WO2018150575A1 - Turbocharger actuator - Google Patents

Turbocharger actuator Download PDF

Info

Publication number
WO2018150575A1
WO2018150575A1 PCT/JP2017/006145 JP2017006145W WO2018150575A1 WO 2018150575 A1 WO2018150575 A1 WO 2018150575A1 JP 2017006145 W JP2017006145 W JP 2017006145W WO 2018150575 A1 WO2018150575 A1 WO 2018150575A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange portion
metal
actuator
shaft
resin
Prior art date
Application number
PCT/JP2017/006145
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201790001601.1U priority Critical patent/CN210422762U/en
Priority to JP2019500155A priority patent/JP6687292B2/en
Priority to PCT/JP2017/006145 priority patent/WO2018150575A1/en
Publication of WO2018150575A1 publication Critical patent/WO2018150575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to an actuator for a turbocharger.
  • a motor that drives a shaft is covered with a resin housing.
  • a flange portion is formed in the housing, and the flange portion is fastened to the compressor housing of the turbocharger with a screw.
  • the conventional actuator Since the conventional actuator is configured as described above, the resin flange comes into contact with the compressor housing of the turbocharger. Since the actuator self-heats during driving, the temperature inside the actuator becomes high. Further, since the turbocharger becomes high temperature due to the heat of the exhaust gas, the flange portion of the actuator becomes high temperature due to the heat of the turbocharger. As a result, resin-sensitive parts such as the housing of the actuator may be melted. Thus, the conventional actuator had the subject that heat resistance is low.
  • the present invention has been made to solve the above-described problems, and aims to improve the heat resistance of an actuator for a turbocharger.
  • the turbocharger actuator according to the present invention includes a motor covered with a resin housing that moves the shaft in the axial direction, a resin flange formed on the housing, and a shaft that passes through the shaft.
  • a bush that moves in the axial direction, a metal boss that is located on the outer periphery of the bush and supports the bush, and a metal flange that is formed on the metal boss and is fastened together with the mounting portion of the turbocharger together with the resin flange portion.
  • the metal flange portion and the resin flange portion are fastened together with the attachment portion of the turbocharger, and the metal flange portion is brought into contact with the attachment portion. Therefore, heat generated by the motor and heat generated by the turbocharger are generated. Heat can be dissipated from the metal flange portion to the mounting portion. Therefore, the temperature rise of the actuator can be suppressed and the heat resistance of the actuator is improved.
  • FIG. 3 is a cross-sectional view of the actuator according to the first embodiment of the present invention cut along line AA in FIG.
  • FIG. 3 is sectional drawing which shows the structural example of the metal boss
  • FIG. 3 is a top view which shows the structural example of the motor housing and metal boss
  • FIG. 1 is an external perspective view showing a configuration example of an actuator 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration example of the actuator 1 according to Embodiment 1 of the present invention.
  • FIG. 3 is an exploded perspective view showing a configuration example of the actuator 1 according to the first embodiment of the present invention.
  • the actuator 1 according to Embodiment 1 reciprocates the shaft 2 in the axial direction.
  • the actuator 1 is used for opening and closing a waste gate valve of a turbocharger.
  • the actuator 1 is attached to a turbocharger attaching portion 102 by a screw 26.
  • the motor 3 generates a driving force for reciprocating the shaft 2 in the axial direction.
  • the motor 3 is a motor with a brush including a commutator 7, a brush 8, a rotor 9, a coil 10, a magnet 11, and a yoke 12.
  • Two bearing portions 5a and 5b are installed inside the motor 3, and the bearing portions 5a and 5b support the pipe 6 in a rotatable manner.
  • a commutator 7, a rotor 9, and a coil 10 are fixed to the outer peripheral surface of the pipe 6.
  • a brush 8 is installed on the outer peripheral side of the commutator 7.
  • a magnet 11 and a yoke 12 are installed on the outer peripheral side of the rotor 9 and the coil 10.
  • the motor 3 is not limited to a motor with a brush, and any motor 3 that generates a driving force for reciprocating the shaft 2 in the axial direction thereof may be used.
  • the motor 3 is covered with a resin motor housing 4.
  • a connector 15 is integrally formed on one end side of the motor housing 4, and a resin flange portion 4 a is integrally formed on the other end side.
  • a magnetic sensor 16 for detecting the position of the shaft 2, a sensor magnet 17, and a sensor shaft 18 are installed inside the motor housing 4.
  • the bush 20 and the metal boss 21 are installed on the side of the motor housing 4 where the resin flange portion 4a is formed.
  • the bush 20 and the metal boss 21 are passed through the shaft 2.
  • a waste gate valve (not shown) is connected to the end of the shaft 2 that passes through the bush 20 and the metal boss 21.
  • the bush 20 has a flange portion 20a and a cylindrical portion 20b.
  • a flange portion 20a is formed on the motor 3 side of the cylindrical portion 20b, and a through hole of the shaft 2 is formed on the opposite side.
  • the flange portion 20a is fitted to the side of the motor housing 4 where the resin flange portion 4a is formed.
  • the cylindrical portion 20b guides the movement of the shaft 2 in the axial direction.
  • the seal member 24 closes the gap between the bush 20 and the shaft 2.
  • This seal member 24 is, for example, an O-ring.
  • the cap 23 is fitted to the through hole side of the bush 20 and supports the seal member 24.
  • the bush 20 and the cap 23 are made of, for example, resin in order to suppress the shaving of the shaft 2 that contacts the inner peripheral surface.
  • a metal boss 21 that covers the bush 20 is provided on the outer periphery of the bush 20.
  • the metal boss 21 has a metal flange portion 21a and a cylindrical portion 21b.
  • a metal flange portion 21a is formed on the motor 3 side of the cylindrical portion 21b, and a through hole of the shaft 2 is formed on the opposite side.
  • the metal flange portion 21 a is fastened to the resin flange portion 4 a of the motor housing 4 with a screw 25.
  • the screw 25 is passed through the hole 4b of the resin flange portion 4a and the hole 21c of the metal flange portion 21a.
  • the metal flange portion 21a is fastened together with the mounting portion 102 together with the resin flange portion 4a by a screw 26.
  • the screw 26 is passed through the hole 4c of the resin flange portion 4a and the hole 21d of the metal flange portion 21a. Since the resin flange portion 4a and the metal flange portion 21a are fastened together with the mounting portion 102, the resin flange portion 4a is fastened while pressing the metal flange portion 21a even if there is a dimensional variation in these parts. . Therefore, the resin flange portion 4a, the metal flange portion 21a, and the attachment portion 102 are in close contact with each other, and there is no gap.
  • the motor housing 4 and the metal boss 21 are fastened at two locations using two screws 25.
  • the present invention is not limited to this and may be fastened at some locations.
  • the motor housing 4 and the metal boss 21 are fastened to the attachment portion 102 at two locations using two screws 26. It may be tightened together.
  • the motor housing 4 and the metal boss 21 are fastened at two locations using two screws 25, and the motor housing 4 and the metal boss 21 are fastened to the mounting portion 102 by four screws 26. You may make it the structure performed in four places using.
  • the metal boss 21 is made of aluminum or the like to radiate heat H1 generated by the motor 3 to the mounting portion 102 and to radiate heat H2 of exhaust gas transmitted from the turbine housing of the turbocharger to the mounting portion 102. It is composed of a metal material with high thermal conductivity.
  • An air layer 22 exists between the cylindrical portion 20 b of the bush 20 and the cylindrical portion 21 b of the metal boss 21. This air layer 22 is a heat insulating layer utilizing the heat insulating function of air.
  • the shaft 2 is disposed in the pipe 6.
  • a female screw-shaped screw mechanism 13 is formed on the inner peripheral surface of the pipe 6.
  • a male screw-shaped screw mechanism 14 is formed on the outer peripheral surface of the shaft 2.
  • the screw mechanism 14 is screwed into and coupled to the screw mechanism 13.
  • One end side of the shaft 2 passes through the motor housing 4, the bush 20 and the metal boss 21, and is connected to a waste gate valve (not shown). The other end side of the shaft 2 is in contact with the sensor shaft 18.
  • the sensor magnet 17 is fixed to the sensor shaft 18. When the sensor shaft 18 reciprocates as the shaft 2 reciprocates, the sensor magnet 17 also reciprocates.
  • the magnetic sensor 16 detects a magnetic flux density that changes as the sensor magnet 17 reciprocates.
  • a calculation device (not shown) calculates the position of the shaft 2 based on the magnetic flux density detected by the magnetic sensor 16.
  • FIG. 4 is a diagram illustrating a state in which the actuator 1 according to Embodiment 1 of the present invention is attached to the turbocharger 100.
  • the turbocharger 100 includes a compressor 100a and a turbine 100b.
  • the compressor 100 a is installed in the compressor housing 101 a of the intake pipe 103.
  • An attachment portion 102 for attaching the actuator 1 is formed in the compressor housing 101a.
  • the turbine 100 b is installed in the turbine housing 101 b of the exhaust pipe 104.
  • the compressor housing 101a and the turbine housing 101b are made of cast iron or the like having excellent heat resistance.
  • the turbine 100b When the high-temperature exhaust gas emitted from the engine 105 flows through the exhaust pipe 104 and is discharged outside the vehicle, the turbine 100b is rotated. The amount of rotation of the turbine 100 b is adjusted by the opening degree of the waste gate valve 110. Since the turbine 100b is connected to the compressor 100a, when the turbine 100b rotates, the compressor 100a also rotates. When the compressor 100a rotates, the outside air taken into the intake pipe 103 is compressed and becomes supercharged. The supercharged air flows to the engine 105 via the intercooler 106 and the throttle valve 107. When the throttle valve 107 is closed, the air bypass valve 108 is opened and the air bypass pipe 109 is opened, and the supercharged air on the upstream side of the compressor 100a flows through the air bypass pipe 109 and returns to the downstream side of the compressor 100a.
  • the motor 3 side of the actuator 1 is disposed on the relatively low temperature compressor 100a side.
  • the metal boss 21 side of the actuator 1 is disposed on the relatively high temperature turbine 100b side.
  • the attachment portion 102 is connected to the compressor housing 101a having a relatively low temperature, the attachment portion 102 is also at a relatively low temperature.
  • the heat H2 of the exhaust gas in the turbine housing 101b is transmitted to the waste gate valve 110, the shaft 2, and the metal boss 21, and is radiated to the mounting portion 102 where the metal flange portion 21a contacts. Since the metal boss 21 is made of a metal material having a high thermal conductivity, the heat H2 can be efficiently radiated to the mounting portion 102. Further, since the resin flange portion 4a of the motor housing 4 and the metal flange portion 21a of the metal boss 21 are fastened together with the mounting portion 102 by the screw 26, the metal flange portion 21a and the mounting portion 102 are in close contact with each other, and heat H2 Is easily transmitted from the metal flange portion 21 a to the mounting portion 102. With these configurations, the temperature increase of the actuator 1 can be suppressed, and the resin motor housing 4 that is weak against heat can be protected.
  • the air layer 22 provided between the metal boss 21 and the bush 20 suppresses transmission of heat H2 from the metal boss 21 to the bush 20. Thereby, the resin bush 20 and the cap 23 which are weak against heat can be protected.
  • the heat H1 generated by the coil 10 or the like when the motor 3 is driven is transmitted from the bearing portion 5b to the metal boss 21 or from the motor housing 4 to the resin flange portion 4a, and the attachment portion 102 in contact with the metal flange portion 21a.
  • the heat is dissipated. Thereby, the temperature rise of the actuator 1 can be suppressed and the resin-made motor housing 4 weak to heat can be protected.
  • the actuator 1 includes the motor 3 covered with the resin motor housing 4 that moves the shaft 2 in the axial direction, and the resin flange portion 4a formed on the motor housing 4.
  • a bush 20 that penetrates the shaft 2 and in which the shaft 2 moves in the axial direction, a metal boss 21 that is located on the outer periphery of the bush 20 and supports the bush 20, and a metal boss 21.
  • the metal flange part 21a which is fastened together with the attachment part 102 of the turbocharger 100 together with the part 4a and contacts the attachment part 102 is provided.
  • the metal flange portion 21a and the mounting portion 102 are brought into close contact with each other.
  • the heat H1 generated by the motor 3 and the heat H2 generated by the turbocharger 100 can be radiated from the metal flange portion 21a to the mounting portion 102, and the temperature rise of the actuator 1 can be suppressed. Therefore, the heat resistance of the actuator 1 is improved, and the actuator can be used for opening and closing the waste gate valve 110 of the turbocharger 100.
  • the actuator 1 according to the first embodiment has an air layer 22 between the metal boss 21 and the bush 20. Utilizing the heat insulation function of air, the transmission of heat H2 from the metal boss 21 to the bush 20 or the like can be suppressed. Therefore, the temperature rise of the actuator 1 can be suppressed.
  • the actuator 1 may be configured such that at least a part of the metal boss 21 and the bush 20 are in contact with each other.
  • FIG. 5 is a cross-sectional view of the actuator 1 according to the first embodiment of the present invention cut along the line AA in FIG.
  • the cylindrical portion 21b of the metal boss 21 is eccentric with respect to the center 2 of the shaft 2 and the cylindrical portion 20b.
  • the metal boss 21 and the bush 20 abut at the abutting portion B.
  • the heat H ⁇ b> 1 generated by the motor 3 is transmitted through the motor housing 4, the bush 20, the contact portion B, and the metal boss 21, and is radiated from the metal flange portion 21 a to the mounting portion 102. Therefore, the temperature rise of the actuator 1 can be suppressed.
  • FIG. FIG. 6 is a cross-sectional view showing a configuration example of the metal boss 21 in the actuator 1 according to Embodiment 2 of the present invention.
  • the actuator 1 according to the second embodiment has a configuration in which a water drain hole 21e is added to the actuator 1 of the first embodiment shown in FIG.
  • FIG. 6 the same or corresponding parts as those in FIG.
  • the drain hole 21 e is a hole for discharging foreign matter such as water and dust that has entered the metal boss 21 to the outside of the metal boss 21. Foreign matters such as water and dust enter the metal boss 21 from between the resin flange portion 4a and the metal flange portion 21a and between the metal flange portion 21a and the attachment portion 102, for example.
  • the metal boss 21 has a through hole for allowing the shaft 2 to pass therethrough. However, since the gap between the shaft 2 and the through hole is very small, foreign matter tends to stay in the metal boss 21. For example, when water stops in the metal boss 21, the heat insulation function of the air layer 22 is lowered. Further, depending on the usage environment of the actuator 1, the water that has stopped may freeze and damage the actuator 1. Therefore, it is desirable to quickly drain the water that has entered the metal boss 21 out of the metal boss 21 through the drain hole 21e.
  • a drain hole 21e is formed in the lower part of the cylindrical portion 21b in the gravity direction so that the foreign matter in the metal boss 21 is easily discharged.
  • the upper side in the drawing is the upper part in the gravity direction G1 and the lower side in the drawing is the lower part in the gravity direction G1
  • water is likely to be discharged from the drain hole 21e.
  • the right side of the paper may be the upper part in the gravity direction G2
  • the left side of the paper may be the lower part in the gravity direction G2. Even in that case, water is easily discharged from the drain hole 21e.
  • the drain hole 21e is not necessarily located at the lower part in the direction of gravity. Therefore, the actuator 1 may be configured such that the drain hole 21e of the metal boss 21 is located in the lower part in the direction of gravity regardless of the mounting angle of the actuator 1. A specific example is shown in FIG.
  • FIG. 7 is a plan view showing a configuration example of the motor housing 4 and the metal boss 21 in the actuator 1 according to Embodiment 2 of the present invention.
  • the metal flange portion 21a of the metal boss 21 has four holes 21d-1, 21d-2, 21d-3, and 21d-4 arranged at equal intervals around the cylindrical portion 21b.
  • the resin flange portion 4a of the motor housing 4 has two holes 4c-1 and 4c-2. In FIG. 7, the hole 21c is not shown.
  • the upper side in the drawing is the upper part in the gravity direction G3, and the lower side in the drawing is the lower part in the gravity direction G3. Therefore, it is desirable that the drain hole 21e is disposed in the lower part in the gravity direction G3.
  • the connector 15 of the motor 3 is arranged in the upper part in the gravity direction G3 due to the convenience of wiring.
  • the hole 21d-1 and the hole 4c-1 are fastened together with the mounting portion 102
  • the hole 21d-3 and the hole 4c-2 are fastened together with the mounting portion 102.
  • the connector 15 of the motor 3 may be arranged in the lower part in the gravity direction G3 due to the convenience of wiring.
  • the hole 21d-1 and the hole 4c-2 are fastened together with the mounting portion 102
  • the hole 21d-3 and the hole 4c-1 are fastened together with the mounting portion 102.
  • the drain hole 21e of the metal boss 21 and the connector 15 of the motor 3 are disposed in the lower part in the gravity direction G3.
  • the mounting angle in the circumferential direction around the shaft 2 of the metal flange portion 21a with respect to the resin flange portion 4a is changed. It can be rotated by 90 degrees. Thereby, the position of the drain hole 21e can be changed easily.
  • the motor housing 4 and the metal boss 21 are fastened to the attachment portion 102 at two locations using two screws 26. You can tighten it.
  • the number of holes 4c-1 and 4c-2 in the resin flange portion 4a is increased to four, and the motor housing 4 and the metal boss 21 are fastened to the mounting portion 102 at four locations using four screws 26. You may make it the structure to perform.
  • the metal boss 21 of the second embodiment has the drain hole 21e. Thereby, it is possible to prevent water, dust, and the like in the metal boss 21 from staying, and to suppress a decrease in the heat insulation function of the air layer 22.
  • the number of holes 21d-1 to 21d-4 in the metal flange portion 21a is equal to or greater than the number of holes 4c-1 and 4c-2 in the resin flange portion 4a.
  • the number of holes 21d-1 to 21d-4 are provided in the metal flange portion 21a, but the number of holes may be any number. As the number of holes increases, the number of combinations of holes for fastening the metal flange portion 21a and the resin flange portion 4a increases, and the positions that the drain holes 21e can take increase. In the illustrated example, the number of holes in the metal flange portion 21a is equal to or greater than the number of holes in the resin flange portion 4a. Conversely, the number of holes in the resin flange portion 4a is equal to the number of holes in the metal flange portion 21a. That's all.
  • turbocharger actuator according to the present invention is improved in heat resistance, it is suitable for use in an actuator for operating a waste gate valve and a variable geometry vane used at a high temperature.

Abstract

An actuator (1) is provided with a motor housing (4) made of resin and a metal boss (21). A resin flange section (4a) of the motor housing (4) and a metal flange section (21a) of the metal boss (21) are both fastened to an attachment section (102) of a turbocharger (100).

Description

ターボチャージャ用アクチュエータTurbocharger actuator
 この発明は、ターボチャージャ用アクチュエータに関するものである。 This invention relates to an actuator for a turbocharger.
 特許文献1に係るアクチュエータは、シャフトを駆動するモータが樹脂製のハウジングで覆われている。このハウジングにはフランジ部が形成され、フランジ部はターボチャージャのコンプレッサハウジングにねじで締結されている。 In the actuator according to Patent Document 1, a motor that drives a shaft is covered with a resin housing. A flange portion is formed in the housing, and the flange portion is fastened to the compressor housing of the turbocharger with a screw.
国際公開第2016/135825号International Publication No. 2016/135825
 従来のアクチュエータは以上のように構成されているので、樹脂製のフランジ部が、ターボチャージャのコンプレッサハウジングに接触する。アクチュエータは駆動時に自己発熱するため、アクチュエータ内部が高温になる。また、ターボチャージャは排気ガスの熱で高温になるため、アクチュエータのフランジ部はターボチャージャの熱を受けて高温になる。これらにより、アクチュエータのハウジング等、熱に弱い樹脂製の部品が溶損する場合がある。このように、従来のアクチュエータは耐熱性が低いという課題があった。 Since the conventional actuator is configured as described above, the resin flange comes into contact with the compressor housing of the turbocharger. Since the actuator self-heats during driving, the temperature inside the actuator becomes high. Further, since the turbocharger becomes high temperature due to the heat of the exhaust gas, the flange portion of the actuator becomes high temperature due to the heat of the turbocharger. As a result, resin-sensitive parts such as the housing of the actuator may be melted. Thus, the conventional actuator had the subject that heat resistance is low.
 この発明は、上記のような課題を解決するためになされたもので、ターボチャージャ用アクチュエータの耐熱性を向上させることを目的とする。 The present invention has been made to solve the above-described problems, and aims to improve the heat resistance of an actuator for a turbocharger.
 この発明に係るターボチャージャ用アクチュエータは、シャフトをその軸方向に移動させる、樹脂製のハウジングで被覆されたモータと、ハウジングに形成された樹脂フランジ部と、シャフトに貫通され、内部をシャフトがその軸方向に移動するブッシュと、ブッシュの外周に位置し、ブッシュを支持する金属ボスと、金属ボスに形成され、樹脂フランジ部と共にターボチャージャの取り付け部に共締めされて取り付け部に接触する金属フランジ部とを備えるものである。 The turbocharger actuator according to the present invention includes a motor covered with a resin housing that moves the shaft in the axial direction, a resin flange formed on the housing, and a shaft that passes through the shaft. A bush that moves in the axial direction, a metal boss that is located on the outer periphery of the bush and supports the bush, and a metal flange that is formed on the metal boss and is fastened together with the mounting portion of the turbocharger together with the resin flange portion. Part.
 この発明によれば、金属フランジ部と樹脂フランジ部とがターボチャージャの取り付け部に共締めされ、金属フランジ部が取り付け部に接触するようにしたので、モータが発する熱およびターボチャージャが発する熱を、金属フランジ部から取り付け部へ放熱できる。よって、アクチュエータの温度上昇を抑制でき、アクチュエータの耐熱性が向上する。 According to the present invention, the metal flange portion and the resin flange portion are fastened together with the attachment portion of the turbocharger, and the metal flange portion is brought into contact with the attachment portion. Therefore, heat generated by the motor and heat generated by the turbocharger are generated. Heat can be dissipated from the metal flange portion to the mounting portion. Therefore, the temperature rise of the actuator can be suppressed and the heat resistance of the actuator is improved.
この発明の実施の形態1に係るアクチュエータの構成例を示す外観斜視図である。It is an external appearance perspective view which shows the structural example of the actuator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るアクチュエータの構成例を示す断面図である。It is sectional drawing which shows the structural example of the actuator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るアクチュエータの構成例を示す分解斜視図である。It is a disassembled perspective view which shows the structural example of the actuator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るアクチュエータをターボチャージャに取り付けた状態を例示する図である。It is a figure which illustrates the state which attached the actuator which concerns on Embodiment 1 of this invention to the turbocharger. この発明の実施の形態1に係るアクチュエータを、図2のA-A線で切断した断面図である。FIG. 3 is a cross-sectional view of the actuator according to the first embodiment of the present invention cut along line AA in FIG. この発明の実施の形態2に係るアクチュエータのうちの金属ボスの構成例を示す断面図である。It is sectional drawing which shows the structural example of the metal boss | hub of the actuator which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るアクチュエータにおけるモータハウジングと金属ボスの構成例を示す平面図である。It is a top view which shows the structural example of the motor housing and metal boss | hub in the actuator which concerns on Embodiment 2 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るアクチュエータ1の構成例を示す外観斜視図である。図2は、この発明の実施の形態1に係るアクチュエータ1の構成例を示す断面図である。図3は、この発明の実施の形態1に係るアクチュエータ1の構成例を示す分解斜視図である。実施の形態1に係るアクチュエータ1は、シャフト2をその軸方向に往復移動させるものである。以下では、アクチュエータ1を、ターボチャージャのウェイストゲートバルブを開閉する用途に用いる。このアクチュエータ1は、ねじ26により、ターボチャージャの取り付け部102に取り付けられる。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is an external perspective view showing a configuration example of an actuator 1 according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing a configuration example of the actuator 1 according to Embodiment 1 of the present invention. FIG. 3 is an exploded perspective view showing a configuration example of the actuator 1 according to the first embodiment of the present invention. The actuator 1 according to Embodiment 1 reciprocates the shaft 2 in the axial direction. Hereinafter, the actuator 1 is used for opening and closing a waste gate valve of a turbocharger. The actuator 1 is attached to a turbocharger attaching portion 102 by a screw 26.
 モータ3は、シャフト2をその軸方向に往復移動させる駆動力を発生させる。モータ3は、整流子7、ブラシ8、回転子9、コイル10、磁石11、およびヨーク12を含むブラシ付きモータである。このモータ3の内部には2つの軸受部5a,5bが設置され、軸受部5a,5bはパイプ6を回転自在に支持する。パイプ6の外周面には整流子7、回転子9およびコイル10が固定される。整流子7の外周側には、ブラシ8が設置される。回転子9およびコイル10の外周側には、磁石11およびヨーク12が設置される。なお、モータ3は、ブラシ付きモータに限定されるものでなく、シャフト2をその軸方向に往復移動させる駆動力を発生させるものであればよい。 The motor 3 generates a driving force for reciprocating the shaft 2 in the axial direction. The motor 3 is a motor with a brush including a commutator 7, a brush 8, a rotor 9, a coil 10, a magnet 11, and a yoke 12. Two bearing portions 5a and 5b are installed inside the motor 3, and the bearing portions 5a and 5b support the pipe 6 in a rotatable manner. A commutator 7, a rotor 9, and a coil 10 are fixed to the outer peripheral surface of the pipe 6. A brush 8 is installed on the outer peripheral side of the commutator 7. A magnet 11 and a yoke 12 are installed on the outer peripheral side of the rotor 9 and the coil 10. The motor 3 is not limited to a motor with a brush, and any motor 3 that generates a driving force for reciprocating the shaft 2 in the axial direction thereof may be used.
 モータ3は、樹脂製のモータハウジング4に被覆される。モータハウジング4の一端側には、コネクタ15が一体に形成され、他端側には、樹脂フランジ部4aが一体に形成される。また、モータハウジング4の内部には、シャフト2の位置を検出するための磁気センサ16、センサ用磁石17およびセンサ用シャフト18が設置される。 The motor 3 is covered with a resin motor housing 4. A connector 15 is integrally formed on one end side of the motor housing 4, and a resin flange portion 4 a is integrally formed on the other end side. Further, a magnetic sensor 16 for detecting the position of the shaft 2, a sensor magnet 17, and a sensor shaft 18 are installed inside the motor housing 4.
 モータハウジング4の樹脂フランジ部4aが形成された側には、ブッシュ20および金属ボス21が設置される。ブッシュ20および金属ボス21は、シャフト2に貫通される。ブッシュ20および金属ボス21を貫通したシャフト2の端部には、不図示のウェイストゲートバルブが連結される。 The bush 20 and the metal boss 21 are installed on the side of the motor housing 4 where the resin flange portion 4a is formed. The bush 20 and the metal boss 21 are passed through the shaft 2. A waste gate valve (not shown) is connected to the end of the shaft 2 that passes through the bush 20 and the metal boss 21.
 ブッシュ20は、フランジ部20aおよび円筒部20bを有する。円筒部20bのモータ3側にはフランジ部20aが形成され、反対側にはシャフト2の貫通穴が形成される。フランジ部20aは、モータハウジング4の樹脂フランジ部4aが形成された側に嵌合する。円筒部20bは、シャフト2の軸方向の移動をガイドする。シール部材24は、ブッシュ20とシャフト2との隙間を塞ぐ。このシール部材24は、例えばOリングである。キャップ23は、ブッシュ20の貫通穴側に嵌合され、シール部材24を支持する。ブッシュ20およびキャップ23は、内周面に接触するシャフト2の削れを抑えるために、例えば樹脂で構成される。 The bush 20 has a flange portion 20a and a cylindrical portion 20b. A flange portion 20a is formed on the motor 3 side of the cylindrical portion 20b, and a through hole of the shaft 2 is formed on the opposite side. The flange portion 20a is fitted to the side of the motor housing 4 where the resin flange portion 4a is formed. The cylindrical portion 20b guides the movement of the shaft 2 in the axial direction. The seal member 24 closes the gap between the bush 20 and the shaft 2. This seal member 24 is, for example, an O-ring. The cap 23 is fitted to the through hole side of the bush 20 and supports the seal member 24. The bush 20 and the cap 23 are made of, for example, resin in order to suppress the shaving of the shaft 2 that contacts the inner peripheral surface.
 ブッシュ20の外周には、ブッシュ20を被覆する金属ボス21が設けられる。この金属ボス21は、金属フランジ部21aおよび円筒部21bを有する。円筒部21bのモータ3側には金属フランジ部21aが形成され、反対側にはシャフト2の貫通穴が形成される。金属フランジ部21aは、ねじ25により、モータハウジング4の樹脂フランジ部4aに締結される。ねじ25は、樹脂フランジ部4aの穴4bと金属フランジ部21aの穴21cとに通される。また、金属フランジ部21aは、ねじ26により、樹脂フランジ部4aとともに取り付け部102に共締めされる。ねじ26は、樹脂フランジ部4aの穴4cと金属フランジ部21aの穴21dとに通される。樹脂フランジ部4aと金属フランジ部21aとが取り付け部102に共締めされるため、これらの部品に寸法ばらつきがあったとしても、樹脂フランジ部4aが金属フランジ部21aを押さえつけた状態で締結される。よって、樹脂フランジ部4aと金属フランジ部21aと取り付け部102とが互いに密着し、隙間がない。 A metal boss 21 that covers the bush 20 is provided on the outer periphery of the bush 20. The metal boss 21 has a metal flange portion 21a and a cylindrical portion 21b. A metal flange portion 21a is formed on the motor 3 side of the cylindrical portion 21b, and a through hole of the shaft 2 is formed on the opposite side. The metal flange portion 21 a is fastened to the resin flange portion 4 a of the motor housing 4 with a screw 25. The screw 25 is passed through the hole 4b of the resin flange portion 4a and the hole 21c of the metal flange portion 21a. Further, the metal flange portion 21a is fastened together with the mounting portion 102 together with the resin flange portion 4a by a screw 26. The screw 26 is passed through the hole 4c of the resin flange portion 4a and the hole 21d of the metal flange portion 21a. Since the resin flange portion 4a and the metal flange portion 21a are fastened together with the mounting portion 102, the resin flange portion 4a is fastened while pressing the metal flange portion 21a even if there is a dimensional variation in these parts. . Therefore, the resin flange portion 4a, the metal flange portion 21a, and the attachment portion 102 are in close contact with each other, and there is no gap.
 なお、図示例では、モータハウジング4と金属ボス21との締結を2つのねじ25を用いて2か所で行う構成であるが、これに限定されず、何か所で締結してもよい。同様に、図示例では、モータハウジング4と金属ボス21の取り付け部102への共締めを2つのねじ26を用いて2か所で行う構成であるが、これに限定されず、何か所で共締めしてもよい。例えば、モータハウジング4と金属ボス21との締結を2つのねじ25を用いて2か所で行う構成にすると共に、モータハウジング4と金属ボス21の取り付け部102への共締めを4つのねじ26を用いて4か所で行う構成にしてもよい。 In the illustrated example, the motor housing 4 and the metal boss 21 are fastened at two locations using two screws 25. However, the present invention is not limited to this and may be fastened at some locations. Similarly, in the illustrated example, the motor housing 4 and the metal boss 21 are fastened to the attachment portion 102 at two locations using two screws 26. It may be tightened together. For example, the motor housing 4 and the metal boss 21 are fastened at two locations using two screws 25, and the motor housing 4 and the metal boss 21 are fastened to the mounting portion 102 by four screws 26. You may make it the structure performed in four places using.
 この金属ボス21は、モータ3が発する熱H1を取り付け部102へ放熱するために、および、ターボチャージャのタービンハウジングから伝わる排気ガスの熱H2を取り付け部102へ放熱するために、アルミ等の、熱伝導率の高い金属材料で構成される。また、ブッシュ20の円筒部20bと、金属ボス21の円筒部21bとの間には空気層22がある。この空気層22は、空気の断熱機能を利用した断熱層である。 The metal boss 21 is made of aluminum or the like to radiate heat H1 generated by the motor 3 to the mounting portion 102 and to radiate heat H2 of exhaust gas transmitted from the turbine housing of the turbocharger to the mounting portion 102. It is composed of a metal material with high thermal conductivity. An air layer 22 exists between the cylindrical portion 20 b of the bush 20 and the cylindrical portion 21 b of the metal boss 21. This air layer 22 is a heat insulating layer utilizing the heat insulating function of air.
 パイプ6の中にはシャフト2が配置される。パイプ6の内周面には雌ねじ形状のねじ機構13が形成される。一方、シャフト2の外周面には雄ねじ形状のねじ機構14が形成される。ねじ機構14はねじ機構13にねじ込まれて結合される。シャフト2の一端側は、モータハウジング4、ブッシュ20および金属ボス21を貫通して、不図示のウェイストゲートバルブに連結される。シャフト2の他端側は、センサ用シャフト18に当接する。 The shaft 2 is disposed in the pipe 6. A female screw-shaped screw mechanism 13 is formed on the inner peripheral surface of the pipe 6. On the other hand, a male screw-shaped screw mechanism 14 is formed on the outer peripheral surface of the shaft 2. The screw mechanism 14 is screwed into and coupled to the screw mechanism 13. One end side of the shaft 2 passes through the motor housing 4, the bush 20 and the metal boss 21, and is connected to a waste gate valve (not shown). The other end side of the shaft 2 is in contact with the sensor shaft 18.
 コネクタ15のターミナル15aに電圧が印加されると、電流がターミナル15a、ブラシ8、整流子7およびコイル10へ流れる。コイル10に電流が流れると、回転子9は磁化されて磁石11に引き付けられる。これにより回転子9が回転し、この回転子9に一体化されたパイプ6等も回転する。回転子9の回転運動は、パイプ6のねじ機構13とシャフト2のねじ機構14との結合によって直動運動に変換され、シャフト2が金属ボス21の外へ押し出される。コイル10に流れる電流が逆転すると、回転子9が逆向きに回転し、シャフト2が金属ボス21の内へ引き込まれる。シャフト2の往復移動に伴い、不図示のウェイストゲートバルブが開閉する。 When a voltage is applied to the terminal 15a of the connector 15, a current flows to the terminal 15a, the brush 8, the commutator 7, and the coil 10. When a current flows through the coil 10, the rotor 9 is magnetized and attracted to the magnet 11. As a result, the rotor 9 rotates, and the pipe 6 and the like integrated with the rotor 9 also rotate. The rotational motion of the rotor 9 is converted into a linear motion by the coupling of the screw mechanism 13 of the pipe 6 and the screw mechanism 14 of the shaft 2, and the shaft 2 is pushed out of the metal boss 21. When the current flowing through the coil 10 is reversed, the rotor 9 rotates in the reverse direction, and the shaft 2 is drawn into the metal boss 21. As the shaft 2 reciprocates, a waste gate valve (not shown) opens and closes.
 センサ用磁石17は、センサ用シャフト18に固定される。シャフト2の往復移動に伴ってセンサ用シャフト18が往復移動すると、センサ用磁石17も連動して往復移動する。磁気センサ16は、センサ用磁石17の往復移動に伴って変化する磁束密度を検出する。不図示の演算装置は、磁気センサ16が検出した磁束密度に基づいて、シャフト2の位置を演算する。 The sensor magnet 17 is fixed to the sensor shaft 18. When the sensor shaft 18 reciprocates as the shaft 2 reciprocates, the sensor magnet 17 also reciprocates. The magnetic sensor 16 detects a magnetic flux density that changes as the sensor magnet 17 reciprocates. A calculation device (not shown) calculates the position of the shaft 2 based on the magnetic flux density detected by the magnetic sensor 16.
 図4は、この発明の実施の形態1に係るアクチュエータ1をターボチャージャ100に取り付けた状態を例示する図である。ターボチャージャ100は、コンプレッサ100aおよびタービン100bを備える。コンプレッサ100aは、吸気配管103のコンプレッサハウジング101a内に設置される。このコンプレッサハウジング101aには、アクチュエータ1を取り付けるための取り付け部102が形成される。タービン100bは、排気配管104のタービンハウジング101bに設置される。コンプレッサハウジング101aおよびタービンハウジング101bは、耐熱性に優れた鋳鉄等で構成される。 FIG. 4 is a diagram illustrating a state in which the actuator 1 according to Embodiment 1 of the present invention is attached to the turbocharger 100. The turbocharger 100 includes a compressor 100a and a turbine 100b. The compressor 100 a is installed in the compressor housing 101 a of the intake pipe 103. An attachment portion 102 for attaching the actuator 1 is formed in the compressor housing 101a. The turbine 100 b is installed in the turbine housing 101 b of the exhaust pipe 104. The compressor housing 101a and the turbine housing 101b are made of cast iron or the like having excellent heat resistance.
 エンジン105から出た高温の排気ガスは、排気配管104を流れて車両外へ排出される際、タービン100bを回転させる。タービン100bの回転量は、ウェイストゲートバルブ110の開度により調整される。タービン100bはコンプレッサ100aと連結されているので、タービン100bが回転するとコンプレッサ100aも回転する。コンプレッサ100aが回転すると、吸気配管103に取り入れられた外気が圧縮されて過給気になる。過給気は、インタクーラ106およびスロットルバルブ107を経由して、エンジン105へ流れる。スロットルバルブ107の閉弁時にはエアバイパスバルブ108が開弁してエアバイパス配管109が開き、コンプレッサ100a上流側の過給気がエアバイパス配管109を流れてコンプレッサ100a下流側へ戻る。 When the high-temperature exhaust gas emitted from the engine 105 flows through the exhaust pipe 104 and is discharged outside the vehicle, the turbine 100b is rotated. The amount of rotation of the turbine 100 b is adjusted by the opening degree of the waste gate valve 110. Since the turbine 100b is connected to the compressor 100a, when the turbine 100b rotates, the compressor 100a also rotates. When the compressor 100a rotates, the outside air taken into the intake pipe 103 is compressed and becomes supercharged. The supercharged air flows to the engine 105 via the intercooler 106 and the throttle valve 107. When the throttle valve 107 is closed, the air bypass valve 108 is opened and the air bypass pipe 109 is opened, and the supercharged air on the upstream side of the compressor 100a flows through the air bypass pipe 109 and returns to the downstream side of the compressor 100a.
 図4において、アクチュエータ1のモータ3側は、相対的に低温なコンプレッサ100a側に配置される。一方、アクチュエータ1の金属ボス21側は、相対的に高温なタービン100b側に配置される。また、取り付け部102は、相対的に低温なコンプレッサハウジング101aと接続しているため、取り付け部102も相対的に低温である。 4, the motor 3 side of the actuator 1 is disposed on the relatively low temperature compressor 100a side. On the other hand, the metal boss 21 side of the actuator 1 is disposed on the relatively high temperature turbine 100b side. Further, since the attachment portion 102 is connected to the compressor housing 101a having a relatively low temperature, the attachment portion 102 is also at a relatively low temperature.
 タービンハウジング101bの排気ガスの熱H2は、ウェイストゲートバルブ110、シャフト2、および金属ボス21を伝い、金属フランジ部21aが接触する取り付け部102へと放熱される。金属ボス21は、熱伝導率の高い金属材料で構成されているため、熱H2を効率的に取り付け部102へ放熱できる。また、モータハウジング4の樹脂フランジ部4aと金属ボス21の金属フランジ部21aとがねじ26によって取り付け部102に共締めされているので、金属フランジ部21aと取り付け部102とが密着し、熱H2が金属フランジ部21aから取り付け部102へと伝わりやすい。これらの構成により、アクチュエータ1の温度上昇を抑制でき、熱に弱い樹脂製のモータハウジング4を保護できる。 The heat H2 of the exhaust gas in the turbine housing 101b is transmitted to the waste gate valve 110, the shaft 2, and the metal boss 21, and is radiated to the mounting portion 102 where the metal flange portion 21a contacts. Since the metal boss 21 is made of a metal material having a high thermal conductivity, the heat H2 can be efficiently radiated to the mounting portion 102. Further, since the resin flange portion 4a of the motor housing 4 and the metal flange portion 21a of the metal boss 21 are fastened together with the mounting portion 102 by the screw 26, the metal flange portion 21a and the mounting portion 102 are in close contact with each other, and heat H2 Is easily transmitted from the metal flange portion 21 a to the mounting portion 102. With these configurations, the temperature increase of the actuator 1 can be suppressed, and the resin motor housing 4 that is weak against heat can be protected.
 また、金属ボス21とブッシュ20との間に設けられた空気層22は、金属ボス21からブッシュ20への熱H2の伝わりを抑制する。これにより、熱に弱い樹脂製のブッシュ20およびキャップ23を保護できる。 Further, the air layer 22 provided between the metal boss 21 and the bush 20 suppresses transmission of heat H2 from the metal boss 21 to the bush 20. Thereby, the resin bush 20 and the cap 23 which are weak against heat can be protected.
 さらに、モータ3が駆動するときにコイル10等が発する熱H1は、軸受部5bから金属ボス21を伝い、またはモータハウジング4から樹脂フランジ部4aを伝い、金属フランジ部21aが接触する取り付け部102へと放熱される。これにより、アクチュエータ1の温度上昇を抑制でき、熱に弱い樹脂製のモータハウジング4を保護できる。 Furthermore, the heat H1 generated by the coil 10 or the like when the motor 3 is driven is transmitted from the bearing portion 5b to the metal boss 21 or from the motor housing 4 to the resin flange portion 4a, and the attachment portion 102 in contact with the metal flange portion 21a. The heat is dissipated. Thereby, the temperature rise of the actuator 1 can be suppressed and the resin-made motor housing 4 weak to heat can be protected.
 以上のように、実施の形態1に係るアクチュエータ1は、シャフト2をその軸方向に移動させる、樹脂製のモータハウジング4で被覆されたモータ3と、モータハウジング4に形成された樹脂フランジ部4aと、シャフト2に貫通され、内部をシャフト2がその軸方向に移動するブッシュ20と、ブッシュ20の外周に位置し、ブッシュ20を支持する金属ボス21と、金属ボス21に形成され、樹脂フランジ部4aと共にターボチャージャ100の取り付け部102に共締めされて取り付け部102に接触する金属フランジ部21aとを備える。共締めにより、金属フランジ部21aと取り付け部102とが密着する。これにより、モータ3が発する熱H1およびターボチャージャ100が発する熱H2を、金属フランジ部21aから取り付け部102へ放熱でき、アクチュエータ1の温度上昇を抑制できる。よって、アクチュエータ1の耐熱性が向上し、アクチュエータを、ターボチャージャ100のウェイストゲートバルブ110を開閉する用途に用いることができる。 As described above, the actuator 1 according to the first embodiment includes the motor 3 covered with the resin motor housing 4 that moves the shaft 2 in the axial direction, and the resin flange portion 4a formed on the motor housing 4. A bush 20 that penetrates the shaft 2 and in which the shaft 2 moves in the axial direction, a metal boss 21 that is located on the outer periphery of the bush 20 and supports the bush 20, and a metal boss 21. The metal flange part 21a which is fastened together with the attachment part 102 of the turbocharger 100 together with the part 4a and contacts the attachment part 102 is provided. The metal flange portion 21a and the mounting portion 102 are brought into close contact with each other. Thereby, the heat H1 generated by the motor 3 and the heat H2 generated by the turbocharger 100 can be radiated from the metal flange portion 21a to the mounting portion 102, and the temperature rise of the actuator 1 can be suppressed. Therefore, the heat resistance of the actuator 1 is improved, and the actuator can be used for opening and closing the waste gate valve 110 of the turbocharger 100.
 また、実施の形態1に係るアクチュエータ1は、金属ボス21とブッシュ20との間に空気層22がある。空気の断熱機能を利用して、金属ボス21からブッシュ20等への熱H2の伝わりを抑制できる。よって、アクチュエータ1の温度上昇を抑制できる。 Further, the actuator 1 according to the first embodiment has an air layer 22 between the metal boss 21 and the bush 20. Utilizing the heat insulation function of air, the transmission of heat H2 from the metal boss 21 to the bush 20 or the like can be suppressed. Therefore, the temperature rise of the actuator 1 can be suppressed.
 なお、アクチュエータ1は、金属ボス21とブッシュ20の少なくとも一部が当接している構成であってもよい。
 図5は、この発明の実施の形態1に係るアクチュエータ1を、図2のA-A線で切断した断面図である。シャフト2および円筒部20bの中心Oに対し、金属ボス21の円筒部21bは偏心している。これにより、金属ボス21とブッシュ20とは、当接部Bにおいて当接する。この構成により、モータ3が発する熱H1が、モータハウジング4、ブッシュ20、当接部Bおよび金属ボス21を伝い、金属フランジ部21aから取り付け部102へと放熱される。よって、アクチュエータ1の温度上昇を抑制できる。
The actuator 1 may be configured such that at least a part of the metal boss 21 and the bush 20 are in contact with each other.
FIG. 5 is a cross-sectional view of the actuator 1 according to the first embodiment of the present invention cut along the line AA in FIG. The cylindrical portion 21b of the metal boss 21 is eccentric with respect to the center 2 of the shaft 2 and the cylindrical portion 20b. As a result, the metal boss 21 and the bush 20 abut at the abutting portion B. With this configuration, the heat H <b> 1 generated by the motor 3 is transmitted through the motor housing 4, the bush 20, the contact portion B, and the metal boss 21, and is radiated from the metal flange portion 21 a to the mounting portion 102. Therefore, the temperature rise of the actuator 1 can be suppressed.
実施の形態2.
 図6は、この発明の実施の形態2に係るアクチュエータ1のうちの金属ボス21の構成例を示す断面図である。実施の形態2に係るアクチュエータ1は、図1に示した実施の形態1のアクチュエータ1に対して水抜き穴21eが追加された構成である。図6において図1と同一または相当する部分は、同一の符号を付し説明を省略する。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing a configuration example of the metal boss 21 in the actuator 1 according to Embodiment 2 of the present invention. The actuator 1 according to the second embodiment has a configuration in which a water drain hole 21e is added to the actuator 1 of the first embodiment shown in FIG. In FIG. 6, the same or corresponding parts as those in FIG.
 水抜き穴21eは、金属ボス21内に侵入した水および塵等の異物を金属ボス21外へ排出するための穴である。水および塵等の異物は、例えば、樹脂フランジ部4aと金属フランジ部21aとの間、および金属フランジ部21aと取り付け部102との間から、金属ボス21内へ侵入する。金属ボス21にはシャフト2を貫通させるための貫通穴が開口しているが、シャフト2と貫通穴との隙間はわずかであるため、金属ボス21内に異物が停留しやすい。例えば、水が金属ボス21内に停留した場合、空気層22の断熱機能が低下する。また、アクチュエータ1の使用環境によっては停留した水が凍結してアクチュエータ1を破損させる可能性がある。そのため、金属ボス21内に侵入した水を水抜き穴21eから金属ボス21外へ速やかに排出することが望ましい。 The drain hole 21 e is a hole for discharging foreign matter such as water and dust that has entered the metal boss 21 to the outside of the metal boss 21. Foreign matters such as water and dust enter the metal boss 21 from between the resin flange portion 4a and the metal flange portion 21a and between the metal flange portion 21a and the attachment portion 102, for example. The metal boss 21 has a through hole for allowing the shaft 2 to pass therethrough. However, since the gap between the shaft 2 and the through hole is very small, foreign matter tends to stay in the metal boss 21. For example, when water stops in the metal boss 21, the heat insulation function of the air layer 22 is lowered. Further, depending on the usage environment of the actuator 1, the water that has stopped may freeze and damage the actuator 1. Therefore, it is desirable to quickly drain the water that has entered the metal boss 21 out of the metal boss 21 through the drain hole 21e.
 図6の例では、金属ボス21内の異物が排出されやすいように、円筒部21bの重力方向における下部に水抜き穴21eが形成されている。図6において、紙面上側が重力方向G1における上部であり紙面下側が重力方向G1における下部である場合、水は水抜き穴21eから排出されやすい。あるいは、アクチュエータ1の取り付け角度によっては、紙面右側が重力方向G2における上部であり紙面左側が重力方向G2における下部になる場合もある。その場合でも、水は水抜き穴21eから排出されやすい。 In the example of FIG. 6, a drain hole 21e is formed in the lower part of the cylindrical portion 21b in the gravity direction so that the foreign matter in the metal boss 21 is easily discharged. In FIG. 6, when the upper side in the drawing is the upper part in the gravity direction G1 and the lower side in the drawing is the lower part in the gravity direction G1, water is likely to be discharged from the drain hole 21e. Alternatively, depending on the mounting angle of the actuator 1, the right side of the paper may be the upper part in the gravity direction G2, and the left side of the paper may be the lower part in the gravity direction G2. Even in that case, water is easily discharged from the drain hole 21e.
 アクチュエータ1の取り付け角度によっては、水抜き穴21eが重力方向における下部に位置するとは限らない。そこで、アクチュエータ1の取り付け角度によらず金属ボス21の水抜き穴21eが重力方向における下部に位置するように、アクチュエータ1を構成してもよい。具体例を、図7に示す。 Depending on the mounting angle of the actuator 1, the drain hole 21e is not necessarily located at the lower part in the direction of gravity. Therefore, the actuator 1 may be configured such that the drain hole 21e of the metal boss 21 is located in the lower part in the direction of gravity regardless of the mounting angle of the actuator 1. A specific example is shown in FIG.
 図7は、この発明の実施の形態2に係るアクチュエータ1におけるモータハウジング4および金属ボス21の構成例を示す平面図である。金属ボス21の金属フランジ部21aには、円筒部21bの周囲に等間隔に並んだ4つの穴21d-1,21d-2,21d-3,21d-4がある。一方、モータハウジング4の樹脂フランジ部4aには、2つの穴4c-1,4c-2がある。なお、図7では、穴21cは図示を省略している。 FIG. 7 is a plan view showing a configuration example of the motor housing 4 and the metal boss 21 in the actuator 1 according to Embodiment 2 of the present invention. The metal flange portion 21a of the metal boss 21 has four holes 21d-1, 21d-2, 21d-3, and 21d-4 arranged at equal intervals around the cylindrical portion 21b. On the other hand, the resin flange portion 4a of the motor housing 4 has two holes 4c-1 and 4c-2. In FIG. 7, the hole 21c is not shown.
 図7では紙面上側が重力方向G3における上部であり紙面下側が重力方向G3における下部である。よって、水抜き穴21eは、重力方向G3における下部に配置されることが望ましい。
 ここで、配線の都合により、モータ3のコネクタ15は、重力方向G3における上部に配置される場合を想定する。この場合、穴21d-1と穴4c-1とを取り付け部102に共締めするとともに、穴21d-3と穴4c-2とを取り付け部102に共締めする。
In FIG. 7, the upper side in the drawing is the upper part in the gravity direction G3, and the lower side in the drawing is the lower part in the gravity direction G3. Therefore, it is desirable that the drain hole 21e is disposed in the lower part in the gravity direction G3.
Here, it is assumed that the connector 15 of the motor 3 is arranged in the upper part in the gravity direction G3 due to the convenience of wiring. In this case, the hole 21d-1 and the hole 4c-1 are fastened together with the mounting portion 102, and the hole 21d-3 and the hole 4c-2 are fastened together with the mounting portion 102.
 あるいは、配線の都合により、モータ3のコネクタ15が、重力方向G3における下部に配置される場合もある。この場合、穴21d-1と穴4c-2とを取り付け部102に共締めするとともに、穴21d-3と穴4c-1とを取り付け部102に共締めする。これにより、金属ボス21の水抜き穴21eおよびモータ3のコネクタ15が、重力方向G3における下部に配置される。 Alternatively, the connector 15 of the motor 3 may be arranged in the lower part in the gravity direction G3 due to the convenience of wiring. In this case, the hole 21d-1 and the hole 4c-2 are fastened together with the mounting portion 102, and the hole 21d-3 and the hole 4c-1 are fastened together with the mounting portion 102. Thereby, the drain hole 21e of the metal boss 21 and the connector 15 of the motor 3 are disposed in the lower part in the gravity direction G3.
 このように、金属フランジ部21aと樹脂フランジ部4aとを共締めする穴の組み合わせを変更することにより、樹脂フランジ部4aに対する金属フランジ部21aの、シャフト2を中心とする周方向の取り付け角度を90度ずつ回転させることができる。これにより、水抜き穴21eの位置を容易に変更できる。
 なお、図示例では、モータハウジング4と金属ボス21の取り付け部102への共締めを2つのねじ26を用いて2か所で行う構成であるが、これに限定されず、何か所で共締めしてもよい。例えば、樹脂フランジ部4aの穴4c-1,4c-2の数を4つに増やし、モータハウジング4と金属ボス21の取り付け部102への共締めを4つのねじ26を用いて4か所で行う構成にしてもよい。
Thus, by changing the combination of the holes for fastening the metal flange portion 21a and the resin flange portion 4a together, the mounting angle in the circumferential direction around the shaft 2 of the metal flange portion 21a with respect to the resin flange portion 4a is changed. It can be rotated by 90 degrees. Thereby, the position of the drain hole 21e can be changed easily.
In the illustrated example, the motor housing 4 and the metal boss 21 are fastened to the attachment portion 102 at two locations using two screws 26. You can tighten it. For example, the number of holes 4c-1 and 4c-2 in the resin flange portion 4a is increased to four, and the motor housing 4 and the metal boss 21 are fastened to the mounting portion 102 at four locations using four screws 26. You may make it the structure to perform.
 以上のように、実施の形態2の金属ボス21は、水抜き穴21eを有する。これにより、金属ボス21内の水および塵等の停留を防止でき、ひいては空気層22の断熱機能低下を抑制できる。 As described above, the metal boss 21 of the second embodiment has the drain hole 21e. Thereby, it is possible to prevent water, dust, and the like in the metal boss 21 from staying, and to suppress a decrease in the heat insulation function of the air layer 22.
 また、実施の形態2に係るアクチュエータ1は、金属フランジ部21aの穴21d-1~21d-4の数が樹脂フランジ部4aの穴4c-1,4c-2の数以上であり、金属フランジ部21aと樹脂フランジ部4aとを共締めする穴の組み合わせを変更することにより、樹脂フランジ部4aに対する金属フランジ部21aの、シャフト2を中心とする周方向の取り付け角度が変更可能である。これにより、水抜き穴21eの位置を容易に変更できる。 In the actuator 1 according to the second embodiment, the number of holes 21d-1 to 21d-4 in the metal flange portion 21a is equal to or greater than the number of holes 4c-1 and 4c-2 in the resin flange portion 4a. By changing the combination of holes for fastening 21a and the resin flange portion 4a together, the circumferential mounting angle of the metal flange portion 21a with respect to the resin flange portion 4a around the shaft 2 can be changed. Thereby, the position of the drain hole 21e can be changed easily.
 なお、図示例では、金属フランジ部21aに4つの穴21d-1~21d-4を設ける構成であるが、穴の数は任意の数でよい。穴の数が多いほど、金属フランジ部21aと樹脂フランジ部4aとを共締めする穴の組み合わせ数が増え、水抜き穴21eがとり得る位置が増える。
 また、図示例では、金属フランジ部21aの穴の数が、樹脂フランジ部4aの穴の数以上であるが、反対に、樹脂フランジ部4aの穴の数が、金属フランジ部21aの穴の数以上でもよい。この構成の場合にも、金属フランジ部21aと樹脂フランジ部4aとを共締めする穴の組み合わせを変更することにより、樹脂フランジ部4aに対する金属フランジ部21aの、シャフト2を中心とする周方向の取り付け角度を変更できる。
In the illustrated example, four holes 21d-1 to 21d-4 are provided in the metal flange portion 21a, but the number of holes may be any number. As the number of holes increases, the number of combinations of holes for fastening the metal flange portion 21a and the resin flange portion 4a increases, and the positions that the drain holes 21e can take increase.
In the illustrated example, the number of holes in the metal flange portion 21a is equal to or greater than the number of holes in the resin flange portion 4a. Conversely, the number of holes in the resin flange portion 4a is equal to the number of holes in the metal flange portion 21a. That's all. Also in the case of this configuration, by changing the combination of holes for fastening the metal flange portion 21a and the resin flange portion 4a together, the circumferential direction around the shaft 2 of the metal flange portion 21a with respect to the resin flange portion 4a is changed. The mounting angle can be changed.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modification of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible.
 この発明に係るターボチャージャ用アクチュエータは、耐熱性を向上させるようにしたので、高温下で使用されるウェイストゲートバルブおよび可変ジオメトリベーン等を作動させるアクチュエータに用いるのに適している。 Since the turbocharger actuator according to the present invention is improved in heat resistance, it is suitable for use in an actuator for operating a waste gate valve and a variable geometry vane used at a high temperature.
 1 アクチュエータ、2 シャフト、3 モータ、4 モータハウジング、4a 樹脂フランジ部、4b,4c,4c-1,4c-2,21c,21d,21d-1~21d-4 穴、5a,5b 軸受部、6 パイプ、7 整流子、8 ブラシ、9 回転子、10 コイル、11 磁石、12 ヨーク、13,14 ねじ機構、15 コネクタ、15a ターミナル、16 磁気センサ、17 センサ用磁石、18 センサ用シャフト、20 ブッシュ、20a フランジ部、20b,21b 円筒部、21 金属ボス、21a 金属フランジ部、21e 水抜き穴、22 空気層、23 キャップ、24 シール部材、25,26 ねじ、100 ターボチャージャ、100a コンプレッサ、100b タービン、101a コンプレッサハウジング、101b タービンハウジング、102 取り付け部、103 吸気配管、104 排気配管、105 エンジン、106 インタクーラ、107 スロットルバルブ、108 エアバイパスバルブ、109 エアバイパス配管、110 ウェイストゲートバルブ、B 当接部、G1,G2,G3 重力方向、H1,H2 熱、O 中心。 1 actuator, 2 shaft, 3 motor, 4 motor housing, 4a resin flange part, 4b, 4c, 4c-1, 4c-2, 21c, 21d, 21d-1 to 21d-4 holes, 5a, 5b bearing part, 6 Pipe, 7 commutator, 8 brush, 9 rotor, 10 coil, 11 magnet, 12 yoke, 13, 14 screw mechanism, 15 connector, 15a terminal, 16 magnetic sensor, 17 sensor magnet, 18 sensor shaft, 20 bush 20a flange part, 20b, 21b cylindrical part, 21 metal boss, 21a metal flange part, 21e drain hole, 22 air layer, 23 cap, 24 seal member, 25, 26 screw, 100 turbocharger, 100a compressor, 100b turbine 101a Comp Storage housing, 101b turbine housing, 102 mounting portion, 103 intake piping, 104 exhaust piping, 105 engine, 106 intercooler, 107 throttle valve, 108 air bypass valve, 109 air bypass piping, 110 waste gate valve, B contact portion, G1, G2, G3 Gravity direction, H1, H2 heat, O center.

Claims (5)

  1.  シャフトをその軸方向に移動させる、樹脂製のハウジングで被覆されたモータと、
     前記ハウジングに形成された樹脂フランジ部と、
     前記シャフトに貫通され、内部を前記シャフトがその軸方向に移動するブッシュと、
     前記ブッシュの外周に位置し、前記ブッシュを支持する金属ボスと、
     前記金属ボスに形成され、前記樹脂フランジ部と共にターボチャージャの取り付け部に共締めされて前記取り付け部に接触する金属フランジ部とを備えるターボチャージャ用アクチュエータ。
    A motor covered with a resin housing that moves the shaft in the axial direction;
    A resin flange formed in the housing;
    A bush that is penetrated by the shaft and in which the shaft moves in the axial direction;
    A metal boss located on the outer periphery of the bush and supporting the bush;
    A turbocharger actuator comprising: a metal flange portion that is formed on the metal boss, and is fastened together with a mounting portion of the turbocharger together with the resin flange portion to contact the mounting portion.
  2.  前記金属ボスと前記ブッシュとの間に空気層があることを特徴とする請求項1記載のターボチャージャ用アクチュエータ。 The turbocharger actuator according to claim 1, wherein there is an air layer between the metal boss and the bush.
  3.  前記金属ボスと前記ブッシュの少なくとも一部が当接していることを特徴とする請求項1記載のターボチャージャ用アクチュエータ。 2. The turbocharger actuator according to claim 1, wherein at least a part of the metal boss and the bush are in contact with each other.
  4.  前記金属ボスは、水抜き穴を有することを特徴とする請求項1記載のターボチャージャ用アクチュエータ。 2. The turbocharger actuator according to claim 1, wherein the metal boss has a drain hole.
  5.  前記金属フランジ部におけるねじを通す穴の数および前記樹脂フランジ部におけるねじを通す穴の数のうちのいずれか一方がもう一方以上であり、前記金属フランジ部と前記樹脂フランジ部とを共締めする穴の組み合わせを変更することにより、前記樹脂フランジ部に対する前記金属フランジ部の、前記シャフトを中心とする周方向の取り付け角度が変更可能であることを特徴とする請求項4記載のターボチャージャ用アクチュエータ。 One of the number of holes through which the screw passes through the metal flange portion and the number of holes through which the screw passes through the resin flange portion is equal to or greater than the other, and the metal flange portion and the resin flange portion are fastened together. 5. The turbocharger actuator according to claim 4, wherein a mounting angle of the metal flange portion with respect to the resin flange portion in a circumferential direction around the shaft can be changed by changing a combination of holes. .
PCT/JP2017/006145 2017-02-20 2017-02-20 Turbocharger actuator WO2018150575A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201790001601.1U CN210422762U (en) 2017-02-20 2017-02-20 Actuator for turbine
JP2019500155A JP6687292B2 (en) 2017-02-20 2017-02-20 Actuator for turbocharger
PCT/JP2017/006145 WO2018150575A1 (en) 2017-02-20 2017-02-20 Turbocharger actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006145 WO2018150575A1 (en) 2017-02-20 2017-02-20 Turbocharger actuator

Publications (1)

Publication Number Publication Date
WO2018150575A1 true WO2018150575A1 (en) 2018-08-23

Family

ID=63170571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006145 WO2018150575A1 (en) 2017-02-20 2017-02-20 Turbocharger actuator

Country Status (3)

Country Link
JP (1) JP6687292B2 (en)
CN (1) CN210422762U (en)
WO (1) WO2018150575A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396170A1 (en) * 2020-06-19 2021-12-23 Mahle International Gmbh Exhaust gas turbocharger assembly having an exhaust gas turbocharger and an actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018238U (en) * 1983-02-28 1985-02-07 日野自動車株式会社 Actuator for exhaust brake
JPH08121409A (en) * 1994-10-20 1996-05-14 Honda Motor Co Ltd Cover device of diaphragm actuator
JPH09112362A (en) * 1995-10-24 1997-04-28 Kitako:Kk Attachment for manifold
WO2012023160A1 (en) * 2010-08-20 2012-02-23 三菱電機株式会社 Electronically controlled actuator
JP2014145470A (en) * 2013-01-30 2014-08-14 Smc Corp Oscillation type actuator
WO2016125303A1 (en) * 2015-02-06 2016-08-11 三菱電機株式会社 Actuator
WO2016135825A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Heat resistant structure for shaft support part, and actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018238U (en) * 1983-02-28 1985-02-07 日野自動車株式会社 Actuator for exhaust brake
JPH08121409A (en) * 1994-10-20 1996-05-14 Honda Motor Co Ltd Cover device of diaphragm actuator
JPH09112362A (en) * 1995-10-24 1997-04-28 Kitako:Kk Attachment for manifold
WO2012023160A1 (en) * 2010-08-20 2012-02-23 三菱電機株式会社 Electronically controlled actuator
JP2014145470A (en) * 2013-01-30 2014-08-14 Smc Corp Oscillation type actuator
WO2016125303A1 (en) * 2015-02-06 2016-08-11 三菱電機株式会社 Actuator
WO2016135825A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Heat resistant structure for shaft support part, and actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396170A1 (en) * 2020-06-19 2021-12-23 Mahle International Gmbh Exhaust gas turbocharger assembly having an exhaust gas turbocharger and an actuator
US11486296B2 (en) * 2020-06-19 2022-11-01 Mahle International Gmbh Exhaust gas turbocharger assembly having an exhaust gas turbocharger and an actuator

Also Published As

Publication number Publication date
JPWO2018150575A1 (en) 2019-06-27
JP6687292B2 (en) 2020-04-22
CN210422762U (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP4687540B2 (en) Fluid control valve
JP4497043B2 (en) Exhaust gas recirculation device
US9567894B2 (en) Rotary valve
US6923157B2 (en) Throttle device for internal combustion engine
US20110042599A1 (en) Fluid control valve
US20040170346A1 (en) Rolling bearing of throttle valve device
JP2007236037A (en) Motor actuator and motor driven throttle valve of internal combustion engine employing same
WO2018150575A1 (en) Turbocharger actuator
KR0167356B1 (en) Electromagnetic rotary actuator
JP2008196437A (en) Exhaust gas control valve
JP5710018B2 (en) Turbo actuator
JP6351823B2 (en) Heat-resistant structure of shaft support and actuator
JP4831064B2 (en) Throttle device for a supercharged internal combustion engine
JPH0814114A (en) Flow control valve of exhaust gas reflux control device
JP2018182785A (en) Electric actuator
JP2014023234A (en) Electric motor
JPWO2018003085A1 (en) In-vehicle actuator
JP4239899B2 (en) Flow control valve for internal combustion engine
WO2020003352A1 (en) Actuator
JP3014259B2 (en) Flow control valve
JP2005113872A (en) Exhaust gas recirculation device
JPH03385A (en) Electric flow control valve
JP2005337058A (en) Throttle control device
JP2005240669A (en) Exhaust gas recirculating device
JP4489607B2 (en) Throttle device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896926

Country of ref document: EP

Kind code of ref document: A1