WO2018153182A1 - 一种多波束声呐主要声学指标的检测装置及检测方法 - Google Patents

一种多波束声呐主要声学指标的检测装置及检测方法 Download PDF

Info

Publication number
WO2018153182A1
WO2018153182A1 PCT/CN2018/072906 CN2018072906W WO2018153182A1 WO 2018153182 A1 WO2018153182 A1 WO 2018153182A1 CN 2018072906 W CN2018072906 W CN 2018072906W WO 2018153182 A1 WO2018153182 A1 WO 2018153182A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard
sound
sonar
hydrophone
standard hydrophone
Prior art date
Application number
PCT/CN2018/072906
Other languages
English (en)
French (fr)
Inventor
阳凡林
王贤昆
李东辉
李倩倩
石波
景冬
卢秀山
崔晓东
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US16/086,425 priority Critical patent/US10634784B2/en
Publication of WO2018153182A1 publication Critical patent/WO2018153182A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8945Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for linear mechanical movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8931Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration co-operating with moving reflectors

Definitions

  • the invention belongs to the technical field of marine surveying and mapping, and particularly relates to a detecting device and a detecting method for main acoustic indexes of multi-beam sonar.
  • Multi-beam sonar is a sounding instrument with high precision, high efficiency and full coverage.
  • multi-beam sonar has played a huge role in the research of seabed topography, ocean survey, defense application and research.
  • due to the lack of laboratory measurement and detection methods it is impossible to carry out standardized and effective detection, so that the accuracy and credibility of the observation data are seriously affected, and the acquired data has great quality hazards.
  • the present invention provides a detecting device and a detecting method for a main acoustic index of a multi-beam sonar, which is reasonable in design, overcomes the deficiencies of the prior art, and has good effects.
  • a multi-beam sonar main acoustic index detecting device comprises an muffling pool, wherein the muffling pool is equipped with a rotating device and a lifting device, and the bottom end of the rotating device is equipped with a multi-beam transducer, the rotation plane and the track
  • the line direction is vertical and is emitted in a horizontal direction; the bottom end of the lifting device is mounted with a standard hydrophone connected to a signal collector for real-time recording of the open circuit voltage amplitude of the standard hydrophone end.
  • the detection of the main acoustic index of the multi-beam sonar is performed in an anechoic pool environment, and the muffler pool is completely covered with a muffler on all sides of the pool according to the requirements of the sound absorption coefficient and the sound absorption band, and the pool of the pool is eliminated.
  • the wall, the bottom surface and the water face the reflection of the incident sound wave, thereby simulating an open water sound field without reflection.
  • the sound-absorbing pool should meet the free-field and far-field conditions of the underwater sound measurement.
  • the design of the pool The main basis is that the radiated sound pulse and the reflected pulse do not overlap each other in the pulse method measurement.
  • both the lifting device and the rotating device have the accuracy and system stability satisfying the detection requirements, can meet the load requirement, the rotating device can rotate freely around the rotating shaft in the horizontal plane, and the lifting device can freely along the vertical line in the vertical plane.
  • the horizontal distance between the lifting and lowering device and the rotating device meets the far field requirements.
  • the detection of the main acoustic index of the multi-beam sonar is performed in combination with the muffler pool and the pulse sound technology, and any muffling material cannot achieve 100% noise reduction. If the muffling material is only used to construct the free-field environment, it is not scientific and reasonable.
  • the present invention also relates to a method for detecting a main acoustic index of a multi-beam sonar, which adopts a multi-beam sonar main acoustic index detecting device as described above, comprising the following steps:
  • Step 1 Detecting the transmit directivity of the multi-beam sonar, including the following steps:
  • Step 1.1 Adjust the operating parameters including the frequency, power, pulse width, gain, and threshold of the multi-beam sonar device to make the pulse signal output normally and stably. Adjusting the standard hydrophone to be approximately at the same level as the multi-beam transducer;
  • Step 1.2 Rotate the multi-beam transducer in the horizontal plane by a rotating device at a certain angular interval, and record the open circuit voltage value of the standard hydrophone collected at each angular position.
  • the maximum position of the open circuit voltage is the acoustic axis. Vertically located;
  • Step 1.3 Adjust the multi-beam transducer to the maximum position of the open circuit voltage of the standard hydrophone described in step 1.2, fix the multi-beam transducer, adjust the standard hydrophone to the vertical plane below the acoustic axis, and then A certain interval is raised above the vertical plane of the standard hydrophone to the acoustic axis, and the open circuit voltage value of the standard hydrophone at each position is recorded, wherein the maximum position of the open circuit voltage is the acoustic axis;
  • Step 2 Detecting the reception directivity of the multi-beam sonar, including the following steps:
  • Step 2.1 Replace the standard hydrophone with a standard sound source, and adjust the lifting device to make the standard sound source to the sound axis position;
  • Step 2.2 rotating the multi-beam transducer at a certain angular interval in the horizontal plane by the rotating device;
  • Step 2.3 Receive signals transmitted by standard sound sources at different angular positions by multi-beam acquisition software, and obtain backscatter intensity values at each angle by analyzing multi-beam original recording data, thereby obtaining multi-beam sonar receiving directivity and Beam angle
  • Step 3 Pre-processing the data, including the following steps:
  • Step 3.1 Set the pulse width time domain to separate the direct signal, the reflected signal, and the refraction signal
  • Step 3.2 Design a bandpass filter for frequency domain filtering to filter out ambient noise or system noise in harmonics and pulse width;
  • Step 4 Calculate the frequency value according to formula (1.1);
  • f is the frequency
  • N is the number of integer periods in a period of time T
  • v is the sampling frequency
  • n is the number of sampling points in N periods
  • Step 5 Calculate the sound source level of the multi-beam transducer according to formula (1.2);
  • SL is the sound source level
  • the unit is dB
  • e s is the effective value of the sound pressure
  • the unit is V
  • d is the distance from the standard hydrophone to the multi-beam transducer
  • the unit is m
  • M s is the receiving sensitivity of the standard hydrophone , unit V/Pa;
  • Step 6 Calculate the beam angle.
  • Step 6.1 Convert the pulse signal amplitude of each position into a sound level value
  • Step 6.2 Subtract the maximum value of all the sound level values from the converted pulse signal amplitude in step 6.1, and the obtained values are arranged in order to draw the directivity map, and the maximum response sound level value on the main axis is 0 dB.
  • the angle of the sound level in the direction of the two sides is the beam angle with respect to the opening angle corresponding to -3 dB.
  • the invention utilizes a standard hydrophone to detect the frequency, the sound source level and the beam width of the multi-beam sonar, thereby ensuring the reliability, accuracy and credibility of the multi-beam sonar, filling the gap in the field, and also The detection of other marine measuring instruments provides a reference.
  • Figure 1 is a schematic view of a detecting device.
  • the multi-beam sonar model adopted by the present invention is R2 Sonic2024, and the specific implementation steps are as follows:
  • the hydrophone is fixed, and the multi-beam transducer is rotated in the horizontal plane by an angular interval of 0.05° by the rotating device, and the open circuit voltage value of the hydrophone at the point position is recorded. After one rotation, an open circuit voltage value can be collected at each angle position, and the maximum position of the open circuit voltage is the vertical plane of the sound axis.
  • Adjust the multi-beam transducer to the maximum open circuit voltage of the hydrophone fix the multi-beam transducer, and then adjust the hydrophone to 1.5m below the acoustic axis of the multi-beam, and raise the hydrophone bracket at a certain interval. Record the open circuit voltage value of the hydrophone at this point until the hydrophone is raised to 1.5 m above the acoustic axis.
  • the maximum position of the open circuit voltage is the direction of the sound axis.
  • the sound source level of the multi-beam transducer is calculated based on the maximum sound pressure amplitude of the pulse signal.
  • f is the frequency
  • N is the number of integer periods in a period of time T
  • v is the sampling frequency
  • n is the number of sampling points in N periods.
  • the calculation formula of the sound source level in step (7) is:
  • the nominal value of the R2 Sonic2024 multi-beam sonar source level is 210dB, the actual detection value is 209.350dB; the nominal frequency is 200kHz, the actual detection value is 200.003kHz; the nominal value of the beam width along the flight path is 1 °, the detection value is 1.09 °, the nominal beam width in the vertical track direction is 0.5 °, and the detection value is 0.57 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种多波束声呐主要声学指标的检测装置及检测方法,属于海洋测绘技术领域,检测装置包括消声水池,消声水池中安装有旋转装置和升降装置,旋转装置的底端安装有多波束换能器,其旋转平面与航迹线方向垂直,且沿水平方向发射;升降装置的底端安装有标准水听器,标准水听器连接有信号采集器;通过消声水池及升降装置和旋转装置,利用标准水听器接收多波束声呐发射的脉冲信号及用多波束声呐接收标准声源信号,设计检测流程采集数据,并对其进行分析研究,实现对多波束声呐的频率、声源级以及波束角的检测。保证了多波束声呐的可靠性、准确性和可信度,填补了这一领域的空白,也为其他海洋测量仪器设备的检测提供了参考。

Description

一种多波束声呐主要声学指标的检测装置及检测方法 技术领域
本发明属于海洋测绘技术领域,具体涉及一种多波束声呐主要声学指标的检测装置及检测方法。
背景技术
多波束声呐是一种具有高精度、高效率、全覆盖等特点的测深仪器,近年来,多波束声呐在海底地形地貌测量、海洋调查、国防应用与研究等领域发挥了巨大的作用。但是,由于缺乏实验室计量检测手段,无法进行规范有效的检测,使观测数据的准确性和可信度受到严重影响,所获取的数据资料存在很大的质量隐患。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种多波束声呐主要声学指标的检测装置及检测方法,设计合理,克服了现有技术的不足,具有良好的效果。
为了实现上述目的,本发明采用如下技术方案:
一种多波束声呐主要声学指标的检测装置,包括消声水池,消声水池中安装有旋转装置和升降装置,所述旋转装置的底端安装有多波束换能器,其旋转平面与航迹线方向垂直,且沿水平方向发射;所述升降装置的底端安装有标准水听器,标准水听器连接有用于实时记录标准水听器端的开路电压幅值的信号采集器。
优选地,多波束声呐主要声学指标的检测是在消声水池环境下进行的,消声水池是根据吸声系数和吸声频段的要求在水池的所有面上全部挂满消声器,消除水池的池壁、底面和水面对入射声波的的反射,从而模拟一个没有反射的开阔水域声场,消声水池应满足水声测量的自由场、远场条件,待检仪器工作频段决定后,水池的设计主要依据是在脉冲法测量中辐射声脉冲与反射脉冲不发生相互重叠干扰。
优选地,升降装置和旋转装置均具有满足检测要求的精度和系统稳定性,能够满足负载要求,旋转装置在水平面内能够围绕旋转轴自由旋转,升降装置能够在竖直面内沿铅垂线自由升降,升降装置和旋转装置之间的水平距离满足远场要求。
优选地,多波束声呐主要声学指标的检测是结合消声水池和脉冲声技术进行的,任何消声材料不可能达到100%消声,如果仅依靠消声材料构建自由场环境是不够科学合理的,存在消声不完全的弊端;另外,对于频率变化范围较大,工作频段超出消声材料吸声范围的声呐,当检测其低频段的声学参数时,消声材料是无法满足要求的;脉冲声技术是将换能器和水听器安置在距离反射面一定距离处,使测量时的直达声波和反射声波存在足够的时间差,进而将二者分开,模拟自由场,达到测量目的的方法。
此外,本发明还提到一种多波束声呐主要声学指标的检测方法,该方法采用如上所述的一种多波束声呐主要声学指标的检测装置,包括如下步骤:
步骤1:对多波束声呐的发射指向性进行检测,具体包括如下步骤:
步骤1.1:调节多波束声呐设备的包括频率、功率、脉宽、增益、门限在内的工作参数,使其正常、稳定发射脉冲信号。调节标准水听器,使其与多波束换能器大致处于同一水平面;
步骤1.2:通过旋转装置在水平面内将多波束换能器以一定的角度间隔旋转一周,记录每个角度位置处采集到的标准水听器的开路电压值,开路电压最大位置处即为声轴所在竖直面;
步骤1.3:将多波束换能器调节至步骤1.2所述的标准水听器的开路电压最大位置处,固定多波束换能器,调节标准水听器至声轴所在竖直面以下,然后以一定的间隔提升标准水听器至声轴所在竖直面以上,记录各个位置处的标准水听器的开路电压值,其中开路电压最大位置处即为声轴;
步骤2:对多波束声呐的接收指向性进行检测,具体包括如下步骤:
步骤2.1:将标准水听器换为标准声源,并调节升降装置使标准声源至声轴位置;
步骤2.2:通过旋转装置在水平面内以一定的角度间隔旋转多波束换能器;
步骤2.3:通过多波束采集软件接收不同角度位置处标准声源发射的信号,通过解析多波束原始记录数据可得每个角度处的反向散射强度值,从而得到多波束声呐接收指向性及其波束角;
步骤3:对数据进行预处理,具体包括如下步骤:
步骤3.1:设定脉宽时域,分离直达信号、反射信号以及折射信号;
步骤3.2:设计带通滤波器进行频域滤波,滤除谐波和脉宽内环境噪声或系统噪声;
步骤4:根据公式(1.1),计算频率值;
Figure PCTCN2018072906-appb-000001
其中,f为频率;N为一段时间T内的整周期个数;v为采样频率;n为N个周期内的采样点个数;
步骤5:根据公式(1.2),计算多波束换能器的声源级;
SL=20lge s+20lgd-20lgM s+120          (1.2);
其中,SL为声源级,单位dB;e s为声压有效值,单位V;d为标准水听器到多波束换能器的距离,单位m;M s为标准水听器的接收灵敏度,单位V/Pa;
步骤6:计算波束角。
步骤6.1:将每个位置的脉冲信号幅值转化为声级值;
步骤6.2:将步骤6.1中的转化后的脉冲信号幅值减去全部声级值中的最大值,所得到的数值按顺序排列即可绘制指向性图,其主轴上最大响应声级值为0dB,其两侧方向上的声级值相对于-3dB所对应的开角即为波束角。
本发明所带来的有益技术效果:
本发明利用标准水听器对多波束声呐进行包括频率、声源级和波束宽度的检测,保证了多波束声呐的可靠性、准确性和可信度,填补了这一领域的空白,也为其他海洋测量仪器设备的检测提供了参考。
附图说明
图1是检测装置示意图。
具体实施方式
下面结合附图以及具体实施方式对本发明作进一步详细说明:
本发明采用的多波束声呐型号为R2 Sonic2024,具体实施步骤如下:
(1)将R2 Sonic2024多波束换能器安装到旋转支架的底端,使其沿水平方向发射,并保证换能器旋转平面与航迹线方向垂直。调节声呐设备的工作参数(频率、功率、脉宽、增益、门限等),使其正常、稳定发射脉冲信号。
(2)将RESON TC4014-5标准水听器安装到升降支架上,并与安捷伦(Agilent)信号采集器连接。当脉冲信号进入水听器,信号采集器实时记录水听器端的开路电压幅值。
(3)调节水听器,使其与多波束换能器大致处于同一水平面。固定水听器,通过旋转装置以0.05°的角度间隔在水平面内转动多波束换能器,同时记录该点位置处水听器的开路电压值。旋转一周后,每个角度位置处都可采集到水听器端的一个开路电压值,其中开路电压最大位置处即为声轴所在竖直面。将多波束换能器调节至水听器开路电压最大处,固定多波束换能器不动,然后调节水听器至多波束声轴面以下1.5m,以一定的间隔提升水听器支架,同时记录该点位置处水听器的开路电压值,直至水听器提升至声轴面以上1.5m。其中开路电压最大位置处即为声轴方向。
(4)将标准水听器换为标准声源,并调节升降支架使其至声轴位置。控制旋转装置以0.05°的角度水平方向旋转换能器,多波束采集软件接收不同角度位置处标准声源发射的信号,通过解析多波束记录的XTF数据可得每个角度处的反向散射强度值,据此得到多波束接收指向性及其波束角。
(5)数据预处理。数据采集完成后,需要对其进行预处理。由于采集到的信号中存在反 射声波、系统噪声及环境噪声等噪声,所以在指标计算前需要滤除这部分的干扰。通过设定合适的脉宽时域,分离直达信号和反射(折射)信号;设计带通滤波器进行频域滤波,滤除谐波和脉宽内环境噪声或系统噪声。
(6)频率计算。通过公式计算频率值。
(7)声源级计算。根据脉冲信号最大声压幅值,计算多波束换能器的声源级。
(8)波束角的计算。将每个位置的脉冲信号幅值转化为声级值后减去全部声级值中的最大值,所得到的数值按顺序排列即可绘制指向性图。此时主轴上最大响应声级值为0dB,其两侧方向上的声级值相对于-3dB所对应的开角,即波束角。
以上是多波束声呐主要声学指标检测方法的详细实施步骤,其中(6)步骤中工作频率的计算公式为:
Figure PCTCN2018072906-appb-000002
式(1.1)中,f为频率;N为一段时间T内的整周期个数;v为采样频率;n为N个周期内的采样点个数。
步骤(7)中声源级的计算公式为:
SL=20lge s+20lgd-20lgM s+120            (1.2)
式(1.2)中,SL为声源级,单位dB;e s为声压有效值,单位V;d为标准水听器到换能器的距离,单位m;M s为标准水听器的接收灵敏度,单位V/Pa。
实例与讨论:
R2 Sonic2024多波束声呐声源级的标称值为210dB,实际检测值为209.350dB;频率的标称值为200kHz,实际检测值为200.003kHz;沿航迹线方向波束宽度的标称值为1°,检测值为1.09°,垂直航迹线方向波束宽度的标称值为0.5°,检测值为0.57°。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (5)

  1. 一种多波束声呐主要声学指标的检测装置,其特征在于,包括消声水池,消声水池中安装有旋转装置和升降装置,所述旋转装置的底端安装有多波束换能器,其旋转平面与航迹线方向垂直,且沿水平方向发射;所述升降装置的底端安装有标准水听器,标准水听器连接有用于实时记录标准水听器端的开路电压幅值的信号采集器。
  2. 根据权利要求1所述的多波束声呐主要声学指标的检测装置,其特征在于,所述消声水池为在水池的所有面上挂满消声器、一个没有反射的开阔水域声场。
  3. 根据权利要求1所述的多波束声呐主要声学指标的检测装置,其特征在于,所述旋转装置在水平面内能够围绕其旋转轴自由旋转,所述升降装置能够在竖直面内沿铅垂线自由升降。
  4. 一种多波束声呐主要声学指标的检测方法,其特征在于,采用如权利要求1所述的多波束声呐主要声学指标的检测装置,包括以下步骤:
    步骤1:对多波束声呐的发射指向性进行检测,具体包括如下步骤:
    步骤1.1:调节多波束声呐设备的包括频率、功率、脉宽、增益、门限在内的工作参数,使其正常、稳定发射脉冲信号,调节标准水听器,使其与多波束换能器大致处于同一水平面;
    步骤1.2:通过旋转装置在水平面内将多波束换能器以一定的角度间隔旋转一周,记录每个角度位置处采集到的标准水听器的开路电压值,开路电压最大位置处即为声轴所在竖直面;
    步骤1.3:将多波束换能器调节至步骤1.2所述的标准水听器的开路电压最大位置处,固定多波束换能器,调节标准水听器至声轴所在竖直面以下,然后以一定的间隔提升标准水听器至声轴所在竖直面以上,记录各个位置处的标准水听器的开路电压值,其中开路电压最大位置处即为声轴;
    步骤2:对多波束声呐的接收指向性进行检测,具体包括如下步骤:
    步骤2.1:将标准水听器换为标准声源,并调节升降装置使标准声源至声轴位置;
    步骤2.2:通过旋转装置在水平面内以一定的角度间隔旋转多波束换能器;
    步骤2.3:通过多波束采集软件接收不同角度位置处标准声源发射的信号,根据解析多波束原始记录数据可得每个角度处的反向散射强度值,从而得到多波束声呐接收指向性及其波束角;
    步骤3:对数据进行预处理,具体包括如下步骤:
    步骤3.1:设定脉宽时域,分离直达信号、反射信号以及折射信号;
    步骤3.2:设计带通滤波器进行频域滤波,滤除谐波和脉宽内环境噪声或系统噪声;
    步骤4:根据公式(1.1),计算频率值;
    Figure PCTCN2018072906-appb-100001
    其中,f为频率;N为一段时间T内的整周期个数;v为采样频率;n为N个周期内的采样点个数;
    步骤5:根据公式(1.2),计算多波束换能器的声源级;
    SL=20lge s+20lgd-20lgM s+120     (1.2);
    其中,SL为声源级,单位dB;e s为声压有效值,单位V;d为标准水听器到多波束换能器的距离,单位m;M s为标准水听器的接收灵敏度,单位V/Pa;
    步骤6:计算波束角。
  5. 根据权利要求4所述的多波束声呐主要声学指标的检测方法,其特征在于,在步骤6中,具体包括如下步骤:
    步骤6.1:将每个位置的脉冲信号幅值转化为声级值;
    步骤6.2:将步骤6.1中的转化后的脉冲信号幅值减去全部声级值中的最大值,所得到的数值按顺序排列即可绘制指向性图,其主轴上最大响应声级值为0dB,其两侧方向上的声级值相对于-3dB所对应的开角即为波束角。
PCT/CN2018/072906 2017-02-23 2018-01-16 一种多波束声呐主要声学指标的检测装置及检测方法 WO2018153182A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/086,425 US10634784B2 (en) 2017-02-23 2018-01-16 Device and method for detecting main acoustic indexes of multi-beam sonar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710098738.X 2017-02-23
CN201710098738.XA CN106886015B (zh) 2017-02-23 2017-02-23 一种多波束声呐主要声学指标的检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2018153182A1 true WO2018153182A1 (zh) 2018-08-30

Family

ID=59179725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072906 WO2018153182A1 (zh) 2017-02-23 2018-01-16 一种多波束声呐主要声学指标的检测装置及检测方法

Country Status (3)

Country Link
US (1) US10634784B2 (zh)
CN (1) CN106886015B (zh)
WO (1) WO2018153182A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208522A (zh) * 2020-01-15 2020-05-29 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) 岸基高频多波束图像声纳系统
CN111556129A (zh) * 2020-04-24 2020-08-18 山东科技大学 一种高性能多波束数据采集系统及方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886015B (zh) 2017-02-23 2018-02-09 山东科技大学 一种多波束声呐主要声学指标的检测装置及检测方法
CN107300695B (zh) * 2017-07-12 2020-04-07 哈尔滨工程大学 一种多波束声纳搭载装置
CN107479029A (zh) * 2017-08-10 2017-12-15 中国计量大学 伞式水下声源检测装置及其校准与检测方法
CN107703501B (zh) * 2017-09-28 2021-06-11 哈尔滨工程大学 一种校准多波束声呐测深和分辨率的装置
CN109975812B (zh) * 2017-12-27 2020-10-23 中国科学院声学研究所 一种爆炸声的声源深度和声源级的计算方法
CN108303570B (zh) * 2018-01-09 2020-06-16 哈尔滨工程大学 一种多普勒海流计声波散射区域的标定装置及方法
CN108414625A (zh) * 2018-05-30 2018-08-17 广东工业大学 一种声学特性测量装置及系统
CN110672879A (zh) * 2018-07-02 2020-01-10 中国计量大学 一种新型四波束adcp校准方法
CN108844554B (zh) * 2018-07-03 2023-10-13 交通运输部天津水运工程科学研究所 一种室外多波束测深仪几何性能校准装置
CN109991590B (zh) * 2019-02-21 2021-02-02 中国船舶重工集团公司第七一五研究所 一种在有限空间压力罐内测试换能器低频发射特性的系统与方法
CN110988850B (zh) * 2019-11-05 2023-08-15 中国船舶重工集团公司第七一五研究所 一种基于目标散射的换能器指向性测量方法及装置
CN111220970B (zh) * 2019-12-10 2022-08-02 哈尔滨工程大学 一种弱振动与低噪声的多波束声呐校准装置
CN111273221A (zh) * 2020-02-28 2020-06-12 海鹰企业集团有限责任公司 声呐接收波束水平指向性测量方法、装置和存储介质
CN111970064B (zh) * 2020-08-14 2021-05-28 山东省科学院海洋仪器仪表研究所 一种多节点潜标网络水声通信系统及方法
CN112630755A (zh) * 2020-11-26 2021-04-09 海鹰企业集团有限责任公司 换能器垂直指向性快速测量系统及其测量方法
CN112816965A (zh) * 2020-12-04 2021-05-18 中国船舶重工集团公司第七一五研究所 一种声纳基阵指向性自动测量系统及测量方法
CN113432696B (zh) * 2021-06-24 2023-01-03 哈尔滨工程大学 一种测量浅海中海洋管道声散射强度的装置及方法
CN113670433B (zh) * 2021-07-13 2023-06-30 中国船舶重工集团公司第七一五研究所 一种能提高水听器阵列阵元在线灵敏度测量精度的方法
CN113982557B (zh) * 2021-10-24 2024-06-04 武汉三江航天远方科技有限公司成都分公司 偶极子发射传感器能量发射方向探测装置及测量方法
CN114509767B (zh) * 2022-02-15 2023-07-14 交通运输部天津水运工程科学研究所 一种水下成像声呐计量校准装置及方法
CN115372951A (zh) * 2022-07-07 2022-11-22 苏州昇析海洋科技有限公司 一种单波束测深仪精度检测方法及装置
CN116215744B (zh) * 2023-04-24 2023-08-01 山东科技大学 一种无人船多波束设备升降装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901472A (zh) * 2012-10-31 2013-01-30 山东科技大学 单波束测深仪检测方法
CN102927974A (zh) * 2012-10-31 2013-02-13 山东科技大学 多波束测深系统检测方法
CN202886601U (zh) * 2012-10-31 2013-04-17 山东科技大学 海洋测深声纳检测平台
CN104122543A (zh) * 2014-07-17 2014-10-29 浙江大学 一种水听器自动升降回转扫描装置
CN106886015A (zh) * 2017-02-23 2017-06-23 山东科技大学 一种多波束声呐主要声学指标的检测装置及检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949318A (en) * 1989-06-01 1990-08-14 Patrick Paul H Hydroacoustic sonar equipment
JP5730083B2 (ja) * 2011-03-11 2015-06-03 古野電気株式会社 信号処理装置、探査装置、信号処理プログラム、及び信号処理方法
CN204495996U (zh) * 2011-10-26 2015-07-22 菲力尔系统公司 宽带声纳接收器
CN105973447A (zh) * 2016-05-05 2016-09-28 哈尔滨工程大学 直线水听器阵列幅度和相位一致性测量方法
CN205664930U (zh) * 2016-06-05 2016-10-26 黄春连 一种矢量水听器校准系统
CN106382982A (zh) * 2016-11-21 2017-02-08 中国计量大学 便携式hifu声参数现场测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901472A (zh) * 2012-10-31 2013-01-30 山东科技大学 单波束测深仪检测方法
CN102927974A (zh) * 2012-10-31 2013-02-13 山东科技大学 多波束测深系统检测方法
CN202886601U (zh) * 2012-10-31 2013-04-17 山东科技大学 海洋测深声纳检测平台
CN104122543A (zh) * 2014-07-17 2014-10-29 浙江大学 一种水听器自动升降回转扫描装置
CN106886015A (zh) * 2017-02-23 2017-06-23 山东科技大学 一种多波束声呐主要声学指标的检测装置及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOOTE KENNETH G: "Protocols for calibrating multibeam sonar", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 117, no. 4, 30 April 2005 (2005-04-30), pages 2013 - 2027, XP055536303, ISSN: 0001-4966 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208522A (zh) * 2020-01-15 2020-05-29 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) 岸基高频多波束图像声纳系统
CN111556129A (zh) * 2020-04-24 2020-08-18 山东科技大学 一种高性能多波束数据采集系统及方法

Also Published As

Publication number Publication date
CN106886015A (zh) 2017-06-23
CN106886015B (zh) 2018-02-09
US20190101643A1 (en) 2019-04-04
US10634784B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2018153182A1 (zh) 一种多波束声呐主要声学指标的检测装置及检测方法
CN102141427B (zh) 一种利用激光测振仪检测液体媒介中声场参数的方法
CN110045016B (zh) 一种基于声频分析的隧道衬砌无损检测方法
CN106840381A (zh) 一种爆破振动衰减效应的测试方法
Vassallo et al. Seismic ambient noise analysis in southern Italy
CN104199123A (zh) 海底电缆铺设质量检测系统
Ashokan et al. Analysis of shallow water ambient noise due to rain and derivation of rain parameters
CN206670732U (zh) 一种基于超声波的液位测量仪
CN114509767B (zh) 一种水下成像声呐计量校准装置及方法
Carey Measurement of down‐slope sound propagation from a shallow source to a deep ocean receiver
Wang et al. Measurement of radiated ship noise
CN115236592B (zh) 一种基于单阵元时频曲线匹配的冰声定位方法
Laville et al. Underwater sound generation by rainfall
Wang et al. Estimated detection distance of a baiji’s (Chinese river dolphin, Lipotes vexillifer) whistles using a passive acoustic survey method
CN107238483A (zh) 用于卵砾石输移压力与输移音频的采集装置、系统及方法
CN206400117U (zh) 一种超前地质预报装置
LU503251B1 (en) Underwater imaging sonar measurement and calibration device and method thereof
Melvin et al. A preliminary investigation of fish distributions near an in-stream tidal turbine in Minas Passage, Bay of Fundy
Zubair et al. A comparative study of human motion using ultrasonic and seismic sensors
Kim et al. Long-term observation of underwater ambient noise at the Ieodo Ocean Research Station in Korea
Haijie et al. Flight Parameters Measurement Based on Underwater Acoustic Signal Processing
RU2329525C1 (ru) Система измерений предвестника землетрясений
Zhang et al. Modeling of high frequency sound propagation characteristics in Shallow Sea
Yubai et al. Research on Computer Fusion Digital Information Processing System for Marine Artificial Intelligence Observation
Aynutdinov et al. A device for detection of acoustic signals from super high energy neutrinos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758418

Country of ref document: EP

Kind code of ref document: A1