WO2018151441A1 - 전자파 차폐 구조를 가지는 무선 전력 송신기 - Google Patents

전자파 차폐 구조를 가지는 무선 전력 송신기 Download PDF

Info

Publication number
WO2018151441A1
WO2018151441A1 PCT/KR2018/001221 KR2018001221W WO2018151441A1 WO 2018151441 A1 WO2018151441 A1 WO 2018151441A1 KR 2018001221 W KR2018001221 W KR 2018001221W WO 2018151441 A1 WO2018151441 A1 WO 2018151441A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
shielding structure
power transmitter
transmitter
coil
Prior art date
Application number
PCT/KR2018/001221
Other languages
English (en)
French (fr)
Inventor
이윤복
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2018151441A1 publication Critical patent/WO2018151441A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/361Electric or magnetic shields or screens made of combinations of electrically conductive material and ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless charging technology, to provide a wireless power transmitter having an electromagnetic shielding structure in detail.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves, lasers, high frequencies, and microwaves. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be widely used not only in mobile but also in the automobile, IT, railroad and consumer electronics industries.
  • CE Conducted Emission
  • the EMI characteristic should be improved internally in the wireless power transmitter.
  • the present invention has been devised to solve the above problems of the prior art, and an object of the present invention is to provide a wireless power transmitter having an electromagnetic shielding structure.
  • Another object of the present invention is to provide a wireless power transmitter having an electromagnetic shielding filter integrally formed in a coil bracket to block conductive emission generated through a vehicle internal power line.
  • the present invention can provide a wireless power transmitter having an electromagnetic shielding structure.
  • a wireless power transmitter includes a coil bracket in which at least one transmitting coil is mounted on a magnetic shield block and an electrical connection with the coil bracket to control wireless power transmission through the transmitting coil. And an electromagnetic shielding structure connected to the coil bracket through the control circuit board and the control circuit board and configured to surround the power line printed on the control circuit board.
  • the electromagnetic shielding structure may include a second surface and a third surface and a second surface and a third surface and the second surface and a second surface penetrating the first and second grooves provided in the control circuit board, respectively. And a fourth surface vertically connected to three surfaces, and the power line may be pattern-printed between the first groove and the second groove.
  • the number of windings of the power line that is pattern printed between the first groove and the second groove may be plural.
  • the magnetic shield block may be ferrite.
  • the wireless power transmitter may further include a metal plate attached to one surface of the magnetic shielding block, a portion of the metal plate is perforated, and the electromagnetic shielding structure may be connected to the coil bracket through the perforated region. have.
  • the wireless power transmitter may further include a metal plate attached to one surface of the magnetic shield block and a magnetic shield sheet attached to a portion of the metal plate, and the electromagnetic shielding structure may be connected to the magnetic shield sheet.
  • At least one of the magnetic shielding block and the electromagnetic shielding structure may be an integrally injection molded sand dust block.
  • the wireless power transmitter may be directly connected to a vehicle internal power supply through a power line.
  • the magnetic permeability of the magnetic shielding block and the electromagnetic shielding structure may be different from each other.
  • a wireless power transmitter that wirelessly transmits power to a wireless power receiver using a vehicle internal power source may include a first surface and second and third surfaces disposed perpendicular to the first surface.
  • a coil bracket including a magnetic shield block integrally injection-molded to include a and at least one transmitting coil disposed on one surface of the magnetic shield block, and electrically connected to the coil bracket, and through the transmitting coil.
  • a control circuit board having first and second holes for controlling wireless power transmission and penetrating the second and third surfaces, the second surface passing through the first and second holes, and And a fourth surface, which is a magnetic material connected to the third surface to fix the control circuit board, wherein a power line pattern-printed on the control circuit board is disposed between the first hole and the second hole. And, wherein the power line becomes wrapped by the first to fourth side there is a conductive release may be blocked generated by the power line.
  • a wireless power transmitter includes a coil bracket including a first shielding structure and at least one transmitting coil disposed on the first shielding structure, and a control circuit controlling power transmission through the transmitting coil. And a substrate, a power line disposed on the control circuit board, and a second shielding structure penetrating the control circuit board, wherein the second shielding structure may be disposed along a portion of the power line.
  • the wireless power transmitter may include a first connection part and a second connection part passing through the control circuit board, and the power line may be disposed between the first connection part and the second connection part.
  • the wireless power transmitter may include a fastening part coupled to the first connection part and the second connection part.
  • the wireless power transmitter according to an embodiment of the present invention may be integrally formed with the first shielding structure, the first connection part, and the second connection part.
  • the wireless power transmitter according to an embodiment of the present invention may be integrally formed with the first connection part, the second connection part, and the fastening part.
  • the wireless power transmitter may include a metal plate disposed on one surface of the first shielding structure.
  • the metal plate may include a perforation region, and the first shielding structure and the second shielding structure may be connected through the perforation region.
  • Wireless power transmitter includes a shielding sheet attached to the metal plate, the first shielding structure and the second shielding structure may be connected through the shielding sheet.
  • the wireless power transmitter may be connected to a vehicle internal power supply through the power line.
  • the first shielding structure and the second shielding structure may have different permeability.
  • the present invention has the advantage of providing a wireless power transmitter having an electromagnetic shielding structure.
  • the present invention has the advantage of providing a wireless power transmitter having an electromagnetic shielding filter integrally formed in the coil bracket to block the conductive emission generated through the power supply line inside the vehicle.
  • the present invention has the advantage of providing a wireless power transmitter including an electromagnetic shielding filter detachably mounted to the coil bracket to block the conductive emission generated in the power line for supplying the vehicle internal power to the wireless power transmitter.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
  • FIG 3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method of blocking noise of a high frequency component applied to a wireless power transmitter by a power line from a power terminal according to the related art.
  • FIG. 5 is a state transition diagram for explaining a wireless power transmission procedure according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 7.
  • FIG. 9 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 9.
  • FIG. 11 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to another embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 11.
  • FIG. 13 and 14 illustrate a laminated structure of a coil bracket according to an embodiment of the present invention.
  • a wireless power transmitter includes a coil bracket in which at least one transmitting coil is mounted on a magnetic shield block and an electrical connection with the coil bracket to control wireless power transmission through the transmitting coil. And an electromagnetic shielding structure connected to the coil bracket through the control circuit board and the control circuit board and configured to surround the power line printed on the control circuit board.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
  • Transmitter may be configured in the form of a pad, a cradle, an access point (AP), a small base station, a stand, a ceiling buried, a floor buried, a wall hanging, etc.
  • one transmitter is a plurality of wireless Wireless power may also be transmitted to the power receiving device.
  • the transmitter may comprise at least one wireless power transmission means.
  • various wireless power transmission standards based on an electromagnetic induction method for generating a magnetic field in a power transmitter coil and charging using an electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field may be used.
  • the wireless power transmission means may include an electromagnetic induction wireless charging technology defined by a wireless charging technology standard apparatus such as a wireless power consortium (WPC) or a power matters alliance (PMA).
  • WPC wireless power consortium
  • PMA power matters alliance
  • the receiver according to an embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means may include, but is not limited to, an electromagnetic induction type wireless charging technology defined by the Wireless Power Consortium (WPC), the Power Matters Alliance (PMA), etc.
  • the wireless power receiver according to the present invention may be mounted on one side of the transportation device, but is not limited thereto, and the wireless power receiver may be a device capable of charging a battery by mounting the wireless power receiver according to the present invention.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • a wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 30 that receives the received power. Can be configured.
  • the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission.
  • the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
  • the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other.
  • the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
  • the in-band communication and the out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, the in-band communication and the out-of-band communication may provide one-way communication or half-duplex communication.
  • the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto.
  • the wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
  • bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
  • the wireless power receiver 20 may obtain various state information of the electronic device 30.
  • the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like.
  • the information may be obtained from the electronic device 30 and may be utilized for wireless power control.
  • the wireless power transmitter 10 may transmit a predetermined packet indicating whether to support fast charging to the wireless power receiver 20.
  • the wireless power receiver 20 may notify the electronic device 30 when it is determined that the connected wireless power transmitter 10 supports the fast charging mode.
  • the electronic device 30 may indicate that fast charging is possible through predetermined display means provided, for example, it may be a liquid crystal display.
  • the user of the electronic device 30 may control the wireless power transmitter 10 to operate in the fast charge mode by selecting a predetermined fast charge request button displayed on the liquid crystal display.
  • the electronic device 30 may transmit a predetermined quick charge request signal to the wireless power receiver 20.
  • the wireless power receiver 20 may convert the normal low power charging mode into the fast charging mode by generating a charging mode packet corresponding to the received fast charging request signal to the wireless power transmitter 10.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
  • the wireless power receiver 20 may be configured with a plurality of wireless power receivers, and a plurality of wireless power receivers are connected to one wireless power transmitter 10 so that the wireless Charging may also be performed.
  • the wireless power transmitter 10 may distribute and transmit power to the plurality of wireless power receivers in a time division manner, but is not limited thereto.
  • the wireless power transmitter 10 may distribute and transmit power to a plurality of wireless power receivers by using different frequency bands allocated for each wireless power receiver.
  • the number of wireless power receivers that can be connected to one wireless power transmitter 10 may include at least one of required power for each wireless power receiver, a state of charge of a battery, power consumption of an electronic device, and available power of the wireless power transmitter. Can be adaptively determined based on the
  • the wireless power transmitter 10 may be configured with a plurality of wireless power transmitters.
  • the wireless power receiver 20 may be connected to a plurality of wireless power transmitters at the same time, and may simultaneously receive power from the connected wireless power transmitters and perform charging.
  • the number of wireless power transmitters connected to the wireless power receiver 20 is adaptively based on the required power of the wireless power receiver 20, the state of charge of the battery, the power consumption of the electronic device, the available power of the wireless power transmitter, and the like. Can be determined.
  • FIG 3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
  • the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113.
  • Each transmitting coil may be arranged such that some regions overlap each other with the other transmitting coils, but this is only an example, and each transmitting coil may be disposed so as not to overlap each other, or one transmitting coil may be mounted.
  • the wireless power transmitter sequentially transmits predetermined sensing signals 117 and 127-for example, digital pings-for detecting the presence of the wireless power receiver through each transmitting coil in a predefined order.
  • the wireless power transmitter sequentially transmits the detection signal 117 when the primary detection signal transmission procedure shown in FIG. 110 is started, and transmits a predetermined response signal from the wireless power receiver 115.
  • the signal may include a signal including received signal strength information corresponding to the sensed signal.
  • the business card may be referred to as a signal strength indicator 116 or a signal strength packet.
  • the received transmission coils 111 and 112 can be identified.
  • the wireless power transmitter sequentially transmits the detection signal 127 when the second detection signal transmission procedure shown in FIG. 120 is started, and the power of the transmission coils 111 and 112 where the signal strength indicator 126 is received.
  • the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
  • the wireless power transmitter Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil and performs wireless charging using the selected transmitting coil. .
  • FIG. 4 is a view for explaining a method of blocking noise of a high frequency component applied to a wireless power transmitter by a power line from a power terminal according to the prior art.
  • a power plug 410 and a device 440 connected to a wall power source as a method for blocking conductive emission (CE) flowing into a device through a power line among EMI characteristics.
  • CE conductive emission
  • This can be solved by mounting the magnetic core 430 on a power line connecting a power input terminal (not shown).
  • Numeral 460 is a cutaway view of the magnetic core 430. As shown in FIG. 460, by surrounding the power line with a magnetic core, the transmission of noise of high frequency components to the device 440 on the power line may be blocked.
  • a device e.g., a wireless power transmitter
  • a vehicle control device e.g., an electrical control unit (ECU) mounted on the vehicle
  • ECU electrical control unit
  • a snubber In order to absorb a surge voltage or a ringing voltage supplied to a device, a snubber, a resistor-capacitor direct branch circuit connected in parallel to the device, may be used, but this causes a device temperature increase due to heat generation. .
  • the heating problem is a very important issue in the wireless charging system, there is a problem that the snubber is difficult to be mounted on the wireless power transmitter 440 or the wireless power receiver 450. Therefore, it is important to solve the EMI problem by changing the structural structure of the wireless power transmitter instead of adding a circuit that causes heat generation.
  • FIG. 5 is a state transition diagram for explaining a wireless power transmission procedure according to another embodiment of the present invention.
  • power transmission from a transmitter to a receiver is largely selected as a selection phase 510, a ping phase 520, an identification and configuration phase 530, and a negotiation phase.
  • the selection step 510 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to ping step 520.
  • analog pings can be replaced by other alternative means.
  • Another alternative means may be at least one of proximity sensor, Hall sensor for detecting magnetic field change, pressure sensor or omission.
  • the transmitter transmits a very short pulse of an analog ping signal and an object in the active area of the interface surface based on the current change of the transmitting coil or the primary coil. Can detect the presence of
  • the transmitter activates the receiver and transmits a digital ping to identify whether the receiver is a receiver capable of receiving wireless power from the transmitter.
  • the transmitter may transition back to the selection step 510. Further, in ping step 520, the transmitter may transition to selection step 510 when it receives a signal from the receiver indicating that power transmission is complete, i.e., a charge complete packet.
  • the transmitter may transition to identification and configuration step 530 to identify the receiver and collect receiver configuration and status information.
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to selection step 510.
  • the transmitter may determine whether entry into the negotiation step 540 is necessary based on a negotiation field value of the configuration packet received in the identification and configuration step 530.
  • the transmitter may enter the negotiation step 540 and perform a foreign object detection procedure.
  • the transmitter may directly enter the power transmission step 560.
  • the transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD Foreign Object Detection
  • the transmitter may determine the threshold for detecting the foreign matter based on the reference quality factor value.
  • the transmitter may determine a value lower than the reference quality factor value by a correction ratio as a threshold for foreign material detection, and measure the current quality factor value before entering the ping step 520 after object detection.
  • the transmitter may determine whether there is a foreign matter in the charging region by comparing the determined threshold value and the currently measured quality factor value, and may control power transmission according to the foreign matter detection result.
  • the transmitter may return to the selection step 510.
  • the transmitter may enter the power transmission step 560 through the correction step 550.
  • the transmitter determines the strength of the power received by the receiver in the correction step 550, and determines the strength of the power transmitted through the actual transmission coil. Power loss can be measured. That is, the transmitter may predict power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550.
  • the transmitter may correct the threshold for detecting the foreign matter by reflecting the predicted power loss. This allows the transmitter to detect foreign matter more accurately.
  • the transmitter receives an unexpected packet, an outgoing desired packet for a predefined time, or a violation of a preset power transfer contract. transfer contract violation), if the filling is complete, transition to selection step 510.
  • the transmitter may transition to renegotiation step 570 if it is necessary to reconfigure the power transmission contract in accordance with a change in transmitter status. At this time, if the renegotiation is normally completed, the transmitter may return to the power transmission step (560).
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment of the present invention.
  • the wireless power transmitter 600 may largely include a power converter 610, a power transmitter 620, a communication unit 630, a controller 640, and a sensor 650.
  • the configuration of the wireless power transmitter 600 is not necessarily an essential configuration, and may include more or fewer components.
  • the power converter 610 may perform a function of converting the power into AC power having a predetermined intensity.
  • the power converter 610 may include a DC / DC converter 611, an inverter 612, and a frequency generator 613.
  • the inverter 612 may be a half bridge inverter or a full bridge inverter, but is not limited thereto, and the inverter 612 may be a circuit configuration capable of converting DC power into AC power having a specific operating frequency.
  • the DC / DC converter 611 may perform a function of converting DC power supplied from the power supply unit 650 into DC power of a specific intensity according to a control signal of the controller 640.
  • the sensing unit 650 may measure the voltage / current of the DC-converted power and provide the same to the control unit 640. In addition, the sensing unit 650 may measure the internal temperature of the wireless power transmitter 600 to determine whether overheating occurs, and provide the measurement result to the controller 640. For example, the controller 640 may adaptively block power supply from the power supply unit 650 or block power supply to the amplifier 612 based on the voltage / current value measured by the sensing unit 650. Can be. To this end, one side of the power converter 610 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power supply unit 650, or cut off the power supplied to the amplifier 612.
  • the inverter 612 may convert the DC / DC converted DC power into AC power based on the reference AC signal generated by the frequency generator 613.
  • the frequency of the reference AC signal that is, the operating frequency
  • the wireless power transmitter 600 may adjust the intensity of the output power by adjusting the operating frequency.
  • the controller 640 may receive power reception state information or (and) power control signal of the wireless power receiver through the communication unit 630, and may be based on the received power reception state information or (and) power control signal. To determine the operating frequency and dynamically control the frequency generator 613 to generate the determined operating frequency.
  • the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil.
  • the power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
  • the power transmitter 620 may include a multiplexer 621 (or a multiplexer) and a transmission coil unit 622.
  • the transmitting coil unit 622 may be composed of first to n-th transmission coil.
  • the power transmitter 620 may further include a carrier generator (not shown) for generating a specific carrier frequency for power transmission.
  • the carrier generator may generate a specific carrier frequency for mixing with the output AC power of the inverter 612 received through the multiplexer 621.
  • the resonance frequency of each transmission coil may be set differently by using a predetermined frequency controller having a function of differently adjusting the LC resonance characteristics for each transmission coil.
  • the multiplexer 621 may perform a switch function for transferring AC power to the transmission coil selected by the controller 640.
  • the controller 640 may select a transmission coil to be used for power transmission to the corresponding wireless power receiver based on the signal strength indicator received for each transmission coil.
  • the controller 640 may transmit power through time division multiplexing for each transmission coil.
  • three wireless power receivers i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils.
  • the controller 640 may control the multiplexer 621 to control AC power to be transmitted only through a specific transmission coil in a specific time slot.
  • the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment.
  • Transmission power for each wireless power receiver may be controlled by controlling the intensity of the output DC power of the DC / DC converter 611.
  • the controller 640 may control the multiplexer 621 to sequentially transmit the sensing signals through the first to nth transmitting coils 622 during the first sensing signal transmission procedure. At this time, the control unit 640 may identify the time when the detection signal is transmitted using the timer 655. When the transmission signal transmission time arrives, the control unit 640 controls the multiplexer 621 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent. For example, the timer 650 may transmit a specific event signal to the controller 640 at a predetermined period during the ping transmission step, and the controller 640 controls the multiplexer 621 whenever the corresponding event signal is detected. The digital ping can be controlled through the corresponding transmission coil.
  • control unit 640 stores a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 632 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 640 controls the multiplexer 621 so that the detection signal may be transmitted only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, the controller 640 transmits the second sensed signal to the transmit coil in which the signal strength indicator having the largest value is received when there are a plurality of transmit coils in which the signal intensity indicator is received during the first sensed signal transmit procedure. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 621 may be controlled according to the determination result.
  • the communication unit 630 may include at least one of a modulator 631 and a demodulator 632.
  • the modulator 631 may modulate the control signal generated by the controller 640 and transmit the modulated control signal to the multiplexer 621.
  • the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
  • the demodulator 632 may demodulate the detected signal and transmit the demodulated signal to the controller 640.
  • the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like.
  • EC error correction
  • EOC end of charge
  • the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
  • the demodulator 632 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 640 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
  • the demodulator 632 may demodulate a signal received through the transmission coil 623 and transmit the demodulated signal to the controller 640.
  • the demodulated signal may include a signal strength indicator, but is not limited thereto.
  • the demodulated signal may include various state information of the wireless power receiver.
  • the wireless power transmitter 600 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
  • the wireless power transmitter 600 may not only transmit wireless power using the transmission coil unit 622 but also exchange various control signals and state information with the wireless power receiver through the transmission coil unit 622.
  • a separate coil corresponding to each of the first to nth transmitting coils of the transmitting coil unit 622 may be additionally provided in the wireless power transmitter 600, and wireless power may be provided by using the provided separate coil. Note that in-band communication with the receiver may also be performed.
  • the wireless power transmitter 600 and the wireless power receiver perform in-band communication by way of example.
  • this is only one embodiment, and is a frequency band used for wireless power signal transmission.
  • Short-range bidirectional communication may be performed through a frequency band different from that of FIG.
  • the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
  • the power transmitter 620 of the wireless power transmitter 600 includes a multiplexer 621 and a plurality of transmission coils 622, but this is only one embodiment. It should be noted that the power transmitter 620 according to the embodiment may be composed of one transmitting coil.
  • FIG. 7 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to an embodiment of the present invention.
  • the wireless power transmitter 700 may largely include a coil bracket 790 and a control circuit board 750.
  • the coil bracket 790 may include the magnetic shielding block 740 corresponding to the first shielding structure, the first to third transmitting coils 710, 720, and 730, the first to third transmitting coils 710, 720, and 730, and the magnetic shielding block ( And a housing 735 for fixing the 740.
  • the magnetic shield block 740 may be an injection molded sand dust block, but is not limited thereto, and may be a magnetic material having a predetermined permeability.
  • One side of the coil bracket 790 may further include a coil connection terminal (not shown) for electrically connecting both terminals of the first to third transmission coils 710, 720, and 730 with the control circuit board 750.
  • the coil connection terminal (not shown) may be provided integrally with the magnetic shielding block 740, but is not limited thereto.
  • the coil connection terminal may be mounted on the magnetic shielding block.
  • a wireless power transmitter 700 is a power line disposed (eg, pattern printed) on the control circuit board 750, as shown at reference numeral 760 It may be configured to include an electromagnetic shielding structure or an electromagnetic shielding filter surrounding the 751, 752 by a predetermined length.
  • reference numeral 795 is a cross-sectional view when the wireless power transmitter 700 is cut in the direction a2 from a1 in reference numeral 790.
  • the control circuit board 750 is engaged with the first connection part 742 and the second connection part 743 passing through at least two grooves (see reference numerals 753 and 754 of FIG. 8 to be described later) formed in the control circuit board 750.
  • a fastening part 744 including a fourth surface to fix the magnetic shield block 740.
  • the magnetic shield block 740, the first connection portion 742 and the second connection portion 743 may be injection molded integrally, the fastening portion 744 may be manufactured as a separate component.
  • the first connection part 742, the second connection part 743, and the fastening part 744 may be viewed as a second shielding structure.
  • the magnetic shield block 740, the first connection part 742, the second connection part 743, and the fastening part 744 may be magnetic materials having the same permeability.
  • At least one of the magnetic shield block 740, the first connection part 742, the second connection part 743, and the fastening part 744 may be formed of a magnetic material having a different magnetic permeability than the other one.
  • the magnetic shielding block 740, the first connection part 742, and the second connection part 743 integrally provided in the injection-molded magnetic shielding block 740 are separately formed and grooves (753 and 754 of FIG. 8).
  • the permeability of the fastening part 744 coupled to the first connection part 742 and the second connection part 743 passing through may be designed differently according to the frequency component to be improved.
  • first connecting portion 742, the second connecting portion 743, and the fastening portion 744 may be integrally injection molded to form a shield block having a “c” shape.
  • first connection part 742 and the second connection part 743 of the injection molded shielding block pass through two grooves formed in the control circuit board 750 (see reference numerals 753 and 754 of FIG. 8 to be described later). It may then be coupled to the first side 741 of the magnetic shield block 740.
  • the wireless power transmitter according to the embodiment may block electromagnetic interference by itself without a separate filter device.
  • FIG. 8 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 7.
  • the wireless power transmitter 700 may include a coil bracket 790, a control circuit board 750, and a fastening part 744.
  • the power lines 751 and 752 disposed on the control circuit board 750 may be implemented to pass between the first groove 753 and the second groove 754 provided in the control circuit board 750.
  • the first connection part 742 and the second connection part 743 integrally formed in the coil bracket 790 may pass through the first groove 753 and the second groove 754, respectively, and then may be coupled to the fastening part 744.
  • adhesive bonding, screw coupling, or the like may be used as the coupling means of the first connecting portion 742 and the second connecting portion 743 and the fastening portion 744, but is not limited thereto.
  • the wireless power transmitter according to the embodiment may block electromagnetic interference by itself without a separate filter device.
  • FIG. 9 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to another embodiment of the present invention.
  • the wireless power transmitter 900 may largely include a coil bracket 790, a metal plate 970, and a control circuit board 750.
  • the coil bracket 790 is a housing for fixing the magnetic shield block 740, the first to third transmission coils 710, 720, and 730, the first to third transmission coils 710, 720, and 730, and the magnetic shield block 740. 735 may be configured.
  • the magnetic shield block 740 may be composed of a plate-like ferrite, but is not limited thereto. A magnetic material having a predetermined permeability may be sufficient.
  • One side of the coil bracket 790 may further include a coil connection terminal (not shown) for electrically connecting both terminals of the first to third transmission coils 710, 720, and 730 with the control circuit board 750.
  • the coil connection terminal (not shown) may be provided integrally with the magnetic shielding block 740, but is not limited thereto.
  • the coil connection terminal may be mounted on the magnetic shielding block.
  • the metal plate 970 may be attached to one surface of the magnetic shield block 740 facing the control circuit board 750.
  • the metal plate 970 may protect the magnetic shield block 740 from external shock.
  • electromagnetic interference of the first to third transmission coils 710, 720, and 730 and the control circuit board 750 may be blocked.
  • Some regions of the metal plate 970 include two grooves in which the first connection portion 742 and the second connection portion 743 are formed in the control circuit board 750 (as shown in FIG. 960). May be perforated to penetrate through reference numerals 753 and 754).
  • the wireless power transmitter 900 surrounds the power lines 751 and 752 arranged on the control circuit board 750 by a predetermined length, as shown at reference numeral 960. May include an electromagnetic shielding structure or an electromagnetic shielding filter.
  • reference numeral 995 is a cross sectional view when the wireless power transmitter 900 is cut in a1 direction from a1 in reference numeral 790.
  • the electromagnetic shielding structure or the electromagnetic shielding filter according to an embodiment of the present invention may be provided at one side of the first surface 714 and the first surface 741 of the magnetic shielding block 740 in which the transmitting coils 710 to 730 are not disposed.
  • the first connection portion 742 including the second surface disposed in the vertical direction and the second connection portion 743 and the control circuit board 750 including the third surface disposed in the vertical direction on one side of the first surface 741.
  • It may be configured to include a fastening portion 744 including a.
  • the first surface 714 may correspond to the perforation region of the metal plate 970.
  • the electromagnetic shielding structure or the electromagnetic shielding filter according to an embodiment of the present invention includes a magnetic shielding block 960 having a “c” shape composed of a first connecting portion 742, a second connecting portion 743, and a fastening portion 744. It may include.
  • the magnetic shield block 740, the first connection part 742, the second connection part 743, and the fastening part 744 may be magnetic materials having the same permeability.
  • At least one of the magnetic shield block 740, the first connection part 742, the second connection part 743, and the fastening part 744 may be formed of a magnetic material having a different magnetic permeability than the other one.
  • first connection part formed separately from the first connection part 742 and the second connection part 743 integrally provided in the injection-molded magnetic shield block 740 and passed through the grooves 753 and 754 of FIG. 8 (
  • the permeability of the fastening part 744 coupled to the second connection part 743 and 742 may be implemented differently according to the frequency component to be improved.
  • the electromagnetic shielding structure or the electromagnetic shielding filter according to another embodiment of the present invention is different from the magnetic shielding block 740 and the first surface 714 of the magnetic shielding block 740 corresponding to the perforated area of the metal plate 970. It may be manufactured separately, and may include a fourth surface of the fastening part 744, a second surface of the first connection portion disposed perpendicularly to one edge of the fourth surface, and a third surface of the second connection portion. .
  • the magnetic shielding block ( It may be coupled to the first surface 741 of the 740.
  • adhesive, screw connection may be used as the coupling means, but is not limited thereto.
  • the wireless power transmitter according to the embodiment may block electromagnetic interference by itself without a separate filter device.
  • the wireless power transmitter according to the embodiment is more durable and more effective in blocking electromagnetic interference between the transmitting coil and the control circuit board.
  • FIG. 10 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 9.
  • the wireless power transmitter 900 may include a coil bracket, a metal plate 970, a control circuit board 750, and a second shielding block 960.
  • the coil bracket may include a first transmission coil 710, a second transmission coil 720, a third transmission coil 730, and a magnetic shield block 740.
  • the power lines 751 and 752 disposed on the control circuit board 750 may be implemented to pass between the first groove 753 and the second groove 754 provided in the control circuit board 750.
  • the second shielding block 960 may be a sand dust block injection-molded in a “c” shape, but is not limited thereto, and the second shielding block 960 may be a magnetic shielding agent having a certain permeability.
  • the second shielding block 960 is perpendicular to the first connecting portion 742 including the second surface disposed perpendicular to the fastening portion 744 including the fourth surface and the fastening portion 744 including the fourth surface.
  • Each of the second connection portions 743 including the third surface disposed through the first groove 753 and the second groove 754, respectively, passes through the perforation region 771 of the metal plate 970 and then passes through the coil brackets. It may be coupled to one surface of the magnetic shield block 740.
  • adhesive bonding, screw coupling, or the like may be used as a coupling means between the first connecting portion 742 and the second connecting portion 743 and the magnetic shield block 740, but is not limited thereto.
  • the wireless power transmitter according to the embodiment may block electromagnetic interference by itself without a separate filter device.
  • the wireless power transmitter according to the embodiment is more durable and more effective in blocking electromagnetic interference between the transmitting coil and the control circuit board.
  • FIG. 11 is a view for explaining the structure of a wireless power transmitter having an electromagnetic shielding structure according to another embodiment of the present invention.
  • the wireless power transmitter 1100 may largely include a coil bracket, a metal plate 970, and a control circuit board 750.
  • the coil bracket may include the magnetic shielding block 740, the first to third transmitting coils 710, 720, and 730 and the first to third transmitting coils 710, 720, and 730 that are stacked on the magnetic shielding block 740.
  • a housing 735 for fixing 740 is included in the wireless power transmitter 1100.
  • the magnetic shield block 740 may be composed of a plate-like ferrite, but is not limited thereto. A magnetic material having a predetermined permeability may be sufficient.
  • One side of the coil bracket may further include a coil connection terminal (not shown) for electrically connecting both terminals of the first to third transmission coils 710, 720, and 730 with the control circuit board 750.
  • the coil connection terminal (not shown) may be provided integrally with the magnetic shielding block 740, but is not limited thereto.
  • the coil connection terminal may be mounted on the magnetic shielding block.
  • the metal plate 970 may be attached to one surface of the magnetic shield block 740 facing the control circuit board 750 using a predetermined adhesive member.
  • the metal plate 970 may provide a function of protecting the magnetic shield block 740 from external impact.
  • the metal plate 970 may block electromagnetic interference of the transmission coil and the control circuit board.
  • the magnetic shield sheet 1180 may be attached.
  • the magnetic shield sheet 1180 may be implemented to enable double-sided adhesion.
  • the wireless power transmitter 1100 includes a predetermined length of the power lines 751 and 752 printed on the control circuit board 750 as shown in reference numeral 1160. It can be configured to include as many electromagnetic shielding structure or electromagnetic shielding filter.
  • reference numeral 1195 is a cross-sectional view seen when the wireless power transmitter 1100 is cut from a1 to a2.
  • the electromagnetic shielding structure or the electromagnetic shielding filter according to an exemplary embodiment of the present invention includes a magnetic shielding block 760 having a “c” shape including a first connecting portion 742, a second connecting portion 743, and a fastening portion 744.
  • a magnetic shielding block 760 having a “c” shape including a first connecting portion 742, a second connecting portion 743, and a fastening portion 744.
  • the magnetic shield sheet 1180 has been described as being capable of double-sided bonding. However, this is only one embodiment.
  • the metal plate 970, the first connection part 742, and the second connection part 743 are separately provided. Can be connected to each other via means of fastening, including, for example, screws, adhesive members, and the like.
  • the magnetic shield sheet 1180, the first connection part 742, the second connection part 743, and the fastening part 744 may be magnetic materials having the same permeability.
  • At least one magnetic shielding sheet 1180, the first connecting portion 742, the second connecting portion 743, and the fastening portion 744 may have a different permeability than the other.
  • first connection part 742, the second connection part 743, and the fastening part 744 and the magnetic shield sheet 1180 that are integrally injection molded may have different permeability.
  • FIG. 12 is a perspective view illustrating a hierarchical structure of the wireless power transmitter of FIG. 11.
  • the wireless power transmitter 1100 may include a coil bracket, a metal plate 970, a control circuit board 750, and a second shielding block 1210.
  • the coil bracket may include a first transmission coil 710, a second transmission coil 720, a third transmission coil 730, and a magnetic shield block 740.
  • the power lines 751 and 752 pattern-printed on the control circuit board 750 may be implemented to pass between the first groove 753 and the second groove 754 provided in the control circuit board 750.
  • the second shielding block 1210 may be a sand dust block injection-molded in a “c” shape, but is not limited thereto and may be a magnetic shielding agent having a certain permeability.
  • the magnetic shield sheet 1180 may be attached to a portion of the metal plate 970.
  • Magnetic shield attached to the metal plate 970 after the first connecting portion 742 and the second connecting portion 743 of the second shielding block 1210 pass through the first groove 753 and the second groove 754, respectively. It may be attached to the sheet 1180.
  • the magnetic shield sheet 1180 may be implemented in the form of a double-sided adhesive tape, but is not limited thereto.
  • FIG. 13 and 14 illustrate a laminated structure of a coil bracket according to an embodiment of the present invention.
  • the first to third transmitting coils 710, 720, and 730 and the first to third transmitting coils 710, 720, and 730 are seated. It may be configured to include a magnetic shield block 740 disposed at the bottom of the plastic injection-molded housing 735 and the second transmission coil (720, 730) so as to bind with the housing 735.
  • FIG. 14 illustrates a laminated structure of the coil bracket 790 when the metal plate 970 is disposed between the control circuit board 750 and the coil bracket 790 according to another embodiment of the present invention.
  • the wireless power transmitter according to the embodiment may block electromagnetic interference by itself without a separate external filter device.
  • the wireless power transmitter according to the embodiment is more durable and more effective in blocking electromagnetic interference between the transmitting coil and the control circuit board.
  • the wireless power transmitter according to the embodiment may further increase the electromagnetic interference blocking effect while having excellent durability through the magnetic shield sheet.
  • a wireless power transmitter includes a coil bracket including a first shielding structure and at least one transmitting coil disposed on the first shielding structure, and a control circuit controlling power transmission through the transmitting coil. And a substrate, a power line disposed on the control circuit board, and a second shielding structure penetrating the control circuit board, wherein the second shielding structure may be disposed along a portion of the power line.
  • the wireless power transmitter may include a first connection part and a second connection part passing through the control circuit board, and the power line may be disposed between the first connection part and the second connection part.
  • the wireless power transmitter may include a fastening part coupled to the first connection part and the second connection part.
  • the wireless power transmitter according to an embodiment of the present invention may be integrally formed with the first shielding structure, the first connection part, and the second connection part.
  • the wireless power transmitter according to an embodiment of the present invention may be integrally formed with the first connection part, the second connection part, and the fastening part.
  • the wireless power transmitter may include a metal plate disposed on one surface of the first shielding structure.
  • the metal plate may include a perforation region, and the first shielding structure and the second shielding structure may be connected through the perforation region.
  • Wireless power transmitter includes a shielding sheet attached to the metal plate, the first shielding structure and the second shielding structure may be connected through the shielding sheet.
  • the wireless power transmitter may be connected to a vehicle internal power supply through the power line.
  • the first shielding structure and the second shielding structure may have different permeability.
  • the number of coils mounted on the coil bracket is illustrated as an example, but this is only one embodiment, and the number of coils mounted on the coil bracket is not limited.
  • the number of windings of the power line pattern-printed between the first grooves and the second grooves of the control circuit board is not limited.
  • the metal plate may be an aluminum alloy plate, but is not limited thereto.
  • the wireless power transmitter having the electromagnetic shielding structure according to the above embodiment may be used when directly connected to a vehicle internal power source without a power adapter, but is not limited thereto.
  • the EMI filter is not installed in the power supply line as well as the vehicle. It should be noted that it may be extended to.
  • the methods according to the embodiments described above may be stored in a computer-readable recording medium that is produced as a program for execution in a computer, and examples of the computer-readable recording medium may include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage, and the like.
  • the present invention can be used in the field of wireless charging, and in particular, can be applied to a wireless power transmitter having an electromagnetic shielding structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 전자파 차폐 구조를 가지는 무선 전력 송신기에 관한 것으로서, 본 발명의 일 실시예에 따른 무선 전력 송신기는 제1 차폐 구조 및 상기 제1 차폐 구조 상에 배치되는 적어도 하나의 송신 코일을 포함하는 코일 브래킷과 상기 송신 코일을 통한 전력 전송을 제어하는 제어 회로 기판과 상기 제어 회로 기판 상에 배치되는 전력선과 상기 제어 회로 기판을 관통하는 제2 차폐구조를 포함하고 상기 제2 차폐 구조는 상기 전력선의 일부를 따라 배치될 수 있다.

Description

전자파 차폐 구조를 가지는 무선 전력 송신기
본 발명은 무선 충전 기술에 관한 것으로서, 상세하게 전자파 차폐 구조를 가지는 무선 전력 송신기를 제공하는 것이다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저, 고주파, 마이크로웨이브와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 차량, IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
일반적으로 전자파 간섭(Electro-Magnetic Interference: EMI) 특성 중 전도체를 통하여 전파되는 필요하지 않은 전자기적 에너지의 방출을 의미하는 전도성 방출(Conducted Emission: CE)을 개선하는 가장 손쉬운 방법은 전원 선에 자성체 코어(Core)를 통과시켜 고주파 성분을 필터링하는 것이다.
하지만, 차량에 장착되는 무선 전력 송신기의 경우, 차량 내부 전원을 무선 전력 송신기에 공급하기 위한 전원 선에 EMI 성능 개선을 위한 코어가 장착될 수 없는 문제점이 있다.
따라서, 무선 전력 송신기 내부적으로 EMI 특성이 개선되어야 한다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 전자파 차폐 구조를 가지는 무선 전력 송신기를 제공하는 것이다.
본원 발명의 다른 목적은 차량 내부 전원 선을 통해 발생되는 전도성 방출을 차단하기 위해 코일 브래킷에 일체형으로 구성된 전자파 차폐 필터를 가지는 무선 전력 송신기를 제공하는 것이다.
본원 발명의 또 다른 목적은 차량 내부 전원을 무선 전력 송신기에 공급하기 위한 전원 선에 발생되는 EMI를 차단하기 위해 코일 브래킷에 착탈식으로 장착되는 전자파 차폐 필터가 포함된 무선 전력 송신기를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 전자파 차폐 구조를 가지는 무선 전력 송신기를 제공할 수 있다.
본 발명의 일 실시예에 따른 무선 전력 송신기는 자성 차폐 블록에 적어도 하나의 송신 코일이 장착되는 코일 브래킷(Coil Bracket)과 상기 코일 브래킷과 전기적으로 연결되어 상기 송신 코일을 통한 무선 전력 전송을 제어하는 제어 회로 기판과 상기 제어 회로 기판을 관통하여 상기 코일 브래킷과 연결되며 상기 제어 회로 기판에 패턴 인쇄된 전력 선을 감싸도록 구성된 전자파 차폐 구조를 포함할 수 있다.
여기서, 상기 전자파 차폐 구조는 상기 제어 회로 기판에 구비된 제1 홈 및 제2 홈을 각각 관통하는 제2 면 및 제3 면과 상기 관통된 제2 면 및 제3 면과 상기 제2 면 및 제3 면과 수직으로 연결되는 제4 면을 포함하고, 상기 전력 선은 상기 제1 홈과 제2 홈 사이에 패턴 인쇄되어 배치될 수 있다.
또한, 상기 제1 홈과 제2 홈 사이에 패턴 인쇄되는 상기 전력 선의 권선 수는 복수일 수 있다.
또한, 상기 자성 차폐 블록은 페라이트일 수 있다.
또한, 상기 무선 전력 송신기는 상기 자성 차폐 블록의 일면에 부착되는 금속 판을 더 포함하고, 상기 금속 판의 일부 영역이 타공되며, 상기 타공된 영역을 통해 상기 전자파 차폐 구조가 상기 코일 브래킷에 연결될 수 있다.
또한, 상기 무선 전력 송신기는 상기 자성 차폐 블록의 일면에 부착되는 금속 판과 상기 금속 판의 일부 영역에 부착되는 자성 차폐 시트를 더 포함하고, 상기 전자파 차폐 구조가 상기 자성 차폐 시트상에 연결될 수 있다.
또한, 상기 자성 차폐 블록 및 상기 전자파 차폐 구조 중 적어도 어느 하나는 일체형으로 사출 성형된 샌더스트 블록일 수 있다.
또한, 상기 무선 전력 송신기는 차량 내부 전원과 전력 선을 통해 직접 연결될 수 있다.
또한, 상기 자성 차폐 블록과 상기 전자파 차폐 구조의 투자율은 서로 상이할 수 있다.
본 발명의 다른 일 실시예에 따른 차량 내부 전원을 이용하여 무선 전력 수신기에 무선으로 전력을 전송하는 무선 전력 송신기는 제1 면과, 상기 제1 면에 수직으로 배치된 제2 면 및 제3 면을 포함하도록 일체형으로 사출 성형된 자성 차폐 블록과 상기 자성 차폐 블록의 일면에 배치되는 적어도 하나의 송신 코일을 포함하는 코일 브래킷(Coil Bracket)과 상기 코일 브래킷과 전기적으로 연결되며, 상기 송신 코일을 통한 무선 전력 전송을 제어하고, 상기 제2 면 및 상기 제3 면을 관통시키기 위한 제1 홀 및 제2 홀이 구비된 제어 회로 기판과 상기 제1 홀 및 제2 홀을 통과한 상기 제2 면 및 상기 제3면과 연결되어 상기 제어 회로 기판을 고정시키는 자성체인 제4면을 포함하고, 상기 제어 회로 기판에 패턴 인쇄된 전력 선이 상기 제1 홀과 상기 제2 홀 사이에 배치되며, 상기 제1 내지 제4 면에 의해 상기 전력 선이 감싸져 상기 전력 선에 의해 발생되는 전도성 방출이 차단될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송시기는 제1 차폐 구조 및 상기 제1 차폐 구조 상에 배치되는 적어도 하나의 송신 코일을 포함하는 코일 브래킷, 상기 송신 코일을 통한 전력 전송을 제어하는 제어 회로 기판, 상기 제어 회로 기판 상에 배치되는 전력선, 및 상기 제어 회로 기판을 관통하는 제2 차폐구조를 포함하고, 상기 제2 차폐 구조는 상기 전력선의 일부를 따라 배치될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제어 회로 기판을 관통하는 제1 연결부 및 제2 연결부를 포함하고, 상기 전력선은 상기 제1 연결부 및 상기 제2 연결부 사이에 배치될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 연결부 및 상기 제2 연결부와 결합되는 체결부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조, 상기 제1 연결부 및 상기 제2 연결부는 일체로 형성될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 상기 제1 연결부, 상기 제2 연결부 및 상기 체결부는 일체로 형성될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조의 일면에 배치되는 금속판을 포함할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 금속판은 타공 영역을 포함하고, 상기 타공 영역을 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 금속판에 부착되는 차폐시트를 포함하고, 상기 차폐시트를 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 무선 전력 송신기는 차량 내부 전원과 상기 전력선을 통하여 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조와 상기 제2 차폐 구조는 투자율이 다를 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 전자파 차폐 구조를 가지는 무선 전력 송신기를 제공하는 장점이 있다.
또한, 본 발명은 차량 내부의 전원 공급 선을 통해 발생되는 전도성 방출을 차단하기 위해 코일 브래킷에 일체형으로 구성된 전자파 차폐 필터를 가지는 무선 전력 송신기를 제공하는 장점이 있다.
또한, 본 발명은 차량 내부 전원을 무선 전력 송신기에 공급하기 위한 전원 선에 발생되는 전도성 방출을 차단하기 위해 코일 브래킷에 착탈식으로 장착되는 전자파 차폐 필터가 포함된 무선 전력 송신기를 제공하는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
도 4는 종래 기술에 따른 전원 단자로부터 전원 선을 타고 무선 전력 송신기에 인가되는 고주파 성분의 노이즈를 차단하는 방법을 설명하기 위한 도면이다
도 5는 본 발명의 일 실시예에 따른 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.
도 7은 본 발명의 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도 8은 도 7의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 9는 본 발명의 다른 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도 10은 도 9의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 11은 본 발명의 또 다른 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도 12는 도 11의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 13 및 도 14는 본 발명의 일 실시예에 따른 코일 브래킷의 적층 구조를 도시한다.
본 발명의 일 실시예에 따른 무선 전력 송신기는 자성 차폐 블록에 적어도 하나의 송신 코일이 장착되는 코일 브래킷(Coil Bracket)과 상기 코일 브래킷과 전기적으로 연결되어 상기 송신 코일을 통한 무선 전력 전송을 제어하는 제어 회로 기판과 상기 제어 회로 기판을 관통하여 상기 코일 브래킷과 연결되며 상기 제어 회로 기판에 패턴 인쇄된 전력 선을 감싸도록 구성된 전자파 차폐 구조를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 바닥 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 무선 전력을 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단에는 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기 유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 일 예로, 무선 파워 전송 수단은 WPC(Wireless Power Consortium), PMA(Power Matters Alliance) 등의 무선 충전 기술 표준 기구에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 전력을 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium), PMA(Power Matters Alliance) 등에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있으나 이에 한정되지는 않는다.
본 발명에 따른 무선 전력 수신기는 운송 장치의 일측에 장착될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(30)로 구성될 수 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다. 다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다. 여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.
상기 인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지는 않으며, 다른 실시예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로 정보를 전송하는 것일 수도 있다.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다.
본 발명의 일 실시예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다. 일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신단(10)은 고속 충전 지원 여부를 지시하는 소정 패킷을 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 접속된 무선 전력 송신단(10)이 고속 충전 모드를 지원하는 것으로 확인된 경우, 이를 전자 기기(30)에 알릴 수 있다. 전자 기기(30)는 구비된 소정 표시 수단-예를 들면, 액정 디스플레이일 수 있음-을 통해 고속 충전이 가능함을 표시할 수 있다.
또한, 전자 기기(30) 사용자는 액정 표시 수단에 표시된 소정 고속 충전 요청 버튼을 선택하여 무선 전력 송신단(10)이 고속 충전 모드로 동작하도록 제어할 수도 있다. 이 경우, 전자 기기(30)는 사용자에 의해 고속 충전 요청 버튼이 선택되면, 소정 고속 충전 요청 신호를 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 수신된 고속 충전 요청 신호에 상응하는 충전 모드 패킷을 생성하여 무선 전력 송신단(10)에 전송함으로써, 일반 저전력 충전 모드를 고속 충전 모드로 전환시킬 수 있다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
일 예로, 도면 부호 200a에 도시된 바와 같이, 무선 전력 수신단(20)은 복수의 무선 전력 수신 장치로 구성될 수 있으며, 하나의 무선 전력 송신단(10)에 복수의 무선 전력 수신 장치가 연결되어 무선 충전을 수행할 수도 있다. 이때, 무선 전력 송신단(10)은 시분할 방식으로 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있으나, 이에 한정되지는 않으며. 다른 일 예로, 무선 전력 송신단(10)은 무선 전력 수신 장치 별 할당된 상이한 주파수 대역을 이용하여 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있다.
이때, 하나의 무선 전력 송신 장치(10)에 연결 가능한 무선 전력 수신 장치의 개수는 무선 전력 수신 장치 별 요구 전력, 배터리 충전 상태, 전자 기기의 전력 소비량 및 무선 전력 송신 장치의 가용 전력 중 적어도 하나에 기반하여 적응적으로 결정될 수 있다.
다른 일 예로, 도면 부호 200b에 도시된 바와 같이, 무선 전력 송신단(10)은 복수의 무선 전력 송신 장치로 구성될 수도 있다. 이 경우, 무선 전력 수신단(20)은 복수의 무선 전력 송신 장치와 동시에 연결될 수 있으며, 연결된 무선 전력 송신 장치들로부터 동시에 전력을 수신하여 충전을 수행할 수도 있다. 이때, 무선 전력 수신단(20)과 연결된 무선 전력 송신 장치의 개수는 무선 전력 수신단(20)의 요구 전력, 배터리 충전 상태, 전자 기기의 전력 소비량, 무선 전력 송신 장치의 가용 전력 등에 기반하여 적응적으로 결정될 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
일 예로, 무선 전력 송신기는 3개의 송신 코일(111, 112, 113)이 장착될 수 있다. 각각의 송신 코일은 일부 영역이 다른 송신 코일과 서로 중첩되도록 배치될 수 있으나, 이는 하나의 실시예에 불과하며, 서로 중첩되지 않게 배치되거나 하나의 송신 코일이 장착될 수도 있다.
무선 전력 송신기는 각각의 송신 코일을 통해 무선 전력 수신기의 존재를 감지하기 위한 소정 감지 신호(117, 127)-예를 들면, 디지털 핑-를 미리 정의된 순서로 순차적으로 송출한다.
상기 도 3에 도시된 바와 같이, 무선 전력 송신기는 도면 번호 110에 도시된 1차 감지 신호 송출 절차가 개시되면 감지 신호(117)를 순차적으로 송출하고, 무선 전력 수신기(115)로부터 소정 응답 신호-예를 들면, 감지 신호에 대응되는 수신 신호 세기 정보가 포함된 신호일 수 있으며, 이하 설명의 편의를 위해, 신호 세기 지시자(Signal Strength Indicator, 116) 또는 신호 세기 패킷(Signal Strength Packet)이라 명함-가 수신된 송신 코일(111, 112)을 식별할 수 있다. 연이어, 무선 전력 송신기는 도면 번호 120에 도시된 2차 감지 신호 송출 절차가 개시되면 감지 신호(127)를 순차적으로 송출하고, 신호 세기 지시자(126)가 수신된 송신 코일(111, 112) 중 전력 전송 효율(또는 충전 효율)-즉, 송신 코일과 수신 코일 사이의 정렬 상태-이 좋은 송신 코일을 식별하고, 식별된 송신 코일을 통해 전력이 송출되도록-즉, 무선 충전이 이루어지도록- 제어할 수 있다.
상기의 도 3에서 보여지는 바와 같이, 무선 전력 송신기가 2회의 감지 신호 송출 절차를 수행하는 이유는 어느 송신 코일에 무선 전력 수신기의 수신 코일이 잘 정렬되어 있는지를 보다 정확하게 식별하기 위함이다.
만약, 상기한 도 3의 도면 번호 110 및 120에 도시된 바와 같이, 제1 송신 코일(111), 제2 송신 코일(112)에 신호 세기 지시자(116, 126)가 수신된 경우, 무선 전력 송신기는 제1 송신 코일(111)과 제2 송신 코일(112) 각각에 수신된 신호 세기 지시자(126)에 기반하여 가장 정렬이 잘된 송신 코일을 선택하고, 선택된 송신 코일을 이용하여 무선 충전을 수행한다.
도 4는 종래 기술에 따른 전원 단자로부터 전원 선을 타고 무선 전력 송신기에 인가되는 고주파 성분의 노이즈를 차단하는 방법을 설명하기 위한 도면이다.
전자기기의 고속화와 다기능화에 따라 고속 데이터 전송을 위한 인터페이스의 채용이 증가하고 있으며, 그에 따라 소자의 동작 주파수는 점차 고주파화 되고 있다. 일반적으로 고주파 동작에서 사용되는 많은 소자들은 차동 모드(differential mode) 또는 정상 모드(normal mode)에서 주로 작동한다.
일반적으로 EMI 특성 중 전력 선을 타고 디바이스에 흘러 들어오는 전도성 방출(Conducted Emission: CE)를 차단하기 위한 방법으로 도 4에 도시된 바와 같이, 벽전원에 연결되는 전원 플러그(410)과 디바이스(440)의 전원 입력 단자(미도시)를 연결하는 전원 선에 자성체 코어(430)를 장착함으로써 해결될 수 있다. 도면 번호 460은 자성체 코어(430)의 절단면도이다. 도 460에 도시된 바와 같이, 전력 선 주위를 자성체 코어를 이용해 둘러쌈으로써, 전력 선을 타고 고주파 성분의 노이즈가 디바이스(440)로 전달되는 것이 차단될 수 있다.
하지만, 현재 차량 내부 전원을 차량에 장착되는 디바이스(예를 들면, 무선 전력 송신기) 또는 차량 제어 기기(예를 들면, ECU(Electrical Control Unit)로 공급해야 하는 경우, 전력 선에 CE 차단을 위한 자성체 코어가 사용될 수 없는 문제점이 있다.
소자에 공급되는 서지 전압이나 링잉 전압을 흡수하기 위하여 해당 소자에 병렬로 접속되는 저항-캐패시터 직별 분기 회로인 스너버(snubber)가 사용될 수도 있으나, 이는 발열에 의한 디바이스 온도 상승을 야기하는 문제점이 있다.
특히, 발열 문제는 무선 충전 시스템에서 매우 중요한 이슈이므로, 무선 전력 송신기(440)나 무선 전력 수신기(450)에 스너버가 장착되기 힘든 문제점이 있다. 따라서, 발열을 야기하는 회로를 추가하는 대신, 무선 전력 송신기의 기구적인 구조 변경을 통해 EMI 문제를 해결하는 것이 중요하다.
도 5는 본 발명의 다른 일 실시예에 따른 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 510), 핑 단계(Ping Phase, 520), 식별 및 구성 단계(Identification and Configuration Phase, 530), 협상 단계(Negotiation Phase, 540), 보정 단계(Calibration Phase, 550), 전력 전송 단계(Power Transfer Phase, 560) 단계 및 재협상 단계(Renegotiation Phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 그러나 아날로그 핑은 다른 대체 수단으로 대체될 수 있다. 다른 대체 수단은 근접센서, 자기장 변화를 감지하는 홀센서, 압력센서 또는 생략 중 적어도 하나의 수단일 수 있다. 선택 단계(510)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
핑 단계(520)에서 송신기는 물체가 감지되면, 수신기를 활성화시키고, 수신기가 해당 송신기로부터 무선 전력 수신이 가능한 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 송신기는 디지털 핑에 대한 응답 신호-예를 들면, 신호 세기 패킷-을 해당 디지털 핑 전송 후 소정 시간 이내에 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 송신기는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
송신기는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다.
확인 결과, 협상이 필요하면, 송신기는 협상 단계(540)로 진입하여 소정 이물질 검출 절차(Foreign Object Detection Procedure)를 수행할 수 있다.
반면, 확인 결과, 협상이 필요하지 않은 경우, 송신기는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 송신기는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 이때, 송신기는 기준 품질 인자 값에 기반하여 이물질 검출을 위한 임계치를 결정할 수 있다.
일 예로, 송신기는 기준 품질 인자 값보다 보정 비율만큼 낮은 값을 이물질 검출을 위한 임계치로 결정하고, 물체 감지 후 핑 단계(520)로의 진입 이전에 현재 품질 인자 값을 측정할 수 있다.
송신기는 결정된 임계치 및 현재 측정된 품질 인자 값을 비교하여 충전 영역에 이물질이 존재하는지 판단할 수 있으며, 이물질 검출 결과에 따라 전력 전송을 제어할 수 있다.
일 예로, 이물질이 검출된 경우, 송신기는 선택 단계(510)로 회귀할 수 있다. 반면, 이물질이 검출되지 않은 경우, 송신기는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 송신기는 이물질이 검출되지 않은 경우, 보정 단계(550)에서 송신기는 수신기에 수신된 전력의 세기를 결정하고, 실제 송신 코일을 통해 전송된 전력의 세기를 결정하기 위해 수신기와 송신기에서의 전력 손실을 측정할 수 있다. 즉, 송신기는 보정 단계(550)에서 송신기의 송신 파워와 수신기의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 송신기는 예측된 전력 손실을 반영하여 이물질 검출을 위한 임계치를 보정할 수도 있다. 이를 통해, 송신기는 보다 정확하게 이물질을 검출할 수 있다.
전력 전송 단계(560)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 송신기는 전력 전송 단계(560)로 회귀할 수 있다.
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.
도 6을 참조하면 무선 전력 송신기(600)는 크게, 전력 변환부(610), 전력 전송부(620), 통신부(630), 제어부(640), 센싱부(650)를 포함하여 구성될 수 있다. 상기한 무선 전력 송신기(600)의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다.
도 6에 도시된 바와 같이, 전력 변환부(610)는 전원부(660)로부터 DC 전원이 공급되면, 이를 소정 세기의 교류 전력으로 변환하는 기능을 수행할 수 있다.
이를 위해, 전력 변환부(610)는 DC/DC 변환부(611), 인버터(612) 및 주파수 생성기(613)를 포함하여 구성될 수 있다. 여기서, 인버터(612)는 하프 브릿지 인버터 또는 풀 브릿지 인버터일 수 있으나, 이에 한정되지는 않으며, 직류 전력을 특정 동작 주파수를 가지는 교류 전력으로 변환할 수 있는 회로 구성이면 족하다.
DC/DC 변환부(611)는 전원부(650)로부터 공급된 DC 전력을 제어부(640)의 제어 신호에 따라 특정 세기의 DC 전력으로 변환하는 기능을 수행할 수 있다.
이때, 센싱부(650)는 DC 변환된 전력의 전압/전류 등을 측정하여 제어부(640)에 제공할 수 있다. 또한, 센싱부(650)는 과열 발생 여부 판단을 위해 무선 전력 송신기(600)의 내부 온도를 측정하고, 측정 결과를 제어부(640)에 제공할 수도 있다. 일 예로, 제어부(640)는 센싱부(650)에 의해 측정된 전압/전류 값에 기반하여 적응적으로 전원부(650)로부터의 전원 공급을 차단하거나, 증폭기(612)에 전력이 공급되는 것을 차단할 수 있다. 이를 위해, 전력 변환부(610)의 일측에는 전원부(650)로부터 공급되는 전원을 차단하거나, 증폭기(612)에 공급되는 전력을 차단하기 위한 소정 전력 차단 회로가 가 더 구비될 수도 있다.
인버터(612)는 DC/DC 변환된 직류 전력을 주파수 생성기(613)에 의해 생성된 기준 교류 신호에 기반하여 교류 전력으로 변환할 수 있다. 이때, 기준 교류 신호의 주파수-즉, 동작 주파수-는 제어부(640)의 제어 신호에 따라 동적으로 변경될 수 있다. 본 발명의 일 실시예에 따른 무선 전력 송신기(600)는 동작 주파수를 조절하여 송출 전력의 세기를 조절할 수도 있다. 일 예로, 제어부(640)는 통신부(630)를 통해 무선 전력 수신기의 전력 수신 상태 정보 또는(및) 전력 제어 신호를 수신할 수 있으며, 수신된 전력 수신 상태 정보 또는(및) 전력 제어 신호에 기반하여 동작 주파수를 결정하고, 결정된 동작 주파수가 생성되도록 주파수 생성기(613)를 동적으로 제어할 수 있다. 일 예로, 전력 수신 상태 정보는 정류기 출력 전압의 세기 정보, 수신 코일에 인가되는 전류의 세기 정보 등을 포함할 수 있으나, 이에 한정되지는 않는다. 전력 제어 신호는 전력 증가를 요청하기 위한 신호, 전력 감소를 요청하기 위한 신호 등을 포함할 수 있다.
전력 전송부(620)는 다중화기(621)(또는 멀티플렉서), 송신 코일부(622)을 포함하여 구성될 수 있다. 여기서, 송신 코일부(622)는 제1 내지 제n 송신 코일로 구성될 수 있다. 또한, 전력 전송부(620)는 전력 전송을 위한 특정 캐리어 주파수를 생성하기 위한 반송파 생성기(미도시)를 더 포함할 수도 있다. 이 경우, 반송파 생성기는 다중화기(621)를 통해 전달 받은 인버터(612)의 출력 교류 전력과 믹싱하기 위한 특정 캐리어 주파수로 생성할 수 있다. 본 발명의 일 실시예는 각각의 송신 코일에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있음을 주의해야 한다. 본 발명의 다른 일 실시예는 LC 공진 특성을 송신 코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 송신 코일 별 공진 주파수를 상이하게 설정할 수도 있다.
다중화기(621)는 제어부(640)에 의해 선택된 송신 코일로 교류 전력을 전달하기 위한 스위치 기능을 수행할 수 있다. 제어부(640)는 송신 코일 별 수신되는 신호 세기 지시자에 기반하여 해당 무선 전력 수신기로의 전력 전송에 사용할 송신 코일을 선택할 수 있다.
본 발명의 일 실시예에 따른 제어부(640)는 복수의 무선 전력 수신기가 연결된 경우, 송신 코일 별 시분할 다중화를 통해 전력을 전송할 수도 있다. 예를 들어, 무선 전력 송신기(600)에 3개의 무선 전력 수신기-즉, 제1 내지 3 무선 전력 수신기-가 각각 3개의 서로 다른 송신 코일-즉, 제1 내지 3 송신 코일-을 통해 식별된 경우, 제어부(640)는 다중화기(621)를 제어하여, 특정 타임 슬롯에 특정 송신 코일을 통해서만 교류 전력이 송출될 수 있도록 제어할 수 있다. 이때, 송신 코일 별 할당된 타임 슬롯의 길이에 따라 해당 무선 전력 수신기로 전송되는 전력의 양이 제어될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 송신 코일 별 할당된 타임 슬롯 동안 DC/DC 변환기(611)의 출력 직류 전력의 세기를 제어하여 무선 전력 수신기 별 송출 전력을 제어할 수도 있다.
제어부(640)는 제1차 감지 신호 송출 절차 동안 제1 내지 제n 송신 코일(622)을 통해 감지 신호가 순차적으로 송출될 수 있도록 다중화기(621)를 제어할 수 있다. 이때, 제어부(640)는 감지 신호가 전송될 시점을 타이머(655)를 이용하여 식별할 수 있으며, 감신 신호 전송 시점이 도래하면, 다중화기(621)를 제어하여 해당 송신 코일을 통해 감지 신호가 송출될 수 있도록 제어할 수 있다. 일 예로, 타이머(650)는 핑 전송 단계 동안 소정 주기로 특정 이벤트 신호를 제어부(640)에 송출할 수 있으며, 제어부(640)는 해당 이벤트 신호가 감지될 때마다, 다중화기(621)를 제어하여 해당 송신 코일을 통해 디지털 핑이 송출될 수 있도록 제어할 수 있다.
또한, 제어부(640)는 제1차 감지 신호 송출 절차 동안 복조부(632)로부터 어느 송신 코일을 통해 신호 세기 지시자(Signal Strength Indicator)가 수신되었는지를 식별하기 위한 소정 송신 코일 식별자 및 해당 송신 코일을 통해 수신된 신호 세기 지시자를 수신할 수 있다. 연이어, 제2차 감지 신호 송출 절차에서 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일(들)을 통해서만 감지 신호가 송출될 수 있도록 다중화기(621)를 제어할 수도 있다. 다른 일 예로, 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일이 복수개인 경우, 가장 큰 값을 갖는 신호 세기 지시자가 수신된 송신 코일을 제2차 감지 신호 송출 절차에서 감지 신호를 가장 먼저 송출할 송신 코일로 결정하고, 결정 결과에 따라 다중화기(621)를 제어할 수도 있다.
통신부(630)는 변조부(631)와 복조부(632) 중 적어도 하나를 포함하여 구성될 수 있다.
변조부(631)는 제어부(640)에 의해 생성된 제어 신호를 변조하여 다중화기(621)에 전달할 수 있다. 여기서, 제어 신호를 변조하기 위한 변조 방식은 FSK(Frequency Shift Keying) 변조 방식, 맨체스터 코딩(Manchester Coding) 변조 방식, PSK(Phase Shift Keying) 변조 방식, 펄스 폭 변조(Pulse Width Modulation) 방식, 차등 2단계(Differential bi-phase) 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.
복조부(632)는 송신 코일을 통해 수신되는 신호가 감지되면, 감지된 신호를 복조하여 제어부(640)에 전송할 수 있다. 여기서, 복조된 신호에는 신호 세기 지시자, 무선 전력 전송 중 전력 제어를 위한 오류 정정(EC:Error Correction) 지시자, 충전 완료(EOC: End Of Charge) 지시자, 과전압/과전류/과열 지시자 등이 포함될 수 있으나, 이에 한정되지는 않으며, 무선 전력 수신기의 상태를 식별하기 위한 각종 상태 정보가 포함될 수 있다.
또한, 복조부(632)는 복조된 신호가 어느 송신 코일로부터 수신된 신호인지를 식별할 수 있으며, 식별된 송신 코일에 상응하는 소정 송신 코일 식별자를 제어부(640)에 제공할 수도 있다.
또한, 복조부(632)는 송신 코일(623)을 통해 수신된 신호를 복조하여 제어부(640)에 전달할 수 있다. 일 예로, 복조된 신호는 신호 세기 지시자를 포함할 수 있으나, 이에 한정되지는 않으며, 복조 신호는 무선 전력 수신기의 각종 상태 정보를 포함할 수 있다.
일 예로, 무선 전력 송신기(600)는 무선 전력 전송에 사용되는 동일한 주파수를 이용하여 무선 전력 수신기와 통신을 수행하는 인밴드(In-Band) 통신을 통해 상기 신호 세기 지시자를 획득할 수 있다.
또한, 무선 전력 송신기(600)는 송신 코일부(622)을 이용하여 무선 전력을 송출할 수 있을 뿐만 아니라 송신 코일부(622)을 통해 무선 전력 수신기와 각종 제어 신호 및 상태 정보를 교환할 수도 있다. 다른 일 예로, 송신 코일부(622)의 제1 내지 제n 송신 코일에 각각 대응되는 별도의 코일이 무선 전력 송신기(600)에 추가로 구비될 수 있으며, 구비된 별도의 코일을 이용하여 무선 전력 수신기와 인밴드 통신을 수행할 수도 있음을 주의해야 한다.
이상이 도 6의 설명에서는 무선 전력 송신기(600)와 무선 전력 수신기가 인밴드 통신을 수행하는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 무선 전력 신호 전송에 사용되는 주파수 대역과 상이한 주파수 대역을 통해 근거리 양방향 통신을 수행할 수 있다. 일 예로, 근거리 양방향 통신은 저전력 블루투스 통신, RFID 통신, UWB 통신, 지그비 통신 중 어느 하나일 수 있다.
또한, 이상의 도 6의 설명에서는 무선 전력 송신기(600)의 전력 전송부(620)가 다중화기(621)와 복수의 송신 코일(622)을 포함하나, 이는 하나의 실시예에 불과하며, 다른 일 실시예에 따른 전력 전송부(620)는 하나의 송신 코일로 구성될 수도 있음을 주의해야 한다.
도 7은 본 발명의 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도 7을 참조하면, 무선 전력 송신기(700)는 크게 코일 브래킷(Coil Bracket, 790)과 제어 회로 기판(750)을 포함하여 구성될 수 있다.
코일 브래킷(790)은 제1 차폐 구조에 해당하는 자성 차폐 블록(740), 제1 내지 제3 송신 코일(710, 720, 730), 제1 내지 제3 송신 코일(710,720,730) 및 자성 차폐 블록(740)을 고정시키기 위한 하우징(735)을 포함하여 구성될 수 있다.
여기서, 자성 차폐 블록(740)은 사출 성형된 샌더스트 블록일 수 있으나 이에 한정되지는 않으며, 소정 투자율을 가지는 자성체이면 족하다.
코일 브래킷(790)의 일측에는 제1 내지 제3 송신 코일(710, 720, 730)의 양 단자를 제어 회로 기판(750)과 전기적으로 연결하기 위한 코일 연결 단자(미도시)가 더 구비될 수 있다. 일 예로, 코일 연결 단자(미도시)는 자성 차폐 블록(740)에 일체형으로 구비될 수 있으나, 이에 한정되지는 않으며, 별도의 회로 기판에 구성된 후 자성 차폐 블록에 장착될 수도 있다.
도면 번호, 795를 참조하면, 본 실시예에 따른 무선 전력 송신기(700)는 도면 번호, 760에 도시된 바와 같이, 제어 회로 기판(750)에 배치되는(예를 들어, 패턴 인쇄된) 전원 라인(751, 752)을 일정 길이만큼 둘러싸는 전자파 차폐 구조 또는 전자파 차폐 필터를 포함하여 구성될 수 있다. 여기서, 도면 번호 795는 무선 전력 송신기(700)를 도면 번호 790의 a1에서 a2 방향으로 절단하였을 때 보여지는 횡단면도이다.
본 발명의 일 실시예에 따른 전자파 차폐 구조 또는 전자파 차폐 필터는 제1 내지 제3 송신 코일(710 내지 730)이 배치되지 않는 자성 차폐 블록(740)의 제1 면(714), 제1 면(741)의 일측에서 수직 방향으로 배치된 제2 면을 포함하는 제1 연결부(742) 및 제 1면(741)의 일측에서 수직 방향으로 배치된 제3 면을 포함하는 제2 연결부(743), 제어 회로 기판(750)에 형성된 적어도 2개의 홈(후술할 도 8의 도면 번호 753 및 754 참조)을 통과한 제1 연결부(742) 및 제2 연결부(743)와 결속되어 제어 회로 기판(750) 및 자성 차폐 블록(740)을 고정시키는 제4 면을 포함하는 체결부(744)를 포함하여 구성될 수 있다. 여기서, 자성 차폐 블록(740)과 제1 연결부(742) 및 제2 연결부(743)는 일체형으로 사출 성형되고, 체결부(744)는 별도 부품으로 제작될 수 있다.
제1 연결부(742), 제2 연결부(743) 및 체결부(744)는 제2 차폐 구조로 볼 수 있다.
자성 차폐 블록(740), 제1 연결부(742), 제2 연결부(743) 및 체결부(744)는 동일한 투자율을 가지는 자성체일 수 있다.
실시예에 따르면 자성 차폐 블록(740), 제1 연결부(742), 제2 연결부(743) 및 체결부(744) 중 적어도 하나는 다른 하나와 상이한 투자율을 가지는 자성체로 구성될 수 있다.
일 예로, 사출 성형된 자성 차폐 블록(740)에 일체형으로 구비되는 자성 차폐 블록(740), 제1 연결부(742), 제2 연결부(743) 와 별도 성형되어 홈(도 8의 753, 754)을 통과한 제1 연결부(742) 및 제2 연결부(743)와 결합되는 체결부(744)의 투자율은 개선하고자 하는 주파수 성분에 따라 상이하게 설계될 수 있다.
다른 일 실시예로 제1 연결부(742), 제2 연결부(743) 및 체결부(744)가 일체형으로 사출 성형되어 “ㄷ”자 형태의 차폐 블록이 제조될 수도 있다. 이 경우, 사출 성형된 차폐 블록의 제1 연결부(742) 및 제2 연결부(743)가 제어 회로 기판(750)에 형성된 2개의 홈(후술할 도 8의 도면 번호 753 및 754 참조)을 통과한 후 자성 차폐 블록(740)의 제1 면(741)에 결합될 수도 있다.
실시예에 따른 무선 전력 송신기는 별도의 필터 장치 없이 자체적으로 전자파 간섭을 차단할 수 있다. 또한, 별도의 필터 장착을 하지 않아 공정 단순화 및 재료비 절감 효과를 거둘 수 있다.
도 8은 상기한 도 7의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 8에 도시된 바와 같이, 무선 전력 송신기(700)는 코일 브래킷(790), 제어 회로 기판(750) 및 체결부(744)를 포함하여 구성될 수 있다.
제어 회로 기판(750)에 배치되는 전력 선(751, 752)은 제어 회로 기판(750)에 구비된 제1 홈(753)과 제2 홈(754) 사이를 통과하도록 구현될 수 있다.
코일 브래킷(790)에 일체형으로 형성된 제1 연결부(742)와 제2 연결부(743)는 각각 제1 홈(753)과 제2 홈(754)을 관통한 후 체결부(744)와 결합될 수 있다. 여기서, 제1 연결부(742) 및 제2 연결부(743)와 체결부(744)의 결합 수단으로 접착제 결합, 나사 결합 등이 이용될 수 있으나, 이에 한정되지는 않는다.
실시예에 따른 무선 전력 송신기는 별도의 필터 장치 없이 자체적으로 전자파 간섭을 차단할 수 있다. 또한, 별도의 필터 장착을 하지 않아 공정 단순화 및 재료비 절감 효과를 거둘 수 있다.
도 9는 본 발명의 다른 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도 9를 참조하면, 무선 전력 송신기(900)는 크게 코일 브래킷(Coil Bracket, 790), 금속 판(970) 및 제어 회로 기판(750)을 포함하여 구성될 수 있다.
코일 브래킷(790)은 자성 차폐 블록(740), 제1 내지 제3 송신 코일(710, 720, 730), 제1 내지 제3 송신 코일(710,720,730) 및 자성 차폐 블록(740)을 고정시키기 위한 하우징(735)을 포함하여 구성될 수 있다. 여기서, 자성 차폐 블록(740)은 판상 형태의 페라이트로 구성될 수 있으나 이에 한정되지는 않으며, 소정 투자율을 가지는 자성체이면 족하다.
코일 브래킷(790)의 일측에는 제1 내지 제3 송신 코일(710, 720, 730)의 양 단자를 제어 회로 기판(750)과 전기적으로 연결하기 위한 코일 연결 단자(미도시)가 더 구비될 수 있다. 일 예로, 코일 연결 단자(미도시)는 자성 차폐 블록(740)에 일체형으로 구비될 수 있으나, 이에 한정되지는 않으며, 별도의 회로 기판에 구성된 후 자성 차폐 블록에 장착될 수도 있다.
제어 회로 기판(750)과 대향하는 자성 차폐 블록(740)의 일면에는 금속 판(970)이 부착될 수 있다. 여기서, 금속 판(970)은 외부 충격으로부터 자성 차폐 블록(740)을 보호할 수 있다. 또한, 제1 내지 제3 송신 코일(710, 720, 730)과 제어 회로 기판(750)의 전자파 간섭을 차단할 수 있다.
금속 판(970)의 일부 영역은 도면 번호 960에 도시된 바와 같이, 제1 연결부(742) 및 제2 연결부(743)가 제어 회로 기판(750)에 형성된 2개의 홈(후술할 도 10의 도면 번호 753 및 754 참조)을 관통할 수 있도록 타공될 수 있다.
도면 번호, 995를 참조하면, 본 실시예에 따른 무선 전력 송신기(900)는 도면 번호, 960에 도시된 바와 같이, 제어 회로 기판(750)배치된 전원 라인(751, 752)을 일정 길이만큼 둘러싸는 전자파 차폐 구조 또는 전자파 차폐 필터를 포함하여 구성될 수 있다. 여기서, 도면 번호 995는 무선 전력 송신기(900)를 도면 번호 790의 a1에서 a2 방향으로 절단하였을 때 보여지는 횡단면도이다.
본 발명의 일 실시예에 따른 전자파 차폐 구조 또는 전자파 차폐 필터는 송신 코일(710 내지 730)이 배치되지 않는 자성 차폐 블록(740)의 제1 면(714), 제1 면(741)의 일측에서 수직 방향으로 배치된 제2 면을 포함하는 제1 연결부(742) 및 제1 면(741)의 일측에서 수직 방향으로 배치된 제3 면을 포함하는 제2 연결부(743) 및 제어 회로 기판(750)에 형성된 2개의 홈(후술할 도 10의 도면 번호 753 및 754 참조)을 통과한 제1 연결부(742) 및 제2 연결부(743)와 결속되어 제어 회로 기판(750)을 고정시키는 제4 면을 포함하는 체결부(744)를 포함하여 구성될 수 있다. 여기서, 제1 면(714)은 금속 판(970)의 타공 영역에 대응될 수 있다.
본 발명의 일 실시예에 따른 전자파 차폐 구조 또는 전자파 차폐 필터는 제1 연결부(742), 제2 연결부(743) 및 체결부(744)로 구성된 “ㄷ”자 형태의 자성체 차폐 블록(960)을 포함할 수 있다.
자성 차폐 블록(740), 제1 연결부(742), 제2 연결부(743) 및 체결부(744)는 동일한 투자율을 가지는 자성체일 수 있다.
실시예에 따르면 자성 차폐 블록(740), 제1 연결부(742), 제2 연결부(743) 및 체결부(744) 중 적어도 하나는 다른 하나와 상이한 투자율을 가지는 자성체로 구성될 수 있다.
일 예로, 사출 성형된 자성 차폐 블록(740)에 일체형으로 구비되는 제1 연결부(742) 및 제2 연결부(743)과 별도 성형되어 홈(도 8의 753, 754)을 통과한 제1 연결부(742) 및 제2 연결부(743)과 결합되는 체결부(744)의 투자율은 개선하고자 하는 주파수 성분에 따라 상이하게 구현될 수 있다.
본 발명의 다른 일 실시예에 따른 전자파 차폐 구조 또는 전자파 차폐 필터는 금속 판(970)의 타공 영역에 대응되는 자성 차폐 블록(740)의 제1 면(714)과 자성 차폐 블록(740)과는 별도로 제작될 수 있으며, 체결부(744)의 제4 면, 제4 면의 가장 자리 일측에 수직으로 배치되는 제1 연결부의 제2 면 및 제2 연결부의 제3 면을 포함하여 구성될 수도 있다.
이 경우, 제1 연결부(742)와 제2 연결부(743)가 제어 회로 기판(750)에 형성된 2개의 홈(후술할 도 10의 도면 번호 753 및 754 참조)을 관통한 후, 자성 차폐 블록(740)의 제1 면(741)에 결합되어 연결될 수 있다. 여기서, 결합 수단으로 접착제, 나사 연결이 사용될 수 있으나, 이에 한정되지는 않는다.
실시예에 따른 무선 전력 송신기는 별도의 필터 장치 없이 자체적으로 전자파 간섭을 차단할 수 있다. 또한, 별도의 필터 장착을 하지 않아 공정 단순화 및 재료비 절감 효과를 거둘 수 있다.
실시예에 따른 무선 전력 송신기는 내구성이 더 뛰어나고, 송신 코일과 제어회로기판의 전자파 간섭 차단 효과가 더 뛰어나다.
도 10은 상기한 도 9의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 10에 도시된 바와 같이, 무선 전력 송신기(900)는 코일 브래킷, 금속 판(970), 제어 회로 기판(750) 및 제2 차폐 블록(960)을 포함하여 구성될 수 있다. 여기서, 코일 브래킷은 제1 송신 코일(710), 제2 송신 코일(720), 제3 송신 코일(730) 및 자성 차폐 블록(740)을 포함하여 구성될 수 있다.
제어 회로 기판(750)에 배치되는 전력 선(751, 752)은 제어 회로 기판(750)에 구비된 제1 홈(753)과 제2 홈(754) 사이를 통과하도록 구현될 수 있다.
제2 차폐 블록(960)은 “ㄷ”자 형태로 사출 성형된 샌더스트 블록일 수 있으나, 이에 한정되지는 않으며, 일정 투자율을 가지는 자성 차폐제이면 족하다.
제2 차폐 블록(960)은 제4 면을 포함하는 체결부(744)에 수직으로 배치된 제2 면을 포함하는 제1 연결부(742) 및 제4면을 포함하는 체결부(744)에 수직으로 배치된 제3 면을 포함하는 제2 연결부(743)각 각각 제1 홈(753)과 제2 홈(754)을 관통한 후 금속 판(970)의 타공 영역(771)을 지나 코일 브래킷의 자성 차폐 블록(740)의 일면에 결합될 수 있다. 여기서, 제1 연결부(742) 및 제2 연결부(743)와 자성 차폐 블록(740) 사이의 결합 수단으로 접착제 결합, 나사 결합 등이 이용될 수 있으나, 이에 한정되지는 않는다.
실시예에 따른 무선 전력 송신기는 별도의 필터 장치 없이 자체적으로 전자파 간섭을 차단할 수 있다. 또한, 별도의 필터 장착을 하지 않아 공정 단순화 및 재료비 절감 효과를 거둘 수 있다.
실시예에 따른 무선 전력 송신기는 내구성이 더 뛰어나고, 송신 코일과 제어회로기판의 전자파 간섭 차단 효과가 더 뛰어나다.
도11은 본 발명의 또 다른 일 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기의 구조를 설명하기 위한 도면이다.
도11을 참조하면, 무선 전력 송신기(1100)는 크게 코일 브래킷, 금속 판(970) 및 제어 회로 기판(750)을 포함하여 구성될 수 있다. 코일 브래킷은 자성 차폐 블록(740), 자성 차폐 블록(740)상에 적층 배치되는 제1 내지 제3 송신 코일(710, 720, 730) 및 제1 내지 제3 송신 코일(710,720,730) 및 자성 차폐 블록(740)을 고정시키기 위한 하우징(735)을 포함하여 구성될 수 있다.
여기서, 자성 차폐 블록(740)은 판상 형태의 페라이트로 구성될 수 있으나 이에 한정되지는 않으며, 소정 투자율을 가지는 자성체이면 족하다. 코일 브래킷의 일측에는 제1 내지 제3 송신 코일(710, 720, 730)의 양 단자를 제어 회로 기판(750)과 전기적으로 연결하기 위한 코일 연결 단자(미도시)가 더 구비될 수 있다.
일 예로, 코일 연결 단자(미도시)는 자성 차폐 블록(740)에 일체형으로 구비될 수 있으나, 이에 한정되지는 않으며, 별도의 회로 기판에 구성된 후 자성 차폐 블록에 장착될 수도 있다.
제어 회로 기판(750)과 대향하는 자성 차폐 블록(740)의 일면에 금속 판(970)이 소정 접착 부재를 이용하여 부착될 수 있다. 여기서, 금속 판(970)은 외부 충격으로부터 자성 차폐 블록(740)을 보호하는 기능을 제공할 수 있다. 또한, 금속 판(970)은 송신코일과 제어 회로 기판의 전자파 간섭을 차단할 수 있다.
금속 판(970)의 일부 영역은 자성 차폐 시트(1180)가 부착될 수 있다. 여기서, 자성 차폐 시트(1180)은 양면 접착이 가능하게 구현될 수도 있다.
도면 번호, 1195를 참조하면, 본 실시예에 따른 무선 전력 송신기(1100)는 도면 번호, 1160에 도시된 바와 같이, 제어 회로 기판(750)에 패턴 인쇄된 전원 라인(751, 752)을 일정 길이만큼 둘러싸는 전자파 차폐 구조 또는 전자파 차폐 필터를 포함하여 구성될 수 있다. 여기서, 도면 번호 1195는 무선 전력 송신기(1100)를 a1에서 a2 방향으로 절단하였을 때 보여지는 횡단면도이다.
본 발명의 일 실시예에 따른 전자파 차폐 구조 또는 전자파 차폐 필터는 제1 연결부(742), 제2 연결부(743) 및 체결부(744)로 구성된 “ㄷ”자 형태의 자성체 차폐 블록(760)과 제어 회로 기판(750)에 형성된 2개의 홈(후술할 도 12의 도면 번호 753 및 754 참조)을 통과한 제1 연결부(742) 및 제2 연결부(743)을 금속 판(970)과 연결하기 위한 자성 차폐 시트(1180)를 포함하여 구성될 수 있다.
본 실시예에서는 자성 차폐 시트(1180)가 양면 접착이 가능한 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하면, 금속 판(970)과 제1 연결부(742) 및 제2 연결부(743)은 별도의 결속 수단-예를 들면, 나사, 접착 부재 등을 포함함-을 통해 서로 연결될 수 있다.
자성 차폐 시트(1180), 제1 연결부(742), 제2 연결부(743) 및 체결부(744)는 동일한 투자율을 가지는 자성체일 수 있다.
실시예에 따르면 자성 차폐 시트(1180), 제1 연결부(742), 제2 연결부(743) 및 체결부(744)는 적어도 하나가 다른 하나와 상이한 투자율을 가질 수 있다.
일 예로, 일체형으로 사출 성형되는 제1 연결부(742), 제2 연결부(743) 및 체결부(744)와 자성 차폐 시트(1180)는 서로 상이한 투자율을 가질 수도 있다.
도 12는 상기한 도 11의 무선 전력 송신기의 계층 구조를 보여주는 사시도이다.
도 12에 도시된 바와 같이, 무선 전력 송신기(1100)는 코일 브래킷, 금속 판(970), 제어 회로 기판(750) 및 제2 차폐 블록(1210)을 포함하여 구성될 수 있다. 여기서, 코일 브래킷은 제1 송신 코일(710), 제2 송신 코일(720), 제3 송신 코일(730) 및 자성 차폐 블록(740)을 포함하여 구성될 수 있다.
제어 회로 기판(750)에 패턴 인쇄되는 전력 선(751, 752)은 제어 회로 기판(750)에 구비된 제1 홈(753)과 제2 홈(754) 사이를 통과하도록 구현될 수 있다.
제2 차폐 블록(1210)은 “ㄷ”자 형태로 사출 성형된 샌더스트 블록일 수 있으나, 이에 한정되지는 않으며, 일정 투자율을 가지는 자성 차폐제이면 족하다.
금속 판(970)의 일부 영역에는 자성 차폐 시트(1180)가 부착될 수 있다.
제2 차폐 블록(1210)의 제1 연결부(742) 및 제2 연결부(743)가 각각 제1 홈(753)과 제2 홈(754)을 통과한 후 금속 판(970)에 부착된 자성 차폐 시트(1180)에 부착될 수 있다. 이를 위해, 자성 차폐 시트(1180)는 양면 접착 테이프의 형태로 구현될 수 있으나, 이에 한정되지는 않는다.
도 13 및 도 14는 본 발명의 일 실시예에 따른 코일 브래킷의 적층 구조를 도시한다.
도 13에 도시된 바와 같이, 일 실시예에 따른 코일 브래킷(790)은 제1 내지 제3 송신 코일(710, 720, 730), 제1 내지 제3 송신 코일(710, 720, 730)이 안착되도록 플라스틱 사출 성형된 하우징(735) 및 제2 송신 코일(720, 730) 하단에 배치되어 하우징(735)과 결속되는 자성 차폐 블록(740)을 포함하여 구성될 수 있다.
도 14는 본 발명의 다른 일 실시예에 따라 제어 회로 기판(750)과 코일 브래킷(790) 사이에 금속 판(970)이 배치되는 경우의 코일 브래킷(790)의 적층 구조를 보여준다.
실시예에 따른 무선 전력 송신기는 별도의 외부 필터 장치 없이 자체적으로 전자파 간섭을 차단할 수 있다. 또한, 별도의 외부 필터 장착을 하지 않아 공정 단순화 및 재료비 절감 효과를 거둘 수 있다.
실시예에 따른 무선 전력 송신기는 내구성이 더 뛰어나고, 송신 코일과 제어회로기판의 전자파 간섭 차단 효과가 더 뛰어나다.
실시예에 따른 무선 전력 송신기는 자성 차폐 시트를 통하여 내구성이 뛰어나면서도 전자파 간섭 차단 효과를 더욱 증대 할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송시기는 제1 차폐 구조 및 상기 제1 차폐 구조 상에 배치되는 적어도 하나의 송신 코일을 포함하는 코일 브래킷, 상기 송신 코일을 통한 전력 전송을 제어하는 제어 회로 기판, 상기 제어 회로 기판 상에 배치되는 전력선, 및 상기 제어 회로 기판을 관통하는 제2 차폐구조를 포함하고, 상기 제2 차폐 구조는 상기 전력선의 일부를 따라 배치될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제어 회로 기판을 관통하는 제1 연결부 및 제2 연결부를 포함하고, 상기 전력선은 상기 제1 연결부 및 상기 제2 연결부 사이에 배치될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 연결부 및 상기 제2 연결부와 결합되는 체결부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조, 상기 제1 연결부 및 상기 제2 연결부는 일체로 형성될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 상기 제1 연결부, 상기 제2 연결부 및 상기 체결부는 일체로 형성될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조의 일면에 배치되는 금속판을 포함할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 금속판은 타공 영역을 포함하고, 상기 타공 영역을 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 금속판에 부착되는 차폐시트를 포함하고, 상기 차폐시트를 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 무선 전력 송신기는 차량 내부 전원과 상기 전력선을 통하여 연결될 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 송신기는 상기 제1 차폐 구조와 상기 제2 차폐 구조는 투자율이 다를 수 있다. 이상의 실시예에서는 코일 브래킷에 장착되는 코일의 개수가 3개인 것을 예를 들어 설명하였으나, 이는 하나의 실시예에 불과하며, 코일 브래킷에 장착되는 코일의 개수는 제한되지 않는다.
또한, 제어 회로 기판의 제1 홈과 제2 홈 사이에 패턴 인쇄되는 전력 선의 권선 수는 제한되지 않는다.
또한, 이상의 실시예에서 금속 판은 알루미늄 합금 판일 수 있으나, 이에 한정되지는 않는다.
이상의 실시예에 따른 전자파 차폐 구조를 가지는 무선 전력 송신기는 전원 어뎁터 없이 차량 내부 전원에 직접 연결되는 경우에 사용될 수 있으나, 이에 한정되지는 않으며, 차량뿐만 아니라 전력 공급 선에 EMI 필터가 장착되지 않는 경우에 확대 적용될 수 있음을 주의해야 한다.
상술한 실시예에 따른 방법들은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등을 포함한다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 충전 분야에 이용될 수 있으며, 특히, 전자파 차폐 구조를 가지는 무선 전력 송신기에 적용될 수 있다.

Claims (10)

  1. 제1 차폐 구조 및 상기 제1 차폐 구조 상에 배치되는 적어도 하나의 송신 코일을 포함하는 코일 브래킷;
    상기 송신 코일을 통한 전력 전송을 제어하는 제어 회로 기판;
    상기 제어 회로 기판 상에 배치되는 전력선; 및
    상기 제어 회로 기판을 관통하는 제2 차폐구조
    를 포함하고,
    상기 제2 차폐 구조는 상기 전력선의 일부를 따라 배치되는 무선 전력 송신기.
  2. 제1항에 있어서,
    상기 제2 차폐 구조는,
    상기 제어 회로 기판을 관통하는 제1 연결부 및 제2 연결부를 포함하고,
    상기 전력선은 상기 제어 회로 기판 상에 패턴 인쇄되어 상기 제1 연결부 및 상기 제2 연결부 사이에 배치되는 무선 전력 송신기.
  3. 제2항에 있어서,
    상기 제2 차폐 구조는 상기 제1 연결부 및 상기 제2 연결부와 결합되는 체결부를 포함하는 무선 전력 송신기.
  4. 제3항에 있어서,
    상기 제1 차폐 구조, 상기 제1 연결부 및 상기 제2 연결부는 일체로 형성되는 무선 전력 송신기.
  5. 제3항에 있어서,
    상기 제1 연결부, 상기 제2 연결부 및 상기 체결부는 일체로 형성되는 무선 전력 송신기.
  6. 제1항에 있어서,
    상기 제1 차폐 구조의 일면에 배치되는 금속판을 더 포함하는 무선 전력 송신기.
  7. 제6항에 있어서,
    상기 금속판은 타공 영역을 포함하고,
    상기 타공 영역을 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결되는 무선 전력 송신기.
  8. 제6항에 있어서,
    상기 금속판에 부착되는 차폐시트를 더 포함하고,
    상기 차폐시트를 통하여 상기 제1 차폐 구조와 상기 제2 차폐 구조가 연결되는 무선 전력 송신기.
  9. 제1항에 있어서,
    상기 무선 전력 송신기는 차량 내부 전원과 상기 전력선을 통하여 연결되는 무선 전력 송신기.
  10. 제1항에 있어서,
    상기 제1 차폐 구조와 상기 제2 차폐 구조는 투자율이 다른 무선 전력 송신기.
PCT/KR2018/001221 2017-02-20 2018-01-29 전자파 차폐 구조를 가지는 무선 전력 송신기 WO2018151441A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0022102 2017-02-20
KR1020170022102A KR20180096018A (ko) 2017-02-20 2017-02-20 전자파 차폐 구조를 가지는 무선 전력 송신기

Publications (1)

Publication Number Publication Date
WO2018151441A1 true WO2018151441A1 (ko) 2018-08-23

Family

ID=63169550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001221 WO2018151441A1 (ko) 2017-02-20 2018-01-29 전자파 차폐 구조를 가지는 무선 전력 송신기

Country Status (2)

Country Link
KR (1) KR20180096018A (ko)
WO (1) WO2018151441A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087300B1 (ko) * 2018-12-06 2020-03-10 한국과학기술원 무선 충전과 nfc 통신을 위한 무선 안테나 및 이를 이용한 무선 단말 장치
KR102335905B1 (ko) * 2021-06-17 2021-12-07 주식회사 위츠 노이즈 개선용 무선 전력 모듈 및 이를 포함하는 전자 장치
JP2024519201A (ja) 2021-06-17 2024-05-09 ウィッツ カンパニー リミテッド ノイズ改善用無線電力モジュール及びこれを含む電子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238807U (ko) * 1988-09-08 1990-03-15
US20050082087A1 (en) * 2003-10-21 2005-04-21 International Business Machines Corporation Dielectric structure for printed circuit board traces
KR20070004336A (ko) * 2005-07-04 2007-01-09 삼성전자주식회사 전자제품
US20150022142A1 (en) * 2013-07-16 2015-01-22 Qualcomm Incorporated Integration of electronic components in inductive power transfer systems
KR20150107280A (ko) * 2014-03-13 2015-09-23 엘지이노텍 주식회사 무선 전력 송신 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238807U (ko) * 1988-09-08 1990-03-15
US20050082087A1 (en) * 2003-10-21 2005-04-21 International Business Machines Corporation Dielectric structure for printed circuit board traces
KR20070004336A (ko) * 2005-07-04 2007-01-09 삼성전자주식회사 전자제품
US20150022142A1 (en) * 2013-07-16 2015-01-22 Qualcomm Incorporated Integration of electronic components in inductive power transfer systems
KR20150107280A (ko) * 2014-03-13 2015-09-23 엘지이노텍 주식회사 무선 전력 송신 장치

Also Published As

Publication number Publication date
KR20180096018A (ko) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2018021665A1 (ko) 무선 전력 수신기의 위치 확인 방법 및 장치
WO2017078256A1 (ko) 멀티 코일 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2019143028A1 (ko) 높은 품질 인자를 가지는 무선 충전 코일
WO2018074804A1 (ko) 운송 장치를 위한 무선 충전 장치 및 시스템
WO2017061716A1 (ko) 무선 충전 디바이스 정렬 안내 방법 및 그를 위한 장치 및 시스템
WO2017094997A1 (ko) 무선 충전 장치, 그의 무선 전력 송신 방법, 및 이를 위한 기록 매체
WO2018194337A1 (ko) 무선 충전을 위한 무선 전력 송신 장치
WO2018106072A1 (ko) 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
WO2018190510A1 (ko) 무선 전력 모듈
WO2014073863A1 (en) Wireless power receiving device and power control method thereof
WO2017142234A1 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2017195977A2 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2019039898A1 (ko) 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법
WO2018151441A1 (ko) 전자파 차폐 구조를 가지는 무선 전력 송신기
WO2018008841A1 (ko) 무선 충전을 위한 무선 전력 제어 방법 및 장치
WO2017188628A1 (ko) 회로 기판 일체형 다중 모드 안테나 및 그를 이용한 장치
WO2017138712A1 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2017179826A1 (ko) Fo 검출 방법 및 그를 위한 장치 및 시스템
WO2018074803A1 (ko) 무선전력 송신 장치
WO2019135612A1 (ko) 무선 충전기 및 무선 충전 방법
WO2018131944A1 (ko) 코일 장치 및 코일 장치를 포함하는 무선 전력 송수신 장치
WO2018101677A1 (ko) 무선 전력 수신 장치
WO2021201413A1 (ko) 무선전력 전송장치 및 무선전력 전송방법
WO2017200282A1 (ko) 멀티 모드 수신기의 동작 방법
WO2019194419A1 (ko) 무선충전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753818

Country of ref document: EP

Kind code of ref document: A1