WO2018151258A1 - Drug delivery carrier and drug delivery system - Google Patents

Drug delivery carrier and drug delivery system Download PDF

Info

Publication number
WO2018151258A1
WO2018151258A1 PCT/JP2018/005505 JP2018005505W WO2018151258A1 WO 2018151258 A1 WO2018151258 A1 WO 2018151258A1 JP 2018005505 W JP2018005505 W JP 2018005505W WO 2018151258 A1 WO2018151258 A1 WO 2018151258A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
drug delivery
formula
delivery system
bond
Prior art date
Application number
PCT/JP2018/005505
Other languages
French (fr)
Japanese (ja)
Inventor
西山 伸宏
宏泰 武元
高徳 稲葉
貴大 野本
誠 松井
敬士郎 友田
暁夢 劉
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2018151258A1 publication Critical patent/WO2018151258A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a drug delivery carrier and a drug delivery system.
  • This application claims priority based on Japanese Patent Application No. 2017-029264 filed in Japan on February 20, 2017, the contents of which are incorporated herein by reference.
  • antimetabolites such as gemcitabine and doxyfluridine are mainly used as anticancer agents.
  • gemcitabine is treated as a first-line drug for pancreatic cancer.
  • these drugs have a molecular weight as low as 500 or less, they are rapidly eliminated from the blood due to excretion from the kidney or liver when administered to a patient, and the accumulation efficiency in the tumor tissue, which is an affected area, is low. There is a tendency.
  • Non-Patent Document 1 As a method for controlling the pharmacokinetics of a drug, for example, a method such as encapsulating a drug in a polymer micelle or liposome, or binding a drug to a polymer compound has been studied (for example, see Non-Patent Document 1). ).
  • encapsulating drugs in polymer micelles or liposomes is often applicable only to hydrophobic drugs with high encapsulation efficiency, and it may be difficult to apply to highly hydrophilic drugs such as gemcitabine.
  • the structure of the drug itself is modified in order to facilitate the binding of the drug to the polymer compound, or a chemical bond is used to efficiently release the drug in the affected area. Is being considered.
  • problems such as a decrease in the pharmacological activity of the drug may occur due to structural modification of the drug itself.
  • the present invention overcomes the problems of the technology for binding a drug to a polymer compound described above, and provides a drug delivery technology that can efficiently deliver a drug to tumor tissue without reducing the pharmacological activity of the drug.
  • the purpose is to provide.
  • the present invention includes the following aspects.
  • m and n each represent an integer of 0 or 1, and * represents a bond.
  • [In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond.
  • the drug delivery carrier according to [1], wherein the group capable of forming an acetal bond is a group represented by the following formula (3).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and * represents a bond. R 1 and R 2 may be linked to form a ring.
  • [3] The drug delivery carrier according to [1] or [2], wherein the biocompatible polymer is biodegradable.
  • [5] The drug delivery carrier according to any one of [1] to [4], wherein 5 to 500 mol of the group capable of forming an acetal bond is bonded to 1 mol of the biocompatible polymer.
  • the drug delivery carrier according to any one of [1] to [5] and the drug having a diol structure represented by the following formula (1) are bound by an acetal bond represented by the following formula (2):
  • Drug delivery system [In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
  • [In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
  • [7] The method according to [6], wherein the acetal bond is cleaved in an acidic environment, the diol structure represented by the formula (1) of the drug is regenerated, and the drug is released from the drug delivery system. Drug delivery system.
  • the present invention it is possible to provide a drug delivery technique capable of efficiently delivering a drug to a tumor tissue without reducing the pharmacological activity of the drug.
  • FIG. 10 is a graph showing the results of Experimental Example 4.
  • (A) And (b) is a graph which shows the result of Experimental example 5.
  • FIG. (A) And (b) is a graph which shows the result of Experimental example 6.
  • FIG. (A) And (b) is a graph which shows the result of Experimental example 6.
  • FIG. 10 is a graph showing the results of Experimental Example 7.
  • it is a graph which shows the time-dependent change of the body weight of the mouse
  • it is a graph which shows the measurement result of the total food intake of the mouse
  • (A) to (c) are representative photomicrographs showing the results of hematoxylin / eosin (HE) staining of the small intestine specimens of each group of mice in Experimental Example 8.
  • HE hematoxylin / eosin
  • the present invention provides a biocompatible polymer in which the diol structure of a drug having a diol structure represented by the following formula (1) is bonded to a group capable of forming an acetal bond represented by the following formula (2)
  • a drug delivery carrier comprising:
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the drug delivery carrier of this embodiment can also form an acetal bond with the diol structure of a drug having a diol structure represented by the following formula (6).
  • the acetal bond represented by the following formula (7) Is formed.
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the inventors focused on the fact that most drugs containing antimetabolites have a sugar skeleton and that many of the sugar skeletons have a diol structure, and this diol structure is used as a drug delivery carrier by acetal bonding.
  • the present invention was completed with the idea of combining drugs.
  • the drug bound to the drug delivery carrier of the present embodiment improves in blood retention and tumor accumulation with increasing molecular weight.
  • the acetal structure is cleaved in an acidic organelle environment having a pH of about 4.0 to 6.0, and the drug is released inside the cell.
  • the drug can exhibit its original pharmacological activity.
  • the low molecular weight drug means a drug having a molecular weight of about 1000 or less.
  • the drug bound to the drug delivery carrier of the present embodiment is released from the drug delivery carrier depending on the intracellular environment such as acidic conditions. For this reason, only the accumulation of the drug in the tumor tissue can be improved without inducing the accumulation of the drug in the normal tissue having a high transporter expression level. As a result, according to the drug delivery carrier of this embodiment, high drug efficacy and low side effects can be achieved.
  • examples of the group capable of forming an acetal bond with the diol structure of the drug include a group represented by the following formula (3).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and * represents a bond. R 1 and R 2 may be linked to form a ring. ]
  • examples of the group represented by the above formula (3) include groups represented by the following formulas (8) to (10).
  • the drug having a diol structure represented by the above formula (1) or the above formula (6) is not particularly limited as long as it is a drug capable of forming an acetal bond with the group represented by the above formula (3),
  • examples include antimetabolites such as gemcitabine, doxyfluridine, cytarabine, fludarabine and pentostatin; antiviral drugs such as ganciclovir, idoxuridine, trifluridine, ribavirin and entecavir.
  • said antiviral agent has an anticancer effect when delivered to tumor tissue.
  • the biocompatible polymer means a polymer that does not easily exert a bad influence such as a strong inflammatory reaction when administered to a living body.
  • the biocompatible polymer is not particularly limited as long as the effect of the present invention is obtained, and examples thereof include polyethylene glycol (PEG), polyamino acid, polyacrylamide, polyether, polyester, polyurethane, polysaccharide, and copolymers thereof. It is done.
  • the biocompatible polymer may have any group introduced in part in the synthesis process. Examples of such a group include a part of a polymerization initiator.
  • the biocompatible polymer is preferably biodegradable.
  • Biodegradability means a property that can be absorbed or decomposed in vivo.
  • the biocompatible polymer that is biodegradable is not particularly limited as long as the effects of the present invention are obtained, and examples thereof include polyamino acids, polyesters, polynucleotides, polysaccharides, and the like.
  • biocompatible polymer being biodegradable means that at least a part of the biocompatible polymer is biodegradable.
  • biodegradable biocompatible polymers that can be used for the drug delivery carrier of the present embodiment include polyamino acids, polyesters, polynucleotides, polysaccharides, PEG, polyacrylamide, polyethers, polyesters, polyurethanes, Block copolymers with polysaccharides and the like can also be suitably used.
  • Conventional polymers sometimes have a problem of accumulation in a living body when administered to a living body.
  • a biodegradable polymer by using a biodegradable polymer, accumulation in the living body can be suppressed, and side effects can be reduced.
  • the drug delivery carrier of this embodiment preferably has a weight average molecular weight of 2,000 to 200,000, for example, 5,000 to 100,000, such as 10,000 to 50,000. There may be.
  • the drug delivery carrier is produced by combining the drug with the weight average molecular weight of the drug delivery carrier within the above range, the retention of the drug in the blood and the accumulation in the tumor tissue are appropriately improved, In addition, accumulation in normal tissues such as the liver can be prevented. As a result, the drug can be efficiently delivered to the tumor tissue.
  • the weight average molecular weight of the drug delivery carrier a value measured by size exclusion chromatography (SEC) analysis can be used. Specifically, after dissolving or dispersing a drug delivery carrier in a solvent, the drug delivery carrier is passed through a column using a filler having many pores, and the molecular weight is increased or decreased in the column. It is detected by using a differential refractometer, an ultraviolet-visible spectrophotometer, a viscometer, a light scattering detector or the like as a detector. SEC-dedicated devices are widely available on the market and are generally measured by standard polyethylene glycol conversion. The weight average molecular weight in this specification is measured by this standard polyethylene glycol conversion.
  • the drug delivery carrier of this embodiment it is preferable that 5 to 500 mol of the group capable of forming the acetal bond is bonded to 1 mol of the biocompatible polymer described above, for example, 12 to 250 mol. For example, it may be 25 to 125 mol.
  • the present invention provides a drug delivery system in which the above-described drug delivery carrier and a drug having a diol structure represented by the following formula (1) are bound by an acetal bond represented by the following formula (2). I will provide a.
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the drug delivery system of the present embodiment is a drug delivery system in which the above-mentioned drug delivery carrier and a drug having a diol structure represented by the following formula (4) are bound by an acetal bond represented by the following formula (5). It may be.
  • the drug delivery system of the present embodiment stably holds a drug at pH 7.4 corresponding to pH in blood, and has a pH of about 4. corresponding to an intracellular acidic organelle environment. In the range of 0 to 6.0, the drug can be released efficiently.
  • the retention of the drug in the blood and the accumulation in the tumor tissue can be improved moderately, and the accumulation in the normal tissue such as the liver can be prevented.
  • the dose of the drug can be reduced, and furthermore, higher pharmacological activity can be exhibited than when the drug is administered with a carrier.
  • the toxicity of the drug can be reduced.
  • the drug having a diol structure represented by the formula (1) or the formula (6) can form an acetal bond with the group represented by the formula (3). If it is a drug, it will not specifically limit, The drug similar to what was mentioned above is mentioned.
  • the drug having the diol structure may be an antimetabolite.
  • Many antimetabolite drugs have a sugar skeleton and often have a diol structure. For this reason, it is easy to apply to the drug delivery system of this embodiment.
  • the acetal bond is cleaved in an acidic environment and the diol structure represented by the formula (1) or the formula (4) of the drug is regenerated.
  • the drug is released.
  • “In an acidic environment” means an intracellular acidic organelle environment, and is an environment having a pH of about 4.0 to 6.0.
  • the drug delivery system according to the present embodiment releases a drug when taken into a cell and placed in an acidic environment. At this time, since the original diol structure of the drug is regenerated, the drug can exhibit its original pharmacological activity.
  • the invention comprises a method of treating a disease comprising administering an effective amount of a drug delivery system to a patient in need of treatment, said drug delivery system comprising a biocompatible polymer,
  • a therapeutic method comprising a drug having a diol structure represented by the following formula (1), wherein the biocompatible polymer and the drug are bonded by an acetal bond represented by the following formula (2).
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • the invention comprises a method of treating a disease comprising administering an effective amount of a drug delivery system to a patient in need of treatment, said drug delivery system comprising a biocompatible polymer,
  • a therapeutic method comprising a drug having a diol structure represented by the following formula (4), wherein the biocompatible polymer and the drug are bonded by an acetal bond represented by the following formula (5).
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • the present invention is a drug delivery system for treatment of a disease, the drug delivery system comprising a biocompatible polymer and a drug having a diol structure represented by the following formula (1).
  • a drug delivery system is provided in which the biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (2).
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • the present invention is a drug delivery system for treatment of a disease, the drug delivery system comprising a biocompatible polymer and a drug having a diol structure represented by the following formula (4).
  • a drug delivery system is provided in which the biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (5).
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • the present invention is the use of a drug delivery system for producing a therapeutic agent for a disease, wherein the drug delivery system comprises a biocompatible polymer and a diol structure represented by the following formula (1): The biocompatible polymer and the drug are combined with an acetal bond represented by the following formula (2).
  • n and n each represent an integer of 0 or 1, and * represents a bond.
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • the present invention is the use of a drug delivery system for producing a therapeutic agent for a disease, wherein the drug delivery system comprises a biocompatible polymer and a diol structure represented by the following formula (4): The biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (5).
  • the disease includes cancer.
  • the biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
  • MeO-PEG-poly ( ⁇ -benzyl L-aspartate) (MeO-PEG-PBLA), which is a diblock copolymer of PEG-polyamino acids, was synthesized. Specifically, first, 720 mg of BLA-N-carbohydrate (BLA-NCA) was dissolved in 10 mL of dimethylformamide (DMF). Subsequently, 600 mg of MeO-PEG-NH 2 dissolved in 40 mL of dichloromethane (DCM) was added as a polymerization initiator to the obtained solution, and the mixture was stirred at 35 ° C. for 2 days. All the above operations were performed in an argon atmosphere.
  • BLA-NCA BLA-N-carbohydrate
  • DCM dichloromethane
  • reaction solution was added dropwise to an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure to obtain PEG-PBLA as a white solid (1. 02g, 83.8%).
  • the resulting white solid was analyzed by 1 H NMR and gel filtration chromatography to confirm the chemical structure and molecular weight distribution of the product.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the polymerization degree of PBLA calculated by 1 H NMR measurement was about 44.
  • MeO-PEG-PAsp (dimethyl acetate), which is a drug delivery carrier represented by the following formula (11), was synthesized by utilizing an aminolysis reaction of the side chain of MeO-PEG-PBLA to the benzyl group. Specifically, first, 500 mg of PEG-PBLA was dissolved in 8 mL of N-methylpyrrolidone (NMP), and 50-fold molar amount of aminoacetaldehydrate dimethylacetal was transferred to another container with respect to the benzyl group of PEG-PBLA. It was. Subsequently, the aminoacetaldehydrate dimethylacetal solution was added dropwise to the PEG-PBLA solution and allowed to react overnight at room temperature. All the above operations were performed in an argon atmosphere.
  • NMP N-methylpyrrolidone
  • MeO-PEG-PAsp (dimethylacetal) has a dimethylylacetal group possessed by dimethylethylacetal and a diol group possessed by gemcitabine, and is represented by the following formula (13).
  • MeO-PEG-PAsp (dimethylacetal)
  • gemcitabine hydrochloride relative to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal)
  • MeO-PEG- as a reaction catalyst
  • a 1-fold molar amount of paratoluenesulfonic acid monohydrate with respect to the dimethylacetal group of PAsp (dimethylacetal) was dissolved in 10 mL of NMP and reacted at 50 ° C. overnight.
  • MeO-PEG-PAsp (dimethyl ocetal) is a drug delivery system represented by the following formula (13) by a transacetalization reaction between the dimethylacetal group possessed by dimethylacetal and the diol group possessed by gemcitabine. dimethyl (acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
  • reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system.
  • unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 187 mg, 87.4%).
  • the amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 10% by mass.
  • MeO-PEG-PAsp dimethylacetal
  • dimethylacetal which is the drug delivery carrier synthesized in Experimental Example 1
  • the diol group of doxyfluridine the following formula ( The drug delivery system shown in 15), MeO-PEG-PAsp (dimethyl acetic-doxifluridine), was obtained.
  • MeO-PEG-PAsp dimethylacetal
  • MeO-PEG-PAsp dimethylethyl
  • a 1-fold molar amount of paratoluenesulfonic acid monohydrate was dissolved in 4 mL of NMP and reacted at 50 ° C. overnight. All the above operations were performed in an argon atmosphere.
  • reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system.
  • unreacted doxyfluridine in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain MeO-PEG-PAsp (dimethyl acetate-doxifluridine) as a white solid (20.5 mg, 98.4%).
  • the amount of doxyfluridine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 4% by mass.
  • Example 4 (Drug release test) A drug release test was performed using the drug delivery system synthesized in Experimental Example 2. Specifically, the drug delivery system synthesized in Experimental Example 2 was added to a buffer solution adjusted to pH 7.4 corresponding to blood pH, pH 5.5 corresponding to intracellular acidic organelle environment, and pH 4.2. And incubated at 37 ° C. Subsequently, sampling was performed over time, and gemcitabine released by high performance liquid chromatography (HPLC) was quantified.
  • HPLC high performance liquid chromatography
  • FIG. 1 is a graph showing the results of measuring the amount of gemcitabine released. As a result, it was revealed that the drug delivery system synthesized in Experimental Example 2 is stable at pH 7.4 corresponding to the pH in blood. On the other hand, it was revealed that gemcitabine was efficiently released from the drug delivery system synthesized in Experimental Example 2 at pH 5.5 and pH 4.2 corresponding to the intracellular acidic organelle environment.
  • FIG. 2A is a graph showing the measurement results of the tumor growth rate.
  • “*” indicates that there is a significant difference when the correlation coefficient (p value) is less than 0.05
  • “**” indicates that there is a significant difference when the p value is less than 0.005.
  • "***” indicates that there is a significant difference when the p value is less than 0.001
  • “***” indicates that there is a significant difference when the p value is less than 0.0001.
  • FIG.2 (b) is a graph which shows the measurement result of a weight change rate. In FIG. 2 (a) and (b), the arrow shows the time when the drug was administered.
  • gemcitabine hydrochloride and the drug delivery system were dissolved in 10 mM phosphate buffer so as to be 1 mg / mL and 10 mg / mL, respectively.
  • 5 ⁇ L of Iodine-125 (Perkin Elmer) and 100 ⁇ L of chloramine T aqueous solution (10 mg / mL) were added to 100 ⁇ L of gemcitabine aqueous solution or 100 ⁇ L of drug delivery system aqueous solution and allowed to stand at room temperature for reaction.
  • the reaction time of gemcitabine was 30 minutes, and the reaction time of the drug delivery system was 1 hour.
  • reaction was terminated by adding 100 ⁇ L of a sodium disulfite aqueous solution (20 mg / mL) to each reaction solution.
  • a sodium disulfite aqueous solution (20 mg / mL)
  • 125 I-labeled gemcitabine was purified by an anion exchange column
  • 125 I-labeled drug delivery system was purified by a PD-10 column (manufactured by GE Healthcare).
  • 125 I-labeled gemcitabine and a drug delivery system were each administered to a tumor-bearing model mouse by tail vein injection.
  • the dose of 125 I-labeled gemcitabine was 80 mg / kg, which is the amount used for treatment.
  • the dose of the 125 I-labeled drug delivery system was 20 mg / kg in terms of gemcitabine.
  • each mouse was killed 30 minutes, 2 hours, and 24 hours after administration of the drug.
  • blood and each organ (heart, lung, liver, kidney, spleen, pancreas, stomach, intestine, tumor) were collected.
  • the radioactivity of the collected blood was quantified with a gamma counter to evaluate the retention of gemcitabine in the blood.
  • the radioactivity of each collected organ was quantified with a gamma counter, and the amount of gemcitabine accumulated in each organ was evaluated.
  • FIG. 3 (a) is a graph showing the measurement results of the remaining amount of gemcitabine in the blood.
  • 95% disappeared from the blood in 2 hours after the administration and only 5% remained whereas in the administration of the drug delivery system synthesized in Experimental Example 2, it was about 4 times. It was revealed that 20% of gemcitabine remained in the blood.
  • FIG. 3 (b) is a graph showing the measurement results of the amount of gemcitabine tumor tissue accumulated. As a result, it was revealed that about 3 times as much gemcitabine was accumulated in the tumor tissue as compared with the administration of gemcitabine by administration of the drug delivery system synthesized in Experimental Example 2 at 2 hours after administration. On the other hand, in the administration of the drug delivery system synthesized in Experimental Example 2, no noticeable accumulation of gemcitabine in the liver or the like was confirmed.
  • FIG. 4 (a) is a graph showing the results of measuring the amount of gemcitabine accumulated in each organ when gemcitabine is administered alone.
  • FIG.4 (b) is a graph which shows the result of having measured the accumulation amount to each organ of the gemcitabine administered with the form of the drug delivery system.
  • Example 7 (Toxicity test 1) 4-week-old BALB / c mice were bred for 1 week, then gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered, and toxicity was evaluated.
  • the dose of gemcitabine was 80 mg / kg.
  • the dose of the drug delivery system synthesized in Experimental Example 2 was 20 mg / kg in terms of gemcitabine.
  • Each drug was administered by daily tail vein administration once a day after the start of the experiment, and changes in the body weight of the mice were observed. Weight loss is one indicator of toxicity.
  • FIG. 5 is a graph showing the results of measuring the weight change rate of each group of mice.
  • the arrow indicates the time when the drug was administered.
  • the weights of all the mice (3 animals) were decreased, and all mice died on the third day from the start of the experiment.
  • weight loss was not confirmed, and no dead mice were confirmed.
  • Example 8 (Toxicity test 2) 4-week-old BALB / c mice were bred for 1 week, then gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered, and toxicity was evaluated.
  • the concentration of the gemcitabine aqueous solution was 2 mg / mL.
  • the concentration of the aqueous solution in the drug delivery system was 20 mg / mL.
  • the dose of drug in each group was 200 ⁇ L per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group.
  • mouth which administered physiological saline was made into the control group.
  • mice After the start of the experiment, the body weight was measured with an electronic balance every time the drug was administered. In addition, the total food intake of mice was measured. Subsequently, the small intestine and spleen were collected on the 3rd day, starting on the 0th day. The collected small intestine was prepared as a specimen by the paraffin embedding method and observed with a microscope after staining with hematoxylin / eosin (HE). In addition, the mass of the spleen was measured.
  • HE hematoxylin / eosin
  • FIG. 6 is a graph showing changes in body weight of mice in each group over time. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, weight loss was not observed in the mice of the control group and the drug delivery system administration group. In contrast, significant weight loss was observed in the mice in the gemcitabine administration group.
  • FIG. 7 is a graph showing the measurement results of the total food intake of mice in each group. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, it was clarified that the total food intake of the mice in the gemcitabine administration group was significantly reduced as compared with the mice in the other groups.
  • FIGS. 8A to 8C are representative photomicrographs showing the results of staining the small intestine of each group of mice with hematoxylin / eosin (HE).
  • 8 (a) is a histological image of the small intestine of the control group
  • FIG. 8 (b) is a histological image of the small intestine of the mouse of the drug delivery system administration group
  • FIG. 8 (c) is a mouse of the gemcitabine administration group. It is a histological image of the small intestine.
  • the scale bar indicates 100 ⁇ m.
  • the part enclosed with a square shows the intestinal crypt of the villi bottom.
  • the intestinal crypt is known as the intestinal gland that contributes to the secretion of various enzymes.
  • FIG. 9 is a graph showing the results of measuring villi length in the small intestine of each group of mice. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, it was revealed that the villi length was significantly decreased in the small intestine of the mice in the gemcitabine administration group compared with the mice in the other groups.
  • mice in the gemcitabine administration group were damaged in the small intestine.
  • the digestive organs especially in the small intestine
  • FIG. 10 is a graph showing the measurement results of the spleen mass of each group of mice. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test).
  • mice of the gemcitabine administration group had a significantly reduced spleen mass compared to the mice of the other groups.
  • the mass of the spleen is one index for evaluating immunotoxicity. Therefore, this result indicates that immunotoxicity is observed in mice in the gemcitabine administration group.
  • the concentration of the gemcitabine aqueous solution was 2 mg / mL.
  • the concentration of the aqueous solution in the drug delivery system was 20 mg / mL.
  • the dose of drug in each group was 200 ⁇ L per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group.
  • mouth which administered physiological saline was made into the control group.
  • the blood was collected on the third day, starting from the experiment start day.
  • the concentration of the gemcitabine aqueous solution was 2 mg / mL.
  • the concentration of the aqueous solution in the drug delivery system was 20 mg / mL.
  • the dose of drug in each group was 200 ⁇ L per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group.
  • mouth which administered physiological saline was made into the control group.
  • MeO-PEG-PAsp is a drug delivery system represented by the above formula (13) by a transacetalization reaction between a dimethylacetal group of MeO-PEG-PAsp (dimethylacetal) and a diol group of gemcitabine. dimethyl (acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
  • reaction solution was added dropwise to 900 mL of a 0.1 M aqueous sodium hydrogen carbonate solution under ice cooling to neutralize paratoluenesulfonic acid monohydrate in the system.
  • unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 1400 mg, 55.3%).
  • the amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 27% by mass.
  • MeO-PEG-poly ( ⁇ -benzyl L-aspartate) (MeO-PEG-PBLA), which is a diblock copolymer of PEG-polyamino acids, was synthesized. Specifically, first, 1500 mg of BLA-N-carbohydrate (BLA-NCA) was dissolved in 10 mL of dimethylformamide (DMF). Subsequently, 600 mg of MeO-PEG-NH 2 dissolved in 40 mL of dichloromethane (DCM) was added as a polymerization initiator to the obtained solution, and the mixture was stirred at 35 ° C. for 3 days. All the above operations were performed in an argon atmosphere.
  • BLA-NCA BLA-N-carbohydrate
  • DCM dichloromethane
  • reaction solution was added dropwise to an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure to obtain PEG-PBLA as a white solid (1. 42g, 78.8%).
  • the resulting white solid was analyzed by 1 H NMR and gel filtration chromatography to confirm the chemical structure and molecular weight distribution of the product.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the polymerization degree of PBLA calculated by 1 H NMR measurement was about 98.
  • MeO-PEG-PAsp (dimethyl acetal), which is a drug delivery carrier represented by the above formula (11), was utilized in Experimental Example 1 by utilizing an aminolysis reaction to the benzyl group of the side chain of MeO-PEG-PBLA. It was synthesized by the same method. Specifically, first, 200 mg of PEG-PBLA was dissolved in 4 mL of N-methylpyrrolidone (NMP), and 50-fold molar amount of aminoacetaldehydrate dimethylacetal was transferred to another container with respect to the benzyl group of PEG-PBLA. It was. Subsequently, the aminoacetaldehydrate dimethylacetal solution was added dropwise to the PEG-PBLA solution and allowed to react overnight at room temperature. All the above operations were performed in an argon atmosphere.
  • NMP N-methylpyrrolidone
  • MeO-PEG-PAsp (dimethylacetal)
  • 10 times molar amount of gemcitabine hydrochloride with respect to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal)
  • MeO-PEG- as a reaction catalyst
  • a 1-fold molar amount of paratoluenesulfonic acid monohydrate with respect to the dimethylacetal group of PAsp (dimethylacetal) was dissolved in 8 mL of DMF and reacted at 50 ° C. overnight.
  • MeO-PEG-PAsp (dimethyl) is a drug delivery system represented by formula (13) by transacetalization reaction between the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal) and the diol group of gemcitabine. acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
  • reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system.
  • unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 82 mg, 72.5%).
  • the amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 14% by mass.
  • the present invention it is possible to provide a drug delivery technique capable of efficiently delivering a drug to a tumor tissue without reducing the pharmacological activity of the drug.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

A drug delivery carrier comprising a biocompatible polymer to which is bonded a group capable of forming an acetal bond represented by formula (2) (in formula 2, m and n each represent an integer of 0 or 1, and * represents a bond) with a diol structure of a drug having a diol structure represented by formula (1) (in formula (1), m and n each represent the same values as m and n in formula (2), and * represents a bond).

Description

薬物送達用担体及び薬物送達システムDrug delivery carrier and drug delivery system
 本発明は、薬物送達用担体及び薬物送達システムに関する。本願は、2017年2月20日に、日本に出願された特願2017-029264号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a drug delivery carrier and a drug delivery system. This application claims priority based on Japanese Patent Application No. 2017-029264 filed in Japan on February 20, 2017, the contents of which are incorporated herein by reference.
 例えば、ゲムシタビン、ドキシフルリジン等の代謝拮抗剤は、主に制癌剤として利用されている。特に、ゲムシタビンは膵臓癌の第一選択薬として取り扱われている。しかしながら、これらの薬物は分子量が500以下と小さいこと等から、患者に投与した場合に腎臓や肝臓からの排泄により血液中から速やかに消失してしまい、患部である腫瘍組織への集積効率が低い傾向にある。 For example, antimetabolites such as gemcitabine and doxyfluridine are mainly used as anticancer agents. In particular, gemcitabine is treated as a first-line drug for pancreatic cancer. However, since these drugs have a molecular weight as low as 500 or less, they are rapidly eliminated from the blood due to excretion from the kidney or liver when administered to a patient, and the accumulation efficiency in the tumor tissue, which is an affected area, is low. There is a tendency.
 従来、薬物の体内動態を制御する手法として、例えば、高分子ミセルやリポソームへの薬物の内包、高分子化合物への薬物の結合等の手法が検討されてきた(例えば、非特許文献1を参照)。 Conventionally, as a method for controlling the pharmacokinetics of a drug, for example, a method such as encapsulating a drug in a polymer micelle or liposome, or binding a drug to a polymer compound has been studied (for example, see Non-Patent Document 1). ).
 しかしながら、高分子ミセルやリポソームへの薬物の内包は、内包効率が高い疎水性の薬物にしか適用できない場合が多く、例えばゲムシタビン等の親水性の高い薬物への適用は困難な場合がある。 However, encapsulating drugs in polymer micelles or liposomes is often applicable only to hydrophobic drugs with high encapsulation efficiency, and it may be difficult to apply to highly hydrophilic drugs such as gemcitabine.
 また、高分子ミセルやリポソームへの薬物の内包により、腎臓からの薬物の排泄を低減することができるものの、薬物を内包した高分子ミセルやリポソームが、肝臓等の正常組織に集積することが問題となる場合がある。 In addition, drug excretion from the kidney can be reduced by encapsulating the drug in polymer micelles or liposomes, but the problem is that polymer micelles or liposomes encapsulating the drug accumulate in normal tissues such as the liver. It may become.
 一方、高分子化合物への薬物の結合においては、高分子化合物への薬物の結合を容易にするために薬物自体の構造を改変することや、患部で効率的に薬物を放出するための化学結合が検討されている。しかしながら、薬物自体の構造改変等により、薬物の薬理活性が低下してしまう等の問題が生じる場合がある。 On the other hand, in the binding of a drug to a polymer compound, the structure of the drug itself is modified in order to facilitate the binding of the drug to the polymer compound, or a chemical bond is used to efficiently release the drug in the affected area. Is being considered. However, problems such as a decrease in the pharmacological activity of the drug may occur due to structural modification of the drug itself.
 そこで、本発明は、上述した高分子化合物への薬物の結合技術の問題点を克服し、薬物の薬理活性を低下させることなく、効率よく腫瘍組織に薬物を送達することができる薬物送達技術を提供することを目的とする。 Therefore, the present invention overcomes the problems of the technology for binding a drug to a polymer compound described above, and provides a drug delivery technology that can efficiently deliver a drug to tumor tissue without reducing the pharmacological activity of the drug. The purpose is to provide.
 本発明は、以下の態様を含む。
[1]下記式(1)で表わされるジオール構造を有する薬物の前記ジオール構造と下記式(2)で表わされるアセタール結合を形成し得る基が結合した、生体適合性ポリマーからなる、薬物送達用担体。
Figure JPOXMLDOC01-appb-C000008
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000009
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
[2]前記アセタール結合を形成し得る基が下記式(3)で表わされる基である、[1]に記載の薬物送達用担体。
Figure JPOXMLDOC01-appb-C000010
[式(3)中、R及びRはそれぞれ独立に炭素数1~3のアルキル基を表し、*は結合手を表す。R及びRは連結して環を形成していてもよい。]
[3]前記生体適合性ポリマーが生体分解性である、[1]又は[2]に記載の薬物送達用担体。
[4]重量平均分子量が2,000~200,000である、[1]~[3]のいずれかに記載の薬物送達用担体。
[5]前記生体適合性ポリマー1モルあたり、前記アセタール結合を形成し得る基が5~500モル結合した、[1]~[4]のいずれかに記載の薬物送達用担体。
[6][1]~[5]のいずれかに記載の薬物送達用担体と、下記式(1)で表わされるジオール構造を有する薬物とが、下記式(2)で表わされるアセタール結合で結合した、薬物送達システム。
Figure JPOXMLDOC01-appb-C000011
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000012
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
[7]酸性環境下で前記アセタール結合が切断されるとともに前記薬物の前記式(1)で表わされるジオール構造が再生され、前記薬物送達システムから前記薬物が放出される、[6]に記載の薬物送達システム。
[8][1]~[5]のいずれかに記載の薬物送達用担体と、下記式(4)で表わされるジオール構造を有する薬物とが、下記式(5)で表わされるアセタール結合で結合した、薬物送達システム。
Figure JPOXMLDOC01-appb-C000013
[式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000014
[式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
[9]酸性環境下で前記アセタール結合が切断されるとともに前記薬物の前記式(4)で表わされるジオール構造が再生され、前記薬物送達システムから前記薬物が放出される、[8]に記載の薬物送達システム。
[10]ジオール構造を有する前記薬物が代謝拮抗剤である、[6]~[9]のいずれかに記載の薬物送達システム。
The present invention includes the following aspects.
[1] For drug delivery, comprising a biocompatible polymer in which the diol structure of a drug having a diol structure represented by the following formula (1) is bonded to a group capable of forming an acetal bond represented by the following formula (2) Carrier.
Figure JPOXMLDOC01-appb-C000008
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000009
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
[2] The drug delivery carrier according to [1], wherein the group capable of forming an acetal bond is a group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000010
[In Formula (3), R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and * represents a bond. R 1 and R 2 may be linked to form a ring. ]
[3] The drug delivery carrier according to [1] or [2], wherein the biocompatible polymer is biodegradable.
[4] The drug delivery carrier according to any one of [1] to [3], which has a weight average molecular weight of 2,000 to 200,000.
[5] The drug delivery carrier according to any one of [1] to [4], wherein 5 to 500 mol of the group capable of forming an acetal bond is bonded to 1 mol of the biocompatible polymer.
[6] The drug delivery carrier according to any one of [1] to [5] and the drug having a diol structure represented by the following formula (1) are bound by an acetal bond represented by the following formula (2): Drug delivery system.
Figure JPOXMLDOC01-appb-C000011
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000012
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
[7] The method according to [6], wherein the acetal bond is cleaved in an acidic environment, the diol structure represented by the formula (1) of the drug is regenerated, and the drug is released from the drug delivery system. Drug delivery system.
[8] The drug delivery carrier according to any one of [1] to [5] and the drug having a diol structure represented by the following formula (4) are bound by an acetal bond represented by the following formula (5): Drug delivery system.
Figure JPOXMLDOC01-appb-C000013
[In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000014
[In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
[9] The method according to [8], wherein the acetal bond is cleaved in an acidic environment, the diol structure represented by the formula (4) of the drug is regenerated, and the drug is released from the drug delivery system. Drug delivery system.
[10] The drug delivery system according to any one of [6] to [9], wherein the drug having a diol structure is an antimetabolite.
 本発明によれば、薬物の薬理活性を低下させることなく、効率よく腫瘍組織に薬物を送達することができる薬物送達技術を提供することができる。 According to the present invention, it is possible to provide a drug delivery technique capable of efficiently delivering a drug to a tumor tissue without reducing the pharmacological activity of the drug.
実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. (a)及び(b)は、実験例5の結果を示すグラフである。(A) And (b) is a graph which shows the result of Experimental example 5. FIG. (a)及び(b)は、実験例6の結果を示すグラフである。(A) And (b) is a graph which shows the result of Experimental example 6. FIG. (a)及び(b)は、実験例6の結果を示すグラフである。(A) And (b) is a graph which shows the result of Experimental example 6. FIG. 実験例7の結果を示すグラフである。10 is a graph showing the results of Experimental Example 7. 実験例8において、各群のマウスの体重の経時変化を示すグラフである。In Experimental Example 8, it is a graph which shows the time-dependent change of the body weight of the mouse | mouth of each group. 実験例8において、各群のマウスの総摂食量の測定結果を示すグラフである。In Experimental Example 8, it is a graph which shows the measurement result of the total food intake of the mouse | mouth of each group. (a)~(c)は、実験例8において、各群のマウスの小腸の標本をヘマトキシリン/エオジン(HE)染色した結果を示す代表的な顕微鏡写真である。(A) to (c) are representative photomicrographs showing the results of hematoxylin / eosin (HE) staining of the small intestine specimens of each group of mice in Experimental Example 8. 実験例8において、各群のマウスの小腸における絨毛長を測定した結果を示すグラフである。In Experimental example 8, it is a graph which shows the result of having measured the villus length in the small intestine of the mouse | mouth of each group. 実験例8において、各群のマウスの脾臓の質量の測定結果を示すグラフである。In Experimental Example 8, it is a graph which shows the measurement result of the mass of the spleen of each group of mice.
[薬物送達用担体]
 1実施形態において、本発明は、下記式(1)で表わされるジオール構造を有する薬物の前記ジオール構造と下記式(2)で表わされるアセタール結合を形成し得る基が結合した、生体適合性ポリマーからなる、薬物送達用担体を提供する。
[Drug carrier]
In one embodiment, the present invention provides a biocompatible polymer in which the diol structure of a drug having a diol structure represented by the following formula (1) is bonded to a group capable of forming an acetal bond represented by the following formula (2) A drug delivery carrier comprising:
Figure JPOXMLDOC01-appb-C000015
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000015
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000016
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000016
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
 本実施形態の薬物送達用担体は、下記式(6)で表わされるジオール構造を有する薬物の前記ジオール構造ともアセタール結合を形成することができ、その場合、下記式(7)で表わされるアセタール結合が形成される。 The drug delivery carrier of this embodiment can also form an acetal bond with the diol structure of a drug having a diol structure represented by the following formula (6). In that case, the acetal bond represented by the following formula (7) Is formed.
Figure JPOXMLDOC01-appb-C000017
[式(6)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000017
[In the formula (6), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000018
[式(7)中、m及びnはそれぞれ前記式(6)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000018
[In Formula (7), m and n represent the same values as m and n in Formula (6), respectively, and * represents a bond. ]
 発明者らは、代謝拮抗剤を含む薬物の多くが糖骨格を有すること、及び糖骨格の多くがジオール構造を有することに着目し、このジオール構造を利用してアセタール結合により薬物送達用担体に薬物を結合することに着想し本発明を完成させた。 The inventors focused on the fact that most drugs containing antimetabolites have a sugar skeleton and that many of the sugar skeletons have a diol structure, and this diol structure is used as a drug delivery carrier by acetal bonding. The present invention was completed with the idea of combining drugs.
 実施例において後述するように、本実施形態の薬物送達用担体に結合した薬物は、分子量増大に伴って血中滞留性及び腫瘍集積性が向上する。 As will be described later in Examples, the drug bound to the drug delivery carrier of the present embodiment improves in blood retention and tumor accumulation with increasing molecular weight.
 更に、患部である腫瘍組織内の細胞に取り込まれた後は、pH約4.0~6.0の酸性オルガネラ環境でアセタール構造が切断され、薬物が細胞内で放出される。この時、薬物の本来のジオール構造が再生されるため、薬物は本来の薬理活性を発揮することができる。 Furthermore, after being taken up by cells in the tumor tissue, which is the affected area, the acetal structure is cleaved in an acidic organelle environment having a pH of about 4.0 to 6.0, and the drug is released inside the cell. At this time, since the original diol structure of the drug is regenerated, the drug can exhibit its original pharmacological activity.
 ところで、低分子の薬物は、その薬物に特異的なトランスポーター等を介して細胞へ取り込まれることがあることが知られている。このため、そのような低分子の薬物は、その薬物に特異的なトランスポーターの発現量が高い正常な臓器に集積することが懸念される。例えば、ゲムシタビンは、胃腸に発現量が高いヌクレオシドトランスポーターに取り込まれやすい傾向がある。このため、例えば、ゲムシタビンは、消化器官に対する毒性を示す場合があり、食欲減衰や、これに起因する体重減少を引き起こす場合がある。なお、本明細書において、低分子の薬物とは分子量が約1000以下である薬物を意味する。 By the way, it is known that a low molecular weight drug may be taken into a cell through a transporter specific to the drug. For this reason, there is a concern that such low-molecular-weight drugs accumulate in normal organs with high expression levels of transporters specific to the drugs. For example, gemcitabine tends to be easily taken up by nucleoside transporters that are highly expressed in the gastrointestinal tract. For this reason, for example, gemcitabine may be toxic to the digestive tract and may cause loss of appetite and weight loss resulting therefrom. In the present specification, the low molecular weight drug means a drug having a molecular weight of about 1000 or less.
 これに対し、本実施形態の薬物送達用担体に結合させた薬物は、酸性条件等の細胞内環境に依存して薬物送達用担体から放出される。このため、トランスポーターの発現量が高い正常組織への薬物の集積を誘導することなく、腫瘍組織への薬物の集積のみを向上させることができる。この結果、本実施形態の薬物送達用担体によれば、高い薬効と低い副作用を達成することができる。 In contrast, the drug bound to the drug delivery carrier of the present embodiment is released from the drug delivery carrier depending on the intracellular environment such as acidic conditions. For this reason, only the accumulation of the drug in the tumor tissue can be improved without inducing the accumulation of the drug in the normal tissue having a high transporter expression level. As a result, according to the drug delivery carrier of this embodiment, high drug efficacy and low side effects can be achieved.
 本実施形態の薬物送達用担体において、薬物のジオール構造とアセタール結合を形成し得る基としては、下記式(3)で表わされる基が挙げられる。 In the drug delivery carrier of this embodiment, examples of the group capable of forming an acetal bond with the diol structure of the drug include a group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000019
[式(3)中、R及びRはそれぞれ独立に炭素数1~3のアルキル基を表し、*は結合手を表す。R及びRは連結して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000019
[In Formula (3), R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and * represents a bond. R 1 and R 2 may be linked to form a ring. ]
 上記式(3)で表される基としては、より具体的には、下記式(8)~(10)で表される基が挙げられる。 More specifically, examples of the group represented by the above formula (3) include groups represented by the following formulas (8) to (10).
Figure JPOXMLDOC01-appb-C000020
[式(8)中、z及びwはそれぞれ1~3の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000020
[In the formula (8), z and w each represents an integer of 1 to 3, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000021
[式(9)中、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000021
[In formula (9), * represents a bond. ]
Figure JPOXMLDOC01-appb-C000022
[式(10)中、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000022
[In formula (10), * represents a bond. ]
 上記式(1)又は上記式(6)で表わされるジオール構造を有する薬物としては、上記式(3)で表される基とアセタール結合を形成することができる薬物であれば特に限定されず、例えば、ゲムシタビン、ドキシフルリジン、シタラビン、フルダラビン、ペントスタチン等の代謝拮抗剤;ガンシクロビル、イドクスウリジン、トリフルリジン、リバビリン、エンテカビル等の抗ウイルス薬等が挙げられる。なお、上記の抗ウイルス薬は、腫瘍組織に送達した場合には制癌効果を奏するものである。 The drug having a diol structure represented by the above formula (1) or the above formula (6) is not particularly limited as long as it is a drug capable of forming an acetal bond with the group represented by the above formula (3), Examples include antimetabolites such as gemcitabine, doxyfluridine, cytarabine, fludarabine and pentostatin; antiviral drugs such as ganciclovir, idoxuridine, trifluridine, ribavirin and entecavir. In addition, said antiviral agent has an anticancer effect when delivered to tumor tissue.
 本実施形態の薬物送達用担体において、生体適合性ポリマーとは、生体に投与した場合に、強い炎症反応等の悪影響を及ぼしにくいポリマーを意味する。 In the drug delivery carrier of the present embodiment, the biocompatible polymer means a polymer that does not easily exert a bad influence such as a strong inflammatory reaction when administered to a living body.
 生体適合性ポリマーとしては、本発明の効果が得られる限り特に制限されず、例えば、ポリエチレングリコール(PEG)、ポリアミノ酸、ポリアクリルアミド、ポリエーテル、ポリエステル、ポリウレタン、多糖類、これらのコポリマー等が挙げられる。生体適合性ポリマーは、一部にその合成過程で導入された任意の基を有していてもよい。このような基としては、例えば重合開始剤の一部等が挙げられる。 The biocompatible polymer is not particularly limited as long as the effect of the present invention is obtained, and examples thereof include polyethylene glycol (PEG), polyamino acid, polyacrylamide, polyether, polyester, polyurethane, polysaccharide, and copolymers thereof. It is done. The biocompatible polymer may have any group introduced in part in the synthesis process. Examples of such a group include a part of a polymerization initiator.
 本実施形態の薬物送達用担体において、生体適合性ポリマーは生体分解性であることが好ましい。 In the drug delivery carrier of this embodiment, the biocompatible polymer is preferably biodegradable.
 生体分解性とは、生体内で吸収又は分解され得る性質を意味する。生体分解性である生体適合性ポリマーとしては、本発明の効果が得られる限り特に制限されず、例えば、ポリアミノ酸、ポリエステル、ポリヌクレオチド、多糖類等が挙げられる。 Biodegradability means a property that can be absorbed or decomposed in vivo. The biocompatible polymer that is biodegradable is not particularly limited as long as the effects of the present invention are obtained, and examples thereof include polyamino acids, polyesters, polynucleotides, polysaccharides, and the like.
 本明細書において、生体適合性ポリマーが生体分解性であるとは、生体適合性ポリマーの少なくとも一部が生体分解性であることを意味する。したがって、本実施形態の薬物送達用担体に用いることができる生体分解性の生体適合性ポリマーとしては、ポリアミノ酸、ポリエステル、ポリヌクレオチド、多糖類と、PEG、ポリアクリルアミド、ポリエーテル、ポリエステル、ポリウレタン、多糖類等とのブロックコポリマー等も好適に用いることができる。 In this specification, the biocompatible polymer being biodegradable means that at least a part of the biocompatible polymer is biodegradable. Accordingly, biodegradable biocompatible polymers that can be used for the drug delivery carrier of the present embodiment include polyamino acids, polyesters, polynucleotides, polysaccharides, PEG, polyacrylamide, polyethers, polyesters, polyurethanes, Block copolymers with polysaccharides and the like can also be suitably used.
 従来のポリマーは生体に投与した場合に生体内に蓄積することが問題となる場合があった。これに対し、生体分解性であるポリマーを用いることにより、生体内への蓄積を抑制することができ、副作用を低減させることができる。 Conventional polymers sometimes have a problem of accumulation in a living body when administered to a living body. On the other hand, by using a biodegradable polymer, accumulation in the living body can be suppressed, and side effects can be reduced.
 本実施形態の薬物送達用担体は、重量平均分子量が2,000~200,000であることが好ましく、例えば5,000~100,000であってもよく、例えば10,000~50,000であってもよい。 The drug delivery carrier of this embodiment preferably has a weight average molecular weight of 2,000 to 200,000, for example, 5,000 to 100,000, such as 10,000 to 50,000. There may be.
 薬物送達用担体の重量平均分子量が上記の範囲であることにより、薬物を結合させて薬物送達システムを製造した場合に、薬物の血中滞留性、腫瘍組織への集積性を適度に向上させ、また、肝臓等の正常組織への集積を惹起しないことができる。この結果、薬物を効率よく腫瘍組織に送達することが可能になる。 When the drug delivery carrier is produced by combining the drug with the weight average molecular weight of the drug delivery carrier within the above range, the retention of the drug in the blood and the accumulation in the tumor tissue are appropriately improved, In addition, accumulation in normal tissues such as the liver can be prevented. As a result, the drug can be efficiently delivered to the tumor tissue.
 ここで、薬物送達用担体の重量平均分子量としては、サイズ排除クロマトグラフィー(SEC)解析により測定した値を用いることができる。具体的には、薬物送達用担体を溶媒に溶解又は分散させた後、細孔(ポア)が数多く存在する充てん剤を用いたカラム内に移動相溶液と共に通液し、カラム内で分子量の大小によって分離させ、それを示差屈折率計や紫外可視分光光度計、粘度計、光散乱検出器等を検出器として用いて検出する。SEC専用装置が広く市販されており、標準ポリエチレングリコール換算によって測定することが一般的である。本明細書における重量平均分子量は、この標準ポリエチレングリコール換算によって測定されたものである。 Here, as the weight average molecular weight of the drug delivery carrier, a value measured by size exclusion chromatography (SEC) analysis can be used. Specifically, after dissolving or dispersing a drug delivery carrier in a solvent, the drug delivery carrier is passed through a column using a filler having many pores, and the molecular weight is increased or decreased in the column. It is detected by using a differential refractometer, an ultraviolet-visible spectrophotometer, a viscometer, a light scattering detector or the like as a detector. SEC-dedicated devices are widely available on the market and are generally measured by standard polyethylene glycol conversion. The weight average molecular weight in this specification is measured by this standard polyethylene glycol conversion.
 本実施形態の薬物送達用担体は、上述した前記生体適合性ポリマー1モルあたり、上述したアセタール結合を形成し得る基が5~500モル結合していることが好ましく、例えば12~250モルであってもよく、例えば25~125モルであってもよい。 In the drug delivery carrier of this embodiment, it is preferable that 5 to 500 mol of the group capable of forming the acetal bond is bonded to 1 mol of the biocompatible polymer described above, for example, 12 to 250 mol. For example, it may be 25 to 125 mol.
 アセタール結合を形成し得る基の含有量が上記の範囲であることにより、薬物を適切な量結合させることができ、本発明の効果が得られやすくなる。 When the content of the group capable of forming an acetal bond is in the above range, an appropriate amount of drug can be bonded, and the effects of the present invention can be easily obtained.
[薬物送達システム]
 1実施形態において、本発明は、上述した薬物送達用担体と、下記式(1)で表わされるジオール構造を有する薬物とが、下記式(2)で表わされるアセタール結合で結合した、薬物送達システムを提供する。
[Drug delivery system]
In one embodiment, the present invention provides a drug delivery system in which the above-described drug delivery carrier and a drug having a diol structure represented by the following formula (1) are bound by an acetal bond represented by the following formula (2). I will provide a.
Figure JPOXMLDOC01-appb-C000023
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000023
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000024
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000024
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
 本実施形態の薬物送達システムは、上述した薬物送達用担体と、下記式(4)で表わされるジオール構造を有する薬物とが、下記式(5)で表わされるアセタール結合で結合した、薬物送達システムであってもよい。 The drug delivery system of the present embodiment is a drug delivery system in which the above-mentioned drug delivery carrier and a drug having a diol structure represented by the following formula (4) are bound by an acetal bond represented by the following formula (5). It may be.
Figure JPOXMLDOC01-appb-C000025
[式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000025
[In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000026
[式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000026
[In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
 実施例において後述するように、本実施形態の薬物送達システムは、血液中pHに相当するpH7.4においては、薬物を安定に保持しており、細胞内酸性オルガネラ環境に相当するpH約4.0~6.0においては、効率的に薬物を放出することができる。 As will be described later in Examples, the drug delivery system of the present embodiment stably holds a drug at pH 7.4 corresponding to pH in blood, and has a pH of about 4. corresponding to an intracellular acidic organelle environment. In the range of 0 to 6.0, the drug can be released efficiently.
 また、薬物の血中滞留性、腫瘍組織への集積性を適度に向上させ、また、肝臓等の正常組織への集積を惹起しないことができる。また、薬物を単体で投与する場合と比較して、薬物の投与量を低減させることができ、更に薬物を担体で投与する場合よりも高い薬理活性を発揮することができる。また、薬物の毒性を低減することができる。 Also, the retention of the drug in the blood and the accumulation in the tumor tissue can be improved moderately, and the accumulation in the normal tissue such as the liver can be prevented. Moreover, compared with the case where a drug is administered alone, the dose of the drug can be reduced, and furthermore, higher pharmacological activity can be exhibited than when the drug is administered with a carrier. In addition, the toxicity of the drug can be reduced.
 本実施形態の薬物送達システムにおいて、上記式(1)又は上記式(6)で表わされるジオール構造を有する薬物としては、上記式(3)で表される基とアセタール結合を形成することができる薬物であれば特に限定されず、上述したものと同様の薬物が挙げられる。 In the drug delivery system of the present embodiment, the drug having a diol structure represented by the formula (1) or the formula (6) can form an acetal bond with the group represented by the formula (3). If it is a drug, it will not specifically limit, The drug similar to what was mentioned above is mentioned.
 上記のジオール構造を有する薬物は代謝拮抗剤であってもよい。代謝拮抗剤には糖骨格を有する薬物が多く、ジオール構造を有している場合が多い。このため、本実施形態の薬物送達システムに適用しやすい。 The drug having the diol structure may be an antimetabolite. Many antimetabolite drugs have a sugar skeleton and often have a diol structure. For this reason, it is easy to apply to the drug delivery system of this embodiment.
 本実施形態の薬物送達システムは、酸性環境下で前記アセタール結合が切断されるとともに前記薬物の上記式(1)又は上記式(4)で表わされるジオール構造が再生され、前記薬物送達システムから前記薬物が放出されるものであることが好ましい。 In the drug delivery system of the present embodiment, the acetal bond is cleaved in an acidic environment and the diol structure represented by the formula (1) or the formula (4) of the drug is regenerated. Preferably, the drug is released.
 酸性環境下とは、細胞内酸性オルガネラ環境を意味し、pH約4.0~6.0の環境である。上述したように、本実施形態の薬物送達システムは、細胞内に取り込まれ、酸性環境下におかれると、薬物を放出する。この時、薬物の本来のジオール構造が再生されるため、薬物は本来の薬理活性を発揮することができる。 “In an acidic environment” means an intracellular acidic organelle environment, and is an environment having a pH of about 4.0 to 6.0. As described above, the drug delivery system according to the present embodiment releases a drug when taken into a cell and placed in an acidic environment. At this time, since the original diol structure of the drug is regenerated, the drug can exhibit its original pharmacological activity.
 従来、高分子化合物への薬物の結合を容易にするために薬物自体の構造を改変することが試みられてきたが、薬物自体の構造を改変することによる薬物の薬理活性の低下が問題となる場合があった。これに対し、本実施形態の薬物送達システムはこのような問題を克服することができる。 Conventionally, attempts have been made to modify the structure of the drug itself in order to facilitate the binding of the drug to the polymer compound, but there is a problem in that the pharmacological activity of the drug is reduced by modifying the structure of the drug itself. There was a case. In contrast, the drug delivery system of the present embodiment can overcome such problems.
[その他の実施形態]
 1実施形態において、本発明は、薬物送達システムの有効量を、治療を必要とする患者に投与することを含む、疾患の治療方法であって、前記薬物送達システムは、生体適合性ポリマーと、下記式(1)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(2)で表わされるアセタール結合で結合したものである、治療方法を提供する。
[Other Embodiments]
In one embodiment, the invention comprises a method of treating a disease comprising administering an effective amount of a drug delivery system to a patient in need of treatment, said drug delivery system comprising a biocompatible polymer, A therapeutic method comprising a drug having a diol structure represented by the following formula (1), wherein the biocompatible polymer and the drug are bonded by an acetal bond represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000027
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000027
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000028
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000028
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 1実施形態において、本発明は、薬物送達システムの有効量を、治療を必要とする患者に投与することを含む、疾患の治療方法であって、前記薬物送達システムは、生体適合性ポリマーと、下記式(4)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(5)で表わされるアセタール結合で結合したものである、治療方法を提供する。 In one embodiment, the invention comprises a method of treating a disease comprising administering an effective amount of a drug delivery system to a patient in need of treatment, said drug delivery system comprising a biocompatible polymer, A therapeutic method comprising a drug having a diol structure represented by the following formula (4), wherein the biocompatible polymer and the drug are bonded by an acetal bond represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000029
[式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000029
[In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000030
[式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000030
[In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 1実施形態において、本発明は、疾患の治療のための薬物送達システムであって、前記薬物送達システムは、生体適合性ポリマーと、下記式(1)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(2)で表わされるアセタール結合で結合したものである、薬物送達システムを提供する。 In one embodiment, the present invention is a drug delivery system for treatment of a disease, the drug delivery system comprising a biocompatible polymer and a drug having a diol structure represented by the following formula (1). A drug delivery system is provided in which the biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000031
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000031
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000032
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000032
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 1実施形態において、本発明は、疾患の治療のための薬物送達システムであって、前記薬物送達システムは、生体適合性ポリマーと、下記式(4)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(5)で表わされるアセタール結合で結合したものである、薬物送達システムを提供する。 In one embodiment, the present invention is a drug delivery system for treatment of a disease, the drug delivery system comprising a biocompatible polymer and a drug having a diol structure represented by the following formula (4). A drug delivery system is provided in which the biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000033
[式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000033
[In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000034
[式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000034
[In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 1実施形態において、本発明は、疾患の治療薬を製造するための薬物送達システムの使用であって、前記薬物送達システムは、生体適合性ポリマーと、下記式(1)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(2)で表わされるアセタール結合で結合したものである、使用を提供する。 In one embodiment, the present invention is the use of a drug delivery system for producing a therapeutic agent for a disease, wherein the drug delivery system comprises a biocompatible polymer and a diol structure represented by the following formula (1): The biocompatible polymer and the drug are combined with an acetal bond represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000035
[式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000035
[In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000036
[式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000036
[In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 1実施形態において、本発明は、疾患の治療薬を製造するための薬物送達システムの使用であって、前記薬物送達システムは、生体適合性ポリマーと、下記式(4)で表わされるジオール構造を有する薬物とを含み、前記生体適合性ポリマーと前記薬物とが下記式(5)で表わされるアセタール結合で結合したものである、使用を提供する。 In one embodiment, the present invention is the use of a drug delivery system for producing a therapeutic agent for a disease, wherein the drug delivery system comprises a biocompatible polymer and a diol structure represented by the following formula (4): The biocompatible polymer and the drug are bound by an acetal bond represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000037
[式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000037
[In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
Figure JPOXMLDOC01-appb-C000038
[式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000038
[In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
 本実施形態において、疾患としては癌が挙げられる。また、生体適合性ポリマー、式(1)で表わされるジオール構造を有する薬物は、上述したものと同様である。 In this embodiment, the disease includes cancer. The biocompatible polymer and the drug having a diol structure represented by the formula (1) are the same as those described above.
 次に実験例を示して本発明を更に詳細に説明するが、本発明は以下の実験例に限定されるものではない。 Next, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited to the following experimental examples.
[実験例1]
(薬物送達用担体の合成1)
 下記スキーム(I)にしたがって、薬物送達用担体を合成した。
[Experimental Example 1]
(Synthesis of carrier for drug delivery 1)
A drug delivery carrier was synthesized according to the following scheme (I).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
《PEG-ポリアミノ酸のジブロックコポリマーの合成》
 まず、PEG-ポリアミノ酸のジブロックコポリマーである、MeO-PEG-poly(β-benzyl L-aspartate)(MeO-PEG-PBLA)を合成した。具体的には、まず、720mgのBLA-N-carboxy anhydride(BLA-NCA)を10mLのジメチルホルムアミド(DMF)に溶解した。続いて、得られた溶液に、40mLのジクロロメタン(DCM)に溶解した600mgのMeO-PEG-NHを重合開始剤として加え、35℃で2日間攪拌した。以上の操作は全てアルゴン雰囲気下で行った。
<< Synthesis of PEG-polyamino acid diblock copolymer >>
First, MeO-PEG-poly (β-benzyl L-aspartate) (MeO-PEG-PBLA), which is a diblock copolymer of PEG-polyamino acids, was synthesized. Specifically, first, 720 mg of BLA-N-carbohydrate (BLA-NCA) was dissolved in 10 mL of dimethylformamide (DMF). Subsequently, 600 mg of MeO-PEG-NH 2 dissolved in 40 mL of dichloromethane (DCM) was added as a polymerization initiator to the obtained solution, and the mixture was stirred at 35 ° C. for 2 days. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量(30倍容量程度)のジエチルエーテルに滴下し、沈殿物を吸引ろ過後、減圧乾燥することにより、生成物であるPEG-PBLAを白色固体として得た(1.02g、83.8%)。 Subsequently, the reaction solution was added dropwise to an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure to obtain PEG-PBLA as a white solid (1. 02g, 83.8%).
 得られた白色固体はH NMR及びゲルろ過クロマトグラフィーにより解析し、生成物の化学構造及び分子量分布を確認した。PEGスタンダードの検量線を用いてゲルろ過クロマトグラフィーにより解析したところ、Mw(重量平均分子量)/Mn(数平均分子量)は1.15であった。また、H NMR測定により算出したPBLAの重合度は約44であった。 The resulting white solid was analyzed by 1 H NMR and gel filtration chromatography to confirm the chemical structure and molecular weight distribution of the product. When analyzed by gel filtration chromatography using a calibration curve of PEG standard, Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.15. The polymerization degree of PBLA calculated by 1 H NMR measurement was about 44.
《薬物送達用担体の合成》
 続いて、MeO-PEG-PBLAの側鎖のベンジル基へのアミノリシス反応を利用して、下記式(11)に示す薬物送達用担体である、MeO-PEG-PAsp(dimethyl acetal)を合成した。具体的には、まず、500mgのPEG-PBLAを8mLのN-メチルピロリドン(NMP)中に溶解させ、別容器にPEG-PBLAのベンジル基に対して50倍モル量のAminoacetaldehyde dimethyl acetalを移し取った。続いて、Aminoacetaldehyde dimethyl acetal溶液をPEG-PBLA溶液に滴下し、室温で一晩反応させた。以上の操作は全てアルゴン雰囲気下で行った。
<< Synthesis of Drug Delivery Carrier >>
Subsequently, MeO-PEG-PAsp (dimethyl acetate), which is a drug delivery carrier represented by the following formula (11), was synthesized by utilizing an aminolysis reaction of the side chain of MeO-PEG-PBLA to the benzyl group. Specifically, first, 500 mg of PEG-PBLA was dissolved in 8 mL of N-methylpyrrolidone (NMP), and 50-fold molar amount of aminoacetaldehydrate dimethylacetal was transferred to another container with respect to the benzyl group of PEG-PBLA. It was. Subsequently, the aminoacetaldehydrate dimethylacetal solution was added dropwise to the PEG-PBLA solution and allowed to react overnight at room temperature. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量(30倍容量程度)のジエチルエーテルに滴下し、沈殿物を吸引ろ過後、減圧乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal)を白色固体として得た(457mg、92.3%)。 Subsequently, the reaction solution was added dropwise to an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure, whereby the product MeO-PEG-PAsp (dimethyl acetate) was a white solid. (457 mg, 92.3%).
Figure JPOXMLDOC01-appb-C000040
[式(11)中、p及びqはそれぞれ独立に10~1000の整数である。]
Figure JPOXMLDOC01-appb-C000040
[In formula (11), p and q are each independently an integer of 10 to 1,000. ]
 H NMR解析により、合成したMeO-PEG-PAsp(dimethyl acetal)の構造を確認した結果、pは約227に対し、qは約44であることが確認された。 As a result of confirming the structure of the synthesized MeO-PEG-PAsp (dimethyl acetate) by 1 H NMR analysis, it was confirmed that p was about 227 and q was about 44.
[実験例2]
(薬物送達システムの合成1)
 下記スキーム(II)にしたがって、実験例1で合成した薬物送達用担体に、アセタール結合によりジオール構造を有する薬物を結合させ、薬物送達システムを合成した。薬物としては、下記式(12)に化学式を示すゲムシタビンを使用した。
[Experiment 2]
(Synthesis of drug delivery system 1)
According to the following scheme (II), a drug delivery system was synthesized by binding a drug having a diol structure to the drug delivery carrier synthesized in Experimental Example 1 through an acetal bond. As a drug, gemcitabine whose chemical formula is shown in the following formula (12) was used.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 まず、実験例1で合成した薬物送達用担体である、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基とゲムシタビンが有するジオール基とのトランスアセタール化反応により、下記式(13)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-gemcitabine)を得た。 First, the drug delivery carrier synthesized in Experimental Example 1, MeO-PEG-PAsp (dimethylacetal) has a dimethylylacetal group possessed by dimethylethylacetal and a diol group possessed by gemcitabine, and is represented by the following formula (13). A drug delivery system, MeO-PEG-PAsp (dimethyl acetal- gemcitabine), was obtained.
 具体的には、MeO-PEG-PAsp(dimethyl acetal)200mgと、MeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して10倍モル量のゲムシタビン塩酸塩と、反応触媒としてMeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して1倍モル量のパラトルエンスルホン酸一水和物とを、10mLのNMPに溶解し、50℃で一晩反応させた。 Specifically, 200 mg of MeO-PEG-PAsp (dimethylacetal), 10 times molar amount of gemcitabine hydrochloride relative to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal), and MeO-PEG- as a reaction catalyst A 1-fold molar amount of paratoluenesulfonic acid monohydrate with respect to the dimethylacetal group of PAsp (dimethylacetal) was dissolved in 10 mL of NMP and reacted at 50 ° C. overnight.
 この結果、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基とゲムシタビンが有するジオール基とのトランスアセタール化反応により、下記式(13)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-gemcitabine)が生成された。以上の操作は全てアルゴン雰囲気下で行った。 As a result, MeO-PEG-PAsp (dimethyl ocetal) is a drug delivery system represented by the following formula (13) by a transacetalization reaction between the dimethylacetal group possessed by dimethylacetal and the diol group possessed by gemcitabine. dimethyl (acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量の炭酸水素ナトリウム水溶液に滴下し、系内のパラトルエンスルホン酸一水和物を中和した。続いて、限外ろ過により、水溶液中の未反応のゲムシタビン塩酸塩を除去し、凍結乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal-gemcitabine)を白黄色固体として得た(187mg、87.4%)。生成物に対するゲムシタビンの導入量は、H NMR測定により確認し、約10質量%と算出された。 Subsequently, the reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system. Subsequently, unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 187 mg, 87.4%). The amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 10% by mass.
Figure JPOXMLDOC01-appb-C000043
[式(13)中、p及びqはそれぞれ独立に10~1000の整数であり、xは1~500の整数である。]
Figure JPOXMLDOC01-appb-C000043
[In the formula (13), p and q are each independently an integer of 10 to 1000, and x is an integer of 1 to 500. ]
[実験例3]
(薬物送達システムの合成2)
 実験例1で合成した薬物送達用担体に、アセタール結合によりジオール構造を有する薬物を結合させ、薬物送達システムを合成した。薬物としては、下記式(14)に化学式を示すドキシフルリジンを使用した。
[Experiment 3]
(Synthesis of drug delivery system 2)
A drug delivery system was synthesized by binding a drug having a diol structure to the drug delivery carrier synthesized in Experimental Example 1 through an acetal bond. As the drug, doxyfluridine having a chemical formula represented by the following formula (14) was used.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 具体的には、実験例1で合成した薬物送達用担体である、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基と、ドキシフルリジンが有するジオール基とのトランスアセタール化反応により、下記式(15)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-doxifluridine)を得た。 Specifically, by the transacetalization reaction of the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal), which is the drug delivery carrier synthesized in Experimental Example 1, and the diol group of doxyfluridine, the following formula ( The drug delivery system shown in 15), MeO-PEG-PAsp (dimethyl acetic-doxifluridine), was obtained.
 まず、MeO-PEG-PAsp(dimethyl acetal)20mgと、MeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して10倍モル量のドキシフルリジンと、反応触媒としてMeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して1倍モル量のパラトルエンスルホン酸一水和物とを、4mLのNMPに溶解し、50℃で一晩反応させた。以上の操作は全てアルゴン雰囲気下で行った。 First, 20 mg of MeO-PEG-PAsp (dimethylacetal), 10-fold molar amount of doxyfluridine with respect to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal), and MeO-PEG-PAsp (dimethylethyl) as a reaction catalyst. A 1-fold molar amount of paratoluenesulfonic acid monohydrate was dissolved in 4 mL of NMP and reacted at 50 ° C. overnight. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量の炭酸水素ナトリウム水溶液に滴下し、系内のパラトルエンスルホン酸一水和物を中和した。続いて、限外ろ過により水溶液中の未反応のドキシフルリジンを除去し、凍結乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal-doxifluridine)を白色固体として得た(20.5mg、98.4%)。生成物に対するドキシフルリジンの導入量は、H NMR測定により確認し、約4質量%と算出された。 Subsequently, the reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system. Subsequently, unreacted doxyfluridine in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain MeO-PEG-PAsp (dimethyl acetate-doxifluridine) as a white solid (20.5 mg, 98.4%). The amount of doxyfluridine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 4% by mass.
Figure JPOXMLDOC01-appb-C000045
[式(15)中、p及びqはそれぞれ独立に10~1000の整数であり、yは1~500の整数である。]
Figure JPOXMLDOC01-appb-C000045
[In the formula (15), p and q are each independently an integer of 10 to 1000, and y is an integer of 1 to 500. ]
[実験例4]
(薬物放出試験)
 実験例2で合成した薬物送達システムを用いて薬物放出試験を行った。具体的には、血液中pHに相当するpH7.4、細胞内酸性オルガネラ環境に相当するpH5.5及びpH4.2に調整した緩衝液中に、実験例2で合成した薬物送達システムを添加して37℃でインキュベートした。続いて、経時的にサンプリングを行い、高速液体クロマトグラフィー(HPLC)により放出されたゲムシタビンを定量した。
[Experimental Example 4]
(Drug release test)
A drug release test was performed using the drug delivery system synthesized in Experimental Example 2. Specifically, the drug delivery system synthesized in Experimental Example 2 was added to a buffer solution adjusted to pH 7.4 corresponding to blood pH, pH 5.5 corresponding to intracellular acidic organelle environment, and pH 4.2. And incubated at 37 ° C. Subsequently, sampling was performed over time, and gemcitabine released by high performance liquid chromatography (HPLC) was quantified.
 図1は、ゲムシタビンの放出量を測定した結果を示すグラフである。その結果、血液中pHに相当するpH7.4においては、実験例2で合成した薬物送達システムは安定であることが明らかとなった。一方、細胞内酸性オルガネラ環境に相当するpH5.5及びpH4.2では、実験例2で合成した薬物送達システムから、効率的にゲムシタビンが放出されることが明らかとなった。 FIG. 1 is a graph showing the results of measuring the amount of gemcitabine released. As a result, it was revealed that the drug delivery system synthesized in Experimental Example 2 is stable at pH 7.4 corresponding to the pH in blood. On the other hand, it was revealed that gemcitabine was efficiently released from the drug delivery system synthesized in Experimental Example 2 at pH 5.5 and pH 4.2 corresponding to the intracellular acidic organelle environment.
[実験例5]
(薬理評価)
 4週齢のヌードマウス(BALB/c-nu/nu)を1週間飼育した。続いて、ヌードマウスの側腹部に、ヒト膵臓癌細胞株であるBxPC3を皮下移植し、担癌モデルマウスを作製した。
[Experimental Example 5]
(Pharmacological evaluation)
4-week-old nude mice (BALB / c-nu / nu) were raised for 1 week. Subsequently, BxPC3, which is a human pancreatic cancer cell line, was subcutaneously transplanted into the flank of nude mice to produce tumor-bearing model mice.
 癌細胞を移植後のヌードマウスを、腫瘍体積が約100mmに成長するまで3~4週間飼育した。続いて、実験例2で合成した薬物送達システム及びゲムシタビンの投与実験を開始した。薬物の投与は、実験開始時(0日目)、3日目、6日目及び9日目の4回、尾静脈投与により行った。実験例2で合成した薬物送達システムの投与量は、ゲムシタビン換算で20mg/kgとした。また、ゲムシタビンの投与量は治療に用いられる量である80mg/kgとした。また、対照として薬物を投与しない未治療群を用意した。 Nude mice after transplantation of cancer cells were bred for 3-4 weeks until the tumor volume grew to about 100 mm 3 . Subsequently, administration experiment of the drug delivery system synthesized in Experimental Example 2 and gemcitabine was started. The drug was administered by tail vein administration at the start of the experiment (day 0), four times on days 3, 6, and 9. The dose of the drug delivery system synthesized in Experimental Example 2 was 20 mg / kg in terms of gemcitabine. The dose of gemcitabine was 80 mg / kg, which is the amount used for treatment. In addition, an untreated group in which no drug was administered was prepared as a control.
 各群のマウスの腫瘍成長率及び体重変化率を経時的に測定した。図2(a)は、腫瘍成長率の測定結果を示すグラフである。図2(a)中、「*」は相関係数(p値)0.05未満で有意差があることを表し、「**」はp値0.005未満で有意差があることを表し、「***」はp値0.001未満で有意差があることを表し、「****」はp値0.0001未満で有意差があることを表す。また、図2(b)は、体重変化率の測定結果を示すグラフである。図2(a)及び(b)中、矢印は、薬物を投与した時間を示す。 The tumor growth rate and body weight change rate of each group of mice were measured over time. FIG. 2A is a graph showing the measurement results of the tumor growth rate. In FIG. 2A, “*” indicates that there is a significant difference when the correlation coefficient (p value) is less than 0.05, and “**” indicates that there is a significant difference when the p value is less than 0.005. "***" indicates that there is a significant difference when the p value is less than 0.001, and "***" indicates that there is a significant difference when the p value is less than 0.0001. Moreover, FIG.2 (b) is a graph which shows the measurement result of a weight change rate. In FIG. 2 (a) and (b), the arrow shows the time when the drug was administered.
 その結果、実験例2で合成した薬物送達システム及びゲムシタビンを投与したマウスでは、対照群のマウスと比較して、腫瘍成長率が有意に低下したことが明らかとなった。 As a result, it was revealed that the tumor growth rate was significantly reduced in the mice administered with the drug delivery system synthesized in Experimental Example 2 and gemcitabine as compared with the mice in the control group.
 また、実験例2で合成した薬物送達システムを投与したマウスは、ゲムシタビンを投与したマウスと比較して、ゲムシタビンの投与量が1/4であるにもかかわらず、腫瘍成長率が有意に低下したことが明らかとなった。 In addition, in the mice administered with the drug delivery system synthesized in Experimental Example 2, the tumor growth rate was significantly reduced in spite of the dose of gemcitabine being 1/4 compared with the mice administered with gemcitabine. It became clear.
 この結果は、実験例2で合成した薬物送達システムを投与すると、薬効が有意に高いことを示す。 This result indicates that when the drug delivery system synthesized in Experimental Example 2 is administered, the drug efficacy is significantly high.
[実験例6]
(体内動態評価)
 クロラミンT法により、ゲムシタビン、及び実験例2で合成した薬物送達システムであるMeO-PEG-PAsp(dimethyl acetal-gemcitabine)のゲムシタビン内のピリミジン骨格に125I(ラジオアイソトープ)を導入して標識した。
[Experimental Example 6]
(Endokinetic evaluation)
By the chloramine T method, gemcitabine and 125 I (radioisotope) were introduced into the pyrimidine skeleton in gemcitabine of MeO-PEG-PAsp (dimethyl acetal- gemcitabine), which is a drug delivery system synthesized in Experimental Example 2, and labeled.
 具体的には、まず、ゲムシタビン塩酸塩及び薬物送達システムを、それぞれ1mg/mL及び10mg/mLとなるように、10mMリン酸緩衝液に溶解した。続いて、5μLのIodine-125(Perkin Elmer社)、100μLのクロラミンT水溶液(10mg/mL)を100μLのゲムシタビン水溶液又は100μLの薬物送達システム水溶液に加えて、室温で静置して反応させた。ゲムシタビンの反応時間は30分間とし、薬物送達システムの反応時間は1時間とした。 Specifically, first, gemcitabine hydrochloride and the drug delivery system were dissolved in 10 mM phosphate buffer so as to be 1 mg / mL and 10 mg / mL, respectively. Subsequently, 5 μL of Iodine-125 (Perkin Elmer) and 100 μL of chloramine T aqueous solution (10 mg / mL) were added to 100 μL of gemcitabine aqueous solution or 100 μL of drug delivery system aqueous solution and allowed to stand at room temperature for reaction. The reaction time of gemcitabine was 30 minutes, and the reaction time of the drug delivery system was 1 hour.
 続いて、100μLの二亜硫酸ナトリウム水溶液(20mg/mL)を各反応溶液に加えることで反応を終結させた。続いて、125I標識ゲムシタビンは陰イオン交換カラムにより、125I標識薬物送達システムはPD-10カラム(GE Healthcare社製)により精製した。 Subsequently, the reaction was terminated by adding 100 μL of a sodium disulfite aqueous solution (20 mg / mL) to each reaction solution. Subsequently, 125 I-labeled gemcitabine was purified by an anion exchange column, and 125 I-labeled drug delivery system was purified by a PD-10 column (manufactured by GE Healthcare).
 一方で、実験例5と同様にして、ヒト膵臓癌細胞株であるBxPC3を移植した担癌モデルマウスを作製した。続いて、癌細胞を移植後のヌードマウスを、腫瘍体積が約100mmに成長するまで3~4週間飼育した。 On the other hand, in the same manner as in Experimental Example 5, a tumor-bearing model mouse transplanted with BxPC3, which is a human pancreatic cancer cell line, was produced. Subsequently, nude mice after transplantation of cancer cells were bred for 3-4 weeks until the tumor volume grew to about 100 mm 3 .
 続いて、担癌モデルマウスに、125I標識されたゲムシタビン及び薬物送達システムをそれぞれ尾静脈注射により投与した。125I標識されたゲムシタビンの投与量は、治療に用いられる量である80mg/kgとした。また、125I標識された薬物送達システムの投与量は、ゲムシタビン換算で20mg/kgとした。 Subsequently, 125 I-labeled gemcitabine and a drug delivery system were each administered to a tumor-bearing model mouse by tail vein injection. The dose of 125 I-labeled gemcitabine was 80 mg / kg, which is the amount used for treatment. The dose of the 125 I-labeled drug delivery system was 20 mg / kg in terms of gemcitabine.
 続いて、薬物の投与から30分後、2時間後及び24時間後に各マウスを絶命処置した。続いて、血液及び各臓器(心臓、肺、肝臓、腎臓、脾臓、膵臓、胃、腸管、腫瘍)を採取した。続いて、採取した血液の放射活性をガンマカウンターで定量し、ゲムシタビンの血中滞留性を評価した。また、採取した各臓器の放射活性をガンマカウンターで定量し、ゲムシタビンの各臓器への集積量を評価した。 Subsequently, each mouse was killed 30 minutes, 2 hours, and 24 hours after administration of the drug. Subsequently, blood and each organ (heart, lung, liver, kidney, spleen, pancreas, stomach, intestine, tumor) were collected. Subsequently, the radioactivity of the collected blood was quantified with a gamma counter to evaluate the retention of gemcitabine in the blood. The radioactivity of each collected organ was quantified with a gamma counter, and the amount of gemcitabine accumulated in each organ was evaluated.
 図3(a)は、ゲムシタビンの血中残存量の測定結果を示すグラフである。その結果、ゲムシタビンの投与では、投与後2時間で95%が血液中から消失し、5%しか残存していなかったのに対し、実験例2で合成した薬物送達システムの投与では、約4倍の20%のゲムシタビンが血液中に残存していたことが明らかとなった。 FIG. 3 (a) is a graph showing the measurement results of the remaining amount of gemcitabine in the blood. As a result, in the administration of gemcitabine, 95% disappeared from the blood in 2 hours after the administration and only 5% remained, whereas in the administration of the drug delivery system synthesized in Experimental Example 2, it was about 4 times. It was revealed that 20% of gemcitabine remained in the blood.
 また、図3(b)は、ゲムシタビンの腫瘍組織集積量の測定結果を示すグラフである。その結果、投与後2時間で、実験例2で合成した薬物送達システムの投与により、ゲムシタビンの投与に比べて約3倍のゲムシタビンが腫瘍組織に集積したことが明らかとなった。一方、実験例2で合成した薬物送達システムの投与では、肝臓等へのゲムシタビンの目立った集積は確認されなかった。 FIG. 3 (b) is a graph showing the measurement results of the amount of gemcitabine tumor tissue accumulated. As a result, it was revealed that about 3 times as much gemcitabine was accumulated in the tumor tissue as compared with the administration of gemcitabine by administration of the drug delivery system synthesized in Experimental Example 2 at 2 hours after administration. On the other hand, in the administration of the drug delivery system synthesized in Experimental Example 2, no noticeable accumulation of gemcitabine in the liver or the like was confirmed.
 また、図4(a)は、ゲムシタビンを単体で投与した場合のゲムシタビンの各臓器への集積量を測定した結果を示すグラフである。また、図4(b)は、薬物送達システムの形態で投与したゲムシタビンの各臓器への集積量を測定した結果を示すグラフである。 FIG. 4 (a) is a graph showing the results of measuring the amount of gemcitabine accumulated in each organ when gemcitabine is administered alone. Moreover, FIG.4 (b) is a graph which shows the result of having measured the accumulation amount to each organ of the gemcitabine administered with the form of the drug delivery system.
 その結果、ゲムシタビンを単体で投与した場合には、胃や腸管への目立った集積が観察された。これに対し、薬物送達システムを投与した場合には、ゲムシタビンの胃や腸管への集積は抑制されており、高分子ミセルやリポソームを投与した場合にしばしば観察される、肝臓や脾臓への目立った集積も観察されなかった。 As a result, when gemcitabine was administered alone, conspicuous accumulation in the stomach and intestinal tract was observed. In contrast, when the drug delivery system was administered, accumulation of gemcitabine in the stomach and intestinal tract was suppressed, and it was often observed when polymer micelles and liposomes were administered. No accumulation was observed.
 以上の結果から、実験例2で合成した薬物送達システムの投与では、ゲムシタビンの投与量が1/4であるにもかかわらず、ゲムシタビンの投与と比較して、血中滞留性が有意に高く、腫瘍組織集積量も有意に高く、正常臓器への目立った集積を誘起することもないことが明らかとなった。 From the above results, in the administration of the drug delivery system synthesized in Experimental Example 2, the retention in blood is significantly higher compared to the administration of gemcitabine, despite the dose of gemcitabine being 1/4, The amount of tumor tissue accumulation was also significantly high, and it was revealed that no significant accumulation in normal organs was induced.
 この結果は、実験例2で合成した薬物送達システムを投与すると、薬効が有意に高いことを更に支持するものである。 This result further supports that the drug efficacy is significantly high when the drug delivery system synthesized in Experimental Example 2 is administered.
[実験例7]
(毒性試験1)
 4週齢のBALB/cマウスを1週間飼育後、ゲムシタビン及び実験例2で合成した薬物送達システムを投与し、毒性を評価した。ゲムシタビンの投与量は80mg/kgとした。また、実験例2で合成した薬物送達システムの投与量は、ゲムシタビン換算で20mg/kgとした。各薬物の投与は実験開始後1日1回毎日尾静脈投与により行い、マウスの体重の変化を観察した。体重の減少は毒性の指標の一つである。
[Experimental Example 7]
(Toxicity test 1)
4-week-old BALB / c mice were bred for 1 week, then gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered, and toxicity was evaluated. The dose of gemcitabine was 80 mg / kg. The dose of the drug delivery system synthesized in Experimental Example 2 was 20 mg / kg in terms of gemcitabine. Each drug was administered by daily tail vein administration once a day after the start of the experiment, and changes in the body weight of the mice were observed. Weight loss is one indicator of toxicity.
 図5は、各群のマウスの体重変化率を測定した結果を示すグラフである。図5中、矢印は、薬物を投与した時間を示す。その結果、ゲムシタビン投与群では、全てのマウス(3匹)の体重が減少し、実験開始から3日目に全て絶命した。これに対し、実験例2で合成した薬物送達システムの投与群では、体重減少は確認されず、絶命したマウスも確認されなかった。 FIG. 5 is a graph showing the results of measuring the weight change rate of each group of mice. In FIG. 5, the arrow indicates the time when the drug was administered. As a result, in the gemcitabine administration group, the weights of all the mice (3 animals) were decreased, and all mice died on the third day from the start of the experiment. In contrast, in the administration group of the drug delivery system synthesized in Experimental Example 2, weight loss was not confirmed, and no dead mice were confirmed.
 この結果は、実験例2で合成した薬物送達システムが、既存薬であるゲムシタビンと比較して、大幅な低毒性を達成していることを示す。 This result indicates that the drug delivery system synthesized in Experimental Example 2 achieves significantly lower toxicity than the existing drug gemcitabine.
[実験例8]
(毒性試験2)
 4週齢のBALB/cマウスを1週間飼育後、ゲムシタビン及び実験例2で合成した薬物送達システムを投与し、毒性を評価した。
[Experimental Example 8]
(Toxicity test 2)
4-week-old BALB / c mice were bred for 1 week, then gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered, and toxicity was evaluated.
 具体的には、まず、ゲムシタビン又は薬物送達システムを生理食塩水に溶解した水溶液を調製した。続いて、各水溶液を、それぞれBALB/cマウス(n=3)に尾静脈注射により1日1回ずつ3日間投与した。ゲムシタビン水溶液の濃度は2mg/mLとした。また、薬物送達システムの水溶液の濃度は20mg/mLとした。各群の薬物の投与量は1回あたり200μLとした。この結果、1回あたりの投与量は、ゲムシタビン投与群及び薬物送達システム投与群のいずれにおいてもゲムシタビン換算で20mg/kg体重となった。また、生理食塩水を投与したマウスを対照群とした。 Specifically, first, an aqueous solution in which gemcitabine or a drug delivery system was dissolved in physiological saline was prepared. Subsequently, each aqueous solution was administered to BALB / c mice (n = 3) by tail vein injection once a day for 3 days. The concentration of the gemcitabine aqueous solution was 2 mg / mL. The concentration of the aqueous solution in the drug delivery system was 20 mg / mL. The dose of drug in each group was 200 μL per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group. Moreover, the mouse | mouth which administered physiological saline was made into the control group.
 実験開始後、薬物の投与ごとに電子天秤で体重を測定した。また、マウスの総摂食量を測定した。続いて、実験開始日を0日目として3日目に、小腸及び脾臓を採取した。採取した小腸はパラフィン包埋法により標本とし、ヘマトキシリン/エオジン(HE)染色後に顕微鏡観察した。また、脾臓の質量を測定した。 After the start of the experiment, the body weight was measured with an electronic balance every time the drug was administered. In addition, the total food intake of mice was measured. Subsequently, the small intestine and spleen were collected on the 3rd day, starting on the 0th day. The collected small intestine was prepared as a specimen by the paraffin embedding method and observed with a microscope after staining with hematoxylin / eosin (HE). In addition, the mass of the spleen was measured.
 図6は、各群のマウスの体重の経時変化を示すグラフである。統計学的有意差はone-way ANOVA(Tukey’s multiple comparisons test)により算出した。その結果、対照群及び薬物送達システム投与群のマウスでは体重減少が観察されなかった。これに対し、ゲムシタビン投与群のマウスでは有意な体重減少が観察された。 FIG. 6 is a graph showing changes in body weight of mice in each group over time. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, weight loss was not observed in the mice of the control group and the drug delivery system administration group. In contrast, significant weight loss was observed in the mice in the gemcitabine administration group.
 図7は、各群のマウスの総摂食量の測定結果を示すグラフである。統計学的有意差はone-way ANOVA(Tukey’s multiple comparisons test)により算出した。その結果、ゲムシタビン投与群のマウスは、他の群のマウスと比較して、総摂食量が有意に減少したことが明らかとなった。 FIG. 7 is a graph showing the measurement results of the total food intake of mice in each group. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, it was clarified that the total food intake of the mice in the gemcitabine administration group was significantly reduced as compared with the mice in the other groups.
 図8(a)~(c)は、各群のマウスの小腸の標本をヘマトキシリン/エオジン(HE)染色した結果を示す代表的な顕微鏡写真である。図8(a)は対照群のマウスの小腸の組織像であり、図8(b)は薬物送達システム投与群のマウスの小腸の組織像であり、図8(c)はゲムシタビン投与群のマウスの小腸の組織像である。図8(a)~(c)において、スケールバーは100μmを示す。また、四角で囲んだ部分は絨毛底部の腸陰窩を示す。その結果、ゲムシタビン投与群のマウスの小腸では、絨毛底部の腸陰窩の構造異変及び脱落が認められた。腸陰窩は、様々な酵素の分泌に寄与している腸腺として知られている。 FIGS. 8A to 8C are representative photomicrographs showing the results of staining the small intestine of each group of mice with hematoxylin / eosin (HE). 8 (a) is a histological image of the small intestine of the control group, FIG. 8 (b) is a histological image of the small intestine of the mouse of the drug delivery system administration group, and FIG. 8 (c) is a mouse of the gemcitabine administration group. It is a histological image of the small intestine. 8A to 8C, the scale bar indicates 100 μm. Moreover, the part enclosed with a square shows the intestinal crypt of the villi bottom. As a result, in the small intestine of the mice in the gemcitabine administration group, structural changes and shedding of the intestinal crypts at the villi bottom were observed. The intestinal crypt is known as the intestinal gland that contributes to the secretion of various enzymes.
 また、図8(a)~(c)の顕微鏡写真に基づいて、各群のマウスの小腸における絨毛長を測定した。図9は、各群のマウスの小腸における絨毛長を測定した結果を示すグラフである。統計学的有意差はone-way ANOVA(Tukey’s multiple comparisons test)により算出した。その結果、ゲムシタビン投与群のマウスの小腸では、他の群のマウスと比較して、絨毛長が有意に減少したことが明らかとなった。 Also, the villi length in the small intestine of each group of mice was measured based on the micrographs of FIGS. 8 (a) to (c). FIG. 9 is a graph showing the results of measuring villi length in the small intestine of each group of mice. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test). As a result, it was revealed that the villi length was significantly decreased in the small intestine of the mice in the gemcitabine administration group compared with the mice in the other groups.
 以上の結果から、ゲムシタビン投与群のマウスは、小腸に傷害を受けていることが明らかとなった。ゲムシタビン投与群では、摂食量が減少したことに加えて、消化器官(特に小腸)での摂食物の消化・吸収不全が生じたことが、体重減少の主な原因であると考えられた。 From the above results, it was revealed that the mice in the gemcitabine administration group were damaged in the small intestine. In the gemcitabine administration group, in addition to a decrease in food intake, the digestive organs (especially in the small intestine) suffered from digestion / absorption of food intake as the main cause of weight loss.
 図10は、各群のマウスの脾臓の質量の測定結果を示すグラフである。統計学的有意差はone-way ANOVA(Tukey’s multiple comparisons test)により算出した。 FIG. 10 is a graph showing the measurement results of the spleen mass of each group of mice. Statistical significance was calculated by one-way ANOVA (Tukey's multiple comparisons test).
 その結果、ゲムシタビン投与群のマウスは、他の群のマウスと比較して、脾臓の質量が有意に減少したことが明らかとなった。脾臓の質量は、免疫毒性評価の指標の1つである。したがって、この結果は、ゲムシタビン投与群のマウスにおいて免疫毒性が認められることを示す。 As a result, it was clarified that the mice of the gemcitabine administration group had a significantly reduced spleen mass compared to the mice of the other groups. The mass of the spleen is one index for evaluating immunotoxicity. Therefore, this result indicates that immunotoxicity is observed in mice in the gemcitabine administration group.
 以上の結果は、実験例2で合成した薬物送達システムが、既存薬であるゲムシタビンと比較して、大幅な低毒性を達成していることを更に支持するものである。薬物送達システムにより、特に、消化器毒性とそれに関連した体重減少の低減を達成していることが明らかとなった。 The above results further support that the drug delivery system synthesized in Experimental Example 2 achieves significantly lower toxicity than gemcitabine, which is an existing drug. It has been shown that drug delivery systems have achieved, among other things, reduced gastrointestinal toxicity and associated weight loss.
[実験例9]
(毒性試験3)
 ゲムシタビン及び実験例2で合成した薬物送達システムをマウスに投与し、血液学的パラメーターに対する影響を評価した。
[Experimental Example 9]
(Toxicity test 3)
Gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered to mice, and the influence on hematological parameters was evaluated.
 まず、ゲムシタビン又は薬物送達システムを生理食塩水に溶解した水溶液を調製した。続いて、各水溶液を、それぞれBALB/cマウス(n=3)に尾静脈注射により1日1回ずつ3日間投与した。ゲムシタビン水溶液の濃度は2mg/mLとした。また、薬物送達システムの水溶液の濃度は20mg/mLとした。各群の薬物の投与量は1回あたり200μLとした。この結果、1回あたりの投与量は、ゲムシタビン投与群及び薬物送達システム投与群のいずれにおいてもゲムシタビン換算で20mg/kg体重となった。また、生理食塩水を投与したマウスを対照群とした。 First, an aqueous solution in which gemcitabine or a drug delivery system was dissolved in physiological saline was prepared. Subsequently, each aqueous solution was administered to BALB / c mice (n = 3) by tail vein injection once a day for 3 days. The concentration of the gemcitabine aqueous solution was 2 mg / mL. The concentration of the aqueous solution in the drug delivery system was 20 mg / mL. The dose of drug in each group was 200 μL per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group. Moreover, the mouse | mouth which administered physiological saline was made into the control group.
 実験開始日を0日目として3日目に、血液を採取した。血液は、自動血球分析装置(自動化法)及び染色鏡検法により血液学的パラメーターを測定・算出した。下記表1に、血液学的パラメーターの測定結果を示す。統計学的有意差は、生理食塩水投与群を対照群としたStudent t testにより算出した(n=3)。表1中、「*」は、相関係数(p値)0.05未満で有意差があることを表す。 The blood was collected on the third day, starting from the experiment start day. For blood, hematological parameters were measured and calculated by an automated blood cell analyzer (automated method) and staining microscopy. Table 1 below shows the measurement results of hematological parameters. The statistically significant difference was calculated by Student t test using the saline administration group as a control group (n = 3). In Table 1, “*” represents that there is a significant difference when the correlation coefficient (p value) is less than 0.05.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 その結果、ゲムシタビン投与群において、対照群と比較して、白血球数及び白血球分画の好中球数の有意な減少が確認された。一方、薬物送達システム投与群においては血液学的パラメーターの異常は確認されなかった。この結果から、実験例2で合成した薬物送達システムが、既存薬であるゲムシタビンの投与により発現する血液毒性の低減を達成していることが明らかとなった。 As a result, in the gemcitabine administration group, a significant decrease in the leukocyte count and neutrophil count of the leukocyte fraction was confirmed as compared with the control group. On the other hand, no abnormality in hematological parameters was observed in the drug delivery system administration group. From this result, it became clear that the drug delivery system synthesized in Experimental Example 2 achieved a reduction in blood toxicity expressed by administration of gemcitabine, which is an existing drug.
[実験例10]
(毒性試験4)
 ゲムシタビン及び実験例2で合成した薬物送達システムをマウスに投与し、腎臓への毒性の指標となる血液学的パラメーター(尿素窒素及びクレアチニン濃度)に対する影響を評価した。
[Experimental Example 10]
(Toxicity test 4)
Gemcitabine and the drug delivery system synthesized in Experimental Example 2 were administered to mice, and the effect on hematological parameters (urea nitrogen and creatinine concentrations), which are indicators of renal toxicity, was evaluated.
 まず、ゲムシタビン又は薬物送達システムを生理食塩水に溶解した水溶液を調製した。続いて、各水溶液を、それぞれBALB/cマウス(n=3)に尾静脈注射により1日1回ずつ3日間投与した。ゲムシタビン水溶液の濃度は2mg/mLとした。また、薬物送達システムの水溶液の濃度は20mg/mLとした。各群の薬物の投与量は1回あたり200μLとした。この結果、1回あたりの投与量は、ゲムシタビン投与群及び薬物送達システム投与群のいずれにおいてもゲムシタビン換算で20mg/kg体重となった。また、生理食塩水を投与したマウスを対照群とした。 First, an aqueous solution in which gemcitabine or a drug delivery system was dissolved in physiological saline was prepared. Subsequently, each aqueous solution was administered to BALB / c mice (n = 3) by tail vein injection once a day for 3 days. The concentration of the gemcitabine aqueous solution was 2 mg / mL. The concentration of the aqueous solution in the drug delivery system was 20 mg / mL. The dose of drug in each group was 200 μL per dose. As a result, the dose per administration was 20 mg / kg body weight in terms of gemcitabine in both the gemcitabine administration group and the drug delivery system administration group. Moreover, the mouse | mouth which administered physiological saline was made into the control group.
 実験開始日を0日目として3日目に、血液を採取し、尿素窒素及びクレアチニン濃度を測定した。下記表2に、血液学的パラメーターの測定結果を示す。 The blood was collected on the third day from the start date of the experiment, and the urea nitrogen and creatinine concentrations were measured. Table 2 below shows the measurement results of hematological parameters.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 その結果、薬物送達システム投与群において、血液学的パラメーターの異常は確認されなかった。この結果から、実験例2で合成した薬物送達システムは、腎臓への毒性が認められないことが確認された。 As a result, no abnormality in hematological parameters was confirmed in the group administered with the drug delivery system. From this result, it was confirmed that the drug delivery system synthesized in Experimental Example 2 shows no toxicity to the kidney.
[実験例11]
(薬物送達システムの合成3)
 実験例2で合成した薬物送達システムと比較して、ゲムシタビン導入量が異なる薬物送達システムを合成した。実験例2における各条件から、反応させる試薬の量、反応時間、反応温度を変更した。
[Experimental Example 11]
(Synthesis of drug delivery system 3)
Compared with the drug delivery system synthesized in Experimental Example 2, drug delivery systems with different gemcitabine introduction amounts were synthesized. The amount of the reagent to be reacted, the reaction time, and the reaction temperature were changed from each condition in Experimental Example 2.
 具体的には、MeO-PEG-PAsp(dimethyl acetal)2000mgと、MeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して10倍モル量のゲムシタビン塩酸塩と、反応触媒としてMeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して1倍モル量のパラトルエンスルホン酸一水和物とを、100mLのNMPに溶解し、50℃で12時間反応させた。 Specifically, 2000 mg of MeO-PEG-PAsp (dimethylacetal), 10 times molar amount of gemcitabine hydrochloride with respect to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal), and MeO-PEG- as a reaction catalyst A 1-fold molar amount of paratoluenesulfonic acid monohydrate with respect to the dimethylacetal group of PAsp (dimethylacetal) was dissolved in 100 mL of NMP and reacted at 50 ° C. for 12 hours.
 この結果、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基とゲムシタビンが有するジオール基とのトランスアセタール化反応により、上記式(13)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-gemcitabine)が生成された。以上の操作は全てアルゴン雰囲気下で行った。 As a result, MeO-PEG-PAsp (meO-PEG-PAsp) is a drug delivery system represented by the above formula (13) by a transacetalization reaction between a dimethylacetal group of MeO-PEG-PAsp (dimethylacetal) and a diol group of gemcitabine. dimethyl (acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を900mLの0.1M炭酸水素ナトリウム水溶液に氷冷下で滴下し、系内のパラトルエンスルホン酸一水和物を中和した。続いて、限外ろ過により、水溶液中の未反応のゲムシタビン塩酸塩を除去し、凍結乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal-gemcitabine)を白黄色固体として得た(1400mg、55.3%)。生成物に対するゲムシタビンの導入量は、H NMR測定により確認し、約27質量%と算出された。 Subsequently, the reaction solution was added dropwise to 900 mL of a 0.1 M aqueous sodium hydrogen carbonate solution under ice cooling to neutralize paratoluenesulfonic acid monohydrate in the system. Subsequently, unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 1400 mg, 55.3%). The amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 27% by mass.
[実験例12]
(薬物送達用担体の合成2)
 実験例1と同様の手法にて、PEG-ポリアミノ酸のジブロックコポリマー及び薬物送達用担体を合成した。
[Experimental example 12]
(Synthesis of carrier for drug delivery 2)
A PEG-polyamino acid diblock copolymer and a drug delivery carrier were synthesized in the same manner as in Experimental Example 1.
《PEG-ポリアミノ酸のジブロックコポリマーの合成》
 まず、PEG-ポリアミノ酸のジブロックコポリマーである、MeO-PEG-poly(β-benzyl L-aspartate)(MeO-PEG-PBLA)を合成した。具体的には、まず、1500mgのBLA-N-carboxy anhydride(BLA-NCA)を10mLのジメチルホルムアミド(DMF)に溶解した。続いて、得られた溶液に、40mLのジクロロメタン(DCM)に溶解した600mgのMeO-PEG-NHを重合開始剤として加え、35℃で3日間攪拌した。以上の操作は全てアルゴン雰囲気下で行った。
<< Synthesis of PEG-polyamino acid diblock copolymer >>
First, MeO-PEG-poly (β-benzyl L-aspartate) (MeO-PEG-PBLA), which is a diblock copolymer of PEG-polyamino acids, was synthesized. Specifically, first, 1500 mg of BLA-N-carbohydrate (BLA-NCA) was dissolved in 10 mL of dimethylformamide (DMF). Subsequently, 600 mg of MeO-PEG-NH 2 dissolved in 40 mL of dichloromethane (DCM) was added as a polymerization initiator to the obtained solution, and the mixture was stirred at 35 ° C. for 3 days. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量(30倍容量程度)のジエチルエーテルに滴下し、沈殿物を吸引ろ過後、減圧乾燥することにより、生成物であるPEG-PBLAを白色固体として得た(1.42g、78.8%)。 Subsequently, the reaction solution was added dropwise to an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure to obtain PEG-PBLA as a white solid (1. 42g, 78.8%).
 得られた白色固体はH NMR及びゲルろ過クロマトグラフィーにより解析し、生成物の化学構造及び分子量分布を確認した。PEGスタンダードの検量線を用いてゲルろ過クロマトグラフィーにより解析したところ、Mw(重量平均分子量)/Mn(数平均分子量)は1.13であった。また、H NMR測定により算出したPBLAの重合度は約98であった。 The resulting white solid was analyzed by 1 H NMR and gel filtration chromatography to confirm the chemical structure and molecular weight distribution of the product. When analyzed by gel filtration chromatography using a calibration curve of PEG standard, Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.13. Further, the polymerization degree of PBLA calculated by 1 H NMR measurement was about 98.
《薬物送達用担体の合成》
 続いて、MeO-PEG-PBLAの側鎖のベンジル基へのアミノリシス反応を利用して、上記式(11)に示す薬物送達用担体である、MeO-PEG-PAsp(dimethyl acetal)を実験例1と同様の手法で合成した。具体的には、まず、200mgのPEG-PBLAを4mLのN-メチルピロリドン(NMP)中に溶解させ、別容器にPEG-PBLAのベンジル基に対して50倍モル量のAminoacetaldehyde dimethyl acetalを移し取った。続いて、Aminoacetaldehyde dimethyl acetal溶液をPEG-PBLA溶液に滴下し、室温で一晩反応させた。以上の操作は全てアルゴン雰囲気下で行った。
<< Synthesis of Drug Delivery Carrier >>
Subsequently, MeO-PEG-PAsp (dimethyl acetal), which is a drug delivery carrier represented by the above formula (11), was utilized in Experimental Example 1 by utilizing an aminolysis reaction to the benzyl group of the side chain of MeO-PEG-PBLA. It was synthesized by the same method. Specifically, first, 200 mg of PEG-PBLA was dissolved in 4 mL of N-methylpyrrolidone (NMP), and 50-fold molar amount of aminoacetaldehydrate dimethylacetal was transferred to another container with respect to the benzyl group of PEG-PBLA. It was. Subsequently, the aminoacetaldehydrate dimethylacetal solution was added dropwise to the PEG-PBLA solution and allowed to react overnight at room temperature. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量(30倍容量程度)のジエチルエーテルに滴下し、沈殿物を吸引ろ過後、減圧乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal)を白色固体として得た(160mg、80.3%)。H NMR解析により、合成したMeO-PEG-PAsp(dimethyl acetal)の構造を確認した結果、上記式(11)中のpは約227であり、qは約98であることが確認された。 Subsequently, the reaction solution was dropped into an excess amount (about 30 times volume) of diethyl ether, and the precipitate was suction filtered and dried under reduced pressure to obtain MeO-PEG-PAsp (dimethyl acetate) as a white solid. (160 mg, 80.3%). As a result of confirming the structure of the synthesized MeO-PEG-PAsp (dimethyl acetal) by 1 H NMR analysis, it was confirmed that p in the above formula (11) was about 227 and q was about 98.
[実験例13]
(薬物送達システムの合成4)
 実験例2と同様にして、上記スキーム(II)にしたがって、実験例12で合成した薬物送達用担体に、アセタール結合によりゲムシタビンを結合した。まず、合成した薬物送達用担体である、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基とゲムシタビンが有するジオール基とのトランスアセタール化反応により、上記式(13)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-gemcitabine)を得た。
[Experimental Example 13]
(Synthesis of drug delivery system 4)
In the same manner as in Experimental Example 2, gemcitabine was bound to the drug delivery carrier synthesized in Experimental Example 12 by an acetal bond according to the above scheme (II). First, in the drug delivery system represented by the above formula (13), a transacetalization reaction between the dimethyl acetal group of MeO-PEG-PAsp (dimethyl acetal), which is a synthesized drug delivery carrier, and the diol group of gemcitabine is performed. Some meO-PEG-PAsp (dimethyl acetate-gemcitabine) was obtained.
 具体的には、MeO-PEG-PAsp(dimethyl acetal)100mgと、MeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して10倍モル量のゲムシタビン塩酸塩と、反応触媒としてMeO-PEG-PAsp(dimethyl acetal)のdimethyl acetal基に対して1倍モル量のパラトルエンスルホン酸一水和物とを、8mLのDMFに溶解し、50℃で一晩反応させた。 Specifically, 100 mg of MeO-PEG-PAsp (dimethylacetal), 10 times molar amount of gemcitabine hydrochloride with respect to the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal), and MeO-PEG- as a reaction catalyst A 1-fold molar amount of paratoluenesulfonic acid monohydrate with respect to the dimethylacetal group of PAsp (dimethylacetal) was dissolved in 8 mL of DMF and reacted at 50 ° C. overnight.
 この結果、MeO-PEG-PAsp(dimethyl acetal)が有するdimethyl acetal基とゲムシタビンが有するジオール基とのトランスアセタール化反応により、式(13)に示す薬物送達システムである、MeO-PEG-PAsp(dimethyl acetal-gemcitabine)が生成された。以上の操作は全てアルゴン雰囲気下で行った。 As a result, MeO-PEG-PAsp (dimethyl) is a drug delivery system represented by formula (13) by transacetalization reaction between the dimethylacetal group of MeO-PEG-PAsp (dimethylacetal) and the diol group of gemcitabine. acetal-gemcitabine) was generated. All the above operations were performed in an argon atmosphere.
 続いて、反応溶液を過剰量の炭酸水素ナトリウム水溶液に滴下し、系内のパラトルエンスルホン酸一水和物を中和した。続いて、限外ろ過により、水溶液中の未反応のゲムシタビン塩酸塩を除去し、凍結乾燥することにより、生成物であるMeO-PEG-PAsp(dimethyl acetal-gemcitabine)を白黄色固体として得た(82mg、72.5%)。生成物に対するゲムシタビンの導入量は、H NMR測定により確認し、約14質量%と算出された。 Subsequently, the reaction solution was dropped into an excess amount of an aqueous sodium hydrogen carbonate solution to neutralize paratoluenesulfonic acid monohydrate in the system. Subsequently, unreacted gemcitabine hydrochloride in the aqueous solution was removed by ultrafiltration, and lyophilized to obtain a product, MeO-PEG-PAsp (dimethyl acetate-gemcitabine) as a white yellow solid ( 82 mg, 72.5%). The amount of gemcitabine introduced into the product was confirmed by 1 H NMR measurement and calculated to be about 14% by mass.
 本発明によれば、薬物の薬理活性を低下させることなく、効率よく腫瘍組織に薬物を送達することができる薬物送達技術を提供することができる。 According to the present invention, it is possible to provide a drug delivery technique capable of efficiently delivering a drug to a tumor tissue without reducing the pharmacological activity of the drug.

Claims (10)

  1.  下記式(1)で表わされるジオール構造を有する薬物の前記ジオール構造と下記式(2)で表わされるアセタール結合を形成し得る基が結合した、生体適合性ポリマーからなる、薬物送達用担体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
    A drug delivery carrier comprising a biocompatible polymer in which the diol structure of a drug having a diol structure represented by the following formula (1) is bonded to a group capable of forming an acetal bond represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
  2.  前記アセタール結合を形成し得る基が下記式(3)で表わされる基である、請求項1に記載の薬物送達用担体。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R及びRはそれぞれ独立に炭素数1~3のアルキル基を表し、*は結合手を表す。R及びRは連結して環を形成していてもよい。]
    The carrier for drug delivery according to claim 1, wherein the group capable of forming an acetal bond is a group represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (3), R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and * represents a bond. R 1 and R 2 may be linked to form a ring. ]
  3.  前記生体適合性ポリマーが生体分解性である、請求項1又は2に記載の薬物送達用担体。 The drug delivery carrier according to claim 1 or 2, wherein the biocompatible polymer is biodegradable.
  4.  重量平均分子量が2,000~200,000である、請求項1~3のいずれか一項に記載の薬物送達用担体。 4. The drug delivery carrier according to claim 1, wherein the weight average molecular weight is 2,000 to 200,000.
  5.  前記生体適合性ポリマー1モルあたり、前記アセタール結合を形成し得る基が5~500モル結合した、請求項1~4のいずれか一項に記載の薬物送達用担体。 The drug delivery carrier according to any one of claims 1 to 4, wherein 5 to 500 moles of groups capable of forming an acetal bond are bound per mole of the biocompatible polymer.
  6.  請求項1~5のいずれか一項に記載の薬物送達用担体と、下記式(1)で表わされるジオール構造を有する薬物とが、下記式(2)で表わされるアセタール結合で結合した、薬物送達システム。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、m及びnはそれぞれ前記式(1)におけるm及びnと同じ値を表し、*は結合手を表す。]
    A drug comprising the drug delivery carrier according to any one of claims 1 to 5 and a drug having a diol structure represented by the following formula (1) bound by an acetal bond represented by the following formula (2): Delivery system.
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (1), m and n each represent an integer of 0 or 1, and * represents a bond. ]
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (2), m and n represent the same values as m and n in Formula (1), respectively, and * represents a bond. ]
  7.  酸性環境下で前記アセタール結合が切断されるとともに前記薬物の前記式(1)で表わされるジオール構造が再生され、前記薬物送達システムから前記薬物が放出される、請求項6に記載の薬物送達システム。 The drug delivery system according to claim 6, wherein the acetal bond is cleaved in an acidic environment, the diol structure represented by the formula (1) of the drug is regenerated, and the drug is released from the drug delivery system. .
  8.  請求項1~5のいずれか一項に記載の薬物送達用担体と、下記式(4)で表わされるジオール構造を有する薬物とが、下記式(5)で表わされるアセタール結合で結合した、薬物送達システム。
    Figure JPOXMLDOC01-appb-C000006
    [式(4)中、m及びnはそれぞれ0又は1の整数を表し、*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000007
    [式(5)中、m及びnはそれぞれ前記式(4)におけるm及びnと同じ値を表し、*は結合手を表す。]
    A drug wherein the drug delivery carrier according to any one of claims 1 to 5 and a drug having a diol structure represented by the following formula (4) are bound by an acetal bond represented by the following formula (5): Delivery system.
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (4), m and n each represent an integer of 0 or 1, and * represents a bond. ]
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (5), m and n represent the same values as m and n in Formula (4), respectively, and * represents a bond. ]
  9.  酸性環境下で前記アセタール結合が切断されるとともに前記薬物の前記式(4)で表わされるジオール構造が再生され、前記薬物送達システムから前記薬物が放出される、請求項8に記載の薬物送達システム。 The drug delivery system according to claim 8, wherein the acetal bond is cleaved in an acidic environment, the diol structure represented by the formula (4) of the drug is regenerated, and the drug is released from the drug delivery system. .
  10.  ジオール構造を有する前記薬物が代謝拮抗剤である、請求項6~9のいずれか一項に記載の薬物送達システム。 The drug delivery system according to any one of claims 6 to 9, wherein the drug having a diol structure is an antimetabolite.
PCT/JP2018/005505 2017-02-20 2018-02-16 Drug delivery carrier and drug delivery system WO2018151258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029264A JP2020063191A (en) 2017-02-20 2017-02-20 Drug delivery carrier and drug delivery system
JP2017-029264 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151258A1 true WO2018151258A1 (en) 2018-08-23

Family

ID=63169378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005505 WO2018151258A1 (en) 2017-02-20 2018-02-16 Drug delivery carrier and drug delivery system

Country Status (2)

Country Link
JP (1) JP2020063191A (en)
WO (1) WO2018151258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163942A1 (en) * 2018-02-22 2019-08-29 公益財団法人川崎市産業振興財団 Polymer, method for producing polymer, drug complex, and micelle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010714A1 (en) * 2009-07-23 2011-01-27 国立大学法人東京大学 Anionic polymer, polyion complex using anionic polymer, ternary polymer composite, and pharmaceutical composition
US20160022824A1 (en) * 2014-07-24 2016-01-28 University-Industry Foundation, Yonsei University Nanoparticle comprising hydrophobic drug conjugated to cationic polymer and hydrophilic drug conjugated to anionic polymer
US20160250245A1 (en) * 2013-10-21 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale Methods and Pharmaceutical Composition for the Treatment of Polyomavirus Infections
JP2016531921A (en) * 2013-09-06 2016-10-13 バイオコンパティブルズ ユーケー リミテッド Radiopaque polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010714A1 (en) * 2009-07-23 2011-01-27 国立大学法人東京大学 Anionic polymer, polyion complex using anionic polymer, ternary polymer composite, and pharmaceutical composition
JP2016531921A (en) * 2013-09-06 2016-10-13 バイオコンパティブルズ ユーケー リミテッド Radiopaque polymer
US20160250245A1 (en) * 2013-10-21 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale Methods and Pharmaceutical Composition for the Treatment of Polyomavirus Infections
US20160022824A1 (en) * 2014-07-24 2016-01-28 University-Industry Foundation, Yonsei University Nanoparticle comprising hydrophobic drug conjugated to cationic polymer and hydrophilic drug conjugated to anionic polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
vol. 66, no. 2, 6 September 2017 (2017-09-06) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163942A1 (en) * 2018-02-22 2019-08-29 公益財団法人川崎市産業振興財団 Polymer, method for producing polymer, drug complex, and micelle

Also Published As

Publication number Publication date
JP2020063191A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US9480712B2 (en) Biomedical composition
CN112076159B (en) Drug-loaded polymer vesicle with asymmetric membrane structure, preparation method and application thereof in preparation of drugs for treating acute myelogenous leukemia
CN102863627A (en) Cisplatin complex and preparation method thereof
KR102279429B1 (en) Multi-cancer target anti-cancer conjugate
EP1383539B1 (en) Anticancer drug-chitosan complex forming self-aggregates and preparation method thereof
CN111973556A (en) Polymer vesicle carrying small molecular drug, preparation method and application thereof
JP2003530317A (en) N, O-amidomalonate platinum complex
CN112004848B (en) Block copolymers and self-assembled nanoparticles formed therefrom
KR100831391B1 (en) Chitosan complex containing pH sensitive imidazole group and preparation method thereof
CN103655587A (en) Dendrimer drug delivery system with high tumor recognition ability and environmental response drug release ability and building method thereof
CN103479576A (en) Adriamycin-wrapped polyethyleneimine-polyethylene glycol-creatine copolymer micelle and preparation method thereof
CN112121174A (en) Heparin nano drug-carrying system for loading amido antitumor drug and preparation method thereof
EP3998085A1 (en) Pegylated heparin nano-micelle loaded with carboxylic acid anti-tumor drug and preparation method therefor
CN108186571B (en) Application of reversible cross-linked asymmetric vesicle in preparation of acute leukemia treatment drug
WO2018151258A1 (en) Drug delivery carrier and drug delivery system
CN107951839B (en) Polyion micelle shielding system with reversible charges and preparation method thereof
CN106389388A (en) pH redox dual sensitive PAMAM (Polyamidoamine) targeted nano drug delivery carrier and preparation method thereof
CN113827567A (en) Application of small-molecule-drug-carrying polymer vesicle in preparation of drugs for treating acute lymphatic leukemia
KR100807358B1 (en) Tumor selective and biodegradable cyclotriphosphazene-platinum(ii) conjugate anticancer agent, and preparation method thereof
CN102652836A (en) Targeting drug release anticancer protein or polypeptide polymer prodrug and preparation method thereof
KR101323102B1 (en) Nanoparticles formed by encapsulating an anticancer drug into glycolchitosan-cholanic acid complex and a process for the preparation thereof
WO2007145455A1 (en) Water soluble micelle-forming and biodegradable cyclotriphosphazene-taxol conjugate anticancer agent and preparation method thereof
CN112546236A (en) PH-sensitive double-drug-framework polymer prodrug and preparation method and application thereof
CN114276390B (en) Dithiocarbamate derivative nano-drug for anti-tumor drug delivery, and preparation method and application thereof
JP6872216B2 (en) Hydrophilic polymer having iminodiacetic acid in the side chain and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP