CN115236592B - 一种基于单阵元时频曲线匹配的冰声定位方法 - Google Patents

一种基于单阵元时频曲线匹配的冰声定位方法 Download PDF

Info

Publication number
CN115236592B
CN115236592B CN202210770495.0A CN202210770495A CN115236592B CN 115236592 B CN115236592 B CN 115236592B CN 202210770495 A CN202210770495 A CN 202210770495A CN 115236592 B CN115236592 B CN 115236592B
Authority
CN
China
Prior art keywords
frequency
ice
time
sound source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210770495.0A
Other languages
English (en)
Other versions
CN115236592A (zh
Inventor
殷敬伟
刘建设
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202210770495.0A priority Critical patent/CN115236592B/zh
Publication of CN115236592A publication Critical patent/CN115236592A/zh
Application granted granted Critical
Publication of CN115236592B publication Critical patent/CN115236592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明属于极地声学定位技术领域,具体涉及一种基于单阵元时频曲线匹配的冰声定位方法。本发明包括在冰面上布放声信号采集装置,采集冰层中的声源发出的A0模态信号;采用反卷积时频分析提取A0模态信号的时频谱图;根据A0模态信号的时频谱图,提取频散曲线t1(ω);基于海冰‑海水耦合声传播模型获取理论频散曲线t2(ω,r);本发明设计了两种能有效计算冰层中的声源相对于信号采集装置的距离R的方法。本发明选择A0模态作为定位的信号类型,避免了较强噪声的干扰;采用反卷积时频分析方法提取A0模态信号的时频谱图,在实际极地环境中更具有实用性。

Description

一种基于单阵元时频曲线匹配的冰声定位方法
技术领域
本发明属于极地声学定位技术领域,具体涉及一种基于单阵元时频曲线匹配的冰声定位方法。
背景技术
冰声定位是一种面向极地,针对冰层中的声源信号进行定位的方法。冰声定位是北极水声学的重要研究内容,对于保障北极科学考察冰上人员的安全、北极航道船舶航行、极地海冰突发事件监测具有重大意义。
无线电等媒介受海水的吸收效应会迅速衰减,无法进行远距离应用,声波是目前海水中唯一能够远距离传播的媒介。现有的水声学定位通常依赖常规水听器或矢量水听器等声呐设备,并结合布放在海面或海底的长基线(LBL)、短基线(SBL)以及超短基线(SSBL)等定位系统实现。
北极海域常年被数米厚的海冰覆盖,导致声呐设备存在海面或海底布放条件困难以及基线单元坐标校准等问题。另外,由于冰层属于弹性固体,与海水中声波传播的物理特性不同,导致现有的依赖于海水声传播原理的声学定位方法和声呐设备无法直接应用于极地冰区声学定位场景。
冰层和海水之间相互运动、冰下声学目标或冰面目标撞击冰层等事件,造成冰层相互挤压、剪切、破裂,产生了脉冲噪声。极地冰层作为一种板状构型的弹性介质,冰层中的声源会在冰层中产生能量较强的A0兰姆波模态。在最新同类技术发明专利中,《一种基于弯曲波的冰上震源定位方法》提出利用希尔伯特黄变换(HHT)提取了200Hz带宽内A0模态确定声源位置的方法,并通过有限元方法仿真的数据验证。《一种针对极地冰层的震源定位方法》提出了一种基于单个三分量检波器的冰层声源定位方法,利用冰层中S0模态和SH模态之间的时延关系确定声源位置。
由于实际环境中存在较高的低频背景噪声和脉冲干扰,这种噪声来自于海洋本底低频噪声、甲壳类无脊椎生物活动、冰层和海水之间的相互运动及人类作业活动。另外声呐采集设备在极地恶劣环境下也会受到电路本身自噪声影响,采集的信号信噪比较低。冰层中的S0模态和SH模态信号能量比A0模态能量更低,被淹没在噪声和干扰中,A0模态也会受噪声干扰。
发明内容
本发明的目的在于提供一种基于单阵元时频曲线匹配的冰声定位方法。
一种基于单阵元时频曲线匹配的冰声定位方法,包括以下步骤:
步骤1:在冰面上布放声信号采集装置,采集冰层中的声源发出的A0模态信号;
步骤2:采用反卷积时频分析提取A0模态信号的时频谱图;
步骤3:根据A0模态信号的时频谱图,提取频散曲线t1(ω);
步骤4:基于海冰-海水耦合声传播模型获取理论频散曲线t2(ω,r);
Figure BDA0003723782810000021
其中,t0为信号波形的截取时间点;r表示冰层中的声源相对于信号采集装置的期望距离;ω表示角频率;cg(ω)为A0模态在角频率为ω时的群速度,
Figure BDA0003723782810000022
k(ω)为A0模态在角频率为ω时的水平波数,cp(ω)为A0模态在角频率为ω时的相速度;k(ω)、cp(ω)通过海冰-海水耦合声传播模型求解;
步骤5:根据实际频散曲线t1(ω)与理论频散曲线t2(ω,r)获取的冰层中的声源相对于信号采集装置的距离R,完成对于冰层中的声源定位。
进一步地,所述步骤5中冰层中的声源相对于信号采集装置的距离R的计算方法具体为:
Figure BDA0003723782810000023
ρ(r)=1/||[t1(ω)-min(t1(ω))]-[t2(ω,r)-min(t2(ω,r))]||
其中,||·||表示取2范数值。
进一步地,所述步骤5中冰层中的声源相对于信号采集装置的距离R的计算方法具体为:
步骤5.1:预估计冰层中的声源相对于信号采集装置的期望距离r2
步骤5.2:令r=r2,计算理论频散曲线t2(ω,r)的标准差
Figure BDA0003723782810000024
步骤5.3:计算实际频散曲线t1(ω)的标准差
Figure BDA0003723782810000025
步骤5.4:计算冰层中的声源相对于信号采集装置的距离R;
Figure BDA0003723782810000026
进一步地,所述步骤2中采用反卷积时频分析提取A0模态信号的时频谱图的方法具体为:
反卷积时频分析表示为:
Figure BDA0003723782810000031
其中,m为迭代次数;
Figure BDA0003723782810000032
表示二维卷积操作;B(x,y)为A0模态信号的谱图;Fm(x,y)为基于反卷积方法优化m次后的谱图;x和y分别为谱图的时间域采样点和频率域采样点;S(·)为点散射函数,
Figure BDA0003723782810000033
P为矩形窗函数点数,N为离散傅里叶变换点数。
进一步地,所述步骤1中的声信号采集装置采用加速度计。
本发明的有益效果在于:
1.信号接收装置:采用加速度计取代检波器,接收到具有更高的频带的数据,避免低频噪声干扰,能够有效利用更宽频带的声场信息;
2.定位信号类型:由于冰层的存在,环境中具有能量更强的A0模态,因此选择A0模态作为定位的信号类型,海水P波、冰层S0和SH模态容易被噪声干扰;
3.提取A0模态时频曲线方法:采用反卷积方法提取模态频散曲线,在实际极地环境中,该方法相比于希尔伯特黄变换(HHT)更具有实用性;
4.定位特征参数与方法:根据实际信号和理论时频曲线的关系,提出了两种定位方法,一个是采取实际信号与不同距离的理论时频曲线匹配相关的方法,基于极大值原则确定声源距离;第二个是基于实际时频曲线的标准偏差与理论时频曲线标准偏差的数值关系,直接求解声源距离;
5.和现有方法相比,由于冰层声源的初始时间一般不能获取,导致无法通过接收的冰层信号获得实际的到达时间,本发明采用时频曲线或者统计参数作为定位参数具有实用性。
附图说明
图1是本发明的总体流程图。
图2是本发明的实施例中采集120m声源的信号波形图。
图3是采用希尔伯特黄变换(HHT)提取时频曲线的示意图。
图4是本发明的实施例中采用反卷积时频分析提取时频曲线的示意图。
图5是本发明的实施例中声源距离为100m、200m和300m时求解的理论时频曲线图。
图6是本发明的实施例中期望声源距离r与相关系数ρ(r)的计算结果数据表。
图7是本发明的实施例中期望声源距离r与相关系数ρ(r)的曲线图。
具体实施方式
下面结合附图对本发明做进一步描述。
本发明基于海冰海水耦合声传播特点,针对极地实际恶劣环境,采用外场实验数据,提出基于模态时频曲线匹配的冰声定位方法,并与现有方法进行了对比验证,提高方法的实用性。
步骤1:在冰面上布放声信号采集装置,采集冰层中的声源发出的A0模态信号;
在冰面上布放声信号采集装置,相比于在冰下布放具有工作难度小,坐标可精确校准等优势。冰面上的接收装置采用加速度计,而不是现有定位方法中的地震检波器来接收声源发出的声信号。加速度计的接收频带宽度可达到10000Hz,而现有定位方法中使用的三分量检波器的接收频带约100Hz。由于实际声场环境中低频噪声的能量远大于高频噪声,所以通过采用加速度计作为接收装置这一点改进可以有效的采集冰层中的更宽频带的声信号,避免低频噪声的干扰。
根据冰层声波的传播特性,冰层中的A0模态能量要大于S0和SH模态,为了避免较强噪声的干扰,采集A0模态信号作为定位手段,将加速度计布放在冰面上采集声信号。
步骤2:采用反卷积时频分析提取A0模态信号的时频谱图;
现有的提取频散曲线的方法包括希尔伯特黄变换(HHT)、短时傅里叶变换(STFT)、小波变换(WT)以及魏格纳分布(WVD)。但是由于实际采集信号噪声仍然较低,以上方法经过验证,均无法有效提取冰层A0模态的频散曲线,进而降低了冰声方法的实用性。
本发明提出使用优化的反卷积方法来获得高分辨的时频谱图,并提取A0模态的频散曲线。反卷积时频分析表示为:
Figure BDA0003723782810000041
式中,m为迭代次数;
Figure BDA0003723782810000042
表示二维卷积操作;B(x,y)为A0模态信号的谱图;Fm(x,y)为基于反卷积方法优化m次后的谱图;x和y分别为谱图的时间域采样点和频率域采样点;特别地,S(·)为本发明中特有的点散射函数,定义为:
Figure BDA0003723782810000043
式中,P为矩形窗函数点数,N为离散傅里叶变换点数。
外场实测数据结果证明,优化反卷积方法可以有效提取冰层中的A0模态,克服环境噪声干扰。
步骤3:根据A0模态信号的时频谱图,提取频散曲线t1(ω);
步骤4:基于海冰-海水耦合声传播模型获取理论频散曲线t2(ω,r);
距离为r的声源激发出冰层A0模态的不同频率相对到达时间为:
Figure BDA0003723782810000051
式中t0为信号波形的截取时间点,cg(ω)为A0模态在角频率为ω时的群速度,群速度计算公式:
Figure BDA0003723782810000052
k(ω)为A0模态在角频率为ω时的水平波数,cp(ω)为A0模态在角频率为ω时的相速度;k(ω)、cp(ω)通过海冰-海水耦合声传播模型求解;
步骤5:根据实际频散曲线t1(ω)与理论频散曲线t2(ω,r)获取的冰层中的声源相对于信号采集装置的距离R,完成对于冰层中的声源定位。
本发明提出了两种实现方法:
第一种实现方法是匹配相关法求解声源距离,定义相关系数为:
ρ(r)=1/||[t1(ω)-min(t1(ω))]-[t2(ω,r)-min(t2(ω,r))]||
其中,||·||表示取2范数值。
估计的声源距离为:
Figure BDA0003723782810000053
根据相关系数定义,对于声源的实际距离r1,理论的相关系数为:
ρ(r)=||cg(ω)||/|r1-r|
即当r=r1时,相关系数有极大值,使相关系数最大的期望声源距离r即为估计的实际声源距离。
第二种实现方法是基于时频曲线的标准差规律直接求解声源距离。根据信号时频曲线的定义,实际采集信号的时频曲线t1(ω)的标准偏差为:
Figure BDA0003723782810000061
模型计算的理论时频曲线t2(ω,r)的标准偏差:
Figure BDA0003723782810000062
因此,实际声源距离的估计值:
Figure BDA0003723782810000063
具体实现步骤为:
步骤5.1:预估计冰层中的声源相对于信号采集装置的期望距离r2
步骤5.2:令r=r2,计算理论频散曲线t2(ω,r)的标准差
Figure BDA0003723782810000064
步骤5.3:计算实际频散曲线t1(ω)的标准差
Figure BDA0003723782810000065
步骤5.4:计算冰层中的声源相对于信号采集装置的距离R;
Figure BDA0003723782810000066
本发明提出的两种定位方法能有效的通过冰上加速度计定位声源位置,提高了冰声定位方法的实用性。
实施例1:
如图1所示,本发明提供的定位方法流程图。具体步骤如下:
步骤1:冰层上的接收装置采用加速度计,而不是现有冰声定位方法中的检波器来接收声源发出的声信号。加速度计的接收频带宽度可达到10000Hz,而现有的冰声定位方法中使用的三分量检波器的接收频带约100Hz。由于实际环境中低频噪声能量远大于高频噪声能量,所以通过采用加速度计作为接收装置这一点改进可以有效的采集冰层中的声信号,避免一部分低频噪声的干扰;如图2所示,在将结冰的江上布放的加速度计采集了距离为120.7m的爆炸声源激发的A0模态,1800个采样点,采样频率为40kHz。由于加速度计与爆炸声源并不同步,符合实际应用需求,实际并不知道声源的激发时间,时间轴数值为信号的相对到达时间,信号受设备噪声干扰影响,A0模态持续时间约为10-20ms。
步骤2:选择能量更强的A0模态取代海水P波、冰层S0和SH模态作为定位依据;并采用优化的反卷积方法来获得高分辨的时频谱图,并提取A0模态的频散曲线。
在极地环境中,采用反卷积方法提取模态频散曲线相比于STFT、WT、HHT,更具有实用性,如图3所示,HHT无法完成对时频曲线的提取;
步骤3:由于冰层声源的初始时间一般不能获取,导致无法通过接收的冰层信号获得实际的到达时间。本发明采用反卷积提取时频曲线作为定位参数具有实用性;根据反卷积计算结果,选取合适的频点组合,构成实际信号的时频曲线;如图4所示,对信号波形进行反卷积方法得到的结果,满足时频曲线提取的分辨要求。
步骤4:基于海冰-海水耦合声传播模型获取理论频散曲线t2(ω,r);如图5所示,为声源距离为100m、200m和300m时求解的理论时频曲线。
步骤5:根据步骤3中的实际信号的时频曲线t1(ω)和步骤4中的理论的时频曲线t2(ω,r),求解声源距离;
Figure BDA0003723782810000071
ρ(r)=1/||[t1(ω)-min(t1(ω))]-[t2(ω,r)-min(t2(ω,r))]||
其中,||·||表示取2范数值。
如图6、图7所示,当期望声源距离为122m时,相关系数最大,即估计的声源距离为
Figure BDA0003723782810000072
Figure BDA0003723782810000073
与实际测量值120.7m,误差为1.08%。
实施例2:
进一步地,步骤5中采用另一种方法计算冰层中的声源相对于信号采集装置的距离R:
步骤5.1:预估计冰层中的声源相对于信号采集装置的期望距离r2
步骤5.2:令r=r2,计算理论频散曲线t2(ω,r)的标准差
Figure BDA0003723782810000074
步骤5.3:计算实际频散曲线t1(ω)的标准差
Figure BDA0003723782810000075
步骤5.4:计算冰层中的声源相对于信号采集装置的距离R;
Figure BDA0003723782810000076
如图4所示,实际曲线的标准偏差为0.0034,如图5所示,r=100m的理论曲线的标准偏差为0.0029。基于标准偏差法估计的声源距离为R=120.5m,与实际声源位置120.7m相比,误差为0.2m。
外场实测数据结果证明,本发明提出的两种计算冰层中的声源相对于信号采集装置的距离R的方法能有效的通过冰上加速度计定位声源位置。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于,包括以下步骤:
步骤1:在冰面上布放声信号采集装置,采集冰层中的声源发出的A0模态信号;
步骤2:采用反卷积时频分析提取A0模态信号的时频谱图;
步骤3:根据A0模态信号的时频谱图,提取频散曲线t1(ω);
步骤4:基于海冰-海水耦合声传播模型获取理论频散曲线t2(ω,r);
Figure FDA0003723782800000011
其中,t0为信号波形的截取时间点;r表示冰层中的声源相对于信号采集装置的期望距离;ω表示角频率;cg(ω)为A0模态在角频率为ω时的群速度,
Figure FDA0003723782800000012
k(ω)为A0模态在角频率为ω时的水平波数,cp(ω)为A0模态在角频率为ω时的相速度;k(ω)、cp(ω)通过海冰-海水耦合声传播模型求解;
步骤5:根据实际频散曲线t1(ω)与理论频散曲线t2(ω,r)获取的冰层中的声源相对于信号采集装置的距离R,完成对于冰层中的声源定位。
2.根据权利要求1所述的一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于:所述步骤5中冰层中的声源相对于信号采集装置的距离R的计算方法具体为:
Figure FDA0003723782800000013
ρ(r)=1/||[t1(ω)-min(t1(ω))]-[t2(ω,r)-min(t2(ω,r))]||
其中,||·||表示取2范数值。
3.根据权利要求1所述的一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于:所述步骤5中冰层中的声源相对于信号采集装置的距离R的计算方法具体为:
步骤5.1:预估计冰层中的声源相对于信号采集装置的期望距离r2
步骤5.2:令r=r2,计算理论频散曲线t2(ω,r)的标准差
Figure FDA0003723782800000014
步骤5.3:计算实际频散曲线t1(ω)的标准差
Figure FDA0003723782800000015
步骤5.4:计算冰层中的声源相对于信号采集装置的距离R;
Figure FDA0003723782800000016
4.根据权利要求1或2或3所述的一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于:所述步骤2中采用反卷积时频分析提取A0模态信号的时频谱图的方法具体为:
反卷积时频分析表示为:
Figure FDA0003723782800000021
其中,m为迭代次数;
Figure FDA0003723782800000022
表示二维卷积操作;B(x,y)为A0模态信号的谱图;Fm(x,y)为基于反卷积方法优化m次后的谱图;x和y分别为谱图的时间域采样点和频率域采样点;S(·)为点散射函数,
Figure FDA0003723782800000023
P为矩形窗函数点数,N为离散傅里叶变换点数。
5.根据权利要求1或2或3所述的一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于:所述步骤1中的声信号采集装置采用加速度计。
6.根据权利要求4所述的一种基于单阵元时频曲线匹配的冰声定位方法,其特征在于:所述步骤1中的声信号采集装置采用加速度计。
CN202210770495.0A 2022-06-30 2022-06-30 一种基于单阵元时频曲线匹配的冰声定位方法 Active CN115236592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210770495.0A CN115236592B (zh) 2022-06-30 2022-06-30 一种基于单阵元时频曲线匹配的冰声定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210770495.0A CN115236592B (zh) 2022-06-30 2022-06-30 一种基于单阵元时频曲线匹配的冰声定位方法

Publications (2)

Publication Number Publication Date
CN115236592A CN115236592A (zh) 2022-10-25
CN115236592B true CN115236592B (zh) 2023-02-03

Family

ID=83671851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210770495.0A Active CN115236592B (zh) 2022-06-30 2022-06-30 一种基于单阵元时频曲线匹配的冰声定位方法

Country Status (1)

Country Link
CN (1) CN115236592B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116559943A (zh) * 2023-05-06 2023-08-08 中国人民解放军国防科技大学 一种基于皮尔逊相关约束的地声参数联合反演方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093195A (zh) * 2021-03-22 2021-07-09 中国人民解放军海军大连舰艇学院 基于时频分布相关的水下瞬态声源深度距离估计方法
CN113358743A (zh) * 2021-05-12 2021-09-07 北京工业大学 一种基于时频分布相似度分析的兰姆波模态分离方法
CN113686964A (zh) * 2021-09-07 2021-11-23 哈尔滨工程大学 一种基于泄漏模态声波导特性的海冰厚度观测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108097A1 (en) * 2015-12-22 2017-06-29 Huawei Technologies Duesseldorf Gmbh Localization algorithm for sound sources with known statistics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093195A (zh) * 2021-03-22 2021-07-09 中国人民解放军海军大连舰艇学院 基于时频分布相关的水下瞬态声源深度距离估计方法
CN113358743A (zh) * 2021-05-12 2021-09-07 北京工业大学 一种基于时频分布相似度分析的兰姆波模态分离方法
CN113686964A (zh) * 2021-09-07 2021-11-23 哈尔滨工程大学 一种基于泄漏模态声波导特性的海冰厚度观测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Attenuation of acoustic waves in glacial ice and salt domes;P. B. Price;《JOURNAL OF GEOPHYSICAL RESEARCH》;20060208;第111卷;全文 *
基于冰层波导的海冰厚度测量方法研究;马丁一 等;《2019中国西部声学学术交流会》;20190831;全文 *
平面冰层覆盖下水中声传播损失特性分析;陈文剑 等;《极地研究》;20170630;第29卷(第2期);全文 *

Also Published As

Publication number Publication date
CN115236592A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN103048642B (zh) 基于频域最小二乘法的水声脉冲信号匹配场定位方法
CN112083404B (zh) 一种基于多途特征匹配的单矢量水听器声源深度估计方法
CN103076594B (zh) 一种基于互相关的水声脉冲信号双阵元定位的方法
CN111580048B (zh) 一种利用单矢量水听器的宽带声源深度估计方法
CN103176163B (zh) 基于相位模型的舰船线谱噪声源位置识别方法
CN107272005B (zh) 基于可靠声路径下目标回波到达时延和到达角度的主动定位方法
CN104678384B (zh) 一种波束域的声压差互相关谱分析水下目标速度估计方法
Battle et al. Geoacoustic inversion of tow-ship noise via near-field-matched-field processing
CN104407340A (zh) 拖曳线列阵阵形标定装置及方法
CN104765037A (zh) 基于短垂直阵的水下目标定位稳健方法
CN105301114A (zh) 一种基于多通道空时逆滤波技术的声学覆盖层插入损失测量方法
CN103076590A (zh) 一种基于频率预估的水声脉冲信号的定位方法
CN115166817B (zh) 一种基于冰层模态群慢度差特征的冰声定位方法
Belov et al. Estimating the acoustic characteristics of surface layers of the sea bottom using four-component vector-scalar receivers
RU2603724C2 (ru) Способ и устройство для управления акустическими характеристиками сети акустических узлов, расположенных вдоль буксируемых акустических линейных антенн
CN115236592B (zh) 一种基于单阵元时频曲线匹配的冰声定位方法
CN105158734A (zh) 一种基于阵不变量的单矢量水听器被动定位方法
CN113687308A (zh) 一种基于弯曲波的冰上震源定位方法
Kargl et al. Synthetic aperture sonar imaging of simple finite targets
Zhang et al. Inversion of the sound speed with radiated noise of an autonomous underwater vehicle in shallow water waveguides
CN109444864B (zh) 一种深海微弱多目标深度长时累积估计方法
CN115220026B (zh) 一种基于冰面水平阵列的匹配场跨冰定位方法
CN113126029B (zh) 适用于深海可靠声路径环境的多传感器脉冲声源定位方法
CN112684437A (zh) 一种基于时域warping变换的被动测距方法
CN112346038B (zh) 一种基于浅海爆炸声传播信号的声信道响应估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant