 11 has the waveform structure 20 provided with the peak part 17 and the trough part 18, the depth of the 1st recessed part 13 is ratio with the height from the trough part 18 to the peak part 17.
  • it is 1 or less, More preferably, it can be 0.8 or less.
  • the diameter of the first recessed portion 13 Is preferably at least 1 and less than 2 times the particle size of the particles to be captured.
  • the opening of the first recess 13 is a polygon of a triangle or more, if it is an odd-numbered n-gon, the vertical line can be regarded as a perpendicular line, and if it is an even-numbered n-angle, a diagonal line can be regarded as a diameter. If the diameter is less than 1 time, it is difficult for a single cell to enter the first recess 13, and if it is 2 times or more, a plurality of cells may enter.
  • the 1st flow path 11 has the waveform structure 20 provided with the peak part 17 and the trough part 18, the height from the trough part 18 to the peak part 17 is the same as or larger than the particle size of the particle
  • the flow rate of the sample in the first flow path 11 increases as it approaches the center. For this reason, when the heights of the peaks 17 and the valleys 18 are lower than the particle size of the particles, the flow velocity received by the particles also becomes slow even in the vicinity of the peaks 17.
  • the flow velocity in the vicinity of the peak portion 17 is slow, particles that have flowed later easily adhere to the particles captured in the first recess 13. Due to the low flow velocity, the energy of the particles that flow after the collision also decreases, and the particles adhere to the trapped particles and accumulate.
  • the pitch between the peaks 17 can be set to a length that is not less than 2 times and not more than 20 times the particle size of the particles to be captured.
  • the length from the top portion 19 of the peak portion 17 to the peak portion 18 of the peak portion 17 and the top portion 19 of the adjacent peak portion 17 is 2 times or more and 20 times the particle size of the particles to be captured. It is as follows. If it is less than 2 times, particles may enter the valley 18, and if it exceeds 20 times, depending on the height of the peak 17, the corrugated structure 20 approaches a flat structure, and the effect of the present technology is fully exhibited. There are things that cannot be done.
  • the pitch between the peaks 17 is more preferably 5 to 15 times the particle size of the particles to be captured.
  • the effect produced by the waveform structure 20 of the present technology is improved.
  • the particle capturing apparatus of the present technology to be described later is for capturing microscopic microparticles in a single unit, a fine corrugated structure or a first recess must be formed on the substrate. In view of the ease of production at that time, the above range can be adopted.
  • left and right pitches of the mountain portion 17 may be the same or different.
  • the road width of the first channel 11 is relatively small at the peak portion 17 and the valley portion 18. Can be enlarged. By using such a road width, since the central laminar flow of the liquid flow is fast, particles staying at the top portion 19 can be flowed.
  • the connecting portion 15 may be formed to be narrower than the first recessed portion 13 and the second recessed portion 14 in order to prevent the particles captured in the first recessed portion 13 from flowing out to the second recessed portion 14. preferable.
  • the connection part 15 shown in FIG.1 and FIG.2 has predetermined length in an up-down direction, the shape of the connection part 15 is not limited to this.
  • FIG. 5 is a schematic diagram illustrating an example of the connecting portion 15. As shown in FIG. 5, the connecting portion 15 may have a constricted shape having no length.
  • FIG. 6 is a diagram showing an example of the size of each part of the particle capturing chip 1.
  • the particle capturing chip 1 is assumed to capture particles having a diameter of 10 ⁇ m.
  • the peak portion 17 has a width of 70 ⁇ m
  • the peak portion 17 has a height of 15 ⁇ m
  • the top portion 19 has a width of 20 ⁇ m.
  • the diameter of the opening of the first recess 13 is 15 ⁇ m
  • the depth of the first recess 13 is 10 ⁇ m
  • the width of the connecting portion 15 is 10 ⁇ m
  • the width of the second recess 14 is 18 ⁇ m
  • the width of the second recess 14 is The height is 14 ⁇ m
  • the length of the communication part 16 is 18 ⁇ m
  • the width of the communication part 16 is 3 ⁇ m.
  • FIG. 7 is a schematic diagram showing an example of the particle capturing chip 1.
  • PDMS polydimethylsiloxane
  • O 2 direct plasma
  • the first channel 11 and the second channel 12 are formed at the center of the substrate 10 in the particle capturing chip 1 shown in FIG. Between the 1st flow path 11 and the 2nd flow path 12, the 1st recessed part, the connection part, the 2nd recessed part, and the communication part are formed (not shown).
  • a port 24 located at the upper left of the substrate 10 is connected to the first flow path 11, and a particle-containing sample is introduced into this port 24.
  • a bypass 25 is provided on the right side of the substrate 10, and the bypass 25 communicates the first flow path 11 and the second flow path 12.
  • a valve 21 is provided in the bypass 25.
  • the port 26 located at the lower left of the substrate 10 is a portion into which the sample that has passed through the first flow path 11 and the second flow path 12 flows.
  • the particle-containing sample introduced from the upper left port 24 includes a force for introducing the particle-containing sample in the first flow path 11, a force flowing downstream, a force for flowing the sample by opening and closing the valve 21 provided in the bypass 25, And the inside of the 1st flow path 11 and the 2nd flow path 12 can be flowed by either the force etc. which suck
  • FIG. 8 is a schematic view showing a partial cross section of the particle capturing chip 1.
  • the particle trapping chip 1 preferably includes a plugging member 2 accommodated in the second recess 14.
  • the present inventor provided the second recess 12 between the first recess 11 and the communication portion 16, and plugged member 2 inside the second recess. It has been found that an abrupt increase in suction force inside the first concave portion 11 can be suppressed by arranging. Thereby, it is possible to prevent an excessive suction pressure from being applied to the particles trapped in the first recess 11 and to prevent the particles from being greatly deformed. Moreover, since the plugging member 2 plays a role of blocking the captured particles from flowing out below the first recess 11, the captured particles can be retained in the first recess 11. .
  • the particle capturing chip of the present technology including the second recess capable of accommodating the plugging member has a structure capable of preventing deformation and outflow of the captured particles.
  • the particle trapping chip of this technology attenuates the suction force applied to the cells and applies stress to the cells. Since it can be reduced, it is suitable for capturing cells.
  • the plugging member 2 is connected to the connecting portion 15 inside the second recess 14. It is preferable that it is the magnitude
  • the joint 161 between the second recess 14 and the communication portion 16 is the second Is provided below the recess 14.
  • the position of the joint 161 is not limited to this.
  • FIG. 9 is a schematic diagram illustrating an example of the communication unit 16.
  • two communicating portions 16 are provided for one second recessed portion 14, and the joint portions 161 and 161 between the second recessed portion 14 and the communicating portions 16 and 16 are respectively second.
  • a suction force can be generated in the direction indicated by the arrow in FIG.
  • FIG. 10 is a diagram illustrating an example of a procedure for housing the plugging member 2 in the second recess 14.
  • FIG. 10A shows a state where the sample including the plug member 2 is fed to the first flow path 11 as shown in FIG. 3 and the plug member 2 is captured in the first recess 13. The suction force is generated in the downward arrow direction in the figure. Next, the suction pressure is increased and the stopper member 2 is sucked toward the second recess 14.
  • FIG. 10B shows a state where the plugging member 2 is deformed by a high suction pressure and moves from the first recess 13 to the second recess 14 via the connecting portion 15.
  • FIG. 10C shows a state after the plugging member 2 has moved to the second recess 14 by the suction force. By such a procedure, the stopper member 2 can be accommodated in the second recess 14.
  • FIG. 11 is a diagram illustrating an example of a procedure for housing the plugging member 2 in the second recess 14.
  • FIG. 11A shows a state in which a sample including the plug member 2 is fed into the second flow path 12 and the plug member 2 is drawn into the communication portion 16 via the suction force generated in the upward arrow direction. .
  • a suction force in the direction opposite to that in FIG. 10 is generated.
  • the suction pressure is increased, and the plugging member 2 captured by the communication portion 16 is sucked to the second recess 14 side.
  • FIG. 11B shows a state where the plugging member 2 is deformed by a high suction pressure and moves from the communication portion 16 to the second recess 14.
  • FIG. 11C shows a state after the plugging member 2 has moved to the second recess 14 by the suction force. By such a procedure, the stopper member 2 can be accommodated in the second recess 14.
  • the plugging member is arranged in the manufacturing process of the particle capturing chip. Specifically, after the second recess is formed in the substrate, a plug member is disposed inside the second recess, and then a cover glass is pasted on the substrate to form the second recess. A plugging member can be accommodated.
  • beads are used in sorting and analysis of fine particles from the viewpoint of easy availability.
  • the material of the plugging member is not particularly limited.
  • the plugging member when the plugging member is accommodated in the second recess by the suction force via the communication portion as shown in FIGS. 10 and 11, the plugging member has elasticity that can be deformed by the suction force.
  • a material is preferred.
  • the connecting portion is formed of an elastic member in order to reduce the load generated when the plugging member passes through the connecting portion.
  • the communication portion in order to reduce the load generated when the plugging member passes through the communication portion, is preferably formed of an elastic member.
  • the connecting portion or only the communicating portion may be formed of an elastic member, it is preferable to form the substrate itself from an elastic material from the viewpoint of manufacturing effort and cost.
  • the shape of the plugging member is not particularly limited, but is preferably a spherical shape so that the suction pressure applied to the plugging member is not biased when the plugging member is accommodated in the second recess by the suction force.
  • the number of plugging members is not particularly limited, but it is preferable to accommodate one plugging member in one second recess.
  • two or more plugging members are accommodated in one second recess, it is necessary to increase the suction pressure for drawing the particles to be captured into the first recess as compared with the case where one plugging member is accommodated. That is, if the number of plugging members accommodated in the second recess is one, the suction pressure can be suppressed, and therefore the load on the particle trapping chip can be reduced.
  • the particle capturing chip of the present technology can also be used to acquire substances derived from particles such as secretions and contents.
  • a configuration for acquiring a test substance using a plugging member in which a particle to be captured is a cell and a binding substance that binds to the test substance derived from the cell is immobilized will be described.
  • FIG. 12 is a schematic diagram showing a cross section of a part of a particle capturing chip that captures particles. As shown in FIG. 12, the cells 40 are captured in the first recess 13. A binding substance that binds to the test substance is immobilized on the surface of the plugging member 2 shown in FIG. 12 (not shown).
  • the test substance can be a cell-derived substance such as a nucleic acid, protein, peptide, sugar chain, or the like.
  • a nucleic acid an antibody against the nucleic acid, a nucleic acid probe that hybridizes to the nucleic acid, a protein that binds to the nucleic acid, or the like can be used as the binding substance.
  • an antibody against the protein, an antibody against the peptide, or the like can be used as the binding substance.
  • the test substance is a sugar chain
  • an antibody against the sugar chain, a lectin against the sugar chain, or the like can be used as the binding substance.
  • the method for immobilizing the binding substance on the stopper member is not particularly limited, and a known method can be used.
  • FIG. 13 is an enlarged view of a portion surrounded by an alternate long and short dash line A in FIG.
  • a suction force in the direction of the arrow in the figure is generated, and the secretion 41 secreted from the cells (not shown) captured in the first recess 13 is the first recess. 13 flows into the second recess 14 and moves inside the second recess 14 in the direction of the arrow.
  • a binding substance 50 that binds to the secretion 41 is fixed on the surface of the plugging substance 2, and the secretion 41 that flows inside the second recess 14 is bound to the binding substance 50. Thereafter, the secretion 41 bound to the binding substance 50 can be obtained by collecting the plugging substance 2.
  • the captured cells can be crushed in the first recess to elute the test substance such as nucleic acid, and the test substance and the binding substance on the plugging member can be combined.
  • the test substance bonded to the binding substance on the plug member can be obtained.
  • FIG. 14 is a schematic diagram showing a conventional method for obtaining a cell-derived test substance.
  • a method of fixing a binding substance 61 on the bottom surface of the well 60 and binding a test substance 62 floating in the well 60 to the binding substance 61 is generally used.
  • the particle capturing chip of the present technology as shown in FIG. 13 above, allows the test substance to flow through a narrow area between the plugging member 2 and the second recess 14. And the binding efficiency of the binding substance is higher than that of the conventional method. Thereby, it is possible to acquire a test substance more efficiently than the conventional method.
  • the particle trapping chip of the present technology can be applied as a technology for stacking single particles up and down by providing the first concave portion and the second concave portion. For example, a large number of first and second recesses are provided, an IC chip is accommodated in the first recess, and an LED is accommodated in the second recess. Sometimes it is possible to obtain a large number.
  • FIG. 15 is a schematic diagram illustrating an example of the particle capturing apparatus 100.
  • the particle capturing apparatus 100 includes the particle capturing chip 101 of the present technology described above.
  • the particle trapping chip 101 is connected to the liquid feeding unit 102 via the valve 21.
  • the liquid feeding unit 102 supplies the particle-containing sample to the particle capturing chip 101.
  • the flow of the sample can be controlled by opening and closing the valve 21. This control can be performed by the liquid feeding control unit 105.
  • By controlling the liquid feeding not only can the sample flow and stop, but also a reverse flow and a pulsating flow that changes the flow at regular intervals can be generated.
  • the particle capturing device 100 may include an observation unit 104.
  • the observation unit 104 is not particularly limited, the state of particles flowing and captured may be magnified with a microscope or the like and observed with the naked eye, or may be processed with the image processing apparatus or the like without depending on the naked eye. The observation result here can be fed back to the liquid feeding control unit 105 to further control the flow of the sample.
  • the particle capturing apparatus 100 may be provided with a waste liquid portion 103 on the downstream side, and a sample having a reduced particle content can be recovered as a waste liquid.
  • a valve or a pump may be further provided on the upstream side or the downstream side of the waste liquid unit 103, and a suction force may be applied to the flow path on the particle capturing chip 101.
  • FIG. 16 is a flowchart illustrating an example of the particle capturing method of the present technology.
  • a particle capturing chip that does not include a plugging member in the second recess is used.
  • a sample including a plug member is fed to the first flow path (step S11), and the plug member is captured in the first recess (step S12).
  • the plugging member is moved to the second recess by the suction force through the communication part (step S13).
  • the sample containing the particles to be captured is fed to the first channel (step S14), and the particles are captured in the first recess (step S15).
  • steps S14 and S15 shown in FIG. 16 may be performed.
  • the liquid feeding can also be reversed.
  • the particles deposited on the lower surface of the first channel can be dispersed, so that more particles can be captured.
  • FIG. 17 is a flowchart illustrating an example of a test substance acquisition method according to the present technology.
  • a particle capturing chip that does not include a plugging member in the second recess is used.
  • a sample including a plug member to which a binding substance that binds to a test substance is immobilized is fed to the first flow path (step S21), and the plug member is captured in the first recess (step S22).
  • the plugging member is moved to the second recess by the suction force via the communication part (step S23).
  • the sample containing the particles to be captured is fed to the first flow path (step S24), and the particles are captured in the first recess (step S25).
  • the test substance derived from the captured particles is reacted with the binding substance fixed on the surface of the plugging member (step S26).
  • the test substance bound to the binding substance of the plugging member is acquired (step S27).
  • steps S24 to S27 shown in FIG. 17 may be performed.
  • the method for taking out the plug member from the second recess is not particularly limited.
  • the stopper member may be taken out using a capillary.
  • a liquid flow in a direction opposite to the direction of suction through the communication portion is generated, and the plug member is caused to flow out from the second recess to the first flow path with the pressure of the liquid flow, and then the first flow
  • the plug member-containing liquid may be collected from the path, and the plug member may be taken out from the plug member-containing liquid.
  • this technique can also take the following structures.
  • a first flow path A second flow path; A first recess opening on the first flow path side; A second recess disposed in parallel with the first recess; A connecting portion that connects the first recess and the second recess; A particle capturing chip comprising: a communication portion that communicates the second recess and the second flow path.
  • the particle capturing chip according to [1] further including a plug member accommodated in the second recess.
  • [4] The particle capturing chip according to [2] or [3], wherein a binding substance that binds to a test substance is immobilized on a surface of the plugging member.
  • [5] The particle capturing chip according to any one of [1] to [4], wherein the connecting portion is formed of an elastic member.
  • [6] The particle capturing chip according to any one of [1] to [5], wherein a joint between the second recess and the communication portion is provided below the second recess.
  • [7] The particle trapping chip according to any one of [1] to [6], wherein a joint portion between the second recess and the communication portion is provided on a side of the second recess.
  • the chip for capturing particles as described. [9] a first flow path; A second flow path; A first recess opening on the first flow path side; A second recess disposed in parallel with the first recess; A connecting portion that connects the first recess and the second recess; A particle capturing chip comprising: a communicating portion that communicates the second recess and the second flow path; A device for capturing particles, comprising: a liquid feeding unit; [10] The particle capturing apparatus according to [9], including a waste liquid section.
  • the particle capturing apparatus according to [9] or [10], further including an observation unit that observes the first recess.
  • a first flow path A second flow path; A first recess opening on the first flow path side; A second recess disposed in parallel with the first recess; A connecting portion that connects the first recess and the second recess;
  • a particle-capturing chip comprising a communication portion that communicates the second recess and the second flow path, A sample containing a plug member is fed to the first flow path, the plug member is captured in the first recess, and the captured plug member is sucked through the communication portion by the second portion.
  • a particle trapping method in which, after being moved to a recess, a sample containing particles is fed to the first channel and the particles are trapped in the first recess.
  • a particle capturing chip comprising a plug member housed in the second recess, A particle capturing method for feeding a sample containing particles to the first channel and capturing the particles in the first recess.
  • the particle trapping method according to [15] comprising reversing the liquid feeding.
  • a first flow path A second flow path; A first recess opening on the first flow path side; A second recess disposed in parallel with the first recess; A connecting portion that connects the first recess and the second recess;
  • a particle-capturing chip comprising a communication portion that communicates the second recess and the second flow path, A sample containing a plug member in which a binding substance that binds to a test substance is immobilized is fed to the first channel, the plug member is captured in the first recess, and the captured plug member is captured. Moving the sample containing particles to the first flow path after being moved to the second recess by suction through the communication portion, and capturing the particles in the first recess.
  • a first flow path comprising: a plug member housed in the second recess and having a binding substance immobilized thereon that binds to a test substance, Feeding a sample containing particles into the first channel and capturing the particles in the first recess; Reacting the test substance derived from the particles with the binding substance; Removing the plug member from the second recess.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Cell Biology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Micromachines (AREA)

Abstract

粒子を捕捉しつつ、捕捉された当該粒子が吸引力によって大きく変形することを防止するための構造を備えた粒子補足用チップを提供する。 これに対し、本技術では、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子捕捉用チップを提供する。

Description

粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法
 本技術は、粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法に関する。
 近年、フローサイトメトリー等に代表される、細胞を捕捉する技術が開発されている。細胞は、捕捉された後、解析や培養に供される。
 細胞を捕捉する方法として、例えば、特許文献1に記載の技術が開発されている。特許文献1には、細胞含有サンプルが流れる流路に、細胞が入る大きさのウエルが刻まれており、当該ウエルにスリットを設けることで細胞が吸引される構造が開示されている(図23、図25等)。
米国特許出願公開第2013/0078163号明細書
 しかしながら、上記特許文献1の流路構造では、スリットを介した吸引力によって捕獲された細胞が大きく変形し、これにより細胞が多大なストレスを受けたり細胞がスリット内に引き込まれたりして、ウエル内で細胞を適切に維持することが困難な場合があった。一方、吸引力を弱めると、細胞がウエルの配置された壁面まで到達しなかったり、壁面まで到達してもウエル内部にまで細胞を吸引できない場合があった。
 そこで、本技術は、粒子を捕捉しつつ、捕捉された当該粒子が吸引力によって大きく変形することを防止するための構造を備えた粒子補足用チップを提供することを主目的とする。
 すなわち、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子捕捉用チップを提供する。
 前記粒子捕捉用チップは前記第2の凹部に収容された施栓部材を備えていてもよい。
 前記施栓部材はビーズであってもよい。
 前記施栓部材の表面に被検物質と結合する結合物質が固定化されていてもよい。
 前記連結部は弾性部材で形成されていてもよい。
 前記第2の凹部と前記連通部との接合部が前記第2の凹部の下方に設けられていてもよい。
 前記第2の凹部と前記連通部との接合部が前記第2の凹部の側方に設けられていてもよい。
 前記第1の流路の下面が山部と谷部とを備える波形構造を有し、前記山部の頂部に前記第1の凹部を備えていてもよい。
 また、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップと、送液部と、を備える粒子捕捉用装置を提供する。
 前記粒子捕捉用装置は廃液部を備えていてもよい。
 前記粒子捕捉用装置は前記第1の凹部を観察する観察部を備えていてもよい。
 前記粒子捕捉用装置は前記送液部を制御する送液制御部を備えていてもよい。
 また、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、前記第1の流路に施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法を提供する。
 また、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、前記第2の凹部に収容された施栓部材と、を備える粒子補足用チップを用い、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法を提供する。
 前記粒子捕捉方法は前記送液を逆流させることを含んでもよい。
 また、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、前記第1の流路に、被検物質と結合する結合物質が固定化された施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法を提供する。
 また、本技術は、第1の流路と、第2の流路と、前記第1の流路側に開口する第1の凹部と、前記第1の凹部に並設された第2の凹部と、前記第1の凹部と前記第2の凹部とを連結する連結部と、前記第2の凹部と前記第2の流路とを連通する連通部と、前記第2の凹部に収容され、被検物質と結合する結合物質が固定化された施栓部材と、を備える粒子補足用チップを用い、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法を提供する。
 前記被検物質の取得方法において、キャピラリーを用いて、前記第2の凹部から前記施栓部材を取り出してもよい。
 前記被検物質の取得方法において、前記吸引と逆方向の液流を発生させて、前記施栓部材を前記第2の凹部から前記第1の流路に流出させ、前記第1の流路から施栓部材含有液を回収し、前記施栓部材含有液から前記施栓部材を取り出してもよい。
 本技術によれば、粒子を捕捉しつつ、捕捉された当該粒子が吸引力によって大きく変形することを防止するための構造を備えた粒子捕捉用チップを提供することができる。なお、本技術の効果は、ここに記載された効果に必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。
粒子捕捉用チップの横断面図である。 粒子捕捉用チップの斜視図である。 粒子捕捉用チップにおける粒子捕捉の一例を示す模式図である。 第1の流路における粒子捕捉の一例を示す模式図である。 連結部の一例を示す模式図である。 粒子捕捉用チップの各部のサイズの一例を示す図である。 粒子捕捉用チップの一例を示す模式図である。 粒子捕捉用チップの一部の横断面を示す模式図である。 連通部の一例を示す模式図である。 施栓部材を第2の凹部に収容する手順の一例を示す図である。 施栓部材を第2の凹部に収容する手順の一例を示す図である。 粒子を捕捉した粒子補足用チップの一部の横断面を示す模式図である。 図12中の一点鎖線Aで囲まれた部分の拡大図である。 細胞由来の被検物質を取得するための従来法を示す模式図である。 粒子捕捉用装置の一例を示す模式図である。 粒子捕捉方法の一例を示すフローチャートである。 被検物質の取得方法の一例を示すフローチャートである。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。
 1.粒子捕捉用チップ
 2.粒子捕捉用装置
 3.粒子捕捉方法
 4.被検物質の取得方法
1.粒子捕捉用チップ
 本技術の粒子捕捉用チップが捕捉対象とする粒子の種類は、特に限定されない。例えば、細胞や微生物、リポソーム等の生体関連粒子、ラテックス粒子やゲル粒子、工業用粒子等の合成粒子、あるいは半導体チップ、半導体の接続部の端子としてのマイクロバンプ、及びビーズ型太陽電池等が挙げられる。また、粒子の大きさ、形状等も特に限定されない。
 次に、図1及び図2を参照して、本技術の粒子捕捉用チップ1の構造について説明する。図1は粒子捕捉用チップ1の横断面図であり、図2は粒子捕捉用チップ1の斜視図である。粒子捕捉用チップ1は、基板10に第1の流路11を備える。第1の流路11は基板10の上面側に形成されている。第1の流路11には試料が通流する。
 基板10の材質は特に限定されず、例えば、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレン、ポリエチレンテレフタレート、アクリル樹脂、ポリカーボネート、フッ素樹脂、ポリブチレンテレフタレート、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリジメチルシロキサン等の樹脂、硝子、金属等が挙げられる。
 本技術の粒子捕捉用チップ1は、第1の流路11側に開口する第1の凹部13と、第1の凹部13に並設された第2の凹部14と、第1の凹部13と第2の凹部14とを連結する連結部15と、を備える。
 第1の凹部13は、第1の流路11の下面に形成されている。第1の凹部13には、第1の流路11を通流する試料に含まれる粒子が捕捉されうる。第2の凹部14は、第1の凹部13の下面側に設けられており、連結部15を介して第1の凹部13と連結されている。
 また、粒子捕捉用チップ1は、第2の流路12と、第2の凹部14と第2の流路12とを連通する連通部16と、を備える。第2の流路12は、基板10の下面側に形成されている。第2の凹部14には、施栓部材を収容することができる(詳細は後述)。
 次に、構成について更に説明する前に、粒子捕捉用チップ1における粒子の流れについて図3を参照して説明する。図3は、粒子捕捉用チップ1における粒子捕捉の一例を示す模式図である。図3に示す例では、第1の流路11と第2の流路12とが連結されており、連結部分にバルブ21が設けられている。粒子30を含む試料Sは液の流れ方向22に進み、バルブ21が開放されると更に下流に進む。すると、第1の流路11側に開口している第1の凹部13、第1の凹部13と連結する第2の凹部14、及び、第2の凹部14と第2の流路12とを連通する連通部16を介して、第1の流路11から第2の流路12の方向へ陽圧による吸引力23が生じる。この吸引力23により、粒子30は第1の凹部13の方へ吸い寄せられて、第1の凹部13の内部に捕捉される。
 なお、バルブの設置はこれに限定されるものではない。例えば、第1の流路11の上流に試料を流すためのバルブを設置し、第2の流路12の下流に試料を吸引するためのバルブを設置することもできる。
 図1及び図2に戻り、第1の流路11について更に説明する。粒子捕捉用チップ1は、単一粒子の捕捉を目的とする場合、第1の流路11の下面に、山部17と谷部18を備える波形構造20を有することが好ましく、山部17の頂部19に第1の凹部13が形成されることが好ましい。波形構造20を有することで、頂部19に位置する第1の凹部13に捕捉された粒子に他の粒子が接着しにくくなり、粒子の堆積を防止することができる。これにより、1つの第1の凹部13に2個以上の粒子が捕捉される状態を回避することができる。
 次に、第1の流路11における粒子の流れについて図4を参照して説明する。図4は、第1の流路11における粒子捕捉の一例を示す模式図である。図4に示すように、第1の流路11内では、試料Sの液流が層流となっており、常に第1の流路11の中央の流速が流路側面付近よりも速いという特性がある。そのため、波形構造20の頂部19に第1の凹部13を設けることで、粒子が第1の凹部13に2個以上入ろうとするダブレットを防ぐことができる(破線の丸)。つまり、ダブレットになろうとして2個目の粒子が付着しても流速が速いため、中央層流に流されて2個目以降が入りにくくなると考えられる。例えば、液流の全体の流速に比べて、中央層流は約20%速くなる。
 再び図1及び図2に戻り、粒子捕捉用チップ1の構成について更に説明する。
 第1の流路11及び第2の流路12の幅及び高さは特に限定されず、捕捉対象の粒子の大きさ、形状及び種類、又は流路を流れる試料の量及び粘度等に応じて決定することができる。
 第1の凹部13及び第2の凹部14の形状は特に限定されず、例えば、円形状、円錐台状、逆円錐台状、楕円柱状、楕円台状、逆楕円錐台状、テーパー状、逆テーパー状、三角形柱以上の多角形柱等が挙げられる。
 第1の凹部13の深さは、捕捉目的の粒子の粒径以下とすることが好ましい。そのような深さであると、第1の凹部13での粒子のダブレットや、捕捉された粒子に他の粒子が堆積することを防ぐことができる。
 ここで、粒子の「粒径」とは、粒子の長軸径と短軸径の平均値をいう。具体的には、微粒子であれば、顕微鏡を用い、画像処理ソフト等により任意の微粒子を相当数(例えば100個)測定し、個数平均を求めることにより、粒径を算出することができる。
 例えば、第1の凹部13の深さは、捕捉目的の粒子の粒径との比で好ましくは2以下、より好ましくは1以下とすることができる。あるいは、第1の凹部13の深さは、第1の凹部13の開口部分における内接円の直径との比で好ましくは2以下、より好ましくは1以下とすることができる。また、第1の流路11が、山部17及び谷部18を備える波形構造20を有する場合、第1の凹部13の深さは、谷部18から山部17への高さとの比で好ましくは1以下、より好ましくは0.8以下とすることができる。
 また、第1の凹部13の立体的形状が、例えば円柱状や円錐台状、逆円錐台状、テーパー状、逆テーパー状のような、開口部分が円形の場合、第1の凹部13の直径は、捕捉目的の粒子の粒径の1倍以上2倍未満の大きさであることが好ましい。また、第1の凹部13の開口部分が三角形以上の多角形の場合、奇数のn角形であれば頂角から底辺への垂線、偶数のn角形であれば対角線を直径とみなすことができる。直径が1倍未満であると第1の凹部13に単一の細胞が入りづらくなり、2倍以上であると複数の細胞が入ることがある。
 第1の流路11が、山部17及び谷部18を備える波形構造20を有する場合、谷部18から山部17への高さは、捕捉目的の粒子の粒径と同じ又はそれよりも高いことが好ましい。第1の流路11内での試料の流速は、中央部に近づくほどに早くなる。このため、山部17と谷部18の高さが粒子の粒径よりも低い場合、山部17付近でも粒子が受ける流速は遅くなる。山部17付近の流速が遅いと、第1の凹部13に捕捉された粒子に後から流れてきた粒子が接着しやすくなる。流速が遅いことによって後から流れてきた粒子が衝突するエネルギーも少なくなり、捕捉された粒子にどんどん接着していき、粒子が堆積してしまう。
 山部17間のピッチは、捕捉目的の粒子の粒径の2倍以上20倍以下の長さとすることができる。具体的には、山部17の頂部19から、谷部18を一つはさみ、隣の山部17の頂部19までの間の長さが、捕捉目的の粒子の粒径の2倍以上20倍以下である。2倍未満であると、谷部18に粒子が入る可能性があり、20倍を超えると山部17の高さによっては波形構造20が平らな構造に近づき、本技術の効果を十分に発揮できないことがある。
 なお、山部17間のピッチは、より好ましくは捕捉目的の粒子の粒径の5倍以上15倍以下の長さである。この範囲にすることにより、本技術の波形構造20により奏される効果が向上する。また、後述する本技術の粒子捕捉用装置が、マイクロオーダーの微小粒子を単一に捕捉するためのものである場合、微細な波形構造や第1の凹部を基板上に形成しなければならず、その際の製造のしやすさも鑑み、上記範囲にすることができる。
 なお、山部17の左右のピッチは、同じでもよいし、異なっていてもよい。
 また、第1の流路11は、下面と上面を平行にした上で下面に波形構造20を形成すると、第1の流路11の路幅は相対的に山部17で小さく、谷部18で大きくすることができる。このような路幅にすることによって、液流の中央層流が速いために、頂部19で滞っている粒子を流すことができる。
 連結部15は、第1の凹部13に捕捉された粒子が第2の凹部14に流出することを防ぐため、幅が第1の凹部13及び第2の凹部14よりも狭く形成されることが好ましい。図1及び図2に示す連結部15は上下方向に所定の長さを有しているが、連結部15の形状はこれに限定されない。図5は、連結部15の一例を示す模式図である。図5に示すように、連結部15は長さを有しない括れ状であってもよい。
 次に、図6を参照して、各部のサイズの一例について説明する。図6は、粒子捕捉用チップ1の各部のサイズの一例を示す図である。ここでの粒子捕捉用チップ1は、直径10μmの大きさの粒子を捕捉することを想定している。図6において、山部17の幅は70μm、山部17の高さは15μm、頂部19の幅は20μmである。また、第1の凹部13の開口部分の直径は15μm、第1の凹部13の深さは10μm、連結部15の幅は10μm、第2の凹部14の幅は18μm、第2の凹部14の高さは14μm、連通部16の長さは18μm、連通部16の幅は3μmである。
 次に、図7を参照して、本技術の粒子捕捉用チップ1の一例を説明する。図7は、粒子捕捉用チップ1の一例を示す模式図である。ポリジメチルシロキサン(PDMS)を材料とし、原盤となる型に入れてPDMS樹脂を成形し、上述した流路、凹部及び連通部などを備える基板10を作製した。作製した基板10をO:10cc、100W、30secでダイレクトプラズマ(DP)アッシングして表面を親水化させた後に、大気中でカバーガラスと貼り合わせて、粒子捕捉用チップ1を製造した。
 図7に示す粒子捕捉用チップ1において、基板10の中央部に第1の流路11及び第2の流路12が形成されている。第1の流路11と第2の流路12との間には、第1の凹部、連結部、第2の凹部、連通部が形成されている(図示せず)。基板10の左上に位置するポート24は第1の流路11と繋がっており、このポート24に粒子含有試料を導入する。基板10の右側にはバイパス25が設けられており、バイパス25は第1の流路11と第2の流路12とを連絡している。バイパス25にはバルブ21が設けられている。基板10の左下に位置するポート26は、第1の流路11及び第2の流路12を通過した試料が流入する部分である。
 左上のポート24から導入された粒子含有試料は、第1の流路11における粒子含有試料を導入する力、下流側に流れる力、バイパス25に設けられたバルブ21の開閉により試料が流れる力、及び左下のポート26から試料を吸引する力等のいずれか、又はこれらの組み合わせにより、第1の流路11及び第2の流路12の内部を通流することができる。
 次に、図8を参照して、本技術の粒子捕捉用チップ1について更に説明する。図8は、粒子捕捉用チップ1の一部の横断面を示す模式図である。粒子捕捉用チップ1は、図8に示すように、第2の凹部14に収容された施栓部材2を備えることが好ましい。
 上述の図3に示したように粒子を含む試料を通流させると、図8に示す連通部16において下矢印方向の吸引力が発生するが、施栓部材2によって吸引圧力を緩和することができるため、第1の凹部11に掛かる吸引力が減衰される。
 上記特許文献1に記載の技術のように、細胞が入るウエルにスリットが設けられた構造の場合、スリットを介した吸引力によって細胞が大きく変形し、これにより細胞が多大なストレスを受けたり細胞がスリット内に引き込まれたりして、ウエル内で細胞を適切に維持することが困難な場合があった。吸引力を弱めれば細胞の変形を防止することは可能であるが、細胞がウエルの配置された壁面まで到達しなかったり、壁面まで到達してもウエル内部にまで細胞を吸引できない場合があった。本発明者は、吸引力を機械的に又は手動で微調整することを検討したが、チューニングが困難であり、また、チューニングする際に発生する吸引圧の変動によって捕捉した粒子がスリット内に引き込まれてしまう場合があった。
 本発明者は、吸引力に着目して鋭意検討を重ねた結果、第1の凹部11と連通部16との間に第2の凹部12を設けて、第2の凹部の内部に施栓部材2を配置することにより、第1の凹部11の内部における急激な吸引力増加を抑制できることを見出した。これにより、第1の凹部11に捕捉された粒子に過大な吸引圧が掛かることを防止して、粒子が大きく変形することを防止することができる。また、施栓部材2は、捕捉された粒子が第1の凹部11よりも下に流れ出さないようにブロックする役割を果たすため、捕捉された粒子を第1の凹部11に留めておくことができる。
 つまり、施栓部材を収容可能な第2の凹部を備える本技術の粒子捕捉用チップは、捕捉された粒子の変形及び流出を防止することが可能な構造を備えている。
 また、細胞の解析においては、余計なストレスを与えずに細胞を回収することが望まれる場合があるところ、本技術の粒子捕捉用チップは細胞に掛かる吸引力を減衰させて細胞に与えるストレスを軽減させることが可能であることから、細胞の捕捉に好適である。
 第1の凹部13に捕捉された粒子が、連結部15を通過して第2の凹部14へと流出することを防止するため、施栓部材2は、第2の凹部14の内部において連結部15を覆う大きさであることが好ましい。また、連通部16において発生する吸引力をより効果的に緩和するため、施栓部材2は、第2の凹部14の内部において連通部16を覆う大きさであることが好ましい。
 第1の凹部13及び第2の凹部14に対して効率的に吸引力を発生させる観点から、図8に示す例では、第2の凹部14と連通部16との接合部161は、第2の凹部14の下方に設けられている。しかしながら、接合部161の位置はこれに限定されない。
 例えば、第2の凹部14と連通部16との接合部161を第2の凹部14の側方に設けてもよい。図9は、連通部16の一例を示す模式図である。図9に示す例では、1つの第2の凹部14に対して連通部16が2つ設けられ、第2の凹部14と連通部16,16との接合部161,161は、それぞれ、第2の凹部14の異なる側方に設けられている。連通部16,16のそれぞれにおいて、図9中の矢印で示す方向に吸引力が発生しうる。第2の凹部14の両側方に接合部161,161を設けることにより、吸引力によって施栓部材2が片側の連通部16の方へ吸い寄せられて片側の接合部161を閉塞したとしても、反対側の接合部161は開放された状態を維持しうる。これにより、過度な吸引力低下を防止することができる。
 また、図8と図9に示した構成を組み合わせて、第2の凹部14の下面及び側面の両方に接合部161を設けてもよい。
 次に、図10を参照して、施栓部材2を第2の凹部14に収容する方法の一例を説明する。図10は、施栓部材2を第2の凹部14に収容する手順の一例を示す図である。図10Aは、例えば図3に示したように第1の流路11に施栓部材2を含む試料を送液して、第1の凹部13に施栓部材2を捕捉した状態を示している。吸引力は、図中の下矢印方向に発生している。次に、吸引圧を高くして、施栓部材2を第2の凹部14側へ吸引する。図10Bは、施栓部材2が高い吸引圧によって変形して、第1の凹部13から連結部15を経由して第2の凹部14へ移動する様子を示している。図10Cは、吸引力によって施栓部材2が第2の凹部14へ移動した後の様子を示している。このような手順により、施栓部材2を第2の凹部14に収容することが可能である。
 次に、図11を参照して、施栓部材2を第2の凹部14に収容する方法の別の一例を説明する。図11は、施栓部材2を第2の凹部14に収容する手順の一例を示す図である。図11Aは、第2の流路12に施栓部材2を含む試料を送液し、上矢印方向に発生させた吸引力を介して、連通部16内に施栓部材2を引き込む様子を示している。このように、図11Aでは、図10と逆方向の吸引力を発生させている。次に、吸引圧を高くして、連通部16に捕捉した施栓部材2を第2の凹部14側へ吸引する。図11Bは、施栓部材2が高い吸引圧によって変形して、連通部16から第2の凹部14へ移動する様子を示している。図11Cは、吸引力によって施栓部材2が第2の凹部14へ移動した後の様子を示している。このような手順により、施栓部材2を第2の凹部14へ収容することができる。
 施栓部材を第2の凹部に収容する別の方法としては、例えば、粒子捕捉用チップの製造過程において施栓部材を配置することが挙げられる。具体的には、基板に第2の凹部を形成した後に、当該第2の凹部の内部に施栓部材を配置して、その後、基板の上にカバーガラスを貼り付けることで、第2の凹部に施栓部材を収容することができる。
 施栓部材は、入手容易性の観点から、微小粒子の分取や解析において一般に用いられているビーズ(マイクロビーズ)を用いることが好ましい。
 施栓部材の材料は特に限定されないが、例えば図10及び図11に示したように連通部を介した吸引力によって施栓部材を第2の凹部へ収容する場合、吸引力によって変形し得る弾性を有する材料であることが好ましい。
 また、図10の場合、施栓部材が連結部を通過する際に発生する負荷を軽減するため、連結部が弾性部材で形成されていることが好ましい。図11の場合、施栓部材が連通部を通過する際に発生する負荷を軽減するため、連通部が弾性部材で形成されていることが好ましい。連結部のみや連通部のみを弾性部材で形成してもよいが、製造上の手間及びコストの観点からは基板自体を弾性を有する材料で形成することが好ましい。
 施栓部材の形状は特に限定されないが、吸引力によって施栓部材を第2の凹部へ収容する場合に施栓部材に掛かる吸引圧に偏りが生じないよう、球形であることが好ましい。
 施栓部材の数は特に限定されないが、1つの第2の凹部に1個の施栓部材を収容することが好ましい。1つの第2の凹部に2個以上の施栓部材を収容すると、1個の施栓部材を収容した場合よりも、第1の凹部に捕捉対象粒子を引き込むための吸引圧を高める必要がある。つまり、第2の凹部に収容する施栓部材の数を1個にした方が、吸引圧を抑えることができるため、粒子捕捉用チップに掛かる負荷を軽減することが可能である。
 また、本技術の粒子捕捉用チップは、分泌物や内容物等の粒子に由来する物質を取得するために用いることも可能である。一例として、捕捉対象の粒子を細胞とし、当該細胞由来の被検物質と結合する結合物質が固定化されている施栓部材を用いて被検物質を取得するための構成について説明する。
 図12は、粒子を捕捉した粒子補足用チップの一部の横断面を示す模式図である。図12に示すように、第1の凹部13には細胞40が捕捉されている。また、図12に示す施栓部材2の表面には、被検物質と結合する結合物質が固定化されている(図示せず)。
 被検物質は、例えば、核酸、タンパク質、ペプチド、糖鎖等の細胞由来の物質とすることができる。被検物質が核酸である場合、結合物質として、核酸に対する抗体、核酸にハイブリダイズする核酸プローブ、核酸と結合するタンパク質等を用いることができる。被検物質がタンパク質又はペプチドである場合、結合物質として、タンパク質に対する抗体、ペプチドに対する抗体などを用いることができる。被検物質が糖鎖である場合、結合物質として、糖鎖に対する抗体、糖鎖に対するレクチン等を用いることができる。結合物質を施栓部材に固定化する方法は、特に限定されず、公知の方法を用いることができる。
 次に、図13を参照して、施栓部材2の表面に結合物質が固定化されている場合の一例について更に説明する。図13は、図12中の一点鎖線Aで囲まれた部分の拡大図である。第2の凹部14の内部では、図中矢印方向の吸引力が発生しており、第1の凹部13に捕捉された細胞(図示せず)から分泌された分泌物41が、第1の凹部13から第2の凹部14に流入して、第2の凹部14の内部を矢印方向に向かって移動している。施栓物質2の表面には、分泌物41と結合する結合物質50が固定化されており、第2の凹部14の内部を流れる分泌物41が結合物質50に結合する。その後、施栓物質2を回収することにより、結合物質50に結合した分泌物41を取得することができる。
 また、例えば、捕捉された細胞を第1の凹部内で破砕して核酸等の被検物質を溶出させ、当該被検物質と施栓部材上の結合物質とを結合させることも可能である。施栓部材を回収することにより、施栓部材上の結合物質に結合した被検物質を取得することができる。
 図14は、細胞由来の被検物質を取得するための従来法を示す模式図である。図14に示すように、従来は、ウエル60の底面に結合物質61を固定化して、ウエル60内に浮遊する被検物質62を上記結合物質61に結合させる方法が一般的であった。一方、本技術の粒子捕捉用チップは、上記図13に示したように、施栓部材2と第2の凹部14との間にある狭いエリアを被検物質が通流していくため、被検物質と結合物質との結合効率が従来法よりも高くなる。これにより、従来法よりも効率的に被検物質を取得することが可能である。
 また、本技術の粒子捕捉用チップは、第1の凹部と第2の凹部とを備えることにより、単一の粒子を上下に積層する技術として応用可能である。例えば、第1の凹部及び第2の凹部を多数設けておき、第1の凹部にICチップを収容し、第2の凹部にLEDを収容することで、上下に整列したICチップ及びLEDを一時に多数取得することが可能である。
2.粒子捕捉用装置
 図15を参照して、本技術に係る他の実施形態である粒子捕捉用装置について説明する。図15は、粒子捕捉用装置100の一例を示す模式図である。粒子捕捉用装置100は、上述した本技術の粒子捕捉用チップ101を備える。粒子捕捉用チップ101は、バルブ21を介して送液部102と連結している。送液部102は、粒子含有試料を粒子捕捉用チップ101に供給する。試料の流れは、バルブ21を開閉することにより制御できる。この制御は、送液制御部105で行うことができる。送液の制御により、試料を流す・止めるだけでなく、逆流や、一定間隔で流れを変化させる脈動流を生じさせることもできる。
 また、粒子補足用装置100は、観察部104を備えていてもよい。観察部104は特に限定されないが、粒子が流れて捕捉される様子を顕微鏡等で拡大して肉眼で観察してもよいし、画像処理装置等で肉眼によらず処理できるようにしてもよい。ここでの観察結果を送液制御部105にフィードバックして、試料の流れを更に制御することができる。
 更に、粒子捕捉用装置100は、下流側に廃液部103を備えていてもよく、粒子含有量が減少した試料を廃液として回収することができる。廃液部103の上流側又は下流側に更にバルブやポンプを備え、粒子捕捉用チップ101上の流路に吸引力を作用させてもよい。
3.粒子捕捉方法
 図16を参照して、本技術に係る他の実施形態である粒子捕捉方法について説明する。図16は、本技術の粒子捕捉方法の一例を示すフローチャートである。図16に示す粒子捕捉方法では、第2の凹部に施栓部材を備えない粒子捕捉用チップ用いる。
 まず、施栓部材を含む試料を第1の流路に送液し(ステップS11)、施栓部材を第1の凹部に捕捉する(ステップS12)。次に、連通部を介した吸引力により施栓部材を第2の凹部に移動させる(ステップS13)。その後、捕捉対象の粒子を含む試料を第1の流路に送液し(ステップS14)、粒子を第1の凹部に捕捉する(ステップS15)。
 第2の凹部に施栓部材を備える粒子捕捉用チップを用いて粒子を捕捉する場合は、図16に示したステップS14及びS15を行えばよい。
 本技術の粒子捕捉方法においては、送液を逆流させることもできる。順流と逆流を繰り返し生じさせることにより、第1の流路の下面に堆積した粒子を分散させることができるため、より多くの粒子を捕捉することが可能である。
4.被検物質の取得方法
 図17を参照して、本技術の他の実施形態である被検物質の取得方法について説明する。図17は、本技術に係る被検物質の取得方法の一例を示すフローチャートである。図17に示す被検物質の取得方法では、第2の凹部に施栓部材を備えない粒子捕捉用チップを用いる。
 まず、被検物質と結合する結合物質が固定化された施栓部材を含む試料を第1の流路に送液し(ステップS21)、施栓部材を第1の凹部に捕捉する(ステップS22)。次に、連通部を介した吸引力により施栓部材を第2の凹部に移動させる(ステップS23)。その後、捕捉対象の粒子を含む試料を第1の流路に送液し(ステップS24)、粒子を第1の凹部に捕捉する(ステップS25)。捕捉した粒子に由来する被検物質と、施栓部材の表面に固定された結合物質と、を反応させる(ステップS26)。第2の凹部から施栓部材を取り出すことにより、施栓部材の結合物質に結合した被検物質を取得する(ステップS27)。
 第2の凹部に施栓部材を備える粒子捕捉用チップを用いて被検物質を取得する場合は、図17に示したステップS24~S27を行えばよい。
 本技術に係る被検物質の取得方法において、第2の凹部から施栓部材を取り出す方法は特に限定されない。例えば、キャピラリーを用いて施栓部材を取り出してもよい。また、連通部を介した吸引の方向と逆方向の液流を発生させて、当該液流の圧力で施栓部材を第2の凹部から第1の流路に流出させ、その後、第1の流路から施栓部材含有液を回収して、当該施栓部材含有液から施栓部材を取り出してもよい。
 なお、本技術は以下のような構成も採ることができる。
〔1〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子捕捉用チップ。
〔2〕前記第2の凹部に収容された施栓部材を備える、〔1〕に記載の粒子捕捉用チップ。
〔3〕前記施栓部材がビーズである、〔2〕に記載の粒子捕捉用チップ。
〔4〕前記施栓部材の表面に被検物質と結合する結合物質が固定化されている、〔2〕又は〔3〕に記載の粒子捕捉用チップ。
〔5〕前記連結部が弾性部材で形成されている、〔1〕から〔4〕のいずれかに記載の粒子捕捉用チップ。
〔6〕前記第2の凹部と前記連通部との接合部が前記第2の凹部の下方に設けられている、〔1〕から〔5〕のいずれかに記載の粒子捕捉用チップ。
〔7〕前記第2の凹部と前記連通部との接合部が前記第2の凹部の側方に設けられている、〔1〕から〔6〕のいずれかに記載の粒子捕捉用チップ。
〔8〕前記第1の流路の下面が山部と谷部とを備える波形構造を有し、前記山部の頂部に前記第1の凹部を備える〔1〕から〔7〕のいずれかに記載の粒子捕捉用チップ。
〔9〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップと、
 送液部と、を備える粒子捕捉用装置。
〔10〕廃液部を備える、〔9〕に記載の粒子捕捉用装置。
〔11〕前記第1の凹部を観察する観察部を備える、〔9〕又は〔10〕に記載の粒子捕捉用装置。
〔12〕前記送液部を制御する送液制御部を備える、〔9〕から〔11〕のいずれかに記載の粒子捕捉用装置。
〔13〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、
 前記第1の流路に施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法。
〔14〕前記送液を逆流させることを含む、〔13〕に記載の粒子捕捉方法。
〔15〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、
 前記第2の凹部に収容された施栓部材と、を備える粒子補足用チップを用い、
 前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法。
〔16〕前記送液を逆流させることを含む、〔15〕に記載の粒子捕捉方法。
〔17〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、
 前記第1の流路に、被検物質と結合する結合物質が固定化された施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、
 前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、
 前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法。
〔18〕キャピラリーを用いて、前記第2の凹部から前記施栓部材を取り出す、〔17〕に記載の被検物質の取得方法。
〔19〕前記吸引と逆方向の液流を発生させて、前記施栓部材を前記第2の凹部から前記第1の流路に流出させ、前記第1の流路から施栓部材含有液を回収し、前記施栓部材含有液から前記施栓部材を取り出す、〔17〕に記載の被検物質の取得方法。
〔20〕第1の流路と、
 第2の流路と、
 前記第1の流路側に開口する第1の凹部と、
 前記第1の凹部に並設された第2の凹部と、
 前記第1の凹部と前記第2の凹部とを連結する連結部と、
 前記第2の凹部と前記第2の流路とを連通する連通部と、
 前記第2の凹部に収容され、被検物質と結合する結合物質が固定化された施栓部材と、を備える粒子補足用チップを用い、
 前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、
 前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、
 前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法。
1,101 粒子捕捉用チップ
10 基板
11 第1の流路
12 第2の流路
13 第1の凹部
14 第2の凹部
15 連結部
16 連通部
17 山部
18 谷部
19 頂部
20 波形構造
21 バルブ
22 流れ方向
23 吸引力
24,26 ポート
25 バイパス
30 粒子
40 細胞
41 分泌物
50 結合物質
100 粒子捕捉用装置
102 送液部
103 廃液部
104 観察部
105 送液制御部
161 接合部

Claims (20)

  1.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子捕捉用チップ。
  2.  前記第2の凹部に収容された施栓部材を備える、請求項1に記載の粒子捕捉用チップ。
  3.  前記施栓部材がビーズである、請求項2に記載の粒子捕捉用チップ。
  4.  前記施栓部材の表面に被検物質と結合する結合物質が固定化されている、請求項2に記載の粒子捕捉用チップ。
  5.  前記連結部が弾性部材で形成されている、請求項1に記載の粒子捕捉用チップ。
  6.  前記第2の凹部と前記連通部との接合部が前記第2の凹部の下方に設けられている、請求項1に記載の粒子捕捉用チップ。
  7.  前記第2の凹部と前記連通部との接合部が前記第2の凹部の側方に設けられている、請求項1に記載の粒子捕捉用チップ。
  8.  前記第1の流路の下面が山部と谷部とを備える波形構造を有し、前記山部の頂部に前記第1の凹部を備える、請求項1に記載の粒子捕捉用チップ。
  9.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップと、
     送液部と、を備える粒子捕捉用装置。
  10.  廃液部を備える、請求項9に記載の粒子捕捉用装置。
  11.  前記第1の凹部を観察する観察部を備える、請求項9に記載の粒子捕捉用装置。
  12.  前記送液部を制御する送液制御部を備える、請求項9に記載の粒子捕捉用装置。
  13.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、
     前記第1の流路に施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法。
  14.  前記送液を逆流させることを含む、請求項13に記載の粒子捕捉方法。
  15.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、
     前記第2の凹部に収容された施栓部材と、を備える粒子補足用チップを用い、
     前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する粒子捕捉方法。
  16.  前記送液を逆流させることを含む、請求項15に記載の粒子捕捉方法。
  17.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、を備える粒子補足用チップを用い、
     前記第1の流路に、被検物質と結合する結合物質が固定化された施栓部材を含む試料を送液して前記施栓部材を前記第1の凹部に捕捉し、捕捉された前記施栓部材を、前記連通部を介した吸引により前記第2の凹部に移動させた後に、前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、
     前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、
     前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法。
  18.  キャピラリーを用いて、前記第2の凹部から前記施栓部材を取り出す、請求項17に記載の被検物質の取得方法。
  19.  前記吸引と逆方向の液流を発生させて、前記施栓部材を前記第2の凹部から前記第1の流路に流出させ、前記第1の流路から施栓部材含有液を回収し、前記施栓部材含有液から前記施栓部材を取り出す、請求項17に記載の被検物質の取得方法。
  20.  第1の流路と、
     第2の流路と、
     前記第1の流路側に開口する第1の凹部と、
     前記第1の凹部に並設された第2の凹部と、
     前記第1の凹部と前記第2の凹部とを連結する連結部と、
     前記第2の凹部と前記第2の流路とを連通する連通部と、
     前記第2の凹部に収容され、被検物質と結合する結合物質が固定化された施栓部材と、を備える粒子補足用チップを用い、
     前記第1の流路に粒子を含む試料を送液して前記粒子を前記第1の凹部に捕捉する工程と、
     前記粒子に由来する前記被検物質と、前記結合物質と、を反応させる工程と、
     前記第2の凹部から前記施栓部材を取り出す工程と、を含む、被検物質の取得方法。
PCT/JP2017/041774 2017-02-21 2017-11-21 粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法 WO2018154886A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17897855.7A EP3587552A4 (en) 2017-02-21 2017-11-21 PARTICLE COLLECTING CHIP, PARTICLE COLLECTING DEVICE AND PARTICLE COLLECTING METHOD
US16/481,717 US11135587B2 (en) 2017-02-21 2017-11-21 Particle trapping chip, particle trapping device, and particle trapping method
JP2019501052A JPWO2018154886A1 (ja) 2017-02-21 2017-11-21 粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-029818 2017-02-21
JP2017029818 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018154886A1 true WO2018154886A1 (ja) 2018-08-30

Family

ID=63253182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041774 WO2018154886A1 (ja) 2017-02-21 2017-11-21 粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法

Country Status (4)

Country Link
US (1) US11135587B2 (ja)
EP (1) EP3587552A4 (ja)
JP (1) JPWO2018154886A1 (ja)
WO (1) WO2018154886A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035981A1 (ja) * 2018-08-15 2020-02-20 ソニー株式会社 粒子捕捉用チャンバ及び粒子捕捉方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125635A (ja) * 2007-11-21 2009-06-11 Foundation For The Promotion Of Industrial Science 再セット可能な微小液滴の配列装置
JP2011000079A (ja) * 2009-06-19 2011-01-06 Univ Of Tokyo 粒子を操作する方法及びマイクロ流体装置
JP2012075391A (ja) * 2010-10-01 2012-04-19 Univ Of Tokyo 受精卵培養装置、受精卵培養方法
US20130078163A1 (en) 2011-09-22 2013-03-28 Georgia Tech Research Corporation Deterministic High-Density Single-Cell Trap Array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170137769A1 (en) * 2014-03-28 2017-05-18 Hitachi Chemical Company, Ltd. Cell capturing apparatus, cell capturing device provided with pre-processing part, and pre-processing part
WO2015188171A1 (en) * 2014-06-06 2015-12-10 Berkeley Lights, Inc. Isolating microfluidic structures and trapping bubbles
US10081015B2 (en) * 2015-07-12 2018-09-25 International Business Machines Corporation Trapping at least one microparticle
WO2018037788A1 (ja) * 2016-08-23 2018-03-01 ソニー株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125635A (ja) * 2007-11-21 2009-06-11 Foundation For The Promotion Of Industrial Science 再セット可能な微小液滴の配列装置
JP2011000079A (ja) * 2009-06-19 2011-01-06 Univ Of Tokyo 粒子を操作する方法及びマイクロ流体装置
JP2012075391A (ja) * 2010-10-01 2012-04-19 Univ Of Tokyo 受精卵培養装置、受精卵培養方法
US20130078163A1 (en) 2011-09-22 2013-03-28 Georgia Tech Research Corporation Deterministic High-Density Single-Cell Trap Array

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MCDONALD, J. C. ET AL.: "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices", ACCOUNTS OF CHEMICAL RESEARCH, vol. 35, no. 7, July 2002 (2002-07-01), pages 491 - 499, XP003013264 *
See also references of EP3587552A4 *
TAN, W.-H. ET AL.: "Dynamic microarray system with gentle retrieval mechanism for cell -encapsulating hydrogel beads", LAB ON A CHIP, vol. 8, no. 2, 2008, pages 259 - 266, XP055535515 *
ZHOU, Y. ET AL.: "A microfluidic platform for trapping, releasing and super-resolution imaging of single cells", SENSORS AND ACTUATORS B, vol. 232, 25 March 2016 (2016-03-25), pages 680 - 691, XP055535524 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035981A1 (ja) * 2018-08-15 2020-02-20 ソニー株式会社 粒子捕捉用チャンバ及び粒子捕捉方法

Also Published As

Publication number Publication date
EP3587552A1 (en) 2020-01-01
US20200023365A1 (en) 2020-01-23
EP3587552A4 (en) 2020-03-04
US11135587B2 (en) 2021-10-05
JPWO2018154886A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3505489B1 (en) Single-particle capturing apparatus, single-particle capturing system, and method for capturing single-particle
US10407709B2 (en) Method and device for isolating cells from heterogeneous solution using microfluidic trapping vortices
CN107583692B (zh) 液滴微流控芯片及其制备方法
US20120103427A1 (en) Multifunctional microfluidic flow control device and multifunctional microfluidic flow control method
EP1682438A2 (en) Multilayer hydrodynamic sheath flow structure
US20220055035A1 (en) Microfluidic device and methods
CN110639630B (zh) 一种用于不同粒径颗粒分离的被动式微流控芯片结构
CN106215984B (zh) 基于介电泳作用的微流控芯片
US20150337355A1 (en) Cell-spreading device and method for detecting rare cell
WO2018154886A1 (ja) 粒子捕捉用チップ、粒子捕捉用装置及び粒子捕捉方法
JP2007267635A (ja) 細胞分離具及びそれを用いた細胞分離方法
CN109073518B (zh) 使用磁性微粒将分析物从大体积浓缩至较小体积中的dmf方法和系统
CN112553048B (zh) 一种细胞分选方法和芯片
EP3349896A1 (en) Microfluidic structures
US20120258529A1 (en) Apparatus for separating target molecules and method of separating target molecules by using the same
WO2019163688A1 (ja) 流体取扱装置
JP5207346B2 (ja) マイクロ流体チップ装置
CN210496474U (zh) 微流道装置
CN112044479A (zh) 微流道装置
US11559808B2 (en) Microfluidic device
WO2018179841A1 (ja) 微粒子捕捉装置、微粒子捕捉システムおよび微粒子捕捉方法
WO2023189095A1 (ja) 白血球捕捉デバイス
CN113042120B (zh) 一种用于粘弹性流体中颗粒高效分离的微流控装置
CN105536664B (zh) 一种用于可控筛选流体中粒子的微反应器的制备方法
Yuan et al. Miniaturization of bio-fluidic package for point-of-care diagnostic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897855

Country of ref document: EP

Effective date: 20190923