WO2017061014A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2017061014A1
WO2017061014A1 PCT/JP2015/078662 JP2015078662W WO2017061014A1 WO 2017061014 A1 WO2017061014 A1 WO 2017061014A1 JP 2015078662 W JP2015078662 W JP 2015078662W WO 2017061014 A1 WO2017061014 A1 WO 2017061014A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
chamber
cylinder
rotary compressor
crankshaft
Prior art date
Application number
PCT/JP2015/078662
Other languages
French (fr)
Japanese (ja)
Inventor
友宏 井柳
高橋 真一
瀬畑 崇史
直隆 服部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/078662 priority Critical patent/WO2017061014A1/en
Priority to JP2017544138A priority patent/JPWO2017061014A1/en
Priority to CN201610874993.4A priority patent/CN107035690A/en
Priority to CN201621101779.7U priority patent/CN206268076U/en
Publication of WO2017061014A1 publication Critical patent/WO2017061014A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/21Pressure difference

Definitions

  • This invention relates to a rotary compressor, and more particularly to an improvement in followability of a vane to a rolling piston.
  • the rotary compressor is arranged in the cylinder so that the rolling piston fitted to the eccentric shaft portion of the crankshaft rotates eccentrically in a line contact state with the inner wall surface of the central space portion in the cylinder.
  • the cylinder has a vane groove extending in the radial direction, and the vane is provided in the vane groove. The vane reciprocates in the vane groove following the eccentric rotational motion of the rolling piston, and partitions the space formed in the gap between the cylinder and the rolling piston into a compression chamber and a suction chamber. ing.
  • the vane In the compression process of the rotary compressor, as the crankshaft rotates, the vane reciprocates in the vane groove between the bottom dead center that has moved forward (the rolling piston side) and the top dead center that has moved backward. To do. From the phase 0 ° to the phase 180 ° of the eccentric shaft portion of the crankshaft, the pressing load generated from the differential pressure inside and outside the compression chamber acts on the vane from the back pressure chamber located behind the vane, and the vane moves to the bottom dead center. And move. At a phase of 180 ° or more, the vane receives a load from the rolling piston and moves to the top dead center as the crankshaft rotates (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and is a compression capable of reducing the sliding resistance between the vane and the vane groove and improving the followability of the vane to the rolling piston.
  • the aim is to get a chance.
  • a rotary compressor includes an electric motor unit and a compression mechanism unit driven by the electric motor unit in a sealed container, and the compression mechanism unit includes a crankshaft that is rotationally driven by the electric motor unit, and a cylinder chamber.
  • a vane groove formed in the cylinder and configured to reciprocally slide the vane is provided, and a passage for drawing the refrigerant compressed by the compression mechanism portion to the suction side of the vane is provided on a side surface of the vane on the suction chamber side.
  • the passage for drawing the refrigerant compressed by the compression mechanism portion to the suction side of the vane is provided on the side surface of the vane on the suction chamber side, the discharge pressure acts on the side surface of the vane on the suction chamber side, The difference in pressure load between the suction side and the discharge side of the vane can be reduced. For this reason, the slidability between the vane and the vane groove can be improved, and as a result, the followability of the vane to the rolling piston can be improved.
  • FIG. 1 is an overall schematic cross-sectional view of a rotary compressor according to Embodiment 1 of the present invention. It is detail drawing of the principal part of the rotary compressor which concerns on Embodiment 1 of this invention. It is a perspective view of the vane of the rotary compressor which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the force produced in the vane side in the comparative example of a rotary compressor. It is a schematic diagram which shows the force which arises on the vane side of the rotary compressor which concerns on Embodiment 1 of this invention. It is a graph which shows the relationship between the phase of the crankshaft and vane side load of the rotary compressor which concerns on Embodiment 1 of this invention compared with a comparative example.
  • FIG. 1 is an overall schematic cross-sectional view of a rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a detailed view of a main part of the rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of the vane of the rotary compressor according to the first embodiment of the present invention.
  • a rotary compressor according to Embodiment 1 of the present invention houses an electric motor unit 3 and a compression mechanism unit 4 driven by the electric motor unit 3 in a sealed container 1 as shown in FIG.
  • refrigerating machine oil (not shown) is stored at the bottom of the sealed container 1.
  • the refrigerating machine oil mainly lubricates the sliding part of the compression mechanism part 4.
  • a suction pipe 9 communicating with the accumulator 2 is connected to the sealed container 1, and the refrigerant is taken into the sealed container 1 from the accumulator 2. Moreover, the discharge pipe 1a is connected to the upper part of the airtight container 1, and the compressed refrigerant
  • the electric motor unit 3 includes a stator 31 fixed to the hermetic container 1 and a rotor 32 fixed to the crankshaft 10, and is supplied with electric power from the outside through an airtight terminal (not shown) and driven.
  • the electric motor unit 3 and the compression mechanism unit 4 are connected via a crankshaft 10.
  • An oil supply passage is formed in the axial center of the crankshaft 10, and a pump (not shown) is provided in the oil supply passage so that the refrigerating machine oil stored at the bottom of the sealed container 1 can be used as the crankshaft. Oil is supplied to the sliding portion of the compression mechanism portion 4 through an oil supply passage in the cylinder 10.
  • the compression mechanism unit 4 includes a cylinder 7, an upper bearing 5 and a lower bearing 8 that are two bearings, a crankshaft 10, a rolling piston 11, a discharge muffler 6, and a vane 12. And.
  • the outer periphery of the cylinder 7 is formed in a circle in plan view, and a circular through hole 71a is formed through substantially the center in a vertical direction in plan view. Openings at both ends in the axial direction of the through hole 71 a are closed by the upper bearing 5 and the lower bearing 8, and a cylindrical cylinder chamber 71 is formed in the cylinder 7.
  • the cylinder 7 has a predetermined axial height in side view.
  • the cylinder 7 is provided with a vane groove 7a that communicates with the cylinder chamber 71 and extends in the radial direction so as to penetrate in the axial direction (direction perpendicular to the paper surface of FIG. 2).
  • a plate-like vane 12 is accommodated in the vane groove 7a so as to be slidable back and forth.
  • a back pressure chamber 7 b that guides discharge pressure to the rear end portion 12 a of the vane 12 is provided on the rear side (back side) of the vane groove 7 a.
  • the back pressure chamber 7b is a substantially circular space in plan view that communicates with the vane groove 7a, and communicates with the internal space of the sealed container 1 to form a pressure space equivalent to that in the sealed container 1. As will be described later, during the operation of the rotary compressor, since the internal space of the sealed container 1 becomes the discharge pressure, the back pressure chamber 7b also becomes the discharge pressure.
  • a vane spring 13 is disposed in the back pressure chamber 7b.
  • the vane 12 has a function of partitioning the cylinder chamber 71 into the suction chamber 7c and the discharge chamber 7d by the tip 12d of the vane 12 being pressed toward the outer peripheral surface of the rolling piston 11 by the biasing force of the vane spring 13.
  • the vane 12 follows and is pressed against the rolling piston 11 by a pressing load (back pressure) generated from the differential pressure inside and outside the compression chamber. Therefore, the vane spring 13 is mainly used to press the vane 12 against the rolling piston 11 when the compressor is started (when there is no difference in pressure between the internal space of the sealed container 1 and the cylinder chamber 71). used.
  • the cylinder 7 is provided with a suction port 7e through which the refrigerant sucked from the suction pipe 9 passes through the cylinder chamber 71 from the outer peripheral surface of the cylinder 7.
  • the cylinder 7 is provided with a discharge port 7f in which the vicinity of the edge of the circle forming the cylinder chamber 71 which is a circular space is cut out.
  • the rolling piston 11 is configured in a ring shape, and the inner periphery of the rolling piston 11 is slidably fitted to the outer periphery of the eccentric shaft portion 10a of the crankshaft 10. As the crankshaft 10 rotates, the rolling piston 11 rotates eccentrically in the cylinder chamber 71.
  • the vane 12 has a flat rectangular shape (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction), and is formed on the side surface 12c of the vane 12 on the suction chamber side. Is formed with a notch 12b serving as a passage for drawing the compressed refrigerant to the intake side of the vane 12.
  • the notch 12b is formed in the vane 12, and thus the vane 12 has an asymmetric shape.
  • a space 14 formed between the notch 12b and the vane groove 7a communicates with the back pressure chamber 7b, and the space 14 communicates with the back pressure chamber 7b.
  • the refrigerant having the discharge pressure is supplied to the space 14. That is, the space 14 communicates with the back pressure chamber 7b, so that the compressed refrigerant is drawn into the space 14 via the back pressure chamber 7b, that is, drawn into the suction side of the vane 12. Note that oil is also drawn into the intake side of the vane 12 together with the refrigerant.
  • the upper bearing 5 is slidably fitted to the main shaft portion 10b of the crankshaft 10, and closes the vane groove 7a of the cylinder 7 and one end face (the motor portion 3 side) of the through hole 71a.
  • the upper bearing 5 is formed in an inverted T shape in a side view.
  • the upper bearing 5 is provided with a discharge hole 5a at the same position as the discharge port 7f of the cylinder 7 in plan view, and a discharge valve 5b is attached to the discharge hole 5a.
  • the discharge valve 5b receives the pressure in the cylinder chamber 71 and the pressure in the sealed container 1, and when the pressure in the cylinder chamber 71 is lower than the pressure in the sealed container 1, the discharge valve 5b is pressed against the discharge port 7f to close the discharge hole 5a. To do. Further, the discharge valve 5b is pushed upward by the pressure in the cylinder chamber 71 when the pressure in the cylinder chamber 71 becomes higher than the pressure in the sealed container 1, and opens the discharge hole 5a to remove the compressed refrigerant. Lead outside the cylinder chamber 71.
  • a discharge muffler 6 is attached to the upper bearing 5 on the upper side, and a muffler space is formed by the discharge muffler 6 and the upper bearing 5.
  • the high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5 a of the upper bearing 5 once enters the muffler space, and then is discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6.
  • the lower bearing 8 is slidably fitted to the countershaft portion 10c of the crankshaft 10, and closes the vane groove 7a of the cylinder 7 and the other end surface (the refrigerator oil side) of the through hole 71a.
  • the lower bearing 8 is formed in a T shape in a side view.
  • the refrigerant of the accumulator 2 is introduced into the suction chamber 7c through the suction pipe 9 and the suction port 7e, and then the motor unit 3 is driven to drive the crankshaft. 10 is rotated eccentrically. Thereby, the refrigerant in the cylinder chamber 71 is compressed. The refrigerant compressed in the cylinder chamber 71 is discharged into the muffler space from the discharge hole 5 a of the upper bearing 5 and then discharged into the sealed container 1 through the discharge hole 6 a of the discharge muffler 6. The discharged refrigerant passes through the gap of the electric motor unit 3 and is then discharged from the discharge pipe 1a.
  • the pressure during refrigerant compression will be described.
  • the inside of the cylinder chamber 71 is divided into a suction chamber 7c and a discharge chamber 7d by the vane 12.
  • a load is applied to the vane 12 due to a differential pressure between the pressure in the suction chamber 7c and the pressure in the discharge chamber 7d, and sliding resistance is generated between the vane groove 7a.
  • the vane 12 is provided with the notch 12b so that the discharge pressure acts on the side surface 12c of the vane 12 on the suction chamber side. For this reason, it is possible to reduce the difference in pressure load between the suction side and the discharge side generated on both side surfaces of the vane 12, and to reduce the sliding resistance of the vane 12. Therefore, the followability of the vane 12 to the rolling piston 11 is improved. As a result, the vane 12 and the rolling piston 11 are not separated from each other, noise is suppressed, and refrigerant leakage from the high pressure side to the low pressure side can be reduced.
  • FIG. 4 is a schematic diagram showing the force generated on the vane side in the comparative example of the rotary compressor.
  • FIG. 5 is a schematic diagram showing the force generated on the vane side of the rotary compressor according to Embodiment 1 of the present invention. That is, FIG. 4 shows a distribution of vane side loads during operation of the compressor when a vane having no notch 12b is used. On the other hand, FIG. 5 shows a distribution of vane side loads during operation of the compressor when the vane 12 of the first embodiment in which the notch 12b is formed is used.
  • Pd discharge pressure
  • Ps suction pressure
  • Pm pressure during compression
  • F1 and f1 are distributed loads caused by Pd
  • F2 is distributed loads caused by Pd to Pm
  • f2 is caused by Pd to Ps.
  • F3 is a distributed load caused by Pm
  • f3 is a distributed load caused by Ps.
  • the distribution load f2 (distribution load in the range indicated by A in FIG. 5) generated by Pd to Ps is increased by the notch 12b. . Therefore, the value ( ⁇ F ⁇ f) obtained by subtracting ⁇ f, which is the total value (f1 + f2 + f3) of the distributed load f, from ⁇ F, which is the total value (F1 + F2 + F3) of the distributed load F, is reduced as compared with the configuration in which the notch 12b is not provided. ing.
  • FIG. 6 is a graph showing the relationship between the phase of the crankshaft and the vane side load of the rotary compressor according to Embodiment 1 of the present invention in comparison with the comparative example. Further, in FIG. 6, a shows the relationship between the phase of the crankshaft 10 and the vane side load when a has the notch 12b and b does not have the notch 12b.
  • the horizontal axis represents the crank phase [deg]
  • the vertical axis represents the load [N].
  • the condition used for the calculation is that the refrigerant is a CO 2 refrigerant.
  • the operating conditions are a discharge pressure of 8.3 MPa, a suction pressure of 4.7 MPa, and a rotation speed of 40 rps, which are actually used when the rotary compressor is applied to a water heater.
  • a discharge pressure of 8.3 MPa a suction pressure of 4.7 MPa
  • a rotation speed of 40 rps which are actually used when the rotary compressor is applied to a water heater.
  • FIG. 6 when the notch 12b is provided, the vane side load is reduced when the crankshaft 10 is in any angular position as compared with the case where the notch 12b is not provided. .
  • the notch 12 b for drawing the compressed refrigerant to the suction side of the vane 12 is provided on the side surface 12 c of the vane 12 on the suction chamber 7 c side.
  • the discharge pressure acts on the side surface 12c of the vane on the suction chamber 7c side, and the difference in pressure load between the suction side and the discharge side of the vane 12 can be reduced. Therefore, the sliding resistance between the vane 12 and the vane groove 7a can be reduced. As a result, the followability of the vane 12 to the rolling piston 11 can be improved.
  • the notch 12b by providing the notch 12b on the vane 12 itself, for example, the following effects can be obtained as compared with the case where the notch is provided on the vane groove side.
  • the vane groove is a portion that is generally a narrow gap of about 2 mm to 5 mm and is difficult to process. For this reason, it is difficult to remove burrs, burrs, and the like that are generated when notches are formed in the vane grooves during polishing of the vane grooves. Therefore, in the structure in which the notch is provided on the vane groove side, the frictional resistance increases due to the remaining material that cannot be removed.
  • the vane groove As a forming method of the vane groove, forming using a broach blade or a cutter is generally used, but since the vane groove has an asymmetric shape by providing a notch, processing at the time of processing is performed. Resistance becomes uneven. Therefore, it is difficult to perform machining with high accuracy, and the tool life is shortened. The above problem is particularly noticeable when a large notch is formed.
  • the amount of eccentricity of rotary compressors has been expanded for higher performance.
  • the vane moves greatly into the vane groove, and the amount of movement of the vane increases.
  • the vane groove is not provided with a large notch, when the vane moves to the bottom dead center side, the vane is positioned in front of the notch and the vane suction side surface does not face the notch.
  • the vane spring is located in the back pressure chamber and the vane spring does not come out of the back pressure chamber.
  • the vane spring may move when the vane moves to the bottom dead center side.
  • the vane is positioned in front of the notch (rolling piston side), and the side surface on the suction side of the vane may not face the notch.
  • the UP amount of f2 shown in FIG. 5 decreases, and a sufficient effect cannot be achieved.
  • the discharge pressure is applied to the suction side surface 12c of the vane 12 even when the vane 12 has moved to the bottom dead center. And f2 does not decrease.
  • the shape of the notch 12b is not limited to a triangular shape in plan view as shown in FIG. 2, and can be modified as follows, for example.
  • FIG. 7 is a perspective view showing Modification 1 of the vane notch 12b of the rotary compressor according to Embodiment 1 of the present invention.
  • the notch 12b has a rectangular shape in plan view. Even with this configuration, the same effect as the notch 12b described above can be obtained.
  • the passage of the present invention for drawing the compressed refrigerant to the suction side of the vane 12 has been described with reference to a notch.
  • the present invention is not limited to the notch and is shown in FIG. It is good also as a groove
  • FIG. 8 is a perspective view showing a second modification of the vane passage of the rotary compressor according to the first embodiment of the present invention.
  • a groove 12e is provided on the side surface 12c of the vane 12 on the suction chamber side. Even in this configuration, the same effect as that obtained when the notch 12b described above is provided can be obtained.
  • the number of grooves 12e is not limited to two as shown in FIG. 8, but may be one or more. Further, the size of the groove 12e can be freely set.

Abstract

A rotary compressor is provided with an electric motor section and a compression mechanism section which is driven by the electric motor section, the electric motor section and the compression mechanism section being accommodated within a closed container. The compression mechanism section is provided with: a crankshaft which is rotationally driven by the electric motor section; a cylinder provided with a cylinder chamber; a rolling piston fitted over the eccentric shaft section of the crankshaft and eccentrically rotating within the cylinder chamber; a plate-shaped vane having a front end pressed against the rolling piston and dividing the cylinder chamber into an intake chamber and a compression chamber; and a vane groove formed in the cylinder and accommodating the vane so that the vane can slide in a reciprocating manner. A passage is formed in the intake chamber-side side surface of the vane, the passage introducing a refrigerant compressed by the compression mechanism section, into the intake side of the vane.

Description

ロータリー圧縮機Rotary compressor
 この発明は、ロータリー圧縮機に関し、特にベーンのローリングピストンへの追従性の向上に関するものである。 This invention relates to a rotary compressor, and more particularly to an improvement in followability of a vane to a rolling piston.
 ロータリー圧縮機は、クランクシャフトの偏心軸部に嵌められたローリングピストンが、シリンダー内の中央空間部の内壁面に線接触状態にて偏心回転するようにシリンダー内に配設されている。また、シリンダーは半径方向に延びるベーン溝を有しており、このベーン溝にベーンが設けられている。そして、ベーンは、ローリングピストンの偏心回転運動に追従してベーン溝内を往復動するようになっており、シリンダーとローリングピストンとの隙間に形成される空間を、圧縮室と吸入室とに仕切っている。 The rotary compressor is arranged in the cylinder so that the rolling piston fitted to the eccentric shaft portion of the crankshaft rotates eccentrically in a line contact state with the inner wall surface of the central space portion in the cylinder. The cylinder has a vane groove extending in the radial direction, and the vane is provided in the vane groove. The vane reciprocates in the vane groove following the eccentric rotational motion of the rolling piston, and partitions the space formed in the gap between the cylinder and the rolling piston into a compression chamber and a suction chamber. ing.
 このようなものにおいて、ローリングピストンが偏心回転(公転)すると、冷媒ガスを吸入する工程から圧縮する工程へと順次移行する一連の吸入工程と圧縮工程とが連続して繰り返される。圧縮されたガスは、圧縮室から密閉容器内に放出された後、吐出管から冷凍回路へ送り込まれる。 In such a case, when the rolling piston rotates eccentrically (revolves), a series of suction steps and compression steps that sequentially shift from the step of sucking the refrigerant gas to the step of compressing are repeated continuously. The compressed gas is discharged from the compression chamber into the sealed container, and then sent from the discharge pipe to the refrigeration circuit.
 ロータリー圧縮機の圧縮工程において、クランクシャフトの回転に伴い、ベーンは、ベーン溝内において、最も前方(ローリングピストン側)に移動した下死点と、最も後方に移動した上死点とを往復動する。クランクシャフトの偏心軸部の位相0°から位相180°までは、圧縮室内外の差圧から生じる押付荷重が、ベーンの後方に位置する背圧室からベーンに作用し、ベーンは下死点へと移動する。そして、180°以上の位相ではクランクシャフトの回転に伴い、ベーンはローリングピストンからの荷重を受け、上死点へと移動する(例えば、特許文献1参照)。 In the compression process of the rotary compressor, as the crankshaft rotates, the vane reciprocates in the vane groove between the bottom dead center that has moved forward (the rolling piston side) and the top dead center that has moved backward. To do. From the phase 0 ° to the phase 180 ° of the eccentric shaft portion of the crankshaft, the pressing load generated from the differential pressure inside and outside the compression chamber acts on the vane from the back pressure chamber located behind the vane, and the vane moves to the bottom dead center. And move. At a phase of 180 ° or more, the vane receives a load from the rolling piston and moves to the top dead center as the crankshaft rotates (see, for example, Patent Document 1).
特開平11-166495号公報Japanese Patent Laid-Open No. 11-166495
 ロータリー圧縮機では、ベーンが上死点から下死点に移動する間(クランクシャフトの位相が180°になる前)に、ベーンとベーン溝との間の摺動抵抗が大きくなると、ベーンがローリングピストンに追従しなくなる。この場合、ベーンとローリングピストンとが離れ、再接触する際に、騒音が生じるといった問題が生じる。また、ベーンがローリングピストンに追従しなくなってベーンとローリングピストンとの間に隙間が生じることで、高圧側から低圧側へと冷媒が漏れて性能が低下するといった問題が生じる。 In a rotary compressor, if the sliding resistance between the vane and the vane groove increases while the vane moves from top dead center to bottom dead center (before the crankshaft phase reaches 180 °), the vane rolls. Does not follow the piston. In this case, there arises a problem that noise occurs when the vane and the rolling piston are separated from each other and contacted again. Further, since the vane does not follow the rolling piston and a gap is generated between the vane and the rolling piston, there arises a problem that the refrigerant leaks from the high pressure side to the low pressure side and the performance is deteriorated.
 この発明は、上記のような課題を解決するためになされたもので、ベーンとベーン溝との間の摺動抵抗を減らして、ベーンのローリングピストンへの追従性を向上することが可能な圧縮機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and is a compression capable of reducing the sliding resistance between the vane and the vane groove and improving the followability of the vane to the rolling piston. The aim is to get a chance.
 この発明に係るロータリー圧縮機は、密閉容器内に電動機部と電動機部によって駆動される圧縮機構部とを備え、圧縮機構部は、電動機部により回転駆動されるクランクシャフトと、シリンダー室を備えたシリンダーと、クランクシャフトの偏心軸部に嵌め合わされ、シリンダー室内を偏心して回転するローリングピストンと、先端部がローリングピストンに押圧されてシリンダー室を吸入室と圧縮室とに仕切る板状のベーンと、シリンダーに形成され、ベーンを往復摺動自在に収容するベーン溝とを備え、ベーンの吸入室側の側面に、圧縮機構部で圧縮された冷媒をベーンの吸入側に引き込む通路が設けられているものである。 A rotary compressor according to the present invention includes an electric motor unit and a compression mechanism unit driven by the electric motor unit in a sealed container, and the compression mechanism unit includes a crankshaft that is rotationally driven by the electric motor unit, and a cylinder chamber. A cylinder, a rolling piston that is fitted to the eccentric shaft portion of the crankshaft and rotates eccentrically in the cylinder chamber, and a plate-shaped vane that is pressed by the rolling piston and that partitions the cylinder chamber into a suction chamber and a compression chamber; A vane groove formed in the cylinder and configured to reciprocally slide the vane is provided, and a passage for drawing the refrigerant compressed by the compression mechanism portion to the suction side of the vane is provided on a side surface of the vane on the suction chamber side. Is.
 この発明によれば、ベーンの吸入室側の側面に、圧縮機構部で圧縮された冷媒をベーンの吸入側に引き込む通路を設けたので、ベーンの吸入室側の側面に吐出圧が作用し、ベーンの吸入側と吐出側との圧力荷重の差を低減できる。このため、ベーンとベーン溝との摺動性を向上でき、その結果、ベーンのローリングピストンへの追従性を向上させることができる。 According to this invention, since the passage for drawing the refrigerant compressed by the compression mechanism portion to the suction side of the vane is provided on the side surface of the vane on the suction chamber side, the discharge pressure acts on the side surface of the vane on the suction chamber side, The difference in pressure load between the suction side and the discharge side of the vane can be reduced. For this reason, the slidability between the vane and the vane groove can be improved, and as a result, the followability of the vane to the rolling piston can be improved.
この発明の実施の形態1に係るロータリー圧縮機の全体概略断面図である。1 is an overall schematic cross-sectional view of a rotary compressor according to Embodiment 1 of the present invention. この発明の実施の形態1に係るロータリー圧縮機の要部の詳細図である。It is detail drawing of the principal part of the rotary compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るロータリー圧縮機のベーンの斜視図である。It is a perspective view of the vane of the rotary compressor which concerns on Embodiment 1 of this invention. ロータリー圧縮機の比較例におけるベーンサイドに生じる力を示す模式図である。It is a schematic diagram which shows the force produced in the vane side in the comparative example of a rotary compressor. この発明の実施の形態1に係るロータリー圧縮機のベーンサイドに生じる力を示す模式図である。It is a schematic diagram which shows the force which arises on the vane side of the rotary compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るロータリー圧縮機のクランクシャフトの位相とベーンサイド荷重との関係を比較例と比較して示すグラフである。It is a graph which shows the relationship between the phase of the crankshaft and vane side load of the rotary compressor which concerns on Embodiment 1 of this invention compared with a comparative example. この発明の実施の形態1に係るロータリー圧縮機のベーンの切欠きの変形例1を示す斜視図である。It is a perspective view which shows the modification 1 of the notch of the vane of the rotary compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るロータリー圧縮機のベーンの通路の変形例2を示す斜視図である。It is a perspective view which shows the modification 2 of the channel | path of the vane of the rotary compressor which concerns on Embodiment 1 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1に係るロータリー圧縮機の全体概略断面図である。図2は、この発明の実施の形態1に係るロータリー圧縮機の要部の詳細図である。図3は、この発明の実施の形態1に係るロータリー圧縮機のベーンの斜視図である。
 この発明の実施の形態1に係るロータリー圧縮機は、図1のように密閉容器1内に電動機部3と、電動機部3によって駆動される圧縮機構部4とを収納している。また、密閉容器1内の底部には、冷凍機油(図示せず)が貯留されている。冷凍機油は、主に圧縮機構部4の摺動部を潤滑する。密閉容器1には、アキュームレーター2と連通した吸入管9が接続されており、アキュームレーター2から密閉容器1内に冷媒を取り込む。また、密閉容器1の上部には、吐出管1aが接続されており、圧縮された冷媒が排出される。
Embodiment 1 FIG.
1 is an overall schematic cross-sectional view of a rotary compressor according to Embodiment 1 of the present invention. FIG. 2 is a detailed view of a main part of the rotary compressor according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of the vane of the rotary compressor according to the first embodiment of the present invention.
A rotary compressor according to Embodiment 1 of the present invention houses an electric motor unit 3 and a compression mechanism unit 4 driven by the electric motor unit 3 in a sealed container 1 as shown in FIG. In addition, refrigerating machine oil (not shown) is stored at the bottom of the sealed container 1. The refrigerating machine oil mainly lubricates the sliding part of the compression mechanism part 4. A suction pipe 9 communicating with the accumulator 2 is connected to the sealed container 1, and the refrigerant is taken into the sealed container 1 from the accumulator 2. Moreover, the discharge pipe 1a is connected to the upper part of the airtight container 1, and the compressed refrigerant | coolant is discharged | emitted.
 電動機部3は、密閉容器1に固定された固定子31と、クランクシャフト10に固定された回転子32とで構成され、外部から図示しない気密端子を介して電力が供給され、駆動される。また、電動機部3と圧縮機構部4とは、クランクシャフト10を介して連結されている。なお、クランクシャフト10の軸心部には給油流路が形成され、給油流路にはポンプ(図示せず)が設けられており、密閉容器1の底に貯留されている冷凍機油をクランクシャフト10内の給油流路を介して圧縮機構部4の摺動部に給油するようになっている。 The electric motor unit 3 includes a stator 31 fixed to the hermetic container 1 and a rotor 32 fixed to the crankshaft 10, and is supplied with electric power from the outside through an airtight terminal (not shown) and driven. The electric motor unit 3 and the compression mechanism unit 4 are connected via a crankshaft 10. An oil supply passage is formed in the axial center of the crankshaft 10, and a pump (not shown) is provided in the oil supply passage so that the refrigerating machine oil stored at the bottom of the sealed container 1 can be used as the crankshaft. Oil is supplied to the sliding portion of the compression mechanism portion 4 through an oil supply passage in the cylinder 10.
 圧縮機構部4は、図1及び図2に示すようにシリンダー7と、2つの軸受である上軸受5及び下軸受8と、クランクシャフト10と、ローリングピストン11と、吐出マフラー6と、ベーン12とを備えている。 As shown in FIGS. 1 and 2, the compression mechanism unit 4 includes a cylinder 7, an upper bearing 5 and a lower bearing 8 that are two bearings, a crankshaft 10, a rolling piston 11, a discharge muffler 6, and a vane 12. And.
 これを更に詳述する。シリンダー7は、外周が平面視で円形に形成され、略中心には、平面視で円形の貫通孔71aが上下方向に貫通形成されている。貫通孔71aの軸方向両端の開口は上軸受5と下軸受8とで閉塞され、シリンダー7内に円筒状のシリンダー室71を形成している。シリンダー7は側面視で所定の軸方向の高さを持つ。 This will be described in further detail. The outer periphery of the cylinder 7 is formed in a circle in plan view, and a circular through hole 71a is formed through substantially the center in a vertical direction in plan view. Openings at both ends in the axial direction of the through hole 71 a are closed by the upper bearing 5 and the lower bearing 8, and a cylindrical cylinder chamber 71 is formed in the cylinder 7. The cylinder 7 has a predetermined axial height in side view.
 シリンダー7には、図2に示すようにシリンダー室71に連通し、半径方向に延びるベーン溝7aが軸方向(図2の紙面に直交する方向)に貫通して設けられている。ベーン溝7aには、板状のベーン12が往復摺動自在に収容されている。シリンダー7においてベーン溝7aの後方側(背面側)には、ベーン12の後端部12aに吐出圧を導く背圧室7bが設けられている。 As shown in FIG. 2, the cylinder 7 is provided with a vane groove 7a that communicates with the cylinder chamber 71 and extends in the radial direction so as to penetrate in the axial direction (direction perpendicular to the paper surface of FIG. 2). A plate-like vane 12 is accommodated in the vane groove 7a so as to be slidable back and forth. In the cylinder 7, a back pressure chamber 7 b that guides discharge pressure to the rear end portion 12 a of the vane 12 is provided on the rear side (back side) of the vane groove 7 a.
 背圧室7bは、ベーン溝7aに連通する平面視略円形の空間となっており、密閉容器1の内部空間に連通して密閉容器1内と同等の圧力空間となる。後述するが、ロータリー圧縮機の運転中、密閉容器1の内部空間は吐出圧となるため、背圧室7b内も吐出圧となる。 The back pressure chamber 7b is a substantially circular space in plan view that communicates with the vane groove 7a, and communicates with the internal space of the sealed container 1 to form a pressure space equivalent to that in the sealed container 1. As will be described later, during the operation of the rotary compressor, since the internal space of the sealed container 1 becomes the discharge pressure, the back pressure chamber 7b also becomes the discharge pressure.
 また、背圧室7bにはベーンスプリング13が配置されている。そして、このベーンスプリング13の付勢力によってベーン12は、その先端部12dがローリングピストン11の外周面側に押圧され、シリンダー室71を吸入室7cと吐出室7dとに仕切る機能を有する。ロータリー圧縮機の運転中は、ベーン12は圧縮室内外の差圧から生じる押付荷重(背圧)によってローリングピストン11に押し付けられて追従する。そのため、ベーンスプリング13は、主に圧縮機の起動時(密閉容器1の内部空間とシリンダー室71との間の圧力に差が無い状態の時)に、ベーン12をローリングピストン11に押し付ける目的で使用される。 Further, a vane spring 13 is disposed in the back pressure chamber 7b. The vane 12 has a function of partitioning the cylinder chamber 71 into the suction chamber 7c and the discharge chamber 7d by the tip 12d of the vane 12 being pressed toward the outer peripheral surface of the rolling piston 11 by the biasing force of the vane spring 13. During the operation of the rotary compressor, the vane 12 follows and is pressed against the rolling piston 11 by a pressing load (back pressure) generated from the differential pressure inside and outside the compression chamber. Therefore, the vane spring 13 is mainly used to press the vane 12 against the rolling piston 11 when the compressor is started (when there is no difference in pressure between the internal space of the sealed container 1 and the cylinder chamber 71). used.
 また、シリンダー7には、吸入管9からの吸入冷媒が通る吸入ポート7eが、シリンダー7の外周面からシリンダー室71に貫通して設けられている。 Also, the cylinder 7 is provided with a suction port 7e through which the refrigerant sucked from the suction pipe 9 passes through the cylinder chamber 71 from the outer peripheral surface of the cylinder 7.
 また、シリンダー7には、円形の空間であるシリンダー室71を形成する円の縁部付近を切り欠いた吐出ポート7fが設けられている。 Further, the cylinder 7 is provided with a discharge port 7f in which the vicinity of the edge of the circle forming the cylinder chamber 71 which is a circular space is cut out.
 ローリングピストン11はリング状に構成され、ローリングピストン11の内周がクランクシャフト10の偏心軸部10aの外周に摺動自在に嵌め合わされる。そして、クランクシャフト10の回転に伴い、ローリングピストン11が、シリンダー室71内を偏心回転する。 The rolling piston 11 is configured in a ring shape, and the inner periphery of the rolling piston 11 is slidably fitted to the outer periphery of the eccentric shaft portion 10a of the crankshaft 10. As the crankshaft 10 rotates, the rolling piston 11 rotates eccentrically in the cylinder chamber 71.
 ベーン12は、図2及び図3に示すように平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)直方体状の形状であり、ベーン12の吸入室側の側面12cには、圧縮された冷媒をベーン12の吸入側に引き込むための通路となる切欠き12bが形成されている。このようにベーン12に切欠き12bが形成されたことによってベーン12は非対称の形状となっている。 2 and 3, the vane 12 has a flat rectangular shape (the thickness in the circumferential direction is smaller than the length in the radial direction and the axial direction), and is formed on the side surface 12c of the vane 12 on the suction chamber side. Is formed with a notch 12b serving as a passage for drawing the compressed refrigerant to the intake side of the vane 12. Thus, the notch 12b is formed in the vane 12, and thus the vane 12 has an asymmetric shape.
 切欠き12bとベーン溝7aとの間に形成された空間14は背圧室7bに連通しており、空間14が背圧室7bに連通することで、背圧室7bを介して密閉容器内の吐出圧の冷媒が空間14に供給される。すなわち、空間14が背圧室7bに連通することで、圧縮された冷媒が背圧室7bを介して空間14に引き込まれる、つまりベーン12の吸入側に引き込まれるようになっている。なお、冷媒と共に油もベーン12の吸入側に引き込まれる。 A space 14 formed between the notch 12b and the vane groove 7a communicates with the back pressure chamber 7b, and the space 14 communicates with the back pressure chamber 7b. The refrigerant having the discharge pressure is supplied to the space 14. That is, the space 14 communicates with the back pressure chamber 7b, so that the compressed refrigerant is drawn into the space 14 via the back pressure chamber 7b, that is, drawn into the suction side of the vane 12. Note that oil is also drawn into the intake side of the vane 12 together with the refrigerant.
 上軸受5は、クランクシャフト10の主軸部10bに摺動自在に嵌合し、シリンダー7のベーン溝7aと貫通孔71aの一方の端面(電動機部3側)とを閉塞する。上軸受5は、側面視で逆T字状に形成されている。 The upper bearing 5 is slidably fitted to the main shaft portion 10b of the crankshaft 10, and closes the vane groove 7a of the cylinder 7 and one end face (the motor portion 3 side) of the through hole 71a. The upper bearing 5 is formed in an inverted T shape in a side view.
 また、上軸受5には、シリンダー7の吐出ポート7fと平面視で同位置となる部位に吐出孔5aが設けられ、吐出孔5aに吐出弁5bが取り付けられている。 Further, the upper bearing 5 is provided with a discharge hole 5a at the same position as the discharge port 7f of the cylinder 7 in plan view, and a discharge valve 5b is attached to the discharge hole 5a.
 吐出弁5bは、シリンダー室71内の圧力と密閉容器1内の圧力を受け、シリンダー室71内の圧力が密閉容器1内の圧力より低い時に、吐出ポート7fに押し付けられて吐出孔5aを閉塞する。また、吐出弁5bは、シリンダー室71内の圧力が密閉容器1内の圧力より高くなった時に、シリンダー室71内の圧力により上方向へ押し上げられ、吐出孔5aを開放し、圧縮した冷媒をシリンダー室71外へ導く。 The discharge valve 5b receives the pressure in the cylinder chamber 71 and the pressure in the sealed container 1, and when the pressure in the cylinder chamber 71 is lower than the pressure in the sealed container 1, the discharge valve 5b is pressed against the discharge port 7f to close the discharge hole 5a. To do. Further, the discharge valve 5b is pushed upward by the pressure in the cylinder chamber 71 when the pressure in the cylinder chamber 71 becomes higher than the pressure in the sealed container 1, and opens the discharge hole 5a to remove the compressed refrigerant. Lead outside the cylinder chamber 71.
 また、上軸受5には、その上側に吐出マフラー6が取り付けられ、吐出マフラー6と上軸受5とによってマフラー空間が形成されている。 Further, a discharge muffler 6 is attached to the upper bearing 5 on the upper side, and a muffler space is formed by the discharge muffler 6 and the upper bearing 5.
 上軸受5の吐出孔5aから吐出される高温高圧の冷媒ガスは、一旦、マフラー空間に入り、その後、吐出マフラー6の吐出穴6aから密閉容器1内に放出される。 The high-temperature and high-pressure refrigerant gas discharged from the discharge hole 5 a of the upper bearing 5 once enters the muffler space, and then is discharged into the sealed container 1 from the discharge hole 6 a of the discharge muffler 6.
 下軸受8は、クランクシャフト10の副軸部10cに摺動自在に嵌合し、シリンダー7のベーン溝7aと貫通孔71aの他方の端面(冷凍機油側)とを閉塞する。下軸受8は、側面視でT字状に形成されている。 The lower bearing 8 is slidably fitted to the countershaft portion 10c of the crankshaft 10, and closes the vane groove 7a of the cylinder 7 and the other end surface (the refrigerator oil side) of the through hole 71a. The lower bearing 8 is formed in a T shape in a side view.
 次に、この発明の実施の形態1のロータリー圧縮機の動作について説明する。
 この発明の実施の形態1に係るロータリー圧縮機では、アキュームレーター2の冷媒を吸入管9及び吸入ポート7eを介して吸入室7cに冷媒を導入してから、電動機部3を駆動してクランクシャフト10を偏心回転させる。これによって、シリンダー室71内の冷媒が圧縮される。シリンダー室71で圧縮された冷媒は、上軸受5の吐出孔5aからマフラー空間内に吐出された後、吐出マフラー6の吐出穴6aを介して密閉容器1内に吐出される。吐出された冷媒は、電動機部3の隙間を通過した後、吐出管1aから排出される。
Next, the operation of the rotary compressor according to the first embodiment of the present invention will be described.
In the rotary compressor according to Embodiment 1 of the present invention, the refrigerant of the accumulator 2 is introduced into the suction chamber 7c through the suction pipe 9 and the suction port 7e, and then the motor unit 3 is driven to drive the crankshaft. 10 is rotated eccentrically. Thereby, the refrigerant in the cylinder chamber 71 is compressed. The refrigerant compressed in the cylinder chamber 71 is discharged into the muffler space from the discharge hole 5 a of the upper bearing 5 and then discharged into the sealed container 1 through the discharge hole 6 a of the discharge muffler 6. The discharged refrigerant passes through the gap of the electric motor unit 3 and is then discharged from the discharge pipe 1a.
 次に冷媒圧縮時の圧力について説明する。冷媒圧縮中、シリンダー室71内はベーン12によって吸入室7cと吐出室7dとに分けられる。ベーン12に切欠き12bを設けていない場合は、吸入室7cの圧力と吐出室7dの圧力との差圧により、ベーン12に荷重がかかりベーン溝7aとの間で摺動抵抗が生じる。 Next, the pressure during refrigerant compression will be described. During the compression of the refrigerant, the inside of the cylinder chamber 71 is divided into a suction chamber 7c and a discharge chamber 7d by the vane 12. When the notch 12b is not provided in the vane 12, a load is applied to the vane 12 due to a differential pressure between the pressure in the suction chamber 7c and the pressure in the discharge chamber 7d, and sliding resistance is generated between the vane groove 7a.
 しかし、実施の形態1のロータリー圧縮機は、ベーン12に切欠き12bを設け、ベーン12の吸入室側の側面12cに吐出圧を作用させるようにした。このため、ベーン12の両側面に生じる吸入側と吐出側との圧力荷重の差を低減することができ、ベーン12の摺動抵抗を低減することができる。よって、ローリングピストン11へのベーン12の追従性が向上する。その結果、ベーン12とローリングピストン11とが離れることがなくなり、騒音が抑制され、かつ高圧側から低圧側への冷媒の漏れを低減することができる。 However, in the rotary compressor according to the first embodiment, the vane 12 is provided with the notch 12b so that the discharge pressure acts on the side surface 12c of the vane 12 on the suction chamber side. For this reason, it is possible to reduce the difference in pressure load between the suction side and the discharge side generated on both side surfaces of the vane 12, and to reduce the sliding resistance of the vane 12. Therefore, the followability of the vane 12 to the rolling piston 11 is improved. As a result, the vane 12 and the rolling piston 11 are not separated from each other, noise is suppressed, and refrigerant leakage from the high pressure side to the low pressure side can be reduced.
 図4は、ロータリー圧縮機の比較例におけるベーンサイドに生じる力を示す模式図である。図5は、この発明の実施の形態1に係るロータリー圧縮機のベーンサイドに生じる力を示す模式図である。すなわち、図4は切欠き12bが形成されていないベーンを用いた場合の圧縮機運転中のベーンサイド荷重の分布を示している。一方、図5は切欠き12bが形成された、実施の形態1のベーン12を用いた場合の圧縮機運転中のベーンサイド荷重の分布を示している。図4及び図5において、Pdは吐出圧力、Psは吸入圧力、Pmは圧縮中圧力、F1,f1はPdにより生じる分布荷重、F2はPd~Pmにより生じる分布荷重、f2はPd~Psにより生じる分布荷重、F3はPmにより生じる分布荷重、f3はPsにより生じる分布荷重である。 FIG. 4 is a schematic diagram showing the force generated on the vane side in the comparative example of the rotary compressor. FIG. 5 is a schematic diagram showing the force generated on the vane side of the rotary compressor according to Embodiment 1 of the present invention. That is, FIG. 4 shows a distribution of vane side loads during operation of the compressor when a vane having no notch 12b is used. On the other hand, FIG. 5 shows a distribution of vane side loads during operation of the compressor when the vane 12 of the first embodiment in which the notch 12b is formed is used. 4 and 5, Pd is discharge pressure, Ps is suction pressure, Pm is pressure during compression, F1 and f1 are distributed loads caused by Pd, F2 is distributed loads caused by Pd to Pm, and f2 is caused by Pd to Ps. A distributed load, F3 is a distributed load caused by Pm, and f3 is a distributed load caused by Ps.
 図4及び図5から明らかなように、ベーン12が切欠き12bを有する場合は、切欠き12bによってPd~Psにより生じる分布荷重f2(図5中にAで示す範囲の分布荷重)が大きくなる。よって、分布荷重Fの合計値(F1+F2+F3)であるΣFから、分布荷重fの合計値(f1+f2+f3)であるΣfを引いた値(ΣF-Σf)が、切欠き12bを設けない構成よりも低減している。このため、ベーン12とベーン溝7aとの間の摺動抵抗が小さくなって、ベーン12のローリングピストン11への追従性が向上し、ベーン12がローリングピストン11から離れることがなくなる。その結果、騒音を生じることが無くなり、かつ高圧側から低圧側への冷媒の漏れもなくなって、性能を維持することができる。 As is apparent from FIGS. 4 and 5, when the vane 12 has the notch 12b, the distribution load f2 (distribution load in the range indicated by A in FIG. 5) generated by Pd to Ps is increased by the notch 12b. . Therefore, the value (ΣF−Σf) obtained by subtracting Σf, which is the total value (f1 + f2 + f3) of the distributed load f, from ΣF, which is the total value (F1 + F2 + F3) of the distributed load F, is reduced as compared with the configuration in which the notch 12b is not provided. ing. For this reason, the sliding resistance between the vane 12 and the vane groove 7 a is reduced, the followability of the vane 12 to the rolling piston 11 is improved, and the vane 12 is not separated from the rolling piston 11. As a result, no noise is generated, and no refrigerant leaks from the high pressure side to the low pressure side, so that the performance can be maintained.
 図6は、この発明の実施の形態1に係るロータリー圧縮機のクランクシャフトの位相とベーンサイド荷重との関係を比較例と比較して示すグラフである。また、図6において、aは切欠き12bを有する場合、bは切欠き12bを有さない場合、のクランクシャフト10の位相とベーンサイド荷重との関係を示している。図6において横軸はクランク位相[deg]、縦軸は荷重[N]である。計算に用いた条件は、冷媒がCO冷媒である。運転条件は、吐出圧8.3MPa、吸入圧4.7MPa、回転数40rpsであり、ロータリー圧縮機を給湯器に適用する場合に実際に用いる条件である。図6から明らかなように、切欠き12bを有する場合は、クランクシャフト10がどの角度位置にあるときでも、切欠き12bを有さない場合と比べてベーンサイド荷重が低減していることがわかる。 FIG. 6 is a graph showing the relationship between the phase of the crankshaft and the vane side load of the rotary compressor according to Embodiment 1 of the present invention in comparison with the comparative example. Further, in FIG. 6, a shows the relationship between the phase of the crankshaft 10 and the vane side load when a has the notch 12b and b does not have the notch 12b. In FIG. 6, the horizontal axis represents the crank phase [deg], and the vertical axis represents the load [N]. The condition used for the calculation is that the refrigerant is a CO 2 refrigerant. The operating conditions are a discharge pressure of 8.3 MPa, a suction pressure of 4.7 MPa, and a rotation speed of 40 rps, which are actually used when the rotary compressor is applied to a water heater. As can be seen from FIG. 6, when the notch 12b is provided, the vane side load is reduced when the crankshaft 10 is in any angular position as compared with the case where the notch 12b is not provided. .
 以上説明したように、この実施の形態1によれば、ベーン12の吸入室7c側の側面12cに、圧縮された冷媒をベーン12の吸入側に引き込む切欠き12bを設けた。このため、ベーンの吸入室7c側の側面12cに吐出圧が作用し、ベーン12の吸入側と吐出側との圧力荷重の差を低減できる。よって、ベーン12とベーン溝7aと間の摺動抵抗を低減することができる。その結果、ベーン12のローリングピストン11への追従性を向上することができる。 As described above, according to the first embodiment, the notch 12 b for drawing the compressed refrigerant to the suction side of the vane 12 is provided on the side surface 12 c of the vane 12 on the suction chamber 7 c side. For this reason, the discharge pressure acts on the side surface 12c of the vane on the suction chamber 7c side, and the difference in pressure load between the suction side and the discharge side of the vane 12 can be reduced. Therefore, the sliding resistance between the vane 12 and the vane groove 7a can be reduced. As a result, the followability of the vane 12 to the rolling piston 11 can be improved.
 ここで、切欠き12bを形成するにあたり、ベーン12自体に切欠き12bを設けたことで、例えば、ベーン溝側に切欠きを設ける場合に比べて、以下の効果が得られる。ベーン溝は一般的に2mm~5mm程度と狭い隙間となっていて加工しづらい部分である。このため、ベーン溝への切欠き形成時に生じたバリ及びカエリ等を、ベーン溝の研磨加工時に除去することが困難である。よって、ベーン溝側に切欠きを設ける構造では、除去できずに残存した残存物によって摩擦抵抗が増加してしまう。 Here, in forming the notch 12b, by providing the notch 12b on the vane 12 itself, for example, the following effects can be obtained as compared with the case where the notch is provided on the vane groove side. The vane groove is a portion that is generally a narrow gap of about 2 mm to 5 mm and is difficult to process. For this reason, it is difficult to remove burrs, burrs, and the like that are generated when notches are formed in the vane grooves during polishing of the vane grooves. Therefore, in the structure in which the notch is provided on the vane groove side, the frictional resistance increases due to the remaining material that cannot be removed.
 また、ベーン溝の成形方法としては、ブローチ刃又はカッターを用いた成形等が一般的であるが、ベーン溝は切欠きが設けられることで非対称の形状となっていることから、加工時の加工抵抗が不均一となる。よって、精度良い加工をすることが困難であり、また治工具の寿命も短くなる。上記問題は特に、切欠きを大きく形成する場合に顕著になる。 In addition, as a forming method of the vane groove, forming using a broach blade or a cutter is generally used, but since the vane groove has an asymmetric shape by providing a notch, processing at the time of processing is performed. Resistance becomes uneven. Therefore, it is difficult to perform machining with high accuracy, and the tool life is shortened. The above problem is particularly noticeable when a large notch is formed.
 現在、ロータリー圧縮機は高性能化のために、偏心量が拡大されている。偏芯量が大きくなることにより、ベーンがベーン溝の内部へ大きく移動するようになり、ベーンの移動量が大きくなる。このため、ベーン溝に大きく切欠きを設けないと、ベーンが下死点側へ移動した際に、ベーンが切欠きよりも前方に位置し、ベーンの吸入側の側面が切欠きに対向しない状態となり得る。実施の形態1ではベーンスプリングが背圧室内に位置しており、ベーンスプリングが背圧室から出ない構成を示したが、機種によっては、ベーンが下死点側へ移動した際に、ベーンスプリングのベーン側の端部がベーン溝内に侵入した状態となる機種もある。このような機種の場合、ベーンが切欠きよりも前方(ローリングピストン側)に位置し、ベーンの吸入側の側面が切欠きに対向しない状態となり得る。このような状態となると、図5に示すf2のUP量が低下してしまい、十分な効果を果たすことができないことになる。 Currently, the amount of eccentricity of rotary compressors has been expanded for higher performance. As the amount of eccentricity increases, the vane moves greatly into the vane groove, and the amount of movement of the vane increases. For this reason, if the vane groove is not provided with a large notch, when the vane moves to the bottom dead center side, the vane is positioned in front of the notch and the vane suction side surface does not face the notch. Can be. In the first embodiment, the vane spring is located in the back pressure chamber and the vane spring does not come out of the back pressure chamber. However, depending on the model, the vane spring may move when the vane moves to the bottom dead center side. There is also a model in which the end of the vane side enters the vane groove. In such a model, the vane is positioned in front of the notch (rolling piston side), and the side surface on the suction side of the vane may not face the notch. In such a state, the UP amount of f2 shown in FIG. 5 decreases, and a sufficient effect cannot be achieved.
 これに対して、実施の形態1では、ベーン自体に切欠き12bを設けているため、ベーン12が下死点へ移動した状態においても、ベーン12の吸入側の側面12cに吐出圧を作用させることができ、f2が低下することはない。 In contrast, in the first embodiment, since the vanes themselves are provided with the notches 12b, the discharge pressure is applied to the suction side surface 12c of the vane 12 even when the vane 12 has moved to the bottom dead center. And f2 does not decrease.
 なお、切欠き12bの形状は図2に示したような平面視で三角形状に限られず、例えば以下のように変形実施可能である。 The shape of the notch 12b is not limited to a triangular shape in plan view as shown in FIG. 2, and can be modified as follows, for example.
 図7は、この発明の実施の形態1に係るロータリー圧縮機のベーンの切欠き12bの変形例1を示す斜視図である。
 図7には、切欠き12bを平面視で長方形状としている。この構成としても、以上に説明した切欠き12bと同様の効果が得られる。
FIG. 7 is a perspective view showing Modification 1 of the vane notch 12b of the rotary compressor according to Embodiment 1 of the present invention.
In FIG. 7, the notch 12b has a rectangular shape in plan view. Even with this configuration, the same effect as the notch 12b described above can be obtained.
 また、上記では、圧縮された冷媒をベーン12の吸入側に引き込むための、この発明の通路として、切欠きの例を挙げて説明したが、切欠きに限定されず、次の図8に示すように溝としてもよい。 In the above description, the passage of the present invention for drawing the compressed refrigerant to the suction side of the vane 12 has been described with reference to a notch. However, the present invention is not limited to the notch and is shown in FIG. It is good also as a groove | channel.
 図8は、この発明の実施の形態1に係るロータリー圧縮機のベーンの通路の変形例2を示す斜視図である。
 図8には、ベーン12の吸入室側の側面12cに溝12eを設けている。この構成としても、以上に説明した切欠き12bを設けた場合と同様の効果が得られる。なお、溝12eの数は図8のように2つに限定されず、一つでもよいし、更に複数でもよい。また、溝12eのサイズも自由に設定可能である。
FIG. 8 is a perspective view showing a second modification of the vane passage of the rotary compressor according to the first embodiment of the present invention.
In FIG. 8, a groove 12e is provided on the side surface 12c of the vane 12 on the suction chamber side. Even in this configuration, the same effect as that obtained when the notch 12b described above is provided can be obtained. Note that the number of grooves 12e is not limited to two as shown in FIG. 8, but may be one or more. Further, the size of the groove 12e can be freely set.
 1 密閉容器、1a 吐出管、2 アキュームレーター、3 電動機部、4 圧縮機構部、5 上軸受、5a 吐出孔、5b 吐出弁、6 吐出マフラー、6a 吐出穴、7 シリンダー、7a ベーン溝、7b 背圧室、7c 吸入室、7d 吐出室、7e 吸入ポート、7f 吐出ポート、8 下軸受、9 吸入管、10 クランクシャフト、10a 偏心軸部、10b 主軸部、10c 副軸部、11 ローリングピストン、12 ベーン、12a 後端部、12b 切欠き、12c 側面、12d 先端部、12e 溝、13 ベーンスプリング、14 空間、31 固定子、32 回転子、71 シリンダー室、71a 貫通孔。 1 closed container, 1a discharge pipe, 2 accumulator, 3 motor section, 4 compression mechanism section, 5 upper bearing, 5a discharge hole, 5b discharge valve, 6 discharge muffler, 6a discharge hole, 7 cylinder, 7a vane groove, 7b back Pressure chamber, 7c suction chamber, 7d discharge chamber, 7e suction port, 7f discharge port, 8 lower bearing, 9 suction pipe, 10 crankshaft, 10a eccentric shaft, 10b main shaft, 10c countershaft, 11 rolling piston, 12 Vane, 12a rear end, 12b notch, 12c side, 12d front end, 12e groove, 13 vane spring, 14 space, 31 stator, 32 rotor, 71 cylinder chamber, 71a through hole.

Claims (3)

  1.  密閉容器内に電動機部と前記電動機部によって駆動される圧縮機構部とを備え、
     前記圧縮機構部は、
     前記電動機部により回転駆動されるクランクシャフトと、
     シリンダー室を備えたシリンダーと、
     前記クランクシャフトの偏心軸部に嵌め合わされ、前記シリンダー室内を偏心して回転するローリングピストンと、
     先端部が前記ローリングピストンに押圧されて前記シリンダー室を吸入室と圧縮室とに仕切る板状のベーンと、
     前記シリンダーに形成され、前記ベーンを往復摺動自在に収容するベーン溝とを備え、
     前記ベーンの前記吸入室側の側面に、前記圧縮機構部で圧縮された冷媒を前記ベーンの吸入側に引き込む通路が設けられている
     ロータリー圧縮機。
    An electric motor part and a compression mechanism part driven by the electric motor part in a sealed container;
    The compression mechanism is
    A crankshaft that is rotationally driven by the motor section;
    A cylinder with a cylinder chamber;
    A rolling piston fitted into the eccentric shaft portion of the crankshaft and rotating eccentrically in the cylinder chamber;
    A plate-like vane whose front end is pressed by the rolling piston and partitions the cylinder chamber into a suction chamber and a compression chamber;
    A vane groove formed in the cylinder and reciprocally slidably receiving the vane;
    A rotary compressor, wherein a passage for drawing the refrigerant compressed by the compression mechanism portion to the suction side of the vane is provided on a side surface of the vane on the suction chamber side.
  2.  前記シリンダーにおいて、前記ベーン溝及び前記通路と連通して前記ベーンの後端部側に設けられ、前記ベーンの後端部に圧縮された冷媒を導く背圧室を有する
     請求項1記載のロータリー圧縮機。
    2. The rotary compression according to claim 1, wherein the cylinder further includes a back pressure chamber that is provided on a rear end side of the vane so as to communicate with the vane groove and the passage and guides a compressed refrigerant to the rear end of the vane. Machine.
  3.  前記通路は、切欠き又は溝である
     請求項1又は請求項2記載のロータリー圧縮機。
    The rotary compressor according to claim 1, wherein the passage is a notch or a groove.
PCT/JP2015/078662 2015-10-08 2015-10-08 Rotary compressor WO2017061014A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/078662 WO2017061014A1 (en) 2015-10-08 2015-10-08 Rotary compressor
JP2017544138A JPWO2017061014A1 (en) 2015-10-08 2015-10-08 Rotary compressor
CN201610874993.4A CN107035690A (en) 2015-10-08 2016-09-30 Rotary compressor
CN201621101779.7U CN206268076U (en) 2015-10-08 2016-09-30 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078662 WO2017061014A1 (en) 2015-10-08 2015-10-08 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2017061014A1 true WO2017061014A1 (en) 2017-04-13

Family

ID=58488265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078662 WO2017061014A1 (en) 2015-10-08 2015-10-08 Rotary compressor

Country Status (3)

Country Link
JP (1) JPWO2017061014A1 (en)
CN (2) CN206268076U (en)
WO (1) WO2017061014A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061014A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Rotary compressor
JP6460173B1 (en) * 2017-07-27 2019-01-30 株式会社富士通ゼネラル Rotary compressor
CN114060272B (en) * 2021-12-08 2023-02-24 珠海格力电器股份有限公司 Compression structure, compressor and air conditioner with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339191A (en) * 1991-05-15 1992-11-26 Daikin Ind Ltd Rotary compressor
JPH05157073A (en) * 1991-12-06 1993-06-22 Daikin Ind Ltd Rolling piston type compressor
JPH07189924A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Rotary compressor
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8802997A (en) * 1988-06-15 1990-02-01 Brasil Compressores Sa ROTATING SCREW COMPRESSOR WITH FIXED REED
JPH06264881A (en) * 1993-03-12 1994-09-20 Hitachi Ltd Rotary compressor
KR100414294B1 (en) * 2001-12-28 2004-01-07 주식회사 엘지이아이 Vane for compressor
CN101397998B (en) * 2008-10-31 2011-05-25 广东美芝制冷设备有限公司 Slide holding device of rotary compressor and control method thereof
CN201874818U (en) * 2010-11-23 2011-06-22 广东美芝制冷设备有限公司 Rotary compressor
CN202100464U (en) * 2011-05-30 2012-01-04 广东美芝制冷设备有限公司 Rotary compressor
CN203272134U (en) * 2013-04-11 2013-11-06 珠海格力电器股份有限公司 Novel rotary compressor
WO2017061014A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339191A (en) * 1991-05-15 1992-11-26 Daikin Ind Ltd Rotary compressor
JPH05157073A (en) * 1991-12-06 1993-06-22 Daikin Ind Ltd Rolling piston type compressor
JPH07189924A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Rotary compressor
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor

Also Published As

Publication number Publication date
CN206268076U (en) 2017-06-20
JPWO2017061014A1 (en) 2018-04-26
CN107035690A (en) 2017-08-11

Similar Documents

Publication Publication Date Title
KR101300261B1 (en) Scroll compressor
US9157437B2 (en) Rotary compressor with oiling mechanism
KR102591415B1 (en) Rotary compressor
KR20100084079A (en) Rotary compressor
EP2613053B1 (en) Rotary compressor with dual eccentric portion
JP5366884B2 (en) Vane rotary compressor
WO2017061014A1 (en) Rotary compressor
JP3724495B1 (en) Rotary fluid machine
KR20100000369A (en) Rotary compressor
KR20160001467A (en) Compressor
JP5991958B2 (en) Rotary compressor
JP5263139B2 (en) Rotary compressor
US8454333B2 (en) Rotary fluid machine having outer and inner cylinder chambers with different heights
US20220307505A1 (en) Compressor
JP2005207302A (en) Swing compressor
US11486398B2 (en) Rotary compressor with selective oil communication
KR102034799B1 (en) A Rotary Compressor Having Reduced Vane leak and Vane Friction loss
KR20100081810A (en) Rotary compressor
JP2009108762A (en) Rotary fluid machine
JP6758422B2 (en) Rotating compressor
JP2010112173A (en) Rotary compressor
US20220307498A1 (en) Compressor
JP5253445B2 (en) Rotary compressor
WO2020230230A1 (en) Rotary compressor
WO2021053741A1 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905833

Country of ref document: EP

Kind code of ref document: A1