WO2018154622A1 - Rotary atomizing type coating machine - Google Patents

Rotary atomizing type coating machine Download PDF

Info

Publication number
WO2018154622A1
WO2018154622A1 PCT/JP2017/006286 JP2017006286W WO2018154622A1 WO 2018154622 A1 WO2018154622 A1 WO 2018154622A1 JP 2017006286 W JP2017006286 W JP 2017006286W WO 2018154622 A1 WO2018154622 A1 WO 2018154622A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
valve
cleaning agent
residual pressure
path
Prior art date
Application number
PCT/JP2017/006286
Other languages
French (fr)
Japanese (ja)
Inventor
勝浩 石川
諒 今西
吉起 服部
Original Assignee
トリニティ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トリニティ工業株式会社 filed Critical トリニティ工業株式会社
Priority to JP2019501780A priority Critical patent/JP6815478B2/en
Priority to PCT/JP2017/006286 priority patent/WO2018154622A1/en
Publication of WO2018154622A1 publication Critical patent/WO2018154622A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces

Definitions

  • the present invention relates to a rotary atomizing coating machine provided with a rotary atomizing head on the front end side of a coating machine main body, and in particular, the cleaning agent and air are ejected from a cleaning nozzle to clean the back of the rotary atomizing head.
  • the present invention relates to a rotary atomizing coating machine having a function.
  • This coating machine includes a rotary atomizing head and atomizes and sprays the paint by centrifugal force generated by rotating the rotary atomizing head.
  • the rotary atomizing type coating machine is configured so that the color can be changed according to the automobile body.
  • color mixing is prevented by washing the paint remaining in the paint supply path in the paint machine using a cleaning agent.
  • the paint adheres not only on the front side but also on the back side of the rotary atomizing head to which the paint is supplied, it is required to clean the back side as well.
  • Patent Document 1 discloses a coating machine including a cleaning nozzle provided at a position deviated from the front end side of the coating machine body and the central axis, and a cleaning solvent supply device that supplies a cleaning solvent to the cleaning nozzle. ing.
  • the cleaning nozzle is disposed at a position eccentric from the front end side of the coating machine body and the central axis.
  • a cleaning agent is supplied from the cleaning solvent supply device to the cleaning nozzle, and the cleaning solvent is jetted toward the back side of the rotary atomizing head.
  • Patent Document 2 discloses a coating machine that ejects shaping air having a predetermined pressure while the back side of the rotary atomizing head is being cleaned with a cleaning agent.
  • a valve may be provided.
  • Such a valve plays a role of blocking the cleaning fluid supply path during non-cleaning so that the cleaning agent remaining in the path does not leak during coating.
  • a mode in which a check valve (check valve) having a valve body, a valve seat, and an urging means is used and the valve body is urged toward the valve seat side against the normal flow of the cleaning fluid. It is considered to be suitable to install at
  • the cleaning agent or air remains in the cleaning fluid supply path in an area upstream from the check valve in a somewhat pressurized state. .
  • the biasing force of the biasing means cannot be set too large in order to smoothly flow the cleaning fluid during cleaning. Therefore, it is difficult to seal the cleaning fluid supply path with high sealing performance due to the structure. Therefore, if the residual pressure in the cleaning fluid supply path is high, the cleaning agent or air in the upstream region of the check valve is released downstream, for example, when the sealing performance of the check valve is reduced due to vibration or the like. Then, due to the influence, the cleaning agent remaining in the path leaks from the cleaning nozzle. As a result, there is a problem that the risk of the cleaning agent falling on the surface of the object to be coated increases, and coating defects are likely to occur.
  • the present invention has been made in view of the above problems, and its purpose is to reliably prevent the leakage of the cleaning agent from the cleaning nozzle at the time of coating, and to prevent the occurrence of a coating defect caused by it.
  • An object of the present invention is to provide a rotary atomizing coating machine capable of performing the above.
  • the invention described in means 1 includes a coating machine main body, a rotary atomizing head provided on a tip side and a central axis of the coating machine main body, and a back surface of the rotary atomizing head.
  • a supply path is connected, a cleaning fluid supply path for supplying the cleaning agent and the air to the cleaning nozzle located at the end of the path, and a path in the cleaning fluid supply path to close the cleaning fluid supply path when not cleaning
  • a rotary atomizing coating machine provided with a check valve disposed immediately upstream of the cleaning nozzle, wherein the check valve includes a valve body, a valve seat, and an urging means, and the urging means
  • the urging force of the urging means is set in advance so as to be smaller than a supply pressure of the cleaning fluid at the time of cleaning, and is configured to urge the valve seat side against a positive flow.
  • the gist of the rotary atomizing coating machine is provided with a residual pressure reducing mechanism for
  • the biasing force of the biasing means is more than the pressure in the upstream region. Is relatively larger. Therefore, even if a check valve with low sealing performance is used, the cleaning fluid supply path is reliably sealed. For this reason, the leakage of the cleaning agent from the cleaning nozzle at the time of painting is surely prevented, and the occurrence of a coating defect due to the leakage is prevented.
  • the residual pressure reducing mechanism is connected to the upstream region of the check valve in the cleaning fluid supply path and the cleaning remaining in the upstream region of the check valve.
  • the gist of the invention is that it includes an escape path that allows the fluid to escape from the cleaning fluid supply path and release at a position away from the coating machine main body.
  • the residual pressure is released at a position away from the coating machine main body. Therefore, the residual pressure in the upstream region can be reliably released. Further, since the remaining cleaning fluid is released to a position away from the object to be coated, the risk of the cleaning agent adhering to the object to be coated can be minimized.
  • the invention described in means 3 is characterized in that, in the means 2, the residual pressure reducing mechanism further includes a residual pressure reducing valve provided at a connection site between the relief path and the cleaning fluid supply path.
  • the gist is characterized in that, in the means 2, the residual pressure reducing mechanism further includes a residual pressure reducing valve provided at a connection site between the relief path and the cleaning fluid supply path. The gist.
  • the residual pressure reducing valve when the residual pressure reducing valve is in the closed state, the escape path and the cleaning fluid supply path are blocked.
  • the residual pressure reducing valve when the residual pressure reducing valve is in the open state, the escape path and the cleaning fluid supply path are communicated, and the cleaning fluid remaining in the upstream region of the check valve is released via the relief path. Therefore, the residual pressure can be released in a timely manner by the valve control.
  • a cleaning agent supply valve is provided at a connection portion between the cleaning agent supply path and the cleaning fluid supply path, and the air supply path and the cleaning fluid supply path.
  • the gist of the present invention is that an air supply valve is provided at the connection site, and the cleaning agent supply valve, the air supply valve, and the residual pressure reducing valve are installed on a common manifold block.
  • the cleaning agent supply valve when the cleaning agent supply valve is in the open state, the cleaning agent supply path and the cleaning fluid supply path are communicated, and the cleaning agent is supplied into the cleaning fluid supply path. As a result, the cleaning agent is ejected from the cleaning nozzle, and the back side of the rotary atomizing head is cleaned.
  • the air supply valve when the air supply valve is in the open state, the air supply path and the cleaning fluid supply path are communicated, and air is supplied into the cleaning fluid supply path. As a result, the cleaning agent remaining in the cleaning fluid supply path is blown off and ejected together with air from the cleaning nozzle.
  • the cleaning agent supply valve, the air supply valve, and the residual pressure reducing valve are installed on a common manifold block, piping connecting these valves to each other can be omitted. Therefore, the apparatus can be configured compactly.
  • the cleaning agent supply valve is provided at a connection portion between the cleaning agent supply path and the cleaning fluid supply path, and the cleaning agent supply valve is provided in the cleaning fluid supply path.
  • An air supply valve is provided in the upstream portion, and the air supply path and the escape path are connected to the air supply valve, and the cleaning agent supply valve and the air supply valve are connected to the residual pressure reducing valve. The gist of this is to function as well.
  • the apparatus since it is not necessary to provide a residual pressure reducing valve separately from the cleaning agent supply valve and the air supply valve, the apparatus can be configured compactly.
  • the gist of the invention according to means 6 is that, in any one of means 2 to 5, the cleaning agent in the escape path is pumped using the air from the air supply path.
  • the cleaning agent accumulates in the escape path, the passage resistance when the cleaning agent escapes increases, and the accumulated cleaning agent may flow back to the cleaning fluid supply path side, so that the residual pressure is released. May be reduced.
  • the cleaning agent in the escape path is pumped and discharged using the air from the air supply path, the cleaning agent does not easily accumulate in the escape path. For this reason, it is possible to prevent an increase in the passage resistance of the cleaning agent, and it is possible to prevent the backflow of the stored cleaning agent. Therefore, the residual pressure can be reliably released over a long period.
  • the invention described in the means 7 includes a control device that drives and controls the valves in the means 4 or 5, and the control device performs the predetermined time only during the period from immediately before the end of the cleaning period to the start of the painting period.
  • the gist is to perform residual pressure reduction control for opening the residual pressure reduction valve.
  • the residual pressure reducing valve is opened for a predetermined time during the period from the end of the cleaning period to the start of the painting period by the residual pressure reduction control of the control means. Therefore, the residual pressure is reduced at that timing.
  • the invention described in the means 8 includes a control device for driving and controlling valves in the means 4 or 5, and the control device keeps the cleaning agent supply valve in a closed state during a period excluding the painting period. Meanwhile, the gist is to perform the in-path cleaning agent discharge control for opening the air supply valve and opening the residual pressure reducing valve for a predetermined time.
  • the air supply valve is opened for a predetermined time while the cleaning agent supply valve is kept closed during the period excluding the painting period by the cleaning agent discharge control in the path of the control means.
  • the residual pressure reducing valve is opened. Then, as a result of supplying air from the air supply valve to the residual pressure reducing valve at that timing, the cleaning agent in the escape path is pumped and discharged using air.
  • the gist of the invention described in means 9 is that, in any one of means 1 to 8, the main body of the coating machine is supported at the tip of a robot arm.
  • a rotary atomizing coating machine 1 is an electrostatic coating machine for painting an automobile body, for example, and a coating machine body 11 is supported at the tip of a robot arm 2. It becomes the composition.
  • the control device 3 drives and controls the robot arm 2, whereby the spraying direction and position of the paint sprayed from the front end side of the coating machine body 11 are changed.
  • the rotary atomizing coating machine 1 includes a cylindrical coating machine main body 11, and a hollow cylindrical portion 13 that is rotated by an air motor 12 provided in the coating machine main body 11.
  • the rotary atomizing head 14 (bell cup) provided at the tip of the cylindrical portion 13 and a metal feed tube 15 extending in the axial direction in the cylindrical portion 13 are provided.
  • the tube portion 13 is formed in a cylindrical shape, and the feed tube 15 is disposed in the tube portion 13 so as not to contact the inner surface thereof.
  • the rotary atomizing head 14 is a cup-shaped member, and is provided on the distal end side of the coating machine body 11 and on the central shaft 16.
  • the feed tube 15 is formed with a common supply path for selectively supplying the paint and the cleaning agent to the front side 18 of the rotary atomizing head 14.
  • a paint supply device 17 is connected to the base end side of the feed tube 15.
  • the paint supply device 17 is accommodated on the rear side of the air motor 12 in the coating machine main body 11.
  • the paint supply device 17 is configured to discharge a predetermined amount of paint or cleaning agent to the supply path of the feed tube 15 based on the control signal of the control device 3.
  • the paint supply device 17 includes a valve, a pipe, and the like for switching the paint to be supplied to a paint of a different color or switching from the paint to the cleaning agent.
  • the paint supply device 17 includes a pump for adjusting the discharge amount of the paint and the cleaning agent.
  • the coating machine main body 11 is provided with a high voltage generator (not shown) as voltage applying means for generating a high voltage (for example, ⁇ 90 kV) to be applied to the rotary atomizing head 14.
  • a high voltage for example, ⁇ 90 kV
  • a high voltage is applied to the rotary atomizing head 14 by the high voltage generator, and the paint particles atomized by the rotary atomizing head 14 are sprayed in a charged state.
  • the rotary atomizing coating machine 1 basically includes a cleaning fluid supply path 21, a cleaning agent supply path 22, and an air supply path 23.
  • the cleaning fluid supply path 21 extends from around the forearm side of the robot arm 2 to the interior of the coating machine main body 11 at the tip.
  • the cleaning agent supply path 22 is a path for supplying a cleaning agent such as thinner to the cleaning fluid supply path 21 and extends from the base end side of the robot arm 2 to the side of the forearm portion.
  • the air supply path 23 is a path for supplying pressurized air to the cleaning fluid supply path 21 and similarly extends from the base end side of the robot arm 2 to the vicinity of the side surface of the forearm. .
  • the cleaning agent supply path 22 and the air supply path 23 are connected to the path start end E ⁇ b> 2 of the cleaning fluid supply path 21 at the position of the side surface of the forearm.
  • a cleaning nozzle 26 is disposed at a position deviated from the central axis 16 and on the tip side of the coating machine main body 11 with the tip directed to the back surface 18 of the rotary atomizing head 14.
  • the cleaning nozzle 26 is located at the path end E1 of the cleaning fluid supply path 21 and cleans the cleaning agent and air as a cleaning fluid by jetting toward the back surface 18 of the rotary atomizing head 14.
  • a small check valve 31 is provided on the upstream side of the cleaning fluid supply path 21 in the immediate vicinity of the cleaning nozzle 26.
  • the check valve 31 of this embodiment includes a valve body 32, a valve seat 33, and an urging means 34.
  • the ball as the valve body 32 is accommodated in a state in which the ball can move up and down in the internal space of the housing constituting the check valve 31.
  • the valve seat 33 has a substantially conical shape and is formed on the upper inner wall surface of the housing.
  • the coil spring as the biasing means 34 is accommodated below the valve body 32 in the internal space of the housing, and biases the valve body 32 toward the valve seat 33 against the positive flow of the cleaning fluid. It is configured.
  • the urging force of the urging means 34 is set in advance so as to be smaller than the supply pressure of the cleaning fluid at the time of cleaning.
  • the cleaning fluid supply path 21 is closed during non-cleaning when it is not necessary to supply cleaning fluid.
  • the cleaning fluid supply path 21 is opened, and cleaning liquid and air as cleaning fluid are ejected from the cleaning nozzle 26.
  • the residual pressure reduction mechanism Z1 includes a cleaning agent supply valve 51, an air supply valve 61, a residual pressure reduction valve 71, a manifold block 81, a relief path 24, and the like.
  • the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are installed on a common manifold block 81 provided on the side surface of the forearm portion of the robot arm 2.
  • the cleaning agent supply valve 51 of the present embodiment is a so-called normally closed two-way valve that is driven by pilot air PA1.
  • a valve body storage chamber 53 and a piston storage chamber 54 are formed in communication with each other via a communication space.
  • a piston 55 is housed in the valve body housing chamber 53 so as to be movable up and down.
  • the piston 55 divides the valve body housing chamber 53 into two regions.
  • the upper partition region in FIG. 3 accommodates the coil spring 57 and communicates with the atmospheric pressure region.
  • the lower partition region in FIG. 3 communicates with a pilot port 41 ⁇ / b> C provided on the side surface of the housing 52.
  • a rod 56 is inserted and fixed at the center of the piston 55.
  • the rod 56 passes through the communication space and reaches the valve body accommodating chamber 53, and a valve body 58 is integrally formed at a lower end portion thereof.
  • An O-ring seal member 62 is provided on the upper side of the communication space, and a rod seal 60 is provided on the lower side of the communication space.
  • the seal member 62 prevents the pilot air PA1 from leaking from the piston housing chamber 54 side to the valve body housing chamber 53 side through the communication space.
  • the rod seal 60 prevents the cleaning agent and air introduced to the valve body storage chamber 53 side from leaking to the piston storage chamber 54 side through the communication space.
  • the valve body storage chamber 53 communicates with the first port 41 ⁇ / b> A provided on the side surface of the housing 52 and the second port 41 ⁇ / b> B provided on the bottom surface of the housing 52.
  • a ring-shaped valve seat 59 is provided on the lower surface of the valve body accommodating chamber 53, and the lower end portion of the valve body 58 is in contact with and separated from the valve seat 59.
  • the air supply valve 61 of this embodiment is a normally closed two-way valve having two ports 42A and 42B and one pilot port 42C, and is driven by pilot air PA2.
  • the residual pressure reducing valve 71 of this embodiment is a normally closed two-way valve having two ports 43A and 43B and one pilot port 43C, and is driven by pilot air PA3. Yes. Since the air supply valve 61 and the residual pressure reducing valve 71 have basically the same structure as the cleaning agent supply valve 51, a detailed description is omitted instead of attaching common member numbers thereto.
  • a port 83 to which the cleaning fluid supply path 21 is connected is provided on the end face of the manifold block 81. Inside the manifold block 81, a flow path 82 that communicates with the port 83 and branches in three directions is connected.
  • the bottom side of the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 is fixed.
  • the second port 41B at the bottom of the cleaning agent supply valve 51, the second port 42B at the bottom of the air supply valve 61, and the second port 43B at the bottom of the residual pressure reducing valve 71 are connected to the branched flow path 82, respectively. Yes.
  • the cleaning agent supply path 22 is connected to the first port 41A of the cleaning agent supply valve 51 via the check valve CK1, and the check port is connected to the first port 42A of the air supply valve 61.
  • An air supply path 23 is connected via the valve CK1.
  • the escape path 24 is directly connected to the first port 43 ⁇ / b> A of 81 of the residual pressure reducing valve 71.
  • FIG. 4 is a diagram showing a table for explaining the timing for performing the residual pressure reduction control.
  • P1 represents the first painting period
  • P2 represents the cleaning period
  • P3 represents the second painting period.
  • a white portion indicates that the valve is closed
  • a black portion indicates that the valve is open.
  • the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are all kept closed. Accordingly, at this time, no cleaning agent is supplied from the cleaning agent supply path 22 and no air is supplied from the air supply path 23. Further, the escape route 24 is not in communication.
  • the control device 3 When the first painting period P1 ends, the control device 3 outputs a signal to a solenoid valve (not shown) that controls the supply and discharge of pilot air, and first the pilot air PA1 is applied to the pilot port 41C of the cleaning agent supply valve 51. . Then, the cleaning agent supply valve 51 is switched from the closed state to the open state, and the cleaning agent is supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21 via the cleaning agent supply valve 51 and the manifold block 81. As a result, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started.
  • a solenoid valve not shown
  • the control device 3 stops the supply of the pilot air PA1 to the pilot port 41C of the cleaning agent supply valve 51 and controls the pilot air PA2 to act on the pilot port 42C of the air supply valve 61. Then, the cleaning agent supply valve 51 is switched from the open state to the closed state, and the supply of the cleaning agent from the cleaning agent supply path 22 is stopped. Instead, the air supply valve 61 is switched from the closed state to the open state, and air is supplied from the air supply path 23 to the cleaning fluid supply path 21 via the air supply valve 61 and the manifold block 81.
  • the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air. Is replaced by
  • the control device 3 stops the supply of the pilot air PA2 to the pilot port 42C of the air supply valve 61 and performs the control to cause the pilot air PA3 to act on the pilot port 43C of the residual pressure reducing valve 71. Then, the air supply valve 61 is switched from the open state to the closed state, and the supply of air from the air supply path 23 is stopped. Instead, the residual pressure reducing valve 71 is switched from the closed state to the open state. As a result, the upstream region of the check valve 31 and the residual pressure reduction path 24 in the cleaning fluid supply path 21 are in communication with each other via the residual pressure reduction valve 71 and the manifold block 81. For this reason, the pressure remaining in the upstream region is released through the residual pressure reduction path 24.
  • control device 3 performs control to stop the supply of the pilot air PA3 to the pilot port 43C of the residual pressure reducing valve 71 again. Then, the residual pressure reducing valve 71 is switched from the open state to the closed state, and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts.
  • the table in FIG. 5 is slightly different from the table in FIG. 4, and the valve drive control may be performed at such timing. Specifically, after the end of the first painting period P1, the control device 3 first performs control to switch the cleaning agent supply valve 51 from the closed state to the open state. Then, as a result of supplying the cleaning agent from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and the back surface 18 side of the rotary atomizing head 14 is cleaned. After the predetermined time has elapsed, the control device 3 performs control to switch the air supply valve 61 from the closed state to the open state instead of switching the cleaning agent supply valve 51 from the open state to the closed state.
  • the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state. As a result, the supply of air is stopped and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts.
  • the control device 3 switches the residual pressure reducing valve 71 from the closed state to the open state.
  • the upstream region of the check valve 31 and the residual pressure reduction path 24 communicate with each other in the cleaning fluid supply path 21, and the pressure remaining there is released via the residual pressure reduction path 24. That is, the residual pressure reduction control may be performed immediately before the end of the cleaning period P2 as shown in FIG. 4 (that is, before the start of the painting period P3), and the cleaning period P2 is set as shown in FIG. It may be performed after finishing and entering the painting period P3.
  • the residual pressure reducing operation and the in-path cleaning agent discharging operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, after the end of the first coating period P1, the control device 3 starts the cleaning period by first controlling the cleaning agent supply valve 51 to switch from the closed state to the open state. Then, as a result of the cleaning agent being supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started. After the elapse of the predetermined time, the control device 3 performs control to switch the air supply valve 61 from the closed state to the open state while switching the cleaning agent supply valve 51 from the open state to the closed state.
  • the control device 3 performs control to switch the residual pressure reducing valve 71 from the closed state to the open state while maintaining the air supply valve 61 in the open state. As a result, the residual pressure is reduced while maintaining the supply of air to the cleaning fluid supply path 21.
  • the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state while maintaining the residual pressure reducing valve 71 in the open state. Thereby, instead of stopping the supply of air to the cleaning fluid supply path 21, the air is introduced into the residual pressure reduction path 24. As a result, the cleaning agent remaining in the residual pressure reduction path 24 is blown off by air, the cleaning agent is discharged from the residual pressure reduction path 24, and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts.
  • the residual pressure reduction operation and the in-path cleaning agent discharge operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, after the end of the first coating period P1, the control device 3 first starts the cleaning period P2 by performing control to switch the cleaning agent supply valve 51 from the closed state to the open state. Then, as a result of the cleaning agent being supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started.
  • the control device 3 After the elapse of the predetermined time, the control device 3 performs control to switch the air supply valve 61 and the residual pressure reducing valve 71 from the closed state to the open state instead of switching the cleaning agent supply valve 51 from the open state to the closed state. As a result, the supply of the cleaning agent is stopped and air is supplied to the cleaning fluid supply path 21. As a result, the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air.
  • the control device 3 performs control to switch the residual pressure reducing valve 71 from the open state to the closed state while maintaining the air supply valve 61 in the open state.
  • the above-described cleaning agent discharging operation is stopped while maintaining the supply of air to the cleaning fluid supply path 21.
  • air is mainly discharged from the cleaning nozzle 26.
  • control device 3 performs control to switch the air supply valve 61 from the open state to the closed state and to switch the residual pressure reducing valve 71 from the closed state to the open state.
  • the upstream region of the check valve 31 and the residual pressure reduction path 24 communicate with each other in the cleaning fluid supply path 21, and the pressure remaining there is released via the residual pressure reduction path 24 to reduce the residual pressure.
  • the control device 3 performs control to switch the residual pressure reducing valve 71 from the open state to the closed state, stops the residual pressure reducing operation, and ends the cleaning period P2. And after progress of such washing
  • the residual pressure reduction operation and the in-path cleaning agent discharge operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, the residual pressure reduction operation is first performed at the timing as shown in the table of FIG. 4 to end the cleaning period P2. Then, after such a cleaning period P ⁇ b> 2 elapses, the control device 3 then controls the air supply valve 61 and the residual pressure reducing valve 71 to switch from the closed state to the open state while maintaining the cleaning agent supply valve 51 in the closed state. I do. As a result, air is introduced into the residual pressure reduction path 24, the cleaning agent remaining there is blown off by the air, and the cleaning agent is discharged from the residual pressure reduction path 24.
  • the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state while maintaining the residual pressure reducing valve 71 in the open state.
  • the residual pressure reducing valve 71 is controlled to be switched from the open state to the closed state, and the in-path cleaning agent discharging operation is ended. That is, the in-path cleaning agent discharge control can be performed at any timing as long as it is during the period excluding the coating periods P1 and P2, and may be performed immediately before the end of the cleaning period P2, for example, as shown in FIG. 7 may be performed in the middle of the cleaning period P2 as shown in FIG. 7, or after the end of the cleaning period P2 (that is, an interval period between the cleaning period P2 and the coating period P3) as shown in FIG. Also good.
  • a residual pressure reducing mechanism Z1 that reduces the residual pressure in the upstream region of the check valve 31 in the cleaning fluid supply path 21 is provided. For this reason, the residual pressure in the upstream region of the check valve 31 in the cleaning fluid supply path 21 is reduced by the residual pressure reducing mechanism Z1. As a result, the urging force of the urging means 34 is relatively greater than the pressure in the upstream region. Therefore, even if the check valve 31 having a low sealing property is used, the cleaning fluid supply path 21 is reliably sealed. For this reason, the cleaning agent leakage from the cleaning nozzle 26 at the time of painting can be surely prevented, and the occurrence of a coating defect caused by the leakage can be prevented.
  • the residual pressure reducing mechanism Z1 in the rotary atomizing coating machine 1 of the present embodiment includes a residual pressure reducing valve 71 provided at a connection site between the escape passage 24 and the cleaning fluid supply passage 21.
  • the residual pressure can be released in a timely manner by the opening / closing operation of the residual pressure reducing valve 71.
  • the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are installed on the common manifold block 81. Therefore, the valves 51, 61, 71 are Piping connecting each other can be omitted. Therefore, the apparatus can be configured compactly.
  • the cleaning agent in the escape path 24 is pressure-fed using the air from the air supply path 23, the cleaning agent is unlikely to accumulate in the escape path 24. For this reason, it is possible to prevent an increase in the passage resistance of the cleaning agent, and it is possible to prevent the backflow of the stored cleaning agent.
  • the rotary atomizing coating machine 1 of the present embodiment includes a control device that drives and controls valves, and the control device performs residual pressure reduction control and in-path cleaning agent discharge control at a predetermined timing. It is configured as follows. Therefore, the residual pressure reduction control and the in-path cleaning agent discharge control can be surely executed at suitable timings.
  • the residual pressure reducing mechanism Z1 is configured using the three valves 51, 61, 71 is shown, but the present invention is not limited to this. Therefore, in the second embodiment, the residual pressure reducing mechanism Z2 is configured by using the two valves 91 and 101.
  • a cleaning agent supply valve 91 is provided at a connection portion between the cleaning agent supply path 22 and the cleaning fluid supply path 21.
  • An air supply valve 101 is provided upstream of the cleaning agent supply valve 91 in the cleaning fluid supply path 21, and an air supply path 23 and an escape path 24 are connected to the air supply valve 101.
  • the cleaning agent supply valve 91 and the air supply valve 101 also function as residual pressure reducing valves.
  • the cleaning agent supply valve 91 of the present embodiment is a three-way valve driven by pilot air PA1
  • the air supply valve 101 is a three-way valve driven by pilot air PA2.
  • the cleaning agent supply valve 91 and the air supply valve 101 have the same structure in many parts as the cleaning agent supply valve 51 of the above embodiment. Therefore, here, the common parts are denoted by the same member numbers, and detailed descriptions thereof are omitted, while different parts are mainly described.
  • the cleaning agent supply valve 91 includes one pilot port 44C and three ports (first port 44A, second port 44B, and third port 44D), and the valve body storage chamber 53 includes ports 44A, 44B, Each communicates with 44D.
  • the ring-shaped valve seat 59 is also provided on the upper side surface of the valve body accommodating chamber 53, and the upper end portion of the valve body 58 is in contact with and separated from the valve seat 59.
  • the air supply valve 101 includes one pilot port 45C and three ports (first port 45A, second port 45B, and third port 45D), and the valve body accommodating chamber 53 includes each port 45A, 45B and 45D communicate with each other.
  • the ring-shaped valve seat 59 is also provided on the upper side surface of the valve body accommodating chamber 53, and the upper end portion of the valve body 58 is in contact with and separated from the valve seat 59.
  • the cleaning agent supply valve 91 when the pilot air PA1 is not introduced into the pilot port 44C, the first port 44A and the second port 44B are closed. On the other hand, the first port 44A and the third port 44D are in an open state in which communication is established. On the other hand, when the pilot air PA1 is introduced, the first port 44A and the third port 44D are closed. On the other hand, the first port 44A and the second port 44B are in an open state in which communication is established. In the case of the air supply valve 101, when the pilot air PA2 is not introduced into the pilot port 45C, the first port 45A and the second port 45B are closed. On the other hand, the first port 45A and the third port 45D are in an open state in which communication is established. On the other hand, when the pilot air PA2 is introduced, the first port 45A and the third port 45D are closed. On the other hand, the first port 45A and the second port 45B are in an open state in which communication is established.
  • the cleaning fluid supply path 21 is connected to the first port 44A of the cleaning agent supply valve 91, and the cleaning agent supply path 22 is connected to the second port 44B via the check valve CK1.
  • An air supply path 23 is connected to the second port 45B of the air supply valve 101 via a check valve CK1, and an escape path 24 is directly connected to the third port 45D.
  • the residual pressure reduction operation can be performed at the timing shown in the tables of FIGS. 4 and 5, for example. It becomes.
  • the air supply valve 101 uses a three-way valve driven by one type of pilot air PA2, but instead, for example, a three-way valve driven by two types of pilot air is used. It is also possible to do. Specifically, in order to make the air supply valve 101 of FIG. 9 a normally open three-way valve, two pilot ports are provided so that the pilot air acts on both end faces of the piston 55 respectively. . When such a three-way valve is used, for example, it is possible to establish an open state in which the first port 45A, the second port 45B, and the third port 45D communicate with each other.
  • the cleaning agent supply valve 91 is kept closed and the air is supplied for a predetermined time. It is possible to supply air from the supply path 23 to the escape path 24. As a result, even when the residual pressure reducing mechanism configured as described above is used, the in-path cleaning agent discharge control can be performed at the timing shown in the tables of FIGS.
  • the coating machine main body 11 is supported at the tip of the robot arm 2, but is not limited thereto, and may be supported by a support body other than the robot arm 2. Good.
  • the check valve 31 having the ball as the valve body 32, the valve seat 33, and the coil spring as the biasing means 34 is used, but the present invention is not limited to this. That is, as long as a passively operated type valve can be configured, a valve other than the ball may be used as the valve body 32, and a valve other than the coil spring may be used as the urging means 34.
  • valves 51, 61, 71 are installed on the common manifold block 81.
  • the present invention is not limited to this.
  • the valves 51, 61 are installed on the common manifold block 81, and the remaining The pressure reducing valve 71 may be installed at a different position.
  • these three valves 51, 61, 71 may be connected to each other in a flow path by piping without using the manifold block 81.
  • the valves 91 and 101 in the second embodiment may be installed on the common manifold block 81 for use.

Abstract

Provided is a rotary atomizing type coating machine that can reliably prevent cleaning agent leaks from a cleaning nozzle during coating and prevent occurrences of coating malfunctions caused thereby. This rotary atomizing type coating machine 1 is provided with a cleaning fluid supply pathway 21 for supplying the cleaning agent and air to a cleaning nozzle 26 for a rotary atomizing head 14, a check valve 31, and the like. The check valve 31 is disposed on the upstream side in the immediate vicinity of the cleaning nozzle 26 so as to close the cleaning fluid supply pathway 21 along the way when not cleaning. The check valve 31 has a valve main body 32, a valve seat 33, and a biasing means 34. The biasing means 34 biases the valve main body 32 on the valve seat 33 side in opposition to forward flow of the cleaning fluid. The biasing force applied by the biasing means 34 is set smaller than the supply pressure for the cleaning fluid during cleaning. A residual pressure reducing mechanism Z1 is provided for reducing residual pressure in the area on the upstream side of the check valve 31 in the cleaning fluid supply pathway 21.

Description

回転霧化式塗装機Rotary atomizing coating machine
 本発明は、塗装機本体の先端側に回転霧化頭が設けられた回転霧化式塗装機に係り、特には洗浄ノズルから洗浄剤及びエアを噴出して回転霧化頭の背面を洗浄する機能を有する回転霧化式塗装機に関するものである。 The present invention relates to a rotary atomizing coating machine provided with a rotary atomizing head on the front end side of a coating machine main body, and in particular, the cleaning agent and air are ejected from a cleaning nozzle to clean the back of the rotary atomizing head. The present invention relates to a rotary atomizing coating machine having a function.
 自動車ボディや自動車部品の塗装においては、厳しい塗装品質が要求されるため、均一で高品質の塗装を行うことができる回転霧化式塗装機が用いられている。この塗装機は、回転霧化頭を備え、回転霧化頭を回転させることで生じる遠心力によって塗料を霧化して噴霧する。 Since painting of automobile bodies and parts requires strict coating quality, rotary atomizing coating machines that can perform uniform and high-quality coating are used. This coating machine includes a rotary atomizing head and atomizes and sprays the paint by centrifugal force generated by rotating the rotary atomizing head.
 ところで、自動車ボディの塗装ラインでは、塗装色の異なる自動車ボディが混在して搬送されてくる。それゆえ、自動車ボディに応じて色替塗装することができるように回転霧化式塗装機が構成されている。そして、その塗装機において、前色塗料から次色塗料に色替えをする際、洗浄剤を用いて塗装機内の塗料供給経路中に残存した塗料を洗浄することで色混じりを防止している。その場合、塗料が供給される回転霧化頭の正面側のみならず背面側についても塗料が付着することから、背面側についても洗浄することが要求されている。 By the way, in the car body painting line, car bodies with different paint colors are mixed and conveyed. Therefore, the rotary atomizing type coating machine is configured so that the color can be changed according to the automobile body. In the coating machine, when changing the color from the previous color paint to the next color paint, color mixing is prevented by washing the paint remaining in the paint supply path in the paint machine using a cleaning agent. In that case, since the paint adheres not only on the front side but also on the back side of the rotary atomizing head to which the paint is supplied, it is required to clean the back side as well.
 このような事情のもと、回転霧化頭の背面側を洗浄するための構造が従来いくつか提案されている(例えば特許文献1,2)。例えば特許文献1には、塗装機本体の先端側かつ中心軸から偏心した位置に設けられた洗浄ノズルと、その洗浄ノズルに洗浄溶剤を供給する洗浄溶剤供給装置とを備えた塗装機が開示されている。この塗装機において洗浄ノズルは、塗装機本体の先端側かつ中心軸から偏心した位置に配置されている。洗浄時には洗浄溶剤供給装置から洗浄ノズルに洗浄剤が供給されるとともに、回転霧化頭の背面側に向けて洗浄溶剤が噴射されるようになっている。また、特許文献2には、さらに回転霧化頭の背面側を洗浄剤により洗浄している最中に、所定圧力のシェーピングエアを噴出するようにした塗装機が開示されている。 Under such circumstances, several structures for cleaning the back side of the rotary atomizing head have been proposed (for example, Patent Documents 1 and 2). For example, Patent Document 1 discloses a coating machine including a cleaning nozzle provided at a position deviated from the front end side of the coating machine body and the central axis, and a cleaning solvent supply device that supplies a cleaning solvent to the cleaning nozzle. ing. In this coating machine, the cleaning nozzle is disposed at a position eccentric from the front end side of the coating machine body and the central axis. During cleaning, a cleaning agent is supplied from the cleaning solvent supply device to the cleaning nozzle, and the cleaning solvent is jetted toward the back side of the rotary atomizing head. Further, Patent Document 2 discloses a coating machine that ejects shaping air having a predetermined pressure while the back side of the rotary atomizing head is being cleaned with a cleaning agent.
 ところで、このような洗浄構造を有する塗装機では、例えば、洗浄剤やエアは洗浄流体供給経路を介して洗浄ノズルに圧送されるが、その途上において洗浄ノズル直近の上流側には経路閉塞用のバルブが設けられることがある。このようなバルブは、非洗浄時に洗浄流体供給経路を閉塞することで、経路内に残留した洗浄剤が塗装時に漏れ出さないように食い止める役割を果たしている。ただし、塗装機本体の先端側かつ中心軸から偏心した位置には、通常、このようなバルブを配置するための十分なスペースが存在しない。よって、小型で簡易な構造のバルブを用いる必要がある。具体的には、弁体、弁座及び付勢手段を有したチェック弁(逆止弁)を使用し、洗浄流体の正流に抗して弁体を弁座側に付勢するような態様で設置することが好適であると考えられている。 By the way, in a coating machine having such a cleaning structure, for example, cleaning agent or air is pumped to the cleaning nozzle via the cleaning fluid supply path, and on the way, the upstream side near the cleaning nozzle is used for blocking the path. A valve may be provided. Such a valve plays a role of blocking the cleaning fluid supply path during non-cleaning so that the cleaning agent remaining in the path does not leak during coating. However, there is usually no sufficient space for arranging such a valve at a position deviated from the front end side of the coating machine main body and the central axis. Therefore, it is necessary to use a small and simple valve. Specifically, a mode in which a check valve (check valve) having a valve body, a valve seat, and an urging means is used and the valve body is urged toward the valve seat side against the normal flow of the cleaning fluid. It is considered to be suitable to install at
実開昭62-48458号公報Japanese Utility Model Publication No. 62-48458 特許3346146号公報Japanese Patent No. 3346146
 しかしながら、このようなチェック弁によって洗浄流体供給経路を閉塞した場合、洗浄流体供給経路内においてチェック弁よりも上流側の領域には、いくぶん加圧された状態で洗浄剤やエアが残留してしまう。しかも、上記のような態様で当該チェック弁を設置したときには、洗浄時に洗浄流体をスムーズに流すために付勢手段の付勢力をあまり大きく設定することができない。よって、構造上、洗浄流体供給経路を高いシール性をもってシールすることが難しい。ゆえに、洗浄流体供給経路内の残圧が高いと、例えば振動等によってチェック弁のシール性が低下したときに、チェック弁の上流側領域における洗浄剤やエアが下流側に開放されてしまう。すると、その影響により、経路内に残留した洗浄剤が洗浄ノズルから漏れ出してしまう。その結果、洗浄剤が被塗物表面に落下するリスクが高くなり、塗装不具合が発生しやすくなるという問題があった。 However, when the cleaning fluid supply path is blocked by such a check valve, the cleaning agent or air remains in the cleaning fluid supply path in an area upstream from the check valve in a somewhat pressurized state. . Moreover, when the check valve is installed in the manner as described above, the biasing force of the biasing means cannot be set too large in order to smoothly flow the cleaning fluid during cleaning. Therefore, it is difficult to seal the cleaning fluid supply path with high sealing performance due to the structure. Therefore, if the residual pressure in the cleaning fluid supply path is high, the cleaning agent or air in the upstream region of the check valve is released downstream, for example, when the sealing performance of the check valve is reduced due to vibration or the like. Then, due to the influence, the cleaning agent remaining in the path leaks from the cleaning nozzle. As a result, there is a problem that the risk of the cleaning agent falling on the surface of the object to be coated increases, and coating defects are likely to occur.
 本発明は上記の課題に鑑みてなされたものであり、その目的は、塗装時における洗浄ノズルからの洗浄剤漏れを確実に防止することができ、それを原因とする塗装不具合の発生を防止することができる回転霧化式塗装機を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to reliably prevent the leakage of the cleaning agent from the cleaning nozzle at the time of coating, and to prevent the occurrence of a coating defect caused by it. An object of the present invention is to provide a rotary atomizing coating machine capable of performing the above.
 上記課題を解決するために、手段1に記載の発明は、塗装機本体と、前記塗装機本体の先端側かつ中心軸上に設けられた回転霧化頭と、前記回転霧化頭の背面に向けて洗浄流体としての洗浄剤及びエアを噴出して洗浄すべく、前記塗装機本体の先端側かつ前記中心軸から偏心した位置に配置された洗浄ノズルと、経路始端に洗浄剤供給経路及びエア供給経路が接続され、経路末端に位置する前記洗浄ノズルに前記洗浄剤及び前記エアを供給する洗浄流体供給経路と、非洗浄時に前記洗浄流体供給経路を閉塞すべく、前記洗浄流体供給経路の途上において前記洗浄ノズル直近の上流側に配置されたチェック弁とを備えた回転霧化式塗装機であって、前記チェック弁は、弁体、弁座及び付勢手段を有し、前記付勢手段が前記弁体を前記洗浄流体の正流に抗して前記弁座側に付勢するように構成され、前記付勢手段の付勢力が洗浄時における前記洗浄流体の供給圧力よりも小さくなるようにあらかじめ設定されているとともに、前記洗浄流体供給経路における前記チェック弁の上流側領域の残圧を低減させる残圧低減機構が設けられていることを特徴とする回転霧化式塗装機をその要旨とする。 In order to solve the above-mentioned problem, the invention described in means 1 includes a coating machine main body, a rotary atomizing head provided on a tip side and a central axis of the coating machine main body, and a back surface of the rotary atomizing head. A cleaning nozzle and a cleaning nozzle arranged at a position deviated from the center axis of the coating machine main body and jetting cleaning agent and air as a cleaning fluid toward the front, and a cleaning agent supply path and air at the path start end A supply path is connected, a cleaning fluid supply path for supplying the cleaning agent and the air to the cleaning nozzle located at the end of the path, and a path in the cleaning fluid supply path to close the cleaning fluid supply path when not cleaning A rotary atomizing coating machine provided with a check valve disposed immediately upstream of the cleaning nozzle, wherein the check valve includes a valve body, a valve seat, and an urging means, and the urging means The valve body with the cleaning fluid The urging force of the urging means is set in advance so as to be smaller than a supply pressure of the cleaning fluid at the time of cleaning, and is configured to urge the valve seat side against a positive flow. The gist of the rotary atomizing coating machine is provided with a residual pressure reducing mechanism for reducing the residual pressure in the upstream region of the check valve in the cleaning fluid supply path.
 従って、手段1に記載の発明によると、残圧低減機構によって洗浄流体供給経路におけるチェック弁の上流側領域の残圧が低減される結果、上流側領域の圧力よりも付勢手段の付勢力のほうが相対的に大きくなる。よって、シール性の低いチェック弁を用いたとしても、洗浄流体供給経路が確実にシールされる。このため、塗装時における洗浄ノズルからの洗浄剤漏れが確実に防止され、それを原因とする塗装不具合の発生が防止される。 Therefore, according to the invention described in Means 1, as a result of the residual pressure reduction mechanism reducing the residual pressure in the upstream region of the check valve in the cleaning fluid supply path, the biasing force of the biasing means is more than the pressure in the upstream region. Is relatively larger. Therefore, even if a check valve with low sealing performance is used, the cleaning fluid supply path is reliably sealed. For this reason, the leakage of the cleaning agent from the cleaning nozzle at the time of painting is surely prevented, and the occurrence of a coating defect due to the leakage is prevented.
 手段2に記載の発明は、手段1において、前記残圧低減機構は、前記洗浄流体供給経路における前記チェック弁の上流側領域に接続されるとともに、前記チェック弁の上流側領域に残留した前記洗浄流体を前記洗浄流体供給経路から逃がして前記塗装機本体から離れた位置にて解放する逃がし経路を含んで構成されていることをその要旨とする。 According to a second aspect of the present invention, in the first aspect, the residual pressure reducing mechanism is connected to the upstream region of the check valve in the cleaning fluid supply path and the cleaning remaining in the upstream region of the check valve. The gist of the invention is that it includes an escape path that allows the fluid to escape from the cleaning fluid supply path and release at a position away from the coating machine main body.
 従って、手段2に記載の発明によると、チェック弁の上流側領域に残留した洗浄流体が逃がし経路を経由して逃がされる結果、塗装機本体から離れた位置にて残圧が解放される。ゆえに、上流側領域における残圧を確実に解放することができる。また、残留した洗浄流体が被塗物から離れた位置に逃がされるので、洗浄剤が被塗物に付着するリスクを最小限にすることができる。 Therefore, according to the invention described in the means 2, as a result of the cleaning fluid remaining in the upstream region of the check valve being released via the escape path, the residual pressure is released at a position away from the coating machine main body. Therefore, the residual pressure in the upstream region can be reliably released. Further, since the remaining cleaning fluid is released to a position away from the object to be coated, the risk of the cleaning agent adhering to the object to be coated can be minimized.
 手段3に記載の発明は、手段2において、前記残圧低減機構は、前記逃がし経路と前記洗浄流体供給経路との接続部位に設けられた残圧低減バルブをさらに含んで構成されていることをその要旨とする。 The invention described in means 3 is characterized in that, in the means 2, the residual pressure reducing mechanism further includes a residual pressure reducing valve provided at a connection site between the relief path and the cleaning fluid supply path. The gist.
 従って、手段3に記載の発明によると、残圧低減バルブが閉状態のときには、逃がし経路と洗浄流体供給経路とが遮断される。一方、残圧低減バルブが開状態のときには、逃がし経路と洗浄流体供給経路とが連通され、チェック弁の上流側領域に残留した洗浄流体がその逃がし経路を経由して逃がされる。よって、バルブ制御により、残圧の解放を適時に行うことができる。 Therefore, according to the invention described in the means 3, when the residual pressure reducing valve is in the closed state, the escape path and the cleaning fluid supply path are blocked. On the other hand, when the residual pressure reducing valve is in the open state, the escape path and the cleaning fluid supply path are communicated, and the cleaning fluid remaining in the upstream region of the check valve is released via the relief path. Therefore, the residual pressure can be released in a timely manner by the valve control.
 手段4に記載の発明は、手段3において、前記洗浄剤供給経路と前記洗浄流体供給経路との接続部位には、洗浄剤供給バルブが設けられ、前記エア供給経路と前記洗浄流体供給経路との接続部位には、エア供給バルブが設けられ、前記洗浄剤供給バルブ、前記エア供給バルブ及び前記残圧低減バルブが共通のマニホールドブロック上に設置されていることをその要旨とする。 According to a fourth aspect of the present invention, in the third aspect, a cleaning agent supply valve is provided at a connection portion between the cleaning agent supply path and the cleaning fluid supply path, and the air supply path and the cleaning fluid supply path The gist of the present invention is that an air supply valve is provided at the connection site, and the cleaning agent supply valve, the air supply valve, and the residual pressure reducing valve are installed on a common manifold block.
 従って、手段4に記載の発明によると、洗浄剤供給バルブが開状態のときには、洗浄剤供給経路と洗浄流体供給経路が連通され、洗浄流体供給経路内に洗浄剤が供給される。その結果、洗浄ノズルから洗浄剤が噴出し、回転霧化頭の背面側が洗浄される。一方、エア供給バルブが開状態のときには、エア供給経路と洗浄流体供給経路とが連通され、洗浄流体供給経路内にエアが供給される。その結果、洗浄流体供給経路内に残っている洗浄剤が吹き飛ばされ、洗浄ノズルからエアとともに噴出される。また、洗浄剤供給バルブ、エア供給バルブ及び残圧低減バルブが共通のマニホールドブロック上に設置されているので、これらバルブを相互につなぐ配管を省略することができる。ゆえに、装置をコンパクトに構成することができる。 Therefore, according to the invention described in the means 4, when the cleaning agent supply valve is in the open state, the cleaning agent supply path and the cleaning fluid supply path are communicated, and the cleaning agent is supplied into the cleaning fluid supply path. As a result, the cleaning agent is ejected from the cleaning nozzle, and the back side of the rotary atomizing head is cleaned. On the other hand, when the air supply valve is in the open state, the air supply path and the cleaning fluid supply path are communicated, and air is supplied into the cleaning fluid supply path. As a result, the cleaning agent remaining in the cleaning fluid supply path is blown off and ejected together with air from the cleaning nozzle. Moreover, since the cleaning agent supply valve, the air supply valve, and the residual pressure reducing valve are installed on a common manifold block, piping connecting these valves to each other can be omitted. Therefore, the apparatus can be configured compactly.
 手段5に記載の発明は、手段3において、前記洗浄剤供給経路と前記洗浄流体供給経路との接続部位には、洗浄剤供給バルブが設けられ、前記洗浄流体供給経路において前記洗浄剤供給バルブの上流側部位には、エア供給バルブが設けられるとともに、そのエア供給バルブには前記エア供給経路と前記逃がし経路とが接続され、前記洗浄剤供給バルブ及び前記エア供給バルブが、前記残圧低減バルブとしても機能することをその要旨とする。 According to a fifth aspect of the present invention, in the third aspect, the cleaning agent supply valve is provided at a connection portion between the cleaning agent supply path and the cleaning fluid supply path, and the cleaning agent supply valve is provided in the cleaning fluid supply path. An air supply valve is provided in the upstream portion, and the air supply path and the escape path are connected to the air supply valve, and the cleaning agent supply valve and the air supply valve are connected to the residual pressure reducing valve. The gist of this is to function as well.
 従って、手段5に記載の発明によると、洗浄剤供給バルブ及びエア供給バルブとは別に残圧低減バルブを設ける必要がないため、装置をコンパクトに構成することができる。 Therefore, according to the invention described in the means 5, since it is not necessary to provide a residual pressure reducing valve separately from the cleaning agent supply valve and the air supply valve, the apparatus can be configured compactly.
 手段6に記載の発明は、手段2乃至5のいずれか1項において、前記逃がし経路内の前記洗浄剤が、前記エア供給経路からの前記エアを用いて圧送されることをその要旨とする。 The gist of the invention according to means 6 is that, in any one of means 2 to 5, the cleaning agent in the escape path is pumped using the air from the air supply path.
 逃がし経路内に洗浄剤が溜まってくると、洗浄剤を逃がす際の通過抵抗が増大し、また、溜まった洗浄剤が洗浄流体供給経路側に逆流する可能性があり、残圧を解放する効率が低下する可能性がある。その点、手段6に記載の発明によると、逃がし経路内の洗浄剤がエア供給経路からのエアを用いて圧送され、排出されることから、逃がし経路内に洗浄剤が溜まりにくい。このため、洗浄剤の通過抵抗の増大を未然に防ぐことができるとともに、溜まった洗浄剤の逆流を防止することができる。よって、長期にわたり残圧を確実に解放することができる。 If the cleaning agent accumulates in the escape path, the passage resistance when the cleaning agent escapes increases, and the accumulated cleaning agent may flow back to the cleaning fluid supply path side, so that the residual pressure is released. May be reduced. In that respect, according to the invention described in the means 6, since the cleaning agent in the escape path is pumped and discharged using the air from the air supply path, the cleaning agent does not easily accumulate in the escape path. For this reason, it is possible to prevent an increase in the passage resistance of the cleaning agent, and it is possible to prevent the backflow of the stored cleaning agent. Therefore, the residual pressure can be reliably released over a long period.
 手段7に記載の発明は、手段4または5において、バルブ類を駆動制御する制御装置を備えるとともに、前記制御装置は、洗浄期間終了直前から塗装期間開始時までの期間中に、所定時間だけ前記残圧低減バルブを開状態にする残圧低減制御を行うことをその要旨とする。 The invention described in the means 7 includes a control device that drives and controls the valves in the means 4 or 5, and the control device performs the predetermined time only during the period from immediately before the end of the cleaning period to the start of the painting period. The gist is to perform residual pressure reduction control for opening the residual pressure reduction valve.
 従って、手段7に記載の発明によると、制御手段の残圧低減制御により、洗浄期間終了時から塗装期間開始時までの期間中に、所定時間だけ残圧低減バルブが開状態となる。よって、そのタイミングで残圧が低減される。 Therefore, according to the invention described in the means 7, the residual pressure reducing valve is opened for a predetermined time during the period from the end of the cleaning period to the start of the painting period by the residual pressure reduction control of the control means. Therefore, the residual pressure is reduced at that timing.
 手段8に記載の発明は、手段4または5において、バルブ類を駆動制御する制御装置を備えるとともに、前記制御装置は、塗装期間を除く期間中に、前記洗浄剤供給バルブを閉状態に維持しつつ、所定時間だけ前記エア供給バルブを開状態にしかつ前記残圧低減バルブを開状態にする経路内洗浄剤排出制御を行うことをその要旨とする。 The invention described in the means 8 includes a control device for driving and controlling valves in the means 4 or 5, and the control device keeps the cleaning agent supply valve in a closed state during a period excluding the painting period. Meanwhile, the gist is to perform the in-path cleaning agent discharge control for opening the air supply valve and opening the residual pressure reducing valve for a predetermined time.
 従って、手段8に記載の発明によると、制御手段の経路内洗浄剤排出制御により、塗装期間を除く期間中に、浄剤供給バルブを閉状態に維持しつつ、所定時間だけエア供給バルブが開状態となりかつ残圧低減バルブが開状態となる。すると、そのタイミングでエア供給バルブから残圧低減バルブにエアが供給される結果、逃がし経路内の洗浄剤がエアを用いて圧送され、排出される。 Therefore, according to the invention described in the means 8, the air supply valve is opened for a predetermined time while the cleaning agent supply valve is kept closed during the period excluding the painting period by the cleaning agent discharge control in the path of the control means. The residual pressure reducing valve is opened. Then, as a result of supplying air from the air supply valve to the residual pressure reducing valve at that timing, the cleaning agent in the escape path is pumped and discharged using air.
 手段9に記載の発明は、手段1乃至8のいずれか1項において、前記塗装機本体は、ロボットアームの先端に支持されていることをその要旨とする。 The gist of the invention described in means 9 is that, in any one of means 1 to 8, the main body of the coating machine is supported at the tip of a robot arm.
 塗装機本体をロボットアームに支持して使用する場合、アームの動きに伴って発生する振動が塗装機本体に加わりやすいため、通常であればチェック弁のシール性が低下しやすく、残留した洗浄剤が洗浄ノズルから漏れ出すリスクが高くなる。その点、残圧低減機構を備えた手段9に記載の発明によると、塗装機本体をロボットアームに支持して使用したときでも洗浄ノズルからの洗浄剤漏れが確実に防止され、それを原因とする塗装不具合の発生が防止される。 When the sprayer body is supported by a robot arm, vibrations generated by the movement of the arm are likely to be applied to the sprayer body. Increases the risk of leakage from the cleaning nozzle. In that respect, according to the invention described in the means 9 having the residual pressure reducing mechanism, even when the main body of the coating machine is supported by the robot arm, the leakage of the cleaning agent from the cleaning nozzle is surely prevented, and this is the cause. Occurrence of paint defects is prevented.
 以上詳述したように、請求項1~9に記載の発明によると、塗装時における洗浄ノズルからの洗浄剤漏れを確実に防止することができ、それを原因とする塗装不具合の発生を防止することができる回転霧化式塗装機を提供することができる。 As described above in detail, according to the inventions described in claims 1 to 9, it is possible to reliably prevent the leakage of the cleaning agent from the cleaning nozzle at the time of coating, and to prevent the occurrence of a coating defect caused by that. It is possible to provide a rotary atomizing coating machine that can perform the above operation.
本発明を具体化した第1の実施形態の回転霧化式塗装機を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the rotary atomization type coating machine of 1st Embodiment which actualized this invention. 第1の実施形態の回転霧化式塗装機の塗装機本体を示す要部拡大断面図。The principal part expanded sectional view which shows the coating machine main body of the rotary atomization type coating machine of 1st Embodiment. 第1の実施形態の回転霧化式塗装機における残圧低減機構を構成するバルブ類を説明するための概略図。Schematic for demonstrating the valves which comprise the residual pressure reduction mechanism in the rotary atomization type coating machine of 1st Embodiment. 残圧低減制御を行うタイミングを説明するための図。The figure for demonstrating the timing which performs residual pressure reduction control. 残圧低減制御を行うタイミングを説明するための図。The figure for demonstrating the timing which performs residual pressure reduction control. 残圧低減制御及び経路内洗浄剤排出制御を行うタイミングを説明するための図。The figure for demonstrating the timing which performs residual pressure reduction control and cleaning agent discharge control in a path | route. 残圧低減制御及び経路内洗浄剤排出制御を行うタイミングを説明するための図。The figure for demonstrating the timing which performs residual pressure reduction control and cleaning agent discharge control in a path | route. 残圧低減制御及び経路内洗浄剤排出制御を行うタイミングを説明するための図。The figure for demonstrating the timing which performs residual pressure reduction control and cleaning agent discharge control in a path | route. 第2の実施形態の回転霧化式塗装機における残圧低減機構を構成するバルブ類を説明するための概略図。Schematic for demonstrating the valves which comprise the residual pressure reduction mechanism in the rotary atomization type coating machine of 2nd Embodiment.
[第1の実施形態]
 以下、本発明を回転霧化式塗装機に具体化した一実施の形態を図1~図8に基づき詳細に説明する。
[First Embodiment]
Hereinafter, an embodiment in which the present invention is embodied in a rotary atomizing coating machine will be described in detail with reference to FIGS.
 図1に示されるように、本実施形態の回転霧化式塗装機1は、例えば自動車ボディの塗装を行うための静電塗装機であり、ロボットアーム2の先端に塗装機本体11を支持させた構成となっている。この回転霧化式塗装機1では、制御装置3がロボットアーム2を駆動制御することにより、塗装機本体11の先端側から噴霧される塗料の吹き付け方向や位置が変更される。 As shown in FIG. 1, a rotary atomizing coating machine 1 according to this embodiment is an electrostatic coating machine for painting an automobile body, for example, and a coating machine body 11 is supported at the tip of a robot arm 2. It becomes the composition. In the rotary atomizing coating machine 1, the control device 3 drives and controls the robot arm 2, whereby the spraying direction and position of the paint sprayed from the front end side of the coating machine body 11 are changed.
 図1、図2に示されるように、回転霧化式塗装機1は、筒状の塗装機本体11と、塗装機本体11内に設けられたエアモータ12により回転される中空の筒部13と、筒部13の先端に設けられた回転霧化頭14(ベルカップ)と、筒部13内においてその軸線方向に延設される金属製のフィードチューブ15とを備える。筒部13は、円筒形状に形成されており、筒部13内において、その内面に接触しないようにフィードチューブ15が配置されている。また、回転霧化頭14は、カップ状をなす部材であって、塗装機本体11の先端側かつ中心軸16上に設けられている。 As shown in FIGS. 1 and 2, the rotary atomizing coating machine 1 includes a cylindrical coating machine main body 11, and a hollow cylindrical portion 13 that is rotated by an air motor 12 provided in the coating machine main body 11. The rotary atomizing head 14 (bell cup) provided at the tip of the cylindrical portion 13 and a metal feed tube 15 extending in the axial direction in the cylindrical portion 13 are provided. The tube portion 13 is formed in a cylindrical shape, and the feed tube 15 is disposed in the tube portion 13 so as not to contact the inner surface thereof. The rotary atomizing head 14 is a cup-shaped member, and is provided on the distal end side of the coating machine body 11 and on the central shaft 16.
 フィードチューブ15には、回転霧化頭14の正面側18に塗料及び洗浄剤を選択的に供給する共通の供給経路が形成されている。このフィードチューブ15の基端側には、塗料供給装置17が接続されている。塗料供給装置17は、塗装機本体11においてエアモータ12の後側に収納されている。塗料供給装置17は、制御装置3の制御信号に基づいて、所定量の塗料や洗浄剤をフィードチューブ15の供給経路に吐出するよう構成されている。具体的には、塗料供給装置17は、供給する塗料を異なる色の塗料に切り換えたり塗料から洗浄剤に切り換えたりするバルブや配管等を備えている。また、塗料供給装置17は、塗料や洗浄剤の吐出量を調整するためのポンプ等を備える。さらに、塗装機本体11には、回転霧化頭14に印加するための高電圧(例えば、-90kV)を発生する電圧印加手段としての高電圧発生器(図示略)が設けられている。この高電圧発生器によって回転霧化頭14に高電圧が印加され、回転霧化頭14で霧化された塗料粒子が帯電された状態で噴霧されるようになっている。 The feed tube 15 is formed with a common supply path for selectively supplying the paint and the cleaning agent to the front side 18 of the rotary atomizing head 14. A paint supply device 17 is connected to the base end side of the feed tube 15. The paint supply device 17 is accommodated on the rear side of the air motor 12 in the coating machine main body 11. The paint supply device 17 is configured to discharge a predetermined amount of paint or cleaning agent to the supply path of the feed tube 15 based on the control signal of the control device 3. Specifically, the paint supply device 17 includes a valve, a pipe, and the like for switching the paint to be supplied to a paint of a different color or switching from the paint to the cleaning agent. The paint supply device 17 includes a pump for adjusting the discharge amount of the paint and the cleaning agent. Further, the coating machine main body 11 is provided with a high voltage generator (not shown) as voltage applying means for generating a high voltage (for example, −90 kV) to be applied to the rotary atomizing head 14. A high voltage is applied to the rotary atomizing head 14 by the high voltage generator, and the paint particles atomized by the rotary atomizing head 14 are sprayed in a charged state.
 次に、本実施形態における回転霧化頭背面18側の洗浄構造及び残圧低減機構Z1について説明する。 Next, the cleaning structure and the residual pressure reducing mechanism Z1 on the rotary atomizing head back surface 18 side in this embodiment will be described.
 図1等に示されるように、この回転霧化式塗装機1は、基本的に洗浄流体供給経路21、洗浄剤供給経路22及びエア供給経路23を備えている。洗浄流体供給経路21は、ロボットアーム2の前腕部側面のあたりから先端部にある塗装機本体11の内部にまで延設されている。一方、洗浄剤供給経路22は、洗浄流体供給経路21に対してシンナー等の洗浄剤を供給するための経路であって、ロボットアーム2の基端側から前腕部側面のあたりまで延設されている。エア供給経路23は、洗浄流体供給経路21に対して加圧されたエアを供給するための経路であって、同様にロボットアーム2の基端側から前腕部側面のあたりまで延設されている。なお、前腕部側面の位置において、洗浄流体供給経路21の経路始端E2に洗浄剤供給経路22及びエア供給経路23が流路的に接続されている。 As shown in FIG. 1 and the like, the rotary atomizing coating machine 1 basically includes a cleaning fluid supply path 21, a cleaning agent supply path 22, and an air supply path 23. The cleaning fluid supply path 21 extends from around the forearm side of the robot arm 2 to the interior of the coating machine main body 11 at the tip. On the other hand, the cleaning agent supply path 22 is a path for supplying a cleaning agent such as thinner to the cleaning fluid supply path 21 and extends from the base end side of the robot arm 2 to the side of the forearm portion. Yes. The air supply path 23 is a path for supplying pressurized air to the cleaning fluid supply path 21 and similarly extends from the base end side of the robot arm 2 to the vicinity of the side surface of the forearm. . Note that the cleaning agent supply path 22 and the air supply path 23 are connected to the path start end E <b> 2 of the cleaning fluid supply path 21 at the position of the side surface of the forearm.
 図1、図2に示されるように、塗装機本体11の先端側かつ中心軸16から偏心した位置には、回転霧化頭14の背面18にその先端を向けた状態で洗浄ノズル26が配置されている。洗浄ノズル26は、洗浄流体供給経路21の経路末端E1に位置しており、回転霧化頭14の背面18に向けて洗浄流体としての洗浄剤及びエアを噴出して洗浄する。洗浄流体供給経路21の途上において洗浄ノズル26直近の上流側には、小型のチェック弁31が設けられている。 As shown in FIGS. 1 and 2, a cleaning nozzle 26 is disposed at a position deviated from the central axis 16 and on the tip side of the coating machine main body 11 with the tip directed to the back surface 18 of the rotary atomizing head 14. Has been. The cleaning nozzle 26 is located at the path end E1 of the cleaning fluid supply path 21 and cleans the cleaning agent and air as a cleaning fluid by jetting toward the back surface 18 of the rotary atomizing head 14. A small check valve 31 is provided on the upstream side of the cleaning fluid supply path 21 in the immediate vicinity of the cleaning nozzle 26.
 図2に示されるように、本実施形態のチェック弁31は、弁体32、弁座33及び付勢手段34を備えている。弁体32としてのボールは、チェック弁31を構成するハウジングの内部空間にて上下動可能な状態で収容されている。弁座33は略円錐形状であって、ハウジングの上部側内壁面に形成されている。付勢手段34としてのコイルばねは、ハウジングの内部空間において弁体32の下側に収容されており、弁体32を洗浄流体の正流に抗して弁座33側に付勢するように構成されている。なお、付勢手段34の付勢力は、洗浄時における洗浄流体の供給圧力よりも小さくなるようにあらかじめ設定されている。このため、洗浄流体を供給する必要のない非洗浄時には、洗浄流体供給経路21が閉塞されるようになっている。一方、洗浄流体を供給する必要のある洗浄時には、洗浄流体供給経路21が開放され、洗浄流体である洗浄液やエアが洗浄ノズル26から噴出するようになっている。 As shown in FIG. 2, the check valve 31 of this embodiment includes a valve body 32, a valve seat 33, and an urging means 34. The ball as the valve body 32 is accommodated in a state in which the ball can move up and down in the internal space of the housing constituting the check valve 31. The valve seat 33 has a substantially conical shape and is formed on the upper inner wall surface of the housing. The coil spring as the biasing means 34 is accommodated below the valve body 32 in the internal space of the housing, and biases the valve body 32 toward the valve seat 33 against the positive flow of the cleaning fluid. It is configured. The urging force of the urging means 34 is set in advance so as to be smaller than the supply pressure of the cleaning fluid at the time of cleaning. For this reason, the cleaning fluid supply path 21 is closed during non-cleaning when it is not necessary to supply cleaning fluid. On the other hand, at the time of cleaning in which cleaning fluid needs to be supplied, the cleaning fluid supply path 21 is opened, and cleaning liquid and air as cleaning fluid are ejected from the cleaning nozzle 26.
 次に本実施形態の残圧低減機構Z1について説明する。図3等に示されるように、この残圧低減機構Z1は、洗浄剤供給バルブ51、エア供給バルブ61、残圧低減バルブ71、マニホールドブロック81、逃がし経路24等を含んで構成されている。洗浄剤供給バルブ51、エア供給バルブ61及び残圧低減バルブ71は、ロボットアーム2の前腕部側面に設けた共通のマニホールドブロック81上に設置されている。 Next, the residual pressure reducing mechanism Z1 of this embodiment will be described. As shown in FIG. 3 and the like, the residual pressure reduction mechanism Z1 includes a cleaning agent supply valve 51, an air supply valve 61, a residual pressure reduction valve 71, a manifold block 81, a relief path 24, and the like. The cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are installed on a common manifold block 81 provided on the side surface of the forearm portion of the robot arm 2.
 本実施形態の洗浄剤供給バルブ51は、いわゆるノーマルクローズ型の二方弁であって、パイロットエアPA1で駆動されるようになっている。洗浄剤供給バルブ51を構成すハウジング52内には、弁体収容室53及びピストン収容室54が連通空間を介して互いに連通した状態で形成されている。弁体収容室53内にはピストン55が上下動可能に収容されており、このピストン55によって弁体収容室53が2つの領域に区画されている。図3における上側の区画領域は、コイルばね57を収容するとともに、大気圧領域と連通している。一方、図3における下側の区画領域は、ハウジング52の側面に設けられたパイロットポート41Cと連通している。ピストン55の中心部にはロッド56が挿通固定されている。ロッド56は、上記連通空間を通り抜けて弁体収容室53まで到っており、その下端部には弁体58が一体形成されている。なお、連通空間の上部側にはOリング状のシール部材62が設けられ、連通空間の下部側にはロッドシール60が設けられている。シール部材62は、パイロットエアPA1がピストン収容室54側から連通空間を介して弁体収容室53側に漏れるのを防止している。ロッドシール60は、弁体収容室53側に導入される洗浄剤やエアが連通空間を介してピストン収容室54側に漏れるのを防止している。弁体収容室53は、ハウジング52の側面に設けた第1ポート41Aと、ハウジング52の底面に設けた第2ポート41Bとに対してそれぞれ連通している。弁体収容室53の下側面にはリング状の弁座59が設けられており、この弁座59に対して弁体58の下端部が接離するようになっている。 The cleaning agent supply valve 51 of the present embodiment is a so-called normally closed two-way valve that is driven by pilot air PA1. In the housing 52 that constitutes the cleaning agent supply valve 51, a valve body storage chamber 53 and a piston storage chamber 54 are formed in communication with each other via a communication space. A piston 55 is housed in the valve body housing chamber 53 so as to be movable up and down. The piston 55 divides the valve body housing chamber 53 into two regions. The upper partition region in FIG. 3 accommodates the coil spring 57 and communicates with the atmospheric pressure region. On the other hand, the lower partition region in FIG. 3 communicates with a pilot port 41 </ b> C provided on the side surface of the housing 52. A rod 56 is inserted and fixed at the center of the piston 55. The rod 56 passes through the communication space and reaches the valve body accommodating chamber 53, and a valve body 58 is integrally formed at a lower end portion thereof. An O-ring seal member 62 is provided on the upper side of the communication space, and a rod seal 60 is provided on the lower side of the communication space. The seal member 62 prevents the pilot air PA1 from leaking from the piston housing chamber 54 side to the valve body housing chamber 53 side through the communication space. The rod seal 60 prevents the cleaning agent and air introduced to the valve body storage chamber 53 side from leaking to the piston storage chamber 54 side through the communication space. The valve body storage chamber 53 communicates with the first port 41 </ b> A provided on the side surface of the housing 52 and the second port 41 </ b> B provided on the bottom surface of the housing 52. A ring-shaped valve seat 59 is provided on the lower surface of the valve body accommodating chamber 53, and the lower end portion of the valve body 58 is in contact with and separated from the valve seat 59.
 そして、このように構成された洗浄剤供給バルブ51において、パイロットポート41CにパイロットエアPA1が導入されないときには、コイルばね57の付勢力により、ピストン55、ロッド56及び弁体58が下方に移動する。その結果、弁体58が弁座59に当接し、第1ポート41Aと第2ポート41Bとの間が遮断されたクローズ状態となる。これに対し、パイロットポート41CにパイロットエアPA1が導入されたときには、コイルばね57の付勢力に抗してパイロットエアが作用することで、ピストン55、ロッド56及び弁体58が上方に移動する。その結果、弁体58が弁座59から離間し、第1ポート41Aと第2ポート41Bとの間が連通されたオープン状態となる。 In the cleaning agent supply valve 51 configured as described above, when the pilot air PA1 is not introduced into the pilot port 41C, the piston 55, the rod 56, and the valve body 58 are moved downward by the biasing force of the coil spring 57. As a result, the valve body 58 comes into contact with the valve seat 59, and a closed state is established in which the first port 41A and the second port 41B are blocked. On the other hand, when the pilot air PA1 is introduced into the pilot port 41C, the pilot air acts against the urging force of the coil spring 57, so that the piston 55, the rod 56, and the valve body 58 move upward. As a result, the valve body 58 is separated from the valve seat 59, and the first port 41A and the second port 41B communicate with each other.
 本実施形態のエア供給バルブ61は、2つのポート42A、42Bと1つのパイロットポート42Cとを備えるノーマルクローズ型の二方弁であって、パイロットエアPA2で駆動されるようになっている。また、本実施形態の残圧低減バルブ71は、2つのポート43A、43Bと1つのパイロットポート43Cとを備えるノーマルクローズ型の二方弁であって、パイロットエアPA3で駆動されるようになっている。なお、エア供給バルブ61及び残圧低減バルブ71は、洗浄剤供給バルブ51と基本的に同じ構造を有するものであるため、これらに共通の部材番号を付す代わりに詳細な説明を割愛する。 The air supply valve 61 of this embodiment is a normally closed two-way valve having two ports 42A and 42B and one pilot port 42C, and is driven by pilot air PA2. The residual pressure reducing valve 71 of this embodiment is a normally closed two-way valve having two ports 43A and 43B and one pilot port 43C, and is driven by pilot air PA3. Yes. Since the air supply valve 61 and the residual pressure reducing valve 71 have basically the same structure as the cleaning agent supply valve 51, a detailed description is omitted instead of attaching common member numbers thereto.
 マニホールドブロック81の端面には、洗浄流体供給経路21が接続されるポート83が設けられている。マニホールドブロック81の内部には、ポート83と連通するとともに3方向に分岐した流路82が接続されている。このマニホールドブロック81上には、洗浄剤供給バルブ51、エア供給バルブ61及び残圧低減バルブ71の底部側がそれぞれ固定されている。そして、洗浄剤供給バルブ51底部の第2ポート41B、エア供給バルブ61底部の第2ポート42B及び残圧低減バルブ71底部の第2ポート43Bが、上記の分岐した流路82に各々接続されている。 A port 83 to which the cleaning fluid supply path 21 is connected is provided on the end face of the manifold block 81. Inside the manifold block 81, a flow path 82 that communicates with the port 83 and branches in three directions is connected. On the manifold block 81, the bottom side of the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 is fixed. The second port 41B at the bottom of the cleaning agent supply valve 51, the second port 42B at the bottom of the air supply valve 61, and the second port 43B at the bottom of the residual pressure reducing valve 71 are connected to the branched flow path 82, respectively. Yes.
 この残圧低減機構Z1の場合、洗浄剤供給バルブ51の第1ポート41Aには逆止弁CK1を介して洗浄剤供給経路22が接続され、エア供給バルブ61の第1ポート42Aには逆止弁CK1を介してエア供給経路23が接続されている。また、残圧低減バルブ71の81の第1ポート43Aには、逃がし経路24が直接的に接続されている。 In the case of this residual pressure reducing mechanism Z1, the cleaning agent supply path 22 is connected to the first port 41A of the cleaning agent supply valve 51 via the check valve CK1, and the check port is connected to the first port 42A of the air supply valve 61. An air supply path 23 is connected via the valve CK1. In addition, the escape path 24 is directly connected to the first port 43 </ b> A of 81 of the residual pressure reducing valve 71.
 次に、このように構成された残圧低減機構Z1の動作について説明する。 Next, the operation of the residual pressure reducing mechanism Z1 configured as described above will be described.
 図4は、残圧低減制御を行うタイミングを説明するためテーブルを示した図である。このテーブルにおいてP1は第1回目の塗装期間を示し、P2は洗浄期間を示し、P3は第2回目の塗装期間を示している。テーブル中、白抜き部分はバルブが閉状態であることを表し、黒塗り部分はバルブが開状態であることを表している。第1回目の塗装期間P1においては、洗浄剤供給バルブ51、エア供給バルブ61及び残圧低減バルブ71は、いずれも閉状態に維持されている。従って、このときには洗浄剤供給経路22から洗浄剤が供給されず、エア供給経路23からエアが供給されてこない。また、逃がし経路24も連通していない。 FIG. 4 is a diagram showing a table for explaining the timing for performing the residual pressure reduction control. In this table, P1 represents the first painting period, P2 represents the cleaning period, and P3 represents the second painting period. In the table, a white portion indicates that the valve is closed, and a black portion indicates that the valve is open. In the first painting period P1, the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are all kept closed. Accordingly, at this time, no cleaning agent is supplied from the cleaning agent supply path 22 and no air is supplied from the air supply path 23. Further, the escape route 24 is not in communication.
 第1回目の塗装期間P1が終了すると、パイロットエアの給排を制御する図示しない電磁弁に制御装置3が信号を出力し、まず洗浄剤供給バルブ51のパイロットポート41CにパイロットエアPA1を作用させる。すると、洗浄剤供給バルブ51が閉状態から開状態に切り替わり、洗浄剤供給経路22から洗浄剤供給バルブ51及びマニホールドブロック81を経て、洗浄流体供給経路21に洗浄剤が供給されてくる。その結果、洗浄剤が洗浄ノズル26から噴出され、回転霧化頭14の背面18側の洗浄が開始される。 When the first painting period P1 ends, the control device 3 outputs a signal to a solenoid valve (not shown) that controls the supply and discharge of pilot air, and first the pilot air PA1 is applied to the pilot port 41C of the cleaning agent supply valve 51. . Then, the cleaning agent supply valve 51 is switched from the closed state to the open state, and the cleaning agent is supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21 via the cleaning agent supply valve 51 and the manifold block 81. As a result, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started.
 所定時間の経過後、制御装置3は、洗浄剤供給バルブ51のパイロットポート41CへのパイロットエアPA1の供給を止め、エア供給バルブ61のパイロットポート42CにパイロットエアPA2を作用させる制御を行う。すると、洗浄剤供給バルブ51が開状態から閉状態に切り替わり、洗浄剤供給経路22からの洗浄剤の供給がストップする。その代わりに、エア供給バルブ61が閉状態から開状態に切り替わり、エア供給経路23からエア供給バルブ61及びマニホールドブロック81を経て洗浄流体供給経路21にエアが供給されてくる。その結果、洗浄剤とエアとが混ざった状態の洗浄流体が洗浄ノズル26から排出され、回転霧化頭14の背面18側が洗浄されるとともに、徐々に洗浄流体供給経路21内の洗浄剤がエアに置換される。 After elapse of a predetermined time, the control device 3 stops the supply of the pilot air PA1 to the pilot port 41C of the cleaning agent supply valve 51 and controls the pilot air PA2 to act on the pilot port 42C of the air supply valve 61. Then, the cleaning agent supply valve 51 is switched from the open state to the closed state, and the supply of the cleaning agent from the cleaning agent supply path 22 is stopped. Instead, the air supply valve 61 is switched from the closed state to the open state, and air is supplied from the air supply path 23 to the cleaning fluid supply path 21 via the air supply valve 61 and the manifold block 81. As a result, the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air. Is replaced by
 所定時間の経過後、制御装置3は、エア供給バルブ61のパイロットポート42CへのパイロットエアPA2の供給を止め、残圧低減バルブ71のパイロットポート43CにパイロットエアPA3を作用させる制御を行う。すると、エア供給バルブ61が開状態から閉状態に切り替わり、エア供給経路23からのエアの供給がストップする。その代わりに、残圧低減バルブ71が閉状態から開状態に切り替わる。その結果、洗浄流体供給経路21においてチェック弁31の上流側領域と残圧低減経路24とが、残圧低減バルブ71及びマニホールドブロック81を介して連通した状態となる。このため、当該上流側領域に残っていた圧力が残圧低減経路24を経て解放される。 After the elapse of the predetermined time, the control device 3 stops the supply of the pilot air PA2 to the pilot port 42C of the air supply valve 61 and performs the control to cause the pilot air PA3 to act on the pilot port 43C of the residual pressure reducing valve 71. Then, the air supply valve 61 is switched from the open state to the closed state, and the supply of air from the air supply path 23 is stopped. Instead, the residual pressure reducing valve 71 is switched from the closed state to the open state. As a result, the upstream region of the check valve 31 and the residual pressure reduction path 24 in the cleaning fluid supply path 21 are in communication with each other via the residual pressure reduction valve 71 and the manifold block 81. For this reason, the pressure remaining in the upstream region is released through the residual pressure reduction path 24.
 この後、再び制御装置3は、残圧低減バルブ71のパイロットポート43CへのパイロットエアPA3の供給を止める制御を行う。すると、残圧低減バルブ71が開状態から閉状態に切り替わり、洗浄期間P2が終了する。そして、このような洗浄期間P2の経過後に、第2回目の塗装期間P3が開始するようになっている。 Thereafter, the control device 3 performs control to stop the supply of the pilot air PA3 to the pilot port 43C of the residual pressure reducing valve 71 again. Then, the residual pressure reducing valve 71 is switched from the open state to the closed state, and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts.
 図5のテーブルは図4のテーブルとは若干異なっており、このようなタイミングでバルブ駆動制御を行ってもよい。具体的には、第1回目の塗装期間P1の終了後、制御装置3は、まず洗浄剤供給バルブ51が閉状態から開状態に切り替える制御を行う。すると、洗浄剤供給経路22から洗浄流体供給経路21に洗浄剤が供給されてくる結果、洗浄剤が洗浄ノズル26から噴出され、回転霧化頭14の背面18側が洗浄される。所定時間の経過後、制御装置3は、洗浄剤供給バルブ51を開状態から閉状態に切り替える代わりに、エア供給バルブ61を閉状態から開状態に切り替える制御を行う。これにより洗浄剤の供給がストップするとともに、洗浄流体供給経路21にエアが供給されてくる。その結果、洗浄剤とエアとが混ざった状態の洗浄流体が洗浄ノズル26から排出され、回転霧化頭14の背面18側が洗浄されるとともに、徐々に洗浄流体供給経路21内の洗浄剤がエアに置換される。この後、制御装置3は、エア供給バルブ61を開状態から閉状態に切り替える制御を行う。これによりエアの供給がストップし、洗浄期間P2が終了する。そして、このような洗浄期間P2の経過後に、第2回目の塗装期間P3が開始する。第2回目の塗装期間P2が開始してから所定期間経過後、制御装置3は、残圧低減バルブ71を閉状態から開状態に切り替える。その結果、洗浄流体供給経路21においてチェック弁31の上流側領域と残圧低減経路24とが連通し、そこに残っていた圧力が残圧低減経路24を経て解放される。つまり、残圧低減制御は、図4のときのように洗浄期間P2の終了直前に(即ち塗装期間P3の開始時までに)行ってもよいほか、図5のときのように洗浄期間P2が終了して塗装期間P3に入った後に行ってもよい。 The table in FIG. 5 is slightly different from the table in FIG. 4, and the valve drive control may be performed at such timing. Specifically, after the end of the first painting period P1, the control device 3 first performs control to switch the cleaning agent supply valve 51 from the closed state to the open state. Then, as a result of supplying the cleaning agent from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and the back surface 18 side of the rotary atomizing head 14 is cleaned. After the predetermined time has elapsed, the control device 3 performs control to switch the air supply valve 61 from the closed state to the open state instead of switching the cleaning agent supply valve 51 from the open state to the closed state. As a result, the supply of the cleaning agent is stopped and air is supplied to the cleaning fluid supply path 21. As a result, the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air. Is replaced by Thereafter, the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state. As a result, the supply of air is stopped and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts. After a predetermined period has elapsed since the start of the second coating period P2, the control device 3 switches the residual pressure reducing valve 71 from the closed state to the open state. As a result, the upstream region of the check valve 31 and the residual pressure reduction path 24 communicate with each other in the cleaning fluid supply path 21, and the pressure remaining there is released via the residual pressure reduction path 24. That is, the residual pressure reduction control may be performed immediately before the end of the cleaning period P2 as shown in FIG. 4 (that is, before the start of the painting period P3), and the cleaning period P2 is set as shown in FIG. It may be performed after finishing and entering the painting period P3.
 また、図6に示すテーブルのようなタイミングでバルブ駆動制御を行うことにより、残圧低減動作及び経路内洗浄剤排出動作を実現してもよい。具体的には、第1回目の塗装期間P1の終了後、制御装置3はまず洗浄剤供給バルブ51が閉状態から開状態に切り替える制御を行うことで、洗浄期間を開始する。すると、洗浄剤供給経路22から洗浄流体供給経路21に洗浄剤が供給されてくる結果、洗浄剤が洗浄ノズル26から噴出され、回転霧化頭14の背面18側の洗浄が開始される。所定時間の経過後、制御装置3は、洗浄剤供給バルブ51を開状態から閉状態に切り替える一方、エア供給バルブ61を閉状態から開状態に切り替える制御を行う。これにより洗浄剤の供給がストップするとともに、洗浄流体供給経路21にエアが供給されてくる。その結果、洗浄剤とエアとが混ざった状態の洗浄流体が洗浄ノズル26から排出され、回転霧化頭14の背面18側が洗浄されるとともに、徐々に洗浄流体供給経路21内の洗浄剤がエアに置換される。この後、制御装置3は、エア供給バルブ61を開状態に維持したまま、残圧低減バルブ71を閉状態から開状態に切り替える制御を行う。これにより、洗浄流体供給経路21へのエアの供給を維持しつつ、同時に残圧低減を行う。その結果、洗浄流体供給経路21においてチェック弁31の上流側領域と残圧低減経路24とが連通し、そこに残っていた圧力が残圧低減経路24を経て解放される。この後、制御装置3はエア供給バルブ61を開状態から閉状態に切り替える一方で、残圧低減バルブ71を開状態に維持する制御を行う。これにより、洗浄流体供給経路21へのエアの供給をストップする代わりにそのエアを残圧低減経路24に導入する。その結果、残圧低減経路24に残っていた洗浄剤がエアにより吹き飛ばされ、残圧低減経路24内から洗浄剤が排出されて、洗浄期間P2が終了する。そして、このような洗浄期間P2の経過後に、第2回目の塗装期間P3が開始する。 Further, the residual pressure reducing operation and the in-path cleaning agent discharging operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, after the end of the first coating period P1, the control device 3 starts the cleaning period by first controlling the cleaning agent supply valve 51 to switch from the closed state to the open state. Then, as a result of the cleaning agent being supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started. After the elapse of the predetermined time, the control device 3 performs control to switch the air supply valve 61 from the closed state to the open state while switching the cleaning agent supply valve 51 from the open state to the closed state. As a result, the supply of the cleaning agent is stopped and air is supplied to the cleaning fluid supply path 21. As a result, the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air. Is replaced by Thereafter, the control device 3 performs control to switch the residual pressure reducing valve 71 from the closed state to the open state while maintaining the air supply valve 61 in the open state. As a result, the residual pressure is reduced while maintaining the supply of air to the cleaning fluid supply path 21. As a result, the upstream region of the check valve 31 and the residual pressure reduction path 24 communicate with each other in the cleaning fluid supply path 21, and the pressure remaining there is released via the residual pressure reduction path 24. Thereafter, the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state while maintaining the residual pressure reducing valve 71 in the open state. Thereby, instead of stopping the supply of air to the cleaning fluid supply path 21, the air is introduced into the residual pressure reduction path 24. As a result, the cleaning agent remaining in the residual pressure reduction path 24 is blown off by air, the cleaning agent is discharged from the residual pressure reduction path 24, and the cleaning period P2 ends. Then, after such a cleaning period P2 elapses, the second coating period P3 starts.
 あるいは、図7に示すテーブルのようなタイミングでバルブ駆動制御を行うことにより、残圧低減動作及び経路内洗浄剤排出動作を実現してもよい。具体的には、第1回目の塗装期間P1の終了後、制御装置3はまず洗浄剤供給バルブ51を閉状態から開状態に切り替える制御を行うことで、洗浄期間P2を開始する。すると、洗浄剤供給経路22から洗浄流体供給経路21に洗浄剤が供給されてくる結果、洗浄剤が洗浄ノズル26から噴出され、回転霧化頭14の背面18側の洗浄が開始される。所定時間の経過後、制御装置3は、洗浄剤供給バルブ51を開状態から閉状態に切り替える代わりに、エア供給バルブ61及び残圧低減バルブ71を閉状態から開状態に切り替える制御を行う。これにより洗浄剤の供給がストップするとともに、洗浄流体供給経路21にエアが供給されてくる。その結果、洗浄剤とエアとが混ざった状態の洗浄流体が洗浄ノズル26から排出され、回転霧化頭14の背面18側が洗浄されるとともに、徐々に洗浄流体供給経路21内の洗浄剤がエアに置換される。そして、これと同時に、残圧低減経路24内にもエアが導入され、そこに残っていた洗浄剤がエアにより吹き飛ばされ、残圧低減経路24内から洗浄剤が排出される。この後、制御装置3はエア供給バルブ61を開状態に維持したまま、残圧低減バルブ71を開状態から閉状態に切り替える制御を行う。これにより、洗浄流体供給経路21へのエアの供給を維持しつつ、上記の経路内洗浄剤排出動作をストップする。このとき、洗浄流体供給経路21にエアが供給されてくる結果、主としてエアが洗浄ノズル26から排出される。この後、制御装置3はエア供給バルブ61を開状態から閉状態に切り替えるとともに、残圧低減バルブ71を閉状態から開状態に切り替える制御を行う。これにより、洗浄流体供給経路21においてチェック弁31の上流側領域と残圧低減経路24とが連通し、そこに残っていた圧力が残圧低減経路24を経て解放され、残圧が低減される。この後、制御装置3は残圧低減バルブ71を開状態から閉状態に切り替える制御を行い、残圧低減動作をストップさせて、洗浄期間P2を終了する。そして、このような洗浄期間P2の経過後に、第2回目の塗装期間P3が開始される。 Alternatively, the residual pressure reduction operation and the in-path cleaning agent discharge operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, after the end of the first coating period P1, the control device 3 first starts the cleaning period P2 by performing control to switch the cleaning agent supply valve 51 from the closed state to the open state. Then, as a result of the cleaning agent being supplied from the cleaning agent supply path 22 to the cleaning fluid supply path 21, the cleaning agent is ejected from the cleaning nozzle 26, and cleaning of the back surface 18 side of the rotary atomizing head 14 is started. After the elapse of the predetermined time, the control device 3 performs control to switch the air supply valve 61 and the residual pressure reducing valve 71 from the closed state to the open state instead of switching the cleaning agent supply valve 51 from the open state to the closed state. As a result, the supply of the cleaning agent is stopped and air is supplied to the cleaning fluid supply path 21. As a result, the cleaning fluid in a state where the cleaning agent and air are mixed is discharged from the cleaning nozzle 26, the back surface 18 side of the rotary atomizing head 14 is cleaned, and the cleaning agent in the cleaning fluid supply path 21 gradually becomes air. Is replaced by At the same time, air is also introduced into the residual pressure reducing path 24, the cleaning agent remaining there is blown off by the air, and the cleaning agent is discharged from the residual pressure reducing path 24. Thereafter, the control device 3 performs control to switch the residual pressure reducing valve 71 from the open state to the closed state while maintaining the air supply valve 61 in the open state. Thus, the above-described cleaning agent discharging operation is stopped while maintaining the supply of air to the cleaning fluid supply path 21. At this time, as a result of supplying air to the cleaning fluid supply path 21, air is mainly discharged from the cleaning nozzle 26. Thereafter, the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state and to switch the residual pressure reducing valve 71 from the closed state to the open state. As a result, the upstream region of the check valve 31 and the residual pressure reduction path 24 communicate with each other in the cleaning fluid supply path 21, and the pressure remaining there is released via the residual pressure reduction path 24 to reduce the residual pressure. . Thereafter, the control device 3 performs control to switch the residual pressure reducing valve 71 from the open state to the closed state, stops the residual pressure reducing operation, and ends the cleaning period P2. And after progress of such washing | cleaning period P2, the 2nd coating period P3 is started.
 あるいは、図8に示すテーブルのようなタイミングでバルブ駆動制御を行うことにより、残圧低減動作及び経路内洗浄剤排出動作を実現してもよい。具体的には、図4のテーブルのようなタイミングでまず残圧低減動作を行い、洗浄期間P2を終了させる。そして、このような洗浄期間P2の経過後、次いで制御装置3は、洗浄剤供給バルブ51を閉状態に維持しつつ、エア供給バルブ61及び残圧低減バルブ71を閉状態から開状態に切り替える制御を行う。これにより、残圧低減経路24内にエアが導入され、そこに残っていた洗浄剤がエアにより吹き飛ばされ、残圧低減経路24内から洗浄剤が排出される。この後、制御装置3は、残圧低減バルブ71を開状態に維持したまま、エア供給バルブ61を開状態から閉状態に切り替える制御を行う。洗浄期間P2が終了して所定期間が経過した後、残圧低減バルブ71を開状態から閉状態に切り替える制御を行い、経路内洗浄剤排出動作を終了させる。つまり、経路内洗浄剤排出制御は、塗装期間P1、P2を除く期間中であれば任意のタイミングで行うことができ、例えば図6のときのように洗浄期間P2の終了直前に行ってもよく、図7のときのように洗浄期間P2の途中で行ってもよく、あるいは図8のときのように洗浄期間P2の終了後(即ち洗浄期間P2と塗装期間P3とのインターバル期間)に行ってもよい。 Alternatively, the residual pressure reduction operation and the in-path cleaning agent discharge operation may be realized by performing valve drive control at a timing like the table shown in FIG. Specifically, the residual pressure reduction operation is first performed at the timing as shown in the table of FIG. 4 to end the cleaning period P2. Then, after such a cleaning period P <b> 2 elapses, the control device 3 then controls the air supply valve 61 and the residual pressure reducing valve 71 to switch from the closed state to the open state while maintaining the cleaning agent supply valve 51 in the closed state. I do. As a result, air is introduced into the residual pressure reduction path 24, the cleaning agent remaining there is blown off by the air, and the cleaning agent is discharged from the residual pressure reduction path 24. Thereafter, the control device 3 performs control to switch the air supply valve 61 from the open state to the closed state while maintaining the residual pressure reducing valve 71 in the open state. After the cleaning period P2 ends and a predetermined period elapses, the residual pressure reducing valve 71 is controlled to be switched from the open state to the closed state, and the in-path cleaning agent discharging operation is ended. That is, the in-path cleaning agent discharge control can be performed at any timing as long as it is during the period excluding the coating periods P1 and P2, and may be performed immediately before the end of the cleaning period P2, for example, as shown in FIG. 7 may be performed in the middle of the cleaning period P2 as shown in FIG. 7, or after the end of the cleaning period P2 (that is, an interval period between the cleaning period P2 and the coating period P3) as shown in FIG. Also good.
 従って、本実施の形態によれば以下の効果を得ることができる。 Therefore, according to the present embodiment, the following effects can be obtained.
 本実施形態の回転霧化式塗装機1では、洗浄流体供給経路21におけるチェック弁31の上流側領域の残圧を低減させる残圧低減機構Z1が設けられている。このため、残圧低減機構Z1によって洗浄流体供給経路21におけるチェック弁31の上流側領域の残圧が低減される。その結果、上流側領域の圧力よりも付勢手段34の付勢力のほうが相対的に大きくなる。よって、シール性の低いチェック弁31を用いたとしても、洗浄流体供給経路21が確実にシールされる。このため、塗装時における洗浄ノズル26からの洗浄剤漏れが確実に防止され、それを原因とする塗装不具合の発生を防止することができる。
 (2)本実施形態の回転霧化式塗装機1における残圧低減機構Z1では、チェック弁31の上流側領域に残留した洗浄流体が、逃がし経路24を経由して逃がされる。その結果、塗装機本体11から離れた位置にて残圧が解放される。ゆえに、上流側領域における残圧を確実に解放することができる。また、残留した洗浄流体が被塗物から離れた位置に逃がされるので、洗浄剤が被塗物に付着するリスクを最小限にすることができる。
 (3)上記の残圧低減機構Z1は、逃がし経路24と洗浄流体供給経路21との接続部位に設けられた残圧低減バルブ71を含んで構成されている。そのため、残圧低減バルブ71の開閉動作によって、残圧の解放を適時に行うことができる。
 (4)上記の残圧低減機構Z1では、洗浄剤供給バルブ51、エア供給バルブ61及び残圧低減バルブ71が共通のマニホールドブロック81上に設置されているので、これらバルブ51、61、71を相互につなぐ配管を省略することができる。ゆえに、装置をコンパクトに構成することができる。
 (5)本実施形態では、逃がし経路24内の洗浄剤がエア供給経路23からのエアを用いて圧送されることから、逃がし経路24内に洗浄剤が溜まりにくい。このため、洗浄剤の通過抵抗の増大を未然に防ぐことができるとともに、溜まった洗浄剤の逆流を防止することができる。よって、長期にわたり残圧を確実に解放することができる。
 (6)本実施形態の回転霧化式塗装機1は、バルブ類を駆動制御する制御装置を備えており、この制御装置が所定のタイミングで残圧低減制御及び経路内洗浄剤排出制御を行うように構成されている。従って、残圧低減制御及び経路内洗浄剤排出制御をそれぞれ好適なタイミングで確実に実行することができる。
In the rotary atomizing coating machine 1 of the present embodiment, a residual pressure reducing mechanism Z1 that reduces the residual pressure in the upstream region of the check valve 31 in the cleaning fluid supply path 21 is provided. For this reason, the residual pressure in the upstream region of the check valve 31 in the cleaning fluid supply path 21 is reduced by the residual pressure reducing mechanism Z1. As a result, the urging force of the urging means 34 is relatively greater than the pressure in the upstream region. Therefore, even if the check valve 31 having a low sealing property is used, the cleaning fluid supply path 21 is reliably sealed. For this reason, the cleaning agent leakage from the cleaning nozzle 26 at the time of painting can be surely prevented, and the occurrence of a coating defect caused by the leakage can be prevented.
(2) In the residual pressure reducing mechanism Z1 in the rotary atomizing coating machine 1 of the present embodiment, the cleaning fluid remaining in the upstream region of the check valve 31 is released via the escape path 24. As a result, the residual pressure is released at a position away from the coating machine body 11. Therefore, the residual pressure in the upstream region can be reliably released. Further, since the remaining cleaning fluid is released to a position away from the object to be coated, the risk of the cleaning agent adhering to the object to be coated can be minimized.
(3) The residual pressure reducing mechanism Z1 includes a residual pressure reducing valve 71 provided at a connection site between the escape passage 24 and the cleaning fluid supply passage 21. Therefore, the residual pressure can be released in a timely manner by the opening / closing operation of the residual pressure reducing valve 71.
(4) In the residual pressure reduction mechanism Z1, the cleaning agent supply valve 51, the air supply valve 61, and the residual pressure reduction valve 71 are installed on the common manifold block 81. Therefore, the valves 51, 61, 71 are Piping connecting each other can be omitted. Therefore, the apparatus can be configured compactly.
(5) In the present embodiment, since the cleaning agent in the escape path 24 is pressure-fed using the air from the air supply path 23, the cleaning agent is unlikely to accumulate in the escape path 24. For this reason, it is possible to prevent an increase in the passage resistance of the cleaning agent, and it is possible to prevent the backflow of the stored cleaning agent. Therefore, the residual pressure can be reliably released over a long period.
(6) The rotary atomizing coating machine 1 of the present embodiment includes a control device that drives and controls valves, and the control device performs residual pressure reduction control and in-path cleaning agent discharge control at a predetermined timing. It is configured as follows. Therefore, the residual pressure reduction control and the in-path cleaning agent discharge control can be surely executed at suitable timings.
[第2の実施形態] [Second Embodiment]
 次に、第2の実施形態の回転霧化式塗装機を図9に基づき詳細に説明する。 Next, the rotary atomizing coating machine of the second embodiment will be described in detail with reference to FIG.
 上記第1の実施形態では、3つのバルブ51、61、71を用いて残圧低減機構Z1を構成した例を示したが、勿論これに限定されない。そこで、第2の実施形態では、2つのバルブ91、101を用いて残圧低減機構Z2を構成している。 In the first embodiment, the example in which the residual pressure reducing mechanism Z1 is configured using the three valves 51, 61, 71 is shown, but the present invention is not limited to this. Therefore, in the second embodiment, the residual pressure reducing mechanism Z2 is configured by using the two valves 91 and 101.
 この残圧低減機構Z2では、洗浄剤供給経路22と洗浄流体供給経路21との接続部位には、洗浄剤供給バルブ91が設けられている。洗浄流体供給経路21において洗浄剤供給バルブ91の上流側部位には、エア供給バルブ101が設けられるとともに、そのエア供給バルブ101にはエア供給経路23と逃がし経路24とが接続されている。そして、洗浄剤供給バルブ91及びエア供給バルブ101が、残圧低減バルブとしても機能するようになっている。 In the residual pressure reducing mechanism Z2, a cleaning agent supply valve 91 is provided at a connection portion between the cleaning agent supply path 22 and the cleaning fluid supply path 21. An air supply valve 101 is provided upstream of the cleaning agent supply valve 91 in the cleaning fluid supply path 21, and an air supply path 23 and an escape path 24 are connected to the air supply valve 101. The cleaning agent supply valve 91 and the air supply valve 101 also function as residual pressure reducing valves.
 本実施形態の洗浄剤供給バルブ91はパイロットエアPA1で駆動される三方弁であり、エア供給バルブ101はパイロットエアPA2で駆動される三方弁である。なお、洗浄剤供給バルブ91及びエア供給バルブ101は、上記実施形態の洗浄剤供給バルブ51と多くの部分で構造が共通している。よってここでは、共通部分については同じ部材番号を付してその詳細な説明を割愛する一方、異なる部分を中心に説明する。 The cleaning agent supply valve 91 of the present embodiment is a three-way valve driven by pilot air PA1, and the air supply valve 101 is a three-way valve driven by pilot air PA2. The cleaning agent supply valve 91 and the air supply valve 101 have the same structure in many parts as the cleaning agent supply valve 51 of the above embodiment. Therefore, here, the common parts are denoted by the same member numbers, and detailed descriptions thereof are omitted, while different parts are mainly described.
 洗浄剤供給バルブ91は、1つのパイロットポート44Cと、3つのポート(第1ポート44A、第2ポート44B、第3ポート44D)を備えており、弁体収容室53は各ポート44A、44B、44Dに対してそれぞれ連通している。リング状の弁座59は、弁体収容室53の上側面にも設けられており、この弁座59に対して弁体58の上端部が接離するようになっている。同様に、エア供給バルブ101は、1つのパイロットポート45Cと、3つのポート(第1ポート45A、第2ポート45B、第3ポート45D)を備えており、弁体収容室53は各ポート45A、45B、45Dに対してそれぞれ連通している。リング状の弁座59は、弁体収容室53の上側面にも設けられており、この弁座59に対して弁体58の上端部が接離するようになっている。 The cleaning agent supply valve 91 includes one pilot port 44C and three ports (first port 44A, second port 44B, and third port 44D), and the valve body storage chamber 53 includes ports 44A, 44B, Each communicates with 44D. The ring-shaped valve seat 59 is also provided on the upper side surface of the valve body accommodating chamber 53, and the upper end portion of the valve body 58 is in contact with and separated from the valve seat 59. Similarly, the air supply valve 101 includes one pilot port 45C and three ports (first port 45A, second port 45B, and third port 45D), and the valve body accommodating chamber 53 includes each port 45A, 45B and 45D communicate with each other. The ring-shaped valve seat 59 is also provided on the upper side surface of the valve body accommodating chamber 53, and the upper end portion of the valve body 58 is in contact with and separated from the valve seat 59.
 そして、この洗浄剤供給バルブ91の場合、パイロットポート44CにパイロットエアPA1が導入されないときには、第1ポート44Aと第2ポート44Bとの間が遮断されたクローズ状態となる。その一方で、第1ポート44Aと第3ポート44Dとの間が連通されたオープン状態となる。これに対し、パイロットエアPA1が導入されたときには、第1ポート44Aと第3ポート44Dとの間が遮断されたクローズ状態となる。その一方で、第1ポート44Aと第2ポート44Bとの間が連通されたオープン状態となる。また、このエア供給バルブ101の場合、パイロットポート45CにパイロットエアPA2が導入されないときには、第1ポート45Aと第2ポート45Bとの間が遮断されたクローズ状態となる。その一方で、第1ポート45Aと第3ポート45Dとの間が連通されたオープン状態となる。これに対し、パイロットエアPA2が導入されたときには、第1ポート45Aと第3ポート45Dとの間が遮断されたクローズ状態となる。その一方で、第1ポート45Aと第2ポート45Bとの間が連通されたオープン状態となる。 In the case of the cleaning agent supply valve 91, when the pilot air PA1 is not introduced into the pilot port 44C, the first port 44A and the second port 44B are closed. On the other hand, the first port 44A and the third port 44D are in an open state in which communication is established. On the other hand, when the pilot air PA1 is introduced, the first port 44A and the third port 44D are closed. On the other hand, the first port 44A and the second port 44B are in an open state in which communication is established. In the case of the air supply valve 101, when the pilot air PA2 is not introduced into the pilot port 45C, the first port 45A and the second port 45B are closed. On the other hand, the first port 45A and the third port 45D are in an open state in which communication is established. On the other hand, when the pilot air PA2 is introduced, the first port 45A and the third port 45D are closed. On the other hand, the first port 45A and the second port 45B are in an open state in which communication is established.
 なお、洗浄剤供給バルブ91の第1ポート44Aには洗浄流体供給経路21が接続され、第2ポート44Bには逆止弁CK1を介して洗浄剤供給経路22が接続されている。また、エア供給バルブ101の第2ポート45Bには逆止弁CK1を介してエア供給経路23が接続され、第3ポート45Dには逃がし経路24が直接的に接続されている。 The cleaning fluid supply path 21 is connected to the first port 44A of the cleaning agent supply valve 91, and the cleaning agent supply path 22 is connected to the second port 44B via the check valve CK1. An air supply path 23 is connected to the second port 45B of the air supply valve 101 via a check valve CK1, and an escape path 24 is directly connected to the third port 45D.
 このように構成された第2の実施形態の残圧低減機構Z2を用いた場合であっても、例えば図4、図5のテーブルにて示したタイミングで残圧低減動作を行わせることが可能となる。 Even in the case of using the residual pressure reduction mechanism Z2 of the second embodiment configured as described above, the residual pressure reduction operation can be performed at the timing shown in the tables of FIGS. 4 and 5, for example. It becomes.
 なお、本発明の実施の形態は以下のように変更してもよい。 The embodiment of the present invention may be modified as follows.
 ・上記第2の実施形態では、エア供給バルブ101は1種類のパイロットエアPA2で駆動される三方弁を使用したが、例えばこれに代えて、2種類のパイロットエアで駆動される三方弁を使用することも可能である。具体的には、図9のエア供給バルブ101をノーマルオープン型の三方弁とすべく、パイロットポートを2つ設けて、ピストン55の両端面に対してそれぞれパイロットエアが作用するような構造とする。このような三方弁を用いると、例えば、第1ポート45Aと第2ポート45Bと第3ポート45Dとの間が連通されたオープン状態とすることが可能となる。よって、このオープン状態のときに洗浄剤供給バルブ91の第1ポート44Aと第3ポート44Dとの間をクローズしておけば、洗浄剤供給バルブ91を閉状態に維持しつつ、所定時間だけエア供給経路23から逃がし経路24にエアを供給することが可能となる。その結果、このように構成された残圧低減機構を用いた場合であっても、図6~図8のテーブルにて示したタイミングで経路内洗浄剤排出制御を行わせることが可能となる。 In the second embodiment, the air supply valve 101 uses a three-way valve driven by one type of pilot air PA2, but instead, for example, a three-way valve driven by two types of pilot air is used. It is also possible to do. Specifically, in order to make the air supply valve 101 of FIG. 9 a normally open three-way valve, two pilot ports are provided so that the pilot air acts on both end faces of the piston 55 respectively. . When such a three-way valve is used, for example, it is possible to establish an open state in which the first port 45A, the second port 45B, and the third port 45D communicate with each other. Therefore, if the gap between the first port 44A and the third port 44D of the cleaning agent supply valve 91 is closed in this open state, the cleaning agent supply valve 91 is kept closed and the air is supplied for a predetermined time. It is possible to supply air from the supply path 23 to the escape path 24. As a result, even when the residual pressure reducing mechanism configured as described above is used, the in-path cleaning agent discharge control can be performed at the timing shown in the tables of FIGS.
 ・上記第1、第2の実施形態では、塗装機本体11はロボットアーム2の先端に支持されていたがこれに限定されるわけではなく、ロボットアーム2以外の支持体に支持されていてもよい。 In the first and second embodiments, the coating machine main body 11 is supported at the tip of the robot arm 2, but is not limited thereto, and may be supported by a support body other than the robot arm 2. Good.
 ・上記第1、第2の実施形態では、弁体32としてのボール、弁座33及び付勢手段34としてのコイルばねを有するチェック弁31を用いたが、これに限定されない。つまり、受動的に作動するタイプのバルブを構成できるのであれば、ボール以外のものを弁体32として用いてもよいほか、コイルばね以外のものを付勢手段34として用いてもよい。 In the first and second embodiments, the check valve 31 having the ball as the valve body 32, the valve seat 33, and the coil spring as the biasing means 34 is used, but the present invention is not limited to this. That is, as long as a passively operated type valve can be configured, a valve other than the ball may be used as the valve body 32, and a valve other than the coil spring may be used as the urging means 34.
 ・上記第1の実施形態では、各バルブ51、61、71を共通のマニホールドブロック81上に設置したがこれに限定されず、例えばバルブ51、61を共通のマニホールドブロック81上に設置し、残圧低減バルブ71はそれとは別の位置に設置するようにしてもよい。また、これら3つのバルブ51、61、71同士をマニホールドブロック81を用いずに互いに配管で流路的に接続しても勿論構わない。また、上記第2の実施形態における各バルブ91、101を共通のマニホールドブロック81上に設置して使用しても勿論よい。 In the first embodiment, the valves 51, 61, 71 are installed on the common manifold block 81. However, the present invention is not limited to this. For example, the valves 51, 61 are installed on the common manifold block 81, and the remaining The pressure reducing valve 71 may be installed at a different position. Of course, these three valves 51, 61, 71 may be connected to each other in a flow path by piping without using the manifold block 81. Of course, the valves 91 and 101 in the second embodiment may be installed on the common manifold block 81 for use.
 1…回転霧化式塗装機
 2…ロボットアーム
 3…制御装置
 11…塗装機本体
 14…回転霧化頭
 16…中心軸
 17…(回転霧化頭の)背面
 21…洗浄流体供給経路
 22…洗浄剤供給経路
 23…エア供給経路
 24…逃がし経路
 26…洗浄ノズル
 31…チェック弁
 32…弁体
 33…弁座
 34…付勢手段
 51…洗浄剤供給バルブ
 61…エア供給バルブ
 71…残圧低減バルブ
 81…マニホールドブロック
 91…(残圧低減バルブの機能を有する)洗浄剤供給バルブ
 101…(残圧低減バルブの機能を有する)エア供給バルブ
 E1…経路末端
 E2…経路始端
 Z1、Z2…残圧低減機構
DESCRIPTION OF SYMBOLS 1 ... Rotary atomization type coating machine 2 ... Robot arm 3 ... Control apparatus 11 ... Coating machine main body 14 ... Rotary atomization head 16 ... Center axis 17 ... Back surface (rotary atomization head) 21 ... Cleaning fluid supply path 22 ... Cleaning Agent supply path 23 ... Air supply path 24 ... Escape path 26 ... Cleaning nozzle 31 ... Check valve 32 ... Valve body 33 ... Valve seat 34 ... Energizing means 51 ... Cleaning agent supply valve 61 ... Air supply valve 71 ... Residual pressure reducing valve 81 ... Manifold block 91 ... Cleaning agent supply valve 101 (having the function of residual pressure reduction valve) 101 ... Air supply valve (having the function of residual pressure reduction valve) E1 ... Path end E2 ... Path start end Z1, Z2 ... Residual pressure reduction mechanism

Claims (9)

  1.  塗装機本体と、前記塗装機本体の先端側かつ中心軸上に設けられた回転霧化頭と、前記回転霧化頭の背面に向けて洗浄流体としての洗浄剤及びエアを噴出して洗浄すべく、前記塗装機本体の先端側かつ前記中心軸から偏心した位置に配置された洗浄ノズルと、経路始端に洗浄剤供給経路及びエア供給経路が接続され、経路末端に位置する前記洗浄ノズルに前記洗浄剤及び前記エアを供給する洗浄流体供給経路と、非洗浄時に前記洗浄流体供給経路を閉塞すべく、前記洗浄流体供給経路の途上において前記洗浄ノズル直近の上流側に配置されたチェック弁とを備えた回転霧化式塗装機であって、
     前記チェック弁は、弁体、弁座及び付勢手段を有し、前記付勢手段が前記弁体を前記洗浄流体の正流に抗して前記弁座側に付勢するように構成され、前記付勢手段の付勢力が洗浄時における前記洗浄流体の供給圧力よりも小さくなるようにあらかじめ設定されているとともに、
     前記洗浄流体供給経路における前記チェック弁の上流側領域の残圧を低減させる残圧低減機構が設けられている
    ことを特徴とする回転霧化式塗装機。
    Cleaning is performed by spraying cleaning agent and air as a cleaning fluid toward the coating machine main body, the rotary atomizing head provided on the front end side and the central axis of the coating machine main body, and the back surface of the rotary atomizing head. Accordingly, the cleaning nozzle disposed at the front end side of the coating machine main body and at a position deviated from the central axis, the cleaning agent supply path and the air supply path are connected to the path start end, and the cleaning nozzle positioned at the path end is connected to the cleaning nozzle. A cleaning fluid supply path for supplying the cleaning agent and the air, and a check valve disposed upstream of the cleaning nozzle in the middle of the cleaning fluid supply path in order to close the cleaning fluid supply path when not cleaning. A rotary atomizing coating machine equipped with,
    The check valve includes a valve body, a valve seat, and an urging means, and the urging means is configured to urge the valve body toward the valve seat against a normal flow of the cleaning fluid, The biasing force of the biasing means is set in advance so as to be smaller than the supply pressure of the cleaning fluid at the time of cleaning,
    A rotary atomizing coating machine provided with a residual pressure reducing mechanism for reducing a residual pressure in a region upstream of the check valve in the cleaning fluid supply path.
  2.  前記残圧低減機構は、前記洗浄流体供給経路における前記チェック弁の上流側領域に接続されるとともに、前記チェック弁の上流側領域に残留した前記洗浄流体を前記洗浄流体供給経路から逃がして前記塗装機本体から離れた位置にて解放する逃がし経路を含んで構成されていることを特徴とする請求項1に記載の回転霧化式塗装機。 The residual pressure reducing mechanism is connected to the upstream region of the check valve in the cleaning fluid supply path, and the coating fluid is released from the cleaning fluid supply path through the cleaning fluid remaining in the upstream region of the check valve. The rotary atomizing coating machine according to claim 1, wherein the rotary atomizing coating machine is configured to include an escape path that is released at a position away from the machine body.
  3.  前記残圧低減機構は、前記逃がし経路と前記洗浄流体供給経路との接続部位に設けられた残圧低減バルブをさらに含んで構成されていることを特徴とする請求項2に記載の回転霧化式塗装機。 3. The rotary atomization according to claim 2, wherein the residual pressure reducing mechanism further includes a residual pressure reducing valve provided at a connection portion between the escape path and the cleaning fluid supply path. Type painting machine.
  4.  前記洗浄剤供給経路と前記洗浄流体供給経路との接続部位には、洗浄剤供給バルブが設けられ、
     前記エア供給経路と前記洗浄流体供給経路との接続部位には、エア供給バルブが設けられ、
     前記洗浄剤供給バルブ、前記エア供給バルブ及び前記残圧低減バルブが共通のマニホールドブロック上に設置されている
    ことを特徴とする請求項3に記載の回転霧化式塗装機。
    A connecting part between the cleaning agent supply path and the cleaning fluid supply path is provided with a cleaning agent supply valve,
    An air supply valve is provided at a connection portion between the air supply path and the cleaning fluid supply path,
    The rotary atomizing coating machine according to claim 3, wherein the cleaning agent supply valve, the air supply valve, and the residual pressure reducing valve are installed on a common manifold block.
  5.  前記洗浄剤供給経路と前記洗浄流体供給経路との接続部位には、洗浄剤供給バルブが設けられ、
     前記洗浄流体供給経路において前記洗浄剤供給バルブの上流側部位には、エア供給バルブが設けられるとともに、そのエア供給バルブには前記エア供給経路と前記逃がし経路とが接続され、
     前記洗浄剤供給バルブ及び前記エア供給バルブが、前記残圧低減バルブとしても機能する
    ことを特徴とする請求項3に記載の回転霧化式塗装機。
    A connecting part between the cleaning agent supply path and the cleaning fluid supply path is provided with a cleaning agent supply valve,
    In the cleaning fluid supply path, an air supply valve is provided at an upstream portion of the cleaning agent supply valve, and the air supply path and the relief path are connected to the air supply valve,
    The rotary atomizing type coating machine according to claim 3, wherein the cleaning agent supply valve and the air supply valve also function as the residual pressure reducing valve.
  6.  前記逃がし経路内の前記洗浄剤が、前記エア供給経路からの前記エアを用いて圧送されることを特徴とする請求項2乃至5のいずれか1項に記載の回転霧化式塗装機。 The rotary atomizing coating machine according to any one of claims 2 to 5, wherein the cleaning agent in the escape path is pumped using the air from the air supply path.
  7.  バルブ類を駆動制御する制御装置を備えるとともに、
     前記制御装置は、洗浄期間終了直前から塗装期間開始時までの期間中に、所定時間だけ前記残圧低減バルブを開状態にする残圧低減制御を行う
    ことを特徴とする請求項4または5に記載の回転霧化式塗装機。
    With a control device that drives and controls valves,
    The said control apparatus performs residual pressure reduction control which makes the said residual pressure reduction valve open only for predetermined time during the period from just before completion | finish of a washing | cleaning period to the start of a coating period. The rotary atomizing coating machine described.
  8.  バルブ類を駆動制御する制御装置を備えるとともに、
     前記制御装置は、塗装期間を除く期間中に、前記洗浄剤供給バルブを閉状態に維持しつつ、所定時間だけ前記エア供給バルブを開状態にしかつ前記残圧低減バルブを開状態にする経路内洗浄剤排出制御を行う
    ことを特徴とする請求項6に記載の回転霧化式塗装機。
    With a control device that drives and controls valves,
    The control device keeps the cleaning agent supply valve closed during a period excluding the coating period, and opens the air supply valve and opens the residual pressure reducing valve for a predetermined time. The rotary atomizing coating machine according to claim 6, wherein cleaning agent discharge control is performed.
  9.  前記塗装機本体は、ロボットアームの先端に支持されていることを特徴とする請求項1乃至8のいずれか1項に記載の回転霧化式塗装機。 The rotary atomizing coating machine according to any one of claims 1 to 8, wherein the coating machine main body is supported by a tip of a robot arm.
PCT/JP2017/006286 2017-02-21 2017-02-21 Rotary atomizing type coating machine WO2018154622A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019501780A JP6815478B2 (en) 2017-02-21 2017-02-21 Rotary atomization type coating machine
PCT/JP2017/006286 WO2018154622A1 (en) 2017-02-21 2017-02-21 Rotary atomizing type coating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006286 WO2018154622A1 (en) 2017-02-21 2017-02-21 Rotary atomizing type coating machine

Publications (1)

Publication Number Publication Date
WO2018154622A1 true WO2018154622A1 (en) 2018-08-30

Family

ID=63254289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006286 WO2018154622A1 (en) 2017-02-21 2017-02-21 Rotary atomizing type coating machine

Country Status (2)

Country Link
JP (1) JP6815478B2 (en)
WO (1) WO2018154622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948487B1 (en) * 2021-06-23 2021-10-13 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Electrostatic coating equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248458U (en) * 1985-09-11 1987-03-25
JPH09192546A (en) * 1996-01-24 1997-07-29 Toyota Motor Corp Cleaning of rotary atomizing head rear face of rotary atomization electrostatic coating device
WO1998014278A1 (en) * 1996-10-01 1998-04-09 Abb Industry K.K. Rotary atomization head
WO1998024554A1 (en) * 1996-12-03 1998-06-11 Abb Industry K.K. Rotary spray head coater
JP2003245575A (en) * 2002-02-25 2003-09-02 Asahi Sunac Corp Rotatable atomization head type coating apparatus
WO2007083677A1 (en) * 2006-01-19 2007-07-26 Abb K.K. Rotary spraying head type painting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248458U (en) * 1985-09-11 1987-03-25
JPH09192546A (en) * 1996-01-24 1997-07-29 Toyota Motor Corp Cleaning of rotary atomizing head rear face of rotary atomization electrostatic coating device
WO1998014278A1 (en) * 1996-10-01 1998-04-09 Abb Industry K.K. Rotary atomization head
WO1998024554A1 (en) * 1996-12-03 1998-06-11 Abb Industry K.K. Rotary spray head coater
JP2003245575A (en) * 2002-02-25 2003-09-02 Asahi Sunac Corp Rotatable atomization head type coating apparatus
WO2007083677A1 (en) * 2006-01-19 2007-07-26 Abb K.K. Rotary spraying head type painting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948487B1 (en) * 2021-06-23 2021-10-13 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Electrostatic coating equipment

Also Published As

Publication number Publication date
JPWO2018154622A1 (en) 2019-12-12
JP6815478B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
CA2282591C (en) Rotary atomizing head type coating system
KR101021894B1 (en) Air atomizing type coating apparatus
US9126817B2 (en) Paint replenishing apparatus for cartridge and paint replenishing method thereof
JP3857563B2 (en) Vehicle washer system
JP5654834B2 (en) Spray gun, painting system
JP3219018U (en) Spray gun for painting
JP2008012404A (en) Spray gun
WO2018154622A1 (en) Rotary atomizing type coating machine
JP4347036B2 (en) Rotary atomization coating equipment
JP2007275753A (en) Two-liquid mixing apparatus
JPH07227556A (en) Coating device for coating robot and its operating method
JPH07213960A (en) Spray gun for coating
US20230118476A1 (en) Rinsing apparatus for connection to an application-agent main channel of an application-agent changeover unit
WO2021250855A1 (en) Paint tank-equipped electrostatic coating device
JP4848322B2 (en) Water-based paint atomization coating system
JP3398035B2 (en) Needleless two-liquid concentric nozzle spray gun
JPH09225366A (en) Color change coater
JPH0716511A (en) Painting apparatus
JP2003117446A (en) Method for controlling spraygun injection time and spraygun
JP4240697B2 (en) Rotary atomizing coating equipment
WO2021014564A1 (en) Electrostatic coating apparatus
JPH062761Y2 (en) Viscous liquid atomizer
JP5297333B2 (en) Painting equipment
JP2005305210A (en) Coating apparatus and coating method
JPH11221497A (en) Atomizing air control device for air/airless gun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897467

Country of ref document: EP

Kind code of ref document: A1