WO2018149335A1 - 防伪元件及光学防伪产品 - Google Patents

防伪元件及光学防伪产品 Download PDF

Info

Publication number
WO2018149335A1
WO2018149335A1 PCT/CN2018/075506 CN2018075506W WO2018149335A1 WO 2018149335 A1 WO2018149335 A1 WO 2018149335A1 CN 2018075506 W CN2018075506 W CN 2018075506W WO 2018149335 A1 WO2018149335 A1 WO 2018149335A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
layer
security element
security
element according
Prior art date
Application number
PCT/CN2018/075506
Other languages
English (en)
French (fr)
Inventor
张宝利
孙凯
朱军
王晓利
Original Assignee
中钞特种防伪科技有限公司
中国印钞造币总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钞特种防伪科技有限公司, 中国印钞造币总公司 filed Critical 中钞特种防伪科技有限公司
Priority to EP18753901.0A priority Critical patent/EP3584090B1/en
Priority to US16/469,872 priority patent/US20190315148A1/en
Publication of WO2018149335A1 publication Critical patent/WO2018149335A1/zh
Priority to US16/820,140 priority patent/US20200269628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/342Moiré effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/60Systems using moiré fringes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • the present invention relates to the field of optical security, and in particular to an anti-counterfeiting component and an optical anti-counterfeiting product.
  • optical anti-counterfeiting technology is widely used in various high-security or high-value-added printed matter such as banknotes, cards, and product packaging, and has achieved very good results.
  • CN1271106, CN1552589, "Properties of moire magnifiers” (Optical Engineering 37 (11) 3007-3014), “Microlens array display technology research” (micro-nanoelectronics technology, No. 6 of 2003) and the like disclose the same document or patent a micro-optical element having a microlens array and a micro-texture array on each of two surfaces of the substrate, wherein the micro-textographic array is located near the focal plane of the microlens array, and the micro-image array is applied to the micro-image array Moir amplification acts to reproduce a pattern with a certain depth of field or a dynamic effect.
  • periodic micro-texture arrays are used in such publications, and the optical effect formed is a simple translational feature or switching feature of a particular visual image along a certain dimension as the viewing angle changes.
  • the security element is easy to design and process, the visual image can often reflect the key graphic features of the periodic micro-text image array, so that the illegal element can easily crack and forge the security element, and the security element prevents cracking and forgery. It is difficult to meet the requirements for the continuous improvement of anti-counterfeiting technology for products such as packaging products, printed matter, and securities.
  • an anti-counterfeiting component with a certain complexity and difficult to be cracked anti-counterfeit micro-texture array will greatly improve the level of difficult identification of the corresponding optical anti-counterfeiting products, and is also a hot research direction in the industry.
  • the invention provides a novel anti-counterfeiting component and an optical anti-counterfeiting product which are characterized by easy identification and difficult to forge, and at least solves the problem of poor anti-counterfeiting and easy to be cracked caused by the use of the periodic micro-texture array as described in the background art. technical problem.
  • an embodiment of the present invention provides an anti-counterfeiting component, where the anti-counterfeiting component includes:
  • a substrate that is at least partially transparent
  • An anti-counterfeit image formed on a surface of the substrate comprising a plurality of imaging pixel groups, the plurality of imaging pixel groups being arranged in a non-periodic and/or non-symmetric axis; the first formed on the substrate
  • a sample synthesis layer having optical properties of the two surfaces, wherein the light transmissive portion through the substrate and the sample synthesis layer are adapted to present a target visual image corresponding to the imaging pixel group.
  • the security image is not determinable based only on a portion of the plurality of imaging pixel groups and/or the target visual image.
  • the security element further includes: a reflective layer formed on a surface of the sampling and synthesizing layer, a transparent portion of the substrate and the sampling and synthesizing layer, and a reflection via the reflective layer is adapted to present corresponding to the imaging The target visual image of the pixel group.
  • the plurality of imaging pixel groups are disposed on the security image corresponding to the image display association relationship, wherein the light transmissive portion of the substrate and the sampling synthesis layer are adapted to present corresponding correspondences from a plurality of different angles And displaying the image display relationship between the plurality of target visual images of the plurality of imaging pixel groups and the plurality of target visual images.
  • the anti-counterfeit image comprises an anti-counterfeit pixel array composed of a plurality of pixels, the plurality of imaging pixel groups being a set of a plurality of sets of specific pixels selected from the anti-counterfeit pixel array.
  • the image display association relationship includes one or more of the following: a translation change association relationship, a stereo change association relationship, a deformation change association relationship, a scaling change association relationship, a rotation change association relationship, a flicker change association relationship, and a switch change association. Relationships and switching change associations.
  • the sample synthesis layer having optical characteristics comprises one or more of the following: a spherical microlens, a cylindrical microlens, a spherical micromirror, and a cylindrical micromirror.
  • the security image further includes an encoded pixel group and/or a macro identification image.
  • the security element further comprises a color functional layer having a fluorescent pattern.
  • the substrate comprises one or more of the following: a single layer PET film, a single layer PVC mold, a transparent composite film, and a colored dielectric film.
  • the imaging pixel set comprises an apertured light absorbing microstructure having spectral absorption characteristics.
  • the light transmissive portion through the substrate and the sample synthesis layer are adapted to present a plurality of color information corresponding to the light absorbing microstructure.
  • the light transmissive portion of the substrate and the sample synthesis layer are transmissive, and the reflection through the reflective layer is adapted to present a plurality of color information corresponding to the light absorbing microstructure.
  • the plurality of color information is in one-to-one correspondence with the color development configuration parameter group of the security element, and the color development configuration parameter group includes one or more of the following: a material and a shape of the reflective layer, and the light absorption microstructure. Arrangement, opening depth, opening width.
  • the plurality of color information comprises at least two selected from the group consisting of red, brown, black, and white.
  • Another aspect of an embodiment of the present invention also provides an optical security product, including the security element described above.
  • the optical security product comprises one or more of the following: a window security thread, a label, a banknote, a credit card, a security, a passport, a package, and a wrapper.
  • the microscopic arrangement of the anti-counterfeit image layer in the security element is a non-periodic or asymmetric configuration, which avoids the micro-anti-aliasing image unit in which the periodic or symmetric image is easily extracted, and also reduces the security element being The risk of deciphering, so that the counterfeiter can not break the information of the entire anti-counterfeit image layer through the local part of the anti-counterfeit image layer, and enhance the anti-counterfeiting ability of the optical anti-counterfeiting component and the product.
  • FIG. 1 is a cross-sectional view of an optical security element in accordance with another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an optical security element in accordance with yet another embodiment of the present invention.
  • 3a and 3b are schematic diagrams showing a visual image and a corresponding anti-counterfeit image layer used when the sampling synthesis layer interprets the physical principle of the anti-counterfeiting image layer sampling and synthesizing process;
  • 4a, b, and c are respectively a visual image effect, a sample synthesis layer, and a portion of the anti-counterfeit image layer provided by the anti-counterfeit image layer of a typical periodic and symmetric microscopic arrangement in the prior art;
  • 5a, b, and c are respectively a visual image effect, a sample synthesis layer, and a portion of the anti-counterfeit image layer provided by another anti-counterfeit image layer of a typical periodic and symmetrical axis microscopic arrangement form in the prior art;
  • 11a, b, and c respectively show a visual image effect, a sampling synthesis layer, and a portion of the anti-counterfeit image layer of the optical security element according to the sixth embodiment of the present invention
  • 16a, b, and c respectively show a visual image effect, a sampling synthesis layer, and a portion of the anti-counterfeit image layer of the optical security element according to the eleventh embodiment of the present invention
  • 17a, b are respectively a schematic cross-sectional view and a cross-sectional view of an anti-counterfeit image of an optical security element according to still another embodiment of the present invention.
  • 18a, b, c, d are respectively fragmentary enlarged views of light absorbing microstructures of optical security elements in accordance with yet another embodiment of the present invention.
  • the anti-counterfeit image layer of the microscopic arrangement of periodic or symmetric axes will be analyzed in the following with reference to the typical examples in the prior art shown in FIGS. 4a, 4b, 4c and 5a, 5b, 5c, thereby illustrating the prior art.
  • Figure 5a shows the visual image effect provided by the anti-counterfeit image layer of the periodic and symmetrical axis microscopic arrangement. Only five rows and five columns of visual images are schematically selected in the figure, wherein the observation is changed along the positive direction of the x-axis. In the process of viewing angle, the visual image moves parallel along the positive direction of the x-axis, which is a general translation effect capable of forming a floating depth of view, while the visual image is positively translated when the same positive change angle of view is obtained in the y-axis direction. Effect.
  • Figure 5b shows a spherical microlens array with a sampled composite layer arranged in a rectangular arrangement with a microlens array arrangement period of 25 microns.
  • Figure 5c shows a portion of the corresponding security image layer, which is apparently periodic and has an axis of symmetry.
  • Figure 5a shows the visual image effect provided by another anti-counterfeit image layer with periodic and symmetrical axes of microscopic arrangement. Only 6 rows and 5 columns of visual images are selected schematically, with positive along the x-axis. In the process of changing the viewing angle, the visual image moves parallel along the positive x direction, which is a general translation effect capable of forming a floating depth of view, while the visual image is positive when the y-axis direction has the same positive changing angle of view. The effect of panning, and the movement of the visual image in the y-axis direction, produces the effect of switching between two visual images.
  • Figure 5b shows a spherical microlens array with a sampled composite layer arranged in a rectangular arrangement with a microlens array arrangement period of 25 microns.
  • Figure 5c shows a plurality of parts of the corresponding security image layer, it is obvious that the security image layer is periodic and has an axis of symmetry.
  • the general translation effect includes effects such as orthogonal translation, floating translation, and sinking translation, and is usually achieved by designing a periodic pattern of the anti-counterfeit image layer to form a slight period difference or angle difference with the array of focusing elements of the sampling composite layer. .
  • the general translation effect cannot form a continuous depth of field change effect of a stereoscopic image.
  • the switching effect can further form a multi-channel switching feature based on the embodiment of Figure 5, but the corresponding anti-counterfeit image layer still has periodicity or has an axis of symmetry.
  • the periodic or symmetric anti-counterfeit image layer has a micro-anti-aliasing image unit that is easily extracted, and the micro-anti-counterfeit image unit is even consistent with the visual image, so that the microscopic image unit can be directly obtained through the visual image;
  • the anti-counterfeit image layer has a simple rule that is easily deciphered
  • the sampling synthesis layer and the anti-counterfeit image layer are processed separately, which determines that the strict alignment cannot be completed between the two, but the misalignment is inevitably formed, and the misalignment includes positional deviation, Angle deviation, deformation deviation, etc.
  • the misalignment not only affects the quality of the observed sampled composite image, but more importantly, when the visual composite image provides more than one image information, the sampled composite image that the observer sees at the specified viewing angle cannot be guaranteed to come from multiple image information. Which one of them, in one case, the observer will see confusing information for multiple images at the same time. All of the above directly cause the optical anti-counterfeiting information to be insufficiently recognized or recognized by the user.
  • an optical security element 1 includes: a substrate 2 including a first surface 31 and a second surface 32 opposite to each other; the same formed on the substrate 2 a sample synthesis layer 21 on the first surface 31; and an anti-counterfeit image layer 22 formed on the second surface 32 of the substrate 2, the anti-counterfeit image layer 22 corresponding to the sample synthesis layer 21, that is, the sample synthesis layer 21 can
  • the anti-counterfeit image layer 22 is sampled and combined to form one or more visual composite images, and the anti-counterfeit image layer 22 is aperiodic and/or non-symmetric in the microscopic arrangement.
  • the partial anti-counterfeit image of the security element is greatly improved based on only a part of the imaging pixel group and/or the target visual image of the plurality of imaging pixel groups, that is, the part of the security image. Concealment and difficulty of being cracked.
  • the target visual image may be a personalized image, such as a logo identifier, etc.; that is, an imaging pixel group arranged in a non-periodic and/or non-symmetric axis in the embodiment of the present invention is suitable for The mating of the substrate 101 of light enables the display of the target visual pattern to allow the viewer to see a particular image.
  • aperiodic and/or non-symmetric axis refers to an imaging pixel group in which there is no periodic or partial period in the two-dimensional plane in which the anti-counterfeit image 22 is located, and there is no virtual in-plane symmetry axis such that the anti-counterfeit image layer
  • the image information is symmetric with respect to the axis of symmetry.
  • the sample synthesis layer 21 can be a microlens array layer or other microsampling tool capable of imaging the anti-counterfeit image layer 22.
  • the microlens array layer may be a non-periodic array composed of a plurality of microlens units, a random array, a periodic array, a partial periodic array, or any combination thereof, and the microlens unit may be a refractive microlens, Diffractive microlens or a combination thereof, wherein the refractive microlens may be selected from a spherical surface, a parabolic surface, an ellipsoidal microlens, a cylindrical microlens, or any geometrical optics based on geometric optics or any combination thereof, diffraction type
  • the microlens can be selected from a harmonic diffractive microlens, a planar diffractive microlens, and a Fresnel zone plate.
  • the specific form of other microlenses may be selected as a continuous curved surface type or a step type lens as a microlens unit.
  • the sampling and synthesizing layer 21 in FIG. 1 may be a periodic array of spherical microlens units arranged in a plurality of rectangular, honeycomb, rhombic, triangular, etc., or may be a period of a cylindrical microlens along a certain direction. Sexual arrangement.
  • the periodic or partial periodic sampling synthesis layer 21 and the anti-counterfeit image layer 22 in the optical security element according to the present invention may have an image period of 10 ⁇ m to 200 ⁇ m, preferably 15 ⁇ m to 70 ⁇ m; sampling synthesis layer (for example, a microlens array)
  • the focal length of the layer 21 may be from 10 ⁇ m to 200 ⁇ m, preferably from 15 ⁇ m to 40 ⁇ m; the processing depth of the sample synthesis layer (for example, the microlens array layer) 21 is preferably less than 15 ⁇ m, more preferably from 0.5 ⁇ m to 10 ⁇ m.
  • the difference between the thickness of the substrate 2 and the focal length of the sampling and synthesizing layer 21 is preferably less than 3 ⁇ m, and more preferably the difference is less than 1 ⁇ m.
  • the sampling and synthesizing layer 21 can be obtained by micro-nano processing such as optical exposure, electron beam exposure, or the like, and can also be realized by a process such as hot-melt reflow, and mass-copying by means of processing such as ultraviolet casting, molding, and nanoimprinting.
  • the anti-counterfeit image layer 22 can be obtained by offset printing, gravure printing, micro printing, nanoimprinting, ultraviolet curing material casting, laser exposure, electron beam exposure or the like.
  • the anti-counterfeit image layer 22 in each of the above structures may further include a visual image (not shown) that can be directly observed without the sampling synthesis of the sampling synthesis layer 21, thereby forming a direct observation instead of Sampling the synthesized image.
  • FIG. 17 shows an anti-counterfeiting image 22 employing a selective light absorbing microstructure.
  • FIG. 17a shows a cross-sectional view of the optical security element 1 formed by using the security image 22 of the selective light absorbing microstructure 221, wherein 223 is a reflective layer;
  • FIG. 17b shows the implementation of the optical security element 1 corresponding to FIG. 6c.
  • the security image of the mode it uses the selective light absorbing microstructure 221 as a top view of the security image segment of the micro image shape.
  • the light absorbing microstructure 221 is used to absorb the color and efficiency of a particular spectrum.
  • the selective light absorbing microstructure 221 in this embodiment is formed from a plurality of open structures, i.e., a set of concave microstructures 222 having a width of 1 micrometer and an opening depth of 0.8 micrometers. As shown, the surface of the concave microstructure 222 is further covered with a 40 nm thick metal Al layer as a reflective layer.
  • the image shape is black; the principle is that the concave microstructure 222 and the reflective layer 223 are provided together.
  • the spectral absorption characteristics of the selective light absorbing microstructure 221, including the color and efficiency of absorption and the color and efficiency of the reflection, can be controlled by selecting the opening depth and opening width of the depressed microstructure 222 and the arrangement, thereby determining the security image 22.
  • the color of the image shape can be controlled by selecting the opening depth and opening width of the depressed microstructure 222 and the arrangement, thereby determining the security image 22.
  • the shape of the light absorbing microstructure 221 is any geometric shape such as a circle or a polygon, and the cross section thereof may be any curved surface such as a circle, a sinusoid, a rectangle, or a triangle.
  • the light absorbing microstructure has an opening width of less than 1 micron.
  • the light absorbing microstructure has an opening width of less than 0.5 microns.
  • the ratio of the opening depth to the opening width of the light absorbing microstructure is greater than 0.3.
  • the ratio of the opening depth to the opening width of the light absorbing microstructure is greater than 0.8.
  • the reflective layer 223 may include any one or a combination of the following various plating layers: a single-layer metal plating layer; a multi-layer metal plating layer; and an emulsion layer, a low refractive index dielectric layer, and a reflective layer are sequentially stacked. a plating layer; and a plating layer formed by sequentially stacking the absorption layer, the high refractive index dielectric layer, and the reflective layer.
  • the high refractive index dielectric layer refers to a dielectric layer having a refractive index of 1.7 or higher, and the material thereof may be ZnS, TiN, TiO 2 , TiO, Ti 2 O 3 , Ti 3 O 5 , Ta 2 O 5 .
  • the low refractive index dielectric layer refers to a dielectric layer having a refractive index of less than 1.7, the material of which may be MgF 2 , SiO 2 and the like.
  • the material of the metal plating layer or the reflective layer may be metal such as Al, Cu, Ni, Cr, Ag, Fe, Sn, Au, Pt or a mixture and alloy thereof; the material of the absorbing layer may be Cr, Ni, Cu, Co, Ti, V Metals such as W, Sn, Si, Ge, or mixtures and alloys thereof.
  • the reflective layer 223 has a specific color by itself due to the choice of materials and structures, such as silver white of the Al layer and yellow of Au.
  • the security image 22 reflects the color features formed by the selective light absorbing microstructure and the reflective layer, which are different from the color features of the selected reflective layer, such as the black color formed in the corresponding embodiment of FIG.
  • the silver layer of the Al layer is completely different.
  • the recessed microstructure 222 of the selective light absorbing microstructure 221 shown in FIG. 17 has an opening width of 330 nm and an opening depth of 180 nm. At this time, whether the anti-counterfeit image 22 is observed by a microscope or the macroscopic image formed by sampling and synthesizing the anti-counterfeit image 22 by the sampling and synthesizing layer 21 is observed, the image shape is brown.
  • FIG. 18 illustrates different arrangements of the recessed microstructures 222 of the selective light absorbing microstructures 221.
  • Figure 18a employs a periodically arranged concave microstructure 222
  • Figure 18b employs a randomly arranged concave microstructure 222
  • Figure 18c employs a concave microstructure 222 having a random depth
  • Figure 18d uses randomness A concave microstructure with an open width.
  • the periodically arranged concave microstructure 222 of Figure 18a inevitably produces a diffractive effect on the incident light, thereby including diffracted light on the basis of selective absorption and reflection, if the diffracted light does not meet the user's needs, Then the random arrangement of the concave microstructures 222 shown in Fig. 18b can solve this problem, and the random arrangement can exclude the diffraction effect brought about by the periodically arranged concave microstructures 222, thereby purely providing selective light. Absorption characteristics.
  • One of the functions of the concave depth microstructure 222 of the random depth of FIG. 18c and the concave microstructure 222 of the random opening width of FIG. 18d is to control the ratio of selective light absorption and light reflection, thereby controlling the appearance of the security image.
  • the grayscale of the color can be achieved by controlling the arrangement density of the undercut microstructures 222.
  • the original plate of the anti-counterfeit image 22 with the selective light absorbing microstructure 221 can be obtained by micro-nano processing such as optical exposure, electron beam exposure, etc., and is bulk-copied by processing methods such as ultraviolet casting, molding, and nanoimprinting.
  • the area covered by the selective light absorbing microstructure 221 in the above general processing is deterministically determined by the original plate, and is not affected by the process of batch processing, and has a unique advantage over the common anti-counterfeiting images composed of ink printing, for example,
  • the ink stroke completely restores the design size, has no expansion, has high contrast and sharpness, and the fineness of the optical microstructure depends on the opening width of the concave microstructure 222, which may be micron or even smaller, compared to The microimages formed by ink printing have higher resolution.
  • the recessed microstructure 222 in which the selective light absorbing microstructure 221 is disposed at the image shape of the security image 22 is schematically depicted in the embodiment corresponding to FIGS. 17 and 18, in fact, the stroke of the security image may be required according to requirements.
  • the concave microstructure 222 is disposed at any position such as the background, and the anti-counterfeit image representation can be realized by adjusting the opening width, the opening depth, the arrangement form of the selective light absorbing microstructure, the type and structure of the reflective layer 223 in different regions. multiple colour.
  • the three regions of the first to third regions from left to right in conjunction with FIGS. 17b and 18 specifically illustrate that when aluminum is used as the reflective layer 223, the selective light absorbing microstructures are in different regions: openings of the first region When the depth is 100 nm and the opening width is 300 nm, the corresponding color is red; the opening depth of the second region is 180 nm and the opening width is 345 nm, and the corresponding color is brown; the third region has an opening depth of 300 nm and an opening width of 250 nm, corresponding to the present The color is black; thus forming an anti-counterfeit image with multiple color information. And when the opening depth of the third region is randomly arranged within a range of 50 to 150 nm, and the width is randomly arranged within a range of 500 to 1000 nm, the corresponding color is white.
  • the advantage of using an anti-counterfeit image comprising a light-absorbing microstructure is that the image shape of the anti-counterfeit image is deterministically determined by the size of the coverage area of the light-absorbing microstructure, thereby ensuring the sharpness of the shape of the micro-image and providing light absorption
  • the opening width of the structure is comparable to the fine micro image shape.
  • a coded image or a macro mark image is added to the anti-counterfeit image layer 22, and the coded image or macro mark image does not need to be sampled and synthesized by the sample synthesis layer 21.
  • the coded image may be a macroscopic coded image, or may be a microscopic hidden image recognized by a magnifying glass or a microscope, or may be an image reproduced by white light or monochromatic incident light.
  • the coded image may be processed in one time with the anti-counterfeit image layer, or may be added twice by the method in the processing range of the above-mentioned anti-counterfeit image layer, thereby further increasing the difficulty of forgery of the security element.
  • the optical security element 1 may further include the security image formed in the substrate 2, on the first surface 31 of the substrate 2, and on the second surface 32 in the sampling composite layer 21.
  • a fluorescent material (not shown) may be added to the optical security element 1 of the present invention so as to have a fluorescent characteristic.
  • the fluorescent material can form a fluorescent pattern by, for example, printing. For example, replacing a liquid crystal light-changing material as a color functional layer with a fluorescent material will realize that the fluorescent pattern can satisfy the conditions of sampling synthesis, thereby forming a sample-synthesized fluorescent pattern.
  • the substrate 2 can be at least partially transparent or a colored dielectric layer.
  • the substrate 2 may be a single transparent dielectric film, such as a PET film, a PVC film, etc., or a transparent dielectric film having a functional coating (such as an embossing layer) on the surface. It may also be a multilayer film that has been composited.
  • the optical security element of the present invention can also adopt the configuration shown in FIG. 3 to further increase the reflective layer 4 on the surface of the sampling and synthesizing layer 21 at the first surface 31 of the substrate 2, so that the viewing direction of the human eye is On the side of the second surface 32 of the substrate 2, that is, the sample synthesis layer 21 samples and synthesizes the anti-counterfeit image layer 22, the imaged content of the sample synthesis layer 21 is reflected by the reflective layer 4 into the human eye.
  • the anti-counterfeit image layer 22 should also be at least partially transparent in the present embodiment; wherein the sampling and synthesizing layer 21 is a reflective focusing element, such as a spherical micro mirror or a cylindrical micro mirror. .
  • FIGS. 3a and 3b the design and formation process of the anti-counterfeit image layer of FIG. 3a and 3b, wherein the corresponding sampling and synthesizing layer is a cylindrical microlens array. And the direction in which the cylindrical microlens (not shown) extends is the y direction.
  • pictures 1, 2, ... k correspond to visual images that the observer desires to see at each angle, and the corresponding visual images are sequentially represented by A, B, ....
  • Each of the visual images is cut in a matrix arrangement, for example, A is cut into a matrix of pixels A11, A12, ... Amn, and other visual images are processed in the same manner.
  • Figure 3b corresponds to Figure 3a, wherein each matrix element represents a collection of pixels below a cylindrical microlens, according to which each cylindrical microlens unit is assigned to each of the predetermined visual images shown in Figure 3a
  • each matrix element represents a collection of pixels below a cylindrical microlens, according to which each cylindrical microlens unit is assigned to each of the predetermined visual images shown in Figure 3a
  • the other cylindrical microlenses are simultaneously sampled to other pixel units of the visual image, thereby presenting the visual image to the observer.
  • the content while the viewing angle changes, the above sampling process will act on other visual images accordingly. Therefore, visual images at different viewing angles can be freely set for the cylindrical microlens array.
  • sampling and synthesis layer forms mentioned above the above principle is also effective, for example, for a rectangular array of spherical microlens arrays, it can be seen as adding a dimension perpendicular to the cylindrical microlens array for further increase of the required
  • the visual image, other forms of sampling and synthesis layer can be similarly extended.
  • optical security element is determined by the basic structure and specific embodiment of the optical security element.
  • the above physical principle is also an ideal process for sampling and synthesizing the anti-counterfeit image layer by the sampling and synthesis layer.
  • the sampling and synthesis layer will inevitably deviate from the anti-counterfeit image layer, because in the actual production process, the sampling synthesis layer and the anti-counterfeit image layer are processed separately, which determines that the strict alignment between the two cannot be completed. Instead, a misalignment is formed, which includes positional deviation, angular deviation, deformation deviation, and the like. This misalignment not only affects the quality of the observed sampled composite image, but more importantly, when the presented visual composite image provides more than one, the following drawbacks exist:
  • each of the visual image information such as A, B, etc. in FIG. 3a cannot be specified after being sampled and synthesized.
  • the angle presented to the viewer that is, the user cannot know exactly what visual image the current angle can see.
  • A, B... in Fig. 3a will be mixed with two or more visual images at a specified angle due to the existence of the misalignment.
  • the security element of the image layer has the following advantages:
  • the anti-counterfeit image layer as a whole cannot extract the micro-anti-aliasing image unit, and the microscopic image unit cannot be directly obtained through the visual image;
  • the anti-counterfeit image layer has no repetitive area, so the counterfeiter must traverse all the positions of each micro image to achieve complete and accurate restoration of each part to obtain the same visual image feature;
  • optical security element and the optical security product according to the present invention can achieve a richer optical security feature, resulting in greater public appeal and higher anti-counterfeiting capability.
  • optical security element of the present invention can be mass-produced using a general-purpose device in the art.
  • a preferred embodiment of the present invention is to provide an optical security element that forms only one visual composite image with unique advantages.
  • the visual composite image is only providing a macroscopic sampled composite image information, for example, a combination effect of one or more of stereoscopic, deformation, scaling, rotation, and special movement effects of a visual image
  • the misalignment only affects
  • the one visual image is at the beginning of the optical effect process without affecting the user's recognition of the visual image. Therefore, in addition to all the advantages mentioned above, the optical security element can further avoid the identification trouble, is more conducive to the consistency of product information, has stronger anti-counterfeiting ability and is more suitable for the requirements of mass production.
  • the security image 102 includes a pixel array of a certain number of pixels, and the plurality of imaging pixel groups may be different specific sets selected from a plurality of specific pixels in the pixel array.
  • the specific combination of the selected pixels is determined based on the image display effect (such as stereo, deformation, zoom, rotation, special movement effect) and the corresponding line of sight angle to be achieved, that is, according to the image.
  • a specific pixel set in the security image is determined by displaying the effect and the angle at which the particular image is to be displayed, and each specific pixel is pre-arranged on the security image in the preparation stage of the security image.
  • FIG. 6 shows an anti-counterfeit image layer of the optical security element according to the first embodiment of the present invention, the microscopic arrangement of the anti-counterfeit image layer is aperiodic and Without a symmetry axis.
  • FIG. 6a only schematically shows the visual image effect provided, ie information of several angles of a stereoscopic image. The visual image will restore a stereo portrait during the process of changing the viewing angle along the positive x-axis.
  • This stereoscopic effect is usually recognized by the parallax of the observer's eyes, but even in the case of monocular observation, the stereoscopic image can be experienced based on the experience and common sense of the observer.
  • the observer can recognize the information of the visual image at any angle, and does not cause the difference and trouble of the information recognition. .
  • Figure 6b shows the use of a cylindrical microlens array as a sample synthesis layer extending in the y direction with an alignment period of 25 microns.
  • Fig. 6c shows a part of the corresponding anti-counterfeit image layer. Only one of the parts is given here, considering the micro-array complexity of the anti-counterfeit image layer as a whole, but it is obvious that the anti-counterfeit image layer is aperiodic and has no axis of symmetry.
  • FIG. 7 shows an anti-counterfeit image layer of an optical security element according to a second embodiment of the present invention, the microscopic arrangement of which is aperiodic and symmetrical.
  • FIG. 8a only schematically shows the visual image effect provided, ie information of several angles of a stereoscopic image. The visual image will restore an Escher polyhedron as the viewing angle is changed along the positive x or y axis. This is also a stereoscopic effect that creates a continuous depth of field change vision.
  • Fig. 7b shows the use of a cylindrical microlens array as a sample synthesis layer having an extension direction at an angle of 45 degrees to the x-axis direction and an arrangement period of 30 micrometers.
  • Figure 7c shows a portion of the corresponding security image layer.
  • FIG. 8 shows an anti-counterfeit image layer of an optical security element according to a third embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 8a only schematically shows the visual image effect provided, that is, the deformation process of a visual image.
  • the text font in the visual image is changed from a regular font to an italic in the process of changing the viewing angle along the positive direction of the x-axis or the y-axis.
  • Fig. 8b shows a spherical microlens array in which the sampling and synthesis layers are arranged in a rectangular arrangement with an arrangement period of 30 ⁇ m.
  • Figure 9c shows a portion of the corresponding security image layer.
  • FIG. 9 shows an anti-counterfeit image layer of an optical security element according to a fourth embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 9a only schematically shows the provided visual image effect, that is, the process of enlarging and reducing a visual image. The process of reducing or enlarging the visual image will be restored during the process of changing the viewing angle along the positive direction of the x-axis or the y-axis.
  • the visual image changes due to the need of the zooming effect, the visual image has only a change in size at any angle, so that the observer can recognize the information of the visual image, It will cause confusion in information identification.
  • Figure 9b shows the sampled synthesis layer employed as a spherical microlens array with an arrangement period of 30 microns.
  • Figure 9c shows a portion of the corresponding security image layer.
  • FIG. 10 shows an anti-counterfeit image layer of an optical security element according to a fifth embodiment of the present invention, the microscopic arrangement of which is aperiodic and has no axis of symmetry.
  • FIG. 10a only schematically shows the provided visual image effect, that is, the rotation process of a visual image, that is, the visual image will restore a vision during the process of changing the viewing angle along the positive direction of the x-axis or the y-axis. The rotation of the image is repeated.
  • the visual image changes due to the need of the rotation effect, the visual image has only the change of the angle after the rotation at any angle, and the information expressed by the visual image, such as the number itself, does not change. Therefore, the observer can be made to recognize the information of the visual image without causing confusion in information recognition.
  • Fig. 10b shows the use of a cylindrical microlens array as a sample synthesis layer having an extension direction at an angle of 45 degrees to the x-axis direction and an arrangement period of 30 micrometers.
  • Figure 10c shows a portion of the corresponding security image layer.
  • FIG. 11 shows an anti-counterfeit image layer of an optical security element according to a sixth embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 11a only schematically shows the provided visual image effect, that is, the reciprocating movement process of a visual image, that is, during the process of changing the viewing angle along the positive direction of the x-axis, a visual image is restored to the x-axis. The process of moving in the negative direction of the x-axis after the direction is moved.
  • the information expressed by the visual image does not change at any angle, thereby enabling The observer recognizes the information of the visual image without causing confusion in information recognition.
  • the special movement effect may also be a special movement effect along a circular trajectory, a wave trajectory, a rectangular trajectory movement, etc., which are different from the general translation effect of the unidirectional linear motion, that is, the special movement effect is a movement effect other than the general translation effect.
  • Fig. 11b shows the use of a cylindrical microlens array as a sample synthesis layer extending in the y direction with an arrangement period of 25 microns.
  • Figure 11c shows a portion of the corresponding security image layer.
  • FIG. 12 shows an anti-counterfeit image layer of an optical security element according to a seventh embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 12a only schematically shows the provided visual image effect, and the effect of the visual image includes two aspects: a circular trajectory moving effect of the visual image and a zooming effect of the visual image.
  • the restored visual image is moved clockwise along the circumferential trajectory, and at the same time, the effect of reduction or enlargement is produced.
  • Fig. 12b shows the use of a cylindrical microlens array as a sample synthesis layer having an extension direction at an angle of 45 degrees to the x-axis direction and an arrangement period of 30 micrometers.
  • Figure 12c shows a portion of the corresponding security image layer.
  • FIG. 13 shows an anti-counterfeit image layer of an optical security element according to an eighth embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 13a only schematically shows the provided visual image effect, and the effect of the visual image includes two aspects: a zoom effect of the visual image and a switching effect. In the process of changing the viewing angle along the positive direction of the x-axis, the process of reducing or enlarging the visual image will be restored, and switching between the two visual images will occur at the same time.
  • Figure 13b shows the use of a cylindrical microlens array as a sample synthesis layer extending in the y direction with an alignment period of 30 microns.
  • Figure 13c shows a portion of the corresponding security image layer.
  • the anti-forgery image layer given in the embodiment shown in FIG. 13 is aperiodic and has no axis of symmetry in the microscopic arrangement, since the corresponding effect includes switching of two visual images, that is, it can be recognized at different angles. Two visual image information. And because of the misalignment between the anti-counterfeit image layer and the sample synthesis layer during the actual processing,
  • the optical security element of the present invention contains only one visual image information.
  • FIG. 14 shows an anti-counterfeit image layer of an optical security element according to a ninth embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 14a only schematically shows the provided visual image effect, and the effect of the visual image includes two aspects: a blinking effect of the visual image and a rotation effect.
  • Figure 14b shows the sampled synthesis layer employed as a spherical microlens array with an arrangement period of 40 microns.
  • Figure 14c shows a portion of the corresponding security image layer.
  • FIG. 15 shows an anti-counterfeit image layer of an optical security element according to a tenth embodiment of the present invention, the micro-array of which is non-periodic and has no axis of symmetry.
  • FIG. 15a only schematically shows the provided visual image effect, and the effect of the visual image includes four aspects:
  • Figure 15b shows the sampled synthesis layer employed as a spherical microlens array with an arrangement period of 40 microns.
  • Figure 15c shows a portion of the corresponding security image layer.
  • FIG. 16 shows an anti-counterfeit image layer of an optical security element according to an eleventh embodiment of the present invention, the microscopic arrangement of which is non-periodic and has no axis of symmetry.
  • FIG. 16a only schematically shows the provided visual image effect, and the effect of the visual image includes two aspects: a zoom effect of the visual image and a general panning effect.
  • the reduction or enlargement process of the visual image in the figure and the general translational effect of the visual image along the positive direction of the x-axis will be restored.
  • Fig. 16b shows the use of a cylindrical microlens array as a sample synthesis layer having an extension direction at an angle of 45 degrees to the x-axis direction and an arrangement period of 20 ⁇ m.
  • Figure 16c shows a portion of the corresponding security image layer.
  • the embodiment of the optical effect corresponding to the periodically arranged anti-counterfeit image layer shown in FIG. 4 and FIG. 5 can be specifically referred to "Microlens Array Display Technology Research" ("Micro-Nano Electronic Technology", 2003, Issue 6
  • the visual image effect produced by the sampling of the periodic anti-counterfeit image layer by the sampling and synthesis layer is the general translation effect of the visual image in at least one dimension on the two-dimensional plane in which it is located.
  • the periodic anti-counterfeit image layer corresponding to this visual image effect is easier to design and process, but is also more easily cracked and forged.
  • the orientation of the cylindrical microlens array involved in the embodiment corresponding to FIGS. 6 to 16 may be arbitrary according to the application requirements, and the arrangement of the spherical microlens array may also adopt any of the other mentioned above. Means, such as a honeycomb array, a quadrilateral array, a triangular array, and the like. And the embodiment can be changed to the configuration shown in FIG. 2, that is, the corresponding modified microlens is a micro mirror.
  • Figures 6 to 16 schematically illustrate the rich optical security features brought about by the configuration of the microscopically arranged non-periodic or asymmetric security image layers, including, for example, stereoscopic, deformation, scaling, rotation of the visual image. , special movement, flicker, switch, switching effect and several combinations of the above effects, and a combination of the above effects and general translation effects.
  • the goal is to improve the current state of the product or the relatively simple general translation or switching effect disclosed in the literature, to provide users with a richer visual experience, enhance the uniqueness and anti-counterfeiting capabilities of the optical security component.
  • the micro-arrangement of non-periodic or asymmetrical configurations can further lead to richer optical security features such as stereoscopic, deformation, scaling, rotation, special movement, flicker, switching, switching effects, and combinations of the above effects. And the combination of the above effects and the general translation effect. This improves the current state of the art, or the relatively simple general translation or switching effect disclosed in the literature. Therefore, the optical security element and the optical security product according to the present invention can achieve a richer optical security feature, resulting in greater public appeal and higher anti-counterfeiting capability.
  • the imaging pixel group may be a set of specific pixels selected from the security image, the set of specific pixels being adapted to exhibit corresponding imaging at a certain viewing angle via the substrate and/or the sampling synthesis layer a visual image of the group of pixels; optionally, the plurality of imaging pixel groups are adapted to present a plurality of different visions corresponding to the plurality of imaging pixel groups at different viewing angles via the substrate and/or the sampling synthesis layer, respectively.
  • cylindrical microlenses are used as sampling synthesis layers in the embodiments corresponding to FIGS. 6, 7, 10, 11, 12, 13, and 16, and cylindrical micromirrors may of course be employed. It is emphasized that cylindrical microlenses or cylindrical micromirrors are preferred as sampling synthesis layers. First, since the cylindrical microlenses or micromirrors are arranged in only one dimension, the close-packed structure is tighter and the sampling points are continuous, so that the quality of the sampled composite image is higher and clearer. Secondly, cylindrical microlenses or micromirrors are arranged in only one dimension, which is easier to implement and can be widely applied to mass production.
  • the security image is not determined based on only a part of the imaging pixel groups and/or the target visual image of the plurality of imaging pixel groups in the security image. image. That is to say, it is possible for the criminals to traverse all the images of the security image to break the security image, which greatly improves the concealability and the difficulty of the security component provided by the embodiment of the present invention.
  • the optical security element according to the invention is particularly suitable for making a windowed security thread.
  • the thickness of the security thread is not more than 50 ⁇ m.
  • the security paper with the window security thread is used for anti-counterfeiting of various high-security products such as banknotes, passports, and securities.
  • optical security element according to the present invention can also be used as a label, logo, wide strip, transparent window, film, etc., and can be adhered to various articles by various bonding mechanisms. For example, transfer to high security products such as banknotes and credit cards and high value-added products.
  • Another aspect of the present invention provides a product with the optical security element, including but not limited to various types of high security products and high value-added products such as banknotes, credit cards, passports, and securities, and various types of wrapping paper and packaging. Box and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

公开了一种光学防伪元件及光学防伪产品,其中光学防伪元件包括:至少部分透光的基材(2),其具有相互对立的第一表面(31)和第二表面(32);形成在基材(2)的第二表面(32)的防伪图像(22),防伪图像(22)包括多个成像像素组,多个成像像素组之间呈非周期性和/或无对称轴排布,形成在基材(2)的第一表面(31)的具有光学特性的采样合成层(21),其中,透过基材(2)的透光部分及采样合成层(21)适于呈现对应于成像像素组的目标视觉图像。由此,至少能解决现有技术中采用周期性微图文阵列所导致的防伪性差和易被破解的技术问题。

Description

防伪元件及光学防伪产品 技术领域
本发明涉及光学防伪领域,具体地,涉及一种防伪元件及光学防伪产品。
背景技术
为了防止利用扫描和复印等手段产生的伪造,钞票、证卡和产品包装等各类高安全或高附加值印刷品中广泛采用了光学防伪技术,并且取得了非常好的效果。
CN1271106、CN1552589、《Properties of moire magnifiers》(Optical Engineering 37(11)3007-3014)、《微透镜列阵显示技术研究》(微纳电子技术2003年第6期)等文献或专利中公开了同一类在基材的两个表面上分别带有微透镜阵列和微图文阵列的微光学元件,其中,微图文阵列位于微透镜阵列的焦平面附近,通过微透镜阵列对微图文阵列的莫尔放大作用来再现具有一定景深或呈现动态效果的图案。
目前此类公开文献中均采用周期性微图文阵列,所形成的光学效果即为随着观察视角的改变特定视觉图像沿着某一维度上的简单平移特征或切换特征。虽然该防伪元件容易设计和加工,但是该视觉图像往往能够反映该周期性微图文阵列的关键图文特征,使得不法分子极容易通过破解并伪造该防伪元件,该防伪元件在防止破解伪造方面难以满足包装品、印刷品、有价证券等产品对防伪技术不断提高的要求。
由此,一种具有一定复杂度且难以被破解的防伪微图文阵列的防伪元件将大大提高相应光学防伪产品的难伪造易识别的水平,也是目前业界的热门研究方向,
发明内容
本发明提供了一种新型的具有易识别且难伪造特点的防伪元件及光学防伪产品,用以至少解决背景技术中所阐述的采用周期性微图文阵列所导致的防伪性差和易被破解的技术问题。
为了实现以上目的,本发明实施例一方面提供一种防伪元件,该防伪元件包括:
至少部分透光的基材;
形成在该基材表面的防伪图像,该防伪图像包括多个成像像素组,该多个该成像像素组之间呈非周期性和/或无对称轴排布;形成在该基材的该第二表面的具有光学特性的采样合成层,其中,透过该基材的透光部分及该采样合成层适于呈现对应于该成像像 素组的目标视觉图像。
可选地,仅基于该多个成像像素组中的部分成像像素组和/或所述目标视觉图像不能够确定所述防伪图像。
可选地,该防伪元件还包括:形成在该采样合成层表面的反射层,透过该基材的透光部分及该采样合成层,并经由该反射层的反射适于呈现对应于该成像像素组的该目标视觉图像。
可选地,该多个成像像素组对应于图像显示关联关系布设在该防伪图像上,其中,从多个不同的角度透过该基材的透光部分及该采样合成层适于呈现分别对应于该多个成像像素组的多个目标视觉图像,以及该多个目标视觉图像之间呈该图像显示关联关系。
可选地,该防伪图像包括由多个像素所组成的防伪像素阵列,该多个成像像素组为选自该防伪像素阵列中多组特定像素的集合。
可选地,该图像显示关联关系包括以下一者或多者:平移变化关联关系、立体变化关联关系、形变变化关联关系、缩放变化关联关系、旋转变化关联关系、闪烁变化关联关系、开关变化关联关系和切换变化关联关系。
可选地,该具有光学特性的采样合成层包括以下一者或多者:球面微透镜、柱面微透镜、球面微反射镜和柱面微反射镜。
可选地,该防伪图像还包括有编码像素组和/或宏观标识图像。
可选地,该防伪元件还包括具有荧光图案的颜色功能层。
可选地,该基材包括以下一者或多者:单层PET薄膜、单层PVC模、透明复合膜和有色介质膜。
可选地,该成像像素组包括具有光谱吸收特性的含开口的光吸收微结构。
可选地,透过该基材的透光部分及该采样合成层适于呈现对应于该光吸收微结构的多种颜色信息。
可选地,透过该基材的透光部分及该采样合成层,并经由该反射层的反射适于呈现对应于该光吸收微结构的多种颜色信息。
可选地,该多种颜色信息与该防伪元件的显色配置参数组一一对应,该显色配置参数组包括以下一者或多者:该反射层的材料、形状,该光吸收微结构的排列形式、开口深度、开口宽度。
可选地,该多种颜色信息包括选自以下至少两者:红色、棕色、黑色和白色。
本发明实施例另一方面还提供一种光学防伪产品,包括上文所述的防伪元件。
可选地,该光学防伪产品包括以下一者或多者:开窗安全线、标签、钞票、信用卡、有价证券、护照、包装盒和包装纸。
通过上述技术方案所提供的防伪元件中的防伪图像层的采用的微观排列为非周期或非对称的配置,避免了周期或对称图像容易被提取的微防伪图像单元,并也降低了防伪元件被破译的风险,从而使得造假者无法通过防伪图像层的局部来破解整个防伪图像层的信息,增强了光学防伪元件及产品的防伪能力。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
图1是根据本发明另一实施方式的光学防伪元件的剖面图;
图2是根据本发明又一实施方式的光学防伪元件的剖面图;
图3a、b分别是对采样合成层对防伪图像层采样合成过程的物理原理进行解释时采用的视觉图像和对应的防伪图像层示意图;
图4a、b、c分别为现有技术中一种典型的周期性且有对称轴的微观排列形式的防伪图像层所提供的视觉图像效果、采样合成层和防伪图像层的局部;
图5a、b、c分别为现有技术中另一种典型的周期性且有对称轴的微观排列形式的防伪图像层所提供的视觉图像效果、采样合成层和防伪图像层的局部;
图6a、b、c分别给出了根据本发明第一实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图7a、b、c分别给出了根据本发明第二实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图8a、b、c分别给出了根据本发明第三实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图9a、b、c分别给出了根据本发明第四实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图10a、b、c分别给出了根据本发明第五实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图11a、b、c分别给出了根据本发明第六实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图12a、b、c分别给出了根据本发明第七实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图13a、b、c分别给出了根据本发明第八实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图14a、b、c分别给出了根据本发明第九实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图15a、b、c分别给出了根据本发明第十实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图16a、b、c分别给出了根据本发明第十一实施方式的光学防伪元件在应用上的视觉图像效果、采样合成层和防伪图像层的一个局部;
图17a、b分别给出了根据本发明的又一种实施方式的光学防伪元件的防伪图像截面示意图和剖面示意图;
图18a、b、c、d分别给出了根据本发明的又一种实施方式的光学防伪元件的光吸收微结构的局部放大图。
具体实施方式
下面将结合附图来详细说明根据本发明的光学防伪元件及使用该光学防伪元件的光学防伪产品。应当理解,该附图和详细描述只是对本发明优选实施方式的描述,并非以任何方式来限制本发明的范围。
下面将结合图4a、4b、4c和图5a、5b、5c所示的现有技术中典型示例对周期性或有对称轴的微观排列形式的防伪图像层进行剖析,从而由此说明现有技术中所存在的关键问题。
图5a给出的是周期性且有对称轴的微观排列形式的防伪图像层所提供的视觉图像效果,图中仅示意性选择了5行5列视觉图像,其中沿着x轴正方向改变观察视角的过程中,视觉图像沿着x轴正方向平行移动,这是一种能够形成上浮景深感的一般平移的效果,同时在y轴方向具有同样的正向改变视角时视觉图像正向平移的效果。图5b给出了所采用的采样合成层为矩形排列的球面微透镜阵列,微透镜阵列排列周期为25微米。图5c给出了对应的防伪图像层的局部,显然该防伪图像层是周期性且有对称轴的。
图5a给出的是另外一种周期性且有对称轴的微观排列形式的防伪图像层所提供的视觉图像效果,图中仅示意性选择了6行5列视觉图像,其中沿着x轴正方向改变观察 视角的过程中,视觉图像沿着x正方向平行移动,这是一种能够形成上浮景深感的一般平移的效果,同时在y轴方向具有同样的正向改变视角时视觉图像正向平移的效果,并且在y轴方向视觉图像移动的同时会产生两种视觉图像相互切换的效果。图5b给出了所采用的采样合成层为矩形排列的球面微透镜阵列,微透镜阵列排列周期为25微米。图5c给出了对应的防伪图像层的多个局部,显然该防伪图像层是周期性且有对称轴的。
图4及图5的实施例中分别给出了现有技术中两种典型的周期性的或有对称轴的防伪图像层与采样合成层共同作用,从而提供的一般平移或切换效果。该一般平移效果包括正交平移、上浮平移、下沉平移等效果,通常通过设计防伪图像层的周期性图案使之与采样合成层的聚焦元件阵列之间形成微小的周期差或角度差来实现。另外,该一般平移效果不能形成立体图像的连续景深变化效果。该切换效果还可以在图5的实施例基础上进一步形成多通道切换特征,但是相应的防伪图像层仍然具有周期性或具有对称轴。综上,不难理解,该具有周期性排布的或有对称轴的防伪图像层的防伪元件具有以下缺点:
(1)周期或对称的防伪图像层具有容易被提取的微防伪图像单元,该微防伪图像单元与视觉图像甚至往往是一致的,导致通过视觉图像就能够直接获得微观的图像单元;
(2)防伪图像层具有容易被破译的简单规律;
(3)造假者无需遍历防伪图像层所有位置,仅通过防伪图像层的局部就能够破解整个防伪图像层的信息。
(4)实际生产加工过程中,采样合成层与防伪图像层是分别加工的,这决定了二者之间无法完成严格的对位,而是会不可避免地形成错位,该错位包括位置偏差、角度偏差、形变偏差等。该错位不仅影响观察到的采样合成图像的质量,更为重要的是当该视觉合成图像不止提供一个图像信息时不能保障观察者在指定观察角度上看到的采样合成图像来自于多个图像信息中的哪一个,在一种情况下观察者会同时看到多个图像的混淆信息。以上均直接造成光学防伪信息无法被用户识别或识别不充分。
如图1所示,根据本发明另一实施方式的光学防伪元件1包括:基材2,该基材2包括相互对立的第一表面31和第二表面32;形成在该基材2的该第一表面31上的采样合成层21;以及形成在该基材2的该第二表面32上的防伪图像层22,防伪图像层22与采样合成层21相对应,即采样合成层21能够对该防伪图像层22进行采样合成从而形成一个或多个视觉合成图像,并且防伪图像层22在微观排列上是非周期和/或无对称 轴的。由此,使得仅基于该多个成像像素组中的部分成像像素组和/或该目标视觉图像,即该防伪图像的局部也不能够确定该防伪图像,大大提高了防伪元件的关键防伪图像的隐蔽性和被破解的难度。
可以理解的是,目标视觉图像可以是可个性化定制的图像,例如logo标识等;即通过本发明实施例中的呈非周期性和/或无对称轴排布的成像像素组与适于透光的基材101的配合能够实现了目标视觉图案的展示,便可以让观察者看到特定图像。上述非周期和/或无对称轴指的是在防伪图像22所在的二维平面内,不存在周期或局部周期的成像像素组,也不存在任何一个虚拟的面内对称轴使得防伪图像层的图像信息相对于该对称轴呈对称关系。关于该发明实施例的更多的细节以及应用将在下文其他实施方式中继续阐述。
优选地,采样合成层21可以为微透镜阵列层或者能够对防伪图像层22进行成像的其他微采样工具。其中,微透镜阵列层可以是由多个微透镜单元构成的非周期性阵列、随机性阵列、周期性阵列、局部周期性阵列或它们的任意组合,同时微透镜单元可以为折射型微透镜、衍射型微透镜或它们的组合,其中折射型微透镜可以选取球面、抛物面、椭球面微透镜、柱面微透镜、或其它任意几何形状的基于几何光学的微透镜或它们的任意组合,衍射型微透镜可以选取谐衍射微透镜、平面衍射微透镜、菲涅尔波带片。其中,除菲涅尔波带片外,其它微透镜的具体形式可以选择为连续曲面型或阶梯型透镜作为微透镜单元。例如,图1中的采样合成层21可以是由多个矩形、蜂窝、菱形、三角形等排列方式的球面微透镜单元组成的周期性阵列,也可以是柱面微透镜沿着某个方向的周期性排列。
优选地,根据本发明的光学防伪元件中的周期性或局部周期性采样合成层21和防伪图像层22的图像周期可以为10μm至200μm,优选为15μm至70μm;采样合成层(例如微透镜阵列层)21的焦距可以为10μm至200μm,优选为15μm至40μm;采样合成层(例如微透镜阵列层)21的加工深度优选小于15μm,更优选为0.5μm至10μm。另外,基材2的厚度与采样合成层21的焦距之差优选为小于3μm,更优选地该差值为小于1μm。
优选地,采样合成层21可以通过光学曝光、电子束曝光等微纳加工方式获得,还可以结合热熔回流等工艺来实现,通过紫外浇铸、模压、纳米压印等加工方式进行批量复制。
优选地,防伪图像层22可以采用胶印、凹印、微印刷、纳米压印、紫外固化材料 浇铸、激光曝光、电子束曝光等方式获得。
优选地,上述各个结构中的防伪图像层22还可以包括能够在无需该采样合成层21进行采样合成的情况下就能够被直接观察的视觉图像(未示出),从而形成可直接观察而非采样合成的图像。
图17示出了采用选择性光吸收微结构的防伪图像22。其中图17a给出了采用选择性光吸收微结构221的防伪图像22而形成光学防伪元件1的截面图,其中223为反射层;图17b给出了该光学防伪元件1选择图6c对应的实施方式的防伪图像时,其使用选择性光吸收微结构221作为微图像形状的防伪图像片段的俯视图。该光吸收微结构221用于吸收特定光谱的颜色和效率。
该实施例中选择性光吸收微结构221由多个开口结构即下凹的微观结构222组所成,所述下凹微观结构222的宽度即开口宽度为1微米,开口深度为0.8微米。如图所示,进一步地在下凹的微观结构222表面覆盖有40纳米厚的金属Al层作为反射层。
此时,不论通过显微镜观察防伪图像22抑或观察由采样合成层21对防伪图像22采样合成后形成的宏观图像,图像形状均为黑色;其原理在于下凹微观结构222与反射层223共同提供了具有光吸收作用的光陷阱,其能够对可见光波段进行全谱的吸收以抑制反射光,从而使其覆盖的防伪图像22的部分呈现黑色。通过选择下凹的微观结构222的开口深度和开口宽度以及排列形式能够控制选择性光吸收微结构221的光谱吸收特性,包括吸收的颜色和效率以及反射的颜色和效率,从而决定防伪图像22的图像形状的颜色。
优选地,光吸收微结构221的俯视形状为圆形、多边形等任意几何形状,其截面可以为圆形、正弦形、矩形、三角形等任意曲面。
优选地,所述光吸收微结构的开口宽度为小于1微米。
优选地,所述光吸收微结构的开口宽度为小于0.5微米。
优选地,所述光吸收微结构的开口深度与开口宽度的比值为大于0.3。
优选地,所述光吸收微结构的开口深度与开口宽度的比值为大于0.8。
优选地,所述反射层223可以包括下述各种镀层中的任意一种或其组合:单层金属镀层;多层金属镀层;由吸收层、低折射率介质层和反射层依次堆叠形成的镀层;以及由吸收层、高折射率介质层和反射层依次堆叠形成的镀层。在根据本发明中,高折射率介质层指的是折射率大于等于1.7的介质层,其材料可以是ZnS、TiN、TiO 2、TiO、Ti 2O 3、Ti 3O 5、Ta 2O 5、Nb 2O 5、CeO 2、Bi 2O 3、Cr 2O 3、Fe 2O 3、HfO 2、ZnO等,低折射率 介质层指的是折射率小于1.7的介质层,其材料可以是MgF 2、SiO 2等。金属镀层或反射层的材料可以是Al、Cu、Ni、Cr、Ag、Fe、Sn、Au、Pt等金属或其混合物和合金;吸收层材料可以是Cr、Ni、Cu、Co、Ti、V、W、Sn、Si、Ge等金属或其混合物和合金。需要说明的是,虽然上述反射层223由于材料和结构的选择从而使自身就具备特定的颜色,例如Al层的银白色和Au的黄色。但是防伪图像22所反映的是选择性光吸收微结构和上述反射层共同作用形成的颜色特征,该颜色特征不同于所选择的反射层的颜色特征,例如图17对应实施例中形成的黑色与Al层的银白色完全不同。
在另外一个实施方式中,图17所示的选择性光吸收微结构221的下凹微观结构222的开口宽度为330纳米、开口深度为180纳米。此时,不论通过显微镜观察防伪图像22抑或观察由采样合成层21对防伪图像22采样合成后形成的宏观图像,图像形状均为棕色。
图18示出了所述选择性光吸收微结构221的下凹微观结构222的不同排列形式。其中图18a采用了周期性排列的下凹微观结构222;图18b采用了随机性排列的下凹微观结构222;图18c采用了具有随机性深度的下凹微观结构222;图18d采用了随机性开口宽度的下凹微观结构。
图18a的周期性排列的下凹微观结构222不可避免地会产生对入射光的衍射作用,从而在选择性吸收和反射的基础上同时包含了衍射光,如果该衍射光不符合用户的需要,那么图18b所示的随机性排列的下凹微观结构222即能够解决这一问题,随机性排列能够将周期性排列的下凹微观结构222带来的衍射效应排除,从而纯粹地提供选择性光吸收特征。
图18c的随机性深度的下凹微观结构222以及图18d的随机性开口宽度的下凹微观结构222所起的作用之一是控制选择性光吸收和光反射的比例,从而控制防伪图像所呈现的颜色的灰度。当然,通过控制下凹微观结构222的排列密度也可以达到类似的目的。
优选地,带有选择性光吸收微结构221的防伪图像22的原版可以通过光学曝光、电子束曝光等微纳加工方式获得,通过紫外浇铸、模压、纳米压印等加工方式进行批量复制。以上的通用加工过程中选择性光吸收微结构221覆盖的区域确定性地由原版所决定,而不受批量加工的过程所影响,相比较常见的油墨印刷构成的防伪图像具有独特的优势,例如油墨笔画完全还原设计尺寸,无拓展,具有较高的对比度和清晰度,并且光学微结构的精细度取决于下凹微观结构222的开口宽度,该开口宽度可以是微米级甚至 更小,相较于油墨印刷构成的微图像具有更高的分辨率。
虽然图17和图18对应的实施例中示意性地描述了防伪图像22的图像形状处设置选择性光吸收微结构221的下凹微观结构222,但事实上可以根据需求,在防伪图像的笔画所在的背景等任意位置设置所述下凹微观结构222,甚至可以在不同区域通过调整选择性光吸收微结构的开口宽度、开口深度、排列形式,反射层223的种类、结构来实现防伪图像呈现多种颜色。
结合图17b和18从左到右的第一至第三区域的三个区域具体说明,当采用铝作为反射层223时,选择性光吸收微结构在不同的区域分别为:第一区域的开口深度100nm及开口宽度300nm时,对应所呈现的颜色为红色;第二区域的开口深度180nm及开口宽度345nm,对应所呈现的颜色为棕色;第三区域开口深度300nm及开口宽度250nm,对应所呈现的颜色为黑色;从而形成具有多种颜色信息的防伪图像。以及当第三区域的开口深度在50~150nm范围内随机排布,宽度在500~1000nm范围内随机排布时,对应所呈现的颜色为白色。
采用包含光吸收微结构的防伪图像的优势在于:防伪图像的图像形状确定性地由光吸收微结构的覆盖区域尺寸所决定,从而能够保障微图像形状的锐度,并且能够提供与光吸收微结构的开口宽度相当的精细微图像形状。当本发明实施例中的光学防伪元件的防伪图像同时采用了非周期和/或非对称的微观排列形式以及上述选择性光吸收微结构时,能够使该光学防伪元件同时具备新颖的光学防伪特征、清晰而精细的微观和宏观图像,从而大幅提高光学防伪元件的品质和易识别难伪造的特性。
优选地,在该防伪图像层22中加入编码图像或宏观标识图像,该编码图像或宏观标识图像无需该采样合成层21进行采样合成。该编码图像可以是宏观的编码图像,也可以是微观的通过放大镜、显微镜来识别的隐藏图像,还可以是通过白光或单色入射光进行再现的图像。该编码图像可以与防伪图像层一次加工完成,也可以采用上述防伪图像层的加工范围中的方法进行二次添加,由此更增大了防伪元件的被伪造的难度。
优选地,根据本发明的光学防伪元件1还可以包括形成于该基材2中、该基材2的该第一表面31上和第二表面32上、该采样合成层21中、该防伪图像层22的表面上的至少一者中的衍射光变特征、干涉光变特征、微纳结构特征、印刷特征、部分金属化特征以及用于机读的磁、光、电、放射性特征中的一种或多种特征。例如,可以在本发明的光学防伪元件1中添加荧光材料(未示出),从而使其带有荧光特征。该荧光材料可以通过例如印刷方式形成荧光图案。例如,将作为颜色功能层的液晶光变材料替换为 荧光材料,将实现荧光图案能够满足采样合成的条件,从而形成采样合成荧光图案。
此外,该基材2可以是至少局部透明的,也可以是有色的介质层。在一种优选方案中,该基材2可以是一层单一的透明介质薄膜,例如PET膜、PVC膜等,当然也可以是表面带有功能涂层(比如压印层)的透明介质薄膜,还可以是经过复合而成的多层膜。
优选地,本发明该的光学防伪元件也可以采用图3所示的配置,在基材2的第一表面31处的采样合成层21表面进一步增加反射层4,从而使得人眼的观察方向在基材2的第二表面32一侧,也即,采样合成层21对防伪图像层22进行采样合成之后由反射层4将采样合成层21的成像内容反射到人眼中。可以理解的是,由图可知该防伪图像层22在本实施方式中也应当是至少部分透光的;其中的采样合成层21为反射型聚焦元件,例如球面微反射镜或柱面微反射镜。
以下将针对图1或图2中的防伪图像层22采用非周期和/或无对称轴的微观排列形式的原因进行详细的说明。
首先将结合图3a、3b对采样合成层21对防伪图像层22的采样合成原理进行说明:图3a、3b防伪图像层的设计与形成过程,其中对应的采样合成层为柱面微透镜阵列,且柱面微透镜(未示出)的延伸方向为y方向。图3a中图文1、2…k分别对应各个角度下设定的观察者希望看到的视觉图像,对应的视觉图像依次以A、B…¥表示。将每个视觉图像均按照矩阵排列方式进行切割,例如A被切割为像素A11、A12…Amn构成的矩阵,其它视觉图像同样处理。
图3b与图3a相对应,其中每一个矩阵单元代表一个柱面微透镜下方的像素集合,按照该配置每个柱面微透镜单元都分配到图3a所示的各预先设定的视觉图像的一部分,当某个柱面微透镜以一定的观察角度采样到某个视觉图像的像素单元时,其它柱面微透镜会同时采样到该视觉图像的其它像素单元,从而呈现给观察者该视觉图像的内容,而当观察角度改变时,以上采样过程将相应地作用于其它视觉图像。因此,对于柱面微透镜阵列可以自由地设定不同观察角度上的视觉图像。对于其它上述提到的采样合成层形式,以上原理同样有效,例如对于矩形排列的球面微透镜阵列,可以看作为在柱面微透镜阵列基础上增加了与之垂直的维度用于进一步增加所需的视觉图像,其它采样合成层形式可以同理推而广之。
尽管上述所描述的物理原理是目前所认为的对于本发明所涉及的光学防伪元件所产生的物理现象的一种理解和描述,但并不意味该光学防伪元件被当前用于解释这一现 象的该物理原理所限制。该光学防伪元件是由该光学防伪元件的基本结构和具体实施方式所决定的。
需要特别说明的是,上述物理原理同时也是该采样合成层对该防伪图像层进行采样合成的理想过程。实际加工过程中采样合成层不可避免的会与防伪图像层产生偏差,因为实际生产加工过程中,采样合成层与防伪图像层是分别加工的,这决定了二者之间无法完成严格的对位,而是会形成错位,该错位包括位置偏差、角度偏差、形变偏差等。该错位不仅影响观察到的采样合成图像的质量,更为重要的是当该所呈现的视觉合成图像不止提供一个时,会存在以下缺陷:
其一,不能确定观察者在指定观察角度上看到的采样合成图像来自于多个图像信息中的哪一个,例如图3a中A、B…¥等各视觉图像信息无法指定各自被采样合成后呈现给观察者的角度,即用户无法确切知晓当前角度能看到的视觉图像。
其二,观察者会同时看到多个图像的混淆信息,例如图3a中的A、B…¥会由于该错位的存在,同时在指定角度上呈现2个或2个以上视觉图像混合起来的视觉图像,或者扭曲失真的低质量视觉图像。
以上均直接造成光学防伪信息无法被用户识别或识别不充分,因此防伪元件所呈现的视觉图像数量不宜过多,但是具有周期性和/或对称轴的防伪图像所呈现的视觉图像一般具有循环重复显示的效果,在一定程度上影响到了防伪元件所呈现图像的鉴赏体验。
下面将结合图6-16的实例对非周期和/或无对称轴微观排列形式的防伪图像层的制作方法,结构特点和优势进行详细的说明。
与上述具有周期性排布的或有对称轴的防伪图像层的防伪元件相比,结合图6-16所提供的本发明实施方式中的具有非周期和/或无对称轴微观排列形式的防伪图像层的防伪元件具有以下优势:
(1)防伪图像层作为一个整体,无法提取出微防伪图像单元,通过视觉图像不能够直接获得微观的图像单元;
(2)防伪图像层不易被破解,没有固定的规律可循;
(3)防伪图像层没有重复性的区域,因此造假者必须遍历各微图像的所有位置,做到完全准确的还原每一个局部,才能获得同样的视觉图像特征;
(4)微观排列为非周期或非对称的配置还能够进一步带来更为丰富的光学防伪特征,例如视觉图像的立体、形变、缩放、旋转、开关、闪烁、特殊移动、动画、切换效 果,以及以上效果的组合,和以上效果与一般平移效果的组合。从而改善了现有产品或文献中公开的比较单一的一般平移或切换效果这一现状。因此根据本发明的光学防伪元件和光学防伪产品能够实现更加丰富的光学防伪特征,从而产生更强的公众吸引力和更高的抗伪造能力。
(5)本发明该的光学防伪元件可利用本领域通用设备进行批量生产。
本发明的一种优选实施例是提供仅形成一个视觉合成图像的光学防伪元件具备独特的优势。而当视觉合成图像是仅提供一个宏观的采样合成图像信息时,例如采用一个视觉图像的立体、形变、缩放、旋转、特殊移动效果中的一种或多种的组合效果时,该错位仅影响该一个视觉图像处于该光学效果过程的起点,而不影响用户对该视觉图像的识别。从而使得所光学防伪元件除上文中提到的所有优点外,还能够进一步避免识别困扰,更加有利于产品信息的一致性,具备更强的防伪能力且更加适应批量生产的要求。
作为本发明实施例的进一步的实施及优化,该防伪图像102包含一定数量的像素的像素阵列,以及该多个成像像素组可以是选自该像素阵列中多种特定的像素的不同的特定集合。可以理解的是,该所选定的像素的特定组合是基于所欲实现的图像展示效果(例如立体、形变、缩放、旋转、特殊移动效果)及所相应的视线角度所确定的,即根据图像展示效果和所欲展示该特定图像的角度而确定该防伪图像中特定像素集合,并在该防伪图像的制备阶段就预先布设好各特定像素集合于该防伪图像上。
对上述本发明技术方案的技术效果做进一步的支撑,示例性地,图6给出了根据本发明的第一实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图6a仅示意性地给出了所提供的视觉图像效果,即一个立体视觉图像的若干角度的信息。当沿着x轴正方向改变观察视角的过程中,该视觉图像将还原出立体人像。
这是一种能够形成连续景深变化视觉的立体效果。该立体效果通常通过观察者双眼的视差来识别,但即使是在单眼观察的情况下,也能够根据观察者的经验和常识体验出该立体图像。在该观察角度变化的过程中,虽然该视觉图像出于立体效果的需要发生了渐变,但任意角度下都能够使观察者对该视觉图像的信息进行识别,不会造成信息识别的差异和困扰。
图6b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向为y方向,排列周期为25微米。图6c给出了对应的防伪图像层的一个局部,考虑到防伪图像层整体的微观排列复杂性这里仅给出其中一个局部,但是显然该防伪图像层是非周期 性且无对称轴的。
图7给出了根据本发明的第二实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图8a仅示意性地给出了所提供的视觉图像效果,即一个立体视觉图像的若干角度的信息。当沿着x轴或y轴正方向改变观察视角的过程中,该视觉图像将还原出一个埃舍尔多面体。这也是一种能够形成连续景深变化视觉的立体效果。
图7b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向与x轴方向呈45度角,排列周期为30微米。图7c给出了对应的防伪图像层的一个局部。
图8给出了根据本发明的第三实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图8a仅示意性地给出了所提供的视觉图像效果,即体现出一个视觉图像的变形过程。当沿着x轴或y轴正方向改变观察视角的过程中,该视觉图像中的文字字体从常规字体畸变为斜体。
在该观察角度变化的过程中,虽然该视觉图像出于变形效果的需要发生了变化,但任意角度下都能够还原同一个视觉图像信息,使观察者能够对该视觉图像的信息进行识别,不会造成信息识别的困扰。
图8b示出了所采用的采样合成层为矩形排列的球面微透镜阵列,其排列周期为30微米。图9c给出了对应的防伪图像层的一个局部。
图9给出了根据本发明第四实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图9a仅示意性地给出了所提供的视觉图像效果,即一个视觉图像的放大与缩小的过程。当沿着x轴或y轴正方向改变观察视角的过程中,将还原出该视觉图像的缩小或放大过程。
在该观察角度变化的过程中,虽然该视觉图像出于缩放效果的需要发生了变化,但任意角度下该视觉图像都只有大小的变化,能够使观察者对该视觉图像的信息进行识别,不会造成信息识别的困扰。
图9b示出了所采用的采样合成层为球面微透镜阵列,其排列周期为30微米。图9c给出了对应的防伪图像层的一个局部。
图10给出了根据本发明第五实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图10a仅示意性地给出了所提供的视觉图像效果,即一个视觉图像的旋转过程,即沿着x轴或y轴正方向改变观察视角的过程中,该视觉图像将还原出一个视觉图像周而复始的旋转过程。
在该观察角度变化的过程中,虽然该视觉图像出于旋转效果的需要发生了变化,但任意角度下该视觉图像都只有旋转后角度的变化,视觉图像所表达的信息例如数字本身并没有改变,从而能够使观察者对该视觉图像的信息进行识别,不会造成信息识别的困扰。
图10b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向与x轴方向呈45度角,排列周期为30微米。图10c给出了对应的防伪图像层的一个局部。
图11给出了根据本发明第六实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图11a仅示意性地给出了所提供的视觉图像效果,即一个视觉图像的往复移动过程,即沿着x轴正方向改变观察视角的过程中,将还原出一个视觉图像向x轴正方向移动后又向x轴负方向移动的过程。
在该观察角度变化的过程中,虽然该视觉图像出于往复移动的特殊移动效果的需要发生了位置的变化,但任意角度下该视觉图像所表达的信息例如数字本身并没有改变,从而能够使观察者对该视觉图像的信息进行识别,不会造成信息识别的困扰。
该特殊移动效果还可以是沿着圆周轨迹、波浪轨迹、矩形轨迹移动等特殊移动效果,它们不同于单向直线运动的一般平移效果,即特殊移动效果为除一般平移效果以外的移动效果。
图11b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向为y方向,排列周期为25微米。图11c给出了对应的防伪图像层的一个局部。
图12给出了根据本发明第七实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图12a仅示意性地给出了所提供的视觉图像效果,该视觉图像的效果包含两方面:视觉图像的圆周轨迹移动效果和视觉图像的缩放效果。当沿着x轴正方向或y轴正方向改变观察视角的过程中,将还原出视觉图像沿着圆周轨迹顺时针移动,并同时产生缩小或放大的效果。
在该观察角度变化的过程中,虽然该视觉图像出于圆周轨迹移动的特殊移动效果的需要发生了位置的变化,并同时由于缩放效果的需要使得视觉图像的大小发生了改变,但是任意角度下该视觉图像所表达的信息例如圆形本身并没有改变,从而能够使观察者对该视觉图像的信息进行识别,不会造成信息识别的困扰。
图12b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向与x轴方向呈45度角,排列周期为30微米。图12c给出了对应的防伪图像层的一个局部。
图13给出了根据本发明第八实施方式的光学防伪元件的防伪图像层,该防伪图像 层的微观排列是非周期且无对称轴的。其中图13a仅示意性地给出了所提供的视觉图像效果,该视觉图像的效果包含两个方面:视觉图像的缩放效果和切换效果。当沿着x轴正方向改变观察视角的过程中,将还原出视觉图像缩小或放大的过程,并同时发生两个视觉图像之间的切换。
图13b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向为y方向,排列周期为30微米。图13c给出了对应的防伪图像层的一个局部。
虽然图13所示的实施方式中给出的防伪图像层在微观排列上是非周期且无对称轴的,但是由于其对应的效果中包含两个视觉图像的切换,即在不同角度上可以识别到两个视觉图像信息。并且因为在实际加工过程中防伪图像层与采样合成层之间的错位的存在,所以
(1)不能确切地定义其中任意一个视觉图像出现的角度;
(2)甚至可能出现两个视觉图像畸变、混合后形成的一个无意义的视觉图像,使得观察者无法获得全部的视觉图像信息甚至任何视觉图像的信息都无法得到。
因此,作为一种优选的实施方案,本发明该的光学防伪元件只含有一个视觉图像的信息。
图14给出了根据本发明第九实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图14a仅示意性地给出了所提供的视觉图像效果,该视觉图像的效果包含两个方面:视觉图像的闪烁效果和旋转效果。当沿着x轴正方向改变观察视角的过程中,将还原出视觉图像的位置的变化,该位置的变化例如具有在平面上的随机或伪随机性。当沿着y轴正方向改变观察视角的过程中,将还原出视觉图像的逆时针旋转过程。
图14b示出了所采用的采样合成层为球面微透镜阵列,其排列周期为40微米。图14c给出了对应的防伪图像层的一个局部。
图15给出了根据本发明第十实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图15a仅示意性地给出了所提供的视觉图像效果,该视觉图像的效果包含四个方面:
(1)视觉图像的闪烁效果;
(2)视觉图像的缩放效果;
(3)视觉图像的开关效果;
(4)视觉图像的动画效果。
当沿着x轴正方向改变观察视角的过程中,将还原出图中五角星图案的位置的变化过程(闪烁效果),月亮图案的消失和出现过程(开关效果),月亮图案从弦月到满月的变化过程(动画效果)。当沿着y轴正方向改变观察视角的过程中,将还原出图中五角星图案的缩小或放大过程(缩放效果)。
图15b示出了所采用的采样合成层为球面微透镜阵列,其排列周期为40微米。图15c给出了对应的防伪图像层的一个局部。
图16给出了根据本发明第十一实施方式的光学防伪元件的防伪图像层,该防伪图像层的微观排列是非周期且无对称轴的。其中图16a仅示意性地给出了所提供的视觉图像效果,该视觉图像的效果包含两个方面:视觉图像的缩放效果和一般平移效果。当沿着x轴或y轴正方向改变观察视角的过程中,将还原出图中视觉图像的缩小或放大过程,以及视觉图像沿着x轴正方向的一般平移效果。
图16b示出了采用柱面微透镜阵列作为采样合成层,该柱面微透镜的延伸方向与x轴方向呈45度角,排列周期为20微米。图16c给出了对应的防伪图像层的一个局部。
相比于图4和图5示出的周期性排列的防伪图像层对应的光学效果的实施例,具体地可以参照《微透镜阵列显示技术研究》(《微纳电子技术》2003年第6期第29页)中对周期性防伪图像层和其中作为采样合成层的微透镜阵列之间的关系所决定的视觉图像效果。推而广之,一般来说周期性防伪图像层被采样合成层采样合成后所产生的视觉图像效果即为视觉图像在其所处的二维平面上的至少一个维度上的一般平移效果。这种视觉图像效果对应的周期性防伪图像层更容易设计和加工,但是也更加容易被破解和伪造。该图6至16对应的实施例中涉及到的柱面微透镜阵列其延伸方向根据应用的需求可以是任意的,且球面微透镜阵列的排列形式也可以采用其它上文提到的任意一种方式,例如蜂窝阵列、四边形阵列、三角形阵列等。并且均可以更改实施方式为图2所示的配置,即相应的更改微透镜为微反射镜。
图6至16对应的实施例示意性地给出了微观排列为非周期或非对称的防伪图像层的配置带来的丰富的光学防伪特征,其中例如包括视觉图像的立体、形变、缩放、旋转、特殊移动、闪烁、开关、切换效果以及以上效果的几个组合,和以上效果与一般平移效果的一个组合。其目标是改善现有产品或文献中公开的比较单一的一般平移或切换效果这一现状,为用户提供更加丰富的视觉体验,增强该光学防伪元件的独特性和抗伪造能力。微观排列为非周期或非对称的配置还能够进一步带来更为丰富的光学防伪特征,例如视觉图像的立体、形变、缩放、旋转、特殊移动、闪烁、开关、切换效果以及以上效 果的组合,和以上效果与一般平移效果的组合。从而改善了现有产品或文献中公开的比较单一的一般平移或切换效果这一现状。因此根据本发明的光学防伪元件和光学防伪产品能够实现更加丰富的光学防伪特征,从而产生更强的公众吸引力和更高的抗伪造能力。
由该图6至16对应的实施例可知,其中各效果的实现可以是基于组成防伪图像的像素阵列中的各像素有规律的布设所实现的。更具体地,该成像像素组可以是选自该防伪图像中的特定像素的集合,该特定像素的集合经由基材和/或采样合成层适于在一定观察角度下呈现出对应于所述成像像素组的视觉图像;可选地,该多个成像像素组分别经由基材和/或采样合成层适于在不同的观察角度下呈现出对应于该多个成像像素组的多个不同的视觉图像,并由此实现图6-16所示的各视觉图像效果的切换。
作为进一步的优化,图6、7、10、11、12、13、16对应的实施例中采用了柱面微透镜作为采样合成层,当然也可以采用柱面微反射镜。需要强调的是,优选柱面微透镜或柱面微反射镜作为采样合成层具有独特的优势。首先,由于柱面微透镜或微反射镜仅在一个维度上排列,其密排结构更加紧密并且采样点连续,使得采样合成图像的质量更高、更加清晰。其次,柱面微透镜或微反射镜仅在一个维度上排列,更加容易实现,能够广泛适用于批量生产中。
根据图6-16所示的实施方式中所提供的光学防伪元件可知,仅基于防伪图像中的多个成像像素组中的一部分成像像素组和/或所述目标视觉图像是不能够确定该防伪图像。也就是说,不法分子只有对防伪图像所有的图像进行遍历才有可能破解该防伪图像,大大提高了本发明实施方式所提供的防伪元件的隐蔽性和被破解难度。
根据本发明的光学防伪元件特别适合制作成开窗安全线。该安全线的厚度不大于50μm。带有该开窗安全线的防伪纸用于钞票、护照、有价证券等各类高安全产品的防伪。
根据本发明的光学防伪元件也可用作标签、标识、宽条、透明窗口、覆膜等,可以通过各种粘结机理粘附在各种物品上。例如转移到钞票、信用卡等高安全产品和高附加值产品上。
本发明另一方面提供了带有该光学防伪元件的产品,该产品包括但不限于钞票、信用卡、护照、有价证券等各类高安全产品及高附加值产品,以及各类包装纸、包装盒等。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实 施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (16)

  1. 一种防伪元件,其特征在于,包括:
    至少部分透光的基材,具有相互对立的第一表面和第二表面,以及
    形成在所述基材的所述第一表面的防伪图像,所述防伪图像包括多个成像像素组,所述多个所述成像像素组之间呈非周期性和/或无对称轴排布,
    形成在所述基材的所述第二表面的具有光学特性的采样合成层,
    其中,透过所述基材的透光部分及所述采样合成层适于呈现对应于所述成像像素组的目标视觉图像。
  2. 根据权利要求1所述的防伪元件,其特征在于,仅基于所述多个成像像素组中的部分成像像素组和/或所述目标视觉图像不能够确定所述防伪图像。
  3. 根据权利要求1所述的防伪元件,其特征在于,还包括:
    形成在所述采样合成层表面的反射层,
    透过所述基材的透光部分及所述采样合成层,并经由所述反射层的反射适于呈现对应于所述成像像素组的所述目标视觉图像。
  4. 根据权利要求1所述的防伪元件,其特征在于,
    所述多个成像像素组对应于图像显示关联关系布设在所述防伪图像上,
    其中,从多个不同的角度透过所述基材的透光部分及所述采样合成层适于呈现分别对应于所述多个成像像素组的多个目标视觉图像,以及所述多个目标视觉图像之间呈所述图像显示关联关系。
  5. 根据权利要求1所述的防伪元件,其特征在于:
    所述防伪图像包括由多个像素所组成的防伪像素阵列,所述多个成像像素组为选自所述防伪像素阵列中多组特定像素的集合。
  6. 根据权利要求4所述的防伪元件,其特征在于:
    所述图像显示关联关系包括以下一者或多者:平移变化关联关系、立体变化关联关系、形变变化关联关系、缩放变化关联关系、旋转变化关联关系、闪烁变化关联关系、 开关变化关联关系和切换变化关联关系。
  7. 根据权利要求1所述的防伪元件,其特征在于,所述具有光学特性的采样合成层包括以下一者或多者:球面微透镜、柱面微透镜、球面微反射镜和柱面微反射镜。
  8. 根据权利要求1所述的防伪元件,其特征在于,所述防伪图像还包括编码图像。
  9. 根据权利要求1所述的防伪元件,其特征在于,该防伪元件还包括具有荧光图案的颜色功能层。
  10. 根据权利要求1所述的防伪元件,其特征在于,所述基材包括以下一者或多者:单层PET薄膜、单层PVC模、透明复合膜和有色介质膜。
  11. 根据权利要求1或3所述的防伪元件,其特征在于,所述成像像素组包括具有光谱吸收特性的含开口的光吸收微结构。
  12. 根据权利要求11所述的防伪元件,其特征在于,透过所述基材的透光部分及所述采样合成层,并经由反射层的反射适于呈现对应于所述光吸收微结构的多种颜色信息。
  13. 根据权利要求12所述的防伪元件,其特征在于:所述多种颜色信息与所述防伪元件的显色配置参数组一一对应,所述显色配置参数组包括以下一者或多者:所述反射层的材料、形状,所述光吸收微结构的排列形式、开口深度、开口宽度。
  14. 根据权利要求12所述的防伪元件,其特征在于,所述多种颜色信息包括选自以下至少两者:红色、棕色、黑色和白色。
  15. 一种光学防伪产品,其特征在于,包括权利要求1-14任一项所述的防伪元件。
  16. 根据权利要求15所述的光学防伪产品,其特征在于,该光学防伪产品包括以下一者或多者:开窗安全线、标签、钞票、信用卡、有价证券、护照、包装盒和包装纸。
PCT/CN2018/075506 2017-02-20 2018-02-07 防伪元件及光学防伪产品 WO2018149335A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18753901.0A EP3584090B1 (en) 2017-02-20 2018-02-07 Anti-counterfeiting component and optical anti-counterfeiting product
US16/469,872 US20190315148A1 (en) 2017-02-20 2018-02-07 Anti-counterfeiting component and optical anti-counterfeiting product
US16/820,140 US20200269628A1 (en) 2017-02-20 2020-03-16 Anti-counterfeiting component and optical anti-counterfeiting product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710089613.0A CN108454265B (zh) 2017-02-20 2017-02-20 防伪元件及光学防伪产品
CN201710089613.0 2017-02-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/469,872 A-371-Of-International US20190315148A1 (en) 2017-02-20 2018-02-07 Anti-counterfeiting component and optical anti-counterfeiting product
US16/820,140 Division US20200269628A1 (en) 2017-02-20 2020-03-16 Anti-counterfeiting component and optical anti-counterfeiting product

Publications (1)

Publication Number Publication Date
WO2018149335A1 true WO2018149335A1 (zh) 2018-08-23

Family

ID=63170034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075506 WO2018149335A1 (zh) 2017-02-20 2018-02-07 防伪元件及光学防伪产品

Country Status (4)

Country Link
US (2) US20190315148A1 (zh)
EP (1) EP3584090B1 (zh)
CN (1) CN108454265B (zh)
WO (1) WO2018149335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572015A (zh) * 2019-09-30 2021-03-30 中钞特种防伪科技有限公司 光学防伪元件及防伪产品

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075095B1 (fr) * 2017-12-14 2020-02-28 Oberthur Fiduciaire Sas Ensemble constitue d'un dispositif de transparence complexe et d'au moins un reseau de micro-images, ainsi que document de securite le comportant
CN109249716B (zh) * 2018-09-05 2020-09-15 深圳市裕同包装科技股份有限公司 一种微透镜真彩色3d印刷图像的处理方法
CN109445003B (zh) * 2018-12-18 2020-11-24 苏州大学 一种彩色立体莫尔成像光学装置
CN111716939B (zh) * 2019-03-19 2021-10-26 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
CN110333606A (zh) * 2019-05-06 2019-10-15 苏州大学 一种基于微聚焦元件的光学成像薄膜
CN112433272A (zh) * 2019-08-26 2021-03-02 昇印光电(昆山)股份有限公司 光学成像膜
CN112505938B (zh) * 2019-08-26 2022-07-05 昇印光电(昆山)股份有限公司 立体成像膜
CN113450123B (zh) * 2020-03-26 2023-09-19 中国移动通信集团设计院有限公司 信息防伪处理系统、方法、装置、电子设备和存储介质
CN111572235B (zh) * 2020-05-21 2021-09-14 苏州大学 一种隐藏式立体成像薄膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712731A (en) * 1993-05-11 1998-01-27 Thomas De La Rue Limited Security device for security documents such as bank notes and credit cards
CN1271106A (zh) 1999-04-21 2000-10-25 四川大学 微透镜微图形组合薄膜
CN1552589A (zh) 2003-05-29 2004-12-08 中国科学院光电技术研究所 连续微透镜列阵放大显示防伪方法
CN101434176A (zh) * 2008-12-25 2009-05-20 中国印钞造币总公司 光学防伪元件及带有该光学防伪元件的产品
CN101767511A (zh) * 2010-01-12 2010-07-07 中钞特种防伪科技有限公司 光学防伪元件及带有该防伪元件的产品
CN103625154A (zh) * 2012-08-21 2014-03-12 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104656167A (zh) * 2013-11-22 2015-05-27 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的光学防伪产品

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251566B1 (en) * 1996-12-09 2001-06-26 Scott Brosh Cylindrical lenticular image and method
US6177953B1 (en) * 1997-06-26 2001-01-23 Eastman Kodak Company Integral images with a transition set of images
CN1265216C (zh) * 2000-04-15 2006-07-19 Ovd基尼格拉姆股份公司 表面图案
EP2631085B1 (en) 2004-04-30 2019-04-24 De La Rue International Limited Arrays of microlenses and arrays of microimages on transparent security substrates
EP2365378B1 (en) 2005-05-18 2017-12-13 Visual Physics, LLC Image presentation and micro-optic security system
DE102005062132A1 (de) 2005-12-23 2007-07-05 Giesecke & Devrient Gmbh Sicherheitselement
DE102007061979A1 (de) 2007-12-21 2009-06-25 Giesecke & Devrient Gmbh Sicherheitselement
US9201166B2 (en) 2009-04-28 2015-12-01 Hewlett-Packard Development Company, L.P. Holographic mirror for optical interconnect signal routing
GB201003397D0 (en) 2010-03-01 2010-04-14 Rue De Int Ltd Moire magnification security device
BR112012024191A2 (pt) 2010-03-24 2019-09-24 Securency Int Pty Ltd documento de segurança com dispositivo de segurança integrado e método de fabricação.
CN103097920B (zh) * 2010-08-23 2015-04-15 伊诺维亚证券私人有限公司 多通道光学可变装置
DE102010050895A1 (de) 2010-11-10 2012-05-10 Giesecke & Devrient Gmbh Dünnschichtelement mit Mehrschichtstruktur
GB201107657D0 (en) * 2011-05-09 2011-06-22 Rue De Int Ltd Security device
DE102011101635A1 (de) 2011-05-16 2012-11-22 Giesecke & Devrient Gmbh Zweidimensional periodisches, farbfilterndes Gitter
DE102011121588A1 (de) 2011-12-20 2013-06-20 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere, Wertdokumente oder dergleichen
AU2012100265B4 (en) 2012-03-09 2012-11-08 Innovia Security Pty Ltd An optical security element and method for production thereof
CN103576216B (zh) * 2012-08-02 2016-03-23 中钞特种防伪科技有限公司 一种光学防伪元件及采用该光学防伪元件的防伪产品
KR101960402B1 (ko) 2012-08-03 2019-03-20 쑤저우 에스브이쥐 옵트로닉스 테크놀러지 컴퍼니 리미티드 컬러 다이나믹 증폭 보안 필름
AU2013312883B2 (en) 2012-09-05 2016-10-13 Lumenco, Llc Pixel mapping, arranging, and imaging for round and square-based micro lens arrays to achieve full volume 3D and multi-directional motion
DE102013009972A1 (de) 2013-06-14 2014-12-18 Giesecke & Devrient Gmbh Sicherheitselement
GB201313362D0 (en) * 2013-07-26 2013-09-11 Rue De Int Ltd Security Devices and Methods of Manufacture
DE102014004941A1 (de) 2014-04-04 2015-10-08 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere, Wertdokumente oder dergleichen
US20150298483A1 (en) * 2014-04-18 2015-10-22 Red Hawk Eye, Llc Counterfeit-proof label having security features for consumers identificaton and verification
CN106324726B (zh) 2015-07-08 2020-07-10 昇印光电(昆山)股份有限公司 一种3d成像光学薄膜
CN205416817U (zh) * 2015-12-01 2016-08-03 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的光学防伪产品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712731A (en) * 1993-05-11 1998-01-27 Thomas De La Rue Limited Security device for security documents such as bank notes and credit cards
CN1271106A (zh) 1999-04-21 2000-10-25 四川大学 微透镜微图形组合薄膜
CN1552589A (zh) 2003-05-29 2004-12-08 中国科学院光电技术研究所 连续微透镜列阵放大显示防伪方法
CN101434176A (zh) * 2008-12-25 2009-05-20 中国印钞造币总公司 光学防伪元件及带有该光学防伪元件的产品
CN101767511A (zh) * 2010-01-12 2010-07-07 中钞特种防伪科技有限公司 光学防伪元件及带有该防伪元件的产品
CN103625154A (zh) * 2012-08-21 2014-03-12 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104656167A (zh) * 2013-11-22 2015-05-27 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的光学防伪产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Properties of moire magnifiers", OPTICAL ENGINEERING, vol. 37, no. 11, pages 3007 - 3014
"Research on Micro-lens Array Display Technology", MICRONANOELECTRONIC TECHNOLOGY, 2003, pages 29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572015A (zh) * 2019-09-30 2021-03-30 中钞特种防伪科技有限公司 光学防伪元件及防伪产品
CN112572015B (zh) * 2019-09-30 2023-06-06 中钞特种防伪科技有限公司 光学防伪元件及防伪产品

Also Published As

Publication number Publication date
EP3584090A1 (en) 2019-12-25
US20200269628A1 (en) 2020-08-27
US20190315148A1 (en) 2019-10-17
EP3584090A4 (en) 2020-09-02
EP3584090B1 (en) 2021-07-07
CN108454265A (zh) 2018-08-28
CN108454265B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2018149335A1 (zh) 防伪元件及光学防伪产品
US10308062B2 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product utilizing the same
US11981157B2 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product using the same
RU2666330C2 (ru) Защитное устройство и способ изготовления такого устройства
JP5788886B2 (ja) セキュリティデバイス
CN105313529B (zh) 光学防伪元件及使用该光学防伪元件的防伪产品
CN103576216A (zh) 一种光学防伪元件及采用该光学防伪元件的防伪产品
WO2020187285A1 (zh) 光学防伪元件及光学防伪产品
EP3687825A1 (en) Optical security element
CN105291630A (zh) 光学防伪元件及具有该光学防伪元件的防伪产品
RU2465147C1 (ru) Полимерный многослойный защитный элемент, обладающий оптически переменным эффектом
CN109808337B (zh) 光学防伪元件及光学防伪产品
CN114537015B (zh) 一种光学防伪元件及其产品
JP6032423B2 (ja) 潜像印刷物
JP6394984B2 (ja) 潜像印刷物
CN110857003B (zh) 光学防伪元件及其设计方法、防伪产品
CN110858010B (zh) 光学防伪元件及其设计方法、防伪产品
US20220326540A1 (en) Micro-Optic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018753901

Country of ref document: EP