WO2018150526A1 - Printed circuit board and production method for printed circuit board - Google Patents

Printed circuit board and production method for printed circuit board Download PDF

Info

Publication number
WO2018150526A1
WO2018150526A1 PCT/JP2017/005806 JP2017005806W WO2018150526A1 WO 2018150526 A1 WO2018150526 A1 WO 2018150526A1 JP 2017005806 W JP2017005806 W JP 2017005806W WO 2018150526 A1 WO2018150526 A1 WO 2018150526A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
standing
electrode
substrate
electrodes
Prior art date
Application number
PCT/JP2017/005806
Other languages
French (fr)
Japanese (ja)
Inventor
佳郎 西中
佐々木 俊介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/005806 priority Critical patent/WO2018150526A1/en
Publication of WO2018150526A1 publication Critical patent/WO2018150526A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits

Definitions

  • the present invention relates to a printed wiring board configured by combining a main board and a standing board, and a manufacturing method thereof.
  • connection hole is provided in a main board, a board is inserted perpendicularly to the connection hole, and the electrode at the insertion portion and the electrode around the connection hole are soldered.
  • a substrate in which the size of the substrate is reduced by attaching is known (see, for example, Patent Documents 1, 2, and 3).
  • the amount of solder that joins the electrodes on the standing board and the main board may vary between the electrodes. Depending on the position of the electrodes, the amount of solder decreases, and thermal strain due to temperature cycling in the usage environment Therefore, cracks may occur in the solder joints.
  • the printed wiring board is increasingly manufactured by a flow soldering method from the viewpoint of improving production efficiency.
  • this flow soldering method the lower part of the main board with the standing board assembled is immersed in the surface layer of the molten solder stored in the solder flow tank while moving the lower part of the main board in the horizontal direction by, for example, a conveyor belt.
  • a series of electrodes that require solder bonding are sequentially brought into contact with the molten solder and soldered.
  • the electrode on which solder joining is to be started in the forefront of the board moving direction is short because the solder immersion time of the board itself is short and the amount of heat received from the molten solder is small. Moreover, the wetness of the molten solder is not sufficient, and the amount of solder joining is reduced.
  • the surface layer part of the molten solder itself is brought into contact with the moving substrate electrode and is flowed by being pulled to the downstream side in the substrate moving direction while being used for solder bonding. Solder tends to accumulate, and an unbalance in the amount of solder joining occurs between the front and rear portions in the board moving direction.
  • the present invention has been made to solve the above-described problems, and obtains a highly reliable printed wiring board by suppressing variations in the amount of solder at the solder joint between the standing board and the main board. With the goal.
  • a printed wiring board manufacturing method includes a long connection hole, and a plurality of the connection holes are arranged around the connection hole along the longitudinal direction of the connection hole.
  • a main substrate having a main-side electrode, a connection piece formed on one side, and a plurality of standing-side electrodes arranged on the connection piece along the one side.
  • a printed wiring board comprising: a plurality of the main-side electrodes and a standing substrate in which each of the plurality of standing-side electrodes is connected by a solder portion in a state where one part is inserted into the connection hole of the main substrate
  • the area of the at least one main side electrode or the standing side electrode provided at one end portion in the electrode arrangement direction is provided at the other end portion in the electrode arrangement direction.
  • the area of the main side electrode or the standing side electrode Are also larger, the solder portion is sequentially formed from an end portion of the one side of the electrode arrangement direction toward the end of the other side.
  • FIG. 1A is a side view
  • FIG. 1B is a side view
  • 2B is a partial cross-sectional view taken along line AA ′ in FIG. It is. It is a bottom view which shows the main board
  • FIG. 1 is an exploded perspective view showing a configuration relationship between a main board and a standing board of a printed wiring board according to Embodiment 1 of the present invention
  • FIG. 2 is a bottom view showing the main board of the printed wiring board according to Embodiment 1 of the present invention
  • FIG. 3 is a side view showing the standing substrate of the printed wiring board according to Embodiment 1 of the present invention.
  • the three-dimensional printed wiring board according to this embodiment includes a long connection hole 3 and a plurality of main sides arranged around the connection hole 3 along the longitudinal direction of the connection hole 3.
  • the plurality of main side electrodes 5A (2) to 5A (n), 5B (2) to 5B (n) and the plurality of standing side electrodes 4A (2) to 4A (n), 4B (2 ) To 4B (n) are each provided with a standing substrate 2 connected by a joining solder portion 6.
  • the connection 3 is formed in, for example, a rectangular shape in plan view extending vertically through the main substrate 1.
  • the electrode widths in the substrate movement direction M of 4B (n) are all W.
  • the board moving direction M is a direction in which the assembly of the main board 1 and the standing board 2 moves relative to the molten solder in the solder flow tank, and the assembly is made by keeping the molten solder stationary. This is a concept that includes both cases where the assembly is moved, the assembly is kept stationary and the molten solder is moved, or the fusion solder and assembly are simultaneously moved in the opposite direction.
  • the substrate moving direction M is a direction along the longitudinal direction of the connection hole 3 or one side 21 of the standing substrate 2.
  • the main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 are all provided at the same pitch P and adjacent electrodes are provided with the same gap S therebetween.
  • the standing side electrodes 4A (1) to 4A (n) and 4B (1) to 4B (n) of the standing substrate 2 are all provided with the same pitch P and adjacent electrodes with the same gap S therebetween. .
  • the length of the main-side electrodes 5A (1) and 5B (1) at the forefront position in the substrate movement direction M in the direction orthogonal to the substrate movement direction M is L1.
  • the electrode length in the direction orthogonal to the substrate movement direction M in the main side electrodes 5A (2) to 5A (n) and 5B (2) to 5B (n) up to the last position in the substrate movement direction M is the main side electrode 5A. It is L2 shorter than the electrode length L1 of (1) and 5B (1).
  • the length in the direction orthogonal to the substrate movement direction M in the standing-side electrodes 4A (1) and 4B (1) at the forefront position in the substrate movement direction M is L′ 1.
  • Subsequent electrode lengths in the direction perpendicular to the substrate moving direction M in the standing side electrodes 4A (2) to 4A (n) and 4B (2) to 4B (n) up to the last position in the substrate moving direction M are as follows. (1), L′ 2 shorter than the electrode length L′ 1 of 4B (1).
  • the main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 are connected to the individual rising-side electrodes 4A (1) to 4A (n ), 4B (1) to 4B (n) are arranged so that electrical connection can be made at positions corresponding to each other, and are arranged so as to be soldered to each other in contact or in contact with each other. Yes.
  • the connecting piece 2a of the standing board 2 is inserted into the connecting hole 3 of the main board 1 and assembled. At this time, the connecting piece 2a is in a state of protruding downward from the lower surface 1A of the main board 1. Then, the assembly is transported in a state of being placed on a conveyor (not shown) attached to the solder flow tank, and as shown in FIG. 4, the main side electrode 5 of the main board 1 and the standing side of the standing board 2 The electrode 4 starts to be immersed in the surface layer of the molten solder 10 in the solder flow tank from the foremost side in the board movement direction M.
  • the hot-melted molten solder 10 is heated to about tens of degrees Celsius, and the temperature of the electrode in contact with the solder is about 100 degrees Celsius. Then, while the assembly is immersed in the surface layer of the molten solder 10, the molten solder 10 is moved horizontally along the surface of the molten solder 10 in the connecting direction of each electrode (that is, the substrate moving direction M). Towards the upstream side of the substrate movement direction M (flow direction F), the immersion electrode 4 and the main electrode 5 are repeatedly immersed and detached sequentially and then cooled and solidified to be joined and soldered parts 6, 6, 6, Are formed and electrical connection and mechanical fixation are made.
  • the joint solder portion 6 sequentially transfers the printed wiring board along the one side 21 while sequentially moving the main side electrodes 5A (1) to 5A from the one end in the electrode arrangement direction toward the other end.
  • (N), 5B (1) to 5B (n) and the standing electrodes 4A (1) to 4A (n) and 4B (1) to 4B (n) are immersed in the molten solder 10.
  • the main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 and the standing-side electrodes 4A (1) to 4A (n) and 4B ( 1) to 4B (n) are respectively soldered and electrically connected.
  • the main side electrodes 5 (2) to 5 (n) are longer than the electrode length L2, thereby increasing the electrode area.
  • the electrode length L′ 1 at the foremost position in the substrate moving direction M is longer than the upstream electrode length L′ 2 in the substrate moving direction M.
  • the electrode area is increased. Accordingly, it is possible to increase the solder amount of the joint solder portion 6 in the electrodes 5 (1) and 4 (1) at the foremost position, and the electrodes 5 (1) and 4 (1) at the foremost position and the electrodes at the rear position.
  • the standing side electrode 4 and the main side electrode 5 at the foremost position are in the stage of starting immersion in the molten solder 10, the amount of heat received is small, and the subsequent standing side electrode 4 and the main side electrode 5 at the rear position are the molten solder 10. Since the main substrate 1 and the standing substrate 2 arrive while being immersed in sequence, the amount of heat received increases.
  • the molten solder 10 starts to be immersed from the front-side standing electrode 4 and main-side electrode 5 and is sequentially adjacent to the upstream side in the substrate movement direction M (flow direction F) and the standing-side electrode 4 and main-side electrode. 5 moves relatively in the flow direction F of the main substrate 1 and the standing substrate 2 while being soldered, so that the solder becomes more likely to accumulate on the electrodes as the electrodes 4 and 5 are located at the rear position. Therefore, the viewpoint of the difference in the amount of heat received between the main side electrode 5 of the conventional main substrate 1 and the standing side electrode 4 of the conventional standing substrate 2 and the tendency of the molten solder to accumulate due to the moving direction (flow direction F) of the molten solder 10. Therefore, the amount of solder to be joined to the electrodes 4 and 5 at the rear of the electrodes 4 and 5 at the back of the electrodes 4 and 5 at the foremost position in the board movement direction M is increased, resulting in variations in the amount of solder joining.
  • FIG. 8 shows a combination of the conventional main board 1 and the conventional standing board 2 using a solder flow bath and soldering the joint solder portion 6 for all electrodes as an index indicating the amount of solder after soldering. It is the experimental result measured. In the figure, it can be seen that the width of the solder joint increases as the position becomes rearward in the substrate movement direction (direction of electrode No. 30 in the figure).
  • the main board 1 and the standing board 2 are configured as printed wiring boards and are used in a product such as an air conditioner outdoor unit. Stress is repeatedly applied to the solder joint 6 due to the difference in thermal expansion coefficient of the standing substrate 2. Furthermore, in the case of a continuous electrode arrangement like the conventional main substrate 1 or the conventional standing substrate 2, the stress of the electrodes at the front end, that is, the electrodes 5 and 4 at the foremost position in the substrate moving direction M with a small amount of solder joints. Since it becomes large, there is a possibility that the joint solder portion at that position may undergo fatigue failure.
  • FIG. 1 the main-side electrodes 5A (1) and 5B (1) and the standing side are used as means for increasing the electrode area of the electrodes 5 (1) and 4 (1) at the foremost position in the substrate movement direction M.
  • 9 and 10 show the main board 1 and the standing board 2 in such a case.
  • the electrode width W1 of the main-side electrodes 5A (1), 5B (1) at the foremost position in the substrate movement direction M is set to the following main-side electrodes 5A (2) -5A (n), 5B ( 2) to 5B (n) are set larger than the electrode width W2.
  • the electrode width W′1 of the standing-side electrodes 4A (1) and 4B (1) at the foremost position in the substrate moving direction M is equal to the subsequent standing-side electrodes 4A (2) to 4A (n ), 4B (2) to 4B (n) are set to be larger than the electrode width W′2.
  • the electrode areas of the electrodes 5 (1) and 4 (1) at the foremost position are changed to the following electrodes 5 (2) to 5 (n) and 4 (2) to 4 (n).
  • the electrode area can be made larger.
  • FIG. 11 is a bottom view showing a main board of a printed wiring board according to Embodiment 3 of the present invention
  • FIG. 12 is a side view showing a standing board of the printed wiring board according to Embodiment 3 of the present invention.
  • the electrode length at the foremost position in the substrate movement direction M is L1
  • the length of the main side electrode 5 adjacent to the upstream side in the substrate movement direction M (flow direction F) is Sequentially L2, L3, L4 (not shown),..., Ln-1 (not shown), Ln.
  • Electrodes lengths are set such that L1>L2>L3>...>Ln-1> Ln and gradually become shorter in the upstream direction of the substrate movement direction M (flow direction F).
  • the standing side electrodes 4A (1) to 4A (n) are the same as those of the main substrate 1, and the length of the electrode 4 at the foremost position in the substrate movement direction M is L′ 1, and , L′ 2, L′ 3, L′ 4 (not shown),..., L′ n ⁇ 1 (not shown), L′ n.
  • These electrode lengths are set such that L′ 1> L′ 2> L′ 3>...> L′ n ⁇ 1> L′ n and gradually decrease in the flow direction F.
  • FIG. FIG. 13 is a bottom view showing a main board of a printed wiring board according to Embodiment 4 of the present invention
  • FIG. 14 is a side view showing a standing board of the printed wiring board according to Embodiment 4 of the present invention.
  • the width of the electrode at the forefront position in the substrate movement direction M is W1
  • the width of the adjacent electrodes in the flow direction F is sequentially set to W2, W3, W4 (not shown),. .., Wn-1 (not shown), Wn.
  • These electrode widths are set such that W1>W2>W3>...>Wn-1> Wn and gradually decrease in the flow direction F.
  • the electrode widths of 4B (1) to 4B (n) are W′1 as the electrode width at the foremost position in the substrate movement direction M, and the electrode widths of the adjacent electrodes in the flow direction F are Sequentially W′2, W′3, W′4 (not shown),..., W′n ⁇ 1 (not shown), W′n.
  • These electrode widths are set so as to gradually decrease in the flow direction F as W′1>W′2>W′3>...>W′n ⁇ 1> W′n. .
  • the individual main side electrodes of the main board and the individual standing side electrodes of the standing board are set to have the same area.
  • the present invention is limited to this. Not a thing.
  • the characteristic configuration of the present invention can be employed for either the main side electrode or the standing side electrode. Even with such a configuration, the effects specific to the present invention can be obtained accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

This production method is for a printed circuit board comprising: a main base board having an elongated connection hole and a plurality of main side electrodes arrayed along the length direction of the periphery of the connection hole; and a standing base board having a connection strip section formed at one edge, and a plurality of standing side electrodes arrayed in the connection strip section along the one edge, the plurality of the main side electrodes being connected respectively to the plurality of the standing side electrodes via soldering portions when the connection strip section is in an inserted state in the connection hole of the main base board. The surface area of at least one of the main side electrodes or the standing side electrodes provided at an end portion on one side in the electrode array direction is formed so as to be larger than the surface area of the main side electrode or the standing side electrode provided at an end portion on the other side in the electrode array direction, and the soldering portions are sequentially formed from the end portion on the one side to the end portion on the other side, in the electrode array direction.

Description

プリント配線板およびプリント配線板の製造方法Printed wiring board and printed wiring board manufacturing method
 本発明は、メイン基板と立ち基板とを組み合わせて構成するプリント配線板およびその製造方法に関するものである。 The present invention relates to a printed wiring board configured by combining a main board and a standing board, and a manufacturing method thereof.
 従来、この種の立体型のプリント配線板としては、メイン基板に接続用孔を設け、その接続用孔に垂直に立ち基板を挿入し、挿入部分の電極と接続用孔周辺の電極とをはんだ付けすることで基板を小型化するようにしたものが知られている(例えば特許文献1,2,3参照)。しかし、立ち基板とメイン基板の電極同士を接合するはんだ接合量に各電極間でのバラツキが生じることがあり、電極の位置によってははんだ量が少なくなり、使用環境下での温度サイクルによる熱ひずみから、はんだ接合部にクラックを生じることがあった。 Conventionally, as this type of three-dimensional printed wiring board, a connection hole is provided in a main board, a board is inserted perpendicularly to the connection hole, and the electrode at the insertion portion and the electrode around the connection hole are soldered. A substrate in which the size of the substrate is reduced by attaching is known (see, for example, Patent Documents 1, 2, and 3). However, the amount of solder that joins the electrodes on the standing board and the main board may vary between the electrodes. Depending on the position of the electrodes, the amount of solder decreases, and thermal strain due to temperature cycling in the usage environment Therefore, cracks may occur in the solder joints.
一方で、上記のプリント配線板は、生産効率向上化の観点から、フローはんだ付け工法で製作されることが増えている。このフローはんだ付け工法は、立ち基板を組み付けたメイン基板の下部を例えば搬送ベルトにより水平方向に移動させながら、はんだフロー槽内に貯留されている溶融はんだの表層に浸漬させることにより、メイン基板下部にあってはんだ接合を必要とする一連の電極を溶融はんだに順次接触させてはんだ付けするものである。 On the other hand, the printed wiring board is increasingly manufactured by a flow soldering method from the viewpoint of improving production efficiency. In this flow soldering method, the lower part of the main board with the standing board assembled is immersed in the surface layer of the molten solder stored in the solder flow tank while moving the lower part of the main board in the horizontal direction by, for example, a conveyor belt. In this case, a series of electrodes that require solder bonding are sequentially brought into contact with the molten solder and soldered.
特開2004-153178号公報JP 2004-153178 A 特開2006-237176号公報JP 2006-237176 A 登録実用新案第3111232号公報Registered Utility Model No. 3111232
しかしながら、上記フローはんだ付け工法によりプリント配線板を製作するにあたり、基板移動方向の最前ではんだ接合が開始されようとする電極は、基板自体のはんだ浸漬時間が短く溶融はんだから受ける受熱量も小さいため、溶融はんだの濡れが十分ではなくはんだ接合量も少なくなる。また、溶融はんだ自体の表層部も、移動する基板の電極と接してはんだ接合に供されながら基板移動方向下流側に引っ張られて流動するため、基板移動方向上流側の電極になるほど最終的に溶融はんだが溜まりやすくなり、基板移動方向の最前部と後部とで、はんだ接合量のアンバランスが生じる。このようなはんだ接合状態下で、温度サイクルによる熱ひずみが基板にかかった場合、はんだ接合量の少ない基板先頭部の電極部分に応力が集中してクラックが発生しやすくなり、信頼性が劣化すると言う課題があった。 However, when manufacturing a printed wiring board by the above-described flow soldering method, the electrode on which solder joining is to be started in the forefront of the board moving direction is short because the solder immersion time of the board itself is short and the amount of heat received from the molten solder is small. Moreover, the wetness of the molten solder is not sufficient, and the amount of solder joining is reduced. In addition, the surface layer part of the molten solder itself is brought into contact with the moving substrate electrode and is flowed by being pulled to the downstream side in the substrate moving direction while being used for solder bonding. Solder tends to accumulate, and an unbalance in the amount of solder joining occurs between the front and rear portions in the board moving direction. When thermal strain due to temperature cycling is applied to the board under such solder joint condition, stress concentrates on the electrode part at the top of the board where the amount of solder joint is small, and cracks are likely to occur, and reliability deteriorates. There was a problem to say.
 この発明は、上記のような課題を解決するためになされたものであり、立ち基板とメイン基板とのはんだ接合部でのはんだ量のバラツキを抑制して信頼性の高いプリント配線板を得ることを目的とする。 The present invention has been made to solve the above-described problems, and obtains a highly reliable printed wiring board by suppressing variations in the amount of solder at the solder joint between the standing board and the main board. With the goal.
上記目的を達成するために、この発明に係るプリント配線板の製造方法は、長尺な接続用孔と、前記接続用孔の長手方向に沿って、前記接続用孔の周辺に複数配列されたメイン側電極と、を有するメイン基板と、一辺に形成された接続用片部と、前記一辺に沿って、前記接続用片部に複数配列された立ち側電極と、を有し、前記接続用片部が前記メイン基板の前記接続用孔に挿入された状態で、複数の前記メイン側電極と複数の前記立ち側電極の各々がはんだ部で接続された立ち基板と、を備えたプリント配線板の製造方法であって、電極配列方向の一方側の端部に設けられた少なくとも一つの前記メイン側電極または前記立ち側電極の面積は、前記電極配列方向の他方側の端部に設けられた前記メイン側電極または前記立ち側電極の面積よりも大きく形成されており、前記はんだ部は、前記電極配列方向の前記一方側の端部から前記他方側の端部に向かって順次形成される。 In order to achieve the above object, a printed wiring board manufacturing method according to the present invention includes a long connection hole, and a plurality of the connection holes are arranged around the connection hole along the longitudinal direction of the connection hole. A main substrate having a main-side electrode, a connection piece formed on one side, and a plurality of standing-side electrodes arranged on the connection piece along the one side. A printed wiring board comprising: a plurality of the main-side electrodes and a standing substrate in which each of the plurality of standing-side electrodes is connected by a solder portion in a state where one part is inserted into the connection hole of the main substrate The area of the at least one main side electrode or the standing side electrode provided at one end portion in the electrode arrangement direction is provided at the other end portion in the electrode arrangement direction. The area of the main side electrode or the standing side electrode Are also larger, the solder portion is sequentially formed from an end portion of the one side of the electrode arrangement direction toward the end of the other side.
 この発明によれば、立ち基板とメイン基板とのはんだ接合部でのはんだ量のバラツキを抑制して信頼性の高いプリント配線板を得ることが可能となる。 According to the present invention, it is possible to obtain a highly reliable printed wiring board by suppressing variations in the amount of solder at the solder joint between the standing board and the main board.
本発明の実施の形態1におけるプリント配線板のメイン基板と立ち基板の構成関係を示す分解斜視図である。It is a disassembled perspective view which shows the structural relationship of the main board | substrate and standing board | substrate of a printed wiring board in Embodiment 1 of this invention. 本発明の実施の形態1におけるプリント配線板のメイン基板を示す底面図である。It is a bottom view which shows the main board | substrate of the printed wiring board in Embodiment 1 of this invention. 本発明の実施の形態1におけるプリント配線板の立ち基板を示す側面図である。It is a side view which shows the standing board of the printed wiring board in Embodiment 1 of this invention. 本発明の実施の形態1におけるプリント配線板におけるはんだ接合開始状態を示す側面図である。It is a side view which shows the solder joint start state in the printed wiring board in Embodiment 1 of this invention. 本発明の実施の形態1におけるプリント配線板におけるはんだ接合完了間際の状態を示す図であって、(a)は側面図、(b)は(a)におけるA-A‘線矢視部分断面図である。2A and 2B are diagrams illustrating a state immediately before completion of soldering in the printed wiring board according to the first embodiment of the present invention, where FIG. 1A is a side view, and FIG. 2B is a partial cross-sectional view taken along line AA ′ in FIG. It is. 本発明の比較形態となる一般的なプリント配線板のメイン基板を示す底面図である。It is a bottom view which shows the main board | substrate of the general printed wiring board used as the comparison form of this invention. 本発明の比較形態となる一般的なプリント配線板の立ち基板を示す側面図である。It is a side view which shows the standing board | substrate of the general printed wiring board used as the comparison form of this invention. 本発明の比較形態となる一般的なプリント配線板におけるはんだ接合幅と電極位置との関係を示した実験結果のグラフ図である。It is a graph of the experimental result which showed the relationship between the solder joint width and electrode position in the general printed wiring board used as the comparison form of this invention. 本発明の実施の形態2におけるプリント配線板のメイン基板を示す底面図である。It is a bottom view which shows the main board | substrate of the printed wiring board in Embodiment 2 of this invention. 本発明の実施の形態2におけるプリント配線板の立ち基板を示す側面図である。It is a side view which shows the standing board of the printed wiring board in Embodiment 2 of this invention. 本発明の実施の形態3におけるプリント配線板のメイン基板を示す底面図である。It is a bottom view which shows the main board | substrate of the printed wiring board in Embodiment 3 of this invention. 本発明の実施の形態3におけるプリント配線板の立ち基板を示す側面図である。It is a side view which shows the standing board of the printed wiring board in Embodiment 3 of this invention. 本発明の実施の形態4におけるプリント配線板のメイン基板を示す底面図である。It is a bottom view which shows the main board | substrate of the printed wiring board in Embodiment 4 of this invention. 本発明の実施の形態4におけるプリント配線板の立ち基板を示す側面図である。It is a side view which shows the standing board of the printed wiring board in Embodiment 4 of this invention.
実施の形態1.
図1は本発明の実施の形態1におけるプリント配線板のメイン基板と立ち基板の構成関係を示す分解斜視図、図2は本発明の実施の形態1におけるプリント配線板のメイン基板を示す底面図、図3は本発明の実施の形態1におけるプリント配線板の立ち基板を示す側面図である。
各図において、この実施形態に係る立体型のプリント配線板は、長尺な接続用孔3と、接続用孔3の長手方向に沿って、接続用孔3の周辺に複数配列されたメイン側電極5A(2)~5A(n),5B(2)~5B(n)と、を有するメイン基板1と、一辺21に形成された接続用片部2aと、一辺21に沿って、接続用片部2aに複数配列された立ち側電極4A(2)~4A(n),4B(2)~4B(n)と、を有し、接続用片部2aがメイン基板1の接続用孔3に挿入された状態で、複数のメイン側電極5A(2)~5A(n),5B(2)~5B(n)と複数の立ち側電極4A(2)~4A(n),4B(2)~4B(n)の各々が接合はんだ部6で接続された立ち基板2と、を備えている。接続用3はメイン基板1に上下貫通した例えば平面視長四角状に形成されている。
Embodiment 1 FIG.
FIG. 1 is an exploded perspective view showing a configuration relationship between a main board and a standing board of a printed wiring board according to Embodiment 1 of the present invention, and FIG. 2 is a bottom view showing the main board of the printed wiring board according to Embodiment 1 of the present invention. FIG. 3 is a side view showing the standing substrate of the printed wiring board according to Embodiment 1 of the present invention.
In each figure, the three-dimensional printed wiring board according to this embodiment includes a long connection hole 3 and a plurality of main sides arranged around the connection hole 3 along the longitudinal direction of the connection hole 3. A main substrate 1 having electrodes 5A (2) to 5A (n) and 5B (2) to 5B (n), a connection piece 2a formed on one side 21, and a connection portion along one side 21 A plurality of standing-side electrodes 4A (2) to 4A (n) and 4B (2) to 4B (n) arranged on the piece 2a, and the connection piece 2a is connected to the connection hole 3 of the main board 1. Are inserted into the plurality of main side electrodes 5A (2) to 5A (n), 5B (2) to 5B (n) and the plurality of standing side electrodes 4A (2) to 4A (n), 4B (2 ) To 4B (n) are each provided with a standing substrate 2 connected by a joining solder portion 6. The connection 3 is formed in, for example, a rectangular shape in plan view extending vertically through the main substrate 1.
前記したメイン基板1のメイン側電極5A(1)~5A(n),5B(1)~5B(n)および立ち基板2の立ち側電極4A(1)~4A(n),4B(1)~4B(n)の基板移動方向Mの電極幅は、いずれもWである。基板移動方向Mとは、メイン基板1と立ち基板2との組付け体がはんだフロー槽中の溶融はんだに対して相対的に移動する方向のことであり、溶融はんだを静止させて組付け体を移動させる場合、組付け体を静止させて溶融はんだを移動させる場合、あるいは溶融はんだと組付け体を同時に逆方向に移動させる場合のいずれも含む概念である。基板移動方向Mは、接続用孔3の長手方向や立ち基板2の一辺21に沿う方向である。そして、メイン基板1のメイン側電極5A(1)~5A(n),5B(1)~5B(n)は全て、同じピッチPで、且つ、隣り合う電極が同じ隙間Sを隔てて設けられている。立ち基板2の立ち側電極4A(1)~4A(n),4B(1)~4B(n)も全て、同じピッチPで、且つ、隣り合う電極が同じ隙間Sを隔てて設けられている。 The main side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 and the standing side electrodes 4A (1) to 4A (n) and 4B (1) of the standing substrate 2 described above. The electrode widths in the substrate movement direction M of 4B (n) are all W. The board moving direction M is a direction in which the assembly of the main board 1 and the standing board 2 moves relative to the molten solder in the solder flow tank, and the assembly is made by keeping the molten solder stationary. This is a concept that includes both cases where the assembly is moved, the assembly is kept stationary and the molten solder is moved, or the fusion solder and assembly are simultaneously moved in the opposite direction. The substrate moving direction M is a direction along the longitudinal direction of the connection hole 3 or one side 21 of the standing substrate 2. The main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 are all provided at the same pitch P and adjacent electrodes are provided with the same gap S therebetween. ing. The standing side electrodes 4A (1) to 4A (n) and 4B (1) to 4B (n) of the standing substrate 2 are all provided with the same pitch P and adjacent electrodes with the same gap S therebetween. .
また、基板移動方向Mの最前位置にあるメイン側電極5A(1),5B(1)における基板移動方向Mと直交方向の長さはL1である。以降の基板移動方向Mの最後位置までのメイン側電極5A(2)~5A(n),5B(2)~5B(n)における基板移動方向Mと直交方向の電極長は、メイン側電極5A(1),5B(1)の電極長L1よりも短いL2である。そして、基板移動方向Mの最前位置にある立ち側電極4A(1),4B(1)における基板移動方向Mと直交方向の長さはL‘1である。以降の基板移動方向Mの最後位置までの立ち側電極4A(2)~4A(n),4B(2)~4B(n)における基板移動方向Mと直交方向の電極長は、立ち側電極4A(1),4B(1)の電極長L’1よりも短いL‘2である。 Further, the length of the main-side electrodes 5A (1) and 5B (1) at the forefront position in the substrate movement direction M in the direction orthogonal to the substrate movement direction M is L1. The electrode length in the direction orthogonal to the substrate movement direction M in the main side electrodes 5A (2) to 5A (n) and 5B (2) to 5B (n) up to the last position in the substrate movement direction M is the main side electrode 5A. It is L2 shorter than the electrode length L1 of (1) and 5B (1). The length in the direction orthogonal to the substrate movement direction M in the standing-side electrodes 4A (1) and 4B (1) at the forefront position in the substrate movement direction M is L′ 1. Subsequent electrode lengths in the direction perpendicular to the substrate moving direction M in the standing side electrodes 4A (2) to 4A (n) and 4B (2) to 4B (n) up to the last position in the substrate moving direction M are as follows. (1), L′ 2 shorter than the electrode length L′ 1 of 4B (1).
すなわち、このプリント配線板では、立ち基板2の基板移動方向Mの最前位置にあるメイン側電極5A(1),5B(1)の面積(=L1×W)が、基板移動方向Mの上流側(後方位置)にあるメイン側電極5A(2)~5A(n),5B(2)~5B(n)の面積(=L2×W)よりも大きく設定されている。また、立ち基板2の基板移動方向Mの最前位置にある立ち側電極4A(1),4B(1)の面積(=L‘1×W)も、基板移動方向Mの上流側にある立ち側電極4A(2)~4A(n),4B(2)~4B(n)の面積(=L’1×W)よりも大きく設定されている。これにより、前記したメイン基板1のメイン側電極5A(1)~5A(n),5B(1)~5B(n)は、立ち基板2の個々の立ち側電極4A(1)~4A(n),4B(1)~4B(n)に対応した位置でそれぞれ電気的な接続を成し得るための配置になっており、それぞれ対面または接触して互いにはんだ付けされるように連設されている。 That is, in this printed wiring board, the area (= L1 × W) of the main-side electrodes 5A (1) and 5B (1) at the foremost position in the board movement direction M of the standing board 2 is upstream of the board movement direction M. It is set to be larger than the area (= L2 × W) of the main side electrodes 5A (2) to 5A (n) and 5B (2) to 5B (n) at the (rear position). Further, the area (= L′ 1 × W) of the standing-side electrodes 4A (1) and 4B (1) at the foremost position in the substrate moving direction M of the standing substrate 2 is also the standing side on the upstream side of the substrate moving direction M. It is set larger than the area (= L′ 1 × W) of the electrodes 4A (2) to 4A (n) and 4B (2) to 4B (n). As a result, the main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 are connected to the individual rising-side electrodes 4A (1) to 4A (n ), 4B (1) to 4B (n) are arranged so that electrical connection can be made at positions corresponding to each other, and are arranged so as to be soldered to each other in contact or in contact with each other. Yes.
次に、このプリント配線板の製作態様について説明する。
まず、メイン基板1の接続用孔3に立ち基板2の接続用片部2aが挿通されて組付けられる。このとき、接続用片部2aはメイン基板1の下面1Aから下向きに突出した状態にある。そして、組付け体は、はんだフロー槽付属のコンベア(いずれも不図示)に載せられた状態で搬送され、図4に示すように、メイン基板1のメイン側電極5と立ち基板2の立ち側電極4が基板移動方向Mの最前側からはんだフロー槽内の溶融はんだ10の表層内に浸漬を開始する。因みに、熱溶融した溶融はんだ10は二百数十℃程度に加熱されており、これと接した電極の温度は100℃程度になっている。そうして、組付け体が溶融はんだ10の表層に浸漬されながら各電極の連設方向(すなわち基板移動方向M)に溶融はんだ10の表面に沿って水平移動することにより、溶融はんだ10が、基板移動方向Mの上流側に向かって(フロー方向F)、立ち側電極4およびメイン側電極5に対し順次浸漬と離脱を繰り返して付着し、その後冷え固まって接合はんだ部6,6,6,・・・を形成し、電気的接続および機械的固定がなされる。すなわち、接合はんだ部6は、プリント配線板を一辺21に沿って搬送しながら、電極配列方向の一方側の端部から他方側の端部に向かって順次、メイン側電極5A(1)~5A(n),5B(1)~5B(n)および立ち側電極4A(1)~4A(n),4B(1)~4B(n)を溶融はんだ10に浸漬することで形成される。これにより、メイン基板1のメイン側電極5A(1)~5A(n),5B(1)~5B(n)と、立ち基板2の立ち側電極4A(1)~4A(n),4B(1)~4B(n)とが、それぞれ、はんだ付けされて電気的に接続される。
Next, a manufacturing mode of the printed wiring board will be described.
First, the connecting piece 2a of the standing board 2 is inserted into the connecting hole 3 of the main board 1 and assembled. At this time, the connecting piece 2a is in a state of protruding downward from the lower surface 1A of the main board 1. Then, the assembly is transported in a state of being placed on a conveyor (not shown) attached to the solder flow tank, and as shown in FIG. 4, the main side electrode 5 of the main board 1 and the standing side of the standing board 2 The electrode 4 starts to be immersed in the surface layer of the molten solder 10 in the solder flow tank from the foremost side in the board movement direction M. Incidentally, the hot-melted molten solder 10 is heated to about tens of degrees Celsius, and the temperature of the electrode in contact with the solder is about 100 degrees Celsius. Then, while the assembly is immersed in the surface layer of the molten solder 10, the molten solder 10 is moved horizontally along the surface of the molten solder 10 in the connecting direction of each electrode (that is, the substrate moving direction M). Towards the upstream side of the substrate movement direction M (flow direction F), the immersion electrode 4 and the main electrode 5 are repeatedly immersed and detached sequentially and then cooled and solidified to be joined and soldered parts 6, 6, 6, Are formed and electrical connection and mechanical fixation are made. That is, the joint solder portion 6 sequentially transfers the printed wiring board along the one side 21 while sequentially moving the main side electrodes 5A (1) to 5A from the one end in the electrode arrangement direction toward the other end. (N), 5B (1) to 5B (n) and the standing electrodes 4A (1) to 4A (n) and 4B (1) to 4B (n) are immersed in the molten solder 10. As a result, the main-side electrodes 5A (1) to 5A (n) and 5B (1) to 5B (n) of the main substrate 1 and the standing-side electrodes 4A (1) to 4A (n) and 4B ( 1) to 4B (n) are respectively soldered and electrically connected.
以上のように、この実施形態のプリント配線板において、図2のメイン基板1の基板移動方向Mの最前位置のメイン側電極5(1)はその電極長L1が基板移動方向Mの上流側のメイン側電極5(2)~5(n)の電極長L2よりも長くなっており、これによって電極面積を大きくしている。同様に、図3に示した立ち基板2の立ち側電極4も基板移動方向Mの最前位置の電極長L’1が基板移動方向Mの上流側の電極長L’2より長くなっていることから電極面積を大きくしている。
それにより、これら最前位置の電極5(1),4(1)における接合はんだ部6のはんだ量を増加させることができ、最前位置の電極5(1),4(1)と後方位置の電極5(2)~5(n),4(2)~4(n)とで、接合されるはんだ量のバラツキを抑えることができる。すなわち、基板移動方向Mの最前位置にある広い面積の電極5(1),4(1)で十分なはんだ量の接合ができるため、高い信頼性を有するプリント配線板が得られるのである。
As described above, in the printed wiring board of this embodiment, the main-side electrode 5 (1) at the foremost position in the board movement direction M of the main board 1 in FIG. The main side electrodes 5 (2) to 5 (n) are longer than the electrode length L2, thereby increasing the electrode area. Similarly, in the standing side electrode 4 of the standing substrate 2 shown in FIG. 3, the electrode length L′ 1 at the foremost position in the substrate moving direction M is longer than the upstream electrode length L′ 2 in the substrate moving direction M. The electrode area is increased.
Accordingly, it is possible to increase the solder amount of the joint solder portion 6 in the electrodes 5 (1) and 4 (1) at the foremost position, and the electrodes 5 (1) and 4 (1) at the foremost position and the electrodes at the rear position. With 5 (2) to 5 (n) and 4 (2) to 4 (n), variations in the amount of solder to be joined can be suppressed. That is, since a sufficient amount of solder can be joined with the electrodes 5 (1) and 4 (1) having a large area at the forefront position in the board movement direction M, a highly reliable printed wiring board can be obtained.
比較形態.
一方、図6に示す比較形態となる従来のメイン基板1の電極5は全てが同一面積、すなわち電極5の電極長(図中ではL1とL2のみ図示)は全ての電極が同一長であり、且つ、電極5の電極幅(図中ではW1とW2のみ図示)についても同一幅となっている。また、同様に従来の立ち基板2の電極4についても、図7に示すように、全ての電極4が同一の電極長(図中ではL’1およびL’2のみ図示)であり、且つ、同一の電極幅(図中ではW’1およびW’2のみ図示)となっている。
Comparative form.
On the other hand, all the electrodes 5 of the conventional main substrate 1 which is a comparative form shown in FIG. 6 have the same area, that is, the electrode length of the electrode 5 (only L1 and L2 are shown in the figure) are all the same length, The electrode width of the electrode 5 (only W1 and W2 are shown in the figure) is also the same width. Similarly, for the electrodes 4 of the conventional standing substrate 2, as shown in FIG. 7, all the electrodes 4 have the same electrode length (only L′ 1 and L′ 2 are shown in the figure), and The electrode width is the same (only W′1 and W′2 are shown in the figure).
 ここで、従来のメイン基板1に従来の立ち基板2を挿入した状態でフローはんだ付け工法にてはんだ接合をした場合、実施形態1の図4で先述したものと同様に、基板移動方向Mの最前位置の立ち側電極4から溶融はんだ10に浸漬が開始され、相対するメイン基板1のメイン側電極5と立ち基板2の立ち側電極4とがはんだ接合される。このとき、基板移動方向Mの最前位置の立ち側電極4およびメイン側電極5と、後続の後方位置の立ち側電極4およびメイン側電極5とでは、溶融はんだ10への浸漬時間の差があり受熱量に差が生じる。すなわち、最前位置の立ち側電極4およびメイン側電極5は溶融はんだ10への浸漬開始段階であるために受熱量が少なく、後続する後方位置の立ち側電極4およびメイン側電極5は溶融はんだ10にメイン基板1および立ち基板2が順次浸漬されながら到達するため、受熱量が大きくなる。 Here, when solder joining is performed by the flow soldering method in a state where the conventional standing substrate 2 is inserted into the conventional main substrate 1, the substrate moving direction M in the same manner as described above with reference to FIG. Immersion is started in the molten solder 10 from the standing side electrode 4 at the foremost position, and the main side electrode 5 of the main substrate 1 and the standing side electrode 4 of the standing substrate 2 are soldered to each other. At this time, there is a difference in the immersion time in the molten solder 10 between the standing side electrode 4 and the main side electrode 5 at the foremost position in the substrate moving direction M and the standing side electrode 4 and the main side electrode 5 at the subsequent rear position. There is a difference in the amount of heat received. That is, since the standing side electrode 4 and the main side electrode 5 at the foremost position are in the stage of starting immersion in the molten solder 10, the amount of heat received is small, and the subsequent standing side electrode 4 and the main side electrode 5 at the rear position are the molten solder 10. Since the main substrate 1 and the standing substrate 2 arrive while being immersed in sequence, the amount of heat received increases.
また、溶融はんだ10は、最前位置の立ち側電極4およびメイン側電極5から浸漬を開始し基板移動方向Mの上流側(フロー方向F)に向かって順次隣接する立ち側電極4およびメイン側電極5をはんだ接合しながら相対的にメイン基板1および立ち基板2のフロー方向Fへ移動するため、後方位置の電極4および電極5になるほど電極上にはんだが溜まりやすくなる。従って、従来のメイン基板1のメイン側電極5と従来の立ち基板2の立ち側電極4においては受熱量の差、溶融はんだ10の移動方向(フロー方向F)による溶融はんだの溜まりやすさと言う観点から、基板移動方向Mの最前位置の電極4,5よりもそれより後方の電極4,5の方が接合されるはんだ量が多くなり、はんだ接合量にバラツキが生じていた。 Further, the molten solder 10 starts to be immersed from the front-side standing electrode 4 and main-side electrode 5 and is sequentially adjacent to the upstream side in the substrate movement direction M (flow direction F) and the standing-side electrode 4 and main-side electrode. 5 moves relatively in the flow direction F of the main substrate 1 and the standing substrate 2 while being soldered, so that the solder becomes more likely to accumulate on the electrodes as the electrodes 4 and 5 are located at the rear position. Therefore, the viewpoint of the difference in the amount of heat received between the main side electrode 5 of the conventional main substrate 1 and the standing side electrode 4 of the conventional standing substrate 2 and the tendency of the molten solder to accumulate due to the moving direction (flow direction F) of the molten solder 10. Therefore, the amount of solder to be joined to the electrodes 4 and 5 at the rear of the electrodes 4 and 5 at the back of the electrodes 4 and 5 at the foremost position in the board movement direction M is increased, resulting in variations in the amount of solder joining.
続いて、図8は従来のメイン基板1と従来の立ち基板2の組合せにおいて、はんだフロー槽を使い、はんだ接合させた後にそのはんだ量を示す指標として接合はんだ部6の幅を全ての電極について測定した実験結果である。図中、基板移動方向の後方位置(図中の電極No.30の方向)になるほど、接合はんだ幅が大きくなっていることが判る。 Next, FIG. 8 shows a combination of the conventional main board 1 and the conventional standing board 2 using a solder flow bath and soldering the joint solder portion 6 for all electrodes as an index indicating the amount of solder after soldering. It is the experimental result measured. In the figure, it can be seen that the width of the solder joint increases as the position becomes rearward in the substrate movement direction (direction of electrode No. 30 in the figure).
 この基板移動方向Mの最前位置の電極5,4と、最前位置よりも後方の電極5,4との接合はんだ量のバラツキ、すなわち最前位置の電極5,4の接合はんだ量が少ないことによる製品への影響については、メイン基板1と立ち基板2をプリント配線板として構成し例えば空調室外機と言った製品に組み込んで使用した場合に、使用環境下における温度変化に曝されるメイン基板1と立ち基板2の熱膨張係数の差からはんだ接合部6に応力が繰り返し加わることとなる。更に、従来のメイン基板1や従来の立ち基板2のように連続する電極配置の場合は、前端にある電極、すなわち接合はんだ量の少ない基板移動方向Mの最前位置の電極5,4の応力が大きくなるため、その位置の接合はんだ部が疲労破壊するおそれがあったのである。 Variation in bonding solder amount between the electrodes 5 and 4 at the foremost position in the board movement direction M and the electrodes 5 and 4 behind the front position, that is, a product due to a small amount of bonding solder between the electrodes 5 and 4 at the foremost position The main board 1 and the standing board 2 are configured as printed wiring boards and are used in a product such as an air conditioner outdoor unit. Stress is repeatedly applied to the solder joint 6 due to the difference in thermal expansion coefficient of the standing substrate 2. Furthermore, in the case of a continuous electrode arrangement like the conventional main substrate 1 or the conventional standing substrate 2, the stress of the electrodes at the front end, that is, the electrodes 5 and 4 at the foremost position in the substrate moving direction M with a small amount of solder joints. Since it becomes large, there is a possibility that the joint solder portion at that position may undergo fatigue failure.
実施の形態2.
上記した実施の形態1では、基板移動方向Mの最前位置の電極5(1),4(1)の電極面積を大きくする手段として、メイン側電極5A(1),5B(1)および立ち側電極4A(1),4B(1)の電極長L1およびL’1を長くした例を示したが、上記のように電極面積を大きくするための実施の形態2を次に説明する。
 図9および図10は、このような場合のメイン基板1および立ち基板2を示している。図9のメイン基板1では、基板移動方向Mの最前位置のメイン側電極5A(1),5B(1)の電極幅W1が後続のメイン側電極5A(2)~5A(n),5B(2)~5B(n)の電極幅W2よりも大きく設定されている。また、図10の立ち基板2では、基板移動方向Mの最前位置の立ち側電極4A(1),4B(1)の電極幅W‘1が後続の立ち側電極4A(2)~4A(n),4B(2)~4B(n)の電極幅W’2よりも大きく設定されている。
Embodiment 2. FIG.
In the first embodiment described above, the main-side electrodes 5A (1) and 5B (1) and the standing side are used as means for increasing the electrode area of the electrodes 5 (1) and 4 (1) at the foremost position in the substrate movement direction M. The example in which the electrode lengths L1 and L′ 1 of the electrodes 4A (1) and 4B (1) are increased has been described, but the second embodiment for increasing the electrode area as described above will be described next.
9 and 10 show the main board 1 and the standing board 2 in such a case. In the main substrate 1 of FIG. 9, the electrode width W1 of the main-side electrodes 5A (1), 5B (1) at the foremost position in the substrate movement direction M is set to the following main-side electrodes 5A (2) -5A (n), 5B ( 2) to 5B (n) are set larger than the electrode width W2. Further, in the standing substrate 2 of FIG. 10, the electrode width W′1 of the standing-side electrodes 4A (1) and 4B (1) at the foremost position in the substrate moving direction M is equal to the subsequent standing-side electrodes 4A (2) to 4A (n ), 4B (2) to 4B (n) are set to be larger than the electrode width W′2.
以上のような構成を採用することにより、最前位置の電極5(1),4(1)の電極面積を後続の電極5(2)~5(n),4(2)~4(n)の電極面積よりも大きくすることができる。これにより、既述した実施形態1による効果と同様に、接合されるはんだ量のバラツキを各電極について抑えることができる。すなわち、基板移動方向Mの最前位置にある広い面積の電極5(1),4(1)で十分なはんだ量の接合ができるため、高い信頼性を有するプリント配線板が得られる。 By adopting the configuration as described above, the electrode areas of the electrodes 5 (1) and 4 (1) at the foremost position are changed to the following electrodes 5 (2) to 5 (n) and 4 (2) to 4 (n). The electrode area can be made larger. Thereby, similarly to the effect by Embodiment 1 mentioned above, the variation in the amount of solder joined can be suppressed about each electrode. That is, since a sufficient amount of solder can be joined with the electrodes 5 (1) and 4 (1) having a large area in the forefront position in the board movement direction M, a printed wiring board having high reliability can be obtained.
実施の形態3.
図11は本発明の実施の形態3におけるプリント配線板のメイン基板を示す底面図、図12は本発明の実施の形態3におけるプリント配線板の立ち基板を示す側面図である。
この実施形態におけるメイン基板1のメイン側電極5A(1)~5A(n).5B(1)~5B(n)は、基板移動方向Mの最前位置の電極長をL1とし、基板移動方向Mの上流側(フロー方向F)に向って隣接するメイン側電極5の長さを順次L2,L3,L4(図示せず),・・・,Ln-1(図示せず),Lnとする。これらの電極長はL1>L2>L3>・・・・>Ln-1>Lnと、基板移動方向Mの上流側(フロー方向F)に向って漸次段階的に短くなるように設定される。一方、立ち基板2の立ち側電極4A(1)~4A(n).4B(1)~4B(n)の長さも、メイン基板1と同様に、基板移動方向Mの最前位置の電極長をL’1とし、フロー方向Fに向って隣接する立ち側電極4の長さを順次L‘2、L’3、L’4(図示せず),・・・,L‘n-1(図示せず),L’nとする。これらの電極長はL‘1>L’2>L‘3>・・・・>L’n-1>L‘nとフロー方向Fに向って漸次段階的に短くなるように設定される。
Embodiment 3 FIG.
FIG. 11 is a bottom view showing a main board of a printed wiring board according to Embodiment 3 of the present invention, and FIG. 12 is a side view showing a standing board of the printed wiring board according to Embodiment 3 of the present invention.
Main side electrodes 5A (1) to 5A (n). In 5B (1) to 5B (n), the electrode length at the foremost position in the substrate movement direction M is L1, and the length of the main side electrode 5 adjacent to the upstream side in the substrate movement direction M (flow direction F) is Sequentially L2, L3, L4 (not shown),..., Ln-1 (not shown), Ln. These electrode lengths are set such that L1>L2>L3>...>Ln-1> Ln and gradually become shorter in the upstream direction of the substrate movement direction M (flow direction F). On the other hand, the standing side electrodes 4A (1) to 4A (n). The lengths of 4B (1) to 4B (n) are the same as those of the main substrate 1, and the length of the electrode 4 at the foremost position in the substrate movement direction M is L′ 1, and , L′ 2, L′ 3, L′ 4 (not shown),..., L′ n−1 (not shown), L′ n. These electrode lengths are set such that L′ 1> L′ 2> L′ 3>...> L′ n−1> L′ n and gradually decrease in the flow direction F.
上記した構成を採ることで、メイン基板1のメイン側電極5と立ち基板2の立ち側電極4との接合はんだ部6(図5参照)のはんだ量のバラツキを全ての電極にわたって抑えることができ、実施の形態1の効果以上に、基板移動方向Mの最前位置の電極5(1),4(1)にも十分なはんだ量の接合ができるため、極めて高い信頼性を有するプリント配線板を得ることができる。 By adopting the above-described configuration, it is possible to suppress variation in the solder amount of the joining solder portion 6 (see FIG. 5) between the main-side electrode 5 of the main board 1 and the rising-side electrode 4 of the standing board 2 over all the electrodes. In addition to the effects of the first embodiment, since a sufficient amount of solder can be joined to the electrodes 5 (1) and 4 (1) at the foremost position in the board movement direction M, a printed wiring board having extremely high reliability can be obtained. Obtainable.
実施の形態4.
図13は本発明の実施の形態4におけるプリント配線板のメイン基板を示す底面図、図14は本発明の実施の形態4におけるプリント配線板の立ち基板を示す側面図である。
この実施形態におけるメイン基板1のメイン側電極5A(1)~5A(n).5B(1)~5B(n)は、基板移動方向Mの最前位置の電極幅をW1とし、フロー方向Fに向って隣接する電極の幅を順次W2,W3,W4(図示せず),・・・,Wn-1(図示せず),Wnとする。これらの電極幅はW1>W2>W3>・・・・>Wn-1>Wnと、フロー方向Fに向って漸次段階的に小さくなるように設定される。一方、立ち基板2の立ち側電極4A(1)~4A(n).4B(1)~4B(n)の電極幅も、メイン基板1と同様に、基板移動方向Mの最前位置の電極幅をW’1とし、フロー方向Fに向って隣接する電極の電極幅を順次W‘2、W’3、W’4(図示せず),・・・,W‘n-1(図示せず),W’nとする。これらの電極幅はW‘1>W’2>W‘3>・・・・>W’n-1>W‘nと、フロー方向Fに向って漸次段階的に小さくなるように設定される。
Embodiment 4 FIG.
FIG. 13 is a bottom view showing a main board of a printed wiring board according to Embodiment 4 of the present invention, and FIG. 14 is a side view showing a standing board of the printed wiring board according to Embodiment 4 of the present invention.
Main side electrodes 5A (1) to 5A (n). In 5B (1) to 5B (n), the width of the electrode at the forefront position in the substrate movement direction M is W1, and the width of the adjacent electrodes in the flow direction F is sequentially set to W2, W3, W4 (not shown),. .., Wn-1 (not shown), Wn. These electrode widths are set such that W1>W2>W3>...>Wn-1> Wn and gradually decrease in the flow direction F. On the other hand, the standing side electrodes 4A (1) to 4A (n). Similarly to the main substrate 1, the electrode widths of 4B (1) to 4B (n) are W′1 as the electrode width at the foremost position in the substrate movement direction M, and the electrode widths of the adjacent electrodes in the flow direction F are Sequentially W′2, W′3, W′4 (not shown),..., W′n−1 (not shown), W′n. These electrode widths are set so as to gradually decrease in the flow direction F as W′1>W′2>W′3>...>W′n−1> W′n. .
上記した構成を採ることで、メイン基板1のメイン側電極5と立ち基板2の立ち側電極4との接合はんだ部6(図5参照)のはんだ量のバラツキを全ての電極にわたって抑えることができ、実施の形態2の効果以上に、基板移動方向Mの最前位置の電極5(1),4(1)にも十分なはんだ量の接合ができるため、極めて高い信頼性を有するプリント配線板を得ることができる。 By adopting the above-described configuration, it is possible to suppress variation in the solder amount of the joining solder portion 6 (see FIG. 5) between the main-side electrode 5 of the main board 1 and the rising-side electrode 4 of the standing board 2 over all the electrodes. In addition to the effects of the second embodiment, since a sufficient amount of solder can be joined to the electrodes 5 (1) and 4 (1) at the foremost position in the board movement direction M, a printed wiring board having extremely high reliability can be obtained. Obtainable.
尚、上記の実施形態1~4では、メイン基板の個々のメイン側電極と、立ち基板の個々の立ち側電極の双方をそれぞれ同じ面積に設定するようにしたが、この発明はそれに限定されるものでない。例えば、実施形態1~4の各構成において、メイン側電極または立ち側電極のうちのいずれか一方につき、本発明の特徴構成を採用することも可能である。このような構成であっても、本発明特有の効果を相応に得ることができる。 In the first to fourth embodiments, the individual main side electrodes of the main board and the individual standing side electrodes of the standing board are set to have the same area. However, the present invention is limited to this. Not a thing. For example, in each of the configurations of the first to fourth embodiments, the characteristic configuration of the present invention can be employed for either the main side electrode or the standing side electrode. Even with such a configuration, the effects specific to the present invention can be obtained accordingly.
1 メイン基板、1A 下面、2 立ち基板、2a 接続用片部、3 接続用孔、4A(1)~4A(n) 立ち側電極、
4B(1)~4B(n) 立ち側電極、5A(1)~5A(n) メイン側電極、5B(1)~5B(n) メイン側電極、6 接合はんだ部、10 溶融はんだ、F フロー方向、L1,L2,L‘1,L’2 電極長、M 基板移動方向、P ピッチ、S 間隔、W,W1,Wn,W‘1,W’n 電極幅
1 Main substrate, 1A bottom surface, 2 Standing substrate, 2a Connection piece, 3 Connection hole, 4A (1) to 4A (n) Standing side electrode,
4B (1) to 4B (n) Standing side electrode, 5A (1) to 5A (n) Main side electrode, 5B (1) to 5B (n) Main side electrode, 6 Junction solder, 10 Molten solder, F flow Direction, L1, L2, L'1, L'2 electrode length, M substrate moving direction, P pitch, S interval, W, W1, Wn, W'1, W'n electrode width

Claims (7)

  1.  長尺な接続用孔と、前記接続用孔の長手方向に沿って、前記接続用孔の周辺に複数配列されたメイン側電極と、を有するメイン基板と、
     一辺に形成された接続用片部と、前記一辺に沿って、前記接続用片部に複数配列された立ち側電極と、を有し、前記接続用片部が前記メイン基板の前記接続用孔に挿入された状態で、複数の前記メイン側電極と複数の前記立ち側電極の各々がはんだ部で接続された立ち基板と、を備えたプリント配線板の製造方法であって、
     電極配列方向の一方側の端部に設けられた少なくとも一つの前記メイン側電極または前記立ち側電極の面積は、前記電極配列方向の他方側の端部に設けられた前記メイン側電極または前記立ち側電極の面積よりも大きく形成されており、
     前記はんだ部は、前記電極配列方向の前記一方側の端部から前記他方側の端部に向かって順次形成されるプリント配線板の製造方法。
    A main substrate having a long connection hole and a plurality of main-side electrodes arranged around the connection hole along the longitudinal direction of the connection hole;
    A connecting piece formed on one side and a plurality of standing electrodes arranged on the connecting piece along the one side, wherein the connecting piece is the connection hole of the main board. A plurality of the main-side electrodes and a standing substrate in which each of the plurality of standing-side electrodes is connected by a solder part, and a printed wiring board manufacturing method comprising:
    The area of the at least one main side electrode or the standing electrode provided at one end in the electrode arrangement direction is equal to the area of the main side electrode or the standing electrode provided at the other end in the electrode arrangement direction. It is formed larger than the area of the side electrode,
    The said solder part is a manufacturing method of the printed wiring board formed in order toward the said other edge part from the said one edge part of the said electrode arrangement direction.
  2.  前記はんだ部は、前記プリント配線板を前記一辺に沿って搬送しながら、前記電極配列方向の前記一方側の端部から前記他方側の端部に向かって順次、前記メイン側電極および前記立ち側電極を溶融はんだに浸漬することで形成される請求項1に記載のプリント配線板の製造方法。 The solder portion sequentially conveys the printed wiring board along the one side from the end on the one side to the end on the other side in the electrode arrangement direction, sequentially from the main side electrode and the standing side. The manufacturing method of the printed wiring board of Claim 1 formed by immersing an electrode in molten solder.
  3.  前記メイン基板の前記メイン側電極または前記立ち基板の前記立ち側電極の前記接続用孔の長手方向に対して直交する方向の長さが、前記電極配列方向の前記他方側よりも前記一方側の方が長く形成されている請求項1または請求項2に記載のプリント配線板の製造方法。 The length of the main-side electrode of the main substrate or the standing-side electrode of the standing substrate in the direction orthogonal to the longitudinal direction of the connection hole is more on the one side than the other side in the electrode arrangement direction. The manufacturing method of the printed wiring board of Claim 1 or Claim 2 in which the direction is formed long.
  4.  前記メイン基板の前記メイン側電極または前記立ち基板の前記立ち側電極の前記接続用孔の長手方向に沿う長さが、前記電極配列方向の前記他方側よりも前記一方側の方が長く形成されている1から請求項3までのいずれか一項に記載のプリント配線板の製造方法。 The length along the longitudinal direction of the connection hole of the main side electrode of the main substrate or the standing side electrode of the standing substrate is formed longer on the one side than the other side in the electrode arrangement direction. The manufacturing method of the printed wiring board as described in any one of Claim 1- Claim 3.
  5.  前記メイン基板の前記メイン側電極の面積または前記立ち基板の前記立ち側電極の面積は、前記電極配列方向の前記一方側から前記他方側に向かって漸次小さくなるように形成されている請求項1から請求項4までのいずれか一項に記載のプリント配線板の製造方法。 The area of the main-side electrode of the main substrate or the area of the standing-side electrode of the standing substrate is formed so as to gradually decrease from the one side in the electrode arrangement direction toward the other side. The manufacturing method of the printed wiring board as described in any one of Claims 1-4.
  6.  前記メイン基板の個々の前記メイン側電極と、前記立ち基板における前記メイン側電極と対面する個々の前記立ち側電極の双方が、それぞれ同じ面積に形成されている請求項1から請求項5までのいずれか一項に記載のプリント配線板の製造方法。 The individual main-side electrodes of the main board and the individual standing-side electrodes facing the main-side electrode of the standing board are both formed in the same area. The manufacturing method of the printed wiring board as described in any one of Claims.
  7.  長尺な接続用孔と、前記接続用孔の長手方向に沿って、前記接続用孔の周辺に複数配列されたメイン側電極と、を有するメイン基板と、
     一辺に形成された接続用片部と、前記一辺に沿って、前記接続用片部に複数配列された立ち側電極と、を有し、前記接続用片部が前記メイン基板の前記接続用孔に挿入された状態で、複数の前記メイン側電極と複数の前記立ち側電極の各々がはんだ部で接続された立ち基板と、を備え、
     電極配列方向の一方側の端部に設けられた少なくとも一つの前記メイン側電極または前記立ち側電極の面積は、前記電極配列方向の他方側の端部に設けられた前記メイン側電極または前記立ち側電極の面積よりも大きく形成されているプリント配線板。
    A main substrate having a long connection hole and a plurality of main-side electrodes arranged around the connection hole along the longitudinal direction of the connection hole;
    A connecting piece formed on one side and a plurality of standing electrodes arranged on the connecting piece along the one side, wherein the connecting piece is the connection hole of the main board. A plurality of main-side electrodes and a plurality of standing-side electrodes, each of which is connected by a solder portion,
    The area of the at least one main side electrode or the standing electrode provided at one end in the electrode arrangement direction is equal to the area of the main side electrode or the standing electrode provided at the other end in the electrode arrangement direction. A printed wiring board formed larger than the area of the side electrode.
PCT/JP2017/005806 2017-02-17 2017-02-17 Printed circuit board and production method for printed circuit board WO2018150526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005806 WO2018150526A1 (en) 2017-02-17 2017-02-17 Printed circuit board and production method for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005806 WO2018150526A1 (en) 2017-02-17 2017-02-17 Printed circuit board and production method for printed circuit board

Publications (1)

Publication Number Publication Date
WO2018150526A1 true WO2018150526A1 (en) 2018-08-23

Family

ID=63170148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005806 WO2018150526A1 (en) 2017-02-17 2017-02-17 Printed circuit board and production method for printed circuit board

Country Status (1)

Country Link
WO (1) WO2018150526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507788A (en) * 2021-07-01 2021-10-15 华为技术有限公司 Circuit board and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974759U (en) * 1982-11-09 1984-05-21 日本ビクター株式会社 3D printed wiring board structure
JP2008198814A (en) * 2007-02-14 2008-08-28 Funai Electric Co Ltd Structure of mounting erected circuit board
JP2017017089A (en) * 2015-06-29 2017-01-19 三菱電機株式会社 Three-dimensional printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974759U (en) * 1982-11-09 1984-05-21 日本ビクター株式会社 3D printed wiring board structure
JP2008198814A (en) * 2007-02-14 2008-08-28 Funai Electric Co Ltd Structure of mounting erected circuit board
JP2017017089A (en) * 2015-06-29 2017-01-19 三菱電機株式会社 Three-dimensional printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507788A (en) * 2021-07-01 2021-10-15 华为技术有限公司 Circuit board and electronic equipment

Similar Documents

Publication Publication Date Title
JP4815245B2 (en) Power semiconductor module having terminal elements arranged in a brazing manner
US20170279207A1 (en) Resilient miniature mechanical support that can also serve as an electrical connector
US8094461B2 (en) Printed board and bus bar assembly
FI111768B (en) Connection arrangement for circuit boards and heating device and method for connecting the contacts in this arrangement
WO2018150526A1 (en) Printed circuit board and production method for printed circuit board
WO2012017996A1 (en) Fixed metal fitting for components to be mounted to circuit board
JPH0511340U (en) Surf es mount type electronic parts
JP4963281B2 (en) Connection structure between electric wire and printed circuit board
US20090071683A1 (en) Electronic device mounting structure and method of making the same
US11266018B2 (en) Printed wiring board and method for manufacturing the same
JP5438247B2 (en) Electrical components that can be soldered securely
JP6007413B2 (en) Wiring board
KR102088323B1 (en) Connection Structure of the Printed Circuit Board
JP4519724B2 (en) Connector fixing structure
US20190335583A1 (en) Three-dimensional printed wiring board and method for manufacturing the same
US20210195744A1 (en) Printed wiring board
JP5219987B2 (en) Board mounted terminal block and printed wiring board assembly
KR20190040095A (en) Printed circuit board, method for producing printed circuit board, and method for bonding conductive member
US20160227648A1 (en) Printed wiring board capable of suppressing mounting failure of surface mount device for flow soldering
JP2006186075A (en) Surface-mounting component and its manufacturing method
JP2018081962A (en) Three-dimensional print circuit board and manufacturing method thereof
JP4591381B2 (en) Electronic circuit unit and relay terminal for electronic circuit unit
US20190059163A1 (en) A method of thermal decoupling of printed circuits and a printed circuit for use therein
US11769247B2 (en) Exposed pad integrated circuit package
JP2009060038A (en) Electronic component bus bar bonding structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP