WO2018153342A1 - 用于处理MoCA信号的信号处理方法及信号放大装置 - Google Patents

用于处理MoCA信号的信号处理方法及信号放大装置 Download PDF

Info

Publication number
WO2018153342A1
WO2018153342A1 PCT/CN2018/076959 CN2018076959W WO2018153342A1 WO 2018153342 A1 WO2018153342 A1 WO 2018153342A1 CN 2018076959 W CN2018076959 W CN 2018076959W WO 2018153342 A1 WO2018153342 A1 WO 2018153342A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
moca
port
user
path
Prior art date
Application number
PCT/CN2018/076959
Other languages
English (en)
French (fr)
Inventor
谢勇
刘玉兵
Original Assignee
贝思特宽带通讯(烟台)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贝思特宽带通讯(烟台)有限公司 filed Critical 贝思特宽带通讯(烟台)有限公司
Publication of WO2018153342A1 publication Critical patent/WO2018153342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/102Circuits therefor, e.g. noise reducers, equalisers, amplifiers

Definitions

  • the present invention relates to signal processing techniques, and more particularly to a signal processing method and signal amplifying apparatus for processing a MoCA signal.
  • MoCA Multimedia over Coax Alliance
  • It is an international standard for interconnecting home network devices based on coaxial cable. The standard is mainly applied to the interconnection between network devices in the home, and specifies the physical layer and data link for the transmission of broadband multimedia data such as network video, voice, games, etc. between various home network access devices and terminal devices by using coaxial cable.
  • Road level standard. MoCA technology typically operates at high frequencies and provides very high physical layer transmission bandwidth.
  • the Coax Multimedia Alliance (MoCA) signal can be transmitted over a shielded cable, providing a high level of security for user data, user personal information, and digital media, protecting users from interference and data theft. Applications are also becoming more widespread.
  • MoCA Coax Multimedia Alliance
  • the coaxial cable can effectively transmit the cable television signal and the broadband signal in the same cable, and realize the fusion between the cable television signal network and the digital broadband network.
  • the transmission distance of the cable is long, and thus an amplifier is inevitably used in the signal transmission process.
  • the existing amplifier signal is poorly isolated, and the signals of different channels are transmitted to the same duplexer and then distributed to each user end, resulting in poor signal strength and stability of the user terminal, especially for MoCA signals. .
  • a signal processing method for processing a MoCA signal comprising: inputting a non-MoCA digital signal from a signal port, and dividing the non-MoCA digital signal into two paths by the first allocator, The first signal is input to the first duplexer, and the second signal is input to the transfer switch, wherein a first signal path is formed between the transfer switch and the first user port, and a switch is formed between the transfer switch and other user ports.
  • the second signal path forms a third signal path between the first user port and the other user ports.
  • the non-MoCA signal can be transmitted to the signal port via the first signal path, the switch and the first distributor; when the signal amplifying device is powered off, the switch is disconnected from the second signal path; the first user port and other user ports can pass the The three signal paths interact with the MoCA signal.
  • a signal amplifying apparatus for processing a MoCA signal comprising: a signal port, a first user port, a first duplexer, a first splitter, a changeover switch, Wherein, the non-MoCA digital signal is input from the signal port, and the non-MoCA digital signal is divided into two paths by the first distributor, the first signal is input to the first duplexer, and the second signal is input to the transfer switch, wherein, the switch is Forming a first signal path with the first user port, forming a second signal path between the switch and other user ports, forming a third signal path between the first user port and the other user port, and energizing the signal amplifying device
  • the switch switches the second non-MoCA signal to the second signal path, and the non-MoCA signal from the other user ports can be transmitted to the signal port via the first signal path, the switch, and the first distributor; When the power is off, the switch disconnects the second signal path; the
  • the signal amplifying device is provided with a second duplexer, a third duplexer, a first signal amplifying circuit and a second signal amplifying circuit in the second signal path, wherein the second The duplexer separates the second non-MoCA digital signal into a low frequency digital signal and a high frequency digital signal, and the first signal amplifying circuit and the second signal amplifying circuit respectively amplify the low frequency digital signal and the high frequency digital signal, the third pair The instrument mixes the amplified low frequency digital signal and the high frequency digital signal, and outputs the amplified mixed signal to other user ports.
  • the first signal amplifying circuit and the second signal amplifying circuit respectively perform reverse amplification and forward amplification.
  • the mixed signal generated after being amplified is output to other user ports via the distributor.
  • the amplified signal generated by the amplification is output to a plurality of other user ports via two or more stages of the splitter.
  • a filter is provided between the third duplexer and the distributor.
  • a signal amplifying apparatus for example, distributes a MoCA signal from a first user port to a plurality of other user ports by resistance matching at a third signal path.
  • a signal amplifying apparatus for example, equally distributes MoCA signals from a first user port to a plurality of other user ports.
  • a signal amplifying device for example, a duplexer corresponding to each of the other user ports mixes the MoCA signal from the first user port and the amplified mixed signal from the second signal path, and mixes The signal is output to its corresponding user port.
  • a duplexer corresponding to each of the other user ports separates a signal from a user port corresponding thereto, and separates the separated MoCA signal from the corresponding user port through the third signal path. Go to the first duplexer and transmit the separated non-MoCA signal from the corresponding user port to the signal port via the second signal path, the switch and the first distributor.
  • the high frequency digital signal is a television signal and the low frequency digital signal is an internet digital signal, and the frequency of the mixed signal ranges from 5 to 1002 MHz.
  • a signal amplifying device for example, a distributor used in the signal amplifying device is a passive device for high-frequency wide-band signal power distribution.
  • a signal amplifying device for example, a transfer switch is an active device that controls conduction switching between ports by a control signal.
  • a signal amplifying apparatus for example, a duplexer used in the signal amplifying apparatus is capable of separating and mixing two frequency band signals of a dual band signal, and is a three-port filter passive device.
  • both the first signal amplifying circuit and the second signal amplifying circuit are active amplifying circuits.
  • a signal processing method and a signal amplifying apparatus which are simple in structure, good in signal stability, high in isolation, small in signal attenuation, high in transmission efficiency, and capable of processing a MoCA signal are provided.
  • FIG. 1 is a schematic schematic structural view of a signal amplifying device according to an embodiment of the present invention.
  • the usual household signals include television signals and Internet access signals, which can be connected to each other through coaxial cable, and with the popularity of interactive television programs, the uplink signals of the households can also be transmitted through the same cable. In this way, it is necessary to simultaneously process television signals, Internet digital signals, and transmission distribution of MoCA signals indoors.
  • a signal amplifying apparatus for processing a MoCA signal which can simultaneously process a television signal (including a television interactive signal fed back by a user) and an internet digital signal (including an internet of user feedback) An interactive signal), and a mixed signal formed by the combination of these three types of signals.
  • Fig. 1 shows the principle structure of a signal amplifying device according to an embodiment of the present invention.
  • the signal amplifying device comprises: a plurality of distributors 11, 12, 13, 14 and a plurality of duplexers 21, 22, 23, 24, 25, 26, 27, changeover switch 30, load 40, signal
  • the amplifying circuits 51, 52 have a plurality of resistors 61, 62, 63, 64, 65 and a plurality of signal ports 71, 72, 73, 74, 75, 76.
  • the above plurality of signal ports can be used as a signal input port, or can be used as a signal output port, and can simultaneously realize signal input and output.
  • the signal port can be implemented by a specific structure, or can be realized only by a cable connection.
  • the mixed signal SH+SL of the television signal SH and the Internet digital signal SL is input from the signal port 71.
  • the mixing of the television signal SH and the Internet digital signal SL can be implemented in the frequency domain because, in general, the frequency range of the television signal SH is in the high frequency range with respect to the frequency range of the Internet digital signal SL.
  • the frequency of the mixed signal SH+SL of the television signal SH and the Internet digital signal SL ranges from 5 to 1002 MHz.
  • the mixed signal SH+SL is split into two paths via the distributor 11, one signal is input to the duplexer 21, and the other signal is input to the changeover switch 30.
  • the distributor 11 can be a passive device for high frequency wideband signal power distribution, and its bandwidth can cover a frequency range of 5 to 1002 MHz.
  • the distributor 11 has a power signal distribution function, and can divide the high-frequency broadband signal into two signals of the same power, or can be divided into two signals of different powers.
  • the distributor 11 also has the function of isolating the output signals and matching the inputs to the outputs. That is to say, the distributor itself is bidirectional in the signal path, and the signal can be input from the main channel of the distributor to the branch of the distributor to the distributor, or from the branch of the distributor to the distributor to the distribution.
  • the splitter is a passive device that distributes power signals with some power attenuation.
  • the changeover switch 30 is an active device. As shown in FIG. 1, VDD is its power supply, Vct1 is its control signal, and control port RFC is switched between port RF1 and port RF2.
  • a duplexer used in a signal amplifying apparatus is a duplexer used in a dual band device capable of separating two frequency band signals of a dual band signal (forward) And hybrid (reverse), is a 3-port filter passive device.
  • the switch 30 When the signal amplifying device is energized, the switch 30 is energized, the port RFC of the switch 30 is turned on and RF1 is turned on, and a SH+SL mixed signal input to the switch 30 is switched and transmitted to the duplexer 22, and then is turned on by the duplexer. 22 is separated into two signals SH and SL, and then the two signals are forward-amplified and inversely amplified by the signal amplifying circuit 52 and the signal amplifying circuit 51, respectively.
  • the SH signal amplified by the signal amplifying circuit 52 and the SL signal amplified by the signal amplifying circuit 51 are mixed by the duplexer 23 to generate a mixed signal SH+SL, which is output to the distributor 12, and then passes through the distributor 12 and proceeds to the next stage distributor. 13 and 14, then output to signal ports 73, 74, 75 and 76 via duplexers 24, 25, 26, 27, respectively.
  • the other SH+SL signal input to the duplexer 21 is mixed with the MoCA signal S from the signal ports 73, 74, 75, and 76 in the duplexer 21 to generate a mixed signal RF, which is then output to the signal port 72.
  • the input from the signal port 72 includes a MoCA signal and other frequency signals (for example, a television interactive signal, an Internet interactive signal, etc., wherein the television interactive signal and the television signal have the same frequency range, and the frequency range of the Internet interactive signal and the Internet signal can be
  • the same mixed signal is separated by the duplexer 21 to separate the MoCA signal S, which is passed through the resistors 61 and 62, 63, 64, 65 and through the resistors to achieve S signal distribution with respect to the signal ports 73, 74, 75 and 76.
  • the S signals distributed via the resistors 61 and 62, 63, 64, 65 are input to the duplexers 24, 25, 26, and 27, respectively, and the mixed signals SH+SL distributed through the distributors 13 and 14 are also input separately.
  • the mixed signals SF including the MoCA signal and the SH+SL signal are generated by the duplexers 24, 25, 26, and 27, respectively, and output to the corresponding signal ports 73, 74, 75, and 76 by the respective duplexers.
  • the MoCA signal and the SH+SL signal may be in different frequency bands.
  • the SH+SL signal has a frequency range of 5 to 1002 MHz
  • the S signal (MoCA signal) has a frequency range of 1025 to 1675 MHz.
  • the MoCA signal is distributed by the resistor, and the characteristics of the resistor are utilized.
  • the resistor 61 and the resistors 62, 63, 64, 65 are utilized to have the same resistance value, the losses of the respective ports can be equal, and The levels are equal, the loss is also small, and the flatness is good.
  • higher port isolation can be achieved by using a splitter with a magnetic core to distribute non-MoCA signals.
  • Signal ports 73, 74, 75, and 76 can also function as signal input ports and are connected to different users or user equipment, respectively.
  • the mixed signal SF including the MoCA signal and the SH+SL signal transmitted from different users or user equipments is separated into respective MoCA signals (S signals) and non-MoCA signals by the duplexers 73, 74, 75, and 76, respectively ( SH+SL signal), then each MoCA signal passes through resistors 62, 63, 64 and 65, and then through resistor 61, to duplexer 21, which will direct SH+SL signal from distributor 11 and from resistor 61
  • the S signals are mixed to generate a mixed signal SF, which is output to the signal port 71.
  • the non-MoCA signal (SH+SL signal) reaches the duplexer 23 through the distributors 13 and 14 and the distributor 12, respectively, and is separated into signals SL and SH, and then amplified and inverted by the signal amplifying circuit 51 and the signal amplifying circuit 52, respectively.
  • the distributor 22 After being amplified, the distributor 22 is input, mixed in the distributor 22 to become the mixed signal SH+SL, and then transmitted to the signal port 71 via the turned-on transfer switch 30 and the distributor 11, thereby realizing interaction with an external non-MoCA signal.
  • the signal amplifying circuits 51 and 52 are active amplifying circuits which function to compensate for signal loss caused by the distributor.
  • the component connection line (signal transmission line) in FIG. 1 can be bidirectionally transmitted in combination with the input and output signal flow directions.
  • the signal ports 72-76 correspond to different users or user equipments, and can also be referred to as user ports, through which signals can be input and output.
  • the signals input and output by these user ports may be mixed signals including MoCA signals and non-MoCA signals (for example, television signal/television interactive signals and/or Internet signals/internet interactive signals), or may include only MoCA signals or non-MoCA signals.
  • a filter 80 is provided between the duplexer 23 and the distributor 12, which may be a 1002 MHz low pass filter to filter out higher frequencies than the SH+SL signal.
  • a modem is provided between the signal entry port and the signal port 71, and the television signal and/or the internet signal of the home is converted into an SH and/or SL signal output to the signal port 71. That is to say, according to different signal input requirements or settings, it is possible to transmit the mixed signal SH+SL of the SH signal and the SL signal, or only the SH signal or the SL signal.
  • the structure of the signal amplifying device shown in FIG. 1 is merely exemplary.
  • the signal port 72 can be interconnected with the MoCA signals of a plurality of other signal ports by means of resistance distribution, which can be more than the four shown in FIG. 1 (port 73 ⁇ ). 76), or less than 4 (for example, 2 or 1).
  • resistance distribution can be more than the four shown in FIG. 1 (port 73 ⁇ ). 76), or less than 4 (for example, 2 or 1).
  • the signal amplifying device of the embodiment of the present invention when the power supply device is not powered, that is, when the switch 30 and the amplifying circuits 51 and 52 are not in operation, other passive devices in the circuit of the amplifying device can still be realized. Effective signal transmission.
  • the transfer switch 30 is automatically placed at its RF2 end point (i.e., the ports RFC and RF2 of the diverter switch 30 are turned on), thereby connecting the load 40 to the signal path.
  • the SH+SL signal input from the signal port 71 is input to the duplexer 21 via the distributor 11, mixed with the MoCA signal from other user equipments in the duplexer 21 to generate a mixed signal RF, and then output to the signal port 72; the slave signal port After the 72 input mixed signal RF is separated by the duplexer 21, the SH+SL signal is output to the port 71 via the distributor 11, and the S signal is output to the corresponding duplexer 73-76 via the resistor 61 and other resistors 62-65; Since neither the change-over switch 30 nor the amplifying circuits 51 and 52 are operated, the SH+SL signal input from the port 71 does not pass through the changeover switch 30 - the duplexer 22 - the amplifiers 51 and 52 - the duplexer 23
  • the interaction of the MoCA signals between the user equipments can be maintained in a passive state, and at the same time, a certain user equipment port can still be based on the television signal and/or between the home ports. Or the interaction of Internet signals.
  • a signal processing method and a signal amplifying apparatus which are simple in structure, good in signal stability, high in isolation, small in signal attenuation, high in transmission efficiency, and capable of processing a MoCA signal are provided.
  • module or “unit” can also refer to any method, apparatus, apparatus, unit, or computer readable data storage medium containing computer instructions (eg, logical expressions) in the form of software, hardware, or firmware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

一种用于处理MoCA信号的信号处理方法及信号放大装置,该方法包括:从信号端口输入非MoCA数字信号,通过第一分配器将非MoCA数字信号分成两路,第一路信号输入到第一双工器,第二路信号输入到转换开关,其中,在转换开关与第一用户端口之间形成第一信号通路,在转换开关与其它用户端口之间形成第二信号通路,在第一用户端口和其它用户端口之间形成第三信号通路,在信号放大装置通电时,切换开关将第二路非MoCA信号切换到第二信号通路,并且来自其它用户端口的非MoCA信号能够经由第一信号通路、切换开关以及第一分配器传输到信号端口;在信号放大装置断电时,切换开关断开第二信号通路;第一用户端口与其它用户端口能够通过第三信号通路交互MoCA信号。

Description

用于处理MoCA信号的信号处理方法及信号放大装置 技术领域
本发明涉及信号处理技术,更具体地,涉及一种用于处理MoCA信号的信号处理方法及信号放大装置。
背景技术
在多个不同位置使用多个多媒体设备的需求引发了同轴电缆多媒体联盟(MoCA)的创建。MoCA是英文Multimedia over Coax Alliance的缩写,是基于同轴电缆实现家庭内部网络设备之间互联的国际标准。该标准主要应用于家庭内部网络设备之间的互联,规定了网络视频、语音、游戏等宽带多媒体数据利用同轴电缆在各种家庭网络接入设备和终端设备之间传输的物理层和数据链路层标准。MoCA技术通常工作在高频段,可以提供非常高的物理层传输带宽。
同轴电缆多媒体联盟(MoCA)信号能够在有屏蔽性的电缆中传输,对用户数据、用户个人信息以及数字媒体的传输安全等级高,可使用户免受干扰和数据被盗取的威胁,其应用也越来越广泛。
同轴电缆可将有线电视信号与宽带信号有效地在同一根电缆中传输,实现有线电视信号网络与数字宽带网络之间的融合。在目前的组网方式下,电缆的传输距离长,因而在信号传输过程中不可避免地要用到放大器。然而,现有的放大器信号隔离度差,不同通道的信号经过传输后进入同一双工器后再进行信号分配至各个用户端,导致用户端的信号强度差、稳定性也差,对于MoCA信号尤为如此。
发明内容
根据本发明的实施例的一方面,提供了一种用于处理MoCA信号的信号处理方法,其包括:从信号端口输入非MoCA数字信号,通过第一分配器将非MoCA数字信号分成两路,第一路信号输入到第一双工器,第二路信号输入到转换开关,其中,在转换开关与第一用户端口之间形成第一信号通路,在转换开关与其它用户端口之间形成第二信号通路,在第一用户端口和其它用户端口之间形成第三信号通路,在信号放大装置通电时,切换开关将第二路非MoCA信号切换到第二信号通路,并且来自其它用户端口的非MoCA信号能够经由第一信号通路、切换开关以及第一分配器传输到信号端口;在信号放大装置断电时,切换开关断开第二信号通路;第一用户端口与其它用户端口能够通过第三信号通路交互MoCA信号。
根据本发明的实施例的另一方面,提供了一种用于处理MoCA信号的信号放大装置,其包括:信号端口,第一用户端口,第一双工器,第一分配器,转换开关,其中,从信号端口输入非MoCA数字信号,非MoCA数字信号经第一分配器分成两路,第一路信号输入到第一双工器,第二路信号输入到转换开关,其中,在转换开关与第一用户端口之间形成第一信号通路,在转换开关与其它用户端口之间形成第二信号通路,在第一用户端口和其它用户端口之间形成第三信号通路,在信号放大装置通电时,切换开关将第二路非MoCA信号切换到第二信号通路,并且来自其它用户端口的非MoCA信号能够经由第一信号通路、切换开关以 及第一分配器传输到信号端口;在信号放大装置断电时,切换开关断开第二信号通路;第一用户端口与其它用户端口能够通过第三信号通路交互MoCA信号。
根据本发明实施例的信号放大装置,例如,信号放大装置在第二信号通路设置有第二双工器,第三双工器,第一信号放大电路和第二信号放大电路,其中,第二双工器将第二路非MoCA数字信号分离为低频数字信号和高频数字信号,第一信号放大电路和第二信号放大电路分别对该低频数字信号和高频数字信号进行放大,第三双工器将经放大的低频数字信号和高频数字信号进行混合,并将该经放大后生成的混合信号输出给其它用户端口。
根据本发明实施例的信号放大装置,例如,第一信号放大电路和第二信号放大电路分别实现反向放大和正向放大。
根据本发明实施例的信号放大装置,例如,经放大后生成的混合信号经分配器输出给其它用户端口。
根据本发明实施例的信号放大装置,例如,经放大后生成的混合信号经两级或者多于两级分配器输出给多个其它用户端口。
根据本发明实施例的信号放大装置,例如,在第三双工器和分配器之间设置有滤波器。
根据本发明实施例的信号放大装置,例如,在第三信号通路通过电阻匹配来将来自第一用户端口的MoCA信号分配给多个其它用户端口。
根据本发明实施例的信号放大装置,例如,将来自第一用户端口的MoCA信号均等分配给多个其它用户端口。
根据本发明实施例的信号放大装置,例如,与各个其它用户端口对应的双工器将来自第一用户端口的MoCA信号和来自第二信号通路的经放大的混合信号进行混合,并将混合后的信号输出到与其对应的用户端口。
根据本发明实施例的信号放大装置,例如,与各个其它用户端口对应的双工器将来自与其对应的用户端口的信号进行分离,将分离的来自对应用户端口的MoCA信号经过第三信号通路传输到第一双工器,并将分离的来自对应用户端口的非MoCA信号经过第二信号通路、切换开关和第一分配器传输到信号端口。
根据本发明实施例的信号放大装置,例如,高频数字信号是电视信号和低频数字信号是互联网数字信号,其混合信号的频率范围在5~1002MHz。
根据本发明实施例的信号放大装置,例如,该信号放大装置中使用的分配器是用于高频宽带信号功率分配的无源器件。
根据本发明实施例的信号放大装置,例如,转换开关是有源器件,通过控制信号来控制端口之间的导通切换。
根据本发明实施例的信号放大装置,例如,该信号放大装置中使用的双工器能够对双频带信号的两个频带信号进行分离和混合,是一种三端口滤波器无源器件。
根据本发明实施例的信号放大装置,例如,第一信号放大电路和第二信号放大电路均是有源放大电路。
根据本发明的实施例,提供了一种结构简单、信号稳定性好、隔离度高、信号衰减小、传输效率高并且能够处理MoCA信号的信号处理方法及信号放大装置。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1是根据本发明实施例的信号放大装置的示意性原理结构图。
附图标记
11、12、13、14分配器
21、22、23、24、25、26、27双工器
30转换开关
40负载
51、52信号放大电路,
61、62、63、64、65电阻
71、72、73、74、75、76信号端口
80滤波器
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
通常入户信号包括电视信号和互联网接入信号,这些信号均可以通过同轴电缆实现入户,并且随着互动电视节目的普及,出户的上行信号也可以通过相同的电缆传输。这样,需要同时处理电视信号、互联网数字信号以及MoCA信号在户内的传输分配。
根据本发明的实施例,提供了一种用于处理MoCA信号的信号放大装置,该信号放大装置还可以同时处理电视信号(包括用户反馈的电视交互信号)和互联网数字信号(包括用户反馈的互联网交互信号),以及这三类信号的相互组合形成的混合信号。
图1示出了根据本发明实施例的信号放大装置的原理结构。如图1所示,信号放大装置包括:多个分配器11、12、13、14,多个双工器21、22、23、24、25、26、27,转换开关30,负载40,信号放大电路51、52,多个电阻61、62、63、64、65以及多个信号端口71、72、73、74、75、76。
上述多个信号端口可以作为信号输入端口,也可以作为信号输出端口,还可以同时实现信号的输入输出。并且该信号端口可以通过特定的结构实现,也可以仅通过线缆连接来实现。
根据本发明的实施例,从信号端口71输入电视信号SH和互联网数字信号SL的混合信号SH+SL。其中,电视信号SH和互联网数字信号SL的混合可以在频域实现,这是因为,通常电视信号SH的频率范围相对于互联网数字信号SL的频率范围处于高频段。通常,电视信号 SH和互联网数字信号SL的混合信号SH+SL的频率范围在5~1002MHz。
所述混合信号SH+SL经分配器11分成两路,一路信号输入到双工器21,另一路信号输入到转换开关30。分配器11可以是用于高频宽带信号功率分配的无源器件,其带宽可以覆盖5~1002MHz的频率范围。分配器11具有功率信号的分配功能,可以将高频宽带信号等分成两个功率相同的信号,也可以分成两个功率不同的信号。分配器11还具有输出信号之间隔离以及输入端与输出端匹配的作用。也就是说,分配器本身在信号通路中是双向通过的,信号既可以从分配器的主路输入经分配器到分配器的支路,也可以从分配器的支路输入经过分配器到分配器的主路。另外,分配器是无源器件,其对功率信号的分配会造成一定的功率衰减。
转换开关30是有源器件,如图1所示,VDD为其电源,Vct1为其控制信号,控制端口RFC与端口RF1和端口RF2之间的切换。
根据本发明实施例的信号放大装置所采用的双工器,是一种在双频带设备中使用的双工器(Diplexer),其能够对双频带信号的2个频带信号进行分离(正向)和混合(反向),是一种3端口滤波器无源器件。
在信号放大装置通电时,切换开关30通电工作,切换开关30的端口RFC与RF1导通,输入到切换开关30的一路SH+SL混合信号被切换传输到双工器22,然后被双工器22分离为两路信号SH和SL,之后这两路信号分别被信号放大电路52和信号放大电路51正向放大和反向放大。经信号放大电路52放大的SH信号以及经信号放大电路51放大的SL信号通过双工器23混合生成混合信号SH+SL,输出到分配器12,经过分配器12再进入到下一级分配器13和14,然后经过双工器24、25、26、27分别输出到信号端口73、74、75和76。
输入到双工器21的另一路SH+SL信号与来自信号端口73、74、75和76的MoCA信号S在双工器21中混合,生成混合信号RF,然后输出到信号端口72。另一方面,从信号端口72输入的包括MoCA信号以及其它频率信号(例如电视互动信号、互联网交互信号等,其中电视互动信号与电视信号频率范围可以相同,互联网交互信号与互联网信号的频率范围可以相同)的混合信号经双工器21分离出MoCA信号S,该MoCA信号S经过电阻61以及62、63、64、65并通过电阻实现相对于信号端口73、74、75和76的S信号分配。更具体地,经电阻61以及62、63、64、65分配的S信号分别输入到双工器24、25、26和27,并且通过分配器13和14分配的混合信号SH+SL也分别输入到双工器24、25、26和27。这样,分别经双工器24、25、26和27混合而生成包含MoCA信号和SH+SL信号的混合信号SF,并由各个双工器输出到对应的信号端口73、74、75和76。
在混合信号SF中,MoCA信号和SH+SL信号可以处于不同的频带,例如,SH+SL信号所在频率范围为5~1002MHz,S信号(MoCA信号)的频率范围为1025~1675MHz。
根据本发明实施例的信号放大装置,采用电阻分配MoCA信号,利用了电阻的特性,通过设置电阻61以及电阻62、63、64、65具有相同的阻值,使得各端口的损耗可以相等,并且电平相等,同时损耗也比较小,平坦度好。另一方面,利用具有磁芯的分配器来分配非MoCA信号,可以获得更高的端口隔离度。
信号端口73、74、75和76也可以作为信号输入端口,并分别连接不同的用户或者用户设备。具体地,从不同用户或者用户设备发出的包含MoCA信号和SH+SL信号的混合信号SF分别经过双工器73、74、75和76分离成为各自的MoCA信号(S信号)和非MoCA信号(SH+SL信 号),然后各个MoCA信号分别经电阻62、63、64和65,再经电阻61,到达双工器21,双工器21将来自分配器11的SH+SL信号和来自电阻61方向的S信号混合,生成混合信号SF,输出到信号端口71。非MoCA信号(SH+SL信号)分别经过分配器13和14以及分配器12到达双工器23,分离为信号SL和SH,再分别经信号放大电路51和信号放大电路52正向放大和反向放大后输入分配器22,在分配器22中混合成为混合信号SH+SL,然后经导通的转换开关30和分配器11传输到信号端口71,实现与外部的非MoCA信号交互。信号放大电路51和52是有源放大电路,其作用是对分配器带来的信号损耗进行补偿。
由此亦可见,结合输入和输出的信号流走向,图1中的元器件连接线(信号传递线)是可以实现双向传输的。信号端口72~76对应于不同的用户或用户设备,也可以称其为用户端口,通过该端口可以实现信号的输入输出。这些用户端口输入输出的信号可以是包括MoCA信号和非MoCA信号(例如电视信号/电视互动信号和/或互联网信号/互联网交互信号)的混合信号,也可以只包括MoCA信号或非MoCA信号。
可选地,在双工器23和分配器12之间设置有滤波器80,该滤波器80可以是1002MHz的低通滤波器,以滤除比SH+SL信号频率更高的杂波。
可选地,在信号入户端口与信号端口71之间设置调制解调器,将入户的电视信号和/或互联网信号转换为SH和/或SL信号输出到信号端口71。也就是说,根据不同的信号入户需求或者设置,既可以传输SH信号与SL信号的混合信号SH+SL,也可以仅传输SH信号或SL信号。
图1所示信号放大装置的结构仅仅是实例性的,信号端口72可以通过电阻分配的方式实现与多个其它信号端口的MoCA信号互联,可以多于图1所示的4个(端口73~76),也可以少于4个(例如2个或者1个)。对于互联信号端口数量的扩展,可以根据需求通过配置更多的电阻以及分配器来实现。
根据本发明实施例的信号放大装置,可以实现在不对该信号放大装置进行供电时,即,切换开关30以及放大电路51和52不工作时,利用放大装置电路中的其它无源器件仍然能够实现有效的信号传输。
具体而言,当不对信号放大装置进行供电时,转换开关30自动被置于其RF2端点处(即切换开关30的端口RFC与RF2导通),从而将负载40接入到信号通路。从信号端口71输入的SH+SL信号经分配器11输入到双工器21,与来自其它用户设备的MoCA信号在双工器21混合生成混合信号RF,然后输出到信号端口72;从信号端口72输入的混合信号RF经双工器21分离后,SH+SL信号经分配器11输出到端口71,S信号经电阻61及其它电阻62~65分别输出到对应的双工器73~76;由于转换开关30与放大电路51和52均不工作,因而从端口71输入的SH+SL信号不会经转换开关30——双工器22——放大器51和52——双工器23——分配器12~14——双工器24~27的通路传送到信号端口73~76,信号端口73~76也不能将SH+SL信号传送到信号端口71,也就是说,与信号端口73~76对应的用户设备不再与入户信号端口71进行SH+SL信号的交互,但是信号端口73~76对应的用户设备仍然能够与信号端口72对应的用户设备进行MoCA信号的交互,即通过电阻61及其它电阻62~65实现用户端口73~76与用户端口72之间MoCA信号S的交互。
于是,根据本发明实施例的信号放大装置,可以在无源状态下保持用户设备之间MoCA信号的交互,并且同时使得某一用户设备端口仍能够与入户端口之间进行基于电视信 号和/或互联网信号的交互。
根据本发明的实施例,提供了一种结构简单、信号稳定性好、隔离度高、信号衰减小、传输效率高并且能够处理MoCA信号的信号处理方法及信号放大装置。
所属领域的技术人员将了解,可使用多种不同技艺和技术中的任一种来表示信息和信号。举例来说,可通过电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或者其任何组合来表示整个以上描述中可能参考的数据、指令、命令、信息、信号、位和符号。
本发明实施例中描述的各种组件或单元或者组成部分可实施于视为适合于既定应用的任何硬件结构或硬件与软件和/或固件的任何组合中。
本发明实施例中描述的各种方法步骤可由例如处理器等逻辑元件阵列执行。术语“模块”或“单元”也可指代呈软件、硬件或固件形式的包含计算机指令(例如,逻辑表达式)的任何方法、设备、装置、单元或计算机可读数据存储媒体。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种用于处理MoCA信号的信号处理方法,
    其特征在于,
    所述信号处理方法包括:
    从信号端口输入非MoCA数字信号,
    通过第一分配器将所述非MoCA数字信号分成两路,第一路信号输入到第一双工器,第二路信号输入到转换开关,
    其中,在所述转换开关与第一用户端口之间形成第一信号通路,在所述转换开关与其它用户端口之间形成第二信号通路,在所述第一用户端口和所述其它用户端口之间形成第三信号通路,
    在所述信号放大装置通电时,所述切换开关将所述第二路非MoCA信号切换到所述第二信号通路,并且来自所述其它用户端口的非MoCA信号能够经由所述第一信号通路、所述切换开关以及所述第一分配器传输到所述信号端口;
    在所述信号放大装置断电时,所述切换开关断开所述第二信号通路;
    所述第一用户端口与所述其它用户端口能够通过所述第三信号通路交互MoCA信号。
  2. 一种用于处理MoCA信号的信号放大装置,
    其特征在于,
    包括:信号端口(71),第一用户端口(72),第一双工器(21),第一分配器(11),转换开关(30),
    其中,
    从所述信号端口(71)输入非MoCA数字信号,
    所述非MoCA数字信号经所述第一分配器(11)分成两路,第一路信号输入到所述第一双工器(21),第二路信号输入到所述转换开关(30),
    其中,在所述转换开关(30)与所述第一用户端口(72)之间形成第一信号通路,在所述转换开关(30)与其它用户端口(73,74,75,76)之间形成第二信号通路,在所述第一用户端口(72)和所述其它用户端口(73,74,75,76)之间形成第三信号通路,
    在所述信号放大装置通电时,所述切换开关(30)将所述第二路非MoCA信号切换到所述第二信号通路,并且来自所述其它用户端口(73,74,75,76)的非MoCA信号能够经由所述第一信号通路、所述切换开关(30)以及所述第一分配器(11)传输到所述信号端口(71);
    在所述信号放大装置断电时,所述切换开关(30)断开所述第二信号通路;
    所述第一用户端口(72)与所述其它用户端口(73,74,75,76)能够通过所述第三信号通路交互MoCA信号。
  3. 根据权利要求2所述的信号放大装置,其特征在于,所述信号放大装置在所述第二信号通路设置有第二双工器(22),第三双工器(23),第一信号放大电路(51)和第二信号放大电路(52),
    其中,所述第二双工器(22)将所述第二路非MoCA数字信号分离为低频数字信号(SL)和高频数字信号(SH),所述第一信号放大电路(51)和所述第二信号放大电路(52)分别对该低频数字信号(SL)和高频数字信号(SH)进行放大,所述第三双工器(23)将经放大的低频数字信号和高频数字信号进行混合,并将该经放大后生成的混合信号输出给其它用户端口。
  4. 根据权利要求3所述的信号放大装置,其特征在于,所述第一信号放大电路(51)和所 述第二信号放大电路(52)分别实现反向放大和正向放大。
  5. 根据权利要求3所述的信号放大装置,其特征在于,所述经放大后生成的混合信号经分配器(12,13,14)输出给其它用户端口(73,74,75,76)。
  6. 根据权利要求5所述的信号放大装置,其特征在于,所述经放大后生成的混合信号经两级或者多于两级分配器(12,13,14)输出给多个其它用户端口(73,74,75,76)。
  7. 根据权利要求5所述的信号放大装置,其特征在于,在所述第三双工器(23)和所述分配器(12)之间设置有滤波器(80)。
  8. 根据权利要求2所述的信号放大装置,其特征在于,在所述第三信号通路通过电阻(61,62,63,64,65)匹配来将来自所述第一用户端口(72)的MoCA信号分配给多个其它用户端口(73,74,75,76)。
  9. 根据权利要求8所述的信号放大装置,其特征在于,将来自所述第一用户端口(72)的MoCA信号均等分配给多个其它用户端口(73,74,75,76)。
  10. 根据权利要求8所述的信号放大装置,其特征在于,与各个其它用户端口对应的双工器将来自所述第一用户端口(72)的MoCA信号和来自所述第二信号通路的经放大的混合信号进行混合,并将混合后的信号(RF)输出到与其对应的用户端口。
  11. 根据权利要求10所述的信号放大装置,其特征在于,与各个其它用户端口对应的双工器将来自与其对应的用户端口的信号进行分离,将分离的来自对应用户端口的MoCA信号经过所述第三信号通路传输到所述第一双工器(21),并将分离的来自对应用户端口的非MoCA信号经过所述第二信号通路、所述切换开关(30)和所述第一分配器(11)传输到所述信号端口(71)。
  12. 根据权利要求3所述的信号放大装置,其特征在于,所述高频数字信号(SH)是电视信号和所述低频数字信号(SL)是互联网数字信号,其混合信号的频率范围在5~1002MHz。
  13. 根据权利要求2所述的信号放大装置,其特征在于,该信号放大装置中使用的分配器是用于高频宽带信号功率分配的无源器件。
  14. 根据权利要求2所述的信号放大装置,其特征在于,所述转换开关(30)是有源器件,通过控制信号来控制端口之间的导通切换。
  15. 根据权利要求2所述的信号放大装置,其特征在于,该信号放大装置中使用的双工器能够对双频带信号的两个频带信号进行分离和混合,是一种三端口滤波器无源器件。
  16. 根据权利要求2所述的信号放大装置,其特征在于,所述第一信号放大电路(51)和第二信号放大电路(52)均是有源放大电路。
PCT/CN2018/076959 2017-02-22 2018-02-22 用于处理MoCA信号的信号处理方法及信号放大装置 WO2018153342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710095535.5 2017-02-22
CN201710095535.5A CN106791557A (zh) 2017-02-22 2017-02-22 用于处理MoCA信号的信号处理方法及信号放大装置

Publications (1)

Publication Number Publication Date
WO2018153342A1 true WO2018153342A1 (zh) 2018-08-30

Family

ID=58958474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076959 WO2018153342A1 (zh) 2017-02-22 2018-02-22 用于处理MoCA信号的信号处理方法及信号放大装置

Country Status (3)

Country Link
CN (1) CN106791557A (zh)
TW (1) TW201836350A (zh)
WO (1) WO2018153342A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106791557A (zh) * 2017-02-22 2017-05-31 贝思特宽带通讯(烟台)有限公司 用于处理MoCA信号的信号处理方法及信号放大装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030907A (zh) * 2007-01-17 2007-09-05 陈勇 基于MoCA技术的HFC网络宽带接入系统
CN102164255A (zh) * 2010-01-21 2011-08-24 约翰·梅扎林瓜联合有限公司 CATV接入适配器和用于防止MoCA信号对eMTA设备的干扰的方法
CN202183824U (zh) * 2010-02-12 2012-04-04 约翰·梅扎林瓜联合有限公司 Catv接入适配器
US20150207525A1 (en) * 2014-01-21 2015-07-23 Commscope, Inc. Of North Carolina Signal amplifiers that support moca communications at both active and passive output ports
CN106791557A (zh) * 2017-02-22 2017-05-31 贝思特宽带通讯(烟台)有限公司 用于处理MoCA信号的信号处理方法及信号放大装置
CN206611510U (zh) * 2017-02-22 2017-11-03 贝思特宽带通讯(烟台)有限公司 用于处理MoCA信号的信号放大装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB894654A (en) * 1958-10-23 1962-04-26 Standard Telephones Cables Ltd Improvements in or relating to transfer circuits using saturable magnetic cores
ES320389A1 (es) * 1965-11-25 1966-10-16 Ind Aux Es Metalurgicas Soc An Perfeccionamientos en las electrovalvulas de vias multiples
US4396805A (en) * 1981-09-21 1983-08-02 Siemens Corporation Ring trip detector for a subscriber line interface circuit
CN101043637A (zh) * 2007-04-05 2007-09-26 科腾科技(北京)有限公司 一种数字电视广播传输线路的监控设备接入方法
JP2017510101A (ja) * 2013-12-18 2017-04-06 トムソン ライセンシングThomson Licensing セットトップボックス用のフロントエンド・マルチプレクサトポロジ
CN106161159A (zh) * 2016-08-09 2016-11-23 嘉兴佳利电子有限公司 一种应用于woc局端中的滤波电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030907A (zh) * 2007-01-17 2007-09-05 陈勇 基于MoCA技术的HFC网络宽带接入系统
CN102164255A (zh) * 2010-01-21 2011-08-24 约翰·梅扎林瓜联合有限公司 CATV接入适配器和用于防止MoCA信号对eMTA设备的干扰的方法
CN202183824U (zh) * 2010-02-12 2012-04-04 约翰·梅扎林瓜联合有限公司 Catv接入适配器
US20150207525A1 (en) * 2014-01-21 2015-07-23 Commscope, Inc. Of North Carolina Signal amplifiers that support moca communications at both active and passive output ports
CN106791557A (zh) * 2017-02-22 2017-05-31 贝思特宽带通讯(烟台)有限公司 用于处理MoCA信号的信号处理方法及信号放大装置
CN206611510U (zh) * 2017-02-22 2017-11-03 贝思特宽带通讯(烟台)有限公司 用于处理MoCA信号的信号放大装置

Also Published As

Publication number Publication date
CN106791557A (zh) 2017-05-31
TW201836350A (zh) 2018-10-01

Similar Documents

Publication Publication Date Title
US8295212B2 (en) System and method for TDD/TMA with hybrid bypass switch of receiving amplifier
CA2797343C (en) Hybrid networks
US10212392B2 (en) Passive enhanced MoCA entry device
US20050206475A1 (en) Wideband catv signal splitter device
US6208833B1 (en) Echo cancellation for a broadband distribution system
US20090047917A1 (en) Signal Amplifiers Having Non-Interruptible Communication Paths
US20130081096A1 (en) Cable television entry adapter
US9031518B2 (en) Concurrent hybrid matching network
WO2022028303A1 (zh) 射频电路和电子设备
CN114303316A (zh) 双向可变增益放大
US20070063790A1 (en) Wideband CATV signal splitter device
US20170257152A1 (en) System and method for self-interference suppression structure
WO2018153342A1 (zh) 用于处理MoCA信号的信号处理方法及信号放大装置
CN112514269B (zh) 全双工或半双工收发器的射频前端
US20030093811A1 (en) Bandwidth directional coupler
WO2019149362A1 (en) Radio frequency front end for wireless communication
US11190150B2 (en) CMOS triple-band RF VGA and power amplifier in linear transmitter
KR102071885B1 (ko) 평형구조 및 광대역 0°/180° 전력분배기를 이용한 동일대역 비자성체 전이중통신 무선 전단부 회로
JP2003046399A (ja) 無線周波数入力インタフェース装置およびその複合装置
US20060234627A1 (en) Mobile radio combiner and multi-coupler unit
CN206611510U (zh) 用于处理MoCA信号的信号放大装置
JP2000295014A (ja) 信号結合装置
TWI814020B (zh) 頻率轉換電纜網路訊號傳輸裝置
Watkins et al. Single antenna full duplex cancellation network for ISM band
TWM571628U (zh) Signal amplifying device for processing MoCA signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757823

Country of ref document: EP

Kind code of ref document: A1