JP6872216B2 - Hydrophilic polymer having iminodiacetic acid in the side chain and its use - Google Patents

Hydrophilic polymer having iminodiacetic acid in the side chain and its use Download PDF

Info

Publication number
JP6872216B2
JP6872216B2 JP2016122601A JP2016122601A JP6872216B2 JP 6872216 B2 JP6872216 B2 JP 6872216B2 JP 2016122601 A JP2016122601 A JP 2016122601A JP 2016122601 A JP2016122601 A JP 2016122601A JP 6872216 B2 JP6872216 B2 JP 6872216B2
Authority
JP
Japan
Prior art keywords
complex
group
formula
integer
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016122601A
Other languages
Japanese (ja)
Other versions
JP2017226735A (en
Inventor
長崎 幸夫
幸夫 長崎
振宇 高
振宇 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2016122601A priority Critical patent/JP6872216B2/en
Publication of JP2017226735A publication Critical patent/JP2017226735A/en
Application granted granted Critical
Publication of JP6872216B2 publication Critical patent/JP6872216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、キレート化能を有する親水性高分子並びにその使用、具体的には、多価金属イオンやホウ酸誘導体との錯体又は複合体、該錯体又は複合体の医療分野での使用、に関する。 The present invention relates to a hydrophilic polymer having a chelating ability and its use, specifically, a complex or complex with a polyvalent metal ion or a boric acid derivative, and use of the complex or complex in the medical field. ..

金属イオンはMRIやPET、スペクトなどのイメージングで期待され、鉄やGdなどはすでにMRI用造影剤として利用されている。また白金はシスプラチンとして抗がん剤となる。最近では二価鉄や二価ルテニウムを利用したフェントン反応による抗がん剤の開発が行われている。さらにホウ素は腫瘍に集積させ、熱中性子による核反応でがんを死滅させる中性子捕捉療法(BNCT)として臨床試験が行われている段階にある。これらのホウ素や金属イオンはキレート分子によるキレート化などでそれらが本来有する毒性を低下せしめ、腫瘍への取り込み能が正常細胞のそれより高いことを利用して有意に取り込ませて効果を発揮している。 Metal ions are expected in imaging such as MRI, PET, and Spec, and iron, Gd, and the like have already been used as contrast agents for MRI. Platinum is also an anticancer drug as cisplatin. Recently, anticancer agents have been developed by the Fenton reaction using divalent iron and divalent ruthenium. In addition, boron is in the stage of being clinically tested as neutron capture therapy (BNCT), which accumulates in tumors and kills cancer by a nuclear reaction with thermal neutrons. These boron and metal ions reduce their inherent toxicity by chelation with chelate molecules, etc., and take advantage of their higher uptake ability into tumors than those of normal cells to significantly incorporate them and exert their effects. There is.

しかしながらこの種の低分子物質は正常細胞にもある程度拡散するため、強い副作用が問題となる。そのため、ナノ粒子にフェロセンを封入し、治療効果を上げる試みもあるものの、物理トラップによるフェロセンの固定化では漏れ出しが起こるため、問題の解決にはほど遠い(非特許文献1参照)。ポリエチレングリコール−b−ポリグルタミン酸(PEG−b−PGlu)ブロック共重合体のカルボキシル基にシスプラチンを担持せしめ、ナノ粒子化することにより抗がん効果を上げているものもある(非特許文献2)。しかし、弱酸であるカルボン酸へのプラチナ金属の担持のため、必ずしも安定性が万全とはいえない。 However, since this kind of low molecular weight substance diffuses to normal cells to some extent, strong side effects become a problem. Therefore, although there are attempts to improve the therapeutic effect by encapsulating ferrocene in nanoparticles, immobilization of ferrocene by a physical trap causes leakage, which is far from solving the problem (see Non-Patent Document 1). In some cases, cisplatin is supported on the carboxyl group of a polyethylene glycol-b-polyglutamic acid (PEG-b-PGlu) block copolymer and made into nanoparticles to improve the anticancer effect (Non-Patent Document 2). .. However, the stability is not always perfect because the platinum metal is supported on the weak acid carboxylic acid.

一方、ビニルフェニル脂肪族カルボン酸(N−(ar−ビニルベンジル)イミノ二酢酸等)がキレート化剤として提案されている(特許文献1)。また、イミノ二酢酸の有する多価金属イオンに対する安定な錯体形成能を利用して、イミノ二酢酸をセルロース繊維の表面に化学修飾した重金属吸着剤や分子中にイミノ二酢酸残基を組込んだキレート性高分子化合物も提案されている(例えば、WO 2010/122954 A1)。さらに、シリカ/ポリマー複合型イミノ二酢酸系キレート吸着材、重金属の吸着分離等に用いられることも知られている(例えば、特許文献3)。 On the other hand, vinylphenyl aliphatic carboxylic acid (N- (ar-vinylbenzyl) iminodiacetic acid, etc.) has been proposed as a chelating agent (Patent Document 1). In addition, by utilizing the stable complex-forming ability of iminodiacetic acid for polyvalent metal ions, a heavy metal adsorbent in which iminodiacetic acid is chemically modified on the surface of a cellulose fiber or an iminodiacetic acid residue is incorporated into the molecule. Chelating polymer compounds have also been proposed (eg, WO 2010/122954 A1). Further, it is also known that it is used for silica / polymer composite type iminodiacetic acid-based chelate adsorbent, adsorption separation of heavy metals, and the like (for example, Patent Document 3).

US 2,840,603US 2,840,603 WO 2010/122954 A1WO 2010/122954 A1 特開2014−25779JP 2014-25779

Seong−Cheol Park,et.al.,Journal of Controlled Release 221,37−47(2016)Seong-Cheol Park, et. al. , Journal of Controlled Release 221, 37-47 (2016) Nishiyama Nobuhiro,et.al.,Bioconjugate chemistry,14(2),449−57(2003)Nishiyama Nobuhiro, et. al. , Bioconjugate chemistry, 14 (2), 449-57 (2003)

本発明者等は、重金属の吸着材としてではなく、むしろ、抗がん剤ナノメディシンやバイオセンシングに使用できるマテリアルを提供することを目的とし、多種多様な親水性高分子を設計してきた。特に、多価金属イオンやホウ酸誘導体との水性媒体中での反応で自己組織化することによりナノ粒子を形成し得る一定のキレート化能を有する親水性高分子として、ポリ(エチレングリコール)セグメントとポリ(スチレン誘導体)セグメントであって、イミノ二酢酸残基を側鎖に組み込んだセグメントを含む共重合体が、多価金属やホウ素化合物などを容易、かつ安定に担持させ、安定なナノ粒子を形成することを見出した。また、かような共重合体は本発明者の知る限り、従来技術文献未載の高分子化合物である。さらに、かような共重合体は、多価金属イオン又はホウ酸誘導体との錯体又は複合体は、生理学的環境下、例えば血清存在下で長期にわたり安定であること、しかも特定の治療やイメージングに適用し得ることも確認できた。 The present inventors have designed a wide variety of hydrophilic polymers for the purpose of providing materials that can be used for anticancer agents nanomedicine and biosensing, rather than as adsorbents for heavy metals. In particular, a poly (ethylene glycol) segment is used as a hydrophilic polymer having a certain chelating ability capable of forming nanoparticles by self-assembling by reaction with a polyvalent metal ion or a boric acid derivative in an aqueous medium. And a poly (styrene derivative) segment, a copolymer containing a segment in which an iminodiacetic residue is incorporated in the side chain allows polyvalent metals, boron compounds, etc. to be easily and stably supported, and stable nanoparticles. Was found to form. Further, as far as the present inventor knows, such a copolymer is a polymer compound not described in the prior art literature. Furthermore, such copolymers are such that the complex or complex with a polyvalent metal ion or boric acid derivative is stable for a long period of time in a physiological environment, for example in the presence of serum, and is suitable for specific treatments and imaging. It was also confirmed that it could be applied.

したがって、本発明は、アミノ二酢酸基を側鎖に導入したポリマーセグメントとポリエチレングリコール)セグメント(単に、PEGという場合あり)を含んでなる、共重合体及びその使用を提供する。限定されるものでないが、主たる態様の発明としては、次の〔1〕〜〔8〕に記載のものが挙げられる。
〔1〕ポリ(エチレングリコール)セグメントとポリ[ジ(カルボキシメチル)アミノメチルスチレン]セグメントを含んでなるブロック共重合体。
〔2〕〔1〕に記載のブロック共重合体であって、該共重合体が次式Iで表される。
式I:
Therefore, the present invention provides a copolymer and its use comprising a polymer segment having an aminodiacetate group introduced into the side chain and a polyethylene glycol) segment (sometimes referred to simply as PEG). Although not limited to, the inventions of the main aspects include those described in the following [1] to [8].
[1] A block copolymer comprising a poly (ethylene glycol ) segment and a poly [di (carboxymethyl) aminomethylstyrene] segment.
[2] The block copolymer according to [1], and the copolymer is represented by the following formula I.
Formula I:

Figure 0006872216
Figure 0006872216

式中、
Aは、非置換又は置換C1−C12アルキルを表し、置換されている場合の置換基は、ホルミル基又は式R12CH−基を表し、ここで、R1及びR2は独立してC1−C4アルコキシ又はR1とR2は一緒になって−OCH2CH2O−、−O(CH23O−若しくは−O(CH24O−を表し、
Lは、式
During the ceremony
A represents an unsubstituted or substituted C 1 -C 12 al-kill, substituents when substituted, represents a formyl group or the formula R 1 R 2 CH- group, wherein, R 1 and R 2 independently C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and represent,
L is the formula

Figure 0006872216
Figure 0006872216

で表される基から選ばれるか、或は又
結合、−(CH2cS−、−CO(CH2cS−、−(CH2cNH−、−(CH2cCO−、−CO−、−OCOO−、−CONH−からなる群より選ばれ、
式中のジ(カルボキシメチル)アミノ基はnの総数の中の少なくとも1個存在し、存在しない場合には、該アミノ基は、H、ハロゲン原子またはヒドロキシ基であることができ、
YはH、SH又はS(C=S)−Phであり、Phは1又は2個のメチルまたはメトキシで置換されていてもよいフェニルを表し、
bは2〜6の整数であり、
cは1〜5の整数であり、
mは2〜10,000の整数を表し、
nは2〜500の整数を表す。
なお、上記のLの定義において、方向性がある場合には、記載されている方向性を以って式I中に存在するものと、理解されている。以下、式I以外においても同じ。
〔3〕〔1〕又は〔2〕に記載の共重合体と多価金属イオンとの錯体。
〔4〕多価金属イオンが、Ga(III)、Gd(III)、Cu(II)、Fe(II)、Mn(II)及びZn(II)イオンからなる群より選ばれる、1種又は2種以上のイオンである、〔3〕に記載の錯体。
〔5〕〔1〕又は〔2〕に記載の共重合体の前記ジ(カルボキシメチル)基とフェニルボロン酸とのエステル形成複合体。
〔6〕〔3〕〜〔5〕のいずれかに記載の錯体又は複合体であって、水性媒体中で平均粒径がナノメートルサイズの粒子として存在する、錯体又は複合体。
〔7〕〔4〕に記載の錯体であって、金属イオンがFe(II)である錯体を有効成分として含んでなる腫瘍増殖抑制用製剤。
〔8〕〔5〕に記載の複合体を有効成分として含んでなる、中性子捕捉療法で使用するための腫瘍増殖抑制用製剤。
Selected from the groups represented by, or also bonded,-(CH 2 ) c S-, -CO (CH 2 ) c S-,-(CH 2 ) c NH-,-(CH 2 ) c CO Selected from the group consisting of −, −CO−, −OCOO−, −CONH− ,
The di (carboxymethyl) amino group in the formula is present at least in the total number of n, and if not present, the amino group can be an H, halogen atom or hydroxy group.
Y is H, SH or S (C = S) -Ph, where Ph represents phenyl which may be substituted with 1 or 2 methyls or methoxys.
b is an integer of 2 to 6
c is an integer from 1 to 5
m represents an integer of 2 to 10,000
n represents an integer of 2 to 500.
In the above definition of L, when there is a directionality, it is understood that it exists in the formula I with the stated directionality. Hereinafter, the same applies to formulas other than I.
[3] A complex of the copolymer according to [1] or [2] and a multivalent metal ion.
[4] One or 2 polyvalent metal ions selected from the group consisting of Ga (III), Gd (III), Cu (II), Fe (II), Mn (II) and Zn (II) ions. is the ion more kinds, complex according to [3].
[5] An ester-forming complex of the di (carboxymethyl) group of the copolymer according to [1] or [2] and phenylboronic acid.
[6] The complex or complex according to any one of [3] to [5], which exists as particles having an average particle size of nanometer size in an aqueous medium.
[7] A preparation for suppressing tumor growth, which is the complex according to [4] and contains a complex in which a metal ion is Fe (II) as an active ingredient.
[8] A preparation for suppressing tumor growth for use in neutron capture therapy, which comprises the complex according to [5] as an active ingredient.

本発明は、ポリ(エチレングリコール)セグメントとポリ[ジ(カルボキシメチル)アミノメチルスチレン]セグメントを含んでなるブロック共重合体が、各種金属イオンやホウ酸誘導体と水性媒体中で安定な錯体又は複合体ミセル又は粒子を形成すること、さらにこのような錯体又は複合体が腫瘍増殖抑制効果を示すことが確認された。したがって、少なくとも医療分野で有用な新規なバイオマテリアルが提供できる。この錯体又は複合体(又はキレート型高分子化合物)は、具体的には、図1に概略図として示されるように、キレート能を有する材料をポリアニオンとして導入しており、様々な金属イオンをキレートにより導入することが可能であり、治療やイメージングに利用可能である。また、ボロフェニルアラニン(BPA)などの既存の薬剤以外のフェニルボロン酸やホウ酸などでもエステル結合を介して容易にかつ安定に封入可能であり、BNCT用薬として期待できる。 In the present invention, a block copolymer containing a poly (ethylene glycol ) segment and a poly [di (carboxymethyl) aminomethylstyrene] segment is a stable complex or composite with various metal ions or boric acid derivatives in an aqueous medium. It was confirmed that body micelles or particles were formed, and that such complexes or complexes exhibited a tumor growth inhibitory effect. Therefore, new biomaterials useful at least in the medical field can be provided. Specifically, in this complex or complex (or chelate-type polymer compound), as shown in FIG. 1 as a schematic diagram, a material having a chelating ability is introduced as a polyanion, and various metal ions are chelated. It can be introduced by, and can be used for treatment and imaging. Further, phenylboronic acid and boric acid other than existing drugs such as borophenylalanine (BPA) can be easily and stably encapsulated via an ester bond, and can be expected as a drug for BNCT.

本発明のブロック共重合体と多価金属イオン又はホウ素化合物との錯体又は複合体の概念図。The conceptual diagram of the complex or composite of the block copolymer of this invention and a polyvalent metal ion or a boron compound. PEG−b−PAAMSの1H−NMRスペクトル(酸性) 1 H-NMR spectrum of PEG-b-PAAMS (acidic) PEG−b−PECAMSの1H−NMRスペクトル 1 H-NMR spectrum of PEG-b-PECAMS PEG−b−PAAMSの1H−NMRスペクトル(中性) 1 H-NMR spectrum of PEG-b-PAAMS (neutral) Fe(II)含有PEG−b−PAAMSナノ粒子の動的光散乱の測定結果Measurement results of dynamic light scattering of Fe (II) -containing PEG-b-PAAMS nanoparticles 様々なイオンを封入したキレートナノ粒子を示す図に代わる写真Photograph to replace the figure showing chelated nanoparticles encapsulating various ions 様々なイオンを封入したキレートナノ粒子の10%血清存在の存否に関わる粒径および散乱強度測定結果Measurement results of particle size and scattering intensity related to the presence or absence of 10% serum of chelated nanoparticles encapsulating various ions Mn(II)、Zn(II)封入ナノ粒子の動的光散乱の測定結果Measurement results of dynamic light scattering of Mn (II) and Zn (II) -encapsulated nanoparticles フェニルボロン酸導入PEG−b−PAAMSの1H−NMRスペクトル 1 H-NMR spectrum of phenylboronic acid-introduced PEG-b-PAAMS PEG−b−PAAMSホウ素錯合体の動的光散乱の測定結果(Z−A(d.nm))Measurement Results of Dynamic Light Scattering of PEG-b-PAAMS Boron Complex (ZA (d. Nm)) PEG−b−PAAMSホウ素錯合体のHepG2に対する細胞毒性Cytotoxicity of PEG-b-PAAMS boron complex to HepG2 キレート高分子の担がんマウス投与による腫瘍増殖パタンTumor growth pattern by administration of chelated polymer to cancer-bearing mice キレート高分子の担がんマウス投与による体重変化パタンWeight change pattern due to administration of chelated polymer to cancer-bearing mice Fe(II)内包ナノ粒子(Fe(II)NP)投与群の腫瘍増殖抑制効果Tumor growth inhibitory effect of Fe (II) -encapsulating nanoparticles (Fe (II) NP) -administered group Fe(II)内包ナノ粒子(Fe(II)NP)投与群の体重変化パタンWeight change pattern of Fe (II) -encapsulating nanoparticles (Fe (II) NP) -administered group Fe(II)内包ナノ粒子(Fe(II)NP)投与群の生存率曲線Survival curve of Fe (II) -encapsulating nanoparticles (Fe (II) NP) -administered group キレートポリマーPEG−b−PAAMSおよびFe(II)内包ナノ粒子(Fe(II)NP)の細胞毒性Cytotoxicity of chelated polymers PEG-b-PAAMS and Fe (II) encapsulated nanoparticles (Fe (II) NP) 過酸化水素およびFe(II)内包ナノ粒子(Fe(II)NP)共存または非共存下での細胞毒性Cytotoxicity in the presence or absence of hydrogen peroxide and Fe (II) -encapsulating nanoparticles (Fe (II) NP)

発明の詳細な説明Detailed description of the invention

〔1〕の態様の発明において、ポリ(エチレングリコール)セグメントとポリ[ジ(カルボキシメチル)アミノメチルスチレン]セグメントを含んでなるブロック共重合体は、本発明の目的上、水性媒体中で多価金属との錯体又はフェニルボロン酸とのエステルを形成し、自己組織化によりナノ粒子を形成することができるものが好ましい。本明細書において、水性媒体とは、水(濾過水、蒸留水、逆浸透水、イオン交換水、水道水等を包含する)、生理食塩水、緩衝化生理食塩水、等を言う。また、ナノ粒子は、理論に拘束されるものでないが、錯体にあっては、図1に示されるように多価金属イオンを介するキレート化によりブロック共重合体が架橋し、ポリ[ジ(カルボキシメチル)アミノメチルスチレン]セグメントに由来する水不溶性のコアを形成し、一方、PEGは水溶性又は親水性に富んだシェルを形成することにより、動的光散乱測定したとき、平均粒径が数ナノメートル〜数百ナノメートル、一般的には、5nm〜200nm,好ましくは、10〜100、より好ましくは、15〜60を示す、高分子ミセル様粒子を意味する。フェニルボロン酸とのエステルにあっては、親水性基ジ(カルボキシメチル)アミノ基が疎水性基に転化されるため、所謂、親水性−疎水性ブロック共重合体と同様に、高分子様ミセルを形成するものと理解されている。後者においても、平均粒径は、錯体の場合と実質的な差異はない。 In the invention of the aspect [1], the block copolymer containing a poly (ethylene glycol ) segment and a poly [di (carboxymethyl) aminomethylstyrene] segment is polyvalent in an aqueous medium for the purpose of the present invention. Those capable of forming a complex with a metal or an ester with phenylboronic acid and forming nanoparticles by self-assembly are preferable. In the present specification, the aqueous medium refers to water (including filtered water, distilled water, reverse osmosis water, ion-exchanged water, tap water, etc.), physiological saline, buffered physiological saline, and the like. In addition, although the nanoparticles are not bound by theory, in the case of a complex, as shown in FIG. 1, the block copolymer is crosslinked by chelating via a polyvalent metal ion, and the poly [di (carboxy) is used. By forming a water-insoluble core derived from the [methyl) aminomethylstyrene] segment, while PEG forms a water-soluble or hydrophilic shell, the average particle size is several when measured by dynamic light scattering. It means polymeric micelle-like particles exhibiting nanometers to several hundreds of nanometers, generally 5 nm to 200 nm, preferably 10 to 100, more preferably 15 to 60. In the ester with phenylboronic acid, the hydrophilic group di (carboxymethyl) amino group is converted to a hydrophobic group, so that the polymer-like micelle is similar to the so-called hydrophilic-hydrophobic block copolymer. Is understood to form. Even in the latter case, the average particle size is not substantially different from that in the case of the complex.

〔2〕の態様の発明において、式Iで表される共重合体も、上記〔1〕について述べたのと同様に、水性媒体中で多価金属との錯体又はフェニルボロン酸とのエステルを形成し、自己組織化によりナノ粒子を形成することができるものが好ましい。ナノ粒子、その他についての説明も、上記〔1〕で述べたのと同様である。 In the invention of the aspect of [2], the copolymer represented by the formula I also has a complex with a polyvalent metal or an ester with phenylboronic acid in an aqueous medium in the same manner as described in the above [1]. Those capable of forming and self-assembling to form nanoparticles are preferred. The description of nanoparticles and others is the same as described in [1] above.

式Iにおいて、変動し得る基、略号、等で、mは、一般的には2〜10,000の整数、好ましくは12〜5,000、より好ましくは14〜1,000の整数、さらにより好ましくは20〜400の整数であることができ、nは、一般的には2〜500の整数、好ましくは4〜100、より好ましくは6〜60の整数、さらにより好ましくは6〜30の整数であることができる。 In formula I, with variable groups, abbreviations, etc., m is generally an integer of 2 to 10,000, preferably an integer of 12 to 5,000, more preferably an integer of 14 to 1,000, and even more. It can preferably be an integer of 20 to 400, where n is generally an integer of 2 to 500, preferably an integer of 4 to 100, more preferably an integer of 6 to 60, and even more preferably an integer of 6 to 30. Can be.

Yは、一般的には、水素、SH又はS(C=S)−Phであり、本発明の目的に沿う限り、さらには後者の2つの基から当該技術分野で周知の方法により変換される他の基若しくは部分であることもできる。 Y is generally hydrogen, SH or S (C = S) -Ph, and is converted from the latter two groups by a method well known in the art, as long as it is in line with the object of the present invention. It can also be another group or part.

式中のジ(カルボキシメチル)アミノ基はnの総数の中、少なくとも1、好ましくは4、より好ましくは6、さらにより好ましくは10個存在し、最も好ましくnの総数の全てが該アミノ基であり、存在しない場合には、該アミノ基は、H、ハロゲン原子またはヒドロキシ基であることができ、少なくとも1個上記各基もしくは各基の部分としてのアルキルは、直鎖もしくは分岐鎖であることができ、限定されるものでないが、メチル、エチル、プロピル、iso−プロピル、ブチル、sec−ブチル、tert−ブチル、ぺンチル、ヘキシル、ヘプチル、ノニル、ウンデシル、等の中の該当するものを挙げることができる。 Of the total number of n, there are at least 1, preferably 4, more preferably 6, and even more preferably 10 di (carboxymethyl) amino groups in the formula, and most preferably all of the total number of n is the amino group. If present, the amino group can be an H, halogen atom or hydroxy group, and at least one alkyl as a part of each of the above groups or groups is a straight chain or a branched chain. And, but not limited to, methyl, ethyl, propyl, iso-propyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, nonyl, undecyl, etc. be able to.

式Iで表される共重合体は、如何なる方法により製造されたものであってもよい。しかし、限定されるものでないが、本発明者等の開示に基づく、WO 2009/133647 A1又はWO 2016/052463 A1に記載された、式: The copolymer represented by the formula I may be produced by any method. However, but not limited to, the formula described in WO 2009/133647 A1 or WO 2016/052463 A1 based on the disclosure of the present inventors, etc .:

Figure 0006872216
Figure 0006872216

式中、A、L、Y、m及びnは、式Iについて定義したのと同義であり、Xはハロゲン原子、特に、塩素、臭素、ヨウ素である
で表されるブロック共重合体(特に、Xが塩素である場合、以下、PEG−PCMSと略記する)と式:
In the formula, A, L, Y, m and n are synonymous with those defined for formula I, and X is a block copolymer represented by a halogen atom, particularly chlorine, bromine and iodine (particularly). When X is chlorine, it is abbreviated as PEG-PCMS below) and formula:

Figure 0006872216
Figure 0006872216

で表されるイミノ二酢酸又はそのジ−C1-6アルキルエステルを、脱ハロゲン化水素剤、有機アミン化合物、エチルジイソプロピルアミン等の存在下の非反応性有機溶媒、例えば、ジメチルホルムアミド(DMF)、ジオキサン、ジメチルスルホン(DMSO)、等中、室温〜有機溶媒の沸点までの温度で、5〜24時間反応させることにより、後者にあっては、次いで、エステルを加水分解することにより製造できる。 Iminodiacetic acid or its di-C 1-6 alkyl ester represented by is a non-reactive organic solvent in the presence of a hydrolyzate, an organic amine compound, ethyl diisopropylamine, etc., for example, dimethyl formamide (DMF). , Dioxane, dimethyl sulfoxide, etc., at a temperature from room temperature to the boiling point of the organic solvent for 5 to 24 hours, the latter can then be produced by hydrolyzing the ester.

また、別法として、WO 2009/133647 A1又はWO 2016/052463 A1に記載される、例えばPEG−PCMSの製造方法において、出発原料のモノマーとして用いるクロロメチルスチレンに代え、ジ(カルボキシメチル)アミノメチルスチレンを用いることにより、式Iの共重合体を製造することもできる。 Alternatively, in the method for producing, for example, PEG-PCMS described in WO 2009/133647 A1 or WO 2016/052463 A1, instead of chloromethylstyrene used as a starting material monomer, di (carboxymethyl) aminomethyl By using styrene, a copolymer of formula I can also be produced.

〔3〕〜〔6〕の態様の発明について
〔3〕〜〔6〕に記載の錯体は、〔2〕について説明したように、図1に示されるようなキレート化を介して水性媒体中で平均粒径がナノメートルサイズの粒子として存在するものが好ましい。したがって、かようなキレート化を生じるような割合で、該共重合体と金属イオンが含まれておれば、その割合は限定されるものでないが、しかし、該共重合体中の総ジ(カルボキシメチル)アミノ基対金属イオンが、一般的には、4:1、好ましくは3:1、より好ましくは2:1となるように該共重合体と金属イオンを含む。一方、複合体は、ジ(カルボキシメチル)アミノ基対フェニルボロン酸が、それぞれ、1〜2:2〜1の割合で含まれ、少なくともハーフエステル結合を形成した状態にあることが望ましい。
Inventions of Aspects [3]-[6] The complexes described in [3]-[6] are in an aqueous medium via chelation as shown in FIG. 1, as described for [2]. Those having an average particle size of nanometer-sized particles are preferable. Therefore, if the copolymer and the metal ion are contained in a proportion that causes such chelation, the proportion is not limited, but the total di (carboxy) in the copolymer. The copolymer and the metal ion are contained so that the methyl) amino group-to-metal ion is generally 4: 1, preferably 3: 1, and more preferably 2: 1. On the other hand, it is desirable that the complex contains a di (carboxymethyl) amino group to phenylboronic acid in a ratio of 1 to 2: 2 to 1, and at least a half ester bond is formed.

このような錯体は、水性媒体中で室温下、数分、例えば、5分から数時間、例えば2時間、対応する共重合体とイオン化し得る金属化合物を混合することにより製造することができる。こうして得られる反応混合物は、半透膜、例えば、Spectra/Por(登録商標) Dialysis Membrane(nominal flat width=45mm,diameter=29mm,vol/length=6.4mL/cm,MWCO=3,500)を用いて水に対して透析することにより、前述したような高分子ミセル用ナノ粒子を提供できる。このようなナノ粒子は、凍結乾燥してその後に使用のために調製しておいてもよい。一方、エステル形成複合体は、脱水又は乾燥有機溶媒(例えば、DMF)中で、共重合体とフェニルボロン酸のエステル形成反応を介して調製することができる。このような反応は、限定されるものでないが、室温から100℃までの温度で、6時間〜24時間実施すればよい。こうして得られる反応液は、前述のような半透膜を用いて水に対して透析することにより、前述したナノ粒子として目的のエステル複合体を提供することができる。この複合体もまた、凍結乾燥してその後に使用に備えることができる。 Such a complex can be produced by mixing the corresponding copolymer with a metal compound that can be ionized in an aqueous medium at room temperature for several minutes, for example, 5 minutes to several hours, for example, 2 hours. The reaction mixture thus obtained is a semipermeable membrane, for example, a Spectra / Por (registered trademark) Diarysis Micrane (nominal flat width = 45 mm, diameter = 29 mm, vol / lens = 6.4 mL / cm, MWCO = 3,500). By using and dialyzing against water, nanoparticles for polymer micelles as described above can be provided. Such nanoparticles may be lyophilized and subsequently prepared for use. On the other hand, the ester-forming complex can be prepared in a dehydrated or dry organic solvent (for example, DMF) via an ester-forming reaction between the copolymer and phenylboronic acid. Such a reaction may be carried out at a temperature from room temperature to 100 ° C. for 6 to 24 hours without limitation. The reaction solution thus obtained can be dialyzed against water using the semipermeable membrane as described above to provide the desired ester complex as the nanoparticles described above. This complex can also be lyophilized for subsequent use.

〔7〕について、非特許文献1に記載されるように、フェントン反応と称し得るように、第一鉄(Fe(II))イオンは温和な酸化剤といえる過酸化水素(H22)を高反応性であり、高細胞毒性を示すヒドロキシルラジカルに転化することが知られている。本発明したがう、前述のような錯体であって、多価金属イオンがFe(II)であるものは、生理学的条件下でナノ粒子として安定に存在することができる、水性環境に適合し得るため、フェントン反応を介して、生体内で、通常、腫瘍近傍で高発現している過酸化水素を活性ヒドロキシルラジカル(・OHラジカル)等に転化し、殺腫瘍細胞又は腫瘍増殖抑制効果をもたらし得る。したがって、本発明によれば、〔4〕に記載の錯体であって、金属イオンがFe(II)である錯体を有効成分として含んでなる腫瘍増殖抑制用製剤が提供される。 Regarding [7], as described in Non-Patent Document 1, the ferrous (Fe (II)) ion is hydrogen peroxide (H 2 O 2 ), which can be said to be a mild oxidizing agent, as can be called a Fenton reaction. Is known to be converted to hydroxyl radicals, which are highly reactive and highly cytotoxic. According to the present invention, the above-mentioned complex in which the radical metal ion is Fe (II) can be stably present as nanoparticles under physiological conditions, and can be adapted to an aqueous environment. , Hydrogen peroxide normally highly expressed in the vicinity of the tumor can be converted into active hydroxyl radical (.OH radical) or the like in the living body through the Fenton reaction to bring about a tumor-killing cell or tumor growth inhibitory effect. Therefore, according to the present invention, there is provided a tumor growth-suppressing preparation comprising the complex according to [4], wherein the metal ion is Fe (II) as an active ingredient.

かような製剤は、本発明の目的に沿う限り、それ自体当該技術分野で常用されている、キャリヤーや賦形剤を含むことができる。このようなキャリヤーとしては、滅菌水、緩衝化滅菌水、等を挙げることができ、賦形剤としては、ポリソルベート、各種分子量のポリエチレングリコール、単糖類若しくは二糖類又はその還元物、マルチトール、キシリトール、等を挙げることができる。このような製剤に含められる、錯体は、高分子ミセル様ナノ粒子として、水に可溶化又は均質に分散し得るので、限定されるものでないが、都合よく、生体に非経口的、特に、静脈内に、筋肉内に、また、皮下に投与することができる。かような投与量は、当業者、特に、専門医であれば、実験動物の試験の結果等、を考慮し、適切に決定することができる。しかし、錯体は経口製剤に有効成分として含めることもできる。 Such a preparation may contain a carrier or an excipient which is commonly used in the art as long as the object of the present invention is met. Examples of such carriers include sterilized water, buffered sterilized water, and the like, and excipients include polysorbate, polyethylene glycol of various molecular weights, monosaccharides or disaccharides or their reduced products, maltitol, xylitol, and the like. , Etc. can be mentioned. The complex contained in such a preparation can be solubilized or homogeneously dispersed in water as polymer micelle-like nanoparticles, and thus is not limited, but is conveniently parenteral to the living body, particularly intravenous. It can be administered intramuscularly, intramuscularly, or subcutaneously. Such a dose can be appropriately determined by a person skilled in the art, particularly a specialist, in consideration of the results of tests on laboratory animals and the like. However, the complex can also be included as an active ingredient in oral formulations.

〔8〕における、〔5〕に記載の複合体を有効成分として含んでなる、中性子捕捉療法で使用するための腫瘍増殖抑制用製剤も、〔7〕の錯体を有効成分として含んでなる腫瘍増殖抑制用製剤と同様に調製及び生体に投与できる。また、生理学的水性環境下で、該複合体もナノ粒子として安定に存在し得るので、所謂、EPR効果を介して腫瘍組織内に滞留し得るので、中性子捕捉療法において、著効を奏するものと推認できる。 In [8], the tumor growth inhibitory preparation for use in neutron capture therapy, which contains the complex according to [5] as an active ingredient, also contains the complex of [7] as an active ingredient. It can be prepared and administered to the living body in the same manner as the inhibitory preparation. In addition, since the complex can stably exist as nanoparticles in a physiologically aqueous environment, it can stay in the tumor tissue via the so-called EPR effect, and thus it is effective in neutron capture therapy. Can be inferred.

以下、本発明を具体例に基づきより詳細に説明するが、これらの例に本発明を限定することを意図するものではない。なお、以下の実施例において、PEG−b−ポリクロロメチルスチレン(PEG−b−PCMS)は本発明らの開示に基づくWO 2016/052463 A1の実施例に記載の方法により取得したものを使用した。したがって、後述する共重合体の構造式は、PEGセグメントとポリ[ジ(カルボキシメチル)アミノメチ
ルスチレン](PAAMS)セグメントの連結基の記載は省略されているが、より適切には、それらのセグメント間にパラキシリレンが存在するものと理解されたい。
Hereinafter, the present invention will be described in more detail based on specific examples, but it is not intended to limit the present invention to these examples. In the following examples, PEG-b-polychloromethylstyrene (PEG-b-PCMS) obtained by the method described in the examples of WO 2016/052463 A1 based on the disclosure of the present invention was used. .. Therefore, in the structural formula of the copolymer described later, the description of the linking group of the PEG segment and the poly [di (carboxymethyl) aminomethylstyrene] (PAAMS) segment is omitted, but more appropriately, those segments are omitted. It should be understood that there is paraxylylene in between.

<実施例1> ポリ(エチレングリコール)−b−ポリ[ジ(カルボキシメチル)アミノメチルスチレン](PEG−b−PAAMS)の合成法1 <Example 1> Synthesis method of poly (ethylene glycol) -b-poly [di (carboxymethyl) aminomethylstyrene] (PEG-b-PAAMS) 1

Figure 0006872216
Figure 0006872216

50mLナス型フラスコにPEG−b−PCMS(MW:PEG:5KDa,CMS重合度18)の1g、イミノ二酢酸2g、エチルジイソプロピルアミン3g、DMF10mLを加え、100℃で1日反応させた。混合液をMWCO 3,500の透析バッグにいれ、pH3の水に対して24時間透析し、次いで、凍結乾燥して乾燥ポリマーを得た。図2に得られたポリマーのDMSO−d6溶液の1H−NMRスペクトルを示す。 To a 50 mL eggplant-shaped flask, 1 g of PEG-b-PCMS (MW: PEG: 5KDa, CMS degree of polymerization 18), 2 g of iminodiacetic acid, 3 g of ethyldiisopropylamine, and 10 mL of DMF were added and reacted at 100 ° C. for 1 day. The mixture was placed in a MWCO 3,500 dialysis bag, dialyzed against water at pH 3 for 24 hours, and then lyophilized to give a dry polymer. FIG. 2 shows a 1 H-NMR spectrum of the obtained polymer DMSO-d6 solution.

<実施例2> ポリ(エチレングリコール)−b−ポリ[ジ(エトキシカルボニルメチル)アミノメチルスチレン](PEG−b−PECAMS)の合成 <Example 2> Synthesis of poly (ethylene glycol) -b-poly [di (ethoxycarbonylmethyl) aminomethylstyrene] (PEG-b-PECAMS)

Figure 0006872216
Figure 0006872216

50mLナス型フラスコに実施例1で用いたのと同一のPEG−b−PCMSの2g、イミノ二酢酸ジエチル5g、DMF10mLを加え、50℃Cで1日反応させた。混合液を500mLの冷2−プロパノールに沈殿させ、ろ過後減圧乾燥を行い、ポリマーを得た。図3に得られたポリマーのDMSO−d6溶液の1H−NMRスペクトルを示す。 To a 50 mL eggplant-shaped flask, 2 g of the same PEG-b-PCMS used in Example 1, 5 g of diethyl iminodiacetic acid, and 10 mL of DMF were added, and the mixture was reacted at 50 ° C. C for 1 day. The mixed solution was precipitated in 500 mL of cold 2-propanol, filtered and dried under reduced pressure to obtain a polymer. FIG. 3 shows a 1 H-NMR spectrum of the obtained polymer DMSO-d6 solution.

<実施例3> ポリ(エチレングリコール)−b−ポリ[ジ(カルボキシメチル)アミノメチルスチレン](PEG−b−PAAMS)の合成法2
50mLナス型フラスコにPEG−b−PECAMSの700mgをDMF20mLに溶解させ、水酸化ナトリウム0.5g、水10mLを加えて室温で4日間反応させた。反応混合物を上記と同様に水に対して透析後、凍結乾燥によってポリマーを得た。図4に得られたポリマーのDMSO−d6溶液の1H−NMRスペクトルを示す。
<Example 3> Synthesis method of poly (ethylene glycol) -b-poly [di (carboxymethyl) aminomethylstyrene] (PEG-b-PAAMS) 2
700 mg of PEG-b-PECAMS was dissolved in 20 mL of DMF in a 50 mL eggplant-shaped flask, 0.5 g of sodium hydroxide and 10 mL of water were added, and the mixture was reacted at room temperature for 4 days. The reaction mixture was dialyzed against water in the same manner as above, and then freeze-dried to obtain a polymer. FIG. 4 shows a 1 H-NMR spectrum of the obtained polymer DMSO-d6 solution.

<実施例4> Fe(II)含有ナノ粒子の作製
実施例3で合成したPEG−b−PAAMSの50mgおよびFeCl2の12mgを10mLの水に溶解させ、10分間攪拌し、上記と同様に水に対して透析を行った。図5に動的光散乱測定結果を示す。粒径57nmの粒子が得られた。
<Example 4> Preparation of Fe (II) -containing nanoparticles 50 mg of PEG-b-PAAMS synthesized in Example 3 and 12 mg of FeCl 2 were dissolved in 10 mL of water, stirred for 10 minutes, and water in the same manner as above. Was dialyzed against. FIG. 5 shows the results of dynamic light scattering measurement. Particles having a particle size of 57 nm were obtained.

<実施例5> 種々イオンによるナノ粒子の作製
Ga(III)、In(III)、Gd(III)、Cu(II)、Fe(II)、F
e(III)に対するPEG−b−PAAMSの複合ナノ粒子化を行った(PEG−b−PAAMS:金属イオン塩化物20mM、金属イオン:キレート分子=2:1で混合後37℃で1時間攪拌し、上記と同様に水に対して透析を行った。)。図6に得られた溶液の写真を示す。
<Example 5> Preparation of nanoparticles using various ions Ga (III), In (III), Gd (III), Cu (II), Fe (II), F
Composite nanoparticles of PEG-b-PAAMS with respect to e (III) were mixed (PEG-b-PAAMS: metal ion chloride 20 mM, metal ion: chelate molecule = 2: 1) and stirred at 37 ° C. for 1 hour. , Water was dialyzed in the same manner as above). FIG. 6 shows a photograph of the obtained solution.

サイズ、イオン封入量及び封入率は、次のとおりである。 The size, ion encapsulation amount and encapsulation rate are as follows.

Figure 0006872216
Figure 0006872216

<実施例6> 金属イオン封入の安定性
実施例5で作製した金属イオン内封ナノ粒子(In(III)、Fe(III)を除く)の安定性を10%血清存在下で2日間攪拌し。動的光散乱測定を行ったところ、血清存在下でも粒径は殆ど変化せず、散乱強度の低下もみられなく、極めて安定であった(図7参照)。
<Example 6> Stability of metal ion encapsulation The stability of the metal ion-encapsulated nanoparticles (excluding In (III) and Fe (III)) prepared in Example 5 was stirred in the presence of 10% serum for 2 days. .. When dynamic light scattering measurement was performed, the particle size hardly changed even in the presence of serum, and the scattering intensity did not decrease, and it was extremely stable (see FIG. 7).

<実施例7> Mn(II)、Zn(II)の封入
実施例5で行ったと同様の方法で金属イオンをMn(II)、Zn(II)で行ったところ、粒径45−50nmの金属内包粒子が得られた(図8参照)。
<Example 7> Encapsulation of Mn (II) and Zn (II) When metal ions were carried out with Mn (II) and Zn (II) in the same manner as in Example 5, a metal having a particle size of 45-50 nm was formed. Encapsulating particles were obtained (see FIG. 8).

<実施例8> PEG−b−PAAMSホウ素錯合体(又は複合体)の作製
PEG−b−PAAMSの100mg、フェニルボロン酸100mg、活性化したモレキュラーシーブ100mg、脱水DMF10mLを30mLフラスコにとり、80℃、1日反応させた。反応後モレキュラーシーブをろ別し、ろ液をSpectra/Por(登録商標) Dialysis Membrane(nominal flat width=45mm,diameter=29mm,vol/length=6.4mL/cm,MWCO=3,500)の透析バッグにいれ、水に対して透析したのち凍結乾燥した。収量75mg。得られたポリマーの1H−NMRを図9に示す。2mg/mL水溶液を作製し、IPC−MSによりホウ素濃度を測定したところ500ppmであった。動的光散乱測定によりこのポリマーは水中で会合しており、37nmの粒径であった(図10参照)。
<Example 8> Preparation of PEG-b-PAAMS boron complex (or complex) 100 mg of PEG-b-PAAMS, 100 mg of phenylboronic acid, 100 mg of activated molecular sieve, and 10 mL of dehydrated DMF are placed in a 30 mL flask at 80 ° C. It was allowed to react for one day. After the reaction, the molecular sieve is filtered off, and the filtrate is dialyzed against Spectra / Por (registered trademark) Dialysis Membrane (nominal flat width = 45 mm, diameter = 29 mm, vol / lens = 6.4 mL / cm, MWCO = 3,500). It was placed in a bag, dialyzed against water, and then lyophilized. Yield 75 mg. 1 1 H-NMR of the obtained polymer is shown in FIG. A 2 mg / mL aqueous solution was prepared, and the boron concentration was measured by IPC-MS and found to be 500 ppm. Dynamic light scattering measurements showed that the polymer was associated in water and had a particle size of 37 nm (see Figure 10).

<実施例9> PEG−b−PAAMSホウ素錯合体の細胞毒性
96穴プレートに1x104のHepG2細胞を播種し、0.5mg/mL及び1.0mg/mLとなるようPEG−b−PAAMSホウ素錯合体を添加し、24時間インキュベートした後EST溶液を添加、2時間後に450nmのUV吸収を測定しコントロールと比較したところいずれも80%以上の生存率を確認した(図11参照)。
<Example 9> PEG-b-PAAMS boron錯合of seeded HepG2 cells cytotoxicity 96-well plates to 1x10 4, 0.5mg / mL and 1.0 mg / mL to become as PEG-b-paams boron complex After adding the coalescence and incubating for 24 hours, the EST solution was added, and after 2 hours, UV absorption at 450 nm was measured and compared with the control, and a survival rate of 80% or more was confirmed in each case (see FIG. 11).

<実施例10> キレートポリマー(PEG−b−PAAMS)およびそのエステル体(PEG−b−PECAMS)の毒性、抗腫瘍特性

サンプル群(1群6匹):
1 PBS
2 実施例1で作製したポリマー(PEG−b−PAAMS)のPBS溶液(25mg
/mL)
3 実施例2で作製したポリマー(PEG−b−PECAMS)のDMSO溶液をPB
Sに対して透析した溶液(25mg/mL)
<Example 10> Toxicity and antitumor properties of chelate polymer (PEG-b-PAAMS) and its ester (PEG-b-PECAMS).

Sample group (6 animals per group):
1 PBS
2 PBS solution (25 mg) of the polymer (PEG-b-PAAMS) prepared in Example 1
/ ML)
3 PB the DMSO solution of the polymer (PEG-b-PECAMS) prepared in Example 2
Solution dialyzed against S (25 mg / mL)

Balb/Cマウス皮下に1x106個のColon−26細胞を投与し7日後に上記サンプルを100μL尾静注した(100mb/Kg−BW,0,3,6日と三回投与)。体重増加および腫瘍成長とも3つの投与群で有意な差が見られず、本キレート剤投与により強い毒性は見られなかったものの、抗腫瘍活性は見られなかった(図12,13参照)。 1x10 6 Colon-26 cells were subcutaneously administered to Balb / C mice, and 7 days later, 100 μL of the above sample was intravenously injected (100 mb / Kg-BW, 0, 3, 6 days and 3 times). No significant difference was observed between the three administration groups in weight gain and tumor growth, and although no strong toxicity was observed by administration of this chelating agent, no antitumor activity was observed (see FIGS. 12 and 13).

<実施例11> Fe(II)含有ナノ粒子の抗腫瘍活性
Balb/Cマウス皮下に1x106個のColon−26細胞を投与し7日後に実施例4で作製したFe(II)含有ナノ粒子を尾静脈から投与した(7.75mg/mL,100μL,31mg/Kg−BW,0,3,6日三回投与)。Fe(II)を有する粒子は有意に腫瘍増殖抑制効果を示し、顕著な体重減少を示さなかった(図14,15参照)。また、コントロールに対して高い延命効果を示した(図16参照)。
<Example 11> Antitumor activity of Fe (II) -containing nanoparticles The Fe (II) -containing nanoparticles prepared in Example 4 were administered 7 days after subcutaneously administering 1x10 6 Colon-26 cells to a Balb / C mouse. It was administered from the tail vein (7.75 mg / mL, 100 μL, 31 mg / Kg-BW, administered three times a day, 3, 6 days). Particles with Fe (II) showed a significant tumor growth inhibitory effect and did not show significant weight loss (see FIGS. 14 and 15). In addition, it showed a high life-prolonging effect on the control (see FIG. 16).

<実施例12> Fe(II)含有ナノ粒子の細胞毒性
96穴マイクロプレートに104/ウェルのHeLa細胞を播種し、24時間培養した後、培養液を除き、下記試料を加え、24時間培養した。その後WST測定により細胞生存率を求めた。図17に示すようにこの条件下ではポリマーおよびFe(II)含有ナノ粒子も全く細胞毒性を示さないことが確認された。

試料
1 PEG−b−PAAMS(10mg/mL、100mg/mL溶液を血清で10倍希
釈)
2 PEG−b−PAAMS(5mg/mL、100mg/mL溶液を血清で20倍希釈

3 実施例11で用いたFe(II)含有ナノ粒子(1.55mg/mL、上記動物実験
で使用した溶液を血清で5倍希釈)
<Example 12> Cytotoxicity of Fe (II) -containing nanoparticles Cell toxicity of 96- well microplates 10 4 / well HeLa cells were seeded and cultured for 24 hours, then the culture solution was removed, the following sample was added, and the cells were cultured for 24 hours. did. After that, the cell viability was determined by WST measurement. As shown in FIG. 17, it was confirmed that the polymer and Fe (II) -containing nanoparticles also showed no cytotoxicity under these conditions.

Sample 1 PEG-b-PAAMS (10 mg / mL, 100 mg / mL solution diluted 10-fold with serum)
2 PEG-b-PAAMS (5 mg / mL, 100 mg / mL solution diluted 20-fold with serum)
3 Fe (II) -containing nanoparticles used in Example 11 (1.55 mg / mL, the solution used in the above animal experiment diluted 5-fold with serum)

<実施例13> フェントン(Fenton)反応によるFe(II)含有ナノ粒子の細胞毒性
96穴マイクロプレートに104/ウェルのHeLa細胞を播種し、24時間培養した後、培養液を除き、下記試料を加え、24時間培養した。その後WST測定により細胞生存率を求めた。図18に示すようにH22単独では3x103mol/L下で全く細胞毒性を示さないのに対し、Fe(II)含有ナノ粒子共存下で著しい細胞毒性を示し、効果を示した。共存試験ではFe(II)含有ナノ粒子(1.55mg/mL、上記動物実験で使用した溶液を血清で5倍希釈)
<Example 13> Cytotoxicity of Fe (II) -containing nanoparticles by Fenton reaction 10 4 / well HeLa cells were seeded on a 96-well microplate, cultured for 24 hours, and then the culture solution was removed, and the following sample was removed. Was added and cultured for 24 hours. After that, the cell viability was determined by WST measurement. As shown in FIG. 18, H 2 O 2 alone showed no cytotoxicity at 3 × 10 3 mol / L, whereas it showed remarkable cytotoxicity in the presence of Fe (II) -containing nanoparticles and showed an effect. In the coexistence test, Fe (II) -containing nanoparticles (1.55 mg / mL, the solution used in the above animal experiment was diluted 5-fold with serum).

本発明のブロック共重合体は、多価金属イオン又はホウ素化合物と生理的条件下で安定なナノ粒子として錯体又は複合体を提供でき、また、かようなナノ粒子は腫瘍増殖抑制効果を示す。したがって、本発明は医用分野で利用可能である。 The block copolymer of the present invention can provide a complex or complex as nanoparticles stable under physiological conditions with a polyvalent metal ion or a boron compound, and such nanoparticles exhibit a tumor growth inhibitory effect. Therefore, the present invention is available in the medical field.

Claims (8)

ポリ(エチレングリコール)セグメントとポリ[ジ(カルボキシメチル)アミノメチルスチレン]セグメントを含んでなるブロック共重合体。 A block copolymer comprising a poly (ethylene glycol) segment and a poly [di (carboxymethyl) aminomethylstyrene] segment. 請求項1に記載のブロック共重合体であって、該共重合体が次式Iで表されることを特徴とする前記ブロック共重合体
式I:
Figure 0006872216
式中、
Aは、非置換又は置換C1−C12アルキルを表し、置換されている場合の置換基は、ホルミル基又は式R12CH−基を表し、ここで、R1及びR2は独立してC1−C4アルコキシ又はR1とR2は一緒になって−OCH2CH2O−、−O(CH23O−若しくは−O(CH24O−を表し、
Lは、式
Figure 0006872216
で表される基から選ばれるか、或は又
結合、−(CH2cS−、−CO(CH2cS−、−(CH2cNH−、−(CH2cCO−、−CO−、−OCOO−、−CONH−からなる群より選ばれ、
式中のジ(カルボキシメチル)アミノ基はnの総数の中の少なくとも1個存在し、存在しない場合には、該アミノ基は、H、ハロゲン原子またはヒドロキシ基であることができ、YはH、SH又はS(C=S)−Phであり、Phは1又は2個のメチルまたはメトキシで置換されていてもよいフェニルを表し、
bは2〜6の整数であり、
cは1〜5の整数であり、
mは2〜10,000の整数を表し、
nは2〜500の整数を表す。
A block copolymer according to claim 1, wherein the block copolymer the copolymer is characterized by being represented by the following formula I.
Formula I:
Figure 0006872216
During the ceremony
A represents an unsubstituted or substituted C 1- C 12 alkyl, and the substituent when substituted represents a formyl group or a formula R 1 R 2 CH- group, where R 1 and R 2 are independent. to C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and represent,
L is the formula
Figure 0006872216
Selected from the groups represented by, or also bonded,-(CH 2 ) c S-, -CO (CH 2 ) c S-,-(CH 2 ) c NH-,-(CH 2 ) c CO Selected from the group consisting of −, −CO−, −OCOO−, −CONH−,
The di (carboxymethyl) amino group in the formula is present at least one in the total number of n, and if not present, the amino group can be H, a halogen atom or a hydroxy group, where Y is H. , SH or S (C = S) -Ph, where Ph represents phenyl which may be substituted with 1 or 2 methyls or methoxys.
b is an integer of 2 to 6
c is an integer from 1 to 5
m represents an integer of 2 to 10,000
n represents an integer of 2 to 500.
請求項1又は請求項2に記載の共重合体と多価金属イオンとの錯体。 A complex of the copolymer according to claim 1 or claim 2 and a multivalent metal ion. 多価金属イオンが、Ga(III)、Gd(III)、Cu(II)、Fe(II)、Mn(II)及びZn(II)イオンからなる群より選ばれる、1種又は2種以上のイオンである、請求項3に記載の錯体。 One or more polyvalent metal ions selected from the group consisting of Ga (III), Gd (III), Cu (II), Fe (II), Mn (II) and Zn (II) ions. The complex according to claim 3, which is an ion. 請求項1又は請求項2に記載の共重合体の前記ジ(カルボキシメチル)基とフェニルボロン酸とのエステル形成複合体。 An ester-forming complex of the di (carboxymethyl) group of the copolymer according to claim 1 or 2 and phenylboronic acid. 請求項3〜5のいずれかに記載の錯体又は複合体であって、水性媒体中で平均粒径がナノメートルサイズの粒子として存在する、錯体又は複合体。 The complex or complex according to any one of claims 3 to 5, wherein the complex or complex exists as particles having an average particle size of nanometer size in an aqueous medium. 請求項4に記載の錯体であって、金属イオンがFe(II)である錯体を有効成分として含んでなる腫瘍増殖抑制用製剤。 The preparation for suppressing tumor growth, which is the complex according to claim 4, which comprises a complex in which a metal ion is Fe (II) as an active ingredient. 請求項5に記載の複合体を有効成分として含んでなる、中性子捕捉療法で使用するための腫瘍増殖抑制用製剤。 A tumor growth-suppressing preparation for use in neutron capture therapy, which comprises the complex according to claim 5 as an active ingredient.
JP2016122601A 2016-06-21 2016-06-21 Hydrophilic polymer having iminodiacetic acid in the side chain and its use Active JP6872216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122601A JP6872216B2 (en) 2016-06-21 2016-06-21 Hydrophilic polymer having iminodiacetic acid in the side chain and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122601A JP6872216B2 (en) 2016-06-21 2016-06-21 Hydrophilic polymer having iminodiacetic acid in the side chain and its use

Publications (2)

Publication Number Publication Date
JP2017226735A JP2017226735A (en) 2017-12-28
JP6872216B2 true JP6872216B2 (en) 2021-05-19

Family

ID=60891183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122601A Active JP6872216B2 (en) 2016-06-21 2016-06-21 Hydrophilic polymer having iminodiacetic acid in the side chain and its use

Country Status (1)

Country Link
JP (1) JP6872216B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289015B (en) * 2021-05-13 2023-02-21 华中科技大学 Method for adjusting aggregation degree of photosensitizer, nano coordination polymer and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134892B2 (en) * 2012-07-26 2017-05-31 国立研究開発法人日本原子力研究開発機構 Method for producing silica / polymer composite type iminodiacetic acid chelate adsorbent, quantitative analysis method using silica / polymer composite type iminodiacetic acid chelate adsorbent, and method for recovering trace metal elements
JP6496252B2 (en) * 2014-02-05 2019-04-03 国立大学法人 筑波大学 Adhesion prevention formulation comprising a composition of polycationic triblock copolymer and polyanionic polymer
WO2016052463A1 (en) * 2014-09-30 2016-04-07 国立大学法人筑波大学 Poly(ethylene glycol)-b-poly(halomethylstyrene) and derivatives thereof, and production process therefor

Also Published As

Publication number Publication date
JP2017226735A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Fu et al. A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy
Li et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy
Sun et al. Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma
JP4992089B2 (en) Coordination compound of diaminocyclohexaneplatinum (II) and block copolymer and anticancer agent containing the same
JPWO2006115293A1 (en) Novel block copolymer used for the preparation of pH-responsive polymeric micelles and process for producing the same
EP2808349B1 (en) Triblock copolymer and use thereof
CN112047952B (en) Camptothecin-photosensitizer prodrug and preparation method and application thereof
KR102099516B1 (en) NIR responsive cross-linked micelles, drug delivery carrier targeting cancer cell and method for preparing the same
CN114377149A (en) Mn-based degradable MOF nano reactor and preparation method and application thereof
WO2016024595A1 (en) Micelle containing epirubicin-complexed block copolymer and anti-cancer agent, and pharmaceutical composition containing said micelle applicable to treatment of cancer, resistant cancer or metastatic cancer
WO2022052413A1 (en) Drug-loaded polymer vesicle having asymmetric membrane structure, preparation method therefor, and application thereof in preparation of drugs for treating acute myeloid leukemia
JP2003530317A (en) N, O-amidomalonate platinum complex
Chen et al. A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles
KR101533036B1 (en) Graphene derivative-based drug delivery and preparing method thereof
JP6872216B2 (en) Hydrophilic polymer having iminodiacetic acid in the side chain and its use
CN113855813A (en) Preparation method and application of ROS (reactive oxygen species) response marine fucoidin nano-carrier based on Fenton reaction and AIE (immune-induced emission) effect
JP6730958B2 (en) Benzene polycarboxylic acid compound and use thereof as a medicine
CN104761732A (en) Tumor cell targeted nano gel and preparation method thereof as well as tumor cell targeted drug-loaded nano-particles
JP2011162569A (en) Camptothecin polymer derivative and use thereof
KR101323102B1 (en) Nanoparticles formed by encapsulating an anticancer drug into glycolchitosan-cholanic acid complex and a process for the preparation thereof
CN113244175B (en) Immune vesicle maytansine conjugate as well as preparation method and application thereof
WO2020218390A1 (en) Conjugate and cancer therapeutic agent
WO2020196891A1 (en) Polymer drug
JPH0762049B2 (en) High molecular weight mitomycin C derivative and method for producing the same
KR101883745B1 (en) Nanoparticles containing conjugated polymer and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6872216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150