WO2018150565A1 - Method and device for controlling internal combustion engine - Google Patents

Method and device for controlling internal combustion engine Download PDF

Info

Publication number
WO2018150565A1
WO2018150565A1 PCT/JP2017/006083 JP2017006083W WO2018150565A1 WO 2018150565 A1 WO2018150565 A1 WO 2018150565A1 JP 2017006083 W JP2017006083 W JP 2017006083W WO 2018150565 A1 WO2018150565 A1 WO 2018150565A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
intake
internal combustion
combustion engine
valve
Prior art date
Application number
PCT/JP2017/006083
Other languages
French (fr)
Japanese (ja)
Inventor
濱本 高行
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to PCT/JP2017/006083 priority Critical patent/WO2018150565A1/en
Publication of WO2018150565A1 publication Critical patent/WO2018150565A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to control of an internal combustion engine that uses both a turbocharger and an electric supercharger.
  • a technology is known in which a supercharger is disposed on an intake passage of an internal combustion engine, and the startability and warm-up performance of the internal combustion engine are improved by using supercharging by the supercharger.
  • a supercharger driven by an electric motor is arranged on the intake passage, and at the time of engine start, the electric motor is driven to perform supercharging, and the intake air amount is limited, whereby supercharging is performed.
  • the intake air temperature is raised by the compression of the intake air to improve startability and warm-up performance.
  • the present invention has been made in view of such circumstances. For example, during idle operation in a cold state, the engine temperature is increased without impairing combustion stability, and engine startability and warm-up performance are improved. It is an object of the present invention to provide a novel control method and control apparatus for an internal combustion engine that can be improved to enable early activation of a catalyst.
  • a turbocharger in which a turbine coaxial with a compressor for supercharging intake air is provided in the exhaust passage, an electric supercharger provided in the intake passage at a position different from the compressor, and the turbine bypassing And a bypass passage connecting the upstream exhaust passage and the downstream exhaust passage of the turbine, and a waste gate valve provided in the bypass passage for adjusting the flow rate of the exhaust gas flowing through the bypass passage. When idling, the waste gate valve is opened and the electric supercharger is driven.
  • the startability and warm-up performance can be improved by raising the temperature of the intake air by compressing the intake air with the electric supercharger during idling. Moreover, it is not necessary to drive a turbo-type supercharger for temperature rising by supercharging with an electric supercharger. Accordingly, the waste gate valve can be controlled in the opening direction to suppress the amount of exhaust gas passing through the turbine. As a result, more exhaust gas that has not been deprived of heat by the turbine can be supplied to the catalyst, and early activation of the catalyst can be achieved.
  • the block diagram which shows simply the system configuration
  • the flowchart which shows the flow of control of the said Example.
  • the characteristic view which shows the relationship between the intake air temperature and the fluctuation rate of average effective pressure.
  • the characteristic view which shows the example of a setting of valve timing.
  • FIG. 1 schematically shows a system configuration of an internal combustion engine to which a control device and a control method according to an embodiment of the present invention are applied.
  • the internal combustion engine 10 is a multi-cylinder spark ignition gasoline internal combustion engine, and an intake passage 12 and an exhaust passage 13 are connected to the combustion chamber 11 of each cylinder.
  • the internal combustion engine 10 includes a turbocharger 14 that performs supercharging using exhaust energy as a supercharger that supercharges intake air, and an electric supercharger that performs supercharging when driven by an electric motor 16. 15.
  • a turbine 17 provided in the exhaust passage 13 and a first compressor 18 provided in the intake passage 12 are provided coaxially back to back on a single rotating shaft 19, and exhaust energy. As a result, the turbine 17 rotates the first compressor 18 to perform supercharging.
  • the exhaust passage 13 is provided with a bypass passage 20 that connects the exhaust passage 13 on the upstream side of the turbine 17 and the exhaust passage 13 on the downstream side so as to bypass (bypass) the turbine 17.
  • a waste gate valve 21 whose opening degree can be adjusted is provided so as to adjust the flow rate of the exhaust gas flowing through the bypass passage 20.
  • the electric supercharger 15 is disposed in the intake passage 12 at a position different from the first compressor 18 of the turbocharger 14, and more specifically, is downstream of the first compressor 18.
  • the second compressor 22 is disposed in the intake passage 12, and the second compressor 22 is rotationally driven by the electric motor 16.
  • the exhaust passage 13 is provided with a second bypass passage 23 that bypasses the second compressor 22, and a bypass valve 24 whose opening degree can be adjusted is provided in the second bypass passage 23.
  • a recirculation passage 25 connecting the upstream intake passage 12 and the downstream intake passage 12 of the first compressor 18 is provided so as to release the pressure generated in the first compressor 18 during deceleration or the like.
  • the recirculation passage 25 is provided with a recirculation valve 26 for adjusting the flow rate of the intake air passing through the recirculation passage 25.
  • an air cleaner 27 that removes foreign matter in the intake air
  • an air flow meter 28 that detects the intake air amount (intake air amount)
  • an electronically controlled intake control valve 29 that adjusts the intake air amount
  • a water-cooled intercooler 30 that cools the intake air.
  • the intercooler 30 performs heat exchange with the radiator 32 by the cooling water circulating in the cooling water circuit 31.
  • the cooling water circuit 31 is provided with a water cooling pump 33 for circulating the cooling water.
  • the turbine 17, the upstream catalyst 34 and the downstream catalyst 35 such as a three-way catalyst, and a muffler 36 for noise reduction are arranged in order from the upstream side (side closer to the combustion chamber 11). Is provided.
  • air-fuel ratio sensors 37 and 38 for detecting the air-fuel ratio of the exhaust are provided on the downstream side of the catalysts 34 and 35, respectively.
  • valve timing changing mechanism 39A capable of changing the valve timing of the intake valve of the internal combustion engine and a valve timing changing mechanism 39B capable of changing the valve timing of the exhaust valve are provided.
  • the control unit 40 is capable of storing and executing various types of control, and based on detection signals from various sensors that detect engine operating conditions such as the air flow meter 28 and the air-fuel ratio sensors 37 and 38, the above-described waste gate valve. 21, control signals are output to the bypass valve 24, the recirculation valve 26, the intake control valve 29, the water cooling pump 33, the valve timing changing mechanisms 39A and 39B, and the operation thereof is controlled.
  • FIG. 2 is a flowchart showing a flow of control that is a main part of the present embodiment.
  • This routine is stored in the control unit 40 and is repeatedly executed every predetermined period (for example, 10 ms).
  • step S11 a predetermined idle operation condition that requires early activation of the catalysts 34 and 35, more specifically, a first idle retard operation (FIR) in which the ignition timing is largely retarded to raise the temperature of the catalysts 34 and 35. Determine if you are in a situation.
  • FIR first idle retard operation
  • step S12 it is determined whether or not the outside air temperature is equal to or lower than a predetermined temperature (for example, about 25 ° C.).
  • step S13 it is determined whether the ND select lever (shift position) of the automatic transmission is in the N range (or P range), that is, in the non-power transmission state.
  • step S14 If the above steps S11 to S13 are all affirmed, the process proceeds to step S14. If any of steps S11 to S13 is negative, the control of the present embodiment, which will be described later, is not performed, and the routine proceeds to step S18 where normal control is performed.
  • step S14 the electric supercharger 15 is operated. That is, during the FIR, the electric supercharger 15 performs supercharging to compress the intake air and raise the intake air temperature.
  • step S15 the intake air amount is controlled according to the boost pressure (boost) so that the intake air amount does not become excessive due to supercharging.
  • boost pressure boost
  • the valve timing changing mechanisms 39A and 39B promote the in-cylinder oxidation state or optimize the in-cylinder residual gas amount.
  • the intake control valve 29 and the valve timing changing mechanisms 39A and 39B are controlled in a coordinated manner.
  • step S16 the waste gate valve 21 is fully opened.
  • the flow rate of the exhaust gas passing through the turbine 17 is suppressed to a minimum, and the decrease in the exhaust gas temperature is suppressed, so that the catalyst 34, 35 can be raised quickly.
  • step S17 the water cooling pump 33 is stopped, and the supply of cooling water to the intercooler 30 is stopped.
  • the supply of the cooling water to the intercooler 30 it is possible to suppress the intake air that has been heated by supercharging by the electric supercharger 15 from being cooled again by heat exchange in the intercooler 30. .
  • the startability and warm-up performance can be improved by raising the temperature of the intake air by compressing the intake air by the electric supercharger 15 during FIR.
  • the turbocharger 14 need not be driven to raise the temperature by performing supercharging by the electric supercharger 15. Therefore, the amount of exhaust gas passing through the turbine 17 can be suppressed by controlling the waste gate valve 21 in the opening direction.
  • the waste gate valve 21 is fully opened, so that the amount of exhaust gas passing through the turbine 17 can be minimized.
  • more exhaust gas that has not been deprived of heat by the turbine can be supplied to the catalysts 34, 35, and the temperature rise of the catalysts 34, 35 can be promoted to achieve early activation.
  • FIG. 3 shows the relationship between the variation rate Cpi of the average effective pressure Pi, which is a parameter related to the combustion stability, and the intake air temperature. For example, even when the outside air temperature is a low temperature state of about 7 ° C. or lower as shown by the arrow Y1 in FIG. The variation rate Cpi of the average effective pressure Pi can be reduced, and the combustion stability can be improved.
  • the intake air amount is increased by the electric supercharger 15 and the intake control valve 29.
  • the degree of freedom of setting the valve timing changing mechanisms 39A and 39B is controlled by the conventional intake control valve 29 and the valve timing changing mechanisms 39A and 39B while securing a desired intake amount. It can be increased compared to the method. Therefore, for example, by reducing the exhaust valve opening timing EVO, the in-cylinder oxidation state is promoted to reduce HC, or by optimizing the valve timing, the in-cylinder residual gas amount is optimized and combustion stabilization is given priority. It can be secured.
  • the exhaust performance at start-up (HC, combustion stability (average effective pressure fluctuation rate Cpi)) is greatly improved, and the PM emission amount in a cryogenic environment of -7 ° C or lower, for example, Reduction and the like can be achieved.
  • FIG. 4 shows an example of setting the valve timing.
  • FIG. 4A shows a typical setting example of valve timing at the time of general FIR, and both the exhaust valve closing timing EVC and the intake valve opening timing IVO are set near the top dead center.
  • FIG. 4B it is possible to secure the intake amount as a so-called mirror cycle in which the valve timing of the intake valve is greatly advanced.
  • the exhaust valve opening timing EVO is advanced to near the bottom dead center, and the exhaust valve closing timing EVC is slightly less than the intake valve opening timing IVO. By advancing and applying a slight overlap, scavenging of the in-cylinder residual gas can be promoted.
  • the combustion itself is stable and stable combustion can be realized with little flow. Furthermore, since the valve and the piston crown are also warmed by the high-temperature air, the unburned fuel can be reduced and the PM emission amount can be greatly reduced even in the region where the wall temperature at the time of starting the engine is low.
  • the water cooling pump 33 is stopped and the circulation of the cooling water is stopped as described above, so that the intake air temperature raised by supercharging does not decrease again due to heat exchange. It should be noted that the flow of cooling water flowing through the internal combustion engine such as the cylinder head may be stopped, and the operation of other water temperature control devices may be stopped.
  • the present invention has been described based on specific examples. However, the present invention is not limited to the above-described examples, and includes various modifications and changes.
  • the present invention can be applied to an internal combustion engine that does not include a valve timing changing mechanism.
  • the intake control valve may be controlled according to the supercharging pressure so as to obtain a desired intake amount.

Abstract

This device has a turbo supercharger (14) in which a turbine (17) coaxial with a compressor (18) for supercharging intake air is provided to an exhaust passage (13), and an electric supercharger (15) provided to an intake passage at a different position from the compressor (18). A bypass passage (20) connecting the exhaust passage (13) on the upstream side of the turbine (17) and the exhaust passage (13) on the downstream side is provided so as to circumvent the turbine (17). The bypass passage (20) is provided with a wastegate valve (21) for adjusting the flow rate of intake air flowing through the bypass passage (20). During idling, the wastegate valve (21) is opened and the electric supercharger (15) is driven.

Description

内燃機関の制御方法及び制御装置Control method and control apparatus for internal combustion engine
 本発明は、ターボ式過給機と電動式過給機とを併用した内燃機関の制御に関する。 The present invention relates to control of an internal combustion engine that uses both a turbocharger and an electric supercharger.
 内燃機関の吸気通路上に過給機を配設し、この過給機による過給を利用して、内燃機関の始動性や暖機性を向上させる技術が知られている。例えば特許文献1には、電動機により駆動される過給機を吸気通路上に配設し、機関始動時には、電動機を駆動させて過給を行なうとともに、吸気量を制限することで、過給による吸気の圧縮により吸気温度を上昇させて、始動性や暖機性の向上を図っている。 A technology is known in which a supercharger is disposed on an intake passage of an internal combustion engine, and the startability and warm-up performance of the internal combustion engine are improved by using supercharging by the supercharger. For example, in Patent Document 1, a supercharger driven by an electric motor is arranged on the intake passage, and at the time of engine start, the electric motor is driven to perform supercharging, and the intake air amount is limited, whereby supercharging is performed. The intake air temperature is raised by the compression of the intake air to improve startability and warm-up performance.
特開2004-340122号公報JP 2004-340122 A
 触媒を暖機するに際し、可能であれば、タービンをバイパスするバイパス通路に設けられたウェイストゲートバルブの開度を大きくしてバイパス通路を流れる排気の量を増やし、タービンを経由することなく直接的に触媒へ供給される排気ガスを増やしたい。 When warming up the catalyst, if possible, increase the amount of exhaust gas flowing through the bypass passage by increasing the opening of the waste gate valve provided in the bypass passage that bypasses the turbine. Want to increase the exhaust gas supplied to the catalyst.
 しかしながら、上記特許文献1に記載の従来技術のように、タービンとコンプレッサの間に電動機が直付けされている構成では、触媒の暖機のために過給圧を上げようとして電動機を駆動すると、同時にタービンが回転駆動され、このタービンにより排気ガスが引き込まれる分、ウェイストゲートバルブが設けられたバイパス通路を通る排気ガスの量が減り、かつタービンを通る排気ガスはタービンにより熱を奪われるので、排気ガスが触媒に与える熱量を十分に増やすことができず、触媒の温度上昇が遅くなる、という問題がある。 However, in the configuration in which the electric motor is directly attached between the turbine and the compressor as in the prior art described in Patent Document 1, when the electric motor is driven to increase the supercharging pressure for warming up the catalyst, At the same time, the turbine is rotationally driven, and the amount of exhaust gas passing through the bypass passage provided with the waste gate valve is reduced by the amount of exhaust gas drawn in by this turbine, and the exhaust gas passing through the turbine is deprived of heat by the turbine. There is a problem that the amount of heat given to the catalyst by the exhaust gas cannot be increased sufficiently, and the temperature rise of the catalyst becomes slow.
 本発明は、このような事情に鑑みてなされたものであり、例えば冷機状態でのアイドル運転時に、燃焼安定性を損ねることなく機関温度の昇温を促進し、機関始動性や暖機性を向上させて、触媒の早期活性化を図ることができる新規な内燃機関の制御方法及び制御装置を提供することを目的としている。 The present invention has been made in view of such circumstances. For example, during idle operation in a cold state, the engine temperature is increased without impairing combustion stability, and engine startability and warm-up performance are improved. It is an object of the present invention to provide a novel control method and control apparatus for an internal combustion engine that can be improved to enable early activation of a catalyst.
 吸気を過給するコンプレッサと同軸のタービンが排気通路に設けられたターボ式過給機と、上記コンプレッサとは異なる位置で吸気通路に設けられた電動式過給機と、上記タービンを迂回するように、上記タービンの上流側の排気通路と下流側の排気通路とを接続するバイパス通路と、このバイパス通路に設けられ、当該バイパス通路を流れる排気の流量を調整するウェイストゲートバルブと、を有する。アイドル時には、上記ウェイストゲートバルブを開くとともに、上記電動式過給機を駆動する。 A turbocharger in which a turbine coaxial with a compressor for supercharging intake air is provided in the exhaust passage, an electric supercharger provided in the intake passage at a position different from the compressor, and the turbine bypassing And a bypass passage connecting the upstream exhaust passage and the downstream exhaust passage of the turbine, and a waste gate valve provided in the bypass passage for adjusting the flow rate of the exhaust gas flowing through the bypass passage. When idling, the waste gate valve is opened and the electric supercharger is driven.
 本発明によれば、アイドル時に電動式過給機により吸気を圧縮することにより吸気を昇温させることで、始動性や暖機性を向上することができる。また、電動式過給機により過給を行なうことで、ターボ式過給機を昇温のために駆動する必要が無い。従って、ウェイストゲートバルブを開方向に制御し、タービンを通過する排気ガスの量を抑制することができる。この結果、タービンに熱を奪われていない排気ガスをより多く触媒へ供給することができ、触媒の早期活性化を図ることができる。 According to the present invention, the startability and warm-up performance can be improved by raising the temperature of the intake air by compressing the intake air with the electric supercharger during idling. Moreover, it is not necessary to drive a turbo-type supercharger for temperature rising by supercharging with an electric supercharger. Accordingly, the waste gate valve can be controlled in the opening direction to suppress the amount of exhaust gas passing through the turbine. As a result, more exhaust gas that has not been deprived of heat by the turbine can be supplied to the catalyst, and early activation of the catalyst can be achieved.
本発明の一実施例に係る内燃機関のシステム構成を簡略的に示す構成図。The block diagram which shows simply the system configuration | structure of the internal combustion engine which concerns on one Example of this invention. 上記実施例の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the said Example. 吸気温度と平均有効圧の変動率との関係を示す特性図。The characteristic view which shows the relationship between the intake air temperature and the fluctuation rate of average effective pressure. バルブタイミングの設定例を示す特性図。The characteristic view which shows the example of a setting of valve timing.
 以下、図示実施例により本発明を説明する。図1は、本発明の一実施例に係る制御装置及び制御方法が適用された内燃機関のシステム構成を簡略的に示している。 Hereinafter, the present invention will be described with reference to illustrated embodiments. FIG. 1 schematically shows a system configuration of an internal combustion engine to which a control device and a control method according to an embodiment of the present invention are applied.
 この内燃機関10は、多気筒火花点火式ガソリン内燃機関であり、各気筒の燃焼室11には吸気通路12と排気通路13とが接続している。この内燃機関10には、吸気を過給する過給機として、排気エネルギーを利用して過給を行なうターボ式過給機14と、電動機16により駆動されて過給を行なう電動式過給機15と、を備えている。 The internal combustion engine 10 is a multi-cylinder spark ignition gasoline internal combustion engine, and an intake passage 12 and an exhaust passage 13 are connected to the combustion chamber 11 of each cylinder. The internal combustion engine 10 includes a turbocharger 14 that performs supercharging using exhaust energy as a supercharger that supercharges intake air, and an electric supercharger that performs supercharging when driven by an electric motor 16. 15.
 ターボ式過給機14は、排気通路13に設けられたタービン17と、吸気通路12に設けられた第1コンプレッサ18と、が一本の回転軸19上に背中合わせに同軸に設けられ、排気エネルギーによりタービン17が第1コンプレッサ18を回転駆動することにより過給が行なわれる。 In the turbocharger 14, a turbine 17 provided in the exhaust passage 13 and a first compressor 18 provided in the intake passage 12 are provided coaxially back to back on a single rotating shaft 19, and exhaust energy. As a result, the turbine 17 rotates the first compressor 18 to perform supercharging.
 排気通路13には、タービン17を迂回(バイパス)するように、タービン17の上流側の排気通路13と下流側の排気通路13とを接続するバイパス通路20が設けられ、このバイパス通路20には、当該バイパス通路20を流れる排気の流量を調整するように、その開度を調整可能なウェイストゲートバルブ21が設けられている。 The exhaust passage 13 is provided with a bypass passage 20 that connects the exhaust passage 13 on the upstream side of the turbine 17 and the exhaust passage 13 on the downstream side so as to bypass (bypass) the turbine 17. A waste gate valve 21 whose opening degree can be adjusted is provided so as to adjust the flow rate of the exhaust gas flowing through the bypass passage 20.
 電動式過給機15は、上記ターボ式過給機14の第1コンプレッサ18とは異なる位置で吸気通路12に配設されるもので、具体的には、上記第1コンプレッサ18よりも下流側の吸気通路12に配設された第2コンプレッサ22を有し、この第2コンプレッサ22が上記の電動機16により回転駆動される。排気通路13には第2コンプレッサ22を迂回(バイパス)する第2バイパス通路23が設けられ、この第2バイパス通路23に、開度を調整可能なバイパスバルブ24が設けられている。 The electric supercharger 15 is disposed in the intake passage 12 at a position different from the first compressor 18 of the turbocharger 14, and more specifically, is downstream of the first compressor 18. The second compressor 22 is disposed in the intake passage 12, and the second compressor 22 is rotationally driven by the electric motor 16. The exhaust passage 13 is provided with a second bypass passage 23 that bypasses the second compressor 22, and a bypass valve 24 whose opening degree can be adjusted is provided in the second bypass passage 23.
 また、減速時等に第1コンプレッサ18に発生する圧力を逃すように、第1コンプレッサ18の上流側の吸気通路12と下流側の吸気通路12とを接続するリサーキュレーション通路25が設けられるとともに、このリサーキュレーション通路25には、当該リサーキュレーション通路25を通過する吸気の流量を調整するためのリサーキュレーションバルブ26が設けられている。 In addition, a recirculation passage 25 connecting the upstream intake passage 12 and the downstream intake passage 12 of the first compressor 18 is provided so as to release the pressure generated in the first compressor 18 during deceleration or the like. The recirculation passage 25 is provided with a recirculation valve 26 for adjusting the flow rate of the intake air passing through the recirculation passage 25.
 吸気通路12には、上流側(燃焼室11から遠い側)より順に、吸気中の異物を除去するエアークリーナ27と、吸気量(吸入空気量)を検出するエアーフローメータ28と、上記の第1コンプレッサ18及び第2コンプレッサ22と、吸気量を調整する電子制御式の吸気制御バルブ29(いわゆる、スロットル弁)と、吸気を冷却する水冷式のインタークーラー30と、が設けられている。このインタークーラー30は、冷却水回路31内を循環する冷却水によりラジエータ32との間で熱交換が行なわれる。この冷却水回路31には、冷却水を循環させるための水冷ポンプ33が設けられている。 In the intake passage 12, in order from the upstream side (the side far from the combustion chamber 11), an air cleaner 27 that removes foreign matter in the intake air, an air flow meter 28 that detects the intake air amount (intake air amount), and the above-mentioned first The first compressor 18 and the second compressor 22, an electronically controlled intake control valve 29 (so-called throttle valve) that adjusts the intake air amount, and a water-cooled intercooler 30 that cools the intake air are provided. The intercooler 30 performs heat exchange with the radiator 32 by the cooling water circulating in the cooling water circuit 31. The cooling water circuit 31 is provided with a water cooling pump 33 for circulating the cooling water.
 排気通路13には、上流側(燃焼室11に近い側)より順に、上記のタービン17と、三元触媒等の上流側触媒34及び下流側触媒35と、消音のためのマフラー36と、が設けられている。また、触媒34,35の下流側には、それぞれ排気の空燃比を検出する空燃比センサ37,38が設けられている。 In the exhaust passage 13, the turbine 17, the upstream catalyst 34 and the downstream catalyst 35 such as a three-way catalyst, and a muffler 36 for noise reduction are arranged in order from the upstream side (side closer to the combustion chamber 11). Is provided. In addition, air- fuel ratio sensors 37 and 38 for detecting the air-fuel ratio of the exhaust are provided on the downstream side of the catalysts 34 and 35, respectively.
 また、内燃機関の吸気弁のバルブタイミングを変更可能なバルブタイミング変更機構39Aと、排気弁のバルブタイミングを変更可能なバルブタイミング変更機構39Bと、が設けられている。 Further, a valve timing changing mechanism 39A capable of changing the valve timing of the intake valve of the internal combustion engine and a valve timing changing mechanism 39B capable of changing the valve timing of the exhaust valve are provided.
 制御部40は、各種制御を記憶及び実行可能であり、上記のエアーフローメータ28及び空燃比センサ37,38等の機関運転状態を検出する各種センサの検出信号に基づいて、上述したウェイストゲートバルブ21,バイパスバルブ24,リサーキュレーションバルブ26,吸気制御バルブ29,水冷ポンプ33及びバルブタイミング変更機構39A,39B等へ制御信号を出力し、その動作を制御する。 The control unit 40 is capable of storing and executing various types of control, and based on detection signals from various sensors that detect engine operating conditions such as the air flow meter 28 and the air- fuel ratio sensors 37 and 38, the above-described waste gate valve. 21, control signals are output to the bypass valve 24, the recirculation valve 26, the intake control valve 29, the water cooling pump 33, the valve timing changing mechanisms 39A and 39B, and the operation thereof is controlled.
 図2は、本実施例の要部をなす制御の流れを示すフローチャートである。本ルーチンは上記の制御部40に記憶され、所定期間(例えば10ms)毎に繰り返し実行される。 FIG. 2 is a flowchart showing a flow of control that is a main part of the present embodiment. This routine is stored in the control unit 40 and is repeatedly executed every predetermined period (for example, 10 ms).
 ステップS11では、触媒34,35の早期活性化が必要な所定のアイドル運転条件、より具体的には、触媒34,35の昇温のために点火時期を大きくリタードさせるファーストアイドルリタード運転(FIR)状況下にあるか否かを判定する。 In step S11, a predetermined idle operation condition that requires early activation of the catalysts 34 and 35, more specifically, a first idle retard operation (FIR) in which the ignition timing is largely retarded to raise the temperature of the catalysts 34 and 35. Determine if you are in a situation.
 ステップS12では、外気温度が所定温度(例えば、約25℃)以下であるか否かを判定する。ステップS13では、自動変速機のN-Dセレクトレバー(シフトポジション)が、Nレンジ(もしくはPレンジ)であるか、つまり非動力伝達状態であるか否かを判定する。 In step S12, it is determined whether or not the outside air temperature is equal to or lower than a predetermined temperature (for example, about 25 ° C.). In step S13, it is determined whether the ND select lever (shift position) of the automatic transmission is in the N range (or P range), that is, in the non-power transmission state.
 上記のステップS11~S13が全て肯定された場合にはステップS14へ進む。ステップS11~S13のいずれかが否定された場合、後述する本実施例の制御は行なわれず、ステップS18へ進んで通常制御が実施される。 If the above steps S11 to S13 are all affirmed, the process proceeds to step S14. If any of steps S11 to S13 is negative, the control of the present embodiment, which will be described later, is not performed, and the routine proceeds to step S18 where normal control is performed.
 ステップS14では、電動式過給機15を作動させる。つまり、FIR時には電動式過給機15により過給を行なうことで、吸気を圧縮して吸気温度を上昇させている。 In step S14, the electric supercharger 15 is operated. That is, during the FIR, the electric supercharger 15 performs supercharging to compress the intake air and raise the intake air temperature.
 ステップS15では、過給により吸気量が過大とならないように、過給圧(ブースト)に応じて吸気量を制御する。具体的には、電動式過給機15と吸気制御バルブ29とにより所望の吸気量を得つつ、バルブタイミング変更機構39A,39Bにより筒内酸化状態の促進、又は筒内残留ガス量の適正化を図れるように吸気制御バルブ29とバルブタイミング変更機構39A,39Bを協調制御する。 In step S15, the intake air amount is controlled according to the boost pressure (boost) so that the intake air amount does not become excessive due to supercharging. Specifically, while obtaining a desired intake amount by the electric supercharger 15 and the intake control valve 29, the valve timing changing mechanisms 39A and 39B promote the in-cylinder oxidation state or optimize the in-cylinder residual gas amount. The intake control valve 29 and the valve timing changing mechanisms 39A and 39B are controlled in a coordinated manner.
 ステップS16では、ウェイストゲートバルブ21を全開とする。これによって、タービン17を通過する排気ガスの流量を最小限に抑制し、排気温度の低下を抑制することで、触媒34,35の早期昇温を図ることができる。 In step S16, the waste gate valve 21 is fully opened. As a result, the flow rate of the exhaust gas passing through the turbine 17 is suppressed to a minimum, and the decrease in the exhaust gas temperature is suppressed, so that the catalyst 34, 35 can be raised quickly.
 ステップS17では、水冷ポンプ33を停止して、インタークーラー30への冷却水の供給を停止する。このようにインタークーラー30への冷却水の供給を停止することで、電動式過給機15による過給により昇温された吸気が、インタークーラー30における熱交換により再び冷やされることを抑制することができる。 In step S17, the water cooling pump 33 is stopped, and the supply of cooling water to the intercooler 30 is stopped. Thus, by stopping the supply of the cooling water to the intercooler 30, it is possible to suppress the intake air that has been heated by supercharging by the electric supercharger 15 from being cooled again by heat exchange in the intercooler 30. .
 次に、このような本実施例による作用効果について説明する。冷機始動時のようなFIR時に、外気温が25℃以下である場合、低温の新気が燃焼室11にそのまま供給されると、燃焼が不安定となる。また筒内や吸気バルブも冷えていることから、燃料噴射形態(ポート燃料噴射あるいは筒内燃料噴射)にかかわらず、燃料の気化率が悪し、排気中に含まれるHC(炭化水素系物質)やPM(パティキュレートマター)が増加する傾向にある。 Next, the function and effect of this embodiment will be described. When the outside air temperature is 25 ° C. or less during FIR such as when starting a cold machine, if low temperature fresh air is supplied to the combustion chamber 11 as it is, combustion becomes unstable. In addition, since the cylinder and the intake valve are also cooled, the fuel vaporization rate is poor regardless of the fuel injection mode (port fuel injection or cylinder fuel injection), and HC (hydrocarbon substances) and PM (particulate matter) tends to increase.
 本実施例では、FIR時に電動式過給機15により吸気を圧縮することにより吸気を昇温させることで、始動性や暖機性を向上することができる。また、電動式過給機15により過給を行なうことで、ターボ式過給機14を昇温のために駆動する必要が無い。従って、ウェイストゲートバルブ21を開方向に制御することで、タービン17を通過する排気ガスの量を抑制することができる。特に好ましくはウェイストゲートバルブ21を全開とすることで、タービン17を通過する排気ガスの量を最小限に抑制することができる。この結果、タービンに熱を奪われていない排気ガスをより多く触媒34,35へ供給することができ、触媒34,35の昇温を促進して早期活性化を図ることができる。 In this embodiment, the startability and warm-up performance can be improved by raising the temperature of the intake air by compressing the intake air by the electric supercharger 15 during FIR. In addition, the turbocharger 14 need not be driven to raise the temperature by performing supercharging by the electric supercharger 15. Therefore, the amount of exhaust gas passing through the turbine 17 can be suppressed by controlling the waste gate valve 21 in the opening direction. Particularly preferably, the waste gate valve 21 is fully opened, so that the amount of exhaust gas passing through the turbine 17 can be minimized. As a result, more exhaust gas that has not been deprived of heat by the turbine can be supplied to the catalysts 34, 35, and the temperature rise of the catalysts 34, 35 can be promoted to achieve early activation.
 図3は燃焼安定度に関連するパラメータである平均有効圧Piの変動率Cpiと吸気温度との関係を示している。例えば同図の矢印Y1に示すように外気温が約7℃以下の低温状態においても、本実施例によれば、電動式過給機15により吸気を圧縮することで、吸気温度を上昇させて平均有効圧Piの変動率Cpiを低下させることができ、燃焼安定性を向上することができる。 FIG. 3 shows the relationship between the variation rate Cpi of the average effective pressure Pi, which is a parameter related to the combustion stability, and the intake air temperature. For example, even when the outside air temperature is a low temperature state of about 7 ° C. or lower as shown by the arrow Y1 in FIG. The variation rate Cpi of the average effective pressure Pi can be reduced, and the combustion stability can be improved.
 また本実施例では、電動式過給機15による吸気の圧縮により従来よりも高温の吸気が燃焼室11へ十分に供給されるため、この電動式過給機15と吸気制御バルブ29により吸気量を制御することで、所望の吸気量を確保しつつ、バルブタイミング変更機構39A,39Bの設定の自由度を、従来の吸気制御バルブ29とバルブタイミング変更機構39A,39Bとで吸気量を制御する方式に比べて増大させることができる。従って、例えば排気弁開時期EVOの遅角化により筒内の酸化状態を促進してHC低減を図ったり、バルブタイミングの適正化により筒内残留ガス量を適正化し、燃焼安定化を優先的に確保したりすることが可能となる。また、バルブタイミングの適正な制御により、始動時排気性能(HC、燃焼安定度(平均有効圧変動率Cpi))の大幅な改善や、例えば-7℃以下の極低温環境下におけるPM排出量の低減化等を図ることも可能となる。 In this embodiment, since the intake air compressed by the electric supercharger 15 is sufficiently supplied to the combustion chamber 11 due to the compression of the intake air, the intake air amount is increased by the electric supercharger 15 and the intake control valve 29. By controlling this, the degree of freedom of setting the valve timing changing mechanisms 39A and 39B is controlled by the conventional intake control valve 29 and the valve timing changing mechanisms 39A and 39B while securing a desired intake amount. It can be increased compared to the method. Therefore, for example, by reducing the exhaust valve opening timing EVO, the in-cylinder oxidation state is promoted to reduce HC, or by optimizing the valve timing, the in-cylinder residual gas amount is optimized and combustion stabilization is given priority. It can be secured. In addition, by controlling the valve timing appropriately, the exhaust performance at start-up (HC, combustion stability (average effective pressure fluctuation rate Cpi)) is greatly improved, and the PM emission amount in a cryogenic environment of -7 ° C or lower, for example, Reduction and the like can be achieved.
 図4は、バルブタイミングの設定例を示している。図4(A)は、一般的なFIR時のバルブタイミングの通常の設定例を示しており、排気弁閉時期EVCと吸気弁開時期IVOとがともに上死点付近に設定されている。このような通常の設定例に対し、本実施例では図4(B)に示すように吸気弁のバルブタイミングを大幅に進角した、いわゆるミラーサイクルとしても吸気量を確保することが可能である。また図4(C)に示す本実施例の第2の設定例では、排気弁開時期EVOを下死点付近まで進角させるとともに、排気弁閉時期EVCを吸気弁開時期IVOよりもわずかに進角させて、若干のオーバーラップを付与することによって、筒内残留ガスの掃気を促進することができる。また、新気は電動式過給機15により圧縮され、圧縮された空気が高温で燃焼室に導入されることから、燃焼自体は安定し、流動は少ないが安定した燃焼を実現可能である。更に、高温空気によりバルブ及びピストン冠面も温められるので、機関起動時の壁温が低い領域においても、未燃燃料を低減し、PM排出量を大幅に低減することができる。 FIG. 4 shows an example of setting the valve timing. FIG. 4A shows a typical setting example of valve timing at the time of general FIR, and both the exhaust valve closing timing EVC and the intake valve opening timing IVO are set near the top dead center. In contrast to such a normal setting example, in this embodiment, as shown in FIG. 4B, it is possible to secure the intake amount as a so-called mirror cycle in which the valve timing of the intake valve is greatly advanced. . In the second setting example of the present embodiment shown in FIG. 4C, the exhaust valve opening timing EVO is advanced to near the bottom dead center, and the exhaust valve closing timing EVC is slightly less than the intake valve opening timing IVO. By advancing and applying a slight overlap, scavenging of the in-cylinder residual gas can be promoted. Further, since the fresh air is compressed by the electric supercharger 15 and the compressed air is introduced into the combustion chamber at a high temperature, the combustion itself is stable and stable combustion can be realized with little flow. Furthermore, since the valve and the piston crown are also warmed by the high-temperature air, the unburned fuel can be reduced and the PM emission amount can be greatly reduced even in the region where the wall temperature at the time of starting the engine is low.
 更に本実施例では、上述したように水冷ポンプ33を停止して冷却水の循環を止めているので、過給により上昇させた吸気温度が熱交換により再び低下することがない。なお、シリンダヘッド等の内燃機関の内部を通流する冷却水の流れを止めるようにしても良く、また、他の水温コントロールデバイスの作動を停止するようにしても良い。 Furthermore, in this embodiment, the water cooling pump 33 is stopped and the circulation of the cooling water is stopped as described above, so that the intake air temperature raised by supercharging does not decrease again due to heat exchange. It should be noted that the flow of cooling water flowing through the internal combustion engine such as the cylinder head may be stopped, and the operation of other water temperature control devices may be stopped.
 以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、バルブタイミング変更機構を具備しない内燃機関にも適用可能である。この場合、所望の吸気量が得られるように過給圧に応じて吸気制御バルブを制御すれば良い。 As described above, the present invention has been described based on specific examples. However, the present invention is not limited to the above-described examples, and includes various modifications and changes. For example, the present invention can be applied to an internal combustion engine that does not include a valve timing changing mechanism. In this case, the intake control valve may be controlled according to the supercharging pressure so as to obtain a desired intake amount.

Claims (7)

  1.  吸気を過給するコンプレッサと同軸のタービンが排気通路に設けられたターボ式過給機と、
     上記コンプレッサとは異なる位置で吸気通路に設けられた電動式過給機と、
     上記タービンを迂回するように、上記タービンの上流側の排気通路と下流側の排気通路とを接続するバイパス通路と、
     このバイパス通路に設けられ、当該バイパス通路を流れる排気の流量を調整するウェイストゲートバルブと、を有する内燃機関の制御方法において、
     アイドル時には、上記ウェイストゲートバルブを開くとともに、上記電動式過給機を駆動する内燃機関の制御方法。
    A turbocharger in which a compressor and a coaxial turbine are provided in the exhaust passage for supercharging intake air;
    An electric supercharger provided in the intake passage at a position different from the compressor;
    A bypass passage connecting an upstream exhaust passage and a downstream exhaust passage of the turbine so as to bypass the turbine;
    In the control method of the internal combustion engine, which is provided in the bypass passage and has a waste gate valve that adjusts the flow rate of the exhaust gas flowing through the bypass passage,
    A control method for an internal combustion engine that opens the waste gate valve and drives the electric supercharger when idling.
  2.  上記アイドル時には、上記ウェイストゲートバルブを全開にする請求項1に記載の内燃機関の制御方法。 The method for controlling an internal combustion engine according to claim 1, wherein the waste gate valve is fully opened during the idling.
  3.  吸気通路に吸気制御バルブが設けられ、上記アイドル時には、上記吸気制御バルブを用いて吸気量を制御する請求項1又は2に記載の内燃機関の制御方法。 3. The control method for an internal combustion engine according to claim 1, wherein an intake control valve is provided in the intake passage, and the intake air amount is controlled using the intake control valve during the idling.
  4.  吸気弁もしくは排気弁の少なくとも一方のバルブタイミングを変更可能なバルブタイミング変更機構を備え、上記アイドル時には、上記バルブタイミング変更機構を用いて、吸気量と、筒内酸化状態又は筒内残留ガス量と、を制御する請求項3に記載の内燃機関の制御方法。 A valve timing changing mechanism capable of changing the valve timing of at least one of the intake valve and the exhaust valve, and at the time of idling, using the valve timing changing mechanism, the intake amount, the in-cylinder oxidation state, or the in-cylinder residual gas amount, The method for controlling an internal combustion engine according to claim 3, wherein:
  5.  水冷式のインタークーラーが吸気通路に設けられ、
     上記アイドル時には、上記インタークーラーへの冷却水の供給を停止する請求項1~4のいずれかに記載の内燃機関の制御方法。
    A water-cooled intercooler is provided in the intake passage,
    The method for controlling an internal combustion engine according to any one of claims 1 to 4, wherein supply of cooling water to the intercooler is stopped during the idling.
  6.  上記アイドル時には、内燃機関内部を通流する冷却水の流れを止める請求項1~5のいずれかに記載の内燃機関の制御方法。 The method for controlling an internal combustion engine according to any one of claims 1 to 5, wherein the flow of cooling water flowing through the internal combustion engine is stopped during the idling.
  7.  吸気を過給するコンプレッサと同軸のタービンが排気通路に設けられたターボ式過給機と、
     上記コンプレッサとは異なる位置で吸気通路に設けられた電動式過給機と、
     上記タービンを迂回するように、上記タービンの上流側の排気通路と下流側の排気通路とを接続するバイパス通路と、
     このバイパス通路に設けられ、当該バイパス通路を流れる排気の流量を調整するウェイストゲートバルブと、
     アイドル時には、上記ウェイストゲートバルブを開くとともに、上記電動式過給機を駆動する制御部と、
    を有する内燃機関の制御装置。
    A turbocharger in which a compressor and a coaxial turbine are provided in the exhaust passage for supercharging intake air;
    An electric supercharger provided in the intake passage at a position different from the compressor;
    A bypass passage connecting an upstream exhaust passage and a downstream exhaust passage of the turbine so as to bypass the turbine;
    A waste gate valve that is provided in the bypass passage and adjusts the flow rate of the exhaust gas flowing through the bypass passage;
    When idling, the waste gate valve is opened, and a controller that drives the electric supercharger,
    A control apparatus for an internal combustion engine.
PCT/JP2017/006083 2017-02-20 2017-02-20 Method and device for controlling internal combustion engine WO2018150565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006083 WO2018150565A1 (en) 2017-02-20 2017-02-20 Method and device for controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006083 WO2018150565A1 (en) 2017-02-20 2017-02-20 Method and device for controlling internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018150565A1 true WO2018150565A1 (en) 2018-08-23

Family

ID=63170179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006083 WO2018150565A1 (en) 2017-02-20 2017-02-20 Method and device for controlling internal combustion engine

Country Status (1)

Country Link
WO (1) WO2018150565A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205306A (en) * 2006-02-03 2007-08-16 Mazda Motor Corp Engine with supercharger
JP2009191686A (en) * 2008-02-13 2009-08-27 Mazda Motor Corp Supercharger of engine
JP2009197758A (en) * 2008-02-25 2009-09-03 Mazda Motor Corp Engine system with supercharger
JP2010180711A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Diesel engine starting method and device therefor
JP2013108479A (en) * 2011-11-24 2013-06-06 Fuji Heavy Ind Ltd Diesel engine
JP2014001681A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Abnormality diagnostic device of cooling system
JP2015025386A (en) * 2013-07-25 2015-02-05 日産自動車株式会社 Control device and control method for internal combustion engine
JP2017036695A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Control device of diesel engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205306A (en) * 2006-02-03 2007-08-16 Mazda Motor Corp Engine with supercharger
JP2009191686A (en) * 2008-02-13 2009-08-27 Mazda Motor Corp Supercharger of engine
JP2009197758A (en) * 2008-02-25 2009-09-03 Mazda Motor Corp Engine system with supercharger
JP2010180711A (en) * 2009-02-03 2010-08-19 Mazda Motor Corp Diesel engine starting method and device therefor
JP2013108479A (en) * 2011-11-24 2013-06-06 Fuji Heavy Ind Ltd Diesel engine
JP2014001681A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Abnormality diagnostic device of cooling system
JP2015025386A (en) * 2013-07-25 2015-02-05 日産自動車株式会社 Control device and control method for internal combustion engine
JP2017036695A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Control device of diesel engine

Similar Documents

Publication Publication Date Title
JP3997477B2 (en) Control device for internal combustion engine
US8666640B2 (en) Control apparatus and control method for internal combustion engine
JP2002180864A (en) Compression self-ignition type internal combustion engine with supercharger
JP5348338B2 (en) Engine control device
KR101542979B1 (en) Engine Control Apparatus having Turbocharger and Method Thereof
JP2009191745A (en) Control device for internal combustion engine
JP3994855B2 (en) Control device for internal combustion engine
JP2015025386A (en) Control device and control method for internal combustion engine
JP2009264335A (en) Multistage supercharging system for internal combustion engine
WO2017145554A1 (en) Internal combustion engine control apparatus
JP2018159271A (en) Control method of internal combustion engine and control device of internal combustion engine
JP2007077840A (en) Internal combustion engine
JP2009074366A (en) Variable valve gear of internal combustion engine
WO2018212088A1 (en) Air intake/exhaust structure for compressed natural gas engine
JP4061280B2 (en) Control unit for gasoline engine with variable nozzle mechanism turbocharger
WO2018150565A1 (en) Method and device for controlling internal combustion engine
JP2005299408A (en) Device for raising temperature of engine
JP6641405B2 (en) Engine control device
JP2009197706A (en) Control device of internal combustion engine
JP2009215998A (en) Control device of internal combustion engine with supercharger
JP2004278326A (en) Egr control device of internal combustion engine
JP6595875B2 (en) Exhaust gas purification control device for internal combustion engine
JP2004019554A (en) Control device of internal combustion engine
JP2019108876A (en) Control device for engine
JP6493508B1 (en) Engine start control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP