WO2018149063A1 - 隔离保护装置以及供电系统 - Google Patents
隔离保护装置以及供电系统 Download PDFInfo
- Publication number
- WO2018149063A1 WO2018149063A1 PCT/CN2017/088119 CN2017088119W WO2018149063A1 WO 2018149063 A1 WO2018149063 A1 WO 2018149063A1 CN 2017088119 W CN2017088119 W CN 2017088119W WO 2018149063 A1 WO2018149063 A1 WO 2018149063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- relay
- isolation
- protection device
- rectifier diode
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
Definitions
- the present application relates to the field of secure power supply technologies, and in particular, to an isolation protection device and a power supply system.
- moisture-proofing agents and moisture-proof adhesives are usually used to apply moisture-proofing agents or moisture-proof adhesives to places susceptible to moisture and water, such as lines and sockets, and to be insulated by moisture-proof agents or moisture-proof adhesives. Anti-moisture, anti-leakage, anti-corrosion, anti-corona and other characteristics, to maintain the safety of the power line.
- the purpose of the present application is to provide an isolation protection device and a power supply system, which can effectively prevent the influence of moisture on the power line.
- an embodiment of the present application provides an isolation protection device, including a sensing circuit and an isolation chip;
- the sensing circuit is configured to sense a current signal of the AC output, generate an induced signal, and transmit the sensing signal to the isolation chip;
- the isolation chip is configured to generate an isolated carrier signal according to the sensing signal, and output the isolated carrier signal to an AC output.
- the embodiment of the present application provides a first possible implementation manner of the first aspect, wherein the isolation protection device further includes a rectifier circuit;
- the input end of the rectifier circuit is connected to the AC output end, and the output end of the rectifier circuit is connected to the power end of the isolation chip.
- the embodiment of the present application provides a second possible implementation manner of the first aspect, wherein the rectifier circuit is a rectifier bridge.
- the embodiment of the present application provides a third possible implementation manner of the first aspect, wherein the rectifier bridge includes a first rectifier diode, a second rectifier diode, a third rectifier diode, and a fourth rectifier diode;
- the anode of the first rectifier diode is connected to the anode of the third rectifier diode
- the cathode of the second rectifier diode is connected to the cathode of the fourth rectifier diode
- the cathode of the first rectifier diode is connected to the anode of the second rectifier diode
- the third rectifier diode is The cathode is connected to the anode of the fourth rectifier diode.
- the embodiment of the present application provides a fourth possible implementation manner of the first aspect, wherein the isolation chip comprises an N-channel junction field effect transistor, a comparator, and a carrier generator;
- a gate of the N-channel junction field effect transistor is connected to the sensing circuit, a source is grounded, and a drain is connected to an input end of the comparator;
- An output end of the comparator is connected to an input end of the carrier generator, and an output end of the carrier generator is connected to an AC output terminal through a diode;
- the comparator outputs a comparison signal according to the N-channel junction field effect transistor drain current, and the carrier generator outputs a carrier signal according to the comparison signal.
- the embodiment of the present application provides a fifth possible implementation manner of the first aspect, wherein the isolation chip further includes a trigger;
- An input end of the trigger is connected to an output end of the comparator
- the trigger outputs a power down signal when the comparison signal exceeds a preset value.
- the embodiment of the present application provides a sixth possible implementation manner of the first aspect, wherein the sensing circuit includes a sensing resistor connected between the isolation chip and the AC output end.
- the embodiment of the present application provides a seventh possible implementation manner of the first aspect, wherein the sensing circuit further includes a first sensing capacitor and a second sensing capacitor coupled to the sensing resistor.
- the embodiment of the present application provides the eighth possible implementation manner of the first aspect, wherein the first sensing capacitor and the second sensing capacitor are both adjustable capacitors.
- the embodiment of the present application further provides a power supply system, including a transformer and the above-mentioned isolation protection device;
- the primary coil of the transformer is connected to the grid, and the secondary coil of the transformer is connected to the AC output.
- the embodiment of the present application provides a first possible implementation manner of the second aspect, where the The electrical system also includes a first relay and a second relay;
- the isolation chip in the isolation protection device includes a trigger
- a control coil of the first relay is connected to an output end of the trigger, an output end of the first relay is connected in series with a control coil of the second relay, and an output end of the second relay is connected in series with the primary coil .
- the embodiment of the present application provides the second possible implementation manner of the second aspect, wherein the first relay is a normally closed relay, and the second relay is a normally open relay.
- the embodiment of the present application provides a third possible implementation manner of the second aspect, wherein a relay for overload protection is connected in series between the first relay and the second relay.
- the embodiment of the present application provides a fourth possible implementation manner of the second aspect, wherein a relay for overload protection is further connected in series between the first relay and the second relay.
- the embodiment of the present application provides a fifth possible implementation manner of the second aspect, wherein a relay for overvoltage protection is further connected in series between the first relay and the second relay.
- the isolation protection device provided by the embodiment of the present application includes an induction circuit and an isolation chip.
- the sensing circuit senses the current signal at the AC output, generates an induced signal, and transmits the sensing signal to the isolation chip.
- the isolation chip generates an isolated carrier signal according to the sensing signal, and outputs the isolated carrier signal to the AC output.
- the induction circuit when the AC output line is wet or wet, the induction circuit can sense an abnormal current on the line and generate an induction signal to be sent to the isolation chip.
- the isolation chip generates an isolated carrier signal of a corresponding amplitude according to the intensity of the sensing signal, so that the alternating current systematically stabilizes the output in the form of an isolated carrier, and acts as an isolation to avoid a short circuit between the two AC output lines, thereby effectively preventing moisture. The impact on the power line.
- FIG. 1 is a schematic diagram of an isolation protection device according to Embodiment 1 of the present application.
- FIG. 2 is another schematic diagram of an isolation protection device according to Embodiment 1 of the present application.
- FIG. 3 is a schematic diagram of an isolation chip in an isolation protection device according to Embodiment 1 of the present application.
- FIG. 4 is a schematic diagram of a power supply system according to Embodiment 2 of the present application.
- the invention provides an isolation protection device and a power supply system, which can effectively prevent the influence of moisture on the power line.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the embodiment of the present application provides an isolation protection device 100, which can be applied to a power consumption scene such as a home or a unit.
- the isolation protection device 100 includes a sensing circuit 110 and an isolation chip 120.
- the sensing circuit 110 senses the current signal at the AC output, generates an induced signal, and transmits the sensing signal to the isolation chip.
- the sensing circuit 110 is connected to one of the two AC output terminals b and d. In this embodiment, the sensing circuit 110 is connected to the AC output terminal b as an example for description.
- the isolation chip 120 generates an isolated carrier signal according to the sensing signal, and outputs the isolated carrier signal to the AC output through the diode D0.
- the sensing circuit 110 in this embodiment includes a sensing resistor R connected between the isolation chip 120 and the AC output terminal. Further, the sensing circuit 110 further includes a first sensing capacitor and a second sensing capacitor coupled to the sensing resistor R.
- the sensing capacitor C1 in FIG. 2 is a first sensing capacitor
- the sensing capacitor C2 is a second sensing capacitor.
- the current signal on the AC output terminal b generates an induced signal through the coupling effect between the sensing resistor R and the sensing capacitors C1 and C2, and the sensing circuit 110 transmits the sensing signal to the isolation chip.
- the sensing capacitors C1 and C2 are adjustable capacitors, so that they can be applied to various environments.
- the specific sizes of the sensing capacitors C1 and C2 can be adjusted according to the voltage and current conditions of the application scene. .
- the isolation protection device 100 provided by the embodiment of the present application further includes a rectifier circuit 130.
- the two input ends of the rectifier circuit 130 are respectively connected to the AC output terminals b, d, wherein one input terminal of the rectifier circuit 130 and the AC input The output terminal b is connected, the other input end of the rectifier circuit 130 is connected to the AC output terminal d, and the output end of the rectifier circuit 130 is connected to the power supply terminal of the isolation chip 120, thereby rectifying the AC output terminals b and d into DC power, and is an isolation chip. 120 provides DC power.
- the rectifier circuit 130 in this embodiment is a rectifier bridge.
- the rectifier bridge is specifically composed of a first rectifier diode, a second rectifier diode, a third rectifier diode, and a fourth rectifier diode.
- the first rectifier diode is the rectifier diode D1 in FIG. 2
- the second rectifier diode is the rectifier diode D2 in FIG. 2
- the third rectifier diode is the rectifier diode D3 in FIG. 2
- the fourth rectifier diode is Rectifier diode D4 in Figure 2.
- the anode of the rectifier diode D1 is connected to the anode of the rectifier diode D3, the cathode of the rectifier diode D2 is connected to the cathode of the rectifier diode D4, and the cathode of the rectifier diode D1 is connected to the anode of the rectifier diode D2, and the cathode of the rectifier diode D3 is connected to the anode of the rectifier diode D4. .
- the strong alternating current is converted into a unidirectional DC pulse voltage through the single-conduction function of the rectifier diode.
- the isolation chip 120 in this embodiment includes a field effect transistor T, a comparator 121, and a carrier generator 122, wherein the field effect transistor T is specifically an N-channel junction field effect transistor.
- the input of the comparator 121 is connected to the drain d of the FET T, the output of the comparator 121 is connected to the input of the carrier generator 122, and the output of the carrier generator 122 is connected to the AC output through a diode.
- a Junction Field-Effect Transistor is a three-terminal active device with amplifying function composed of a gate, a source and a drain of a PN junction, which is common in a unipolar FET.
- the junction field effect transistor can be divided into an N-channel and a P-channel. In this embodiment, an N-channel junction field effect transistor is used.
- the source s of the FET T is grounded, the drain d is supplied with a positive voltage by the comparator 121, the voltage of the source s is lower than the voltage of the drain d, and the gate g of the FET T is connected.
- the circuit receives a negative voltage sensing signal.
- the negative value of the voltage Vgs between the gate g and the source s increases, which increases the resistance of the channel and decreases the drain current Id. This is because the electrons inside the N-type semiconductor are repelled by the electric field formed by the negative potential of the gate, and a thicker depletion layer is formed around the P region, the conduction channel of the N-type semiconductor is narrowed, and the drain to the source are The current is reduced. Due to this characteristic, the drain current Id is controlled by the gate-source voltage Vgs.
- the drain current Id of the field effect transistor T also changes.
- the drain current Id is input to the comparator, and the current grid current can be detected by the comparator 121.
- the comparator 121 After receiving the drain current Id of the FET T, the comparator 121 compares the drain current Id with the reference current inside the comparator and outputs a corresponding comparison signal.
- the carrier generator 122 outputs a corresponding carrier signal based on the change in the comparison signal.
- the carrier generator 122 When the comparison signal output by the comparator 121 is within the normal range, the carrier generator 122 outputs an isolated carrier signal of smooth amplitude, and outputs a smooth alternating current in a manner of isolating the carrier.
- the comparator 121 When the AC output line is wet or damp, the comparator 121 will output a high intensity.
- the (abnormal) comparison signal the carrier generator 122 outputs an isolated carrier signal of a corresponding amplitude according to the strength of the comparison signal, so that the alternating current systematically stabilizes the output in the form of an isolated carrier, and acts as an isolation to avoid two AC output lines. A short circuit occurs between them to effectively prevent the influence of moisture on the power line.
- the isolation chip further includes a flip-flop 123 in the embodiment of the present application.
- the input of the flip flop 123 is coupled to the output of the comparator 121.
- the flip-flop 123 outputs a power-off signal to disconnect the power of the power transmission line.
- the induction circuit 110 can sense an abnormal current on the line, and generate an induction signal to be sent to the comparator 121, and the comparator 121 according to the abnormality.
- the sense signal generates a high-intensity (abnormal) comparison signal and sends the abnormal comparison signal to the isolation chip 120.
- the isolation chip 120 generates an isolated carrier signal of a corresponding amplitude according to the strength of the comparison signal, so that the alternating current systematically stabilizes the output in the form of an isolated carrier, and acts as an isolation to avoid a short circuit between the two AC output lines, thereby effectively preventing The effect of humidity on power lines.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the embodiment of the present application further provides a power supply system, including a transformer TB and the isolation protection device 100 provided in the first embodiment.
- the primary coil of the transformer TB is connected to the power grid, and the two ends of the secondary coil of the transformer TB are respectively connected to the AC output terminal d and the AC output terminal b, and output AC power.
- the power supply system provided by this embodiment further includes a first relay J1 and a second relay J2.
- the control coil of the first relay J1 is connected to the output end of the isolation chip 120 in the isolation protection device 100.
- the output end of the first relay J1 is connected in series with the control coil of the second relay J2 and the control power supply, and the output end of the second relay J2 and the transformer The primary coils are connected in series.
- the first relay J1 is a normally closed relay, that is, the output end of the first relay J1 is in a closed state when the coil is not energized.
- the second relay J2 is a normally open type relay, that is, the output end of the first relay J1 is in an off state when the coil is not energized.
- the coil of the first relay J1 is not energized, and the output end of the first relay J1 is in a closed state, so the control power source can supply power to the coil of the second relay J2 through the first relay J1.
- the coil of the second relay J2 is energized, its output terminal is in a closed state to maintain the power supply of the primary coil of the transformer.
- the output of the isolation chip 120 has no power-off signal output.
- the coil of the first relay J1 is energized to disconnect the output of the first relay J1. Since the output end of the first relay J1 is disconnected, the coil of the second relay J2 is de-energized, and the output end of the second relay J2 is disconnected, thereby disconnecting the grid from the primary coil of the transformer to cut off the power supply of the power supply system. Thereby achieving protection of the power supply line.
- the first relay J1 adopts a normally closed type relay
- the second relay J2 adopts a normally open type relay
- the power supply system provided by the embodiment of the present application has the same technical features as the isolation protection device provided in the first embodiment, so that the same technical problem can be solved and the same technical effect can be achieved.
- the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
- installation may be a fixed connection or a detachable connection, unless explicitly stated and defined otherwise.
- connected integrally may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
- the isolation protection device and the power supply system provided by the embodiments of the present application.
- the isolation protection device includes an induction circuit and an isolation chip.
- the sensing circuit is configured to sense a current signal at the AC output, generate an induced signal, and transmit the sensing signal to the isolation chip;
- the isolation chip is configured to generate an isolated carrier signal according to the sensing signal, and
- the isolated carrier signal is output to the AC output.
- the isolation protection device provided by the embodiment of the present application can sense an abnormal current on the line when the AC output line is wet or wet.
- the sensing signal is sent to the isolation chip, and the isolation chip can further generate an isolated carrier signal of a corresponding amplitude according to the intensity of the sensing signal, so that the alternating current systematically stabilizes the output in the form of an isolated carrier, and acts as an isolation to avoid two AC outputs.
- a short circuit between the lines can effectively prevent the influence of moisture on the power line.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Protection Of Static Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
一种隔离保护装置以及供电系统,涉及隔离保护装置以及供电系统技术领域,能够有效防止潮湿对电力线路的影响。该隔离保护装置包括感应电路和隔离芯片;所述感应电路配置为感应交流输出端的电流信号,生成感应信号,并将所述感应信号传输至所述隔离芯片;所述隔离芯片配置为根据所述感应信号生成隔离载波信号,并将所述隔离载波信号输出至交流输出端。
Description
相关申请的交叉引用
本申请要求于2017年02月17日提交中国专利局的申请号为2017100886660、名称为“隔离保护装置以及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及安全供电技术领域,尤其是涉及一种隔离保护装置以及供电系统。
随着电力技术的发展,工频交流电(即市电)已经遍布每一个家庭和单位,用电的安全性也变得越来越重要。
目前的市电通常由两条输出线供电,其中一条为火线,另一条为零线。在家庭或单位等用电场景处于潮湿状态时,特别是在卫生间、厨房等频繁用水的环境,火线与零线之间很容易因为潮湿或沾水发生短路。当线路老化、破损时,火线和零线会暴露在外,也会因为潮湿或沾水使火线与零线之间发生短路。
火线与零线之间发生短路,容易导致火灾,而且会造成用电设备及供电设备损坏等不良后果。目前,对于供电线路防潮湿的问题,通常采用防潮剂、防潮胶等措施,将防潮剂或防潮胶涂覆在线路、插座等容易受潮、沾水的部位,利用防潮剂或防潮胶的绝缘、防潮湿、防漏电、防腐蚀、耐电晕等特性,维持用电线路的安全。
但是,使用防潮剂或防潮胶难以覆盖电力线路的每个角落,而且防潮剂或防潮胶的效力也会随时间慢慢退化,因此现有技术难以有效防止电力线路受到潮湿的影响。
发明内容
有鉴于此,本申请的目的在于提供一种隔离保护装置以及供电系统,能够有效防止潮湿对电力线路的影响。
第一方面,本申请实施例提供了一种隔离保护装置,包括感应电路和隔离芯片;
所述感应电路配置为感应交流输出端的电流信号,生成感应信号,并将所述感应信号传输至所述隔离芯片;
所述隔离芯片配置为根据所述感应信号生成隔离载波信号,并将所述隔离载波信号输出至交流输出端。
结合第一方面,本申请实施例提供了第一方面的第一种可能的实施方式,其中,该隔离保护装置还包括整流电路;
所述整流电路的输入端连接交流输出端,所述整流电路的输出端连接所述隔离芯片的电源端。
结合第一方面,本申请实施例提供了第一方面的第二种可能的实施方式,其中,所述整流电路为整流桥。
结合第一方面,本申请实施例提供了第一方面的第三种可能的实施方式,其中,所述整流桥包括第一整流二极管、第二整流二极管、第三整流二极管以及第四整流二极管;第一整流二极管的阳极与第三整流二极管的阳极相连,第二整流二极管的阴极与第四整流二极管的阴极相连,而第一整流二极管的阴极连接第二整流二极管的阳极,第三整流二极管的阴极连接第四整流二极管的阳极。
结合第一方面,本申请实施例提供了第一方面的第四种可能的实施方式,其中,所述隔离芯片包括N沟道结型场效应管、比较器和载波发生器;
所述N沟道结型场效应管的栅极连接所述感应电路,源极接地,漏极连接所述比较器的输入端;
所述比较器的输出端连接所述载波发生器的输入端,所述载波发生器的输出端通过二极管连接交流输出端;
所述比较器根据所述N沟道结型场效应管漏极电流输出比较信号,所述载波发生器根据所述比较信号输出载波信号。
结合第一方面,本申请实施例提供了第一方面的第五种可能的实施方式,其中,所述隔离芯片中还包括触发器;
所述触发器的输入端连接所述比较器的输出端;
当所述比较信号超出预设值时,所述触发器输出断电信号。
结合第一方面,本申请实施例提供了第一方面的第六种可能的实施方式,其中,所述感应电路包括感应电阻,所述感应电阻连接在所述隔离芯片与交流输出端之间。
结合第一方面,本申请实施例提供了第一方面的第七种可能的实施方式,其中,所述感应电路还包括与所述感应电阻耦合连接的第一感应电容以及第二感应电容。
结合第一方面,本申请实施例提供了第一方面的第八种可能的实施方式,其中,所述第一感应电容以及所述第二感应电容均为可调节电容。
第二方面,本申请实施例还提供一种供电系统,包括变压器以及上述的隔离保护装置;
所述变压器的初级线圈连接电网,所述变压器的次级线圈的连接交流输出端。
结合第二方面,本申请实施例提供了第二方面的第一种可能的实施方式,其中,该供
电系统还包括第一继电器和第二继电器;
所述隔离保护装置中的隔离芯片包括触发器;
所述第一继电器的控制线圈连接所述触发器的输出端,所述第一继电器的输出端与所述第二继电器的控制线圈串联,所述第二继电器的输出端与所述初级线圈串联。
结合第二方面,本申请实施例提供了第二方面的第二种可能的实施方式,其中,所述第一继电器为常闭型继电器,所述第二继电器为常开型继电器。
结合第二方面,本申请实施例提供了第二方面的第三种可能的实施方式,其中,所述第一继电器与所述第二继电器之间串联有用于过载保护的继电器。
结合第二方面,本申请实施例提供了第二方面的第四种可能的实施方式,其中,所述第一继电器与所述第二继电器之间还串联有用于过载保护的继电器。
结合第二方面,本申请实施例提供了第二方面的第五种可能的实施方式,其中,所述第一继电器与所述第二继电器之间还串联有用于过压保护的继电器。
本申请实施例带来了以下有益效果:
本申请实施例提供的隔离保护装置中,包括感应电路和隔离芯片。其中,感应电路感应交流输出端的电流信号,生成感应信号,并将感应信号传输至隔离芯片。隔离芯片根据感应信号生成隔离载波信号,并将隔离载波信号输出至交流输出端。
采用本申请实施例提供的隔离保护装置,当交流输出线受到潮湿或沾水时,感应电路能够感应到线路上的异常电流,并生成感应信号发送至隔离芯片。隔离芯片根据感应信号的强度,生成相应幅度的隔离载波信号,使交流电以隔离载波的形式系统化稳定输出,并起到隔离作用,避免两条交流输出线之间发生短路,从而能够有效防止潮湿对电力线路的影响。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的隔离保护装置的示意图;
图2为本申请实施例一提供的隔离保护装置的另一示意图;
图3为本申请实施例一提供的隔离保护装置中隔离芯片的示意图;
图4为本申请实施例二提供的供电系统的示意图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,使用防潮剂或防潮胶难以覆盖电力线路的每个角落,而且防潮剂或防潮胶的效力也会随时间慢慢退化,因此现有技术难以有效防止电力线路受到潮湿的影响。
本申请实施例提供的一种隔离保护装置以及供电系统,能够有效防止潮湿对电力线路的影响。
实施例一:
本申请实施例提供了一种隔离保护装置100,可应用于家庭或单位等用电场景。如图1和图2所示,该隔离保护装置100包括感应电路110和隔离芯片120。感应电路110感应交流输出端的电流信号,生成感应信号,并将感应信号传输至隔离芯片。感应电路110连接在两个交流输出端b、d中的其中一端,本实施例以感应电路110连接交流输出端b为例进行说明。
隔离芯片120根据感应信号生成隔离载波信号,并将隔离载波信号通过二极管D0输出至交流输出端。
如图2所示,本实施例中的感应电路110包括感应电阻R,感应电阻R连接在隔离芯片120与交流输出端之间。进一步的是,感应电路110中还包括与感应电阻R耦合连接的第一感应电容以及第二感应电容。其中,可选地,图2中的感应电容C1为第一感应电容,感应电容C2为第二感应电容。
交流输出端b上的电流信号,经过感应电阻R以及感应电容C1、C2之间的耦合效应,生成感应信号,并且感应电路110将该感应信号传输至隔离芯片。
本实施例中,感应电容C1、C2均为可调节电容,以便于适用于各种不同的环境,感应电容C1、C2具体的大小可以在出厂时,根据应用场景的电压、电流情况进行调节设置。
进一步的是,本申请实施例提供的隔离保护装置100中还包括整流电路130。整流电路130的两个输入端分别连接交流输出端b、d,其中,整流电路130的一个输入端与交流输
出端b连接,整流电路130的另一个输入端与交流输出端d连接,整流电路130的输出端连接隔离芯片120的电源端,从而将交流输出端b、d整流为直流电,并为隔离芯片120提供直流电源。
作为一个优选方案,本实施例中的整流电路130为整流桥。整流桥具体由第一整流二极管、第二整流二极管、第三整流二极管以及第四整流二极管组成。在本实施例中,第一整流二极管为图2中的整流二极管D1,第二整流二极管为图2中的整流二极管D2,第三整流二极管为图2中的整流二极管D3,第四整流二极管为图2中的整流二极管D4。整流二极管D1的阳极与整流二极管D3的阳极相连,整流二极管D2的阴极与整流二极管D4的阴极相连,而整流二极管D1的阴极连接整流二极管D2的阳极,整流二极管D3的阴极连接整流二极管D4的阳极。在整流桥的每个工作周期内,同一时间只有两个整流二极管进行工作,通过整流二极管的单向导通功能,将强交流电转换成单向的直流脉冲电压。
如图3所示,本实施例中的隔离芯片120包括场效应管T、比较器121和载波发生器122,其中场效应管T具体为N沟道结型场效应管。比较器121的输入端连接场效应管T的漏极d,比较器121的输出端连接载波发生器122的输入端,载波发生器122的输出端通过二极管连接交流输出端。
场效应管T的栅极g连接感应电路,源极s接地,漏极d连接比较器121的输入端。结型场效应晶体管(Junction Field-Effect Transistor,简称JFET)是由PN结栅极、源极和漏极构成的一种具有放大功能的三端有源器件,是单极场效应管中常见的一种,结型场效应晶体管可以分N沟道和P沟道两种,本实施例中采用的是N沟道结型场效应管。
本实施例中,场效应管T的源极s接地,漏极d由比较器121提供正电压,使源极s的电压低于漏极d的电压,场效应管T的栅极g连接感应电路,接收负电压感应信号。栅极g于源极s之间的电压Vgs的负值增大,将使沟道的电阻增大,而漏极电流Id减小。这是因为N型半导体内部的电子被栅极负电位形成的电场所排斥,在P区周围产生更厚的耗尽层,N型半导体的导电沟道变窄,漏极至源极之间的电流减小。由于此种特性,漏极电流Id会受到栅源极电压Vgs的控制。
随着感应电路110输出的感应信号的变化,场效应管T的漏极电流Id也会发生变化。漏极电流Id输入至比较器,即可利用比较器121对当前的电网电流进行检测。
比较器121接收到场效应管T的漏极电流Id后,将漏极电流Id与比较器内部的基准电流进行比较,并输出相应的比较信号。
载波发生器122根据比较信号的变化情况,输出相应的载波信号。当比较器121输出的比较信号在正常范围内时,载波发生器122输出幅值平稳的隔离载波信号,以隔离载波的方式输出平稳的交流电。当交流输出线受到潮湿或沾水时,比较器121会输出强度很高
的(异常的)比较信号,载波发生器122根据比较信号的强度,输出相应幅度的隔离载波信号,使交流电以隔离载波的形式系统化稳定输出,并起到隔离作用,避免两条交流输出线之间发生短路,从而能够有效防止潮湿对电力线路的影响。
进一步的是,本申请实施例中隔离芯片还包括触发器123。触发器123的输入端连接比较器121的输出端。当比较信号超出触发器123内部的预设值时,触发器123输出断电信号,断开输电线路的电源。
采用本申请实施例提供的隔离保护装置100,当交流输出线受到潮湿或沾水时,感应电路110能够感应到线路上的异常电流,并生成感应信号发送至比较器121,比较器121根据异常的感应信号生强度很高的(异常的)比较信号,并将该异常的比较信号发送至隔离芯片120。隔离芯片120根据比较信号的强度,生成相应幅度的隔离载波信号,使交流电以隔离载波的形式系统化稳定输出,并起到隔离作用,避免两条交流输出线之间发生短路,从而能够有效防止潮湿对电力线路的影响。
实施例二:
如图4所示,本申请实施例还提供一种供电系统,包括变压器TB以及上述实施例一所提供的隔离保护装置100。其中,变压器TB的初级线圈连接电网,变压器TB的次级线圈的两端分别连接交流输出端d与交流输出端b,输出交流电。
进一步的是,本实施例提供的供电系统还包括第一继电器J1和第二继电器J2。第一继电器J1的控制线圈连接隔离保护装置100中的隔离芯片120的输出端,第一继电器J1的输出端与第二继电器J2的控制线圈以及控制电源串联,第二继电器J2的输出端与变压器的初级线圈串联。
作为一个优选方案,第一继电器J1为常闭型继电器,即线圈不通电时第一继电器J1的输出端处于闭合状态。同时,第二继电器J2为常开型继电器,即线圈不通电时第一继电器J1的输出端处于断开状态。
在供电系统正常供电的情况下,第一继电器J1的线圈不通电,第一继电器J1的输出端处于闭合状态,因此控制电源可通过第一继电器J1向第二继电器J2的线圈供电。第二继电器J2的线圈在通电的情况下,其输出端处于闭合状态,以维持变压器的初级线圈持续供电。同时,隔离芯片120的输出端无断电信号输出。
当隔离芯片120中的触发单元发出断电信号时,第一继电器J1的线圈通电,使第一继电器J1的输出端断开。由于第一继电器J1的输出端断开,因此第二继电器J2的线圈断电,使第二继电器J2的输出端断开,从而切断电网与变压器的初级线圈的连接,以切断供电系统的供电,从而实现供电线路的保护。
本实施例中,第一继电器J1采用常闭型继电器,第二继电器J2采用常开型继电器还具有以下优点:在实际的供电系统中,可以在第一继电器J1的输出端与第二继电器J2的线圈之间串联多个不同用途的继电器,比如用于过载保护的继电器、过压保护的继电器,以及用于短路保护的继电器。这些继电器也都采用常闭型继电器,并且每个继电器的输出端都与第二继电器J2的线圈串联,则其中任意一个继电器断开时,都可以使第二继电器J2的线圈断电,从而切断电力系统的供电。
本申请实施例提供的供电系统,与上述实施例一提供的隔离保护装置具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
本申请实施例提供的隔离保护装置以及供电系统。其中,隔离保护装置包括感应电路和隔离芯片。所述感应电路用于感应交流输出端的电流信号,生成感应信号,并将所述感应信号传输至所述隔离芯片;所述隔离芯片用于根据所述感应信号生成隔离载波信号,并将所述隔离载波信号输出至交流输出端。本申请实施例提供的隔离保护装置,可以在交流输出线受到潮湿或沾水时,感应电路能够感应到线路上的异常电流,并生
成感应信号发送至隔离芯片,而隔离芯片可以进一步根据感应信号的强度,生成相应幅度的隔离载波信号,使交流电以隔离载波的形式系统化稳定输出,并起到隔离作用,避免两条交流输出线之间发生短路,从而能够有效防止潮湿对电力线路的影响。
Claims (15)
- 一种隔离保护装置,其特征在于,包括感应电路和隔离芯片;所述感应电路配置为感应交流输出端的电流信号,生成感应信号,并将所述感应信号传输至所述隔离芯片;所述隔离芯片配置为根据所述感应信号生成隔离载波信号,并将所述隔离载波信号输出至交流输出端。
- 根据权利要求1所述的隔离保护装置,其特征在于,所述隔离保护装置还包括整流电路;所述整流电路的输入端连接交流输出端,所述整流电路的输出端连接所述隔离芯片的电源端。
- 根据权利要求2所述的隔离保护装置,其特征在于,所述整流电路为整流桥。
- 根据权利要求3所述的隔离保护装置,其特征在于,所述整流桥包括第一整流二极管、第二整流二极管、第三整流二极管以及第四整流二极管;第一整流二极管的阳极与第三整流二极管的阳极相连,第二整流二极管的阴极与第四整流二极管的阴极相连,而第一整流二极管的阴极连接第二整流二极管的阳极,第三整流二极管的阴极连接第四整流二极管的阳极。
- 根据权利要求1所述的隔离保护装置,其特征在于,所述隔离芯片包括N沟道结型场效应管、比较器和载波发生器;所述N沟道结型场效应管的栅极连接所述感应电路,源极接地,漏极连接所述比较器的输入端;所述比较器的输出端连接所述载波发生器的输入端,所述载波发生器的输出端通过二极管连接交流输出端;所述比较器根据所述N沟道结型场效应管漏极电流输出比较信号,所述载波发生器根据所述比较信号输出载波信号。
- 根据权利要求5所述的隔离保护装置,其特征在于,所述隔离芯片中还包括触发器;所述触发器的输入端连接所述比较器的输出端;当所述比较信号超出预设值时,所述触发器输出断电信号。
- 根据权利要求1所述的隔离保护装置,其特征在于,所述感应电路包括感应电阻,所述感应电阻连接在所述隔离芯片与交流输出端之间。
- 根据权利要求7所述的隔离保护装置,其特征在于,所述感应电路还包括与所 述感应电阻耦合连接的第一感应电容以及第二感应电容。
- 根据权利要求8所述的隔离保护装置,其特征在于,所述第一感应电容以及所述第二感应电容均为可调节电容。
- 一种供电系统,其特征在于,包括变压器以及如权利要求1至7任一项所述的隔离保护装置;所述变压器的初级线圈连接电网,所述变压器的次级线圈的连接交流输出端。
- 根据权利要求10所述的供电系统,其特征在于,还包括第一继电器和第二继电器;所述隔离保护装置中的隔离芯片包括触发器;所述第一继电器的控制线圈连接所述触发器的输出端,所述第一继电器的输出端与所述第二继电器的控制线圈串联,所述第二继电器的输出端与所述初级线圈串联。
- 根据权利要求11所述的供电系统,其特征在于,所述第一继电器为常闭型继电器,所述第二继电器为常开型继电器。
- 根据权利要求10所述的供电系统,其特征在于,所述第一继电器与所述第二继电器之间串联有用于过载保护的继电器。
- 根据权利要求13所述的供电系统,其特征在于,所述第一继电器与所述第二继电器之间还串联有用于过载保护的继电器。
- 根据权利要求14所述的供电系统,其特征在于,所述第一继电器与所述第二继电器之间还串联有用于过压保护的继电器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710088666.0A CN106711923B (zh) | 2017-02-17 | 2017-02-17 | 隔离保护装置以及供电系统 |
CN201710088666.0 | 2017-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018149063A1 true WO2018149063A1 (zh) | 2018-08-23 |
Family
ID=58911810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/088119 WO2018149063A1 (zh) | 2017-02-17 | 2017-06-13 | 隔离保护装置以及供电系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106711923B (zh) |
WO (1) | WO2018149063A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112087245A (zh) * | 2019-06-12 | 2020-12-15 | 天地融科技股份有限公司 | 一种电力线载波通信装置和通信方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711922B (zh) * | 2017-02-17 | 2018-06-08 | 中领世能(天津)科技有限公司 | 触电保护装置以及供电系统 |
CN106711923B (zh) * | 2017-02-17 | 2018-06-19 | 中领世能(天津)科技有限公司 | 隔离保护装置以及供电系统 |
CN107086554A (zh) * | 2017-05-26 | 2017-08-22 | 中领世能(天津)科技有限公司 | 供电系统及其多级保护装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200953461Y (zh) * | 2006-10-11 | 2007-09-26 | 朱仲宝 | 漏电保护器 |
CN101060242A (zh) * | 2006-04-18 | 2007-10-24 | 湖北盛佳电器设备有限公司 | 电流异常保护电路 |
CN102097780A (zh) * | 2011-01-31 | 2011-06-15 | 赵长城 | 一种用于低压电网的触、漏电保护装置 |
CN201965753U (zh) * | 2011-01-24 | 2011-09-07 | 深圳市森晖电子有限公司 | 一种采集器 |
CN202004426U (zh) * | 2010-12-29 | 2011-10-05 | 福建俊豪电子有限公司 | 一种低压线路保护电路 |
CN106711922A (zh) * | 2017-02-17 | 2017-05-24 | 中领世能(天津)科技有限公司 | 触电保护装置以及供电系统 |
CN106711923A (zh) * | 2017-02-17 | 2017-05-24 | 中领世能(天津)科技有限公司 | 隔离保护装置以及供电系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306924B (zh) * | 2011-09-14 | 2013-11-20 | 黄华道 | 可定时自动检测功能完整性的漏电检测保护电路 |
CN102946234B (zh) * | 2012-11-09 | 2014-05-28 | 杭州电子科技大学 | 一种用于纱线张力检测的高精度放大电路 |
CN104466553B (zh) * | 2014-12-01 | 2017-05-03 | 武汉工程大学 | 一种防触电的电源插座安全防护装置 |
CN104410055B (zh) * | 2014-12-11 | 2018-10-23 | 浙江中富电气有限公司 | 一种供电线路保护电路 |
CN105302220B (zh) * | 2015-11-30 | 2016-08-31 | 丁婕 | 一种交流稳压器 |
CN205377869U (zh) * | 2016-02-04 | 2016-07-06 | 杭州炬华科技股份有限公司 | 一种基于电力载波数据传输电路 |
CN105578689A (zh) * | 2016-02-25 | 2016-05-11 | 上海赞迪网络科技有限公司 | 一种具有电力载波单元的节电器 |
CN205791474U (zh) * | 2016-05-31 | 2016-12-07 | 苏州台菱电梯有限公司 | 一种电梯曳引机的自动保护系统 |
-
2017
- 2017-02-17 CN CN201710088666.0A patent/CN106711923B/zh active Active
- 2017-06-13 WO PCT/CN2017/088119 patent/WO2018149063A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060242A (zh) * | 2006-04-18 | 2007-10-24 | 湖北盛佳电器设备有限公司 | 电流异常保护电路 |
CN200953461Y (zh) * | 2006-10-11 | 2007-09-26 | 朱仲宝 | 漏电保护器 |
CN202004426U (zh) * | 2010-12-29 | 2011-10-05 | 福建俊豪电子有限公司 | 一种低压线路保护电路 |
CN201965753U (zh) * | 2011-01-24 | 2011-09-07 | 深圳市森晖电子有限公司 | 一种采集器 |
CN102097780A (zh) * | 2011-01-31 | 2011-06-15 | 赵长城 | 一种用于低压电网的触、漏电保护装置 |
CN106711922A (zh) * | 2017-02-17 | 2017-05-24 | 中领世能(天津)科技有限公司 | 触电保护装置以及供电系统 |
CN106711923A (zh) * | 2017-02-17 | 2017-05-24 | 中领世能(天津)科技有限公司 | 隔离保护装置以及供电系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112087245A (zh) * | 2019-06-12 | 2020-12-15 | 天地融科技股份有限公司 | 一种电力线载波通信装置和通信方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106711923A (zh) | 2017-05-24 |
CN106711923B (zh) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018149063A1 (zh) | 隔离保护装置以及供电系统 | |
KR101684734B1 (ko) | 전원관리유닛 및 이를 응용하는 무선전력시스템 | |
US10944333B2 (en) | Power supply unit for a self-powered intelligent electronic device | |
US9997994B1 (en) | Totem-pole power factor corrector and current-sampling unit thereof | |
US8654485B1 (en) | Electronic ballast with protected analog dimming control interface | |
WO2018149066A1 (zh) | 触电保护装置以及供电系统 | |
US11909223B2 (en) | HW and methods for improving safety protocol in wireless chargers | |
CN204613285U (zh) | 避雷器泄漏电流的监测模块 | |
WO2018153000A1 (zh) | 过压保护装置及供电系统 | |
WO2015154558A1 (zh) | 交流电源瞬断触发装置 | |
MY182088A (en) | Dc power supply device and air conditioner | |
CN103915832A (zh) | 电流互感器二次过电压保护器 | |
CN207134782U (zh) | 隔离保护装置以及供电系统 | |
WO2018145381A1 (zh) | 电路保护装置以及供电系统 | |
CN113193664B (zh) | 自适应感应取电装置 | |
CN204613284U (zh) | 监测避雷器泄漏电流的报警装置 | |
CN207559965U (zh) | 一种快速关断的直流固态继电器 | |
CN109818332B (zh) | 一种具备地线缺失保护的漏电保护器 | |
KR102099037B1 (ko) | 아크 전류 감지 회로 | |
CN208173507U (zh) | 一种电子商务服务终端设备 | |
KR20120097110A (ko) | 과전류 차단 기능을 갖는 스위칭 모드 전원 공급장치 | |
KR20160143461A (ko) | Pn 바리스터 내장5-단자 엔모스 트랜지스터 소자를 이용한 led 장치 | |
CN201985508U (zh) | 断零保护器及其连接结构 | |
US11349329B2 (en) | Low-radiation uninterruptible power supply | |
CN203981745U (zh) | 隔离开关电源的开关mos场效应管ds端电压的检测电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17897048 Country of ref document: EP Kind code of ref document: A1 |