WO2018150867A1 - Multicore fiber, and multicore fiber tape using same - Google Patents

Multicore fiber, and multicore fiber tape using same Download PDF

Info

Publication number
WO2018150867A1
WO2018150867A1 PCT/JP2018/003039 JP2018003039W WO2018150867A1 WO 2018150867 A1 WO2018150867 A1 WO 2018150867A1 JP 2018003039 W JP2018003039 W JP 2018003039W WO 2018150867 A1 WO2018150867 A1 WO 2018150867A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
core fiber
clad
cores
fiber
Prior art date
Application number
PCT/JP2018/003039
Other languages
French (fr)
Japanese (ja)
Inventor
雄佑 佐々木
竹永 勝宏
晋聖 齊藤
盛岡 敏夫
エムディ ノールズザマン
Original Assignee
株式会社フジクラ
国立大学法人北海道大学
テクニカル・ユニヴァーシティ・オブ・デンマーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 国立大学法人北海道大学, テクニカル・ユニヴァーシティ・オブ・デンマーク filed Critical 株式会社フジクラ
Priority to JP2018568087A priority Critical patent/JPWO2018150867A1/en
Publication of WO2018150867A1 publication Critical patent/WO2018150867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Definitions

  • the present invention relates to a multi-core fiber capable of arranging many cores while suppressing deterioration of long-term reliability.
  • An optical fiber used in a widely used optical fiber communication system has a structure in which an outer peripheral surface of one core is surrounded by a clad, and information is transmitted by propagation of an optical signal in the core.
  • a multi-core fiber in which the outer peripheral surfaces of a plurality of cores are surrounded by one clad. According to the multi-core fiber, a signal can be transmitted by each light propagating through a plurality of cores, so that the amount of information that can be transmitted by one optical fiber can be increased.
  • Patent Document 1 describes such a multi-core fiber.
  • a multi-core fiber a plurality of cores are arranged in one clad.
  • a part of light propagating through mutually adjacent cores may overlap, and crosstalk may occur between the cores.
  • As a method for suppressing the crosstalk for example, increasing the interval between adjacent cores can be considered. Since crosstalk is determined by the integration of overlap between lights propagating through adjacent cores, crosstalk can be suppressed by increasing the inter-core distance to reduce this overlap.
  • Crosstalk can also be suppressed by a trench structure in which each core is surrounded by a low refractive index layer formed by glass or holes having a lower refractive index than that of the core or cladding. Since the core is surrounded by a low refractive index layer, the spread of light propagating in the core in the radial direction can be reduced, so that the overlap between lights propagating in adjacent cores is reduced and crosstalk is suppressed. Is done.
  • Non-Patent Document 1 describes a single mode with a bending diameter of 30 mm and a proof level of 1% with a cladding diameter of 125 ⁇ m in an actual use environment of a multi-core fiber having a bending diameter of 30 to 60 mm or a proof level of 1 to 2%.
  • the upper limit of the diameter of the clad of the multi-core fiber that is equal to the fiber breaking probability is described as 250 ⁇ m.
  • Non-Patent Document 2 has a parameter called maximum bending strain, and this parameter is described in the following non-patent documents 3 and 4.
  • an object of the present invention is to provide a multicore fiber in which a large number of cores can be arranged while suppressing deterioration of long-term reliability, and a multicore fiber tape using the same.
  • a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and has an outer shape in a cross section perpendicular to the longitudinal direction of the clad. Is a non-circular shape having the smallest diameter in the predetermined direction and having no recess, and two or more cores are disposed along the predetermined direction and along a direction perpendicular to the predetermined direction. A larger number of cores than the number of cores arranged along the predetermined direction are arranged and bent in the predetermined direction.
  • the upper limit of the number of cores that can be arranged in a predetermined direction is equal to the upper limit of the number of cores that can be arranged in a direction perpendicular to the predetermined direction.
  • the clad cross-sectional area can be made larger than that of a conventional multi-core fiber having a diameter equal to the diameter of the clad of the multi-core fiber of the present invention in a predetermined direction.
  • the number of cores arranged along the direction perpendicular to the predetermined direction is larger than the number of cores arranged along the predetermined direction.
  • the multi-core fiber of the present invention is bent in a predetermined direction. That is, the multi-core fiber of the present invention is used by being bent in a predetermined direction.
  • the largest stress applied to the clad is that of the multi-core fiber of the present invention and the clad of the multi-core fiber of the present invention.
  • the conventional multi-core fiber having a diameter equal to the diameter in the predetermined direction is approximately the same size.
  • the breaking probability thereof is substantially equal to the breaking probability of the conventional multi-core fiber. Therefore, according to the multi-core fiber of the present invention, deterioration of long-term reliability can be suppressed.
  • the outer shape of the clad may be a D type.
  • the multi-core fiber tape of the present invention includes a plurality of the above-mentioned multi-core fibers arranged in parallel to each other, and a single tape layer covering each multi-core fiber, and each of the multi-core fibers Are arranged such that the predetermined direction is oriented in a direction perpendicular to the parallel direction of the multi-core fibers.
  • each multi-core fiber bends in a predetermined direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
  • a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and a cross section perpendicular to the longitudinal direction of the clad.
  • the outer shape is an elliptical shape with an ellipticity of 2.5 or less, and two or more cores are arranged along the minor axis direction of the ellipse, and along the minor axis direction along the major axis direction of the ellipse.
  • a larger number of the cores than the number of the cores to be disposed are disposed and bent in a direction of 30 degrees or less with respect to the minor axis direction.
  • the present inventors compared the fracture probability of a multi-core fiber with a circular cladding outer shape and the fracture probability of a multi-core fiber with an elliptical cladding outer shape, The conditions for the same break probability were measured with the multi-core fiber.
  • the clad outer shape of each multi-core fiber is more elliptical than a circular multi-core fiber. It has been found that a certain multi-core fiber can have a larger cross-sectional area. Therefore, with such a multi-core fiber, more cores can be arranged while suppressing deterioration in long-term reliability.
  • the multi-core fiber tape of the present invention includes a multi-core fiber having an elliptical outer shape of the clad parallel to each other, and a single tape layer covering each multi-core fiber,
  • Each of the multicore fibers is arranged such that the minor axis direction is 30 degrees or less with respect to a direction perpendicular to the parallel direction of the multicore fibers.
  • each multi-core fiber bends in a direction of 30 degrees or less with respect to the minor axis direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
  • a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and a cross section perpendicular to the longitudinal direction of the clad.
  • the outer shape of the racetrack shape is a racetrack shape in which a ratio of a minor axis to a major axis formed by a pair of parallel lines connected by a semicircular curve is 2.5 or less, along the minor axis direction of the racetrack shape.
  • Two or more cores are disposed, and a larger number of cores than the number of cores disposed along the minor axis direction are disposed along the major axis direction of the racetrack shape, It is characterized by being bent in a direction of less than 45 degrees with respect to the direction.
  • the lengths of the respective straight lines are equal to each other, and the diameter becomes the smallest in the minor axis direction which is a direction perpendicular to the respective straight lines.
  • the present inventors compared the breaking probability of a multi-core fiber having a circular cladding outer shape with the breaking probability of a multi-core fiber having a cladding outer shape having the racetrack shape described above. The conditions under which the same breaking probability was obtained with the multi-core fiber having the racetrack shape as described above were measured.
  • the outer shape of the clad having the racetrack shape when bent at less than 45 degrees with respect to the minor axis direction, the outer shape of the clad has a more racetrack shape than the multicore fiber having the circular outer shape. It was found that the cross-sectional area of the multi-core fiber can be increased. Therefore, with such a multi-core fiber, more cores can be arranged while suppressing deterioration in long-term reliability.
  • the multi-core fiber tape of the present invention comprises a multi-core fiber having a track-shaped outer shape of the clad parallel to each other, and a single tape layer covering each multi-core fiber,
  • Each of the multi-core fibers is characterized in that the minor axis direction is arranged at less than 45 degrees with respect to a direction perpendicular to the parallel direction of the multi-core fibers.
  • each multi-core fiber bends in a direction of less than 45 degrees with respect to the minor axis direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
  • the number of the plurality of cores may be larger than 37.
  • Non-Patent Document 1 in a multi-core fiber having a clad with a circular outer shape, if the limit of the diameter of the clad is 250 ⁇ m, generally, the number of cores is limited to 37. Therefore, the above multi-core fiber is more useful when the number of cores is greater than 37.
  • the present invention it is possible to provide a multicore fiber in which a large number of cores can be arranged while suppressing deterioration in long-term reliability, and a multicore fiber tape using the same.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area of a multi-core fiber and the probability of fracture when the ellipticity is 1.5, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the clad outer shape shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 1.5, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the probability of fracture when the ellipticity is 1.5, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1.
  • FIG. 1 is a diagram showing the relationship between the cross-sectional area and the probability of fracture when the ellipticity is 1.5, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the clad outer shape shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 1.5, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing a relationship between a cross-sectional area and a fracture probability when the ellipticity is 2.0, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1.
  • FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. It is a figure which shows a core element. It is a figure which shows the 1st example of the multi-core fiber in 1st Embodiment.
  • the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 1%, and the bending diameter is 60 mm.
  • FIG. In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 1%, and the bending diameter is 60 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 1.5, the bending proof is 2%, and the bending diameter is 30 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 2%, and the bending diameter is 30 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 2%, and the bending diameter is 30 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 1.5, the bending proof is 2%, and the bending diameter is 60 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 2%, and the bending diameter is 60 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 2%, and the bending diameter is 60 mm.
  • FIG. 22 the relationship between the cross-sectional area and the probability of breakage when the ratio of the distance between the straight lines to the length of the straight line is 1.5, the bending proof is 1%, and the bending diameter is 30 mm.
  • FIG. 22 the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 1%, and the bending diameter is 30 mm.
  • FIG. 22 In a multi-core fiber in which the shape of the clad is a racetrack, it is a diagram showing the relationship between the ratio between the distance between straight lines and the length of the straight lines and the number of cores that can be arranged. It is a figure which shows the 1st example of the multi-core fiber in 2nd Embodiment. It is a figure which shows the 2nd example of the multi-core fiber in 2nd Embodiment. It is a figure which shows the 3rd example of the multi-core fiber in 2nd Embodiment.
  • FIG. 1 is a diagram showing the appearance of the cladding in a cross section perpendicular to the longitudinal direction of the multi-core fiber in the first embodiment of the present invention.
  • the multi-core fiber of this embodiment is a communication multi-core fiber used for communication.
  • the clad 21 of the multi-core fiber of the present embodiment has an elliptical cross-sectional shape perpendicular to the longitudinal direction.
  • the clad 21 has a predetermined direction as a minor axis direction and a direction perpendicular to the minor axis direction as a major axis direction. Therefore, the outer shape of the clad 21 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess.
  • the size of the minor axis is a
  • the size of the major axis is b.
  • the ellipse is defined by Equation 1 below.
  • the ellipticity e is defined by b / a
  • the area S is defined by the following equation 2.
  • Non-Patent Document 2 when the fracture probability is F, the fracture probability F is expressed by the following formula 3.
  • N p is the average break times during proofing
  • L is the length of the effective optical fiber count bending turn becomes 10 times
  • n represents the 20 be the fatigue factor
  • m is Weibull parameters ( a shape index)
  • t p is 1 second a proof time
  • t is the 20 years be age
  • sigma p is 1% or 2% be proof level
  • sigma is the maximum bending strain Is done.
  • the maximum bending strain ⁇ can be approximated by the following formula 4.
  • E is the Young's modulus of the glass
  • R b is the bending radius
  • r is the coordinates of the multicore fiber for obtaining the probability of breakage.
  • the position is the outermost side of the clad 21 when the multi-core fiber is bent.
  • the coordinate r is (0, a / 2).
  • the single mode fiber is required to have a fracture probability under the condition that the access diameter is 30 mm and the bending diameter is 30 mm.
  • multi-core fibers with high spatial multiplicity are expected to be used in the trunk line system for long-distance communications, and the probability of breakage may be reduced by setting the bending diameter to 60 mm, or the probability of breakage may be reduced by setting the proof level to 2%. it can.
  • the bending proof is 1%, the bending diameter is 60 mm, the ellipticity e is 1.5 in FIG. 2, and in FIG.
  • the calculation was performed with the ellipticity e set to 2.0 and the ellipticity e set to 2.5 in FIG. 5-7, the bending proof is 2%, the bending diameter is 30 mm, the ellipticity e is 1.5 in FIG. 5, and the ellipticity e is FIG.
  • the bending proof is 2%, the bending diameter is 60 mm, the ellipticity e is 1.5 in FIG.
  • the ellipticity e is FIG.
  • the bending proof is 1%
  • the bending diameter is 30 mm
  • the ellipticity e is 1.5 in FIG. 11
  • the ellipticity e is FIG.
  • the calculation was performed by setting the ellipticity e to 2.5 in FIG.
  • the solid line represents the relationship between the cross-sectional area and the breaking probability of the multi-core fiber with the clad having a circular outer shape under the above conditions.
  • the horizontal line shown in each figure is the probability of breakage when a standard single mode fiber having a cladding diameter of 125 ⁇ m is bent at a bending diameter of 30 mm, and its value is 3.2 ⁇ 10 ⁇ 6 .
  • the cross-sectional area of the multi-core fiber can be made larger than that of the multi-core fiber having a circular cladding shape.
  • Table 1 shows the cross-sectional area of the clad, the cross-sectional area ratio of the clad having an elliptical cross-sectional shape with respect to the clad having a circular cross-sectional shape, and the minor axis of the clad.
  • the minor axis when the cross-sectional shape of the cladding is a circle indicates the diameter of the circle.
  • Table 2 shows the same items as the items shown in Table 1 based on the calculation results shown in FIGS.
  • the multi-core fiber having an elliptical clad shape has a clad shape.
  • the cross-sectional area can be made larger than that of a circular multi-core fiber.
  • the cross-sectional area ratio is 1. when the angle ⁇ from the minor axis direction of the bending direction is 0 degree or more and 30 degrees or less. It can be 10 or more.
  • the cross-sectional area ratio tends to be smaller than 1.10. Therefore, the ellipticity e is preferably 1.5 or more and 2.5 or less, and more preferably 1.5 or more and 2.0 or less.
  • the cross-sectional area ratio is 1.46 or more and 2.43 or less if the ellipticity e is 1.5 or more and 2.5 or less.
  • the ellipticity e is preferably 2.0 or more.
  • FIG. 14 is a diagram illustrating core elements
  • FIGS. 15 to 19 are diagrams illustrating first to fifth examples of the multi-core fiber of the present embodiment.
  • the multi-core fibers 1A to 1E of these examples include at least two types of core elements 10A, 10B, and 10C arranged in a matrix and a single elliptical clad 21 surrounding each core element. And the covering layer 30.
  • the plurality of core elements are of different types from each other.
  • the core element 10A is indicated by a solid line
  • the core element 10B is indicated by a broken line
  • the core element 10C is indicated by a dotted line.
  • the core element 10A includes a core 11A, an inner cladding 12A surrounding the core 11A, and a low refractive index layer 13A surrounding the inner cladding 12A and surrounded by the cladding 21.
  • the core element 10B includes a core 11B, an inner cladding 12B surrounding the core 11B, and a low refractive index layer 13B surrounding the inner cladding 12B and surrounded by the cladding 21, and the core element 10C includes the core 11C, An inner cladding 12C surrounding the core 11C and a low refractive index layer 13C surrounding the inner cladding 12C and surrounded by the cladding 21 are included.
  • the multi-core fibers 1A to 1E have at least two types of core elements among the plurality of core elements 10A, 10B, and 10C arranged in a matrix
  • the multi-core fibers 1A to 1E are arranged in a matrix. And having at least two types of cores among the plurality of cores 11A, 11B, and 11C.
  • the cores 11A to 11C have a refractive index higher than that of the cladding 21, the low refractive index layers 13A to 13C have a refractive index lower than that of the cladding 21, and the inner cladding 12A has a gap between the core 11A and the low refractive index layer 13A.
  • the inner cladding 12B has a refractive index between the core 11B and the low refractive index layer 13B, and the inner cladding 12C has a refractive index between the core 11C and the low refractive index layer 13C.
  • the inner claddings 12A to 12C have the same refractive index as that of the cladding 21.
  • each of the core elements 10A to 10C has a trench type refractive index profile.
  • the refractive index difference with respect to the refractive index of the clad 21 of the core 11A of the core element 10A is the largest, and thus a high refractive index difference core, and the refractive index difference with respect to the refractive index of the clad 21 of the core 11C of the core element 10C.
  • the refractive index difference with respect to the refractive index of the clad 21 of the core 11B of the core element 10B is between the core 11A and the core 11B to be a medium refractive index difference core.
  • the multi-core fiber shown below has two or more cores arranged along the minor axis direction of the ellipse and cores arranged along the minor axis direction along the major axis direction of the ellipse. More cores than the number are arranged. Further, in the present embodiment, when the axis along the minor axis direction passing through the center of the major axis is the minor axis, the number of cores arranged along the minor axis at a position close to the minor axis is the minor axis. More than the number of cores arranged along the minor axis at a position far from the center.
  • the cores 11A to 11C are shown as a part of the core elements 10A to 10C, and the clad 21 is connected to the cores 11A to 11C via the inner clads 12A to 12C and the low refractive index layers 13A to 13C. It indirectly surrounds 11C.
  • the inner claddings 12A to 12C and the low refractive index layers 13A to 13C may be omitted, and the cladding 21 may directly surround the respective cores 11A to 11C.
  • a multi-core fiber 1A of the first example shown in FIG. 15 has a clad 21 having an ellipticity e of 1.5, and two types of core elements 10A and 10C are arranged in the clad 21. These core elements 10A and 10C are arranged in a square lattice so that the adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 2-6-8-8-6-2 is obtained, and the core elements 10A, 10A, The total number of 10C is 32.
  • the proof when the proof is 2%, the bending diameter is 30 mm, and the angle ⁇ in the bending direction of the multi-core fiber is 30 degrees, the proof is 1% when the standard single mode fiber is bent at a bending diameter of 30 mm.
  • the sectional area when the fracture probability is the same as the fracture probability of 3.2 ⁇ 10 ⁇ 6 is approximately 56.1 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Therefore, the minor axis is approximately 218 ⁇ m and the major axis is approximately 327 ⁇ m. In this case, the distance between the cores can be 28.8 ⁇ m.
  • the ratio of the area occupied by the core elements 10A and 10B to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio
  • the core exclusive area ratio is 37.8%.
  • FIG. 16 is a diagram illustrating a second example of the multi-core fiber of the present embodiment.
  • the multi-core fiber 1B has a clad 21 having an ellipticity e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21.
  • These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. In this way, the core elements 10A, 10B, and 10C are arranged in a triangular lattice shape, so that the core elements 10A, 10B, and 10C are arranged in a close-packed form.
  • the array becomes 6-9-10-9-6, and the core elements 10A, 10B, The total number of 10C is 40.
  • the multi-core fiber 1B of this example has the same ellipticity e as the multi-core fiber 1A. Therefore, when the proof is 2%, the bending diameter is 30 mm, and the angle ⁇ in the bending direction of the multi-core fiber is 30 degrees, the fracture probability is 3.2.
  • the cross-sectional area in the case of ⁇ 10 ⁇ 6 is approximately 56.0 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Therefore, the minor axis is approximately 218 ⁇ m and the major axis is approximately 327 ⁇ m. Further, the distance between the cores can be 28.8 ⁇ m. In addition, the area occupied by the core is 47.2%.
  • FIG. 17 is a diagram illustrating a third example of the multi-core fiber of the present embodiment.
  • the multi-core fiber 1C has a clad 21 having an ellipticity e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 7-10-11-10-7, and the core elements 10A, 10B, The total number of 10C is 41.
  • the cross-sectional area when the fracture probability is 3.2 ⁇ 10 ⁇ 6 is FIG. Therefore, it is approximately 56.1 ⁇ 10 ⁇ 8 ⁇ m 2 . Therefore, the major axis is approximately 189 ⁇ m and the major axis is approximately 378 ⁇ m. Further, the distance between the cores can be 28.8 ⁇ m. In addition, the area occupied by the core is 48.3%.
  • the multicore fibers 1A to 1C when the angle ⁇ from the minor axis direction is bent and used in a direction of 30 degrees or less, the multicore fibers 1A to 1C have substantially the same reliability as the single mode fiber. Optical communication can be performed.
  • FIG. 18 is a diagram illustrating a fourth example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 1D has a clad 21 with an ellipticity e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-7-8-7-6, and the core elements 10A, 10B, The total number of 10C is 34.
  • the cross-sectional area when the fracture probability is 3.2 ⁇ 10 ⁇ 6 is shown in FIG. Therefore, it is approximately 48.8 ⁇ 10 ⁇ 8 ⁇ m 2 .
  • the minor axis is approximately 204 ⁇ m and the major axis is approximately 305 ⁇ m.
  • the distance between the cores can be 28.8 ⁇ m.
  • the area occupied by the core is 52.7%.
  • the parameters of each core element in this example are the same as the parameters of each core element in the second example and the third example.
  • FIG. 19 is a diagram illustrating a fifth example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 1E has a clad 21 having an ellipticity e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-9-10-9-6, and the core elements 10A, 10B, The total number of 10C is 40.
  • the cross-sectional area when the fracture probability is 3.2 ⁇ 10 ⁇ 6 is shown in FIG. Therefore, it is approximately 48.8 ⁇ 10 ⁇ 8 ⁇ m 2 . Accordingly, the minor axis is approximately 176 ⁇ m and the major axis is approximately 353 ⁇ m. Further, the distance between the cores can be 28.8 ⁇ m. In addition, the area occupied by the core is 47.4%.
  • the parameters of each core element in this example are the same as the parameters of each core element in the second example and the third example.
  • the optical communication has the same reliability as a single mode fiber. It can be performed.
  • the ellipticity e of the clad 21 and the arrangement of the core elements 10A to 10C shown in the above example are merely examples, and the arrangement of the ellipticity e and the core elements 10A to 10C can be changed as appropriate.
  • the multi-core fibers 1A to 1E of this embodiment include the plurality of cores 11A to 11C arranged in a matrix and the single clad 21 surrounding each of the cores 11A to 11C.
  • the outer shape in a cross section perpendicular to the longitudinal direction of the clad 21 is an elliptical shape having an ellipticity e of 2.5 or less, two or more cores are disposed along the minor axis direction of the ellipse, and the major axis direction of the ellipse is A larger number of cores are disposed along the minor axis direction.
  • the multi-core fibers 1A to 1E are used by being bent in a direction of 30 degrees or less with respect to the minor axis direction.
  • the multi-core fibers 1A to 1E having the elliptical outer shape of the clad 21 are bent at 30 degrees or less with respect to the minor axis direction, as described above, when the fracture probability is the same,
  • the cross-sectional area of the multi-core fibers 1A to 1E having an elliptical outer shape of the clad can be larger than that of the multi-core fiber having a circular outer shape. Therefore, with such multi-core fibers 1A to 1E, more cores can be arranged while suppressing deterioration in long-term reliability.
  • FIG. 20 is a diagram of the first embodiment showing that many cores can be arranged in the multicore fiber in the first embodiment when the angle ⁇ is 0 degree.
  • the covering layer 30 is omitted.
  • the multi-core fiber 101 with a circular cross-sectional shape of the clad the multi-core fiber 1F with an elliptical cross-sectional shape of the clad and an ellipticity e of 2.0, and an elliptical shape with the elliptical cross-sectional shape of the clad.
  • a multi-core fiber 1G having an e of 2.5 is shown superimposed. That is, in FIG.
  • the multi-core fiber 101 having the circular clad shape and the multi-core fibers 1 ⁇ / b> F and 1 ⁇ / b> G having the elliptical clad 21 having a short diameter equal to the diameter of the clad of the multi-core fiber 101. It is shown.
  • the most stressed position is the position on the outermost side of the clad in the bent state. Therefore, when the multi-core fibers 1F and 1G having such a cladding are bent at an angle ⁇ from the minor axis direction of 0 degree, the magnitude of the stress at the most stressed position is bent with the same curvature. The magnitude of the stress at the most stressed position in the multi-core fiber 101 is the same. Therefore, when the multi-core fibers 1F and 1G are bent at an angle ⁇ of 0 degrees as described above, the break probability of the multi-core fibers 1F and 1G is equal to the break probability of the multi-core fiber 101 bent with the same curvature. For this reason, compared with the multi-core fiber 101, the multi-core fibers 1F and 1G can suppress deterioration in long-term reliability.
  • the short diameter of the clad of the multicore fibers 1F and 1G is the same as the diameter of the clad of the multicore fiber 101 as compared to the multicore fiber 101 having a circular cross-sectional outer shape. It is assumed. Accordingly, the cross-sectional area of the clad of the multi-core fibers 1F and 1G is made larger than the cross-sectional area of the clad of the multi-core fiber 101.
  • the multi-core fibers 1F and 1G can have more core elements than the multi-core fiber 101 having the same diameter as the minor axis of the clad of the multi-core fibers 1F and 1G.
  • the core elements that can be disposed in the clad of the multi-core fiber 101 are a core element that overlaps the broken line and a core element that is disposed inside the broken line in FIG. Therefore, the number of core elements included in the multi-core fiber 101 is 37.
  • the core elements that can be disposed in the clad of the multi-core fiber 1F are a core element that overlaps with a dotted line and a core element that is disposed inside the dotted line in FIG. Accordingly, the number of core elements included in the multi-core fiber 1F is 77.
  • the number of core elements included in the multi-core fiber 1G is 89.
  • FIG. 21 is a diagram of the second embodiment showing that many cores can be arranged in the multi-core fiber in the first embodiment when the angle ⁇ is 0 degree, as in FIG. 20.
  • the multi-core fiber 102 with a circular cross-sectional shape of the clad the multi-core fiber 1H with an elliptical cross-sectional shape and an ellipticity e of 2.0, and an elliptical shape with an elliptical cross-sectional shape.
  • a multi-core fiber 1I with an e of 2.5 is shown superimposed. That is, in FIG.
  • the multi-core fiber 102 having a circular clad shape and the multi-core fibers 1H and 1I each having an elliptical clad 21 having a short diameter equal to the diameter of the clad of the multi-core fiber 102 are shown. It is shown.
  • the break probability of the multi-core fibers 1H and 1I is the multi-core fiber 102 bent with the same curvature. Is made equal to the probability of breakage. Therefore, the multi-core fibers 1H and 1I can suppress deterioration in long-term reliability as compared with the multi-core fiber 102.
  • the cross-sectional area of the clad of the multi-core fibers 1H and 1I is made larger than the cross-sectional area of the clad of the multi-core fiber 102.
  • the multi-core fibers 1H and 1I along the major axis direction of the ellipse. More core elements than the number of core elements arranged along the minor axis direction are arranged. Therefore, the multi-core fibers 1H and 1I can have more core elements than the multi-core fiber 102 having the same diameter as the minor axis of the clad of the multi-core fibers 1H and 1I.
  • core elements that can be arranged in the clad of the multi-core fiber 102 are core elements that overlap the broken line and core elements that are arranged inside the broken line, and the number of core elements that the multi-core fiber 102 has is 37.
  • the core elements that can be arranged in the clad of the multi-core fiber 1H are the core elements that overlap with the dotted line and the core elements that are arranged inside the dotted line, and the number of core elements that the multi-core fiber 1H has is 89.
  • the number of core elements included in the multi-core fiber 1I is 105.
  • the multi-core fiber of this embodiment includes a plurality of cores 11A to 11C arranged in a matrix and a single clad 21 surrounding each of the cores 11A to 11C.
  • the outer shape in a cross section perpendicular to the longitudinal direction of the clad 21 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess.
  • Two or more cores 11A to 11C are arranged along a predetermined direction, and more cores are arranged along a direction perpendicular to the predetermined direction than the number of cores arranged along the predetermined direction. Are bent in a predetermined direction.
  • the upper limit of the number of cores that can be arranged in a predetermined direction and the direction perpendicular to the predetermined direction is equal to each other.
  • the multi-core fibers 1F to 1I of the present embodiment for example, from the conventional multi-core fibers 101 and 102 having a diameter equal to the diameter of the minor axis direction which is a predetermined direction of the cladding of the multi-core fibers 1F to 1I of the present embodiment.
  • the cross-sectional area of the cladding can be increased.
  • the number of cores 11A to 11C arranged along the direction perpendicular to the predetermined direction is larger than the number of cores 11A to 11C arranged along the predetermined direction. Therefore, according to the multi-core fibers 1F to 1I of the present embodiment, more cores can be arranged than the conventional multi-core fibers 101 and 102. Further, the multi-core fibers 1F to 1I of this embodiment are used by being bent in a predetermined direction. In this case, since the position where the greatest stress is applied to the clad is the position on the outermost peripheral side of the clad 21 in the bent state, the largest stress applied to the clad is the multicore fibers 1F to 1I of the present embodiment and the conventional multicore.
  • the fibers 101 and 102 have substantially the same size. Therefore, when the multi-core fibers 1F to 1I according to the present invention are bent as described above, the break probability thereof is substantially equal to the break probability of the conventional multi-core fibers 101 and 102. Therefore, according to the multicore fibers 1F to 1I of the present invention, deterioration of long-term reliability can be suppressed.
  • FIG. 22 is a diagram showing the appearance of the cladding in a cross section perpendicular to the longitudinal direction of the multi-core fiber in the second embodiment of the present invention.
  • the outer shape of the cladding is shown, and the core and the coating layer are not described.
  • the multi-core fiber of the present embodiment is a communication multi-core fiber used for communication in the same manner as the multi-core fiber of the first embodiment.
  • the clad 22 of the multi-core fiber according to the present embodiment has a cross-sectional shape perpendicular to the longitudinal direction and a racetrack shape in which a set of straight lines 22L parallel to each other are connected by a semicircular curve 22C.
  • the respective straight lines 22L are in a relationship of being translated from each other.
  • the direction perpendicular to the straight line 22L is the minor axis direction and the direction along the straight line 22L is the major axis direction in the cross section.
  • this minor axis direction is a predetermined direction
  • the outer shape of the clad 22 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess.
  • the short diameter which is the distance between the straight lines 22L is a
  • the long diameter is b.
  • the ratio (b / a) between the minor axis a and the major axis b is assumed to be e.
  • the breaking probability of the multi-core fiber is expressed by Equation 3. Therefore, in the multi-core fiber having the outer shape of the clad 22 shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the multi-core fiber is bent in the direction of the angle ⁇ from the minor axis direction shown in FIG. It calculated
  • the relationship between the cross-sectional area and the probability of breakage is that the bending proof is 1%, the bending diameter is 60 mm, the ratio e is 1.5 in FIG. 23, and the ratio e is 2.0 in FIG.
  • the calculation was performed with the ratio e set to 2.5.
  • the bending proof is 2%, the bending diameter is 30 mm, the ratio e is 1.5 in FIG. 26, and the ratio e is 2 in FIG.
  • the calculation was performed by setting the ratio e to 2.5 in FIG. 29 to 31, the bending proof is 2%, the bending diameter is 60 mm, the ratio e is 1.5 in FIG. 29, and the ratio e is 2 in FIG.
  • the horizontal line shown in each figure is the probability of breakage when a standard single mode fiber having a cladding diameter of 125 ⁇ m is bent at a bending diameter of 30 mm, and the value Is 3.2 ⁇ 10 ⁇ 6 .
  • the ratio e of the minor axis a to the major axis b is 2.5 or less, and the same breaking probability is obtained.
  • the cross-sectional area of the multi-core fiber with the racetrack shape of the clad can be larger than that of the multi-core fiber with the circular shape of the clad.
  • the fracture probability is 3.2 ⁇ 10 ⁇ 6 when the angle ⁇ in each figure is 0 degree, 30 degrees, and 45 degrees.
  • Table 8 shows the cross-sectional area of the clad, the cross-sectional area ratio of the clad whose cross-sectional shape is a racetrack shape, and the minor axis of the clad.
  • the minor axis when the cross-sectional shape of the cladding is a circle indicates the diameter of the circle.
  • the clad shape of the racetrack-shaped multicore fiber is used.
  • the cross-sectional area can be made larger than that of a multi-core fiber having a circular cladding shape.
  • the angle ⁇ is 45 degrees
  • the cross-sectional area of the multicore fiber having the racetrack shape of the clad may be slightly smaller than the circular multicore fiber at the ratio e of 1.5.
  • the cross-sectional area of the racetrack-shaped multicore fiber is substantially the same as that of the circular multicore fiber.
  • the cross-sectional area of the multicore fiber with the racetrack shape of the clad can be larger than that of the multicore fiber with the circular shape of the clad.
  • the cross-sectional area of the multicore fiber having a racetrack shape of the clad can be more reliably increased than the multicore fiber having a circular clad shape.
  • the ratio e is 2.0 or more and 2.5 or less, the cross-sectional area of the multicore fiber with the racetrack shape of the clad is smaller than that of the circular multicore fiber when the angle ⁇ is 45 degrees or less. Since there is no, it is preferable.
  • FIG. 35 in the multi-core fiber in which the shape of the clad 22 is a racetrack shape as in the present embodiment, the relationship between the ratio e between the short diameter a and the long diameter b and the number of cores that can be arranged is shown. .
  • FIG. 35 shows the ratio e and the cross-sectional area obtained by fixing the minor axis a which is the distance between straight lines and changing the major axis b, and the core elements using the parameters of the core elements 10A to 10C described in Table 6 are shown.
  • the number obtained by dividing the cross-sectional area by the area is the number of cores.
  • FIG. 35 it can be seen that, when the ratio e is at least 2.5, regardless of the minor axis a, the larger the ratio e, the more cores that can be arranged.
  • the core elements 10A to 10C shown in FIGS. 15 to 19 can be arranged in the clad 22.
  • the inner claddings 12A to 12C and the low refractive index layers 13A to 13C may be omitted, and the cladding 22 may directly surround the respective cores 11A to 11C.
  • two or more cores are arranged along the minor axis direction of the racetrack shape, and are arranged along the minor axis direction along the major axis direction of the race track shape. More cores than the number of cores are arranged. Further, in the present embodiment, when the axis along the minor axis direction passing through the center of the major axis is the minor axis, the number of cores arranged along the minor axis at a position close to the minor axis is the minor axis. More than the number of cores arranged along the minor axis at a position far from the center.
  • a multi-core fiber 2A of the first example shown in FIG. 36 has a clad 22 having a ratio e of a minor axis a to a major axis b of 1.5, and two types of cores 10A and 10C in the clad 22 Elements are arranged in a square lattice so as to be of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 4-6-8-8-6-4 is obtained, and the core elements 10A, 10A, The total number of 10C is 36. 2.
  • the breaking probability when the standard single mode fiber is bent with a bending diameter of 30 mm is the same as 2 ⁇ 10 ⁇ 6 , the cross-sectional area is approximately 52.8 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Therefore, the minor axis is approximately 202.7 ⁇ m, and the major axis is approximately 304.1 ⁇ m. In this case, the distance between the cores can be 28.8 ⁇ m.
  • the ratio of the area occupied by the core elements 10A and 10B to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio
  • the core exclusive area ratio is 44.4%.
  • FIG. 37 is a diagram illustrating a second example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 2B has a clad 22 having a ratio e of the minor axis a to the major axis b of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22.
  • These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. In this way, the core elements 10A, 10B, and 10C are arranged in a triangular lattice shape, so that the core elements 10A, 10B, and 10C are arranged in a close-packed form.
  • the array becomes 6-7-8-7-6, and the core elements 10A, 10B,
  • the total number of 10C is 34. 2.
  • the cross-sectional area is approximately 52.8 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG.
  • the minor axis is approximately 202.7 ⁇ m
  • the major axis is approximately 304.1 ⁇ m.
  • the distance between the cores can be 28.8 ⁇ m.
  • the core exclusive area ratio is 41.9%.
  • FIG. 38 is a diagram illustrating a third example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 2C has a clad 22 having a ratio e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 7-8-9-8-7, and the core elements 10A, 10B, The total number of 10C is 39. 2.
  • the probability of breakage when the standard single-mode fiber is bent with a bending diameter of 30 mm is approximately 48.6 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Accordingly, the minor axis is approximately 165.0 ⁇ m and the major axis is approximately 330.0 ⁇ m. In this case, the distance between the cores can be 28.8 ⁇ m.
  • the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio
  • the core exclusive area ratio is 52.2%.
  • FIG. 39 is a diagram illustrating a fourth example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 2D has a clad 22 with a ratio e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 5-6-7-8-7-6-5 is obtained. The total number of 10A, 10B, and 10C is 44. 2.
  • the probability of breakage when the standard single-mode fiber is bent at a bending diameter of 30 mm assuming that the proof is 2%, the bending diameter is 30 mm, and the angle ⁇ in the bending direction of the multi-core fiber is 30 degrees.
  • the cross-sectional area when the fracture probability is the same as 2 ⁇ 10 ⁇ 6 is approximately 60.6 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Therefore, the minor axis is approximately 217.1 ⁇ m, and the major axis is approximately 325.7 ⁇ m. In this case, the distance between the cores can be 28.8 ⁇ m.
  • the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio
  • the core exclusive area ratio is 47.3%.
  • FIG. 40 is a diagram illustrating a fifth example of the multi-core fiber according to the present embodiment.
  • the multi-core fiber 2E has a clad 22 with a ratio e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Also, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 8-9-10-9-8 is obtained, and the core elements 10A, 10B, The total number of 10C is 45.
  • the cross-sectional area when the fracture probability is the same as 2 ⁇ 10 ⁇ 6 is approximately 55.8 ⁇ 10 ⁇ 8 ⁇ m 2 from FIG. Therefore, the minor axis is approximately 176.8 ⁇ m, and the major axis is approximately 353.6 ⁇ m. In this case, the distance between the cores can be 28.8 ⁇ m.
  • the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is a core exclusive area ratio
  • the core exclusive area ratio is 52.5%.
  • the ratio e of the clad 21 and the arrangement of the core elements 10A to 10C shown in the above example are merely examples, and the ratio e and the arrangement of the core elements 10A to 10C can be changed as appropriate.
  • the multi-core fibers 2A to 2E of this embodiment include the plurality of cores 11A to 11C arranged in a matrix and the single clad 22 surrounding each of the cores 11A to 11C.
  • the outer shape of the clad 22 in a cross section perpendicular to the longitudinal direction is a race in which a pair of straight lines 22L connected to each other by a semicircular curve 22C and a ratio e between the minor axis a and the major axis b is 2.5 or less.
  • the track shape Two or more cores are arranged along the minor axis direction, and more cores are arranged along the minor axis direction along the minor axis direction.
  • the multi-core fibers 2A to 2E are used by being bent in a direction of less than 45 degrees with respect to the minor axis direction.
  • the multi-core fibers 2A to 2E having the outer shape of the clad 22 having a racetrack shape are bent and used at less than 45 degrees with respect to the minor axis direction, as described above, when the fracture probability is the same,
  • the multi-core fibers 2A to 2E having a racetrack shape with a clad outer shape can have a larger cross-sectional area than a multicore fiber with a clad outer shape being circular. Accordingly, with such multi-core fibers 2A to 2E, it is possible to arrange more cores while suppressing deterioration of long-term reliability.
  • FIG. 41 is a diagram of the first embodiment showing that many cores can be arranged in the multi-core fiber in the second embodiment when the angle ⁇ is 0 degree.
  • the coating layer 30 is omitted.
  • a multi-core fiber 101 having a circular cross-sectional shape of the clad
  • a multi-core fiber 2F having a cross-section of the clad having a racetrack shape and a ratio e of the short diameter a to the long diameter b of 2.0
  • a cross-section of the clad Is a racetrack shape
  • a multi-core fiber 2G having a ratio e of the minor axis a to the major axis b of 2.5 is superimposed. That is, FIG.
  • the most stressed position is the position on the outermost peripheral side of the clad in the bent state. Therefore, when the multicore fibers 2F and 2G having such a cladding are bent at an angle ⁇ from the minor axis direction of 0 degree, the magnitude of the stress at the most stressed position was bent with the same curvature. The magnitude of the stress at the most stressed position in the multi-core fiber 101 is the same. Therefore, when the multi-core fibers 2F and 2G are bent at an angle ⁇ of 0 degrees as described above, the break probability of the multi-core fibers 2F and 2G is made equal to the break probability of the multi-core fiber 101 bent with the same curvature. For this reason, compared with the multi-core fiber 101, the multi-core fibers 2F and 2G can suppress deterioration in long-term reliability.
  • the clad minor axis a of the multi-core fibers 2F and 2G is the same as the clad diameter of the multi-core fiber 101 as described above. It is made a size. Therefore, the cross-sectional area of the clad of the multi-core fibers 2F and 2G is made larger than the cross-sectional area of the clad of the multi-core fiber 101.
  • a larger number of core elements than the number of core elements arranged along the minor axis direction are arranged along the major axis direction. Accordingly, the multi-core fibers 2F and 2G can have more core elements than the multi-core fiber 101 having the same diameter as the minor axis a of the clad of the multi-core fibers 2F and 2G.
  • the core element that can be disposed in the clad of the multi-core fiber 101 is a core element that overlaps the broken line and a core element that is disposed inside the broken line, and is 37.
  • the core elements that can be disposed in the clad of the multi-core fiber 2F are a core element that overlaps with a dotted line and a core element that is disposed inside the dotted line in FIG. Accordingly, the number of core elements included in the multi-core fiber 2F is 93.
  • the number of core elements included in the multi-core fiber 2G is 117.
  • FIG. 42 is a diagram of the second embodiment showing that many cores can be arranged in the multi-core fiber in the second embodiment when the angle ⁇ is 0 degree.
  • the coating layer 30 is omitted.
  • the multi-core fiber 102 having a circular cross-sectional shape of the clad
  • the multi-core fiber 2H having a cross-section of the clad having a racetrack shape and a ratio e of the short diameter a to the long diameter b of 2.0
  • a cross-section of the clad Is a racetrack shape
  • a multi-core fiber 2I having a ratio e between the minor axis a and the major axis b of 2.5 is superimposed.
  • a multi-core fiber 102 having a circular clad shape and multi-core fibers 2H and 2I having a racetrack-shaped clad 22 in which the short axis a is smaller than the diameter of the clad of the multi-core fiber 102 are shown. .
  • the distance between the straight lines 22L is smaller than the diameter of the clad of the multi-core fiber 102. Is smaller than the breaking probability of the multi-core fiber 102 bent with the same curvature. For this reason, the multi-core fibers 2H and 2I can suppress deterioration of long-term reliability as compared with the multi-core fiber 102.
  • the multi-core fibers 2H and 2I have more core elements than the multi-core fiber 102, although the distance between the straight lines 22L is smaller than the diameter of the clad of the multi-core fiber 102. Can do.
  • the core element that can be arranged in the clad of the multi-core fiber 102 is 37 as in the first embodiment.
  • the core element that can be disposed in the clad of the multi-core fiber 2H is a core element that overlaps the dotted line and a core element that is disposed inside the dotted line, which is 93.
  • the number of core elements included in the multi-core fiber 2I is 117.
  • the multi-core fibers 2F to 2I according to the present embodiment are also compared with the conventional multi-core fibers 101 and 102 in which the outer shape of the cross section of the clad is circular as described with reference to FIGS.
  • the deterioration of the fracture probability can be suppressed, and many cores can be arranged.
  • FIG. 43 is a diagram showing the multi-core fiber tape of the present embodiment.
  • a multi-core fiber tape 51 shown in FIG. 43 has a plurality of multi-core fibers 1A of the first embodiment arranged in parallel in a single tape layer 50.
  • the tape layer 50 has a flat plate shape in which the parallel direction of the multi-core fibers 1A is thinned. Therefore, the multi-core fiber tape 51 is easily bent in the thickness direction.
  • the multi-core fiber 1 ⁇ / b> A disposed in the tape layer 50 is disposed so that the minor axis direction is 30 degrees or less from the thickness direction of the tape layer 50.
  • the tape layer 50 may be formed as a single tape layer 50 by molding a resin, or may be formed as a single tape layer 50 by bonding two tapes.
  • the multi-core fiber tape 51 of the present embodiment includes the multi-core fiber 1A in which the outer shapes of the clads 21 arranged in parallel with each other are elliptical, and the single tape layer 50 that covers each multi-core fiber 1A. .
  • each multi-core fiber 1A is arrange
  • a multi-core fiber tape 51 when the tape is bent, each multi-core fiber 1A bends in a direction of 30 degrees or less with respect to the minor axis direction. Therefore, it is possible to suppress the deterioration probability of each multi-core fiber 1A from deteriorating. Further, more cores can be arranged by arranging a plurality of multi-core fibers 1A in parallel.
  • the multi-core fiber tape 51 on which the multi-core fiber 1A is disposed has been described as an example.
  • the multi-core fiber disposed on the multi-core fiber tape 51 of the present embodiment is the multi-core fiber described in the first embodiment. If there is no particular limitation.
  • FIG. 44 is a diagram showing the multi-core fiber tape of the present embodiment.
  • a multi-core fiber tape 52 shown in FIG. 44 has a plurality of multi-core fibers 2A of the second embodiment arranged in parallel in a single tape layer 50.
  • the tape layer 50 has a flat plate shape in which the parallel direction of the multi-core fibers 2A is thinned. Therefore, the multi-core fiber tape 52 is easily bent in the thickness direction.
  • the multi-core fibers 2 ⁇ / b> A disposed in the tape layer 50 are disposed such that the minor axis direction is less than 45 degrees from the thickness direction of the tape layer 50.
  • the multi-core fiber 2 ⁇ / b> A is preferably arranged so that the minor axis direction is 44 degrees or less from the thickness direction of the tape layer 50.
  • the multi-core fiber 2A is arranged such that the ratio e in the second embodiment is 2.0 or more and 2.5 or less, and the minor axis direction is 45 degrees or less from the thickness direction of the tape layer 50. It is preferable.
  • the multi-core fiber tape 52 of the present embodiment includes the multi-core fiber 2A in which the outer shape of the clad 22 arranged in parallel with each other is a racetrack shape, and the single tape layer 50 covering each multi-core fiber 2A.
  • each multi-core fiber 2A is arrange
  • a multi-core fiber tape 52 when the tape is bent, each multi-core fiber 2A bends in a direction of less than 45 degrees with respect to the minor axis direction. Therefore, it is possible to suppress the deterioration probability of each multi-core fiber 2A from deteriorating. Further, more cores can be arranged by arranging a plurality of multi-core fibers 2A in parallel.
  • the multicore fiber tape 52 on which the multicore fiber 2A is disposed has been described as an example.
  • the multicore fiber disposed on the multicore fiber tape 52 of the present embodiment is the multicore fiber described in the second embodiment. If there is no particular limitation.
  • the multicore fiber and multicore fiber tape of the present invention have been described above, but the present invention is not limited to the above embodiment.
  • FIG. 45 is a diagram showing another shape of the clad.
  • the clad 23 of this example is D-type.
  • the fracture probability when bending in the predetermined direction is equivalent to the fracture probability of a multi-core fiber having a circular cross section having the same diameter as the minor axis shown in FIG. . Therefore, according to the multi-core fiber having such a clad, it is possible to arrange many cores while suppressing deterioration of long-term reliability.
  • the outer shape in the cross section perpendicular to the longitudinal direction of the clad has a non-circular shape with the smallest diameter in the predetermined direction and no recess, and two or more cores are formed along the predetermined direction.
  • a multi-core fiber that is arranged and bent along a direction perpendicular to the predetermined direction, and more than the number of cores arranged along the predetermined direction, is bent in the predetermined direction to be used. . According to this multi-core fiber, it is possible to arrange many cores while suppressing deterioration of long-term reliability as described above.
  • a multi-core fiber tape using such a multi-core fiber includes a plurality of the multi-core fibers arranged in parallel with each other and a single tape layer covering each multi-core fiber, and each multi-core fiber is a multi-core fiber. It is arranged so that a predetermined direction is oriented in a direction perpendicular to the fiber parallel direction. When this multi-core fiber tape is bent, each multi-core fiber bends in a predetermined direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
  • the multi-core fiber and multi-core fiber tape according to the present invention can arrange many cores while suppressing deterioration of long-term reliability, and can be used in the optical communication industry.
  • Multi-core fiber 10A to 10C ... core element 11A to 11C ... core 12A to 12C ... inner cladding 13A to 13C ... low refractive index layers 21, 22 ... ⁇ Clad 30 ... Coating layer 50 ... Tape layer 51,52 ... Multi-core fiber tape

Abstract

A multicore fiber (1A) includes a plurality of cores (11A, 11B) arranged in a matrix, and single cladding (21) surrounding the cores (11A, 11B). An outer shape of a cross-section perpendicular to the longitudinal direction of the cladding (21) is formed into a noncircular shape having the smallest diameter in a prescribed direction and having no recess. Two or more cores (11A, 11B) are arranged in a prescribed direction while a number of cores (11A, 11B) outnumbering the number of the cores arranged in the prescribed direction are arranged in a direction perpendicular to the prescribed direction. The multicore fiber (1A) is bent in a prescribed direction for use.

Description

マルチコアファイバ、及び、これを用いたマルチコアファイバテープMulti-core fiber and multi-core fiber tape using the same
 本発明は、長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得るマルチコアファイバに関する。 The present invention relates to a multi-core fiber capable of arranging many cores while suppressing deterioration of long-term reliability.
 一般に普及している光ファイバ通信システムに用いられる光ファイバは、1本のコアの外周面がクラッドにより囲まれた構造をしており、このコア内を光信号が伝搬することで情報が伝送される。 An optical fiber used in a widely used optical fiber communication system has a structure in which an outer peripheral surface of one core is surrounded by a clad, and information is transmitted by propagation of an optical signal in the core. The
 近年、光ファイバ通信システムの普及に伴い、伝送される情報量が飛躍的に増大している。こうした光ファイバ通信システムの伝送容量増大を実現するためのものとして、複数のコアの外周面が1つのクラッドにより囲まれたマルチコアファイバが知られている。マルチコアファイバによれば、複数のコアを伝搬するそれぞれの光によって信号を伝送させることができるので、1つの光ファイバによって伝送できる情報量を増大させることができる。 In recent years, with the spread of optical fiber communication systems, the amount of information transmitted has increased dramatically. As a means for realizing an increase in transmission capacity of such an optical fiber communication system, a multi-core fiber is known in which the outer peripheral surfaces of a plurality of cores are surrounded by one clad. According to the multi-core fiber, a signal can be transmitted by each light propagating through a plurality of cores, so that the amount of information that can be transmitted by one optical fiber can be increased.
 下記特許文献1には、このようなマルチコアファイバが記載されている。このマルチコアファイバにおいては、1つのクラッド内に複数のコアが配置されている。この特許文献1にも記載されているように、マルチコアファイバでは、互いに隣り合うコアを伝搬する光の一部同士が重なり、当該コア間にクロストークが生じる場合がある。クロストークを抑制する方法として、例えば、互いに隣り合うコアの間隔を大きくすることが考えられる。クロストークは互いに隣り合うコアを伝搬する光同士の重なりの積分で決まるため、コア間距離を大きくしてこの重なりを小さくすることにより、クロストークを抑制することができる。また、コアやクラッドより屈折率が低いガラスや空孔によって形成される低屈折率層によってそれぞれのコアが囲まれるトレンチ構造によっても、クロストークを抑制することができる。コアが低屈折率層によって囲われることにより、コアを伝搬する光の径方向への広がりを小さくすることができるため、互いに隣り合うコアを伝搬する光同士の重なりが小さくなり、クロストークが抑制される。 The following Patent Document 1 describes such a multi-core fiber. In this multi-core fiber, a plurality of cores are arranged in one clad. As described in Patent Document 1, in a multi-core fiber, a part of light propagating through mutually adjacent cores may overlap, and crosstalk may occur between the cores. As a method for suppressing the crosstalk, for example, increasing the interval between adjacent cores can be considered. Since crosstalk is determined by the integration of overlap between lights propagating through adjacent cores, crosstalk can be suppressed by increasing the inter-core distance to reduce this overlap. Crosstalk can also be suppressed by a trench structure in which each core is surrounded by a low refractive index layer formed by glass or holes having a lower refractive index than that of the core or cladding. Since the core is surrounded by a low refractive index layer, the spread of light propagating in the core in the radial direction can be reduced, so that the overlap between lights propagating in adjacent cores is reduced and crosstalk is suppressed. Is done.
 また、下記非特許文献1には、曲げ直径が30~60mm或いはプルーフレベル1~2%というマルチコアファイバの実使用環境において、曲げ直径が30mmかつプルーフレベル1%というクラッドの直径が125μmのシングルモードファイバの破断確率と等しくなるマルチコアファイバのクラッドの直径の上限は250μmと記載されている。 Non-Patent Document 1 below describes a single mode with a bending diameter of 30 mm and a proof level of 1% with a cladding diameter of 125 μm in an actual use environment of a multi-core fiber having a bending diameter of 30 to 60 mm or a proof level of 1 to 2%. The upper limit of the diameter of the clad of the multi-core fiber that is equal to the fiber breaking probability is described as 250 μm.
 なお、光ファイバの曲げ部における破断確率の計算方法については、下記非特許文献2に記載されている。この非特許文献2には、最大曲げ歪というパラメータが出るが、このパラメータは、下記非特許文献3,4に記載されている。 In addition, the calculation method of the fracture probability in the bending part of the optical fiber is described in Non-Patent Document 2 below. This non-patent document 2 has a parameter called maximum bending strain, and this parameter is described in the following non-patent documents 3 and 4.
特開2012-211964号公報JP 2012-221964 A
 上記のように、クロストークを抑制するためコア間距離を大きくする場合、多数のコアをクラッド内に配置しようとすると、クラッドの直径が大きくなる。しかし、光ファイバは曲げられた状態で敷設されることが多く、クラッドの直径が大きくなると破断確率が高くなり、長期信頼性が悪化するという懸念がある。また、シングルモードファイバの破断確率に合わせようとすると、上記非特許文献1のように、クラッドの直径は制限される。 As described above, when the inter-core distance is increased in order to suppress crosstalk, if a large number of cores are arranged in the cladding, the diameter of the cladding increases. However, optical fibers are often laid in a bent state, and there is a concern that if the diameter of the cladding increases, the probability of breakage increases and long-term reliability deteriorates. Further, when trying to match the fracture probability of the single mode fiber, the diameter of the clad is limited as in Non-Patent Document 1 above.
 そこで、本発明は、長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得るマルチコアファイバ、及び、これを用いたマルチコアファイバテープを提供することを目的とする。 Therefore, an object of the present invention is to provide a multicore fiber in which a large number of cores can be arranged while suppressing deterioration of long-term reliability, and a multicore fiber tape using the same.
 かかる課題を解決するため本発明のマルチコアファイバは、マトリックス状に配置される複数のコアと、それぞれの前記コアを囲む単一のクラッドと、を備え、前記クラッドの長手方向に垂直な断面における外形は、所定方向において直径が最も小さくなると共に凹部を有さない非円形の形状とされ、前記所定方向に沿って2以上の前記コアが配置されると共に、前記所定方向に垂直な方向に沿って、前記所定方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、前記所定方向に曲げられることを特徴とするものである。 In order to solve such a problem, a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and has an outer shape in a cross section perpendicular to the longitudinal direction of the clad. Is a non-circular shape having the smallest diameter in the predetermined direction and having no recess, and two or more cores are disposed along the predetermined direction and along a direction perpendicular to the predetermined direction. A larger number of cores than the number of cores arranged along the predetermined direction are arranged and bent in the predetermined direction.
 クラッドの断面の外形が円形である従来のマルチコアファイバの場合、所定方向に配置可能なコアの数の上限と、当該所定方向に垂直な方向に配置可能なコアの数の上限とは互いに等しい。しかし、本発明のマルチコアファイバによれば、例えば、クラッドの直径が本発明のマルチコアファイバのクラッドの所定方向の直径と等しい直径の従来のマルチコアファイバよりも、クラッドの断面積を大きくすることができる。しかも、所定方向に沿って配置されるコアの数よりも、所定方向に垂直な方向に沿って配置されるコアの数が多くされる。このため、本発明のマルチコアファイバによれば、上記従来のマルチコアファイバよりも多くのコアを配置することができる。また、本発明のマルチコアファイバは、所定方向に曲げられる。つまり、本発明のマルチコアファイバは、所定方向に曲げて使用される。この場合、クラッドに最も大きな応力がかかる位置は、曲げた状態におけるクラッドの最も外周側の位置であるため、クラッドにかかる最も大きな応力は、本発明のマルチコアファイバと本発明のマルチコアファイバのクラッドの所定方向の直径と等しい直径の従来のマルチコアファイバとで概ね同じ大きさとなる。従って、本発明のマルチコアファイバを上記のように曲げる場合、その破断確率は、上記従来のマルチコアファイバの破断確率と概ね同等となる。従って、本発明のマルチコアファイバによれば、長期信頼性が悪化することを抑制し得る。 In the case of a conventional multi-core fiber having a circular cross-sectional outer shape of the clad, the upper limit of the number of cores that can be arranged in a predetermined direction is equal to the upper limit of the number of cores that can be arranged in a direction perpendicular to the predetermined direction. However, according to the multi-core fiber of the present invention, for example, the clad cross-sectional area can be made larger than that of a conventional multi-core fiber having a diameter equal to the diameter of the clad of the multi-core fiber of the present invention in a predetermined direction. . In addition, the number of cores arranged along the direction perpendicular to the predetermined direction is larger than the number of cores arranged along the predetermined direction. For this reason, according to the multi-core fiber of the present invention, more cores can be arranged than the conventional multi-core fiber. The multi-core fiber of the present invention is bent in a predetermined direction. That is, the multi-core fiber of the present invention is used by being bent in a predetermined direction. In this case, since the position where the greatest stress is applied to the clad is the position on the outermost peripheral side of the clad in the bent state, the largest stress applied to the clad is that of the multi-core fiber of the present invention and the clad of the multi-core fiber of the present invention. The conventional multi-core fiber having a diameter equal to the diameter in the predetermined direction is approximately the same size. Therefore, when the multi-core fiber of the present invention is bent as described above, the breaking probability thereof is substantially equal to the breaking probability of the conventional multi-core fiber. Therefore, according to the multi-core fiber of the present invention, deterioration of long-term reliability can be suppressed.
 また、上記マルチコアファイバにおいて、前記クラッドの前記外形はD型とされることとしても良い。 In the multi-core fiber, the outer shape of the clad may be a D type.
 また、かかる課題を解決するため本発明のマルチコアファイバテープは、互いに並列された複数の上記のマルチコアファイバと、それぞれのマルチコアファイバを被覆する単一のテープ層と、を備え、それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に前記所定方向が向くように配置されることを特徴とするものである。 In order to solve this problem, the multi-core fiber tape of the present invention includes a plurality of the above-mentioned multi-core fibers arranged in parallel to each other, and a single tape layer covering each multi-core fiber, and each of the multi-core fibers Are arranged such that the predetermined direction is oriented in a direction perpendicular to the parallel direction of the multi-core fibers.
 このようなマルチコアファイバテープでは、テープを曲げると、それぞれのマルチコアファイバが所定方向に曲がる。従って、それぞれのマルチコアファイバの破断確率が悪化することを抑制することができる。また、マルチコアファイバが複数並列されることでより多くのコアを配置することができる。 In such a multi-core fiber tape, when the tape is bent, each multi-core fiber bends in a predetermined direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
 また、上記課題を解決するため本発明のマルチコアファイバは、マトリックス状に配置される複数のコアと、それぞれの前記コアを囲む単一のクラッドと、を備え、前記クラッドの長手方向に垂直な断面における外形は楕円率が2.5以下の楕円形状とされ、楕円の短径方向に沿って2以上の前記コアが配置されると共に、楕円の長径方向に沿って、前記短径方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、前記短径方向に対して30度以下の方向に曲げられることを特徴とするものである。 In order to solve the above problems, a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and a cross section perpendicular to the longitudinal direction of the clad. The outer shape is an elliptical shape with an ellipticity of 2.5 or less, and two or more cores are arranged along the minor axis direction of the ellipse, and along the minor axis direction along the major axis direction of the ellipse. A larger number of the cores than the number of the cores to be disposed are disposed and bent in a direction of 30 degrees or less with respect to the minor axis direction.
 本発明者等は、クラッドの外形が円形のマルチコアファイバの破断確率と、クラッドの外形が楕円であるマルチコアファイバの破断確率とを比較し、クラッドの外形が円形のマルチコアファイバとクラッドの外形が楕円であるマルチコアファイバとで同じ破断確率になる条件を測定した。その結果、クラッドの外形が楕円であるマルチコアファイバが短径方向に対して30度以下で曲げられる場合には、それぞれのマルチコアファイバのクラッドの外形が円形のマルチコアファイバよりもクラッドの外形が楕円であるマルチコアファイバの方が断面積を大きく出来ることが見出された。従って、このようなマルチコアファイバであれば、長期信頼性が悪化することを抑制しつつより多くのコアを配置することができる。 The present inventors compared the fracture probability of a multi-core fiber with a circular cladding outer shape and the fracture probability of a multi-core fiber with an elliptical cladding outer shape, The conditions for the same break probability were measured with the multi-core fiber. As a result, when a multi-core fiber whose clad outer shape is an ellipse is bent at 30 degrees or less with respect to the minor axis direction, the clad outer shape of each multi-core fiber is more elliptical than a circular multi-core fiber. It has been found that a certain multi-core fiber can have a larger cross-sectional area. Therefore, with such a multi-core fiber, more cores can be arranged while suppressing deterioration in long-term reliability.
 また、かかる課題を解決するため本発明のマルチコアファイバテープは、互いに並列された上記のクラッドの外形が楕円形状のマルチコアファイバと、それぞれのマルチコアファイバを被覆する単一のテープ層と、を備え、それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に対して前記短径方向が30度以下となるように配置されることを特徴とするものである。 Moreover, in order to solve such a problem, the multi-core fiber tape of the present invention includes a multi-core fiber having an elliptical outer shape of the clad parallel to each other, and a single tape layer covering each multi-core fiber, Each of the multicore fibers is arranged such that the minor axis direction is 30 degrees or less with respect to a direction perpendicular to the parallel direction of the multicore fibers.
 このようなマルチコアファイバテープでは、テープを曲げると、それぞれのマルチコアファイバが短径方向に対して30度以下の方向に曲がる。従って、それぞれのマルチコアファイバの破断確率が悪化することを抑制することができる。また、マルチコアファイバが複数並列されることでより多くのコアを配置することができる。 In such a multi-core fiber tape, when the tape is bent, each multi-core fiber bends in a direction of 30 degrees or less with respect to the minor axis direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
 また、上記課題を解決するため本発明のマルチコアファイバは、マトリックス状に配置される複数のコアと、それぞれの前記コアを囲む単一のクラッドと、を備え、前記クラッドの長手方向に垂直な断面における外形は、互いに平行な一組の直線が半円状の曲線で結ばれた短径と長径との比が2.5以下のレーストラック形状とされ、前記レーストラック形状の短径方向に沿って2以上の前記コアが配置されると共に、前記レーストラック形状の長径方向に沿って前記短径方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、前記短径方向に対して45度未満の方向に曲げられることを特徴とするものである。 In order to solve the above problems, a multi-core fiber of the present invention includes a plurality of cores arranged in a matrix and a single clad surrounding each of the cores, and a cross section perpendicular to the longitudinal direction of the clad. The outer shape of the racetrack shape is a racetrack shape in which a ratio of a minor axis to a major axis formed by a pair of parallel lines connected by a semicircular curve is 2.5 or less, along the minor axis direction of the racetrack shape. Two or more cores are disposed, and a larger number of cores than the number of cores disposed along the minor axis direction are disposed along the major axis direction of the racetrack shape, It is characterized by being bent in a direction of less than 45 degrees with respect to the direction.
 このようなレーストラック形状では、それぞれの直線の長さは互いに等しく、それぞれの直線に垂直な方向である短径方向において最も直径が小さくなる。本発明者等は、クラッドの外形が円形のマルチコアファイバの破断確率と、クラッドの外形が上記レーストラック形状であるマルチコアファイバの破断確率とを比較し、クラッドの外形が円形のマルチコアファイバとクラッドの外形が上記レーストラック形状であるマルチコアファイバとで同じ破断確率になる条件を測定した。その結果、クラッドの外形が上記レーストラック形状であるマルチコアファイバが短径方向に対して45度未満で曲げられる場合には、クラッドの外形が円形のマルチコアファイバよりもクラッドの外形が上記レーストラック形状であるマルチコアファイバの方が断面積を大きく出来ることが見出された。従って、このようなマルチコアファイバであれば、長期信頼性が悪化することを抑制しつつより多くのコアを配置することができる。 In such a racetrack shape, the lengths of the respective straight lines are equal to each other, and the diameter becomes the smallest in the minor axis direction which is a direction perpendicular to the respective straight lines. The present inventors compared the breaking probability of a multi-core fiber having a circular cladding outer shape with the breaking probability of a multi-core fiber having a cladding outer shape having the racetrack shape described above. The conditions under which the same breaking probability was obtained with the multi-core fiber having the racetrack shape as described above were measured. As a result, when the multi-core fiber having the outer shape of the clad having the racetrack shape is bent at less than 45 degrees with respect to the minor axis direction, the outer shape of the clad has a more racetrack shape than the multicore fiber having the circular outer shape. It was found that the cross-sectional area of the multi-core fiber can be increased. Therefore, with such a multi-core fiber, more cores can be arranged while suppressing deterioration in long-term reliability.
 また、かかる課題を解決するため本発明のマルチコアファイバテープは、互いに並列された上記のクラッドの外形がトラック形状のマルチコアファイバと、それぞれのマルチコアファイバを被覆する単一のテープ層と、を備え、それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に対して前記短径方向が45度未満で配置されることを特徴とするものである。 In order to solve such a problem, the multi-core fiber tape of the present invention comprises a multi-core fiber having a track-shaped outer shape of the clad parallel to each other, and a single tape layer covering each multi-core fiber, Each of the multi-core fibers is characterized in that the minor axis direction is arranged at less than 45 degrees with respect to a direction perpendicular to the parallel direction of the multi-core fibers.
 このようなマルチコアファイバテープでは、テープを曲げると、それぞれのマルチコアファイバが短径方向に対して45度未満の方向に曲がる。従って、それぞれのマルチコアファイバの破断確率が悪化することを抑制することができる。また、マルチコアファイバが複数並列されることでより多くのコアを配置することができる。 In such a multi-core fiber tape, when the tape is bent, each multi-core fiber bends in a direction of less than 45 degrees with respect to the minor axis direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
 また、前記複数のコアの数が37よりも多いこととしても良い。 Also, the number of the plurality of cores may be larger than 37.
 上記非特許文献1にように、外形が円形のクラッドを有するマルチコアファイバにおいてクラッドの直径の限界を250μmとすると、一般的に、コアの数は37個が限界となる。従って、上記のマルチコアファイバは、コアの数が37より多い場合に、より有用である。 As described in Non-Patent Document 1, in a multi-core fiber having a clad with a circular outer shape, if the limit of the diameter of the clad is 250 μm, generally, the number of cores is limited to 37. Therefore, the above multi-core fiber is more useful when the number of cores is greater than 37.
 以上のように本発明によれば、長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得るマルチコアファイバ、及び、これを用いたマルチコアファイバテープを提供することができる。 As described above, according to the present invention, it is possible to provide a multicore fiber in which a large number of cores can be arranged while suppressing deterioration in long-term reliability, and a multicore fiber tape using the same.
本発明の第1実施形態におけるマルチコアファイバの長手方向に垂直な断面におけるクラッドの外形の様子を示す図である。It is a figure which shows the mode of the external shape of the clad in the cross section perpendicular | vertical to the longitudinal direction of the multi-core fiber in 1st Embodiment of this invention. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が1.5で曲げプルーフが1%で曲げ直径が60mmの場合のマルチコアファイバの断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area of a multi-core fiber and the probability of fracture when the ellipticity is 1.5, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the clad outer shape shown in FIG. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.0で曲げプルーフが1%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.5で曲げプルーフが1%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 1%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が1.5で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 1.5, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.0で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.5で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 2%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が1.5で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the probability of fracture when the ellipticity is 1.5, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.0で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.0, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.5で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 2%, and the bending diameter is 60 mm in the multi-core fiber having the clad outer shape shown in FIG. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が1.5で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 1.5, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.0で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing a relationship between a cross-sectional area and a fracture probability when the ellipticity is 2.0, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the clad outer shape shown in FIG. 1. 図1に示すクラッドの外形を有するマルチコアファイバにおいて、楕円率が2.5で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the cross-sectional area and the fracture probability when the ellipticity is 2.5, the bending proof is 1%, and the bending diameter is 30 mm in the multi-core fiber having the cladding outer shape shown in FIG. 1. コア要素を示す図である。It is a figure which shows a core element. 第1実施形態におけるマルチコアファイバの第1の例を示す図である。It is a figure which shows the 1st example of the multi-core fiber in 1st Embodiment. 第1実施形態におけるマルチコアファイバの第2の例を示す図である。It is a figure which shows the 2nd example of the multi-core fiber in 1st Embodiment. 第1実施形態におけるマルチコアファイバの第3の例を示す図である。It is a figure which shows the 3rd example of the multi-core fiber in 1st Embodiment. 第1実施形態におけるマルチコアファイバの第4の例を示す図である。It is a figure which shows the 4th example of the multi-core fiber in 1st Embodiment. 第1実施形態におけるマルチコアファイバの第5の例を示す図である。It is a figure which shows the 5th example of the multi-core fiber in 1st Embodiment. 角度θが0度の場合に第1実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第1の形態の図である。It is a figure of the 1st form which shows that many cores can be arrange | positioned in the multi-core fiber in 1st Embodiment when angle (theta) is 0 degree | times. 角度θが0度の場合に第1実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第2の形態の図である。It is a figure of the 2nd form which shows that many cores can be arrange | positioned in the multi-core fiber in 1st Embodiment when angle (theta) is 0 degree | times. 本発明の第2実施形態におけるマルチコアファイバの長手方向に垂直な断面におけるクラッドの外形の様子を示す図である。It is a figure which shows the mode of the external shape of the clad in the cross section perpendicular | vertical to the longitudinal direction of the multi-core fiber in 2nd Embodiment of this invention. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が1.5で曲げプルーフが1%で曲げ直径が60mmの場合のマルチコアファイバの断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the cross-sectional area and the fracture probability of the multi-core fiber when the ratio between the distance between the straight lines and the length of the straight line is 1.5, the bending proof is 1%, and the bending diameter is 60 mm. It is a figure which shows the relationship. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.0で曲げプルーフが1%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 1%, and the bending diameter is 60 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.5で曲げプルーフが1%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 1%, and the bending diameter is 60 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が1.5で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 1.5, the bending proof is 2%, and the bending diameter is 30 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.0で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the outer shape of the clad shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 2%, and the bending diameter is 30 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.5で曲げプルーフが2%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 2%, and the bending diameter is 30 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が1.5で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 1.5, the bending proof is 2%, and the bending diameter is 60 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.0で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 2%, and the bending diameter is 60 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.5で曲げプルーフが2%で曲げ直径が60mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 2%, and the bending diameter is 60 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が1.5で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the probability of breakage when the ratio of the distance between the straight lines to the length of the straight line is 1.5, the bending proof is 1%, and the bending diameter is 30 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.0で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the clad outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.0, the bending proof is 1%, and the bending diameter is 30 mm. FIG. 図22に示すクラッドの外形を有するマルチコアファイバにおいて、直線間の距離と直線の長さとの比が2.5で曲げプルーフが1%で曲げ直径が30mmの場合の断面積と破断確率との関係を示す図である。In the multi-core fiber having the cladding outer shape shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the ratio between the distance between the straight lines and the length of the straight lines is 2.5, the bending proof is 1%, and the bending diameter is 30 mm. FIG. クラッドの形状がレーストラック形状とされるマルチコアファイバにおいて、直線間の距離と直線の長さとの比と、配置可能なコア数との関係を示す図である。In a multi-core fiber in which the shape of the clad is a racetrack, it is a diagram showing the relationship between the ratio between the distance between straight lines and the length of the straight lines and the number of cores that can be arranged. 第2実施形態におけるマルチコアファイバの第1の例を示す図である。It is a figure which shows the 1st example of the multi-core fiber in 2nd Embodiment. 第2実施形態におけるマルチコアファイバの第2の例を示す図である。It is a figure which shows the 2nd example of the multi-core fiber in 2nd Embodiment. 第2実施形態におけるマルチコアファイバの第3の例を示す図である。It is a figure which shows the 3rd example of the multi-core fiber in 2nd Embodiment. 第2実施形態におけるマルチコアファイバの第4の例を示す図である。It is a figure which shows the 4th example of the multi-core fiber in 2nd Embodiment. 第2実施形態におけるマルチコアファイバの第5の例を示す図である。It is a figure which shows the 5th example of the multi-core fiber in 2nd Embodiment. 角度θが0度の場合に第2実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第1の形態の図である。It is a figure of the 1st form which shows that many cores can be arrange | positioned in the multicore fiber in 2nd Embodiment when angle (theta) is 0 degree | times. 角度θが0度の場合に第2実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第2の形態の図である。It is a figure of the 2nd form which shows that many cores can be arrange | positioned in the multi-core fiber in 2nd Embodiment when angle (theta) is 0 degree | times. 第3実施形態におけるマルチコアファイバテープを示す図である。It is a figure which shows the multi-core fiber tape in 3rd Embodiment. 第4実施形態におけるマルチコアファイバテープを示す図である。It is a figure which shows the multi-core fiber tape in 4th Embodiment. クラッドの他の形状を示す図である。It is a figure which shows the other shape of a clad.
 以下、本発明に係るマルチコアファイバの好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図に記載のスケールと、以下の説明に記載のスケールとが異なる場合がある。 Hereinafter, preferred embodiments of the multi-core fiber according to the present invention will be described in detail with reference to the drawings. For ease of understanding, the scale described in each drawing may be different from the scale described in the following description.
(第1実施形態)
 図1は、本発明の第1実施形態におけるマルチコアファイバの長手方向に垂直な断面におけるクラッドの外形の様子を示す図である。なお、本図では、クラッドの外形を示し、コアや被覆層については記載していない。また、本実施形態のマルチコアファイバは通信に用いられる通信系マルチコアファイバとされる。
(First embodiment)
FIG. 1 is a diagram showing the appearance of the cladding in a cross section perpendicular to the longitudinal direction of the multi-core fiber in the first embodiment of the present invention. In the drawing, the outer shape of the cladding is shown, and the core and the coating layer are not described. The multi-core fiber of this embodiment is a communication multi-core fiber used for communication.
 本実施形態のマルチコアファイバのクラッド21は、長手方向に垂直な断面の形状が楕円形状とされる。このクラッド21は、当該断面において、所定方向が短径方向とされ、短径方向に垂直な方向が長径方向とされる。従って、クラッド21の外形は、所定方向において直径が最も小さくなると共に凹部を有さない非円形の形状とされる。ここで、図1に示すように、短径の大きさをaとし、長径の大きさをbとする。この場合、楕円は、下記式1で定義される。
Figure JPOXMLDOC01-appb-I000001
The clad 21 of the multi-core fiber of the present embodiment has an elliptical cross-sectional shape perpendicular to the longitudinal direction. In the cross section, the clad 21 has a predetermined direction as a minor axis direction and a direction perpendicular to the minor axis direction as a major axis direction. Therefore, the outer shape of the clad 21 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess. Here, as shown in FIG. 1, the size of the minor axis is a, and the size of the major axis is b. In this case, the ellipse is defined by Equation 1 below.
Figure JPOXMLDOC01-appb-I000001
 また、楕円率をeとすると、楕円率eはb/aで定義され、クラッド21の面積である楕円の面積をSとすると、面積Sは、下記式2で定義される。
Figure JPOXMLDOC01-appb-I000002
When the ellipticity is e, the ellipticity e is defined by b / a, and when the area of the ellipse that is the area of the clad 21 is S, the area S is defined by the following equation 2.
Figure JPOXMLDOC01-appb-I000002
 更に、上記非特許文献2によれば、破断確率をFとすると、破断確率Fは下記式3で示される。
Figure JPOXMLDOC01-appb-I000003
 なお、Nはプルーフ時の平均破断回数であり、Lは曲げターン数が10回となる実効的な光ファイバの長さであり、nは疲労係数であり20とされ、mはワイブルパラメータ(形状指数)であり、tはプルーフ時間であり1秒とされ、tは使用年数であり20年とされ、σはプルーフレベルであり1%または2%とされ、σは最大曲げ歪とされる。
Further, according to Non-Patent Document 2, when the fracture probability is F, the fracture probability F is expressed by the following formula 3.
Figure JPOXMLDOC01-appb-I000003
Incidentally, N p is the average break times during proofing, L is the length of the effective optical fiber count bending turn becomes 10 times, n represents the 20 be the fatigue factor, m is Weibull parameters ( a shape index), t p is 1 second a proof time, t is the 20 years be age, sigma p is 1% or 2% be proof level, sigma is the maximum bending strain Is done.
 上記非特許文献3,4によれば、最大曲げ歪σは、下記式4で近似できる。
Figure JPOXMLDOC01-appb-I000004
 なお、Eはガラスのヤング率であり、Rは曲げ半径であり、rは破断確率を求めるマルチコアファイバの座標である。本実施形態では、マルチコアファイバを曲げた場合に最もストレスがかかる部位について求めれば良いので、マルチコアファイバを曲げた際にクラッド21の最も外側になる位置とした。例えば、マルチコアファイバを短径方向に曲げる場合、座標rは(0,a/2)となる。
According to Non-Patent Documents 3 and 4, the maximum bending strain σ can be approximated by the following formula 4.
Figure JPOXMLDOC01-appb-I000004
E is the Young's modulus of the glass, R b is the bending radius, and r is the coordinates of the multicore fiber for obtaining the probability of breakage. In the present embodiment, since it is only necessary to obtain a portion that is most stressed when the multi-core fiber is bent, the position is the outermost side of the clad 21 when the multi-core fiber is bent. For example, when a multi-core fiber is bent in the minor axis direction, the coordinate r is (0, a / 2).
 そこで、図1に示すクラッド21の外形を有するマルチコアファイバにおいて、図1に示す短径方向からの角度θの方向にマルチコアファイバを曲げる場合の断面積と破断確率との関係を求めた。なお、シングルモードファイバは、アクセス径で曲げ直径が30mmで使用される条件で破断確率が求められる。また、高空間多重度のマルチコアファイバは、長距離通信用として幹線系での使用が想定されており、曲げ直径を60mmとして破断確率を下げたり、プルーフレベルを2%として破断確率を下げることができる。 Therefore, in the multi-core fiber having the outer shape of the clad 21 shown in FIG. 1, the relationship between the cross-sectional area and the fracture probability when the multi-core fiber is bent in the direction of the angle θ from the minor axis direction shown in FIG. The single mode fiber is required to have a fracture probability under the condition that the access diameter is 30 mm and the bending diameter is 30 mm. In addition, multi-core fibers with high spatial multiplicity are expected to be used in the trunk line system for long-distance communications, and the probability of breakage may be reduced by setting the bending diameter to 60 mm, or the probability of breakage may be reduced by setting the proof level to 2%. it can.
 これらを考慮して図2~図4に示す断面積と破断確率との関係では、曲げプルーフを1%とし、曲げ直径を60mmとし、図2では楕円率eを1.5とし、図3では楕円率eを2.0とし、図4では楕円率eを2.5として計算を行った。また、図5~図7に示す断面積と破断確率との関係では、曲げプルーフを2%とし、曲げ直径を30mmとし、図5では楕円率eを1.5とし、図6では楕円率eを2.0とし、図7では楕円率eを2.5として計算を行った。また、図8~図10に示す断面積と破断確率との関係では、曲げプルーフを2%とし、曲げ直径を60mmとし、図8では楕円率eを1.5とし、図9では楕円率eを2.0とし、図10では楕円率eを2.5として計算を行った。また、図11~図13に示す断面積と破断確率との関係では、曲げプルーフを1%とし、曲げ直径を30mmとし、図11では楕円率eを1.5とし、図12では楕円率eを2.0し、図13では楕円率eを2.5として計算を行った。なお、各図において、クラッドの外形が円形のマルチコアファイバの当該条件における断面積と破断確率との関係を実線で示す。また、各図に示す横線は、クラッドの直径が125μmの標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率であり、その値は3.2×10-6とされる。 In consideration of these, in the relationship between the cross-sectional area and the fracture probability shown in FIGS. 2 to 4, the bending proof is 1%, the bending diameter is 60 mm, the ellipticity e is 1.5 in FIG. 2, and in FIG. The calculation was performed with the ellipticity e set to 2.0 and the ellipticity e set to 2.5 in FIG. 5-7, the bending proof is 2%, the bending diameter is 30 mm, the ellipticity e is 1.5 in FIG. 5, and the ellipticity e is FIG. Was calculated with 2.0 as the ellipticity e in FIG. 8 to 10, the bending proof is 2%, the bending diameter is 60 mm, the ellipticity e is 1.5 in FIG. 8, and the ellipticity e is FIG. Was calculated with 2.0 as the ellipticity e in FIG. 11 to 13, the bending proof is 1%, the bending diameter is 30 mm, the ellipticity e is 1.5 in FIG. 11, and the ellipticity e is FIG. The calculation was performed by setting the ellipticity e to 2.5 in FIG. In each figure, the solid line represents the relationship between the cross-sectional area and the breaking probability of the multi-core fiber with the clad having a circular outer shape under the above conditions. The horizontal line shown in each figure is the probability of breakage when a standard single mode fiber having a cladding diameter of 125 μm is bent at a bending diameter of 30 mm, and its value is 3.2 × 10 −6 .
 図2から図13に示す通り、曲げ方向の短径方向からの角度θが30度以下であれば、楕円率eが2.5以下において、同じ破断確率の場合にクラッドの形状が楕円形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりも断面積を大きくすることができるという結果になった。 As shown in FIGS. 2 to 13, if the angle θ from the minor axis direction of the bending direction is 30 degrees or less, the elliptical shape e is 2.5 or less, and the clad shape is elliptical with the same fracture probability. As a result, the cross-sectional area of the multi-core fiber can be made larger than that of the multi-core fiber having a circular cladding shape.
 次に、図2から図4に示すそれぞれの計算結果に基づいて、各図における角度θが0度及び30度のそれぞれにおいて、破断確率が上記の3.2×10-6となる場合における、クラッドの断面積、断面の形状が円形のクラッドに対する断面の形状が楕円形状のクラッドの断面積比、クラッドの短径を表1に示す。ただし、表1においてクラッドの断面の形状が円の場合の短径は当該円の直径を示す。
Figure JPOXMLDOC01-appb-I000005
Next, based on the respective calculation results shown in FIGS. 2 to 4, when the angle θ in each figure is 0 degree and 30 degrees, the fracture probability is 3.2 × 10 −6 as described above. Table 1 shows the cross-sectional area of the clad, the cross-sectional area ratio of the clad having an elliptical cross-sectional shape with respect to the clad having a circular cross-sectional shape, and the minor axis of the clad. However, in Table 1, the minor axis when the cross-sectional shape of the cladding is a circle indicates the diameter of the circle.
Figure JPOXMLDOC01-appb-I000005
 また、図5から図7に示すそれぞれの計算結果に基づいて、上記表1に示す項目と同様の項目を表2に示す。
Figure JPOXMLDOC01-appb-I000006
Table 2 shows the same items as the items shown in Table 1 based on the calculation results shown in FIGS.
Figure JPOXMLDOC01-appb-I000006
 更に、図8から図10に示すそれぞれの計算結果に基づいて、上記表1に示す項目と同様の項目を表3に示す。
Figure JPOXMLDOC01-appb-I000007
Furthermore, based on the respective calculation results shown in FIGS. 8 to 10, items similar to the items shown in Table 1 are shown in Table 3.
Figure JPOXMLDOC01-appb-I000007
 更に、図11から図13に示すそれぞれの計算結果に基づいて、上記表1に示す項目と同様の項目を表4に示す。
Figure JPOXMLDOC01-appb-I000008
Furthermore, based on the respective calculation results shown in FIGS. 11 to 13, items similar to the items shown in Table 1 are shown in Table 4.
Figure JPOXMLDOC01-appb-I000008
 上記のように、楕円率eが2.5以下では、曲げ方向の短径方向からの角度θが30度以下であれば、クラッドの形状が楕円形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりも断面積を大きくすることができる。ただし、表1~表4より、楕円率eが1.5以上2.0以下であれば、曲げ方向の短径方向からの角度θが0度以上30度以下において、断面積比を1.10以上とすることができる。また、楕円率eが2.0を超えると、この断面積比が1.10よりも小さくなる傾向がある。従って、楕円率eは、1.5以上2.5以下であることが好ましく、1.5以上2.0以下であることがより好ましい。 As described above, when the ellipticity e is 2.5 or less and the angle θ from the minor axis direction of the bending direction is 30 degrees or less, the multi-core fiber having an elliptical clad shape has a clad shape. The cross-sectional area can be made larger than that of a circular multi-core fiber. However, from Tables 1 to 4, when the ellipticity e is 1.5 or more and 2.0 or less, the cross-sectional area ratio is 1. when the angle θ from the minor axis direction of the bending direction is 0 degree or more and 30 degrees or less. It can be 10 or more. When the ellipticity e exceeds 2.0, the cross-sectional area ratio tends to be smaller than 1.10. Therefore, the ellipticity e is preferably 1.5 or more and 2.5 or less, and more preferably 1.5 or more and 2.0 or less.
 なお、曲げ方向の短径方向からの角度θが0度の場合、楕円率eが1.5以上2.5以下であれば、断面積比は1.46以上から2.43以下となる。この場合において、断面積比を2以上とするためには、楕円率eが2.0以上とされることが好ましい。 When the angle θ from the minor axis direction in the bending direction is 0 degree, the cross-sectional area ratio is 1.46 or more and 2.43 or less if the ellipticity e is 1.5 or more and 2.5 or less. In this case, in order to make the cross-sectional area ratio 2 or more, the ellipticity e is preferably 2.0 or more.
 次に、上記クラッド21を有する本実施形態のマルチコアファイバの例について説明する。 Next, an example of the multi-core fiber of the present embodiment having the clad 21 will be described.
 図14は、コア要素を示す図であり、図15~図19は、本実施形態のマルチコアファイバの第1の例~第5の例を示す図である。これらの例のマルチコアファイバ1A~1Eは、マトリックス状に配置される複数のコア要素10A,10B,10Cのうち少なくとも2種類のコア要素と、それぞれのコア要素を囲む楕円形状の単一のクラッド21と、被覆層30とを備え、それぞれの例において、複数のコア要素は隣り合うコア要素が互いに異なる種類とされる。なお、図が煩雑となることを避けるため、以下の図において、コア要素10Aを実線で示し、コア要素10Bを破線で示し、コア要素10Cを点線で示す。 FIG. 14 is a diagram illustrating core elements, and FIGS. 15 to 19 are diagrams illustrating first to fifth examples of the multi-core fiber of the present embodiment. The multi-core fibers 1A to 1E of these examples include at least two types of core elements 10A, 10B, and 10C arranged in a matrix and a single elliptical clad 21 surrounding each core element. And the covering layer 30. In each example, the plurality of core elements are of different types from each other. In order to avoid complication of the figure, in the following figures, the core element 10A is indicated by a solid line, the core element 10B is indicated by a broken line, and the core element 10C is indicated by a dotted line.
 図14に示すように、コア要素10Aは、コア11Aと、コア11Aを囲む内側クラッド12Aと、内側クラッド12Aを囲みクラッド21に囲まれる低屈折率層13Aとを有する。同様に、コア要素10Bは、コア11Bと、コア11Bを囲む内側クラッド12Bと、内側クラッド12Bを囲みクラッド21に囲まれる低屈折率層13Bとを有し、コア要素10Cは、コア11Cと、コア11Cを囲む内側クラッド12Cと、内側クラッド12Cを囲みクラッド21に囲まれる低屈折率層13Cとを有する。上記のようにマルチコアファイバ1A~1Eはマトリックス状に配置される複数のコア要素10A,10B,10Cのうち少なくとも2種類のコア要素を有するため、上記のようにマルチコアファイバ1A~1Eは、マトリックス状に配置される複数のコア11A,11B,11Cのうち少なくとも2種類のコアを有する。 As shown in FIG. 14, the core element 10A includes a core 11A, an inner cladding 12A surrounding the core 11A, and a low refractive index layer 13A surrounding the inner cladding 12A and surrounded by the cladding 21. Similarly, the core element 10B includes a core 11B, an inner cladding 12B surrounding the core 11B, and a low refractive index layer 13B surrounding the inner cladding 12B and surrounded by the cladding 21, and the core element 10C includes the core 11C, An inner cladding 12C surrounding the core 11C and a low refractive index layer 13C surrounding the inner cladding 12C and surrounded by the cladding 21 are included. As described above, since the multi-core fibers 1A to 1E have at least two types of core elements among the plurality of core elements 10A, 10B, and 10C arranged in a matrix, the multi-core fibers 1A to 1E are arranged in a matrix. And having at least two types of cores among the plurality of cores 11A, 11B, and 11C.
 コア11A~11Cは、クラッド21よりも高い屈折率とされ、低屈折率層13A~13Cは、クラッド21よりも低い屈折率とされ、内側クラッド12Aはコア11Aと低屈折率層13Aとの間の屈折率とされ、内側クラッド12Bはコア11Bと低屈折率層13Bとの間の屈折率とされ、内側クラッド12Cはコア11Cと低屈折率層13Cとの間の屈折率とされる。例えば、図14の例では、内側クラッド12A~12Cは、クラッド21と同じ屈折率とされる。こうして、それぞれのコア要素10A~10Cは、トレンチ型の屈折率分布を有する。また、本実施形態では、コア要素10Aのコア11Aのクラッド21の屈折率に対する屈折率差が最も大きく高屈折率差コアとされ、コア要素10Cのコア11Cのクラッド21の屈折率に対する屈折率差が最も小さく低屈折率差コアとされ、コア要素10Bのコア11Bのクラッド21の屈折率に対する屈折率差がコア11Aとコア11Bとの間とされ中屈折率差コアとされる。 The cores 11A to 11C have a refractive index higher than that of the cladding 21, the low refractive index layers 13A to 13C have a refractive index lower than that of the cladding 21, and the inner cladding 12A has a gap between the core 11A and the low refractive index layer 13A. The inner cladding 12B has a refractive index between the core 11B and the low refractive index layer 13B, and the inner cladding 12C has a refractive index between the core 11C and the low refractive index layer 13C. For example, in the example of FIG. 14, the inner claddings 12A to 12C have the same refractive index as that of the cladding 21. Thus, each of the core elements 10A to 10C has a trench type refractive index profile. Further, in this embodiment, the refractive index difference with respect to the refractive index of the clad 21 of the core 11A of the core element 10A is the largest, and thus a high refractive index difference core, and the refractive index difference with respect to the refractive index of the clad 21 of the core 11C of the core element 10C. Is the smallest refractive index difference core, and the refractive index difference with respect to the refractive index of the clad 21 of the core 11B of the core element 10B is between the core 11A and the core 11B to be a medium refractive index difference core.
 また、本実施形態において、以下に示すマルチコアファイバは、楕円の短径方向に沿って2以上のコアが配置されると共に、楕円の長径方向に沿って短径方向に沿って配置されるコアの数よりも多い数のコアが配置される。また、本実施形態では、長径の中心を通り短径方向に沿った軸を短径軸とすると、短径軸に近い位置において短径軸に沿って配置されるコアの数は、短径軸から遠い位置において短径軸に沿って配置されるコアの数よりも多くされる。 In the present embodiment, the multi-core fiber shown below has two or more cores arranged along the minor axis direction of the ellipse and cores arranged along the minor axis direction along the major axis direction of the ellipse. More cores than the number are arranged. Further, in the present embodiment, when the axis along the minor axis direction passing through the center of the major axis is the minor axis, the number of cores arranged along the minor axis at a position close to the minor axis is the minor axis. More than the number of cores arranged along the minor axis at a position far from the center.
 なお、本実施形態では、コア11A~11Cは、コア要素10A~10Cの一部として示され、クラッド21は、内側クラッド12A~12C及び低屈折率層13A~13Cを介してそれぞれのコア11A~11Cを間接的に囲む。しかし、本実施形態において、内側クラッド12A~12C及び低屈折率層13A~13Cが省略され、クラッド21がそれぞれのコア11A~11Cを直接囲んでも良い。 In this embodiment, the cores 11A to 11C are shown as a part of the core elements 10A to 10C, and the clad 21 is connected to the cores 11A to 11C via the inner clads 12A to 12C and the low refractive index layers 13A to 13C. It indirectly surrounds 11C. However, in the present embodiment, the inner claddings 12A to 12C and the low refractive index layers 13A to 13C may be omitted, and the cladding 21 may directly surround the respective cores 11A to 11C.
 図15に示す第1の例のマルチコアファイバ1Aは、楕円率eが1.5のクラッド21を有し、当該クラッド21内にコア要素10A,10Cの2種類のコア要素が配置されている。これらコア要素10A,10Cは互いに隣り合うコア要素が異なる種類となるように正方格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、2-6-8-8-6-2という配列になり、コア要素10A、10Cの合計の数は32となる。 A multi-core fiber 1A of the first example shown in FIG. 15 has a clad 21 having an ellipticity e of 1.5, and two types of core elements 10A and 10C are arranged in the clad 21. These core elements 10A and 10C are arranged in a square lattice so that the adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 2-6-8-8-6-2 is obtained, and the core elements 10A, 10A, The total number of 10C is 32.
 本例のマルチコアファイバ1Aにおいて、プルーフ2%、曲げ直径30mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合のプルーフ1%での破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図5より、概ね56.1×10-8μmとなる。従って、短径は概ね218μmとなり、長径は概ね327μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A、10Bの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は37.8%となる。 In the multi-core fiber 1A of this example, when the proof is 2%, the bending diameter is 30 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the proof is 1% when the standard single mode fiber is bent at a bending diameter of 30 mm. The sectional area when the fracture probability is the same as the fracture probability of 3.2 × 10 −6 is approximately 56.1 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 218 μm and the major axis is approximately 327 μm. In this case, the distance between the cores can be 28.8 μm. Further, assuming that the ratio of the area occupied by the core elements 10A and 10B to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio, the core exclusive area ratio is 37.8%.
 図16は、本実施形態のマルチコアファイバの第2の例を示す図である。本例では、マルチコアファイバ1Bは、楕円率eが1.5のクラッド21を有し、当該クラッド21内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。このようにコア要素10A,10B,10Cが三角格子状に配置されることで、コア要素10A,10B,10Cは最密充填状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、6-9-10-9-6という配列になり、コア要素10A,10B,10Cの合計の数は40となる。 FIG. 16 is a diagram illustrating a second example of the multi-core fiber of the present embodiment. In this example, the multi-core fiber 1B has a clad 21 having an ellipticity e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. In this way, the core elements 10A, 10B, and 10C are arranged in a triangular lattice shape, so that the core elements 10A, 10B, and 10C are arranged in a close-packed form. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-9-10-9-6, and the core elements 10A, 10B, The total number of 10C is 40.
 本例のマルチコアファイバ1Bは、上記マルチコアファイバ1Aと楕円率eが同じであるため、プルーフ2%、曲げ直径30mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、破断確率3.2×10-6となる場合の断面積は、図5より、概ね56.0×10-8μmとなる。従って、短径は概ね218μmとなり、長径は概ね327μmとなる。また、コア間距離を28.8μmとすることができる。また、コア専有面積割合は47.2%となる。 The multi-core fiber 1B of this example has the same ellipticity e as the multi-core fiber 1A. Therefore, when the proof is 2%, the bending diameter is 30 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the fracture probability is 3.2. The cross-sectional area in the case of × 10 −6 is approximately 56.0 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 218 μm and the major axis is approximately 327 μm. Further, the distance between the cores can be 28.8 μm. In addition, the area occupied by the core is 47.2%.
 図17は、本実施形態のマルチコアファイバの第3の例を示す図である。本例では、マルチコアファイバ1Cは、楕円率eが2.0のクラッド21を有し、当該クラッド21内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、7-10-11-10-7という配列になり、コア要素10A,10B,10Cの合計の数は41となる。 FIG. 17 is a diagram illustrating a third example of the multi-core fiber of the present embodiment. In this example, the multi-core fiber 1C has a clad 21 having an ellipticity e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 7-10-11-10-7, and the core elements 10A, 10B, The total number of 10C is 41.
 本例のマルチコアファイバ1Cにおいて、プルーフ2%、曲げ直径30mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、破断確率3.2×10-6となる場合の断面積は、図6より、概ね56.1×10-8μmとなる。従って、概ね短径は189μmとなり、概ね長径は378μmとなる。また、コア間距離を28.8μmとすることができる。また、コア専有面積割合は48.3%となる。 In the multi-core fiber 1C of this example, when the proof is 2%, the bending diameter is 30 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the cross-sectional area when the fracture probability is 3.2 × 10 −6 is FIG. Therefore, it is approximately 56.1 × 10 −8 μm 2 . Therefore, the major axis is approximately 189 μm and the major axis is approximately 378 μm. Further, the distance between the cores can be 28.8 μm. In addition, the area occupied by the core is 48.3%.
 ここで、上記マルチコアファイバ1A~マルチコアファイバ1Cの構成を表5に纏める。
Figure JPOXMLDOC01-appb-I000009
Here, the configurations of the multi-core fibers 1A to 1C are summarized in Table 5.
Figure JPOXMLDOC01-appb-I000009
 更に、上記マルチコアファイバ1A~マルチコアファイバ1Cのコア要素10A~10Cにおいて、コア11A~11Cのクラッド21に対する屈折率差をΔとし、低屈折率層13A~13Cのクラッド21に対する屈折率差をΔとし、コア11A~11Cの半径をrとし、内側クラッド12A~12Cの外周の半径をrとし、低屈折率層13A~13Cの厚さをWとすると、コア要素10A~10Cのパラメータは、例えば、下記表6の様にすることができる。
Figure JPOXMLDOC01-appb-I000010
Furthermore, the core element 10A ~ 10C of the multi-core fiber 1A ~ multicore fiber 1C, the refractive index difference with respect to the cladding 21 of the core 11A ~ 11C and delta 1, a refractive index difference with respect to the cladding 21 of low refractive index layers 13A ~ @ 13 C delta 2, and the radius of the core 11A ~ 11C and r 1, and the radius of the outer periphery of the inner cladding 12A ~ 12C and r 2, the thickness of the low refractive index layers 13A ~ @ 13 C is W, the core element 10A ~ 10C parameters For example, as shown in Table 6 below.
Figure JPOXMLDOC01-appb-I000010
 このようなマルチコアファイバ1A~マルチコアファイバ1Cによれば、短径方向からの角度θが30度以下の方向で曲げられて使用される場合に、シングルモードファイバと概ね同等の信頼性を有して光通信を行うことができる。 According to such multicore fibers 1A to 1C, when the angle θ from the minor axis direction is bent and used in a direction of 30 degrees or less, the multicore fibers 1A to 1C have substantially the same reliability as the single mode fiber. Optical communication can be performed.
 図18は、本実施形態のマルチコアファイバの第4の例を示す図である。本例では、マルチコアファイバ1Dは、楕円率eが1.5のクラッド21を有し、当該クラッド21内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、6-7-8-7-6という配列になり、コア要素10A,10B,10Cの合計の数は34となる。 FIG. 18 is a diagram illustrating a fourth example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 1D has a clad 21 with an ellipticity e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-7-8-7-6, and the core elements 10A, 10B, The total number of 10C is 34.
 本例のマルチコアファイバ1Dにおいて、プルーフ1%、曲げ直径60mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、破断確率3.2×10-6となる場合の断面積は、図2より、概ね48.8×10-8μmとなる。従って、短径は概ね204μmとなり、長径は概ね305μmとなる。また、コア間距離を28.8μmとすることができる。また、コア専有面積割合は52.7%となる。なお、本例の各コア要素のパラメータは、上記第2の例、第3の例の各コア要素のパラメータと同様とされる。 In the multi-core fiber 1D of this example, when the proof is 1%, the bending diameter is 60 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the cross-sectional area when the fracture probability is 3.2 × 10 −6 is shown in FIG. Therefore, it is approximately 48.8 × 10 −8 μm 2 . Accordingly, the minor axis is approximately 204 μm and the major axis is approximately 305 μm. Further, the distance between the cores can be 28.8 μm. In addition, the area occupied by the core is 52.7%. The parameters of each core element in this example are the same as the parameters of each core element in the second example and the third example.
 図19は、本実施形態のマルチコアファイバの第5の例を示す図である。本例では、マルチコアファイバ1Eは、楕円率eが2.0のクラッド21を有し、当該クラッド21内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、6-9-10-9-6という配列になり、コア要素10A,10B,10Cの合計の数は40となる。 FIG. 19 is a diagram illustrating a fifth example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 1E has a clad 21 having an ellipticity e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 21. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-9-10-9-6, and the core elements 10A, 10B, The total number of 10C is 40.
 本例のマルチコアファイバ1Eにおいて、プルーフ1%、曲げ直径60mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、破断確率3.2×10-6となる場合の断面積は、図3より、概ね48.8×10-8μmとなる。従って、短径は概ね176μmとなり、長径は概ね353μmとなる。また、コア間距離を28.8μmとすることができる。また、コア専有面積割合は47.4%となる。なお、本例の各コア要素のパラメータは、上記第2の例、第3の例の各コア要素のパラメータと同様とされる。 In the multi-core fiber 1E of this example, when the proof is 1%, the bending diameter is 60 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the cross-sectional area when the fracture probability is 3.2 × 10 −6 is shown in FIG. Therefore, it is approximately 48.8 × 10 −8 μm 2 . Accordingly, the minor axis is approximately 176 μm and the major axis is approximately 353 μm. Further, the distance between the cores can be 28.8 μm. In addition, the area occupied by the core is 47.4%. The parameters of each core element in this example are the same as the parameters of each core element in the second example and the third example.
 ここで、上記マルチコアファイバ1D~マルチコアファイバ1Eの構成を表7に纏める。
Figure JPOXMLDOC01-appb-I000011
Here, the configurations of the multi-core fibers 1D to 1E are summarized in Table 7.
Figure JPOXMLDOC01-appb-I000011
 このようなマルチコアファイバ1D~マルチコアファイバ1Eによっても、短径方向からの角度θが30度以下の方向で曲げられて使用される場合に、シングルモードファイバと同等の信頼性を有して光通信を行うことができる。 Even when such multi-core fiber 1D to multi-core fiber 1E are used by being bent at an angle θ of 30 degrees or less from the minor axis direction, the optical communication has the same reliability as a single mode fiber. It can be performed.
 なお、上記例で示した、クラッド21の楕円率eや、コア要素10A~10Cの配置は例示に過ぎず、楕円率eやコア要素10A~10Cの配置は適宜変更可能である。 The ellipticity e of the clad 21 and the arrangement of the core elements 10A to 10C shown in the above example are merely examples, and the arrangement of the ellipticity e and the core elements 10A to 10C can be changed as appropriate.
 以上説明したように、本実施形態のマルチコアファイバ1A~1Eは、マトリックス状に配置される複数のコア11A~11Cと、それぞれのコア11A~11Cを囲む単一のクラッド21と、を備える。このクラッド21の長手方向に垂直な断面における外形は楕円率eが2.5以下の楕円形状とされ、楕円の短径方向に沿って2以上のコアが配置されると共に、楕円の長径方向に沿って、短径方向に沿って配置されるコアの数よりも多い数のコアが配置される。そして、マルチコアファイバ1A~1Eは、短径方向に対して30度以下の方向に曲げられて使用される。 As described above, the multi-core fibers 1A to 1E of this embodiment include the plurality of cores 11A to 11C arranged in a matrix and the single clad 21 surrounding each of the cores 11A to 11C. The outer shape in a cross section perpendicular to the longitudinal direction of the clad 21 is an elliptical shape having an ellipticity e of 2.5 or less, two or more cores are disposed along the minor axis direction of the ellipse, and the major axis direction of the ellipse is A larger number of cores are disposed along the minor axis direction. The multi-core fibers 1A to 1E are used by being bent in a direction of 30 degrees or less with respect to the minor axis direction.
 したがって、クラッド21の外形が楕円であるマルチコアファイバ1A~1Eが短径方向に対して30度以下で曲げられて使用されることで、上記説明のように、破断確率が同じ場合に、クラッドの外形が円形のマルチコアファイバよりもクラッドの外形が楕円であるマルチコアファイバ1A~1Eの方が断面積を大きく出来る。従って、このようなマルチコアファイバ1A~1Eであれば、長期信頼性が悪化することを抑制しつつより多くのコアを配置することができる。 Therefore, when the multi-core fibers 1A to 1E having the elliptical outer shape of the clad 21 are bent at 30 degrees or less with respect to the minor axis direction, as described above, when the fracture probability is the same, The cross-sectional area of the multi-core fibers 1A to 1E having an elliptical outer shape of the clad can be larger than that of the multi-core fiber having a circular outer shape. Therefore, with such multi-core fibers 1A to 1E, more cores can be arranged while suppressing deterioration in long-term reliability.
 次にマルチコアファイバを曲げる方向の上記角度θを0度とする場合に、コアをより多く配置できることについて説明する。 Next, it will be described that more cores can be arranged when the angle θ in the direction of bending the multi-core fiber is 0 degree.
 図20は、角度θが0度の場合に第1実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第1の形態の図である。なお、図20では、被覆層30を省略している。図20では、クラッドの断面の形状が円形のマルチコアファイバ101と、クラッドの断面の形状が楕円形状で楕円率eが2.0のマルチコアファイバ1Fと、クラッドの断面の形状が楕円形状で楕円率eが2.5のマルチコアファイバ1Gとが重ねられて示されている。つまり、図20では、クラッドの形状が円形のマルチコアファイバ101と、短径の長さがマルチコアファイバ101のクラッドの直径と同じ大きさである楕円形状のクラッド21を有するマルチコアファイバ1F,1Gとが示されている。 FIG. 20 is a diagram of the first embodiment showing that many cores can be arranged in the multicore fiber in the first embodiment when the angle θ is 0 degree. In FIG. 20, the covering layer 30 is omitted. In FIG. 20, the multi-core fiber 101 with a circular cross-sectional shape of the clad, the multi-core fiber 1F with an elliptical cross-sectional shape of the clad and an ellipticity e of 2.0, and an elliptical shape with the elliptical cross-sectional shape of the clad. A multi-core fiber 1G having an e of 2.5 is shown superimposed. That is, in FIG. 20, the multi-core fiber 101 having the circular clad shape and the multi-core fibers 1 </ b> F and 1 </ b> G having the elliptical clad 21 having a short diameter equal to the diameter of the clad of the multi-core fiber 101. It is shown.
 マルチコアファイバを曲げる場合、最も応力のかかる位置は、曲げた状態でのクラッドの最も外周側の位置となる。従って、このようなクラッドを有するマルチコアファイバ1F,1Gが短径方向からの角度θが0度で曲げられる場合に、最も応力のかかる位置での当該応力の大きさは、同じ曲率で曲げられたマルチコアファイバ101における最も応力のかかる位置での当該応力の大きさと同じになる。従って、マルチコアファイバ1F,1Gが上記のように角度θが0度で曲げられる場合、マルチコアファイバ1F,1Gの破断確率は、同じ曲率で曲げられたマルチコアファイバ101の破断確率と等しくされる。このため、マルチコアファイバ1F,1Gは、マルチコアファイバ101と比べて、長期信頼性の悪化を抑制できる。 When bending a multi-core fiber, the most stressed position is the position on the outermost side of the clad in the bent state. Therefore, when the multi-core fibers 1F and 1G having such a cladding are bent at an angle θ from the minor axis direction of 0 degree, the magnitude of the stress at the most stressed position is bent with the same curvature. The magnitude of the stress at the most stressed position in the multi-core fiber 101 is the same. Therefore, when the multi-core fibers 1F and 1G are bent at an angle θ of 0 degrees as described above, the break probability of the multi-core fibers 1F and 1G is equal to the break probability of the multi-core fiber 101 bent with the same curvature. For this reason, compared with the multi-core fiber 101, the multi-core fibers 1F and 1G can suppress deterioration in long-term reliability.
 また、図20に示すように、クラッドの断面の外形が円形のマルチコアファイバ101と比べて、上記のようにマルチコアファイバ1F,1Gのクラッドの短径は、マルチコアファイバ101のクラッドの直径と同じ大きさとされる。従って、マルチコアファイバ1F,1Gのクラッドの断面積はマルチコアファイバ101のクラッドの断面積よりも大きくされる。また、マルチコアファイバ1F,1Gでは、楕円の長径方向に沿って、短径方向に沿って配置されるコア要素の数よりも多い数のコア要素が配置される。従って、マルチコアファイバ1F,1Gは、直径がマルチコアファイバ1F,1Gのクラッドの短径と同じ大きさであるマルチコアファイバ101よりも多くのコア要素を配置することができる。 In addition, as shown in FIG. 20, the short diameter of the clad of the multicore fibers 1F and 1G is the same as the diameter of the clad of the multicore fiber 101 as compared to the multicore fiber 101 having a circular cross-sectional outer shape. It is assumed. Accordingly, the cross-sectional area of the clad of the multi-core fibers 1F and 1G is made larger than the cross-sectional area of the clad of the multi-core fiber 101. In the multi-core fibers 1F and 1G, more core elements are arranged along the major axis direction of the ellipse than the number of core elements arranged along the minor axis direction. Therefore, the multi-core fibers 1F and 1G can have more core elements than the multi-core fiber 101 having the same diameter as the minor axis of the clad of the multi-core fibers 1F and 1G.
 具体的に配置されるコア要素の数の例を示す。マルチコアファイバ101のクラッドに配置可能なコア要素は、図20において、破線と重なるコア要素及び破線の内側に配置されるコア要素である。従って、マルチコアファイバ101が有するコア要素の数は37とされる。また、マルチコアファイバ1Fのクラッドに配置可能なコア要素は、図20において、点線と重なるコア要素及び点線の内側に配置されるコア要素である。従って、マルチコアファイバ1Fが有するコア要素の数は77とされる。また、マルチコアファイバ1Gが有するコア要素の数は89とされる。 An example of the number of core elements that are specifically arranged is shown. The core elements that can be disposed in the clad of the multi-core fiber 101 are a core element that overlaps the broken line and a core element that is disposed inside the broken line in FIG. Therefore, the number of core elements included in the multi-core fiber 101 is 37. In addition, the core elements that can be disposed in the clad of the multi-core fiber 1F are a core element that overlaps with a dotted line and a core element that is disposed inside the dotted line in FIG. Accordingly, the number of core elements included in the multi-core fiber 1F is 77. The number of core elements included in the multi-core fiber 1G is 89.
 図21は、図20と同様に、角度θが0度の場合に第1実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第2の形態の図である。図20では、クラッドの断面の形状が円形のマルチコアファイバ102と、クラッドの断面の形状が楕円形状で楕円率eが2.0のマルチコアファイバ1Hと、クラッドの断面の形状が楕円形状で楕円率eが2.5のマルチコアファイバ1Iとが重ねられて示されている。つまり、図20では、クラッドの形状が円形のマルチコアファイバ102と、短径の長さがマルチコアファイバ102のクラッドの直径と同じ大きさである楕円形状のクラッド21を有するマルチコアファイバ1H,1Iとが示されている。 FIG. 21 is a diagram of the second embodiment showing that many cores can be arranged in the multi-core fiber in the first embodiment when the angle θ is 0 degree, as in FIG. 20. In FIG. 20, the multi-core fiber 102 with a circular cross-sectional shape of the clad, the multi-core fiber 1H with an elliptical cross-sectional shape and an ellipticity e of 2.0, and an elliptical shape with an elliptical cross-sectional shape. A multi-core fiber 1I with an e of 2.5 is shown superimposed. That is, in FIG. 20, the multi-core fiber 102 having a circular clad shape and the multi-core fibers 1H and 1I each having an elliptical clad 21 having a short diameter equal to the diameter of the clad of the multi-core fiber 102 are shown. It is shown.
 図20での説明と同様にして、マルチコアファイバ1H,1Iが短径方向からの角度θが0度で曲げられる場合、マルチコアファイバ1H,1Iの破断確率は、同じ曲率で曲げられたマルチコアファイバ102の破断確率と等しくされる。従って、マルチコアファイバ1H,1Iは、マルチコアファイバ102と比べて、長期信頼性の悪化を抑制できる。 Similarly to the description in FIG. 20, when the multi-core fibers 1H and 1I are bent at an angle θ from the minor axis direction of 0 degree, the break probability of the multi-core fibers 1H and 1I is the multi-core fiber 102 bent with the same curvature. Is made equal to the probability of breakage. Therefore, the multi-core fibers 1H and 1I can suppress deterioration in long-term reliability as compared with the multi-core fiber 102.
 また、図20での説明と同様にして、マルチコアファイバ1H,1Iのクラッドの断面積はマルチコアファイバ102のクラッドの断面積よりも大きくされ、マルチコアファイバ1H,1Iでは、楕円の長径方向に沿って、短径方向に沿って配置されるコア要素の数よりも多い数のコア要素が配置される。従って、マルチコアファイバ1H,1Iは、直径がマルチコアファイバ1H,1Iのクラッドの短径と同じ大きさであるマルチコアファイバ102よりも多くのコア要素を配置することができる。 Similarly to the description in FIG. 20, the cross-sectional area of the clad of the multi-core fibers 1H and 1I is made larger than the cross-sectional area of the clad of the multi-core fiber 102. In the multi-core fibers 1H and 1I, along the major axis direction of the ellipse. More core elements than the number of core elements arranged along the minor axis direction are arranged. Therefore, the multi-core fibers 1H and 1I can have more core elements than the multi-core fiber 102 having the same diameter as the minor axis of the clad of the multi-core fibers 1H and 1I.
 具体的に配置されるコア要素の数の例を示す。マルチコアファイバ102のクラッドに配置可能なコア要素は、図21において、破線と重なるコア要素及び破線の内側に配置されるコア要素であり、マルチコアファイバ102が有するコア要素の数は37とされる。また、マルチコアファイバ1Hのクラッドに配置可能なコア要素は、図21において、点線と重なるコア要素及び点線の内側に配置されるコア要素であり、マルチコアファイバ1Hが有するコア要素の数は89とされる。また、マルチコアファイバ1Iが有するコア要素の数は105とされる。 An example of the number of core elements that are specifically arranged is shown. In FIG. 21, core elements that can be arranged in the clad of the multi-core fiber 102 are core elements that overlap the broken line and core elements that are arranged inside the broken line, and the number of core elements that the multi-core fiber 102 has is 37. In FIG. 21, the core elements that can be arranged in the clad of the multi-core fiber 1H are the core elements that overlap with the dotted line and the core elements that are arranged inside the dotted line, and the number of core elements that the multi-core fiber 1H has is 89. The The number of core elements included in the multi-core fiber 1I is 105.
 以上説明したように、本実施形態のマルチコアファイバは、マトリックス状に配置される複数のコア11A~11Cと、それぞれのコア11A~11Cを囲む単一のクラッド21と、を備える。このクラッド21の長手方向に垂直な断面における外形は、所定方向において直径が最も小さくなると共に凹部を有さない非円形の形状とされる。そして、所定方向に沿って2以上のコア11A~11Cが配置されると共に、所定方向に垂直な方向に沿って、所定方向に沿って配置されるコアの数よりも多い数のコアが配置され、所定方向に曲げられて使用される。 As described above, the multi-core fiber of this embodiment includes a plurality of cores 11A to 11C arranged in a matrix and a single clad 21 surrounding each of the cores 11A to 11C. The outer shape in a cross section perpendicular to the longitudinal direction of the clad 21 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess. Two or more cores 11A to 11C are arranged along a predetermined direction, and more cores are arranged along a direction perpendicular to the predetermined direction than the number of cores arranged along the predetermined direction. Are bent in a predetermined direction.
 図20、図21を用いて説明したように、クラッドの断面の外形が円形である従来のマルチコアファイバ101,102の場合、所定方向に配置可能なコアの数の上限と、所定方向に垂直な方向に配置可能なコアの数の上限とは互いに等しい。しかし、本実施形態のマルチコアファイバ1F~1Iによれば、例えば、本実施形態のマルチコアファイバ1F~1Iのクラッドの所定方向である短径方向の直径と等しい直径の従来のマルチコアファイバ101,102よりも、クラッドの断面積を大きくすることができる。しかも、所定方向に沿って配置されるコア11A~11Cの数よりも、所定方向に垂直な方向に沿って配置されるコア11A~11Cの数が多くされる。このため、本実施形態のマルチコアファイバ1F~1Iによれば、上記従来のマルチコアファイバ101,102よりも多くのコアを配置することができる。また、本実施形態のマルチコアファイバ1F~1Iは、所定方向に曲げて使用される。この場合、クラッドに最も大きな応力がかかる位置は、曲げた状態におけるクラッド21の最も外周側の位置であるため、クラッドにかかる最も大きな応力は、本実施形態のマルチコアファイバ1F~1Iと従来のマルチコアファイバ101,102とで概ね同じ大きさとなる。従って、本発明のマルチコアファイバ1F~1Iを上記のように曲げる場合、その破断確率は、上記従来のマルチコアファイバ101,102の破断確率と概ね同等となる。従って、本発明のマルチコアファイバ1F~1Iによれば、長期信頼性が悪化することを抑制し得る。 As described with reference to FIGS. 20 and 21, in the case of the conventional multi-core fibers 101 and 102 in which the outer shape of the cladding is circular, the upper limit of the number of cores that can be arranged in a predetermined direction and the direction perpendicular to the predetermined direction The upper limit of the number of cores that can be arranged in the direction is equal to each other. However, according to the multi-core fibers 1F to 1I of the present embodiment, for example, from the conventional multi-core fibers 101 and 102 having a diameter equal to the diameter of the minor axis direction which is a predetermined direction of the cladding of the multi-core fibers 1F to 1I of the present embodiment. However, the cross-sectional area of the cladding can be increased. In addition, the number of cores 11A to 11C arranged along the direction perpendicular to the predetermined direction is larger than the number of cores 11A to 11C arranged along the predetermined direction. Therefore, according to the multi-core fibers 1F to 1I of the present embodiment, more cores can be arranged than the conventional multi-core fibers 101 and 102. Further, the multi-core fibers 1F to 1I of this embodiment are used by being bent in a predetermined direction. In this case, since the position where the greatest stress is applied to the clad is the position on the outermost peripheral side of the clad 21 in the bent state, the largest stress applied to the clad is the multicore fibers 1F to 1I of the present embodiment and the conventional multicore. The fibers 101 and 102 have substantially the same size. Therefore, when the multi-core fibers 1F to 1I according to the present invention are bent as described above, the break probability thereof is substantially equal to the break probability of the conventional multi-core fibers 101 and 102. Therefore, according to the multicore fibers 1F to 1I of the present invention, deterioration of long-term reliability can be suppressed.
 (第2実施形態)
 次に、本発明の第2実施形態について図22~図42を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to FIGS. In addition, about the component which is the same as that of 1st Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図22は、本発明の第2実施形態におけるマルチコアファイバの長手方向に垂直な断面におけるクラッドの外形の様子を示す図である。なお、本図では、クラッドの外形を示し、コアや被覆層については記載していない。また、本実施形態のマルチコアファイバは第1実施形態のマルチコアファイバと同様に通信に用いられる通信系マルチコアファイバとされる。 FIG. 22 is a diagram showing the appearance of the cladding in a cross section perpendicular to the longitudinal direction of the multi-core fiber in the second embodiment of the present invention. In the drawing, the outer shape of the cladding is shown, and the core and the coating layer are not described. In addition, the multi-core fiber of the present embodiment is a communication multi-core fiber used for communication in the same manner as the multi-core fiber of the first embodiment.
 本実施形態のマルチコアファイバのクラッド22は、長手方向に垂直な断面の形状が、互いに平行な一組の直線22Lが半円状の曲線22Cで結ばれたレーストラック形状とされる。それぞれの直線22Lは互いに平行移動した関係とされる。また、このクラッド22は、当該断面において、直線22Lに垂直な方向が短径方向とされ、直線22Lに沿った方向が長径方向とされる。この短径方向を所定の方向とすると、クラッド22の外形は、所定方向において直径が最も小さくなると共に凹部を有さない非円形の形状とされる。ここで、図22に示すように、直線22L間の距離である短径をaとし、長径の大きさをbとする。ここで、本実施形態では、この短径aと長径bとの比(b/a)をeとする。 The clad 22 of the multi-core fiber according to the present embodiment has a cross-sectional shape perpendicular to the longitudinal direction and a racetrack shape in which a set of straight lines 22L parallel to each other are connected by a semicircular curve 22C. The respective straight lines 22L are in a relationship of being translated from each other. Further, in this cross section, the direction perpendicular to the straight line 22L is the minor axis direction and the direction along the straight line 22L is the major axis direction in the cross section. When this minor axis direction is a predetermined direction, the outer shape of the clad 22 is a non-circular shape having the smallest diameter in the predetermined direction and having no recess. Here, as shown in FIG. 22, the short diameter which is the distance between the straight lines 22L is a, and the long diameter is b. Here, in this embodiment, the ratio (b / a) between the minor axis a and the major axis b is assumed to be e.
 また、本実施形態のクラッド22の場合においても、マルチコアファイバの破断確率は、式3で示される。そこで、図22に示すクラッド22の外形を有するマルチコアファイバにおいて、図22に示す短径方向からの角度θの方向にマルチコアファイバを曲げる場合の断面積と破断確率との関係を第1実施形態において破断確率を求めた際と同様のことを考慮して求めた。 Also in the case of the clad 22 of the present embodiment, the breaking probability of the multi-core fiber is expressed by Equation 3. Therefore, in the multi-core fiber having the outer shape of the clad 22 shown in FIG. 22, the relationship between the cross-sectional area and the fracture probability when the multi-core fiber is bent in the direction of the angle θ from the minor axis direction shown in FIG. It calculated | required considering the same thing as the time of calculating | requiring a fracture | rupture probability.
 図23~図25に示す断面積と破断確率との関係では、曲げプルーフを1%とし、曲げ直径を60mmとし、図23では比eを1.5とし、図24では比eを2.0とし、図25では比eを2.5として計算を行った。また、図26~図28に示す断面積と破断確率との関係では、曲げプルーフを2%とし、曲げ直径を30mmとし、図26では比eを1.5とし、図27では比eを2.0とし、図28では比eを2.5として計算を行った。また、図29~図31に示す断面積と破断確率との関係では、曲げプルーフを2%とし、曲げ直径を60mmとし、図29では比eを1.5とし、図30では比eを2.0とし、図31では比eを2.5として計算を行った。また、図32~図34に示す断面積と破断確率との関係では、曲げプルーフを1%とし、曲げ直径を30mmとし、図32では比eを1.5とし、図33では比eを2.0とし、図34では比eを2.5として計算を行った。なお、第1実施形態の図2から図13と同様に各図において、クラッドの外形が円形のマルチコアファイバの当該条件における断面積と破断確率との関係を実線で示す。また、第1実施形態の図2から図13と同様に、各図に示す横線は、クラッドの直径が125μmの標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率であり、その値は3.2×10-6とされる。 23 to 25, the relationship between the cross-sectional area and the probability of breakage is that the bending proof is 1%, the bending diameter is 60 mm, the ratio e is 1.5 in FIG. 23, and the ratio e is 2.0 in FIG. In FIG. 25, the calculation was performed with the ratio e set to 2.5. Further, in the relationship between the cross-sectional area and the fracture probability shown in FIGS. 26 to 28, the bending proof is 2%, the bending diameter is 30 mm, the ratio e is 1.5 in FIG. 26, and the ratio e is 2 in FIG. The calculation was performed by setting the ratio e to 2.5 in FIG. 29 to 31, the bending proof is 2%, the bending diameter is 60 mm, the ratio e is 1.5 in FIG. 29, and the ratio e is 2 in FIG. The calculation was performed by setting the ratio e to 2.5 in FIG. 32 to 34, the bending proof is 1%, the bending diameter is 30 mm, the ratio e is 1.5 in FIG. 32, and the ratio e is 2 in FIG. The calculation was performed with a ratio e of 2.5 in FIG. 2 to 13 of the first embodiment, in each drawing, a solid line indicates the relationship between the cross-sectional area and the breaking probability of the multi-core fiber having a circular clad outer shape under the above conditions. Similarly to FIGS. 2 to 13 of the first embodiment, the horizontal line shown in each figure is the probability of breakage when a standard single mode fiber having a cladding diameter of 125 μm is bent at a bending diameter of 30 mm, and the value Is 3.2 × 10 −6 .
 図23から図34に示す通り、曲げ方向の短径方向からの角度θが45度未満であれば、短径aと長径bとの比eが2.5以下において、同じ破断確率の場合にクラッドの形状がレーストラック形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりも断面積を大きくすることができるという結果になった。 As shown in FIGS. 23 to 34, if the angle θ from the minor axis direction of the bending direction is less than 45 degrees, the ratio e of the minor axis a to the major axis b is 2.5 or less, and the same breaking probability is obtained. As a result, the cross-sectional area of the multi-core fiber with the racetrack shape of the clad can be larger than that of the multi-core fiber with the circular shape of the clad.
 次に、図23から図25に示すそれぞれの計算結果に基づいて、各図における角度θが0度、30度及び45度のそれぞれにおいて、破断確率が上記の3.2×10-6となる場合における、クラッドの断面積、断面の形状が円形のクラッドに対する断面の形状がレーストラック形状のクラッドの断面積比、クラッドの短径を表8に示す。ただし、表8においてクラッドの断面の形状が円の場合の短径は当該円の直径を示す。
Figure JPOXMLDOC01-appb-I000012
Next, based on the respective calculation results shown in FIG. 23 to FIG. 25, the fracture probability is 3.2 × 10 −6 when the angle θ in each figure is 0 degree, 30 degrees, and 45 degrees. Table 8 shows the cross-sectional area of the clad, the cross-sectional area ratio of the clad whose cross-sectional shape is a racetrack shape, and the minor axis of the clad. However, in Table 8, the minor axis when the cross-sectional shape of the cladding is a circle indicates the diameter of the circle.
Figure JPOXMLDOC01-appb-I000012
 また、図26から図28に示すそれぞれの計算結果に基づいて、上記表8に示す項目と同様の項目を表9に示す。
Figure JPOXMLDOC01-appb-I000013
In addition, based on the respective calculation results shown in FIGS. 26 to 28, items similar to the items shown in Table 8 are shown in Table 9.
Figure JPOXMLDOC01-appb-I000013
 更に、図29から図31に示すそれぞれの計算結果に基づいて、上記表8に示す項目と同様の項目を表10に示す。
Figure JPOXMLDOC01-appb-I000014
Furthermore, based on the respective calculation results shown in FIGS. 29 to 31, items similar to the items shown in Table 8 are shown in Table 10.
Figure JPOXMLDOC01-appb-I000014
 更に、図32から図34に示すそれぞれの計算結果に基づいて、上記表8に示す項目と同様の項目を表11に示す。
Figure JPOXMLDOC01-appb-I000015
Furthermore, based on the respective calculation results shown in FIG. 32 to FIG. 34, items similar to the items shown in Table 8 are shown in Table 11.
Figure JPOXMLDOC01-appb-I000015
 上記のように、短径aと長径bとの比eが2.5では、曲げ方向の短径方向からの角度θが30度以下であれば、クラッドの形状がレーストラック形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりも断面積を大きくすることができる。また、角度θが45度では、比eが1.5において、クラッドの形状がレーストラック形状のマルチコアファイバの方が、円形のマルチコアファイバよりも断面積が僅かに小さくなることがある。ただし、この場合、レーストラック形状のマルチコアファイバの断面積は、円形のマルチコアファイバと断面積と略同じである。従って、角度θは45度未満とされれば、クラッドの形状がレーストラック形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりも断面積を大きくすることができる。特に、角度θは44度以下とされれば、クラッドの形状がレーストラック形状のマルチコアファイバの方が、クラッドの形状が円形のマルチコアファイバよりもより確実に断面積を大きくすることができる。更に、比eが2.0以上2.5以下であれば、角度θは45度以下において、クラッドの形状がレーストラック形状のマルチコアファイバの方が円形のマルチコアファイバよりも断面積が小さくなることが無いため好ましい。 As described above, when the ratio e between the minor axis a and the major axis b is 2.5, if the angle θ from the minor axis direction of the bending direction is 30 degrees or less, the clad shape of the racetrack-shaped multicore fiber is used. However, the cross-sectional area can be made larger than that of a multi-core fiber having a circular cladding shape. When the angle θ is 45 degrees, the cross-sectional area of the multicore fiber having the racetrack shape of the clad may be slightly smaller than the circular multicore fiber at the ratio e of 1.5. However, in this case, the cross-sectional area of the racetrack-shaped multicore fiber is substantially the same as that of the circular multicore fiber. Therefore, if the angle θ is less than 45 degrees, the cross-sectional area of the multicore fiber with the racetrack shape of the clad can be larger than that of the multicore fiber with the circular shape of the clad. In particular, when the angle θ is 44 degrees or less, the cross-sectional area of the multicore fiber having a racetrack shape of the clad can be more reliably increased than the multicore fiber having a circular clad shape. Furthermore, if the ratio e is 2.0 or more and 2.5 or less, the cross-sectional area of the multicore fiber with the racetrack shape of the clad is smaller than that of the circular multicore fiber when the angle θ is 45 degrees or less. Since there is no, it is preferable.
 ここで、図35において、本実施形態のようにクラッド22の形状がレーストラック形状とされるマルチコアファイバにおいて、短径aと長径bとの比eと、配置可能なコア数との関係を示す。図35は、直線間の距離である短径aを固定して長径bを変化させて比e及び断面積を求め、表6に記載されたコア要素10A~10Cのパラメータを用いたコア要素の面積で上記断面積を除した数をコア数としている。図35に示すように、短径aによらず、比eが少なくとも2.5までにおいては、比eが大きな方が、配置可能なコアが多くなることが分かる。 Here, in FIG. 35, in the multi-core fiber in which the shape of the clad 22 is a racetrack shape as in the present embodiment, the relationship between the ratio e between the short diameter a and the long diameter b and the number of cores that can be arranged is shown. . FIG. 35 shows the ratio e and the cross-sectional area obtained by fixing the minor axis a which is the distance between straight lines and changing the major axis b, and the core elements using the parameters of the core elements 10A to 10C described in Table 6 are shown. The number obtained by dividing the cross-sectional area by the area is the number of cores. As shown in FIG. 35, it can be seen that, when the ratio e is at least 2.5, regardless of the minor axis a, the larger the ratio e, the more cores that can be arranged.
 次に、上記クラッド22を有する本実施形態のマルチコアファイバの例について説明する。 Next, an example of the multi-core fiber of this embodiment having the cladding 22 will be described.
 このようなクラッド22を有する本実施形態のマルチコアファイバでは、例えば、クラッド22に図15から図19に示すコア要素10A~10Cを配置することができる。また、本実施形態においても、内側クラッド12A~12C及び低屈折率層13A~13Cが省略され、クラッド22がそれぞれのコア11A~11Cを直接囲んでも良い。 In the multi-core fiber of this embodiment having such a clad 22, for example, the core elements 10A to 10C shown in FIGS. 15 to 19 can be arranged in the clad 22. Also in the present embodiment, the inner claddings 12A to 12C and the low refractive index layers 13A to 13C may be omitted, and the cladding 22 may directly surround the respective cores 11A to 11C.
 本実施形態において、以下に示すマルチコアファイバは、レーストラック形状の短径方向に沿って2以上のコアが配置されると共に、レーストラック形状の長径方向に沿って短径方向に沿って配置されるコアの数よりも多い数のコアが配置される。また、本実施形態では、長径の中心を通り短径方向に沿った軸を短径軸とすると、短径軸に近い位置において短径軸に沿って配置されるコアの数は、短径軸から遠い位置において短径軸に沿って配置されるコアの数よりも多くされる。 In the present embodiment, in the multi-core fiber shown below, two or more cores are arranged along the minor axis direction of the racetrack shape, and are arranged along the minor axis direction along the major axis direction of the race track shape. More cores than the number of cores are arranged. Further, in the present embodiment, when the axis along the minor axis direction passing through the center of the major axis is the minor axis, the number of cores arranged along the minor axis at a position close to the minor axis is the minor axis. More than the number of cores arranged along the minor axis at a position far from the center.
 図36に示す第1の例のマルチコアファイバ2Aは、短径aと長径bとの比eが1.5のクラッド22を有し、当該クラッド22内にコア要素10A,10Cの2種類のコア要素が、異なる種類となるように正方格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、4-6-8-8-6-4という配列になり、コア要素10A、10Cの合計の数は36となる。本例のマルチコアファイバ2Aにおいて、プルーフ1%、曲げ直径60mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図23より、概ね52.8×10-8μmとなる。従って、短径は概ね202.7μmとなり、長径は概ね304.1μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A,10Bの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は44.4%となる。 A multi-core fiber 2A of the first example shown in FIG. 36 has a clad 22 having a ratio e of a minor axis a to a major axis b of 1.5, and two types of cores 10A and 10C in the clad 22 Elements are arranged in a square lattice so as to be of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 4-6-8-8-6-4 is obtained, and the core elements 10A, 10A, The total number of 10C is 36. 2. In the multi-core fiber 2A of this example, assuming that the proof is 1%, the bending diameter is 60 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the breaking probability when the standard single mode fiber is bent with a bending diameter of 30 mm. When the fracture probability is the same as 2 × 10 −6 , the cross-sectional area is approximately 52.8 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 202.7 μm, and the major axis is approximately 304.1 μm. In this case, the distance between the cores can be 28.8 μm. Further, assuming that the ratio of the area occupied by the core elements 10A and 10B to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio, the core exclusive area ratio is 44.4%.
 図37は、本実施形態のマルチコアファイバの第2の例を示す図である。本例では、マルチコアファイバ2Bは、短径aと長径bとの比eが1.5のクラッド22を有し、当該クラッド22内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。このようにコア要素10A,10B,10Cが三角格子状に配置されることで、コア要素10A,10B,10Cは最密充填状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、6-7-8-7-6という配列になり、コア要素10A,10B,10Cの合計の数は、34となる。本例のマルチコアファイバ2Bにおいて、プルーフ1%、曲げ直径60mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図23より、概ね52.8×10-8μmとなる。従って、短径は概ね202.7μmとなり、長径は概ね304.1μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A,10B,10Cの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は41.9%となる。 FIG. 37 is a diagram illustrating a second example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 2B has a clad 22 having a ratio e of the minor axis a to the major axis b of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. Has been. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. In this way, the core elements 10A, 10B, and 10C are arranged in a triangular lattice shape, so that the core elements 10A, 10B, and 10C are arranged in a close-packed form. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 6-7-8-7-6, and the core elements 10A, 10B, The total number of 10C is 34. 2. In the multi-core fiber 2B of this example, assuming that the proof is 1%, the bending diameter is 60 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees, the breaking probability when the standard single mode fiber is bent with a bending diameter of 30 mm. When the fracture probability is the same as 2 × 10 −6 , the cross-sectional area is approximately 52.8 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 202.7 μm, and the major axis is approximately 304.1 μm. In this case, the distance between the cores can be 28.8 μm. Further, assuming that the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio, the core exclusive area ratio is 41.9%.
 図38は、本実施形態のマルチコアファイバの第3の例を示す図である。本例では、マルチコアファイバ2Cは、比eが2.0のクラッド22を有し、当該クラッド22内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、7-8-9-8-7という配列になり、コア要素10A,10B,10Cの合計の数は、39となる。本例のマルチコアファイバ2Cにおいて、プルーフ1%、曲げ直径60mm、マルチコアファイバを曲げる方向の上記角度θを45度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図24より、概ね48.6×10-8μmとなる。従って、短径は概ね165.0μmとなり、長径は概ね330.0μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A,10B,10Cの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は52.2%となる。 FIG. 38 is a diagram illustrating a third example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 2C has a clad 22 having a ratio e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, the array becomes 7-8-9-8-7, and the core elements 10A, 10B, The total number of 10C is 39. 2. In the multi-core fiber 2C of this example, assuming that the proof is 1%, the bending diameter is 60 mm, and the angle θ in the bending direction of the multi-core fiber is 45 degrees, the probability of breakage when the standard single-mode fiber is bent with a bending diameter of 30 mm. The cross-sectional area when the fracture probability is the same as 2 × 10 −6 is approximately 48.6 × 10 −8 μm 2 from FIG. Accordingly, the minor axis is approximately 165.0 μm and the major axis is approximately 330.0 μm. In this case, the distance between the cores can be 28.8 μm. Further, assuming that the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio, the core exclusive area ratio is 52.2%.
 図39は、本実施形態のマルチコアファイバの第4の例を示す図である。本例では、マルチコアファイバ2Dは、比eが1.5のクラッド22を有し、当該クラッド22内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、5-6-7-8-7-6-5という配列になり、コア要素10A,10B,10Cの合計の数は44となる。本例のマルチコアファイバ2Dにおいて、プルーフ2%、曲げ直径30mm、マルチコアファイバを曲げる方向の上記角度θを30度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図26より、概ね60.6×10-8μmとなる。従って、短径は概ね217.1μmとなり、長径は概ね325.7μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A,10B,10Cの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は47.3%となる。 FIG. 39 is a diagram illustrating a fourth example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 2D has a clad 22 with a ratio e of 1.5, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Further, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 5-6-7-8-7-6-5 is obtained. The total number of 10A, 10B, and 10C is 44. 2. In the multi-core fiber 2D of this example, the probability of breakage when the standard single-mode fiber is bent at a bending diameter of 30 mm, assuming that the proof is 2%, the bending diameter is 30 mm, and the angle θ in the bending direction of the multi-core fiber is 30 degrees. The cross-sectional area when the fracture probability is the same as 2 × 10 −6 is approximately 60.6 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 217.1 μm, and the major axis is approximately 325.7 μm. In this case, the distance between the cores can be 28.8 μm. Further, assuming that the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is the core exclusive area ratio, the core exclusive area ratio is 47.3%.
 図40は、本実施形態のマルチコアファイバの第5の例を示す図である。本例では、マルチコアファイバ2Eは、比eが2.0のクラッド22を有し、当該クラッド22内にコア要素10A,10B,10Cの3種類のコア要素が配置されている。これらコア要素10A,10B,10Cは互いに隣り合うコア要素が異なる種類となるように三角格子状に配置される。また、本例では、長径方向に沿って配列されたコア要素の数を、短径方向に沿って順に数えると、8-9-10-9-8という配列になり、コア要素10A,10B,10Cの合計の数は45となる。本例のマルチコアファイバ2Eにおいて、プルーフ2%、曲げ直径30mm、マルチコアファイバを曲げる方向の上記角度θを45度とすると、上記標準シングルモードファイバが曲げ直径30mmで曲げられた場合の破断確率3.2×10-6と同じ破断確率となる場合の断面積は、図27より、概ね55.8×10-8μmとなる。従って、短径は概ね176.8μmとなり、長径は概ね353.6μmとなる。この場合、コア間距離を28.8μmとすることができる。また、クラッド21の外周で囲まれた面積に対するコア要素10A,10B,10Cの占める面積の割合をコア専有面積割合とすると、コア専有面積割合は52.5%となる。 FIG. 40 is a diagram illustrating a fifth example of the multi-core fiber according to the present embodiment. In this example, the multi-core fiber 2E has a clad 22 with a ratio e of 2.0, and three types of core elements 10A, 10B, and 10C are arranged in the clad 22. These core elements 10A, 10B, and 10C are arranged in a triangular lattice shape so that adjacent core elements are of different types. Also, in this example, when the number of core elements arranged along the major axis direction is counted in order along the minor axis direction, an array of 8-9-10-9-8 is obtained, and the core elements 10A, 10B, The total number of 10C is 45. In the multi-core fiber 2E of this example, the probability of breakage when the standard single mode fiber is bent at a bending diameter of 30 mm, assuming that the proof is 2%, the bending diameter is 30 mm, and the angle θ in the bending direction of the multi-core fiber is 45 degrees. The cross-sectional area when the fracture probability is the same as 2 × 10 −6 is approximately 55.8 × 10 −8 μm 2 from FIG. Therefore, the minor axis is approximately 176.8 μm, and the major axis is approximately 353.6 μm. In this case, the distance between the cores can be 28.8 μm. Further, when the ratio of the area occupied by the core elements 10A, 10B, and 10C to the area surrounded by the outer periphery of the clad 21 is a core exclusive area ratio, the core exclusive area ratio is 52.5%.
 なお、上記例で示した、クラッド21の比eや、コア要素10A~10Cの配置は例示に過ぎず、比eやコア要素10A~10Cの配置は適宜変更可能である。 The ratio e of the clad 21 and the arrangement of the core elements 10A to 10C shown in the above example are merely examples, and the ratio e and the arrangement of the core elements 10A to 10C can be changed as appropriate.
 以上説明したように、本実施形態のマルチコアファイバ2A~2Eは、マトリックス状に配置される複数のコア11A~11Cと、それぞれのコア11A~11Cを囲む単一のクラッド22と、を備える。このクラッド22の長手方向に垂直な断面における外形は、互いに平行な一組の直線22Lが半円状の曲線22Cで結ばれた短径aと長径bとの比eが2.5以下のレーストラック形状とされる。また、短径方向に沿って2以上のコアが配置されると共に、長径方向に沿って短径方向に沿って配置されるコアの数よりも多い数のコアが配置される。そして、マルチコアファイバ2A~2Eは、短径方向に対して45度未満の方向に曲げられて使用される。 As described above, the multi-core fibers 2A to 2E of this embodiment include the plurality of cores 11A to 11C arranged in a matrix and the single clad 22 surrounding each of the cores 11A to 11C. The outer shape of the clad 22 in a cross section perpendicular to the longitudinal direction is a race in which a pair of straight lines 22L connected to each other by a semicircular curve 22C and a ratio e between the minor axis a and the major axis b is 2.5 or less. The track shape. Two or more cores are arranged along the minor axis direction, and more cores are arranged along the minor axis direction along the minor axis direction. The multi-core fibers 2A to 2E are used by being bent in a direction of less than 45 degrees with respect to the minor axis direction.
 したがって、クラッド22の外形がレーストラック形状であるマルチコアファイバ2A~2Eが短径方向に対して45度未満で曲げられて使用されることで、上記説明のように、破断確率が同じ場合に、クラッドの外形が円形のマルチコアファイバよりもクラッドの外形がレーストラック形状であるマルチコアファイバ2A~2Eの方が断面積を大きく出来る。従って、このようなマルチコアファイバ2A~2Eであれば、長期信頼性が悪化することを抑制しつつより多くのコアを配置することができる。 Therefore, when the multi-core fibers 2A to 2E having the outer shape of the clad 22 having a racetrack shape are bent and used at less than 45 degrees with respect to the minor axis direction, as described above, when the fracture probability is the same, The multi-core fibers 2A to 2E having a racetrack shape with a clad outer shape can have a larger cross-sectional area than a multicore fiber with a clad outer shape being circular. Accordingly, with such multi-core fibers 2A to 2E, it is possible to arrange more cores while suppressing deterioration of long-term reliability.
 次にマルチコアファイバを曲げる方向の上記角度θを0度とする場合に、コアをより多く配置できることについて説明する。 Next, it will be described that more cores can be arranged when the angle θ in the direction of bending the multi-core fiber is 0 degree.
 図41は、角度θが0度の場合に第2実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第1の形態の図である。なお、図41では、被覆層30を省略している。図41では、クラッドの断面の形状が円形のマルチコアファイバ101と、クラッドの断面の形状がレーストラック形状で短径aと長径bとの比eが2.0のマルチコアファイバ2Fと、クラッドの断面の形状がレーストラック形状で短径aと長径bとの比eが2.5のマルチコアファイバ2Gとが重ねられて示されている。つまり、図41では、クラッドの形状が円形のマルチコアファイバ101と、短径がマルチコアファイバ101のクラッドの直径と同じ大きさであるレーストラック形状のクラッドを有するマルチコアファイバ2F,2Gとが示されている。 FIG. 41 is a diagram of the first embodiment showing that many cores can be arranged in the multi-core fiber in the second embodiment when the angle θ is 0 degree. In FIG. 41, the coating layer 30 is omitted. In FIG. 41, a multi-core fiber 101 having a circular cross-sectional shape of the clad, a multi-core fiber 2F having a cross-section of the clad having a racetrack shape and a ratio e of the short diameter a to the long diameter b of 2.0, and a cross-section of the clad. Is a racetrack shape, and a multi-core fiber 2G having a ratio e of the minor axis a to the major axis b of 2.5 is superimposed. That is, FIG. 41 shows a multi-core fiber 101 having a circular clad shape and multi-core fibers 2F and 2G having a racetrack-shaped clad whose minor axis is the same size as the clad diameter of the multi-core fiber 101. Yes.
 第1実施形態で説明したように、マルチコアファイバを曲げる場合、最も応力のかかる位置は、曲げた状態でのクラッドの最も外周側の位置となる。従って、このようなクラッドを有するマルチコアファイバ2F,2Gが短径方向からの角度θが0度で曲げられる場合に、最も応力のかかる位置での当該応力の大きさは、同じ曲率で曲げられたマルチコアファイバ101における最も応力のかかる位置での当該応力の大きさと同じになる。従って、マルチコアファイバ2F,2Gが上記のように角度θが0度で曲げられる場合、マルチコアファイバ2F,2Gの破断確率は、同じ曲率で曲げられたマルチコアファイバ101の破断確率と等しくされる。このため、マルチコアファイバ2F,2Gは、マルチコアファイバ101と比べて、長期信頼性の悪化を抑制できる。 As described in the first embodiment, when the multi-core fiber is bent, the most stressed position is the position on the outermost peripheral side of the clad in the bent state. Therefore, when the multicore fibers 2F and 2G having such a cladding are bent at an angle θ from the minor axis direction of 0 degree, the magnitude of the stress at the most stressed position was bent with the same curvature. The magnitude of the stress at the most stressed position in the multi-core fiber 101 is the same. Therefore, when the multi-core fibers 2F and 2G are bent at an angle θ of 0 degrees as described above, the break probability of the multi-core fibers 2F and 2G is made equal to the break probability of the multi-core fiber 101 bent with the same curvature. For this reason, compared with the multi-core fiber 101, the multi-core fibers 2F and 2G can suppress deterioration in long-term reliability.
 また、図41に示すように、クラッドの断面の外形が円形のマルチコアファイバ101と比べて、上記のようにマルチコアファイバ2F,2Gのクラッドの短径aは、マルチコアファイバ101のクラッドの直径と同じ大きさとされる。従って、マルチコアファイバ2F,2Gのクラッドの断面積はマルチコアファイバ101のクラッドの断面積よりも大きくされる。また、マルチコアファイバ2F,2Gでは、長径方向に沿って短径方向に沿って配置されるコア要素の数よりも多い数のコア要素が配置される。従って、マルチコアファイバ2F,2Gは、直径がマルチコアファイバ2F,2Gのクラッドの短径aと同じ大きさであるマルチコアファイバ101よりも多くのコア要素を配置することができる。 In addition, as shown in FIG. 41, as compared with the multi-core fiber 101 having a circular cross-sectional outer shape, the clad minor axis a of the multi-core fibers 2F and 2G is the same as the clad diameter of the multi-core fiber 101 as described above. It is made a size. Therefore, the cross-sectional area of the clad of the multi-core fibers 2F and 2G is made larger than the cross-sectional area of the clad of the multi-core fiber 101. In the multi-core fibers 2F and 2G, a larger number of core elements than the number of core elements arranged along the minor axis direction are arranged along the major axis direction. Accordingly, the multi-core fibers 2F and 2G can have more core elements than the multi-core fiber 101 having the same diameter as the minor axis a of the clad of the multi-core fibers 2F and 2G.
 具体的に配置されるコア要素の数の例を示す。マルチコアファイバ101のクラッドに配置可能なコア要素は、第1実施形態と同様にして、破線と重なるコア要素及び破線の内側に配置されるコア要素であり37とされる。また、マルチコアファイバ2Fのクラッドに配置可能なコア要素は、図36において、点線と重なるコア要素及び点線の内側に配置されるコア要素である。従って、マルチコアファイバ2Fが有するコア要素の数は93とされる。また、マルチコアファイバ2Gが有するコア要素の数は117とされる。 An example of the number of core elements that are specifically arranged is shown. Similarly to the first embodiment, the core element that can be disposed in the clad of the multi-core fiber 101 is a core element that overlaps the broken line and a core element that is disposed inside the broken line, and is 37. In addition, the core elements that can be disposed in the clad of the multi-core fiber 2F are a core element that overlaps with a dotted line and a core element that is disposed inside the dotted line in FIG. Accordingly, the number of core elements included in the multi-core fiber 2F is 93. The number of core elements included in the multi-core fiber 2G is 117.
 図42は、角度θが0度の場合に第2実施形態におけるマルチコアファイバにおいてコアを多く配置できることを示す第2の形態の図である。なお、図42では、被覆層30を省略している。図42では、クラッドの断面の形状が円形のマルチコアファイバ102と、クラッドの断面の形状がレーストラック形状で短径aと長径bとの比eが2.0のマルチコアファイバ2Hと、クラッドの断面の形状がレーストラック形状で短径aと長径bとの比eが2.5のマルチコアファイバ2Iとが重ねられて示されている。ただし、本例では、クラッドの形状が円形のマルチコアファイバ102と、短径aがマルチコアファイバ102のクラッドの直径よりも小さいレーストラック形状のクラッド22を有するマルチコアファイバ2H,2Iとが示されている。 FIG. 42 is a diagram of the second embodiment showing that many cores can be arranged in the multi-core fiber in the second embodiment when the angle θ is 0 degree. In FIG. 42, the coating layer 30 is omitted. 42, the multi-core fiber 102 having a circular cross-sectional shape of the clad, the multi-core fiber 2H having a cross-section of the clad having a racetrack shape and a ratio e of the short diameter a to the long diameter b of 2.0, and a cross-section of the clad. Is a racetrack shape, and a multi-core fiber 2I having a ratio e between the minor axis a and the major axis b of 2.5 is superimposed. However, in this example, a multi-core fiber 102 having a circular clad shape and multi-core fibers 2H and 2I having a racetrack-shaped clad 22 in which the short axis a is smaller than the diameter of the clad of the multi-core fiber 102 are shown. .
 本例のマルチコアファイバ2H,2Iが短径方向からの角度θが0度で曲げられる場合、直線22L間の距離がマルチコアファイバ102のクラッドの直径よりも小さいため、マルチコアファイバ2H,2Iの破断確率は、同じ曲率で曲げられたマルチコアファイバ102の破断確率よりも小さくなる。このため、マルチコアファイバ2H,2Iは、マルチコアファイバ102と比べて、長期信頼性の悪化を抑制できる。 When the multi-core fibers 2H and 2I of this example are bent at an angle θ of 0 degrees from the minor axis direction, the distance between the straight lines 22L is smaller than the diameter of the clad of the multi-core fiber 102. Is smaller than the breaking probability of the multi-core fiber 102 bent with the same curvature. For this reason, the multi-core fibers 2H and 2I can suppress deterioration of long-term reliability as compared with the multi-core fiber 102.
 また、図42に示すように、直線22L間の距離がマルチコアファイバ102のクラッドの直径よりも小さいにもかかわらず、マルチコアファイバ2H,2Iは、マルチコアファイバ102よりも多くのコア要素を配置することができる。 Further, as shown in FIG. 42, the multi-core fibers 2H and 2I have more core elements than the multi-core fiber 102, although the distance between the straight lines 22L is smaller than the diameter of the clad of the multi-core fiber 102. Can do.
 具体的に配置されるコア要素の数の例を示す。マルチコアファイバ102のクラッドに配置可能なコア要素は、第1の形態と同様にして37とされる。また、マルチコアファイバ2Hのクラッドに配置可能なコア要素は、図37において、点線と重なるコア要素及び点線の内側に配置されるコア要素であり93とされる。また、マルチコアファイバ2Iが有するコア要素の数は117とされる。 An example of the number of core elements that are specifically arranged is shown. The core element that can be arranged in the clad of the multi-core fiber 102 is 37 as in the first embodiment. In FIG. 37, the core element that can be disposed in the clad of the multi-core fiber 2H is a core element that overlaps the dotted line and a core element that is disposed inside the dotted line, which is 93. The number of core elements included in the multi-core fiber 2I is 117.
 以上説明したように、本実施形態のマルチコアファイバ2F~2Iによっても、図41、図42を用いて説明したように、クラッドの断面の外形が円形である従来のマルチコアファイバ101,102と比べて、破断確率の悪化を抑制でき、多くのコアを配置し得る。 As described above, the multi-core fibers 2F to 2I according to the present embodiment are also compared with the conventional multi-core fibers 101 and 102 in which the outer shape of the cross section of the clad is circular as described with reference to FIGS. The deterioration of the fracture probability can be suppressed, and many cores can be arranged.
 (第3実施形態)
 次に、本発明の第3実施形態について図43を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described in detail with reference to FIG. In addition, about the component which is the same as that of 1st Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図43は、本実施形態のマルチコアファイバテープを示す図である。図43に示すマルチコアファイバテープ51は、複数の第1実施形態のマルチコアファイバ1Aが単一のテープ層50内に並列されて配置されている。テープ層50は、マルチコアファイバ1Aの並列方向が薄くされた平板状の形状をしている。従って、マルチコアファイバテープ51は厚さ方向に曲がり易い。テープ層50内に配置されるマルチコアファイバ1Aは、短径方向が、テープ層50の厚さ方向から30度以下となるように配置されている。なお、テープ層50は、樹脂が成型されることで単一のテープ層50とされても良く、2枚のテープが張り合わされることで単一のテープ層50とされても良い。 FIG. 43 is a diagram showing the multi-core fiber tape of the present embodiment. A multi-core fiber tape 51 shown in FIG. 43 has a plurality of multi-core fibers 1A of the first embodiment arranged in parallel in a single tape layer 50. The tape layer 50 has a flat plate shape in which the parallel direction of the multi-core fibers 1A is thinned. Therefore, the multi-core fiber tape 51 is easily bent in the thickness direction. The multi-core fiber 1 </ b> A disposed in the tape layer 50 is disposed so that the minor axis direction is 30 degrees or less from the thickness direction of the tape layer 50. The tape layer 50 may be formed as a single tape layer 50 by molding a resin, or may be formed as a single tape layer 50 by bonding two tapes.
 以上のように、本実施形態のマルチコアファイバテープ51は、互いに並列されたクラッド21の外形が楕円形状のマルチコアファイバ1Aと、それぞれのマルチコアファイバ1Aを被覆する単一のテープ層50と、を備える。そして、それぞれのマルチコアファイバ1Aは、マルチコアファイバ1Aの並列方向に垂直な方向、すなわち厚さ方向に対して短径方向が30度以下となるように配置されている。このようなマルチコアファイバテープ51では、テープを曲げると、それぞれのマルチコアファイバ1Aが短径方向に対して30度以下の方向に曲がる。従って、それぞれのマルチコアファイバ1Aの破断確率が悪化することを抑制することができる。また、マルチコアファイバ1Aが複数並列されることでより多くのコアを配置することができる。 As described above, the multi-core fiber tape 51 of the present embodiment includes the multi-core fiber 1A in which the outer shapes of the clads 21 arranged in parallel with each other are elliptical, and the single tape layer 50 that covers each multi-core fiber 1A. . And each multi-core fiber 1A is arrange | positioned so that a breadth direction may be 30 degrees or less with respect to the direction perpendicular | vertical to the parallel direction of multi-core fiber 1A, ie, the thickness direction. In such a multi-core fiber tape 51, when the tape is bent, each multi-core fiber 1A bends in a direction of 30 degrees or less with respect to the minor axis direction. Therefore, it is possible to suppress the deterioration probability of each multi-core fiber 1A from deteriorating. Further, more cores can be arranged by arranging a plurality of multi-core fibers 1A in parallel.
 なお、本実施形態ではマルチコアファイバ1Aが配置されるマルチコアファイバテープ51を例に説明したが、本実施形態のマルチコアファイバテープ51に配置されるマルチコアファイバは、第1実施形態で説明したマルチコアファイバであれば特に限定されない。 In the present embodiment, the multi-core fiber tape 51 on which the multi-core fiber 1A is disposed has been described as an example. However, the multi-core fiber disposed on the multi-core fiber tape 51 of the present embodiment is the multi-core fiber described in the first embodiment. If there is no particular limitation.
 (第4実施形態)
 次に、本発明の第4実施形態について図44を参照して詳細に説明する。なお、第2実施形態、第3実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described in detail with reference to FIG. In addition, about the component which is the same as that of 2nd Embodiment and 3rd Embodiment, or equivalent, unless otherwise demonstrated, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図44は、本実施形態のマルチコアファイバテープを示す図である。図44に示すマルチコアファイバテープ52は、複数の第2実施形態のマルチコアファイバ2Aが単一のテープ層50内に並列されて配置されている。テープ層50は、マルチコアファイバ2Aの並列方向が薄くされた平板状の形状をしている。従って、マルチコアファイバテープ52は厚さ方向に曲がり易い。テープ層50内に配置されるマルチコアファイバ2Aは、短径方向が、テープ層50の厚さ方向から45度未満となるように配置されている。特に、マルチコアファイバ2Aは、短径方向が、テープ層50の厚さ方向から44度以下となるように配置されることが好ましい。また、マルチコアファイバ2Aは、第2実施形態における比eが2.0以上2.5以下とされて、短径方向が、テープ層50の厚さ方向から45度以下となるように配置されることが好ましい。 FIG. 44 is a diagram showing the multi-core fiber tape of the present embodiment. A multi-core fiber tape 52 shown in FIG. 44 has a plurality of multi-core fibers 2A of the second embodiment arranged in parallel in a single tape layer 50. The tape layer 50 has a flat plate shape in which the parallel direction of the multi-core fibers 2A is thinned. Therefore, the multi-core fiber tape 52 is easily bent in the thickness direction. The multi-core fibers 2 </ b> A disposed in the tape layer 50 are disposed such that the minor axis direction is less than 45 degrees from the thickness direction of the tape layer 50. In particular, the multi-core fiber 2 </ b> A is preferably arranged so that the minor axis direction is 44 degrees or less from the thickness direction of the tape layer 50. The multi-core fiber 2A is arranged such that the ratio e in the second embodiment is 2.0 or more and 2.5 or less, and the minor axis direction is 45 degrees or less from the thickness direction of the tape layer 50. It is preferable.
 以上のように、本実施形態のマルチコアファイバテープ52は、互いに並列されたクラッド22の外形がレーストラック形状のマルチコアファイバ2Aと、それぞれのマルチコアファイバ2Aを被覆する単一のテープ層50と、を備える。そして、それぞれのマルチコアファイバ2Aは、マルチコアファイバ2Aの並列方向に垂直な方向、すなわち厚さ方向に対して短径方向が45度未満となるように配置されている。このようなマルチコアファイバテープ52では、テープを曲げると、それぞれのマルチコアファイバ2Aが短径方向に対して45度未満の方向に曲がる。従って、それぞれのマルチコアファイバ2Aの破断確率が悪化することを抑制することができる。また、マルチコアファイバ2Aが複数並列されることでより多くのコアを配置することができる。 As described above, the multi-core fiber tape 52 of the present embodiment includes the multi-core fiber 2A in which the outer shape of the clad 22 arranged in parallel with each other is a racetrack shape, and the single tape layer 50 covering each multi-core fiber 2A. Prepare. And each multi-core fiber 2A is arrange | positioned so that a minor axis direction may be less than 45 degree | times with respect to the direction perpendicular | vertical to the parallel direction of multi-core fiber 2A, ie, the thickness direction. In such a multi-core fiber tape 52, when the tape is bent, each multi-core fiber 2A bends in a direction of less than 45 degrees with respect to the minor axis direction. Therefore, it is possible to suppress the deterioration probability of each multi-core fiber 2A from deteriorating. Further, more cores can be arranged by arranging a plurality of multi-core fibers 2A in parallel.
 なお、本実施形態ではマルチコアファイバ2Aが配置されるマルチコアファイバテープ52を例に説明したが、本実施形態のマルチコアファイバテープ52に配置されるマルチコアファイバは、第2実施形態で説明したマルチコアファイバであれば特に限定されない。 In the present embodiment, the multicore fiber tape 52 on which the multicore fiber 2A is disposed has been described as an example. However, the multicore fiber disposed on the multicore fiber tape 52 of the present embodiment is the multicore fiber described in the second embodiment. If there is no particular limitation.
 以上、本発明のマルチコアファイバ及びマルチコアファイバテープについて説明したが、本発明は上記実施形態に限定されるものではない。 The multicore fiber and multicore fiber tape of the present invention have been described above, but the present invention is not limited to the above embodiment.
 例えば、クラッドの長手方向に垂直な断面における外形が、所定方向において直径が最も小さくされると共に凹部を有さない非円形の形状とされるマルチコアファイバについて、上記実施形態では、楕円形状とレーストラック形状とを例に説明したが、本発明はこれに限らない。図45は、クラッドの他の形状を示す図である。図45に示すように、本例のクラッド23は、D型とされる。このD型の短径方向を所定方向とする場合おいて、所定方向に曲げる場合の破断確率は、図45に示す短径と同じ直径を有する断面が円形のマルチコアファイバの破断確率と同等になる。従って、このようなクラッドを有するマルチコアファイバによれば、長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得る。 For example, for the multi-core fiber in which the outer shape in the cross section perpendicular to the longitudinal direction of the cladding is a non-circular shape having the smallest diameter in the predetermined direction and having no recess, in the above embodiment, the elliptical shape and the racetrack are used. Although the shape has been described as an example, the present invention is not limited to this. FIG. 45 is a diagram showing another shape of the clad. As shown in FIG. 45, the clad 23 of this example is D-type. When the D-shaped minor axis direction is a predetermined direction, the fracture probability when bending in the predetermined direction is equivalent to the fracture probability of a multi-core fiber having a circular cross section having the same diameter as the minor axis shown in FIG. . Therefore, according to the multi-core fiber having such a clad, it is possible to arrange many cores while suppressing deterioration of long-term reliability.
 これを一般化すると、クラッドの長手方向に垂直な断面における外形が所定方向において直径が最も小さくされると共に凹部を有さない非円形の形状とされ、当該所定方向に沿って2以上のコアが配置されると共に、所定方向に垂直な方向に沿って、所定方向に沿って配置されるコアの数よりも多い数の前記コアが配置され、所定方向に曲げられて使用されるマルチコアファイバとなる。このマルチコアファイバによれば、上記のように長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得る。 Generalizing this, the outer shape in the cross section perpendicular to the longitudinal direction of the clad has a non-circular shape with the smallest diameter in the predetermined direction and no recess, and two or more cores are formed along the predetermined direction. A multi-core fiber that is arranged and bent along a direction perpendicular to the predetermined direction, and more than the number of cores arranged along the predetermined direction, is bent in the predetermined direction to be used. . According to this multi-core fiber, it is possible to arrange many cores while suppressing deterioration of long-term reliability as described above.
 また、このようなマルチコアファイバを用いたマルチコアファイバテープは、互いに並列された複数の上記マルチコアファイバと、それぞれのマルチコアファイバを被覆する単一のテープ層と、を備え、それぞれのマルチコアファイバは、マルチコアファイバの並列方向に垂直な方向に所定方向が向くように配置されるというものになる。このマルチコアファイバテープは、テープを曲げると、それぞれのマルチコアファイバが所定方向に曲がる。従って、それぞれのマルチコアファイバの破断確率が悪化することを抑制することができる。また、マルチコアファイバが複数並列されることでより多くのコアを配置することができる。 In addition, a multi-core fiber tape using such a multi-core fiber includes a plurality of the multi-core fibers arranged in parallel with each other and a single tape layer covering each multi-core fiber, and each multi-core fiber is a multi-core fiber. It is arranged so that a predetermined direction is oriented in a direction perpendicular to the fiber parallel direction. When this multi-core fiber tape is bent, each multi-core fiber bends in a predetermined direction. Therefore, it can suppress that the fracture probability of each multi-core fiber deteriorates. Further, a larger number of cores can be arranged by arranging a plurality of multi-core fibers in parallel.
 本発明に係るマルチコアファイバ、マルチコアファイバテープは、長期信頼性が悪化することを抑制しつつ、多くのコアを配置し得、光通信の産業において利用することができる。 The multi-core fiber and multi-core fiber tape according to the present invention can arrange many cores while suppressing deterioration of long-term reliability, and can be used in the optical communication industry.
 1A~1E,2A~2E・・・マルチコアファイバ
 10A~10C・・・コア要素
 11A~11C・・・コア
 12A~12C・・・内側クラッド
 13A~13C・・・低屈折率層
 21,22・・・クラッド
 30・・・被覆層
 50・・・テープ層
 51,52・・・マルチコアファイバテープ
1A to 1E, 2A to 2E ... multi-core fiber 10A to 10C ... core element 11A to 11C ... core 12A to 12C ... inner cladding 13A to 13C ... low refractive index layers 21, 22 ...・ Clad 30 ... Coating layer 50 ... Tape layer 51,52 ... Multi-core fiber tape

Claims (8)

  1.  マトリックス状に配置される複数のコアと、
     それぞれの前記コアを囲む単一のクラッドと、
    を備え、
     前記クラッドの長手方向に垂直な断面における外形は、所定方向において直径が最も小さくされると共に凹部を有さない非円形の形状とされ、
     前記所定方向に沿って2以上の前記コアが配置されると共に、前記所定方向に垂直な方向に沿って、前記所定方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、
     前記所定方向に曲げられる
    ことを特徴とするマルチコアファイバ。
    A plurality of cores arranged in a matrix, and
    A single cladding surrounding each said core;
    With
    The outer shape in a cross section perpendicular to the longitudinal direction of the cladding is a non-circular shape having a diameter that is the smallest in a predetermined direction and does not have a recess,
    Two or more cores are arranged along the predetermined direction, and more cores are arranged along the direction perpendicular to the predetermined direction than the number of the cores arranged along the predetermined direction. And
    A multi-core fiber that is bent in the predetermined direction.
  2.  前記クラッドの前記外形はD型とされる
    ことを特徴とする請求項1に記載のマルチコアファイバ。
    The multi-core fiber according to claim 1, wherein the outer shape of the clad is a D-type.
  3.  マトリックス状に配置される複数のコアと、
     それぞれの前記コアを囲む単一のクラッドと、
    を備え、
     前記クラッドの長手方向に垂直な断面における外形は楕円率が2.5以下の楕円形状とされ、
     楕円の短径方向に沿って2以上の前記コアが配置されると共に、前記楕円の長径方向に沿って、前記短径方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、
     前記短径方向に対して30度以下の方向に曲げられる
    ことを特徴とするマルチコアファイバ。
    A plurality of cores arranged in a matrix, and
    A single cladding surrounding each said core;
    With
    The outer shape of the cross section perpendicular to the longitudinal direction of the cladding is an elliptical shape with an ellipticity of 2.5 or less,
    Two or more cores are arranged along the minor axis direction of the ellipse, and more cores than the cores arranged along the minor axis direction are arranged along the major axis direction of the ellipse. Arranged,
    A multi-core fiber bent in a direction of 30 degrees or less with respect to the minor axis direction.
  4.  マトリックス状に配置される複数のコアと、
     それぞれの前記コアを囲む単一のクラッドと、
    を備え、
     前記クラッドの長手方向に垂直な断面における外形は、互いに平行な一組の直線が半円状の曲線で結ばれた短径と長径との比が2.5以下のレーストラック形状とされ、
     前記レーストラック形状の短径方向に沿って2以上の前記コアが配置されると共に、前記レーストラック形状の長径方向に沿って前記短径方向に沿って配置される前記コアの数よりも多い数の前記コアが配置され、
     前記短径方向に対して45度未満の方向に曲げられる
    ことを特徴とするマルチコアファイバ。
    A plurality of cores arranged in a matrix, and
    A single cladding surrounding each said core;
    With
    The outer shape in a cross section perpendicular to the longitudinal direction of the cladding is a racetrack shape in which a ratio of a minor axis to a major axis is 2.5 or less, in which a pair of straight lines parallel to each other is connected by a semicircular curve,
    Two or more cores are arranged along the minor axis direction of the racetrack shape, and the number is larger than the number of cores arranged along the minor axis direction along the major axis direction of the racetrack shape. Of the core is arranged,
    A multi-core fiber bent in a direction of less than 45 degrees with respect to the minor axis direction.
  5.  前記複数のコアの数が37よりも多い
    ことを特徴とする請求項1から4のいずれか1項に記載のマルチコアファイバ。
    The multi-core fiber according to any one of claims 1 to 4, wherein the number of the plurality of cores is greater than 37.
  6.  互いに並列された複数の請求項1または2に記載のマルチコアファイバと、
     それぞれのマルチコアファイバを被覆する単一のテープ層と、
    を備え、
     それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に前記所定方向が向くように配置される
    ことを特徴とするマルチコアファイバテープ。
    A plurality of multi-core fibers according to claim 1 or 2 parallel to each other;
    A single tape layer covering each multi-core fiber;
    With
    Each of the multi-core fibers is arranged such that the predetermined direction is oriented in a direction perpendicular to a parallel direction of the multi-core fibers.
  7.  互いに並列された複数の請求項3に記載のマルチコアファイバと、
     それぞれのマルチコアファイバを被覆する単一のテープ層と、
    を備え、
     それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に対して前記短径方向が30度以下となるように配置される
    ことを特徴とするマルチコアファイバテープ。
    A plurality of multi-core fibers according to claim 3 in parallel with each other;
    A single tape layer covering each multi-core fiber;
    With
    Each of the multi-core fibers is arranged such that the minor axis direction is 30 degrees or less with respect to a direction perpendicular to the parallel direction of the multi-core fibers.
  8.  互いに並列された複数の請求項4に記載のマルチコアファイバと、
     それぞれのマルチコアファイバを被覆する単一のテープ層と、
    を備え、
     それぞれの前記マルチコアファイバは、前記マルチコアファイバの並列方向に垂直な方向に対して前記短径方向が45度未満で配置される
    ことを特徴とするマルチコアファイバテープ。
    A plurality of multi-core fibers according to claim 4 in parallel with each other;
    A single tape layer covering each multi-core fiber;
    With
    Each of the multi-core fibers is arranged such that the minor axis direction is less than 45 degrees with respect to a direction perpendicular to the parallel direction of the multi-core fibers.
PCT/JP2018/003039 2017-02-16 2018-01-30 Multicore fiber, and multicore fiber tape using same WO2018150867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568087A JPWO2018150867A1 (en) 2017-02-16 2018-01-30 Multi-core fiber and multi-core fiber tape using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026661 2017-02-16
JP2017-026661 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018150867A1 true WO2018150867A1 (en) 2018-08-23

Family

ID=63169843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003039 WO2018150867A1 (en) 2017-02-16 2018-01-30 Multicore fiber, and multicore fiber tape using same

Country Status (2)

Country Link
JP (1) JPWO2018150867A1 (en)
WO (1) WO2018150867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480727B2 (en) * 2019-07-03 2022-10-25 Sumitomo Electric Industries, Ltd. Multi-core optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025686A1 (en) * 2004-08-30 2006-03-09 Ik Joo Lee Optical fiber with square cross section and mirror coating core structure
JP2015212791A (en) * 2014-05-07 2015-11-26 株式会社フジクラ Multicore fiber
JP2016172657A (en) * 2015-03-17 2016-09-29 住友電気工業株式会社 Optical fiber manufacturing method and optical fiber
JP2016191730A (en) * 2015-03-30 2016-11-10 株式会社フジクラ Multicore optical fiber and manufacturing method for multicore optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025686A1 (en) * 2004-08-30 2006-03-09 Ik Joo Lee Optical fiber with square cross section and mirror coating core structure
JP2015212791A (en) * 2014-05-07 2015-11-26 株式会社フジクラ Multicore fiber
JP2016172657A (en) * 2015-03-17 2016-09-29 住友電気工業株式会社 Optical fiber manufacturing method and optical fiber
JP2016191730A (en) * 2015-03-30 2016-11-10 株式会社フジクラ Multicore optical fiber and manufacturing method for multicore optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDRESEN, E. R. ET AL.: "Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B, vol. 32, no. 6, June 2015 (2015-06-01), pages 1221 - 1228, XP055537517 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480727B2 (en) * 2019-07-03 2022-10-25 Sumitomo Electric Industries, Ltd. Multi-core optical fiber

Also Published As

Publication number Publication date
JPWO2018150867A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5916525B2 (en) Multi-core fiber
US10663653B2 (en) Multicore fiber for communication
US8718423B2 (en) Optical branching element and optical branching circuit
JP5855351B2 (en) Multi-core fiber
JP6722271B2 (en) Multi-core fiber
JP5468711B2 (en) Multi-core fiber
US20130183016A1 (en) Multi-core optical fiber and method of manufacturing the same
US9817183B2 (en) Multicore fiber
JP5860024B2 (en) Multi-core fiber
JP5471776B2 (en) Multi-core optical fiber
WO2014133057A1 (en) Multi-core fiber
US9128233B2 (en) Multi-core fiber
WO2015001990A1 (en) Multi-core optical fiber and multi-core optical fiber cable
US10295736B2 (en) Multicore fiber
WO2018150867A1 (en) Multicore fiber, and multicore fiber tape using same
JP6096268B2 (en) Multi-core fiber
JP7145816B2 (en) multicore fiber
JP5990616B2 (en) Multicore fiber for communication
GB2565128A (en) Fan-in/Fan-out device
KR20160086745A (en) Ribbon fiber composed of downsized single-mode fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18755103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18755103

Country of ref document: EP

Kind code of ref document: A1