WO2018154716A1 - Rotary compressor and manufacturing method for rotary compressor - Google Patents

Rotary compressor and manufacturing method for rotary compressor Download PDF

Info

Publication number
WO2018154716A1
WO2018154716A1 PCT/JP2017/007128 JP2017007128W WO2018154716A1 WO 2018154716 A1 WO2018154716 A1 WO 2018154716A1 JP 2017007128 W JP2017007128 W JP 2017007128W WO 2018154716 A1 WO2018154716 A1 WO 2018154716A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
mounting groove
rotary compressor
vane mounting
cylinder
Prior art date
Application number
PCT/JP2017/007128
Other languages
French (fr)
Japanese (ja)
Inventor
政明 檜田
朴木 継雄
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/007128 priority Critical patent/WO2018154716A1/en
Priority to JP2019500957A priority patent/JP6896056B2/en
Priority to CN201780086739.0A priority patent/CN110312870A/en
Publication of WO2018154716A1 publication Critical patent/WO2018154716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a rotary compressor and a method for manufacturing the rotary compressor, and more particularly to surface properties of vanes and vane mounting grooves.
  • a rolling piston fitted to an eccentric shaft portion of a crankshaft is movably disposed in a central space portion in the cylinder, and includes an outer peripheral surface, an inner wall surface of the cylinder, and an outer peripheral surface.
  • a vane extending from the inner surface of the cylinder is in contact.
  • a space formed in the gap between the cylinder and the rolling piston is partitioned into a compression chamber and a suction chamber by a vane.
  • the rolling piston rotates eccentrically by the rotation of the crankshaft, and sequentially repeats the suction process of sucking the refrigerant gas into the space between the cylinder and the rolling piston and the compression process of compressing the sucked refrigerant gas.
  • the refrigerant gas compressed in the gap between the cylinder and the rolling piston passes through a series of steps of an intake process and a compression process, and then is discharged into the sealed container and sent from the sealed container to the refrigeration circuit through the discharge pipe.
  • the vane moves to the bottom dead center following the rolling piston that rotates eccentrically by the pressing load from the back pressure chamber at the base of the vane mounting groove until the phase reaches 180 °.
  • the vane receives a load from the eccentric rotating rolling piston and moves to the top dead center.
  • the vane is guided to the vane mounting groove formed on the inner peripheral surface of the cylinder by the high-speed rotation of the rolling piston, and reciprocates while contacting the inner surface of the vane mounting groove at the side surface of the vane. Therefore, a clearance is provided between the vane and the vane mounting groove, and sliding and reciprocation between the vane and the inside of the vane mounting groove are enabled by interposing lubricating oil. It has also been proposed to suppress the clearance between the vane and the vane mounting groove in order to reduce leakage loss of the compressed refrigerant gas in the cylinder.
  • Patent Document 1 describes that when the sliding surface of the vane is converted into a surface roughness Ra of 0.1 ⁇ m or less and a ten-point average maximum height roughness, it is 0.4 ⁇ m or less.
  • the surface roughness in the rotor rotation direction on the surface of the vane that contacts the rotor is 10 point average maximum height roughness of 1 ⁇ m or less, and the surface roughness in the direction perpendicular to the rotor rotation direction is 10 point average. It has been proposed that the maximum height Rz be 0.6 ⁇ m or less.
  • the side surface of the vane that contacts the inner surface of the vane mounting groove is ground to suppress the clearance.
  • the present invention has been made to solve the above-described problems, and has a surface property that can smoothly reciprocate the vane mounting groove and reduce noise, sliding loss, and sliding resistance due to the reciprocating motion. It aims at providing the manufacturing method of a rotary type compressor provided with vane which has, and a rotary type compressor.
  • a rotary compressor according to the present invention includes: a vane mounting groove formed in a cylinder; and a vane that reciprocates with a side surface in contact with an inner side surface of the vane mounting groove. It has a super-smooth surface texture with a roughness value of 10-point average roughness of less than 0.1 ⁇ m.
  • the side surface of the vane in contact with the inner surface of the vane mounting groove has an ultra-smooth surface shape with a ten-point average roughness of less than 0.1 ⁇ m. Improves. Thereby, the pressure loss from the gap between the vane and the vane mounting groove can be reduced, and a rotary compressor having high performance with reduced sliding resistance can be obtained.
  • FIG. 3 is a side view of the vane of FIG. 2. It is a cross-sectional curve which shows the surface property of the vane which concerns on Embodiment 1 of this invention. It is a cross-sectional curve which shows the surface property of the conventional vane. It is a graph which shows the relationship between the test time and friction coefficient in the vane side part which concerns on Embodiment 1 of this invention, and the conventional vane side part.
  • Embodiment 1 FIG.
  • the rotary type compressor according to the present embodiment is, for example, a rotary type compressor such as a multistage cylinder type or a single cylinder type.
  • the refrigerant is compressed, and the compressed refrigerant is used as a refrigeration circuit. Used for sending in.
  • a multi-stage cylinder type rotary compressor will be described as an example.
  • FIG. 1 is a schematic diagram of a rotary compressor 1 according to the present embodiment.
  • the rotary compressor 1 includes a cylindrical sealed container 2 made of a steel plate, an electric element 12 disposed at an upper portion in the sealed container 2, and a rotation disposed below the electric element 12. And a compression mechanism unit 4.
  • the electric element 12 has a crankshaft 3 and is connected to the rotary compression mechanism portion 4 disposed below the electric element 12 by the crankshaft 3.
  • the electric element 12 serves as a drive source for rotating the rotary compression mechanism unit 4 including the rotary compression element.
  • the rotary compression mechanism 4 is composed of a cylinder 5, an eccentric shaft 8 provided on the crankshaft 3, and a rolling piston 6 fitted to the eccentric shaft 8.
  • the cylinder 5 has a space in the center, and a rolling piston 6 is arranged in the center space.
  • the rolling piston 6 is movably provided in the central space of the cylinder 5, and rotates eccentrically while contacting the inner surface of the cylinder 5 by driving the eccentric shaft portion 8.
  • a vane mounting groove 11 that guides the vane 9 is formed in the inner peripheral surface of the cylinder 5 and is formed from the inner peripheral surface toward the outer peripheral surface.
  • the vane 9 is inserted into the vane mounting groove 11, moves in the vane mounting groove 11 by the guide of the vane mounting groove 11, and maintains a state in line contact with the outer peripheral surface of the rolling piston 6.
  • An upper cover 10 and a lower cover 7 having a function as a bearing for the crankshaft 3 are attached to the upper and lower portions of the cylinder 5, and the axial opening is blocked by the upper cover 10 and the lower cover 7. Yes.
  • the eccentric shaft portion 8 is rotated by the rotation of the crankshaft 3, and accordingly, the rolling piston 6 inside the cylinder 5 rotates eccentrically.
  • FIG. 2 is a schematic view of the end face of the cylinder 5 of the rotary compressor 1 according to the present embodiment.
  • the vane mounting groove 11 formed in the cylinder 5 opens in the axial direction on the inner peripheral surface of the cylinder 5.
  • a vane 9 is inserted into the vane mounting groove 11 via a spring 14 to partition a space formed between the cylinder 5 and the rolling piston 6.
  • the vane 9 is maintained in contact with the rolling piston 6 that rotates eccentrically by the restoring force of the spring 14 that acts in the direction of the opening from the back of the vane mounting groove 11.
  • FIG. 3 is a side view of the vane 9 of FIG.
  • the vane 9 is a rectangular flat plate
  • the vane side surface portion 13 has an ultra-smooth surface property with a surface roughness value of 10-point average roughness of less than 0.1 ⁇ m.
  • the ten-point average roughness is a scale of surface roughness unique to Japan, also abbreviated as Rzjis.
  • Rzjis a scale of surface roughness unique to Japan
  • the value of the surface roughness of the vane side surface portion 13 is desirably as small as possible, and is set to 0.05 ⁇ m, for example.
  • One end 9a of the vane 9 is inserted into the vane mounting groove 11, is in contact with a spring 14 disposed at the back of the vane mounting groove 11, and the other end 9b is eccentrically rotated on the outer surface of the rolling piston 6. Is in line contact.
  • the vane side surface portion 13 is in surface contact with the inner side surface of the vane mounting groove 11.
  • the vane side surface portion 13 slides along the inner side surface of the vane mounting groove 11 by the reciprocating motion of the vane 9 accompanying the eccentric rotation of the rolling piston 6.
  • the vane side surface portion 13 that moves along the vane mounting groove 11 has an ultra-smooth surface property, and a convex portion is excluded. Therefore, even if the inner surface of the vane mounting groove 11 has a convex shape, the convex shape is suppressed from being caught by the vane mounting groove 11. Accordingly, the vane 9 can smoothly reciprocate without being subjected to sliding resistance due to the convex hook when moving in the vane mounting groove 11.
  • the rotary compressor 1 includes a suction process for sucking refrigerant gas in a space formed between a cylinder 5 and a rolling piston 6 partitioned by a vane 9 into a suction chamber and a compression chamber, and the sucked refrigerant gas A compression step of compressing. While repeatedly performing the suction process and the compression process, the refrigerant gas compressed by the suction process and the compression process is discharged into the sealed container 2 and sent to the refrigeration circuit.
  • the refrigerant gas is compressed by reducing the space formed by the cylinder 5, the rolling piston 6, and the vanes 9 with the eccentric rotation of the rolling piston 6. At this time, if the gap between the vane 9 and the vane mounting groove 11 is large, the compressed refrigerant gas leaks. However, by eliminating the convex portion of the vane side surface portion 13, the vane 9 and the vane mounting groove 11 can be brought closer to each other, and the gap is suppressed to be small. As a result, the compressed refrigerant gas is less likely to leak from the gap between the vane 9 and the vane mounting groove 11, and the pressure loss is reduced.
  • FIG. 4 is a cross-sectional curve showing the surface properties of the vane 9 according to the present embodiment.
  • FIG. 5 is a cross-sectional curve showing the surface properties of a conventional vane. 4 and 5, the horizontal axis represents the dimension in the longitudinal direction of the vane 9, and the vertical axis represents the surface property in a cross section orthogonal to the side surface of the vane 9. Further, the reference position S1 representing the surface position is set to 0.00 ⁇ m.
  • the vane side surface portion 13 of the vane 9 according to the present embodiment is processed to be ultra-smooth and the surface roughness value is less than 0.1 ⁇ m in terms of 10-point average roughness.
  • the conventional vane is formed in the surface shape whose surface roughness is 0.8-micrometer or less by 10-point average roughness.
  • the vane side surface portion 13 according to the present embodiment has very small irregularities and protrudes from the reference position S1. It can be observed that the surface is super smooth. On the other hand, on the surface of the conventional vane side surface part, it can be observed that the unevenness is large, the convex part reaches a position away from the reference position S1, and the convex part with a large peak height remains. The convex portion remaining on the vane side surface portion 13 is caught by the convex shape of the inner side surface of the vane mounting groove 11 when the vane 9 is slid, and the sliding resistance is increased. In the conventional vane, when the convex part of the vane side surface part and the convex shape of the vane mounting groove 11 come into contact with each other, the gap becomes large, and the compressed refrigerant gas leaks to cause pressure loss.
  • the vane 9 has an ultra-smooth surface property, the convex portion of the vane side surface portion 13 is eliminated, and it is difficult for the vane 9 to be caught on the convex portion on the inner surface of the vane mounting groove 11, and the sliding resistance is suppressed. Further, since the vane side surface portion 13 and the inner side surface of the vane mounting groove 11 are in close contact with each other, leakage from the gap is prevented and pressure loss is reduced. Therefore, friction between the vane mounting groove 11 and the vane 9 and pressure loss can be suppressed.
  • the vane 9 mounted on the rotary compressor 1 is manufactured through a processing step for processing the vane 9.
  • the processing process includes a grinding process and a polishing process.
  • a member to be the vane 9 is cut out from the sheet metal.
  • a material of the sheet metal for example, SUS440 can be used as stainless steel, or SKH51 can be used as high speed steel.
  • the grinding process which grinds the surface of the side part of the cut-out member is carried out.
  • a polishing process is performed in which the abrasive grains are polished using a polishing liquid in which the liquid is dissolved.
  • diamond is used as the material of the abrasive grains.
  • a polishing process may be performed by applying a polishing liquid in which abrasive grains having a particle size of 3 ⁇ m or the like are dissolved in a liquid on the surface of the side surface portion.
  • a lapping process in which a polishing sheet is pressed and processed.
  • the vane 9 is polished in a processing step and processed so that the surface roughness value is less than 0.1 ⁇ m in terms of 10-point average roughness.
  • the vane 9 mounted on the rotary compressor 1 formed in this way is polished with a polishing liquid using diamond abrasive grains and the like, and the side surface portion of the vane 9 is compared with the vane produced by the conventional manufacturing method. Is super smooth. As a result, sliding resistance generated between the vane 9 and the vane mounting groove 11 is reduced, and noise, sliding loss, and pressure loss are suppressed, and the refrigerant gas is smoothly compressed. It is possible to manufacture a rotary compressor 1 capable of
  • FIG. 6 is a graph showing the relationship between the test time and the friction coefficient in the vane side surface portion 13 according to the present embodiment and the conventional vane side surface portion.
  • the vertical axis indicates the friction coefficient
  • the horizontal axis indicates the test time.
  • the vane 9 according to the present embodiment was subjected to an experiment using a surface roughness value of 0.06 ⁇ m with a 10-point average roughness, and the experimental result is indicated by a mark “ ⁇ ”.
  • a diamond having a surface roughness value of 0.8 ⁇ m with a 10-point average roughness is indicated by diamonds, and a surface roughness value of 0.2 ⁇ m with a 10-point average roughness is used. The case where it was used is indicated by a cross.
  • the conventional vane side surface portion had a surface texture with a surface roughness value of 0.8 ⁇ m in terms of 10-point average roughness.
  • the average value of the sliding friction coefficient with the inner surface of the vane mounting groove 11 is 0.109, and the surface roughness value is 0.099 when the surface roughness is 10-point average roughness of 0.2 ⁇ m. It was.
  • the average value of the sliding friction coefficient with the inner surface of the vane mounting groove 11 was 0.045. From the above experimental results, it was found that by making the vane side surface portion 13 an ultra-smooth surface property, a friction resistance is reduced and a compressor in which the vane 9 slides smoothly can be obtained.
  • the rotary compressor 1 is processed into an ultra-smooth surface property in which the value of the surface roughness of the vane side surface portion 13 is a ten-point average roughness of less than 0.1 ⁇ m, It has a surface texture from which convex portions are excluded. Thereby, the flatness of the surface of the vane side surface portion 13 is improved, and sliding resistance due to friction between the vane 9 and the vane mounting groove 11 and pressure loss due to leakage from the gap can be suppressed.
  • the vane side surface portion 13 is polished with a polishing solution in which abrasive grains are dissolved in a liquid, the surface property is ultra-smooth with an average roughness of 10 points of less than 0.1 ⁇ m.
  • a polishing step of polishing the vane 9 with an abrasive in which abrasive grains are dissolved in a liquid is performed, and the surface roughness is an ultra-smooth surface property having a ten-point average roughness of less than 0.1 ⁇ m It is said.
  • the rotary compressor 1 with reduced sliding resistance, pressure loss, noise, and the like can be manufactured.
  • the use of diamond as the abrasive material makes it possible to realize the vane 9 having an ultra-smooth surface property.
  • FIG. A rotary compressor 1 according to Embodiment 2 will be described.
  • the rotary compressor 1 according to the present embodiment is different from the first embodiment in that a concave shape R is formed on the inner surface of the vane mounting groove 11.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • FIG. 7 is a cross-sectional curve of the side surface portion of the vane mounting groove 11 of the rotary compressor 1 according to the present embodiment.
  • FIG. 8 is a cross-sectional curve of a side surface portion of a conventional vane mounting groove. 7 and 8, similarly to FIGS. 4 and 5, the horizontal axis indicates the longitudinal dimension of the vane mounting groove 11, and the vertical axis indicates the surface property in a cross section orthogonal to the side surface of the vane mounting groove 11. .
  • a dotted line indicates a sliding position P on which the vane side surface portion 13 slides, and a reference position S2 is set to 0.00 ⁇ m.
  • the vane mounting groove 11 has a concave shape R formed on the inner side surface, and has a surface property of 0.1 ⁇ m with a protruding mountain height Rpk on the inner side surface.
  • the protruding peak height Rpk is one of the parameters for evaluating the lubricity of the surface of the plateau structure, and indicates the average height of the protruding peak portions above the reference height.
  • the inner surface of the vane mounting groove 11 has a surface texture with a protruding peak height Rpk of less than 0.1 ⁇ m, the convex shape protruding from the inner surface is eliminated, and the sliding position P is close to the reference position S2 of the vane mounting groove 11. is doing. Due to the surface properties of the inner side surface of the vane mounting groove 11, the reference position S2 of the vane mounting groove 11 and the sliding position P of the vane side surface portion 13 are in close contact with each other. And the gap between them is suppressed.
  • the concave shape R provided on the inner surface of the vane mounting groove 11 is a groove that is recessed in the in-plane direction from the reference position S2 of the vane mounting groove 11, and is supplied to the vane 9 and the vane mounting groove 11 and the gap. 9 holds lubricating oil for improving the slidability.
  • the maximum depth of the concave shape R is, for example, 0.3 ⁇ m to 1.5 ⁇ m. For this reason, the reference position S2 of the vane mounting groove 11 and the sliding position P of the vane side surface portion 13 processed to be ultra-smooth are in close contact with each other, and the oil stored in the recessed shape R is successively supplied even if the gap is kept small. Thus, an increase in sliding resistance due to running out of oil is prevented.
  • the inner surface is a surface property having a protruding peak height Rpk of 0.3 ⁇ m or less, and the concave shape R is not formed.
  • the convex shape remains on the inner surface of the vane mounting groove in FIG. 8, and the gap between the reference position S2 of the vane mounting groove and the sliding position P becomes larger. ing.
  • the vane mounting groove 11 having an ultra-smooth surface property is inserted into the vane mounting groove 11 having an ultra-smooth surface property that eliminates the convex shape of the inner side surface.
  • the gap between the reference position S2 and the sliding position P can be further suppressed. Accordingly, the gap is suppressed by being in close contact with the ultra-smooth vane side surface portion 13, and the compressed refrigerant gas is prevented from leaking and causing pressure loss. Thereby, an increase in sliding resistance due to running out of oil is reduced, and pressure loss due to leakage of the refrigerant gas is prevented.
  • the vane mounting groove 11 is, for example, a member having a surface property of 3 ⁇ m or less at the protruding mountain height Rpk as a member constituting the inner surface of the vane mounting groove 11, and has a surface property of 0.1 ⁇ m at the protruding mountain height Rpk. What is necessary is just to grind and produce so that it may become.
  • a polishing method for example, it can be produced by plastic working by pressing a cemented carbide round bar having higher hardness than the vane mounting groove against the vane mounting groove and plastically deforming and crushing the convex shape.
  • the vane mounting groove 11 having a concave shape R having a protruding peak height Rpk of 0.1 ⁇ m and a maximum depth of 0.3 ⁇ m to 1.5 ⁇ m is formed.
  • the polishing method is not limited to the above, and it is sufficient that the convex shape can be eliminated.
  • the concave shape R is formed in the vane mounting groove 11
  • the concave shape R may be formed in the vane side surface portion 13, and the vane mounting groove 11 and the vane It may be formed on both sides 13.
  • the configuration of the vane side surface portion 13 and the configuration of the vane mounting groove 11 described in the present embodiment are reversed to form the concave shape R in the vane side surface portion 13 and the protruding mountain height Rpk is 0.1 ⁇ m. It is good also as surface property and it is good also considering the vane attachment groove
  • FIG. 9 is a graph showing the relationship between the operation time and the input value of the rotary compressor 1 provided with the vane attachment groove 11 according to the present embodiment and the conventional rotary compressor provided with the vane attachment groove.
  • the vertical axis indicates the primary input ratio
  • the horizontal axis indicates the operation time.
  • the thick line indicates the experimental result of the rotary compressor 1 of the present embodiment
  • the thin line indicates the experimental result of the conventional rotary compressor.
  • the primary input ratio decreases until the operation time exceeds 160 minutes, and thereafter, the constant 100 It showed a tendency to change around%.
  • the primary input ratio of the rotary compressor provided with the vane mounting groove of the conventional specification tended to continue to decrease even after the operation time exceeded 260 minutes and thereafter remained constant. That is, the slidability of the vane 9 was deteriorated in the vane mounting groove of the conventional specification.
  • the concave shape R is formed on the inner surface of the vane mounting groove 11, and the lubricating oil held in the concave shape R is the vane 9 and the vane. Supplied to the gap with the mounting groove. Thereby, running out of oil is prevented and the vane 9 can smoothly slide in the vane mounting groove 11.
  • the concave shape R is formed on the side surface of the vane, the lubricating oil is held in the concave shape R, preventing oil shortage, and the vane 9 can smoothly slide in the vane mounting groove 11.
  • the inner surface of the vane mounting groove 11 has a surface roughness with a surface roughness value of less than 0.1 ⁇ m in terms of the protruding ridge height, the convex shape of the side surface of the vane mounting groove 11 is eliminated, and the vane 9 And the vane mounting groove 11 can suppress frictional resistance and pressure loss.
  • a plastic working step of plastically deforming and crushing the convex shape is applied to the vane mounting groove 11, and the surface property of the inner side surface of the vane mounting groove 11 is 0.1 ⁇ m at the protruding peak height. Less than.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided are a rotary compressor provided with a vane that reciprocates smoothly and a manufacturing method for the rotary compressor. The rotary compressor is provided with a vane mounting groove formed on a cylinder and a vane that reciprocates with the side surface thereof in contact with the inner side surface of the vane mounting groove. The side surface section of the vane is provided with an extremely smooth surface property indicated by a surface roughness value of less than 0.1 μm in terms of ten-point average roughness.

Description

ロータリー型圧縮機、及び、ロータリー型圧縮機の製造方法Rotary compressor and method for manufacturing rotary compressor
 本発明は、ロータリー型圧縮機、及び、ロータリー型圧縮機の製造方法に関し、特に、ベーン及びベーン取付溝の表面性状に関するものである。 The present invention relates to a rotary compressor and a method for manufacturing the rotary compressor, and more particularly to surface properties of vanes and vane mounting grooves.
 ロータリー圧縮機では、クランク軸の偏芯軸部に嵌着されたローリングピストンが、シリンダー内の中央空間部に可動式に配設されており、外周面とシリンダーの内壁面、及び、外周面とシリンダーの内側面から延出するベーンが当接状態となっている。そして、シリンダーとローリングピストンとの隙間に形成された空間が、ベーンにより、圧縮室と吸入室とに仕切られている。 In a rotary compressor, a rolling piston fitted to an eccentric shaft portion of a crankshaft is movably disposed in a central space portion in the cylinder, and includes an outer peripheral surface, an inner wall surface of the cylinder, and an outer peripheral surface. A vane extending from the inner surface of the cylinder is in contact. A space formed in the gap between the cylinder and the rolling piston is partitioned into a compression chamber and a suction chamber by a vane.
 ローリングピストンは、クランク軸の回転により偏心回転し、シリンダーとローリングピストンとの隙間の空間に冷媒ガスを吸入する吸入工程と、吸入した冷媒ガスを圧縮する圧縮工程とを順次連続して繰り返す。シリンダーとローリングピストンとの隙間で圧縮された冷媒ガスは、吸入工程と、圧縮工程との一連の工程を経た後、密閉容器内に放出され、密閉容器から吐出管を経て冷凍回路に送り込まれる。 The rolling piston rotates eccentrically by the rotation of the crankshaft, and sequentially repeats the suction process of sucking the refrigerant gas into the space between the cylinder and the rolling piston and the compression process of compressing the sucked refrigerant gas. The refrigerant gas compressed in the gap between the cylinder and the rolling piston passes through a series of steps of an intake process and a compression process, and then is discharged into the sealed container and sent from the sealed container to the refrigeration circuit through the discharge pipe.
 ローリングピストンが回転すると、ベーンは、位相が位相180°に達するまでベーン取付溝基部の背圧室からの押付荷重により、偏心回転するローリングピストンに追従して下死点へと移動する。一方、位相が位相180°以上に達すると、ベーンは、偏心回転するローリングピストンから荷重を受け、上死点へと移動する。 When the rolling piston rotates, the vane moves to the bottom dead center following the rolling piston that rotates eccentrically by the pressing load from the back pressure chamber at the base of the vane mounting groove until the phase reaches 180 °. On the other hand, when the phase reaches 180 ° or more, the vane receives a load from the eccentric rotating rolling piston and moves to the top dead center.
 このように、ベーンは、ローリングピストンの高速回転により、シリンダーの内周面に形成されたベーン取付溝に案内され、ベーン側面部においてベーン取付溝の内側面に当接しながら往復動する。そのため、ベーンとベーン取付溝との間には、クリアランスを設け、且つ、潤滑油を介在させてベーンとベーン取付溝内との摺動及び往復動を可能としている。また、シリンダー内の圧縮された冷媒ガスの漏れ損失を低減するため、ベーンとベーン取付溝とのクリアランスを抑制することも提案されている。 Thus, the vane is guided to the vane mounting groove formed on the inner peripheral surface of the cylinder by the high-speed rotation of the rolling piston, and reciprocates while contacting the inner surface of the vane mounting groove at the side surface of the vane. Therefore, a clearance is provided between the vane and the vane mounting groove, and sliding and reciprocation between the vane and the inside of the vane mounting groove are enabled by interposing lubricating oil. It has also been proposed to suppress the clearance between the vane and the vane mounting groove in order to reduce leakage loss of the compressed refrigerant gas in the cylinder.
 例えば、特許文献1には、ベーンの摺動面を表面粗さRaが0.1μm以下、十点平均最大高さ粗さに換算すると、0.4μm以下とすることが記載されている。また、特許文献2では、ベーンのロータに接触する面において、ロータ回転方向の表面粗さを十点平均最大高さ粗さで1μm以下、ロータ回転方向の直角方向の表面粗さを十点平均最大高さRzで0.6μm以下とすることが提案されている。このように、ベーン取付溝の内側面に当接するベーンの側面を研削し、クリアランスを抑制している。 For example, Patent Document 1 describes that when the sliding surface of the vane is converted into a surface roughness Ra of 0.1 μm or less and a ten-point average maximum height roughness, it is 0.4 μm or less. Further, in Patent Document 2, the surface roughness in the rotor rotation direction on the surface of the vane that contacts the rotor is 10 point average maximum height roughness of 1 μm or less, and the surface roughness in the direction perpendicular to the rotor rotation direction is 10 point average. It has been proposed that the maximum height Rz be 0.6 μm or less. Thus, the side surface of the vane that contacts the inner surface of the vane mounting groove is ground to suppress the clearance.
特開平6-299981号公報JP-A-6-299981 特開平7-267730号公報JP-A-7-267730
 特許文献1、2に記載されたベーンでは、クリアランスを抑制することができていても、研削が不十分であり、微少な凸部が排除されずに残存すると考えられる。ベーン側面に残存する凸部は、ベーン取付溝の凸形状と引っ掛かり、円滑なベーンの往復動が阻害され、圧縮機運転時に摺動損失が生じてしまうと考えられる。 In the vanes described in Patent Documents 1 and 2, it is considered that even if the clearance can be suppressed, grinding is insufficient, and minute convex portions remain without being excluded. The convex part remaining on the side surface of the vane is caught with the convex shape of the vane mounting groove, and smooth reciprocation of the vane is hindered, and it is considered that sliding loss occurs during the compressor operation.
 本発明は、上述のような課題を解決するためになされたものであり、ベーン取付溝を円滑に往復動し、往復動による騒音、摺動損失、及び、摺動抵抗を低減できる表面性状を有するベーンを備えたロータリー型圧縮機、及び、ロータリー型圧縮機の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has a surface property that can smoothly reciprocate the vane mounting groove and reduce noise, sliding loss, and sliding resistance due to the reciprocating motion. It aims at providing the manufacturing method of a rotary type compressor provided with vane which has, and a rotary type compressor.
 本発明に係るロータリー型圧縮機は、シリンダーに形成されたベーン取付溝と、前記ベーン取付溝の内側面に側面が接し、往復動するベーンと、を備え、前記ベーンの側面部は、表面粗さの値が十点平均粗さで0.1μm未満の超平滑な表面性状を備えている。 A rotary compressor according to the present invention includes: a vane mounting groove formed in a cylinder; and a vane that reciprocates with a side surface in contact with an inner side surface of the vane mounting groove. It has a super-smooth surface texture with a roughness value of 10-point average roughness of less than 0.1 μm.
 本発明によれば、ベーン取付溝の内側面と当接するベーンの側面を十点平均粗さで0.1μm未満の超平滑な表面形状としているため、表面の凸部が排除され、表面の平坦性が向上する。これにより、ベーンとベーン取付溝との隙間からの圧力損失を低減し、且つ、摺動抵抗が抑制された高い性能を有するロータリー型圧縮機を得ることができる。 According to the present invention, the side surface of the vane in contact with the inner surface of the vane mounting groove has an ultra-smooth surface shape with a ten-point average roughness of less than 0.1 μm. Improves. Thereby, the pressure loss from the gap between the vane and the vane mounting groove can be reduced, and a rotary compressor having high performance with reduced sliding resistance can be obtained.
本発明の実施の形態1に係るロータリー型圧縮機の概略模式図である。It is a schematic diagram of the rotary type compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリー型圧縮機のシリンダーの端面の概略図である。It is the schematic of the end surface of the cylinder of the rotary compressor which concerns on Embodiment 1 of this invention. 図2のベーンの側面図である。FIG. 3 is a side view of the vane of FIG. 2. 本発明の実施の形態1に係るベーンの表面性状を示す断面曲線である。It is a cross-sectional curve which shows the surface property of the vane which concerns on Embodiment 1 of this invention. 従来のベーンの表面性状を示す断面曲線である。It is a cross-sectional curve which shows the surface property of the conventional vane. 本発明の実施の形態1に係るベーン側面部と、従来のベーン側面部とにおける試験時間と摩擦係数との関係を示すグラフである。It is a graph which shows the relationship between the test time and friction coefficient in the vane side part which concerns on Embodiment 1 of this invention, and the conventional vane side part. 本発明の実施の形態2に係るロータリー型圧縮機のベーン取付溝の側面部の断面曲線である。It is a cross-sectional curve of the side part of the vane attachment groove | channel of the rotary compressor which concerns on Embodiment 2 of this invention. 従来のベーン取付溝の側面部の断面曲線である。It is a cross-sectional curve of the side part of the conventional vane attachment groove. 本発明の実施の形態2に係るベーン取付溝を備えたロータリー型圧縮機と、従来のベーン取付溝を備えたロータリー型圧縮機との運転時間と入力値との関係を示すグラフである。It is a graph which shows the relationship between the operation time and input value of the rotary type compressor provided with the vane attachment groove | channel which concerns on Embodiment 2 of this invention, and the conventional rotary type compressor provided with the vane attachment groove | channel.
 実施の形態1.
 本実施の形態に係るロータリー型圧縮機は、例えば、多段シリンダー型、又は、単一シリンダー型などのロータリー型圧縮機であり、冷凍サイクルにおいて、冷媒を圧縮し、圧縮された冷媒を冷凍回路に送り込むためなどに用いられる。以下の説明においては、多段シリンダー型のロータリー型圧縮機を例にとり説明する。
Embodiment 1 FIG.
The rotary type compressor according to the present embodiment is, for example, a rotary type compressor such as a multistage cylinder type or a single cylinder type. In the refrigeration cycle, the refrigerant is compressed, and the compressed refrigerant is used as a refrigeration circuit. Used for sending in. In the following description, a multi-stage cylinder type rotary compressor will be described as an example.
 <ロータリー型圧縮機1の構成>
 図1は、本実施の形態に係るロータリー型圧縮機1の概略模式図である。図1に示すように、ロータリー型圧縮機1は、鋼板からなる円筒状の密閉容器2と、密閉容器2内の上部に配置された電動要素12と、電動要素12の下方に配置された回転圧縮機構部4と、により構成されている。
<Configuration of rotary compressor 1>
FIG. 1 is a schematic diagram of a rotary compressor 1 according to the present embodiment. As shown in FIG. 1, the rotary compressor 1 includes a cylindrical sealed container 2 made of a steel plate, an electric element 12 disposed at an upper portion in the sealed container 2, and a rotation disposed below the electric element 12. And a compression mechanism unit 4.
 電動要素12は、クランク軸3を有し、クランク軸3により電動要素12の下方に配置された回転圧縮機構部4と接続している。電動要素12は、回転圧縮要素から成る回転圧縮機構部4を回転させる駆動源となる。 The electric element 12 has a crankshaft 3 and is connected to the rotary compression mechanism portion 4 disposed below the electric element 12 by the crankshaft 3. The electric element 12 serves as a drive source for rotating the rotary compression mechanism unit 4 including the rotary compression element.
 回転圧縮機構部4は、シリンダー5と、クランク軸3に設けられた偏心軸部8と、偏心軸部8に嵌着されたローリングピストン6とにより構成されている。シリンダー5は、中央に空間を有し、中央の空間にローリングピストン6が配置されている。ローリングピストン6は、シリンダー5の中央の空間において可動に設けられており、偏心軸部8の駆動によりシリンダー5の内側面に接触しながら偏心回転する。シリンダー5には、ベーン9を案内するベーン取付溝11が、シリンダー5の内周面に開口し、内周面から外周面に向かって形成されている。ベーン9は、ベーン取付溝11に挿入され、ベーン取付溝11の案内によりベーン取付溝11内を移動し、ローリングピストン6の外周面に線接触した状態を維持する。シリンダー5の上部及び下部には、上部カバー10と、クランク軸3の軸受としての機能を備える下部カバー7とが取り付けられており、上部カバー10及び下部カバー7により軸方向の開口が閉塞されている。回転圧縮機構部4において偏心軸部8がクランク軸3の回転により回転し、これ伴ってシリンダー5の内部のローリングピストン6が偏心回転する。 The rotary compression mechanism 4 is composed of a cylinder 5, an eccentric shaft 8 provided on the crankshaft 3, and a rolling piston 6 fitted to the eccentric shaft 8. The cylinder 5 has a space in the center, and a rolling piston 6 is arranged in the center space. The rolling piston 6 is movably provided in the central space of the cylinder 5, and rotates eccentrically while contacting the inner surface of the cylinder 5 by driving the eccentric shaft portion 8. In the cylinder 5, a vane mounting groove 11 that guides the vane 9 is formed in the inner peripheral surface of the cylinder 5 and is formed from the inner peripheral surface toward the outer peripheral surface. The vane 9 is inserted into the vane mounting groove 11, moves in the vane mounting groove 11 by the guide of the vane mounting groove 11, and maintains a state in line contact with the outer peripheral surface of the rolling piston 6. An upper cover 10 and a lower cover 7 having a function as a bearing for the crankshaft 3 are attached to the upper and lower portions of the cylinder 5, and the axial opening is blocked by the upper cover 10 and the lower cover 7. Yes. In the rotary compression mechanism 4, the eccentric shaft portion 8 is rotated by the rotation of the crankshaft 3, and accordingly, the rolling piston 6 inside the cylinder 5 rotates eccentrically.
 図2は、本実施の形態に係るロータリー型圧縮機1のシリンダー5の端面の概略図である。図2に示すように、シリンダー5に形成されたベーン取付溝11は、シリンダー5の内周面に軸方向に開口している。ベーン取付溝11には、ベーン9がバネ14を介して挿入され、シリンダー5とローリングピストン6との間に形成される空間を仕切っている。ベーン9は、ベーン取付溝11の奥から開口の方向に作用するバネ14の復元力により、偏心回転するローリングピストン6と当接した状態を維持している。 FIG. 2 is a schematic view of the end face of the cylinder 5 of the rotary compressor 1 according to the present embodiment. As shown in FIG. 2, the vane mounting groove 11 formed in the cylinder 5 opens in the axial direction on the inner peripheral surface of the cylinder 5. A vane 9 is inserted into the vane mounting groove 11 via a spring 14 to partition a space formed between the cylinder 5 and the rolling piston 6. The vane 9 is maintained in contact with the rolling piston 6 that rotates eccentrically by the restoring force of the spring 14 that acts in the direction of the opening from the back of the vane mounting groove 11.
 図3は、図2のベーン9の側面図である。図3に示すように、ベーン9は、矩形状の平板であり、ベーン側面部13が、表面粗さの値が十点平均粗さで0.1μm未満の超平滑な表面性状を備えている。ここで、十点平均粗さとは、Rzjisとも略称される日本独自の表面粗さの尺度であり、基準長さにおいて、輪郭曲線の最大の山高さから5番目までの平均と、最深の谷深さから5番目までの平均との和を表している。ベーン側面部13の表面粗さの値は、可能な限り小さいことが望ましく、例えば、0.05μmなどに設定される。 FIG. 3 is a side view of the vane 9 of FIG. As shown in FIG. 3, the vane 9 is a rectangular flat plate, and the vane side surface portion 13 has an ultra-smooth surface property with a surface roughness value of 10-point average roughness of less than 0.1 μm. . Here, the ten-point average roughness is a scale of surface roughness unique to Japan, also abbreviated as Rzjis. In the reference length, the average from the highest peak height to the fifth of the contour curve and the deepest valley depth. It represents the sum of the average up to the fifth. The value of the surface roughness of the vane side surface portion 13 is desirably as small as possible, and is set to 0.05 μm, for example.
 ベーン9は、一方の端部9aがベーン取付溝11に挿入され、ベーン取付溝11の奥に配置されたバネ14に接しており、他方の端部9bが偏心回転するローリングピストン6の外側面に線接触している。ベーン側面部13は、ベーン取付溝11の内側面と面接触している。ベーン側面部13は、ローリングピストン6の偏心回転に伴うベーン9の往復動により、ベーン取付溝11の内側面に沿って摺動する。 One end 9a of the vane 9 is inserted into the vane mounting groove 11, is in contact with a spring 14 disposed at the back of the vane mounting groove 11, and the other end 9b is eccentrically rotated on the outer surface of the rolling piston 6. Is in line contact. The vane side surface portion 13 is in surface contact with the inner side surface of the vane mounting groove 11. The vane side surface portion 13 slides along the inner side surface of the vane mounting groove 11 by the reciprocating motion of the vane 9 accompanying the eccentric rotation of the rolling piston 6.
 ベーン取付溝11に沿って移動するベーン側面部13は、超平滑な表面性状を有し、凸部が排除されている。そのため、ベーン取付溝11の内側面に凸形状があっても、凸形状がベーン取付溝11に引っ掛かることが抑制されている。従って、ベーン9は、ベーン取付溝11を移動する際に、凸形状の引っ掛かりによる摺動抵抗を受けることなく円滑に往復動することができる。 The vane side surface portion 13 that moves along the vane mounting groove 11 has an ultra-smooth surface property, and a convex portion is excluded. Therefore, even if the inner surface of the vane mounting groove 11 has a convex shape, the convex shape is suppressed from being caught by the vane mounting groove 11. Accordingly, the vane 9 can smoothly reciprocate without being subjected to sliding resistance due to the convex hook when moving in the vane mounting groove 11.
 <ロータリー型圧縮機1の動作>
 続いて、ロータリー型圧縮機1の動作について説明する。
 ロータリー型圧縮機1は、ベーン9により吸入室と圧縮室とに仕切られたシリンダー5とローリングピストン6との間に形成される空間において、冷媒ガスを吸入する吸入工程と、吸入した冷媒ガスを圧縮する圧縮工程と、を行う。吸入工程及び圧縮工程を繰り返し行いながら、吸入工程及び圧縮工程により圧縮された冷媒ガスを、密閉容器2に放出し、冷凍回路に送り込む。
<Operation of Rotary Compressor 1>
Next, the operation of the rotary compressor 1 will be described.
The rotary compressor 1 includes a suction process for sucking refrigerant gas in a space formed between a cylinder 5 and a rolling piston 6 partitioned by a vane 9 into a suction chamber and a compression chamber, and the sucked refrigerant gas A compression step of compressing. While repeatedly performing the suction process and the compression process, the refrigerant gas compressed by the suction process and the compression process is discharged into the sealed container 2 and sent to the refrigeration circuit.
 ロータリー型圧縮機1の圧縮工程においては、ローリングピストン6の偏心回転に伴い、シリンダー5と、ローリングピストン6と、ベーン9とにより形成された空間が小さくなることで、冷媒ガスが圧縮される。このとき、ベーン9とベーン取付溝11との隙間が大きいと、圧縮された冷媒ガスが漏れ出てしまう。しかし、ベーン側面部13の凸部を排除することで、ベーン9とベーン取付溝11とをより近接させることが可能となり、隙間が小さく抑制される。これにより、圧縮された冷媒ガスがベーン9とベーン取付溝11との隙間から漏れ出にくくなり、圧力損失が低減される。 In the compression process of the rotary compressor 1, the refrigerant gas is compressed by reducing the space formed by the cylinder 5, the rolling piston 6, and the vanes 9 with the eccentric rotation of the rolling piston 6. At this time, if the gap between the vane 9 and the vane mounting groove 11 is large, the compressed refrigerant gas leaks. However, by eliminating the convex portion of the vane side surface portion 13, the vane 9 and the vane mounting groove 11 can be brought closer to each other, and the gap is suppressed to be small. As a result, the compressed refrigerant gas is less likely to leak from the gap between the vane 9 and the vane mounting groove 11, and the pressure loss is reduced.
 <ベーン9の表面性状>
 図4は、本実施の形態に係るベーン9の表面性状を示す断面曲線である。また、図5は、従来のベーンの表面性状を示す断面曲線である。図4及び図5において、横軸は、ベーン9の長手方向の寸法を、縦軸は、ベーン9の側面に直交する断面における表面性状をそれぞれ示している。また、表面位置を代表する基準位置S1を0.00μmとする。
<Surface properties of vane 9>
FIG. 4 is a cross-sectional curve showing the surface properties of the vane 9 according to the present embodiment. FIG. 5 is a cross-sectional curve showing the surface properties of a conventional vane. 4 and 5, the horizontal axis represents the dimension in the longitudinal direction of the vane 9, and the vertical axis represents the surface property in a cross section orthogonal to the side surface of the vane 9. Further, the reference position S1 representing the surface position is set to 0.00 μm.
 図4に示すように、本実施の形態に係るベーン9のベーン側面部13は、超平滑に加工され、表面粗さの値が十点平均粗さで0.1μm未満になっている。また、図5に示すように、従来のベーンは、表面粗さが十点平均粗さで0.8μm以下の表面形状に形成されている。 As shown in FIG. 4, the vane side surface portion 13 of the vane 9 according to the present embodiment is processed to be ultra-smooth and the surface roughness value is less than 0.1 μm in terms of 10-point average roughness. Moreover, as shown in FIG. 5, the conventional vane is formed in the surface shape whose surface roughness is 0.8-micrometer or less by 10-point average roughness.
 図4の本実施の形態に係るベーン9と、図5の従来のベーンとを比較すると、本実施の形態に係るベーン側面部13は、凹凸が微少であり、基準位置S1から突出する凸部が排除され、超平滑な面になっていることを観察できる。一方、従来のベーン側面部の表面においては、凹凸が大きく、凸部が基準位置S1から離れた位置に達しており、山高さが大きい凸部が残存していることが観察できる。ベーン側面部13に残存する凸部は、ベーン9の摺動時にベーン取付溝11の内側面の凸形状に引っ掛かり、摺動抵抗の増大を招く。従来のベーンでは、ベーン側面部の凸部と、ベーン取付溝11の凸形状とが接触することにより、隙間が大きくなり、圧縮された冷媒ガスが漏れ出すことで圧力損失を引き起こす。 Comparing the vane 9 according to the present embodiment in FIG. 4 with the conventional vane in FIG. 5, the vane side surface portion 13 according to the present embodiment has very small irregularities and protrudes from the reference position S1. It can be observed that the surface is super smooth. On the other hand, on the surface of the conventional vane side surface part, it can be observed that the unevenness is large, the convex part reaches a position away from the reference position S1, and the convex part with a large peak height remains. The convex portion remaining on the vane side surface portion 13 is caught by the convex shape of the inner side surface of the vane mounting groove 11 when the vane 9 is slid, and the sliding resistance is increased. In the conventional vane, when the convex part of the vane side surface part and the convex shape of the vane mounting groove 11 come into contact with each other, the gap becomes large, and the compressed refrigerant gas leaks to cause pressure loss.
 ベーン9が超平滑な表面性状を備えることで、ベーン側面部13の凸部が排除され、ベーン取付溝11の内側表面の凸部への引っ掛かりが生じにくくなり、摺動抵抗が抑制される。また、ベーン側面部13とベーン取付溝11の内側面とがより密着することで隙間からの漏れが防止され圧力損失が低減される。従って、ベーン取付溝11とベーン9との間での摩擦と、圧力損失とを抑制できる。 Since the vane 9 has an ultra-smooth surface property, the convex portion of the vane side surface portion 13 is eliminated, and it is difficult for the vane 9 to be caught on the convex portion on the inner surface of the vane mounting groove 11, and the sliding resistance is suppressed. Further, since the vane side surface portion 13 and the inner side surface of the vane mounting groove 11 are in close contact with each other, leakage from the gap is prevented and pressure loss is reduced. Therefore, friction between the vane mounting groove 11 and the vane 9 and pressure loss can be suppressed.
 <ロータリー型圧縮機1の製造方法>
 次に、本実施の形態に係るロータリー型圧縮機1に搭載されるベーン9に関する製造方法について説明する。
 ロータリー型圧縮機1に搭載されるベーン9は、ベーン9を加工する加工工程を経て製造される。加工工程は、研削工程と、研磨工程と、を含む。
<Method for Manufacturing Rotary Compressor 1>
Next, the manufacturing method regarding the vane 9 mounted on the rotary compressor 1 according to the present embodiment will be described.
The vane 9 mounted on the rotary compressor 1 is manufactured through a processing step for processing the vane 9. The processing process includes a grinding process and a polishing process.
 加工工程においては、まず、板金からベーン9となる部材を切り出す。板金の材料としては、例えば、ステンレスとしてSUS440、又は、高速度鋼としてSKH51などを用いることができる。そして、切り出された部材の側面部の表面を研削する研削工程を実施する。研削工程を実施した後、砥粒を液体に溶いた研磨液を用いて研磨する研磨工程を実施する。砥粒の材質は、例えば、ダイヤモンドを用いる。研磨工程では、例えば、側面部の表面に粒子が3μmなどの砥粒を液体に溶いた研磨液を塗布するポリッシング加工を施せばよい。その他の研磨方法としては、研磨シートを押し当てて加工するラッピング加工などがある。ベーン9は、加工工程において研磨され、表面粗さの値が十点平均粗さで0.1μm未満となるように加工される。 In the processing step, first, a member to be the vane 9 is cut out from the sheet metal. As a material of the sheet metal, for example, SUS440 can be used as stainless steel, or SKH51 can be used as high speed steel. And the grinding process which grinds the surface of the side part of the cut-out member is carried out. After performing the grinding process, a polishing process is performed in which the abrasive grains are polished using a polishing liquid in which the liquid is dissolved. For example, diamond is used as the material of the abrasive grains. In the polishing step, for example, a polishing process may be performed by applying a polishing liquid in which abrasive grains having a particle size of 3 μm or the like are dissolved in a liquid on the surface of the side surface portion. As another polishing method, there is a lapping process in which a polishing sheet is pressed and processed. The vane 9 is polished in a processing step and processed so that the surface roughness value is less than 0.1 μm in terms of 10-point average roughness.
 このように形成されたロータリー型圧縮機1に搭載されるベーン9は、ダイヤモンド砥粒を用いた研磨液などにより研磨され、従来の製造方法で作成されたベーンと比較してベーン9の側面部が超平滑になっている。これにより、ベーン9とベーン取付溝11との間で生じる摺動抵抗が低減され、且つ、騒音、摺動損失、及び、圧力損失が抑制されることとなり、円滑に冷媒ガスの圧縮を行うことができるロータリー型圧縮機1を製造することができる。 The vane 9 mounted on the rotary compressor 1 formed in this way is polished with a polishing liquid using diamond abrasive grains and the like, and the side surface portion of the vane 9 is compared with the vane produced by the conventional manufacturing method. Is super smooth. As a result, sliding resistance generated between the vane 9 and the vane mounting groove 11 is reduced, and noise, sliding loss, and pressure loss are suppressed, and the refrigerant gas is smoothly compressed. It is possible to manufacture a rotary compressor 1 capable of
 <実験結果>
 次に、従来のベーン側面部の表面性状と、本実施の形態に係るベーン側面部13の表面性状との摩擦係数について行った実験結果を示す。
<Experimental result>
Next, a result of an experiment conducted on the friction coefficient between the surface properties of the conventional vane side surface portion and the surface properties of the vane side surface portion 13 according to the present embodiment will be described.
 図6は、本実施の形態に係るベーン側面部13と、従来のベーン側面部とにおける試験時間と摩擦係数との関係を示すグラフである。図6において、縦軸は摩擦係数を示し、横軸は試験時間を示している。本実施の形態に係るベーン9は、表面粗さの値が十点平均粗さで0.06μmに加工したものを用いて実験を行い、実験結果を○印で示した。従来のベーンとして、表面粗さの値が十点平均粗さで0.8μmのものを用いた場合を菱形印で示し、表面粗さの値が十点平均粗さで0.2μmのものを用いた場合を×印で示した。 FIG. 6 is a graph showing the relationship between the test time and the friction coefficient in the vane side surface portion 13 according to the present embodiment and the conventional vane side surface portion. In FIG. 6, the vertical axis indicates the friction coefficient, and the horizontal axis indicates the test time. The vane 9 according to the present embodiment was subjected to an experiment using a surface roughness value of 0.06 μm with a 10-point average roughness, and the experimental result is indicated by a mark “◯”. As a conventional vane, a diamond having a surface roughness value of 0.8 μm with a 10-point average roughness is indicated by diamonds, and a surface roughness value of 0.2 μm with a 10-point average roughness is used. The case where it was used is indicated by a cross.
 図6に示すように、従来のベーン側面部は、表面粗さの値が十点平均粗さで0.8μmの表面性状であった。このとき、ベーン取付溝11の内側面との摺動摩擦係数の平均値は0.109であり、表面粗さの値が十点平均粗さで0.2μmの表面性状では、0.099であった。これに対し、本実施の形態のベーン側面部13では、ベーン取付溝11の内側面との摺動摩擦係数の平均値が0.045であった。以上の実験結果より、ベーン側面部13を超平滑な表面性状にすることで、摩擦抵抗が低減し、ベーン9の摺動が円滑な圧縮機が得られることがわかった。 As shown in FIG. 6, the conventional vane side surface portion had a surface texture with a surface roughness value of 0.8 μm in terms of 10-point average roughness. At this time, the average value of the sliding friction coefficient with the inner surface of the vane mounting groove 11 is 0.109, and the surface roughness value is 0.099 when the surface roughness is 10-point average roughness of 0.2 μm. It was. On the other hand, in the vane side surface portion 13 of the present embodiment, the average value of the sliding friction coefficient with the inner surface of the vane mounting groove 11 was 0.045. From the above experimental results, it was found that by making the vane side surface portion 13 an ultra-smooth surface property, a friction resistance is reduced and a compressor in which the vane 9 slides smoothly can be obtained.
 以上説明した、本実施の形態に係るロータリー型圧縮機1は、ベーン側面部13の表面粗さの値が十点平均粗さで0.1μm未満の超平滑な表面性状に加工されており、凸部が排除された表面性状になっている。これにより、ベーン側面部13の表面の平坦性が向上し、ベーン9とベーン取付溝11との摩擦による摺動抵抗と、隙間からの漏れによる圧力損失とを抑制することができる。 As described above, the rotary compressor 1 according to the present embodiment is processed into an ultra-smooth surface property in which the value of the surface roughness of the vane side surface portion 13 is a ten-point average roughness of less than 0.1 μm, It has a surface texture from which convex portions are excluded. Thereby, the flatness of the surface of the vane side surface portion 13 is improved, and sliding resistance due to friction between the vane 9 and the vane mounting groove 11 and pressure loss due to leakage from the gap can be suppressed.
 特に、ベーン側面部13が砥粒を液体に溶いた研磨液により研磨加工されているため、十点平均粗さで0.1μm未満の超平滑な表面性状となっている。 In particular, since the vane side surface portion 13 is polished with a polishing solution in which abrasive grains are dissolved in a liquid, the surface property is ultra-smooth with an average roughness of 10 points of less than 0.1 μm.
 また、ベーン9の加工工程において、砥粒を液体に溶いた研磨剤によりベーン9を研磨する研磨工程を実施し、表面粗さを十点平均粗さで0.1μm未満の超平滑な表面性状としている。このような加工工程を経ることにより、摺動抵抗、圧力損失、騒音などが低減されたロータリー型圧縮機1を製造できる。 Further, in the processing step of the vane 9, a polishing step of polishing the vane 9 with an abrasive in which abrasive grains are dissolved in a liquid is performed, and the surface roughness is an ultra-smooth surface property having a ten-point average roughness of less than 0.1 μm It is said. Through such processing steps, the rotary compressor 1 with reduced sliding resistance, pressure loss, noise, and the like can be manufactured.
 特に、研磨工程において、砥粒の材質にダイヤモンドを用いることで、超平滑な表面性状のベーン9を実現できる。 In particular, in the polishing process, the use of diamond as the abrasive material makes it possible to realize the vane 9 having an ultra-smooth surface property.
 実施の形態2.
 実施の形態2に係るロータリー型圧縮機1について説明する。本実施の形態に係るロータリー型圧縮機1は、ベーン取付溝11の内側面に凹陥形状Rが形成されている点で実施の形態1と相違する。なお、本実施の形態では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
A rotary compressor 1 according to Embodiment 2 will be described. The rotary compressor 1 according to the present embodiment is different from the first embodiment in that a concave shape R is formed on the inner surface of the vane mounting groove 11. In the present embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
 図7は、本実施の形態に係るロータリー型圧縮機1のベーン取付溝11の側面部の断面曲線である。また、図8は、従来のベーン取付溝の側面部の断面曲線である。図7及び図8は、図4及び図5と同様、横軸にベーン取付溝11の長手方向の寸法を、縦軸にベーン取付溝11の側面に直交する断面における表面性状をそれぞれ示している。点線は、ベーン側面部13が摺動する摺動位置Pを示し、基準位置S2を0.00μmとする。 FIG. 7 is a cross-sectional curve of the side surface portion of the vane mounting groove 11 of the rotary compressor 1 according to the present embodiment. FIG. 8 is a cross-sectional curve of a side surface portion of a conventional vane mounting groove. 7 and 8, similarly to FIGS. 4 and 5, the horizontal axis indicates the longitudinal dimension of the vane mounting groove 11, and the vertical axis indicates the surface property in a cross section orthogonal to the side surface of the vane mounting groove 11. . A dotted line indicates a sliding position P on which the vane side surface portion 13 slides, and a reference position S2 is set to 0.00 μm.
 図7に示すように、ベーン取付溝11は、内側面に形成された凹陥形状Rを有し、内側面の突出山高さRpkで0.1μmの表面性状を備えている。ここで、突出山高さRpkとは、プラトー構造表面の潤滑性評価パラメーターの一つであり、基準となる高さよりも上にある突出山部の平均高さを示す。 As shown in FIG. 7, the vane mounting groove 11 has a concave shape R formed on the inner side surface, and has a surface property of 0.1 μm with a protruding mountain height Rpk on the inner side surface. Here, the protruding peak height Rpk is one of the parameters for evaluating the lubricity of the surface of the plateau structure, and indicates the average height of the protruding peak portions above the reference height.
 ベーン取付溝11の内側面は、表面性状が突出山高さRpkで0.1μm未満であり、内側面から突出する凸形状が排除され、摺動位置Pがベーン取付溝11の基準位置S2に近接している。ベーン取付溝11の内側面の表面性状により、ベーン取付溝11の基準位置S2とベーン側面部13の摺動位置Pとが密接し、ベーン取付溝11と超平滑な平面性状のベーン側面部13との隙間が抑制される。 The inner surface of the vane mounting groove 11 has a surface texture with a protruding peak height Rpk of less than 0.1 μm, the convex shape protruding from the inner surface is eliminated, and the sliding position P is close to the reference position S2 of the vane mounting groove 11. is doing. Due to the surface properties of the inner side surface of the vane mounting groove 11, the reference position S2 of the vane mounting groove 11 and the sliding position P of the vane side surface portion 13 are in close contact with each other. And the gap between them is suppressed.
 また、ベーン取付溝11の内側面に設けられた凹陥形状Rは、ベーン取付溝11の基準位置S2から面内方向に凹む溝であり、ベーン9とベーン取付溝11と隙間に供給され、ベーン9の摺動性を向上させるための潤滑油を保持している。凹陥形状Rは、最大深度が、例えば、0.3μm~1.5μmなどである。そのため、ベーン取付溝11の基準位置S2と超平滑に加工されたベーン側面部13の摺動位置Pとが密接し、隙間が小さく抑制されていても凹陥形状Rに貯留された油が逐次供給され、油切れによる摺動抵抗の上昇が防止される。 The concave shape R provided on the inner surface of the vane mounting groove 11 is a groove that is recessed in the in-plane direction from the reference position S2 of the vane mounting groove 11, and is supplied to the vane 9 and the vane mounting groove 11 and the gap. 9 holds lubricating oil for improving the slidability. The maximum depth of the concave shape R is, for example, 0.3 μm to 1.5 μm. For this reason, the reference position S2 of the vane mounting groove 11 and the sliding position P of the vane side surface portion 13 processed to be ultra-smooth are in close contact with each other, and the oil stored in the recessed shape R is successively supplied even if the gap is kept small. Thus, an increase in sliding resistance due to running out of oil is prevented.
 図8に示すように、従来のベーン取付溝は、内側面が突出山高さRpkで0.3μm以下の表面性状であり、凹陥形状Rは形成されていない。図7のベーン取付溝11と比較すると、図8のベーン取付溝の内側面には、凸形状が残存しており、ベーン取付溝の基準位置S2と、摺動位置Pとの隙間が大きくなっている。 As shown in FIG. 8, in the conventional vane mounting groove, the inner surface is a surface property having a protruding peak height Rpk of 0.3 μm or less, and the concave shape R is not formed. Compared with the vane mounting groove 11 in FIG. 7, the convex shape remains on the inner surface of the vane mounting groove in FIG. 8, and the gap between the reference position S2 of the vane mounting groove and the sliding position P becomes larger. ing.
 このように、内側面の凸形状を排除し、超平滑な表面性状としたベーン取付溝11に、ベーン側面部13が超平滑な表面性状のベーン9が挿入されることで、ベーン取付溝の基準位置S2と、摺動位置Pとの隙間を更に抑制することができる。これにより、超平滑なベーン側面部13に密着して隙間が抑制され、圧縮された冷媒ガスが漏れ出て圧力損失が生じることが防止される。これにより、油切れによる摺動抵抗の増加が低減し、且つ、冷媒ガスが漏れ出ることによる圧力損失が防止される。 In this way, the vane mounting groove 11 having an ultra-smooth surface property is inserted into the vane mounting groove 11 having an ultra-smooth surface property that eliminates the convex shape of the inner side surface. The gap between the reference position S2 and the sliding position P can be further suppressed. Accordingly, the gap is suppressed by being in close contact with the ultra-smooth vane side surface portion 13, and the compressed refrigerant gas is prevented from leaking and causing pressure loss. Thereby, an increase in sliding resistance due to running out of oil is reduced, and pressure loss due to leakage of the refrigerant gas is prevented.
 ベーン取付溝11は、例えば、ベーン取付溝11の内側面を構成する部材として、突出山高さRpkで3μm以下の表面性状を有する部材を用いて、突出山高さRpkで0.1μmの表面性状となるように研磨して作製すればよい。研磨の方法としては、例えば、ベーン取付溝よりも硬度が高い超硬の丸棒をベーン取付溝に押しつけ、凸形状を塑性変形させて押しつぶす塑性加工により作製することができる。これにより、突出山高さRpkで0.1μmであり、最大深度が0.3μm~1.5μmなどの凹陥形状Rを有するベーン取付溝11が形成される。なお、研磨の方法は、上記に限定されず、凸形状を排除することができればよい。 The vane mounting groove 11 is, for example, a member having a surface property of 3 μm or less at the protruding mountain height Rpk as a member constituting the inner surface of the vane mounting groove 11, and has a surface property of 0.1 μm at the protruding mountain height Rpk. What is necessary is just to grind and produce so that it may become. As a polishing method, for example, it can be produced by plastic working by pressing a cemented carbide round bar having higher hardness than the vane mounting groove against the vane mounting groove and plastically deforming and crushing the convex shape. As a result, the vane mounting groove 11 having a concave shape R having a protruding peak height Rpk of 0.1 μm and a maximum depth of 0.3 μm to 1.5 μm is formed. Note that the polishing method is not limited to the above, and it is sufficient that the convex shape can be eliminated.
 なお、本実施の形態において、ベーン取付溝11に凹陥形状Rが形成された例を示したが、凹陥形状Rは、ベーン側面部13に形成されていてもよく、ベーン取付溝11と、ベーン側面部13との双方に形成されていてもよい。また、本実施の形態において説明した、ベーン側面部13の構成と、ベーン取付溝11の構成とを反転させ、ベーン側面部13に凹陥形状Rを形成し、突出山高さRpkで0.1μmの表面性状とし、ベーン取付溝11を超平滑な表面性状としてもよい。この場合にも、ベーン9とベーン取付溝11との隙間を抑制し、油切れを防止しながら摩擦抵抗と、圧力損失とを抑制することができる。 In the present embodiment, the example in which the concave shape R is formed in the vane mounting groove 11 is shown. However, the concave shape R may be formed in the vane side surface portion 13, and the vane mounting groove 11 and the vane It may be formed on both sides 13. Further, the configuration of the vane side surface portion 13 and the configuration of the vane mounting groove 11 described in the present embodiment are reversed to form the concave shape R in the vane side surface portion 13 and the protruding mountain height Rpk is 0.1 μm. It is good also as surface property and it is good also considering the vane attachment groove | channel 11 as ultra smooth surface property. Also in this case, it is possible to suppress the frictional resistance and pressure loss while suppressing the gap between the vane 9 and the vane mounting groove 11 and preventing oil shortage.
 <実験結果>
 次に、本実施の形態に係るベーン取付溝11を備えたロータリー型圧縮機1と、従来のベーン取付溝を備えたロータリー型圧縮機と運転効率について実験を行った。
 図9は、本実施の形態に係るベーン取付溝11を備えたロータリー型圧縮機1と、従来のベーン取付溝を備えたロータリー型圧縮機との運転時間と入力値との関係を示すグラフであり、縦軸に一次入力比を示し、横軸に運転時間を示している。図9において、太線は、本実施の形態のロータリー型圧縮機1の実験結果を示し、細線は、従来のロータリー型圧縮機の実験結果を示している。
<Experimental result>
Next, an experiment was conducted on the rotary compressor 1 provided with the vane attachment groove 11 according to the present embodiment, the rotary compressor provided with the conventional vane attachment groove, and the operation efficiency.
FIG. 9 is a graph showing the relationship between the operation time and the input value of the rotary compressor 1 provided with the vane attachment groove 11 according to the present embodiment and the conventional rotary compressor provided with the vane attachment groove. Yes, the vertical axis indicates the primary input ratio, and the horizontal axis indicates the operation time. In FIG. 9, the thick line indicates the experimental result of the rotary compressor 1 of the present embodiment, and the thin line indicates the experimental result of the conventional rotary compressor.
 図9に示すように、本実施の形態に係る仕様のベーン取付溝11を備えたロータリー型圧縮機1は、運転時間が160分を超えるまでは一次入力比が低下し、その後、一定の100%付近を推移する傾向を示した。一方、比較対象として、従来の仕様のベーン取付溝を備えたロータリー型圧縮機の一次入力比は、運転時間が260分を超えても低下し続け、その後一定に推移する傾向であった。つまり、従来の仕様のベーン取付溝では、ベーン9の摺動性が悪化していた。 As shown in FIG. 9, in the rotary compressor 1 provided with the vane mounting groove 11 having the specifications according to the present embodiment, the primary input ratio decreases until the operation time exceeds 160 minutes, and thereafter, the constant 100 It showed a tendency to change around%. On the other hand, as a comparison object, the primary input ratio of the rotary compressor provided with the vane mounting groove of the conventional specification tended to continue to decrease even after the operation time exceeded 260 minutes and thereafter remained constant. That is, the slidability of the vane 9 was deteriorated in the vane mounting groove of the conventional specification.
 ベーン取付溝11の突出山高さRpkを0.9μm以下としたことで、ベーン側面部13との摺動抵抗が低減し、圧縮効率の低下による入力の上昇を抑制することが可能となった。また、ベーン取付溝11の凹陥形状Rにより潤滑油が保持され、摺動抵抗の低減による圧縮効率の低下を抑制することが可能となった。これにより、圧縮効率の低下による入力の上昇を抑制することが可能なロータリー圧縮機が得られた。 突出 By setting the protruding peak height Rpk of the vane mounting groove 11 to 0.9 μm or less, the sliding resistance with the vane side surface portion 13 is reduced, and it is possible to suppress an increase in input due to a decrease in compression efficiency. Further, the lubricating oil is held by the concave shape R of the vane mounting groove 11, and it is possible to suppress a decrease in compression efficiency due to a reduction in sliding resistance. Thereby, the rotary compressor which can suppress the raise of the input by the fall of compression efficiency was obtained.
 以上説明した、本実施の形態に係るロータリー型圧縮機1によれば、ベーン取付溝11の内側面に凹陥形状Rが形成されており、凹陥形状Rに保持された潤滑油がベーン9とベーン取付溝との隙間に供給される。これにより、油切れを防止し、ベーン9がベーン取付溝11を円滑に摺動することができる。 According to the rotary compressor 1 according to the present embodiment described above, the concave shape R is formed on the inner surface of the vane mounting groove 11, and the lubricating oil held in the concave shape R is the vane 9 and the vane. Supplied to the gap with the mounting groove. Thereby, running out of oil is prevented and the vane 9 can smoothly slide in the vane mounting groove 11.
 また、ベーン側面部に凹陥形状Rが形成されることで、潤滑油が凹陥形状Rに保持され、油切れを防止し、ベーン9がベーン取付溝11を円滑に摺動することができる。 Also, since the concave shape R is formed on the side surface of the vane, the lubricating oil is held in the concave shape R, preventing oil shortage, and the vane 9 can smoothly slide in the vane mounting groove 11.
 また、ベーン取付溝11の内側面を表面粗さの値が突出山部高さで0.1μm未満の表面性状とすることで、ベーン取付溝11の側面部の凸形状が排除され、ベーン9とベーン取付溝11との間の摩擦抵抗、及び、圧力損失を抑制することができる。 Further, by making the inner surface of the vane mounting groove 11 have a surface roughness with a surface roughness value of less than 0.1 μm in terms of the protruding ridge height, the convex shape of the side surface of the vane mounting groove 11 is eliminated, and the vane 9 And the vane mounting groove 11 can suppress frictional resistance and pressure loss.
 また、ベーン取付溝11の加工工程において、凸形状を塑性変形させて押しつぶす塑性加工工程をベーン取付溝11に施し、ベーン取付溝11の内側面の表面性状が突出山部高さで0.1μm未満としている。このような加工工程を経ることにより、摺動抵抗、圧力損失、騒音などが低減されたロータリー型圧縮機1を製造できる。 Further, in the processing step of the vane mounting groove 11, a plastic working step of plastically deforming and crushing the convex shape is applied to the vane mounting groove 11, and the surface property of the inner side surface of the vane mounting groove 11 is 0.1 μm at the protruding peak height. Less than. Through such processing steps, the rotary compressor 1 with reduced sliding resistance, pressure loss, noise, and the like can be manufactured.
 1 ロータリー型圧縮機、2 密閉容器、3 クランク軸、4 回転圧縮機構部、5 シリンダー、6 ローリングピストン、7 下部カバー、8 偏心軸部、9 ベーン、9a、9b 端部、10 上部カバー、11 ベーン取付溝、12 電動要素、13 ベーン側面部、14 バネ。 1 rotary compressor, 2 sealed container, 3 crankshaft, 4 rotary compression mechanism, 5 cylinder, 6 rolling piston, 7 lower cover, 8 eccentric shaft, 9 vane, 9a, 9b end, 10 upper cover, 11 Vane mounting groove, 12 electric elements, 13 vane side, 14 springs.

Claims (7)

  1.  シリンダーに形成されたベーン取付溝と、
     前記ベーン取付溝の内側面に側面が接し、往復動するベーンと、
     を備え、
     前記ベーンの側面部は、
     表面粗さの値が十点平均粗さで0.1μm未満の超平滑な表面性状を備えた、
     ロータリー型圧縮機。
    A vane mounting groove formed in the cylinder;
    A vane that reciprocates with a side surface in contact with an inner surface of the vane mounting groove;
    With
    The side portion of the vane is
    With a surface roughness value of 10 points average roughness and an ultra-smooth surface property of less than 0.1 μm,
    Rotary compressor.
  2.  前記ベーン取付溝は、内側面に形成された凹陥形状を備えた、
     請求項1に記載のロータリー型圧縮機。
    The vane mounting groove has a concave shape formed on the inner surface,
    The rotary compressor according to claim 1.
  3.  前記ベーンは、側面部に形成された凹陥形状を備えた、
     請求項1又は2に記載のロータリー型圧縮機。
    The vane has a concave shape formed on a side surface portion,
    The rotary compressor according to claim 1 or 2.
  4.  前記ベーン取付溝の内側面は、表面粗さの値が突出山部高さで0.1μm未満の表面性状を備えた、
     請求項1~3のいずれか一項に記載のロータリー型圧縮機。
    The inner surface of the vane mounting groove has a surface texture with a surface roughness value of less than 0.1 μm at the height of the protruding ridge,
    The rotary compressor according to any one of claims 1 to 3.
  5.  シリンダーに形成されたベーン取付溝と、ベーン取付溝に挿入されるベーンと、を加工する加工工程を有し、
     前記加工工程は、
     前記ベーンを、砥粒を液体に溶いた研磨液を塗布して研磨する研磨工程を含む、
     ロータリー型圧縮機の製造方法。
    A machining step for machining a vane mounting groove formed in the cylinder and a vane inserted into the vane mounting groove;
    The processing step is
    A polishing step of polishing the vane by applying a polishing solution in which abrasive grains are dissolved in a liquid;
    A manufacturing method of a rotary compressor.
  6.  前記砥粒の材質は、ダイヤモンドである、
     請求項5に記載のロータリー型圧縮機の製造方法。
    The abrasive material is diamond,
    The manufacturing method of the rotary type compressor of Claim 5.
  7.  前記加工工程は、
     前記ベーン取付溝に、前記ベーン取付溝よりも硬度が高い丸棒を押しつけ、前記ベーン取付溝を塑性加工する塑性加工工程を含む、
     請求項5又は6に記載のロータリー型圧縮機の製造方法。
    The processing step is
    A plastic working step of pressing a round bar having a higher hardness than the vane mounting groove to the vane mounting groove, and plastic processing the vane mounting groove;
    The manufacturing method of the rotary type compressor of Claim 5 or 6.
PCT/JP2017/007128 2017-02-24 2017-02-24 Rotary compressor and manufacturing method for rotary compressor WO2018154716A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/007128 WO2018154716A1 (en) 2017-02-24 2017-02-24 Rotary compressor and manufacturing method for rotary compressor
JP2019500957A JP6896056B2 (en) 2017-02-24 2017-02-24 Rotary compressor and manufacturing method of rotary compressor
CN201780086739.0A CN110312870A (en) 2017-02-24 2017-02-24 The manufacturing method of rotary compressor and rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007128 WO2018154716A1 (en) 2017-02-24 2017-02-24 Rotary compressor and manufacturing method for rotary compressor

Publications (1)

Publication Number Publication Date
WO2018154716A1 true WO2018154716A1 (en) 2018-08-30

Family

ID=63253594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007128 WO2018154716A1 (en) 2017-02-24 2017-02-24 Rotary compressor and manufacturing method for rotary compressor

Country Status (3)

Country Link
JP (1) JP6896056B2 (en)
CN (1) CN110312870A (en)
WO (1) WO2018154716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193107A1 (en) * 2020-03-27 2021-09-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146486A (en) * 1984-08-13 1986-03-06 Atsugi Motor Parts Co Ltd Vane type rotary compressor
US4895501A (en) * 1988-12-22 1990-01-23 General Electric Company Rotary compressor with vane positioned to reduce noise
JPH06299981A (en) * 1993-04-14 1994-10-25 Matsushita Refrig Co Ltd Horizontal type rotary compressor
JPH08261185A (en) * 1995-03-23 1996-10-08 Matsushita Electric Ind Co Ltd Closed rotary compressor
JP2000249088A (en) * 1999-02-26 2000-09-12 Nippon Piston Ring Co Ltd Rotary compressor and vane for the compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030439B2 (en) * 2006-02-28 2012-09-19 株式会社リケン Sliding member
EP2657527B1 (en) * 2010-12-22 2017-11-15 Daikin Industries, Ltd. Compressor
JP6437088B2 (en) * 2015-03-02 2018-12-12 三菱電機株式会社 Rotary compressor and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146486A (en) * 1984-08-13 1986-03-06 Atsugi Motor Parts Co Ltd Vane type rotary compressor
US4895501A (en) * 1988-12-22 1990-01-23 General Electric Company Rotary compressor with vane positioned to reduce noise
JPH06299981A (en) * 1993-04-14 1994-10-25 Matsushita Refrig Co Ltd Horizontal type rotary compressor
JPH08261185A (en) * 1995-03-23 1996-10-08 Matsushita Electric Ind Co Ltd Closed rotary compressor
JP2000249088A (en) * 1999-02-26 2000-09-12 Nippon Piston Ring Co Ltd Rotary compressor and vane for the compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193107A1 (en) * 2020-03-27 2021-09-30
WO2021193107A1 (en) * 2020-03-27 2021-09-30 日立Astemo株式会社 Cylinder device and piston rod manufacturing method
JP7407908B2 (en) 2020-03-27 2024-01-04 日立Astemo株式会社 Method for manufacturing piston rods for automobile suspension equipment

Also Published As

Publication number Publication date
JPWO2018154716A1 (en) 2019-11-07
JP6896056B2 (en) 2021-06-30
CN110312870A (en) 2019-10-08

Similar Documents

Publication Publication Date Title
CN100491722C (en) Hermetic compressor
WO2018154716A1 (en) Rotary compressor and manufacturing method for rotary compressor
JP6072601B2 (en) Compressor vane manufacturing method
CN109964034B (en) Refrigerant compressor and refrigerating device with same
CN1038526C (en) Rotative compressor
TW574475B (en) Rotary compressor
WO2017061014A1 (en) Rotary compressor
CN105937494B (en) The manufacturing method of revolution type compressor and revolution type compressor
KR100721081B1 (en) Enclosed type compressor
JP7142100B2 (en) Refrigerant compressor and refrigeration system using the same
JP4950138B2 (en) Reciprocating hermetic compressor and manufacturing method thereof
JP6675107B2 (en) Refrigerant compressor and refrigeration apparatus including the same
JP5797450B2 (en) Compressor manufacturing method.
JP2005264740A (en) Hermetic compressor
JPH0849675A (en) Rotary compressor
JP2017053340A (en) Refrigerant compressor and freezer using the same
JP2005163572A (en) Method for manufacturing vane and coolant compressor
JP5942080B2 (en) Hermetic compressor
JP2015048778A (en) Hermetic compressor
JP2008014284A (en) Manufacturing method for sliding member, and refrigerant compressor
JP2010116785A (en) Rotary compressor
JP2008106662A (en) Compressor
JP2010185344A (en) Sliding member and compressor
JP2010084583A (en) Sliding member and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898157

Country of ref document: EP

Kind code of ref document: A1