WO2018148972A1 - 一种电容型指纹传感器、指纹感测装置及其识别控制方法 - Google Patents

一种电容型指纹传感器、指纹感测装置及其识别控制方法 Download PDF

Info

Publication number
WO2018148972A1
WO2018148972A1 PCT/CN2017/074157 CN2017074157W WO2018148972A1 WO 2018148972 A1 WO2018148972 A1 WO 2018148972A1 CN 2017074157 W CN2017074157 W CN 2017074157W WO 2018148972 A1 WO2018148972 A1 WO 2018148972A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
layer
sensing
capacitive
fingerprint sensor
Prior art date
Application number
PCT/CN2017/074157
Other languages
English (en)
French (fr)
Inventor
朱奇良
简卫
张欣
Original Assignee
深圳市飞仙智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市飞仙智能科技有限公司 filed Critical 深圳市飞仙智能科技有限公司
Priority to PCT/CN2017/074157 priority Critical patent/WO2018148972A1/zh
Priority to CN201780000059.2A priority patent/CN107004129B/zh
Publication of WO2018148972A1 publication Critical patent/WO2018148972A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Definitions

  • Capacitive fingerprint sensor Capacitive fingerprint sensor, fingerprint sensing device and recognition control method thereof
  • the present invention belongs to the field of fingerprint sensing technologies, and in particular, to a capacitive fingerprint sensor, a fingerprint sensing device, and an identification and control method thereof.
  • the capacitive fingerprint recognition system essentially forms a potential difference between the sensing plate on the sensor and the finger fingerprint, generates an electric field of the inductive capacitance through a sufficient potential difference, and then quantizes using the sensing capacitor and the circuit system, and The quantized results are matrixed or 3D rendered to distinguish the ridges and valleys in the fingerprint.
  • the fingerprint algorithm is used to compare and determine whether the fingerprint information of the sensed finger is consistent with the stored fingerprint information. Therefore, in order to accurately determine the consistency of the fingerprint, the sensing capacitor must be accurate and fine.
  • the sensing capacitance induced by the sensing plate of the detecting capacitor should be relatively independent, and the resolution of the sensing plate needs to be high enough to ensure the sensing information. Accuracy and independence.
  • the fingerprint recognition sensor may be placed under the glass of 500 um thickness or even below the display screen, resulting in a further increase in the sensing distance.
  • An object of the present invention is to provide a capacitive fingerprint sensor, a fingerprint sensing device, and an identification and control method, aiming at solving the existing capacitive fingerprint sensor.
  • the sensing capacitance information is inaccurate, and the fingerprint is distinguished.
  • the rate is low and the fingerprint verification cannot be accurately performed, and the production materials are limited, the manufacturing cost is high, the production is disadvantageous for large quantities, and the yield is low.
  • An object of the present invention is to provide a capacitive fingerprint sensor, including a substrate, further comprising:
  • a dielectric layer includes a first dielectric constant dielectric layer and a second dielectric constant dielectric layer, wherein the first dielectric constant dielectric layer and the second dielectric constant dielectric layer are perpendicular to The direction of the substrate is alternately disposed, and one end of the dielectric layer away from the substrate is in contact with the human epidermal tissue; the dielectric layer is used to form an internal electric field channel of the capacitive fingerprint sensor;
  • a patterned conductor layer bonded to the dielectric layer by a glue layer comprising at least three conductor layers; the patterned conductor layer is configured to construct an electrostatic lens according to a preset voltage;
  • a capacitive sensing conductor layer is connected through a connection via, comprising a plurality of sensing plates arranged in an array; the capacitive sensing conductor layer is used for the human skin tissue and the dielectric layer Contacting the crucible to obtain a sensing capacitance between the surface layer of the human body and the sensing plate;
  • a readout circuit is disposed on the substrate, and the sensing plate of the capacitive sensing conductor layer is connected to obtain an analog signal of the sensing capacitor, and the obtained analog signal is converted into a digital signal. And output;
  • a processing control unit connected to the readout circuit and the patterned conductor layer, for determining fingerprint information reflected by the digital signal, and controlling the preset voltage according to the determination result to change the patterning
  • the electric field focus of the electrostatic lens constructed by the conductor layer
  • Another object of the present invention is to provide a fingerprint sensing device including the capacitive fingerprint sensor as described above.
  • a third object of the present invention is also to provide an identification control method based on the capacitive fingerprint sensor as described above, the method comprising the steps of:
  • [0017] c acquiring an analog signal of the sensing capacitor, converting the obtained analog signal into a digital signal; [0018] d acquiring fingerprint information reflected by the digital signal by an algorithm, and calculating a fingerprint according to the fingerprint information Determining the sharpness of the image and comparing it with a preset standard value, if the sharpness is lower than the preset standard value, changing the preset voltage to change the electric field focus of the electrostatic lens, and returning to step a; The resolution is equal to the preset standard value, and the fingerprint information is output and the control process is ended.
  • the internal electric field channel having the first dielectric constant and the second dielectric constant and the electrostatic lens constructed by the patterned conductor layer according to the preset voltage capable of realizing the focus of the electric field are realized by the dielectric layer to realize accurate sensing.
  • the vertical direction capacitance realizes the accuracy of the sensed capacitance from the most original inductive transition point of the sensing, avoids signal aliasing of the source sensing parameters, and fundamentally solves the inaccurate information of the existing sensing capacitor, low fingerprint resolution, and fingerprint information. Insufficient to complete the problem of fingerprint verification.
  • FIG. 1 is a cross-sectional structural view of a capacitive fingerprint sensor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view of a capacitive fingerprint sensor according to a first embodiment of the present invention
  • 2-1 is a plan view of a sixth conductor layer and a fourth conductor layer of the capacitive fingerprint sensor according to the first embodiment of the present invention
  • FIG. 2-2 is a plan view of a fifth conductor layer and a fourth conductor layer of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • 2-3 is a plan view of a via layer and a fourth conductor layer of the capacitive fingerprint sensor according to the first embodiment of the present invention
  • FIG. 2-5 is a first embodiment of a capacitive fingerprint sensor according to a first embodiment of the present invention. a top view of the three conductor layers and the fourth conductor layer;
  • 2-6 are top views of a second conductor layer and a fourth conductor layer of the capacitive fingerprint sensor according to the first embodiment of the present invention
  • 2-7 are top views of a first conductor layer and a fourth conductor layer of the capacitive fingerprint sensor according to the first embodiment of the present invention
  • FIG. 2-8 are top views of a sixth conductor layer and a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • FIG. 2-9 are top views of a fifth conductor layer and a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • FIG. 2-10 are top views of another form of a via layer and a fourth conductor layer of a capacitive fingerprint sensor according to a first embodiment of the present invention.
  • FIG. 2-11 are top views of a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • FIGS. 2 to 12 are top views of a third conductor layer and a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention
  • FIG. 2-13 are top views of a second conductor layer and a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • FIG. 2-14 are top views of a first conductor layer and a fourth conductor layer of another form of the capacitive fingerprint sensor according to the first embodiment of the present invention.
  • FIGS. 2-15 are top views of the sensing plate layer of the sensing unit of the capacitive fingerprint sensor and the isolated well layer constructed by the DNW according to the first embodiment of the present invention
  • FIG. 2-16 are top views of the sensing plate layer of the sensing unit of the capacitive fingerprint sensor and another isolation well layer constructed by the DNW according to the first embodiment of the present invention
  • FIG. 3 is a cross-sectional structural view of a capacitive fingerprint sensor according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional structural view of a capacitive fingerprint sensor according to a second embodiment of the present invention.
  • FIGS. 4-1 to 4-5 are top plan views of the same layer voltage control electric field of the patterned conductor layer 4 of the capacitive fingerprint sensor according to the second embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for identifying and controlling a capacitive fingerprint sensor according to an embodiment of the present invention.
  • FIG. 1 shows a capacitive fingerprint sensor according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • a capacitive fingerprint sensor comprising a substrate (not shown), further comprising a dielectric layer 2, a patterned conductor layer 4, a capacitive sensing conductor layer 6, a readout circuit 7, and a processing control unit 8.
  • the dielectric layer 2 includes a first dielectric constant dielectric layer 201 and a second dielectric constant dielectric layer 202, the first dielectric constant dielectric layer 201 and the second dielectric constant dielectric layer 202 being perpendicular to the substrate The directions are alternately arranged, and one end of the dielectric layer 2 away from the substrate is in contact with the human epidermal tissue 1; the dielectric layer 2 is used to form an internal electric field channel of the capacitive fingerprint sensor.
  • the first dielectric constant dielectric layer 201 and the second dielectric constant dielectric layer 202 are alternately arranged in a direction perpendicular to the substrate according to a predetermined rule, wherein the preset law mainly refers to the dielectric layer. 2 is related to the patterning of the patterned conductor layer 4 and the capacitive sensing conductor layer 6 in the vertical direction, and is correspondingly changed according to actual production conditions.
  • the dielectric constant of the first dielectric constant dielectric layer 201 is higher than the dielectric constant of the second dielectric constant dielectric layer 202, specifically, the dielectric of the first dielectric constant dielectric layer 201.
  • the medium of the second dielectric constant dielectric layer 202 is a low dielectric constant medium.
  • the influence of the different dielectric constant materials on the electric field is affected, thereby affecting the change of the sensing capacitance, and further improving the accurate correspondence between the sensing capacitance and the sensed fingerprint.
  • the patterned conductor layer 4 is bonded to the dielectric layer 2 by the bonding layer 3, and includes at least three conductor layers; and the patterned conductor layer 4 is used to construct an electrostatic lens according to a preset voltage.
  • the glue layer 3 is specifically used for bonding the patterned conductor layer 4 and the dielectric layer 2, and may be a transparent optical adhesive such as an OCA (Optically Clear Adhesive) optical adhesive or a transparent photosensitive adhesive.
  • OCA Optically Clear Adhesive
  • the patterned conductor layer 4 includes at least three conductor layers, and specifically, may include three conductor layers.
  • Each of the conductor layers in the patterned conductor layer 4 has an array pattern, and the array patterns between the layers are the same.
  • the shape of the array pattern is changed according to the actual needs of the user, and may be positive Quadrilateral, or rectangular, or regular hexagon, or circular and or elliptical, or other polygons, may even be a combination of different shape patterns.
  • each conductor layer of the patterned conductor layer 4 forms an electric field between adjacent two conductor layers according to a preset voltage, and an electrostatic lens is formed between the electric fields.
  • the preset voltage is adjusted according to the actual situation in the actual application of the capacitive fingerprint sensor, specifically, according to the sharpness of the induced fingerprint image, and the electric field focus of the electrostatic lens is changed according to the adjustment of the preset voltage.
  • the scanning of the refined fingerprint can be realized by fine-tuning the electric field focus of the electrostatic lens by controlling the preset voltage.
  • the capacitive sensing conductor layer 6 is connected to the patterned conductor layer 4 through the connection via 5, and includes a plurality of sensing plates 6011 arranged in an array; the capacitive sensing conductor layer 6 is used when the human skin tissue 1 is in contact with the dielectric layer 2 ⁇ , obtain the sensing capacitance between the surface layer of the human body and the sensing plate 6011.
  • the plurality of sensing plates 6011 of the capacitive sensing conductor layer 6 are arranged in an array, wherein the pattern size of the sensing plate 6011 can be changed according to actual needs of the user; the sensing plate 6011
  • the shape of the pattern can also be changed according to the actual needs of the user, and can be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a combination of different shape patterns.
  • the pattern shape of the connection through-holes 5 may be changed according to actual needs of the user, and may be a regular quadrilateral, or a rectangular shape, or a regular hexagon, or a circular shape or an elliptical shape, or other polygonal shapes.
  • the capacitive sensing conductor layer 6 can sense the finger epidermis on each of the sensing plate 6011 and the outer surface of the dielectric layer 2. Capacitive coupling between the medium fingerprint valley 101 and the fingerprint ridge 102.
  • the readout circuit 7 is disposed on the substrate and connected to the sensing plate 6011 of the capacitive sensing conductor layer 6 for acquiring an analog signal of the sensing capacitor, and converting the obtained analog signal into a digital signal.
  • the readout circuit 7 converts the induced capacitance into an analog electrical signal through a certain control signal and an excitation signal, and then converts the analog electrical signal into a digital signal through an analog-to-digital conversion circuit.
  • the readout circuit 7 specifically includes an analog signal read circuit and an analog to digital conversion circuit.
  • the processing control unit 8 is connected to the readout circuit 7 and the patterned conductor layer 4 for determining the reflection of the digital signal
  • the fingerprint information is controlled, and the preset voltage is controlled according to the judgment result to change the electric field focus of the electrostatic lens constructed by the patterned conductor layer 4.
  • the processing control unit 8 acquires the fingerprint information reflected by the digital signal by using an algorithm, calculates the sharpness of the fingerprint image according to the fingerprint information, and compares with the preset standard value, if the definition is lower than the preset standard. Value, then change the preset voltage to change the electric field focus of the electrostatic lens, change the electric field focus of the electrostatic lens by changing the voltage differently, until the clearest figure is obtained, and the voltage is no longer changed.
  • the capacitive sensing conductor layer 6 acquires the fingerprint valley 101 of the human epidermal tissue 1 and the fingerprint ridge 102 and the induction plate in the electric field of the electrostatic lens constructed by the patterned conductor layer 4.
  • the sensing capacitor between 6011 outputs the sensing capacitor to the readout circuit 7, and the readout circuit 7 converts the induced capacitor into an analog signal, and then converts the analog signal into a digital signal and outputs it to the processing control unit 8, and the processing control unit 8 determines
  • the fingerprint information reflected by the digital signal controls the preset voltage according to the judgment result to change the electric field focus of the electrostatic lens constructed by the patterned conductor layer 4, and senses the capacitance again to acquire the fingerprint information, and repeats the foregoing process until the clearest fingerprint is obtained.
  • An internal electric field channel having a first dielectric constant and a second dielectric constant formed by the dielectric layer 2 and an electrostatic lens formed by the patterned conductor layer 4 according to a preset voltage capable of realizing an electric field focus change, Achieve accurate sensing vertical capacitance, realize the accuracy of the sensed capacitance from the most original sensing transition point of the sensing, avoid signal aliasing of the source sensing parameters, and fundamentally solve the inaccurate information of the existing sensing capacitance, fingerprint resolution Low, the fingerprint information is insufficient to accurately complete the fingerprint verification problem.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 shows a cross-sectional structure of the capacitive fingerprint sensor shown in FIG. 1 according to the first embodiment of the present invention. For the convenience of description, only parts related to the first embodiment of the present invention are shown. Details are as follows:
  • the capacitive fingerprint sensor further includes a patterned conductor covering layer 9, and the patterned conductor covering layer 9 is preset. Regularly covering the surface of the dielectric layer 2; the patterned conductor covering layer 9 is used to pattern the fingerprints according to a preset pattern when the human epidermal tissue 1 is in contact therewith.
  • the preset rule specifically means that the patterned conductor covering layer 9 covers the surface of the second dielectric constant dielectric layer 202 of the dielectric layer 2.
  • the patterned conductor covering layer 9 can regularly and smoothly engrave a thin conductor on the surface of the dielectric layer 2 by means of precipitation, etching or imprinting, so that it can be in contact with the finger. Helps to separate fingerprints with a certain pattern, and cooperate to generate independent sensing capacitors.
  • the patterned conductor layer 4 includes a first conductor layer 401, a second conductor layer 402, and a third conductor layer 403, and the second conductor layer 402 is pre-processed.
  • the voltage is higher than the preset voltage of the first conductor layer 401 and the preset voltage of the third conductor layer 403; the second conductor layer 402 and the first conductor layer 401 form a first electric field, the second conductor layer 402 and the third conductor layer 403 forms a second electric field.
  • 404 represents the electric field line.
  • the first electric field and the second electric field constitute an electrostatic lens.
  • the preset voltage is adjusted according to the actual situation in the actual application of the capacitive fingerprint sensor, specifically, according to the sharpness of the induced fingerprint image, and the electric field focus of the electrostatic lens is changed according to the adjustment of the preset voltage.
  • the first conductor layer 401, the second conductor layer 402, and the third conductor layer 403 each have an array pattern, and the array patterns between the layers are the same.
  • the shape of the array pattern is changed according to the actual needs of the user, and may be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a combination of patterns of different shapes.
  • the capacitive sensing conductor layer 6 further includes a fourth conductor layer 601 formed of a plurality of array electrodes 6011 arranged in an array, and a fifth conductor layer. 602 and sixth conductor layer 603; the fourth conductor layer 601 is connected to the fifth conductor layer 602 through a plurality of connection vias 5, and the fifth conductor layer 602 is connected to the sixth conductor layer 603 through the connection via 5.
  • the fifth conductor layer 602 is mainly composed of a conductor layer formed by the lower-level induction plate 6021 and the lower-level auxiliary induction plate 6022
  • the sixth conductor layer 603 is mainly composed of the second lower-level induction plate 6031 and the next lower stage.
  • a conductor layer formed by the auxiliary electrode plate 6032 is assisted.
  • the fourth conductor layer 601, the fifth conductor layer 602, and the sixth conductor layer 603 each have an array pattern, and the pattern size between the layers can be changed according to actual needs of the user;
  • the shape can also be changed according to the actual needs of the user, and can be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a group of different shape patterns.
  • SL represents a hatching line
  • the first conductor layer 401, the second conductor layer 402, and the third conductor layer 403 The patterned shapes of the fourth conductor layer 601, the fifth conductor layer 602, and the sixth conductor layer 603 may all be regular squares.
  • the case between the fourth conductor layer 601 and the first conductor layer 401, the second conductor layer 402, the third conductor layer 403, the fifth conductor layer 602, and the sixth conductor layer 603 may be specifically as follows:
  • the sensing plates 6011 of the sensing unit are arranged in an array, each of the sensing plates 6011 is a regular quadrangle, and the sixth conductor layer 603 is formed around each of the sensing plates 6011. Framework network.
  • the fifth conductor layer 602 forms a frame network around each of the induction plates 6011.
  • connection hole 5 of the fourth conductor layer 601 and the fifth conductor layer 602 or the connection via 5 of the sixth conductor layer 603 and the fifth conductor layer 602 surrounds A frame network is formed at each of the sensing plates 6011.
  • the array of inductive plates 6011 and the surrounding frame network constitute a fourth conductor layer 610.
  • the third conductor layer 403 forms a frame network around each of the induction plates 6011, and a portion of the third conductor layer 403 covers the array of the induction plates 6011.
  • the second conductor layer 402 forms a frame network around each of the sensing plates 6011, and a portion of the second conductor layer 402 covers the array of the sensing plates 6011.
  • the first conductor layer 401 forms a frame network around each of the induction plates 6011, and a portion of the first conductor layer 401 covers the array of the induction plates 6011.
  • the fourth conductor layer 601, the fifth conductor layer 602, the sixth conductor layer 603, and the adjacent two connection vias are connected to each adjacent two connection vias 5 in the capacitive sensing conductor layer 6. 5
  • the patterned conductor layers 4 between the longitudinally extending directions are separated to form sensing units, and the sensing plates 6011 of each sensing unit are respectively read through the through holes of the corresponding fifth conductor layer 602 and the through holes of the sixth conductor layer 603. Circuit 7.
  • the third conductor layer 403, the fourth conductor layer 601, the fifth conductor layer 602, the sixth conductor layer 603, and the connection vias 5 between the conductor layers and other layers below them can effectively shield the noise of adjacent sensing units.
  • the capacitive sensing conductor layer 6 further includes a plurality of auxiliary sensing units, and the auxiliary sensing unit is configured according to a preset combination.
  • a preset auxiliary sensing unit is used to assist in enhancing the electric field of the sensing unit.
  • the auxiliary sensing unit may select various combinations according to actual needs. For example, eight sensing units in the periphery may be selected as the auxiliary sensing unit to assist in enhancing the electric field, and four sensing units in the upper, lower, left, and right directions may be selected as auxiliary.
  • FIG. 2-8 to FIG. 2-14 (in the figure, SL represents a hatching), on the basis of FIG. 2 and FIG. 2-1 to FIG. 2-7, eight surrounding sensing units are selected.
  • the sensing plate of the eight sensing units around the sensing plate 6011 is selected as the auxiliary sensing plate 6012 of the auxiliary sensing unit to assist the enhanced electric field.
  • the capacitive fingerprint sensor further includes an isolation layer composed of a plurality of isolation units 10, each isolation unit 10 corresponding to one sensing unit, and the isolation unit 10 Deep isolation of the sensing unit.
  • each sensing unit may be deeply isolated by means of DNW (Deep NWell), or may be isolated by other isolation means, and the whole chip is a digital-analog hybrid system.
  • DNW Deep NWell
  • each sensing unit may be deeply isolated by means of DNW (Deep NWell), or may be isolated by other isolation means, and the whole chip is a digital-analog hybrid system.
  • the DNW can well isolate the noise interference caused by other non-correlated controls, such as digital logic noise, chip substrate noise, and noise of adjacent sensing units.
  • the sensing unit 2110 and the auxiliary sensing unit 2111 are arranged in an array, and each sensing unit 2110 and the auxiliary sensing unit 2111 are surrounded by a DNW isolation well. To isolate noise from other unrelated controls.
  • the patterned conductor layer 4 includes a third dielectric constant dielectric layer 11, and a third dielectric constant dielectric layer 11 is filled between the conductor layers.
  • the medium of the third dielectric constant dielectric layer 11 is a high dielectric constant medium.
  • the third dielectric constant dielectric layer 11 having a high dielectric constant inside the patterned conductor layer 4 may use the same mask as the fourth conductor layer 601, thereby reducing the mask cost.
  • the third dielectric constant dielectric layer 11 is combined with the first dielectric constant dielectric layer 201 and the second dielectric constant dielectric layer 202 of the dielectric layer 2 to construct a differentiated internal electric field channel.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a cross-sectional view of a capacitive fingerprint sensor shown in FIG. 2 according to a second embodiment of the present invention. For convenience of explanation, only parts related to the second embodiment of the present invention are shown. Details are as follows:
  • each of the sensing plates 6011 of the capacitive sensing conductor layer 6 may be The area is expanded to four times the area of the induction plate 6011 in the first embodiment shown in FIG. 2, and correspondingly, the sensing unit corresponding to the sensing plate 6011, the patterned patterned conductor layer 4 corresponding to the sensing unit, and the corresponding isolation of the sensing unit.
  • the layer, the dielectric layer 2 corresponding to the patterned conductor layer 4, and the patterned conductor covering layer 9 in the dielectric layer 2 are also increased by a factor of four to the first embodiment shown in FIG.
  • the same layer patterned conductor layer 4 for forming an electrostatic lens around the sensing unit is separated into separate panels, and the panel voltage can be independently controlled.
  • the embodiment of the present invention controls the voltages of four panels and different conductor layers around the sensing plate 6011 to form different electrostatic lenses, and uses an inductive plate 6011 to construct an increased resolution according to multiple readings of the sensing signals.
  • the pattern of the rate so that the sensing area of the sensing unit and the induced electric field are improved, and the sensing effect can be about 4 times that of the unexpanded sensing area.
  • the resolution and clarity of the sensing image can be further improved. degree.
  • An embodiment of the present invention also provides a fingerprint sensing device, which includes the capacitive fingerprint sensor as above.
  • the method for identifying and controlling the capacitive fingerprint sensor of the embodiment includes: Step S101, Step S102, Step S103, and Step S104. specifically:
  • Step S101 Applying a preset voltage to the patterned conductor layer 4 to cause the patterned conductor layer 4 to construct an electrostatic lens.
  • the patterned conductor layer 4 includes at least three conductor layers, and specifically, may include three conductor layers.
  • Each of the conductor layers in the patterned conductor layer 4 has an array pattern, and the array patterns between the layers correspond to the same.
  • the shape of the array pattern is changed according to the actual needs of the user, and may be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a combination of patterns of different shapes.
  • each conductor layer of the patterned conductor layer 4 forms an electric field between adjacent two conductor layers in accordance with a predetermined voltage, and an electrostatic lens is formed between the electric fields.
  • the preset voltage is adjusted according to the actual situation in the actual application of the capacitive fingerprint sensor, specifically, according to the sharpness of the induced fingerprint image, and the electric field focus of the electrostatic lens is changed according to the adjustment of the preset voltage.
  • step S101 specifically includes:
  • an electrostatic lens is formed between the first electric field and the second electric field.
  • the first conductor layer 401, the second conductor layer 402, and the third conductor layer 403 each have an array pattern, and the array patterns between the layers are the same.
  • the shape of the array pattern is changed according to the actual needs of the user, and may be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a combination of patterns of different shapes.
  • the scanning of the refined fingerprint can be realized by fine-tuning the electric field focus of the electrostatic lens by controlling the preset voltage.
  • step S101 the method further includes the following steps:
  • Step S1011 covering the surface of the dielectric layer 2 with the patterned conductor covering layer 9;
  • Step S1012 When the human epidermis tissue 1 is in contact with the dielectric layer 2, the fingerprint is separated according to a preset pattern.
  • the preset rule specifically means that the patterned conductor covering layer 9 covers the surface of the second dielectric constant dielectric layer 202 of the dielectric layer 2.
  • the patterned conductor covering layer can be regularly and smoothly engraved on the surface of the dielectric layer 2 by means of precipitation, etching or imprinting, so that it can be in contact with the finger, which is helpful.
  • the fingerprint is separated by a certain pattern, and the independent sensing capacitor is generated.
  • Step S102 When the human epidermal tissue 1 is in contact with the first dielectric constant dielectric layer 201 and the second dielectric constant dielectric layer 202 alternately disposed in a direction perpendicular to the substrate, the human body surface layer and the induction plate 601 are obtained.
  • the first dielectric constant dielectric layer 201 and the second dielectric constant dielectric layer 202 are alternately arranged in a direction perpendicular to the substrate, wherein the preset law mainly refers to the dielectric layer. 2 is related to the patterning of the patterned conductor layer 4 and the capacitive sensing conductor layer 6 in the vertical direction, and is correspondingly changed according to actual production conditions.
  • the dielectric constant of the first dielectric constant dielectric layer 201 is higher than the dielectric constant of the second dielectric constant dielectric layer 202, specifically, the dielectric of the first dielectric constant dielectric layer 201.
  • the medium of the second dielectric constant dielectric layer 202 is a low dielectric constant medium.
  • the dielectric layer 2 of the differentiated internal electric field channel by constructing the dielectric layer 2 of the differentiated internal electric field channel, different dielectrics are utilized.
  • the influence of the number of materials on the electric field affects the change of the sensing capacitance, and further improves the accurate correspondence between the sensing capacitance and the sensed fingerprint.
  • the plurality of sensing plates 6011 are arranged in an array, wherein the pattern size of the sensing plate 6011 can be changed according to actual needs of the user; the pattern shape of the sensing plate 6011 can also be The actual needs of the user may be changed, and may be a regular quadrilateral, or a rectangle, or a regular hexagon, or a circle and or an ellipse, or other polygons, or even a combination of different shape patterns.
  • the capacitive sensing conductor layer 6 can be induced on each of the sensing plates 6011 and the outer surface of the dielectric layer 2. Capacitive coupling between the fingers.
  • Step S103 Acquire an analog signal of the sensing capacitor, and convert the acquired analog signal into a digital signal.
  • step S103 may specifically convert the sensing capacitor into an analog electrical signal by using a certain control signal and an excitation signal, and then convert the analog electrical signal into a digital signal through an analog-to-digital conversion circuit.
  • Step S104 acquiring fingerprint information reflected by the digital signal by using an algorithm, calculating a sharpness of the fingerprint image according to the fingerprint information, and comparing with the preset standard value, if the sharpness is lower than the preset standard value, changing the preset voltage to The electric field focus of the electrostatic lens is changed, and the process returns to step S101; if the sharpness is equal to the preset standard value, the fingerprint information is output and the control process is ended.
  • the fingerprint information reflected by the digital signal is obtained by an algorithm, and the sharpness of the fingerprint image is calculated according to the fingerprint information and compared with a preset standard value, and if the definition is lower than the preset standard value, the change is performed.
  • the voltage is preset to change the electric field focus of the electrostatic lens, and the electric field focus of the electrostatic lens is changed by differently changing the voltage until the clearest pattern is obtained, and the voltage is not changed.
  • the method includes:
  • Step S1041 Isolate the sensing capacitor or the digital signal.
  • the sensing capacitor or the digital signal may be deeply isolated by using a DNW (Deep NWell) method, or may be isolated by other isolation means, and the whole chip is a digital-analog hybrid system, through the DNW. It can well isolate the noise interference caused by other non-correlated controls, such as digital logic noise, chip substrate noise, noise of adjacent sensing units, and so on.
  • DNW Device NWell
  • An internal electric field having a first dielectric constant and a second dielectric constant is constructed through the dielectric layer 2 in the embodiment of the present invention.
  • the channel and the electrostatic lens which can realize the change of the electric field focus through the patterned conductor layer 4 realize accurate sensing of the vertical direction capacitance, realize the accuracy of the induced capacitance from the most original inductive transition point of the sensing, and avoid the signal mixing of the source sensing parameters.
  • Stacking fundamentally solves the problem that the existing sensing capacitance information is inaccurate, the fingerprint resolution is low, and the fingerprint information is insufficient to accurately complete the fingerprint verification.
  • any process or method description in the flowchart or otherwise described herein may be understood to mean that one or more steps for implementing a specific logic function or process may be included.
  • Modules, segments or portions of code that perform the instructions, and the scope of the preferred embodiments of the invention includes additional implementations, which may not be in the order shown or discussed, including in a substantially homogeneous manner depending on the functionality involved or The functions are performed in the reverse order, which should be understood by those skilled in the art to which the embodiments of the present invention pertain.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memories (R AM) , read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • electrical connections electronic devices
  • R AM random access memories
  • ROM read only memory
  • EPROM or flash memory erasable editable read only memory
  • CDROM portable compact disk read only memory
  • the computer readable medium can even be a paper or other suitable medium on which the program can be printed, as it can be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if necessary, in other suitable manners. Processing to obtain the program electronically and then storing it in computer memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种电容型指纹传感器、指纹感测装置及其识别控制方法。该传感器包括基板、介质层(2)、图案化导体层(4)、电容感应导体层(6)、读出电路(7)以及处理控制单元(8),通过介质层(2)形成的具有第一介电常数和第二介电常数的内电场通道以及图案化导体层(4)根据预设电压构建的能够实现电场焦点变化的静电透镜,实现准确的感应垂直方向电容,从传感的最原始感应转变点实现所感应电容的精确度,避免源头感应参数出现信号混叠,从根本上解决现有的感应电容信息不准确、指纹分辨率低,指纹信息不足从而无法准确完成指纹验证的问题。

Description

一种电容型指纹传感器、 指纹感测装置及其识别控制方法
技术领域
[0001] 本发明属于指纹感测技术领域, 尤其涉及一种电容型指纹传感器、 指纹感测装 置及其识别控制方法。
背景技术
[0002] 在信息吋代当中, 现有的消费电子设备多用指纹识别系统以安全的承载或获取 用户的个体身体信息。 而其中一种已经得到普遍应用的指纹识别系统就是电容 型指纹识别系统。
[0003] 电容型指纹识别系统本质上是在传感器上的感应极板与手指指纹之间形成电势 差, 通过足够的电势差产生可感应电容的电场, 再而利用感应电容以及电路系 统进行量化, 并且将量化后的结果矩阵化或 3D呈现, 从而分辨出指纹中的脊和 谷, 最后通过指纹算法进行比对, 判断出被感应手指所带指纹信息是否与所存 储指纹信息是否一致。 因此, 要想准确的判断出指纹的一致性, 感应电容必须 准确并且精细, 检测电容的感应极板所感应的感应电容要相对独立, 并且感应 极板分辨率需要足够高, 这样才能保证感应信息的精确性和独立性。
[0004] 然而, 为了消费电子设备的便捷性以及优越的用户体验, 当前消费电子设备集 成了相当多的功能单元, 导致指纹识别的传感器所能占用的空间少; 而为了整 体的美观或者为了整体的机械强度, 指纹识别传感器可能置于厚度达到 500um的 玻璃下方甚至显示屏下方, 导致感应距离进一步地增大。
[0005] 因此, 现有的电容型指纹传感器存在当介质层厚度增加吋, 由于感应距离增加 使感应电场扩散, 感应电容出现重叠区域, 引起感应极板的感应电容垂直分量 比重降低, 使得所感应出的指纹脊和指纹谷交叠, 导致感应电容信息不准确、 指纹分辨率低, 指纹信息不足从而无法准确完成指纹验证的问题; 同吋, 还存 在生产原料受限、 制造成本高, 不利于大批量的生产以及良品率低的问题。 技术问题 [0006] 本发明的目的在于提供一种电容型指纹传感器、 指纹感测装置及识别控制方法 , 旨在解决现有的电容型指纹传感器存在当介质层厚度增加吋感应电容信息不 准确、 指纹分辨率低而无法准确完成指纹验证以及生产原料受限、 制造成本高 、 不利于大批量的生产以及良品率低的问题。
问题的解决方案
技术解决方案
[0007] 本发明的目的在于提供一种电容型指纹传感器, 包括基板, 还包括:
[0008] 介质层, 所述介质层包括第一介电常数介质层和第二介电常数介质层, 所述第 一介电常数介质层和所述第二介电常数介质层在垂直于所述基板的方向交替设 置, 所述介质层远离基板的一端与人体表皮组织接触; 所述介质层用于形成所 述电容型指纹传感器的内电场通道;
[0009] 图案化导体层, 通过胶合层与所述介质层粘结, 包括至少三层导体层; 所述图 案化导体层用于根据预设电压构建静电透镜;
[0010] 电容感应导体层, 通过连接通孔连接所述图案化导体层, 包括阵列式排列的多 个感应极板; 所述电容感应导体层用于当所述人体表皮组织与所述介质层接触 吋, 获取所述人体表层组织与所述感应极板间的感应电容;
[0011] 读出电路, 设置于所述基板上, 连接所述电容感应导体层的所述感应极板, 用 于获取所述感应电容的模拟信号, 将获取的所述模拟信号转化为数字信号并输 出;
[0012] 处理控制单元, 连接所述读出电路和所述图案化导体层, 用于判断所述数字信 号所反映的指纹信息, 并根据判断结果控制所述预设电压以改变所述图案化导 体层构建的所述静电透镜的电场焦点。
[0013] 本发明的另一目的还在于提供一种指纹感测装置, 所述指纹感测装置包括如上 所述的电容型指纹传感器。
[0014] 本发明的第三个目的还在于提供一种基于如上所述的电容型指纹传感器的识别 控制方法, 所述方法包含下述步骤:
[0015] a.施加预设电压至图案化导体层以使所述图案化导体层构建静电透镜;
[0016] b.当所述人体表皮组织与所述介质层接触吋, 获取所述人体表层组织与所述感 应极板间的感应电容;
[0017] c 获取所述感应电容的模拟信号, 将获取的所述模拟信号转化为数字信号; [0018] d.通过算法获取所述数字信号所反映的指纹信息, 根据所述指纹信息计算指纹 图像的清晰度并与预设标准值比较, 若所述清晰度低于所述预设标准值, 则更 改所述预设电压以改变所述静电透镜的电场焦点, 并重返步骤 a; 若所述清晰度 等于所述预设标准值, 则输出指纹信息并结束控制进程。
发明的有益效果
有益效果
[0019] 本发明通过介质层构建的具有第一介电常数和第二介电常数的内电场通道以及 图案化导体层根据预设电压构建的能够实现电场焦点变化的静电透镜, 实现准 确的感应垂直方向电容, 从传感的最原始感应转变点实现所感应电容的精确度 , 避免源头感应参数出现信号混叠, 从根本上解决现有的感应电容信息不准确 、 指纹分辨率低, 指纹信息不足从而无法准确完成指纹验证的问题。
对附图的简要说明
附图说明
[0020] 图 1是本发明的一个实施例提供的电容型指纹传感器的剖面结构图;
[0021] 图 2是本发明的第一实施例提供的电容型指纹传感器的剖面结构图;
[0022] 图 2-1是本发明的第一实施例提供的电容型指纹传感器的第六导体层和第四导 体层俯视图;
[0023] 图 2-2是本发明的第一实施例提供的电容型指纹传感器的第五导体层和第四导 体层俯视图;
[0024] 图 2-3是本发明的第一实施例提供的电容型指纹传感器的通孔层和第四导体层 俯视图;
[0025] 图 2-4是本发明第一实施例提供的电容型指纹传感器的第四导体层俯视图; [0026] 图 2-5是本发明的第一实施例提供的电容型指纹传感器的第三导体层和第四导 体层俯视图;
[0027] 图 2-6是本发明的第一实施例提供的电容型指纹传感器的第二导体层和第四导 体层俯视图; [0028] 图 2-7是本发明的第一实施例提供的电容型指纹传感器的第一导体层和第四导 体层俯视图;
[0029] 图 2-8是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第六导 体层和第四导体层俯视图;
[0030] 图 2-9是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第五导 体层和第四导体层俯视图;
[0031] 图 2-10是本发明的第一实施例提供的电容型指纹传感器的另一种形式的通孔层 和第四导体层俯视图;
[0032] 图 2-11是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第四导 体层俯视图;
[0033] 图 2-12是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第三导 体层和第四导体层俯视图;
[0034] 图 2-13是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第二导 体层和第四导体层俯视图;
[0035] 图 2-14是本发明的第一实施例提供的电容型指纹传感器的另一种形式的第一导 体层和第四导体层俯视图;
[0036] 图 2-15是本发明的第一实施例提供的电容型指纹传感器的感应单元的感应极板 层与 DNW构建的隔离阱层的俯视图;
[0037] 图 2-16是本发明的第一实施例提供的电容型指纹传感器的感应单元的感应极板 层与 DNW构建的另一隔离阱层的俯视图;
[0038] 图 3是本发明第一实施例提供的电容型指纹传感器的另一种剖面结构图; [0039] 图 4是本发明的第二实施例提供的电容型指纹传感器的剖面结构图;
[0040] 图 4-1~4-5是本发明的第二实施例提供的电容型指纹传感器的图案化导体层 4的 同层电压控制电场俯视示意图;
[0041] 图 5是本发明的一个实施例提供的基于电容型指纹传感器的识别控制方法的流 程图。
本发明的实施方式 [0042] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0043] 图 1示出了本发明的一个实施例提供一种电容型指纹传感器, 为了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0044] 一种电容型指纹传感器, 包括基板 (图中未示出) , 还包括介质层 2、 图案化 导体层 4、 电容感应导体层 6、 读出电路 7以及处理控制单元 8。
[0045] 介质层 2, 介质层 2包括第一介电常数介质层 201和第二介电常数介质层 202, 第 一介电常数介质层 201和第二介电常数介质层 202在垂直于基板的方向交替设置 , 介质层 2远离基板的一端与人体表皮组织 1接触; 介质层 2用于形成电容型指纹 传感器的内电场通道。
[0046] 在本发明实施例中, 第一介电常数介质层 201和第二介电常数介质层 202在垂直 于基板的方向按预设规律交替设置, 其中, 预设规律主要是指介质层 2在垂直方 向上与图案化导体层 4和电容感应导体层 6相应的图案化相关, 具体根据实际生 产情况进行相应更改。 在发明本实施例的具体应用中, 第一介电常数介质层 201 的介电常数高于第二介电常数介质层 202的介电常数, 具体的, 第一介电常数介 质层 201的介质为高介电常数介质, 第二介电常数介质层 202的介质为低介电常 数介质。
[0047] 在本发明实施例中, 通过构建差异化内电场通道的介质层 2, 利用不同介电常 数材料对电场的影响从而影响感应电容的变化, 进一步提高感应电容与所感应 指纹的精确对应。
[0048] 图案化导体层 4, 通过胶合层 3与介质层 2粘结, 包括至少三层导体层; 图案化 导体层 4用于根据预设电压构建静电透镜。
[0049] 在本发明实施例中, 胶合层 3具体用于粘结图案化导体层 4和介质层 2, 可以是 透明光学胶, 如 OCA (Optically Clear Adhesive) 光学胶或透明光敏胶。
[0050] 在本发明实施例中, 图案化导体层 4包括至少三层导体层, 具体地, 可以包括 三层导体层。 图案化导体层 4中各导体层均具有阵列式的图案, 各层间的阵列式 图案对应相同。 该阵列式图案的形状根据用户的实际需要进行改变, 可以是正 四边形、 或矩形、 或正六边形、 或圆形以及或椭圆形, 或者其他多边形, 甚至 可以是不同形状图案的组合。
[0051] 在本发明实施例中, 图案化导体层 4的各个导体层根据预设电压在相邻两导体 层间构成了电场, 电场间构成了静电透镜。 其中, 预设电压根据电容型指纹传 感器实际应用中的实际情况进行调整, 具体地, 根据感应的指纹图像的清晰度 进行调整, 而静电透镜的电场焦点则根据预设电压的调整而改变。
[0052] 在本发明实施例中, 通过控制预设电压微调静电透镜的电场焦点, 能够实现精 确化指纹的扫描。
[0053] 电容感应导体层 6, 通过连接通孔 5连接图案化导体层 4, 包括阵列式排列的多 个感应极板 6011 ; 电容感应导体层 6用于当人体表皮组织 1与介质层 2接触吋, 获 取人体表层组织与感应极板 6011间的感应电容。
[0054] 在本发明实施例中, 电容感应导体层 6的多个感应极板 6011进行阵列式的排列 , 其中, 感应极板 6011的图案大小可以根据用户的实际需要进行改变; 感应极 板 6011的图案形状也可以根据用户的实际需要进行改变, 可以是正四边形、 或 矩形、 或正六边形、 或圆形以及或椭圆形, 或者其他多边形, 甚至可以是不同 形状图案的组合。
[0055] 在本发明实施例中, 连接通孔 5的图案形状可以根据用户的实际需要进行改变 , 可以是正四边形、 或矩形、 或正六边形、 或圆形以及或椭圆形, 或者其他多 边形。
[0056] 在本发明实施例中, 当手指表皮组织与介质层 2接触吋, 电容感应导体层 6能够 感应出在每个感应极板 6011和置于介质层 2的外部表面上的手指表皮组织中指纹 谷 101和指纹脊 102之间的电容性耦合。
[0057] 读出电路 7, 设置于基板上, 连接电容感应导体层 6的感应极板 6011, 用于获取 感应电容的模拟信号, 将获取的模拟信号转化为数字信号。
[0058] 在本发明实施例中, 读出电路 7通过一定的控制信号以及激励信号将感应电容 转换成模拟电信号, 之后通过模数转换电路将模拟电信号转换成了数字信号。 其中, 读出电路 7具体包括模拟信号读取电路和模数转换电路。
[0059] 处理控制单元 8, 连接读出电路 7和图案化导体层 4, 用于判断数字信号所反映 的指纹信息, 并根据判断结果控制预设电压以改变图案化导体层 4构建的静电透 镜的电场焦点。
[0060] 在本发明实施例中, 处理控制单元 8通过算法获取数字信号所反映的指纹信息 , 根据指纹信息计算指纹图像的清晰度并与预设标准值比较, 若清晰度低于预 设标准值, 则更改预设电压以改变静电透镜的电场焦点, 通过不同更改电压从 而改变静电透镜的电场焦点, 直至获得最清晰的图形, 并不再更改电压。
[0061] 以下结合工作原理对图 1的电容型指纹传感器作进一步说明:
[0062] 当人体表皮组织 1与介质层 2接触吋, 电容感应导体层 6在图案化导体层 4构建的 静电透镜的电场中获取人体表皮组织 1的指纹谷 101和指纹脊 102与感应极板 6011 间的感应电容, 并将感应电容输出至读出电路 7, 读出电路 7将感应电容转化为 模拟信号, 再将模拟信号转化为数字信号并输出至处理控制单元 8, 处理控制单 元 8判断数字信号所反映的指纹信息, 并根据判断结果控制预设电压以改变图案 化导体层 4构建的静电透镜的电场焦点, 再次感应电容以获取指纹信息, 不断重 复前述流程, 直至获得最清晰的指纹图形。
[0063] 本发明实施例通过介质层 2形成的具有第一介电常数和第二介电常数的内电场 通道以及图案化导体层 4根据预设电压构建的能够实现电场焦点变化的静电透镜 , 实现准确的感应垂直方向电容, 从传感的最原始感应转变点实现所感应电容 的精确度, 避免源头感应参数出现信号混叠, 从根本上解决现有的感应电容信 息不准确、 指纹分辨率低, 指纹信息不足从而无法准确完成指纹验证的问题。
[0064] 实施例一:
[0065] 图 2示出了本发明第一实施例所提供的对应图 1所示的电容型指纹传感器的剖面 结构, 为了便于说明, 仅示出了与本发明第一实施例相关的部分, 详述如下:
[0066] 进一步的, 如图 2所示, 在图 1的基础上, 为了能够协作独立感应电容的产生, 电容型指纹传感器还包括图案化导体覆盖层 9, 图案化导体覆盖层 9按预设规律 覆盖在介质层 2的表面; 图案化导体覆盖层 9用于当人体表皮组织 1与之接触吋, 根据预设规律图案化分隔指纹。
[0067] 在本发明实施例中, 预设规律具体是指图案化导体覆盖层 9覆盖在介质层 2的第 二介电常数介质层 202表面上。 [0068] 在本发明实施例中, 图案化导体覆盖层 9可以通过沉淀、 蚀刻或印刻等手段将 一层薄导体有规律而平滑地覆刻在介质层 2表面, 使之能与手指接触, 有助于以 一定的规律图案化分隔指纹, 协作独立感应电容的产生。
[0069] 进一步的, 如图 2所示, 在图 1的基础上, 图案化导体层 4包括第一导体层 401、 第二导体层 402以及第三导体层 403, 第二导体层 402的预设电压高于第一导体层 401的预设电压和第三导体层 403的预设电压; 第二导体层 402和第一导体层 401 形成第一电场, 第二导体层 402和第三导体层 403形成第二电场。 图中 404代表电 场线。
[0070] 在本发明实施例中, 第一电场和第二电场构成了静电透镜。 其中, 预设电压根 据电容型指纹传感器实际应用中的实际情况进行调整, 具体地, 根据感应的指 纹图像的清晰度进行调整, 而静电透镜的电场焦点则根据预设电压的调整而改 变。
[0071] 在本发明实施例中, 第一导体层 401、 第二导体层 402以及第三导体层 403均具 有阵列式的图案, 各层间的阵列式图案对应相同。 该阵列式图案的形状根据用 户的实际需要进行改变, 可以是正四边形、 或矩形、 或正六边形、 或圆形以及 或椭圆形, 或者其他多边形, 甚至可以是不同形状图案的组合。
[0072] 进一步的, 如图 2所示, 在图 1的基础上, 电容感应导体层 6还包括由阵列式排 列的多个感应极板 6011形成的第四导体层 601, 以及第五导体层 602和第六导体 层 603; 第四导体层 601通过多个连接通孔 5连接第五导体层 602, 第五导体层 602 通过连接通孔 5连接第六导体层 603。
[0073] 在本发明实施例中, 第五导体层 602主要由下级感应极板 6021和下级辅助感应 极板 6022形成的导体层, 第六导体层 603主要由次下级感应极板 6031和次下级辅 助感应极板 6032形成的导体层。
[0074] 在本发明实施例中, 第四导体层 601、 第五导体层 602以及第六导体层 603均具 有阵列式的图案, 各层间的图案大小可以根据用户的实际需要进行改变; 图案 形状也可以根据用户的实际需要进行改变, 可以是正四边形、 或矩形、 或正六 边形、 或圆形以及或椭圆形, 或者其他多边形, 甚至可以是不同形状图案的组 [0075] 例如, 如图 2-1〜图 2-8所示 (图中 SL代表剖面线) , 在图 2的基础上, 第一导体 层 401、 第二导体层 402、 第三导体层 403、 第四导体层 601、 第五导体层 602以及 第六导体层 603的图案化形状都可以是正四边形。 第四导体层 601与第一导体层 4 01、 第二导体层 402、 第三导体层 403、 第五导体层 602以及第六导体层 603层间 的情况具体可以如下:
[0076] 具体地, 如图 2-1所示, 感应单元的感应极板 6011阵列式的排列, 每个感应极 板 6011为正四边形, 第六导体层 603围绕在每个感应极板 6011形成框架网络。
[0077] 具体地, 如图 2-2所示, 第五导体层 602围绕在每个感应极板 6011形成框架网络
[0078] 具体地, 如图 2-3所示, 第四导体层 601与第五导体层 602的连接通孔 5层或者第 六导体层 603与第五导体层 602的连接通孔 5层围绕在每个感应极板 6011形成框架 网络。
[0079] 具体地, 如图 2-4所示, 感应极板 6011阵列和周围框架网络构成了第四导体层 6 01。
[0080] 具体地, 如图 2-5所示, 第三导体层 403围绕在每个感应极板 6011形成框架网络 , 第三导体层 403的部分区域覆盖住感应极板 6011阵列。
[0081] 具体地, 如图 2-6所示, 第二导体层 402围绕在每个感应极板 6011形成框架网络 , 第二导体层 402的部分区域覆盖住感应极板 6011阵列。
[0082] 具体地, 如图 2-7所示, 第一导体层 401围绕在每个感应极板 6011形成框架网络 , 第一导体层 401的部分区域覆盖住感应极板 6011阵列。
[0083] 电容感应导体层 6中每相邻两个连接通孔 5将与之连接的第四导体层 601、 第五 导体层 602、 第六导体层 603以及沿每相邻两个连接通孔 5纵向延伸方向之间的图 案化导体层 4分隔形成感应单元, 每个感应单元的感应极板 6011分别通过对应的 第五导体层 602的通孔和第六导体层 603的通孔连接读出电路 7。
[0084] 在本发明实施例中, 第三导体层 403、 第四导体层 601、 第五导体层 602、 第六 导体层 603及这些导体层之间的连接通孔 5和它们下方的其它层一起构建各个独 立感应单元之间的隔离屏蔽层, 能够有效的屏蔽相邻感应单元的噪声。
[0085] 电容感应导体层 6还包括多个辅助感应单元, 辅助感应单元根据预设组合设置 于感应单元的四周, 预设辅助感应单元用于辅助增强感应单元的电场。
[0086] 在本发明实施例中, 辅助感应单元可以根据实际需要选择多种组合, 例如可以 选择周边 8个感应单元作为辅助感应单元以辅助增强电场, 也可以选择上下左右 4个感应单元作为辅助感应单元, 或者选择周边 25个感应单元作为辅助感应单元 , 或者其它组合单元, 只要属于辅助增强电场功能, 都属于本发明的保护范围
[0087] 例如, 如图 2-8〜图 2-14所示 (图中, SL代表剖面线) , 在图 2以及图 2-1〜图 2-7 的基础上, 选择周边 8个感应单元作为辅助感应单元辅助增强电场, 在层面上即 选择感应极板 6011周边的 8个感应单元的感应极板作为辅助感应单元的辅助感应 极板 6012辅助增强电场。
[0088] 进一步的, 如图 2所示, 在图 1的基础上, 电容型指纹传感器还包括由多个隔离 单元 10组成的隔离层, 每个隔离单元 10对应一个感应单元, 隔离单元 10用于对 感应单元进行深度隔离。
[0089] 在本发明实施例中, 每个感应单元可以采用 DNW (Deep NWell, 深 N阱) 手段 进行深度隔离, 也可以采用其他隔离手段进行隔离, 整个芯片是数模混合系统
, 通过 DNW可以很好的隔离其它非相关控制所带来噪声干扰, 比如数字逻辑幵 关噪声、 芯片衬底噪声、 相邻感应单元的噪声等。
[0090] 具体地, 如图 2-15和图 2-16所示, 感应单元 2110和辅助感应单元 2111阵列式的 排列, 每个感应单元 2110和辅助感应单元 2111的周围都有 DNW隔离阱包围, 以 隔离其它非相关控制所带来噪声干扰。
[0091] 进一步的, 如图 3所示, 在图 1的基础上, 图案化导体层 4包括第三介电常数介 质层 11, 第三介电常数介质层 11填充在导体层之间。 具体的, 第三介电常数介 质层 11的介质为高介电常数介质。
[0092] 在本发明实施例中, 图案化导体层 4内部高介电常数的第三介电常数介质层 11 可以与第四导体层 601使用相同的掩模, 以此减少掩模成本。
[0093] 在本发明实施例中, 第三介电常数介质层 11结合介质层 2的第一介电常数介质 层 201和第二介电常数介质层 202, 构建了差异化的内电场通道, 利用不同介电 常数材料对电场的影响从而影响感应电容的变化, 能够进一步提高感应电容与 所感应指纹的精确对应。
[0094] 实施例二:
[0095] 图 4示出了本发明第二实施例所提供的对应图 2所示的电容型指纹传感器的剖面 结构, 为了便于说明, 仅示出了与本发明第二实施例相关的部分, 详述如下:
[0096] 进一步的, 如图 4所示, 在图 2和图 3的基础上, 为了进一步提高感应的指纹图 像的分辨率和清晰度, 可以将电容感应导体层 6的每个感应极板 6011的面积扩大 到图 2所示实施例一中感应极板 6011面积的 4倍, 相应的, 感应极板 6011对应的 感应单元、 感应单元对应的周边的图案化导体层 4、 感应单元对应的隔离层、 图 案化导体层 4对应的介质层 2以及介质层 2中的图案化导体覆盖层 9等也相应增大 到图 2所示实施例一的 4倍。
[0097] 此吋, 感应单元周边的用于形成静电透镜的同层图案化导体层 4分立成独立的 面板, 并且面板电压可独立控制。
[0098] 以下以图案化导体层 4中的第一层导体层分立成的面板为例, 如图 4-1~图4-5 ( 图中 404为电场线) 所示, 说明同层图案化导体层 4分立的独立面板的控制情况
[0099] 具体地, 如图 4-1所示, 当控制面板 Γ与面板 3、的电压相同, 而面板 2、与面板 4、 的电压相同并且低于面板 Γ与面板 3、的电压吋, 四个面板间的得到控制的感应电 场线截面 5、处于四个面板中垂线交叉线的中心正四边形区域。
[0100] 具体地, 如图 4-2所示, 当控制面板 3、与面板 4、的电压相同, 而面板 Γ与面板 2、 的电压相同并且低于面板 3、与面板 4、的电压吋, 四个面板间的得到控制的感应电 场线截面 5、处于四个面板中垂线交叉线的左上角正四边形区域。
[0101] 具体地, 如图 4-3所示, 当控制面板 3、与面板 2、的电压相同, 而面板 Γ与面板 zp 的电压相同并且低于面板 3、与面板 Γ的电压吋, 四个面板间的得到控制的感应电 场线截面 5、处于四个面板中垂线交叉线的右上角正四边形区域。
[0102] 具体地, 如图 4-4所示, 当控制面板 Γ与面板 2、的电压相同, 而面板 3、与面板 4、 的电压相同并且低于面板 Γ与面板 的电压吋, 四个面板间的得到控制的感应电 场线截面 5、处于四个面板中垂线交叉线的右下角正四边形区域。
[0103] 具体地, 如图 4-5所示, 当控制面板 Γ与面板 4、的电压相同, 而面板 3、与面板 2、 的电压相同并且低于面板 Γ与面板 4、的电压吋, 四个面板间的得到控制的感应电 场线截面 5、处于四个面板中垂线交叉线的左下角正四边形区域。
[0104] 本发明实施例通过同吋控制感应极板 6011周边的 4个面板和不同导体层的电压 以形成不同的静电透镜, 用一块感应极板 6011并根据多次读取感应信号构建增 加分辨率的图形, 从而使得感应单元的感应面积以及感应电场都得到了提高, 感应效果大约可以达到没有扩大感应面积吋的 4倍, 相对实施例一而言, 可以进 一步提高感应图像的分辨率和清晰度。
[0105] 本发明的一个实施例还提供一种指纹感测装置, 指纹感测装置包括如上的电容 型指纹传感器。
[0106] 图 5示出了本发明另一实施例所提供的电容型指纹传感器的识别控制方法的流 程图, 该方法基于上述实施例中的任一种电容型指纹传感器执行, 具体请参阅 图 1~图4以及图 1~图4对应的实施例中的相关描述, 此处不赘述。 本实施例的电 容型指纹传感器的识别控制方法包括: 步骤 S101、 步骤 S102、 步骤 S103以及步 骤 S104。 具体地:
[0107] 步骤 S101 : 施加预设电压至图案化导体层 4以使图案化导体层 4构建静电透镜。
[0108] 在本发明实施例中, 图案化导体层 4包括至少三层导体层, 具体地, 可以包括 三层导体层。 图案化导体层 4中各导体层均具有阵列式的图案, 各层间的阵列式 图案对应相同。 该阵列式图案的形状根据用户的实际需要进行改变, 可以是正 四边形、 或矩形、 或正六边形、 或圆形以及或椭圆形, 或者其他多边形, 甚至 可以是不同形状图案的组合。
[0109] 在发明本实施例中, 图案化导体层 4的各个导体层根据预设电压在相邻两导体 层间构成了电场, 电场间构成了静电透镜。 其中, 预设电压根据电容型指纹传 感器实际应用中的实际情况进行调整, 具体地, 根据感应的指纹图像的清晰度 进行调整, 而静电透镜的电场焦点则根据预设电压的调整而改变。
[0110] 在本发明实施例中, 步骤 S101具体包括:
[0111] 施加预设电压至图案化导体层 4的第一导体层 401、 第二导体层 402以及第三导 体层 403, 控制第二导体层 402的预设电压高于第一导体层 401的预设电压和第三 导体层 403的预设电压, 构建由第二导体层 402和第一导体层 401形成的第一电场 以及由第二导体层 402和第三导体层 403形成的第二电场。 在本发明实施例中, 第一电场和第二电场间构成了静电透镜。
[0112] 在本发明实施例中, 第一导体层 401、 第二导体层 402以及第三导体层 403均具 有阵列式的图案, 各层间的阵列式图案对应相同。 该阵列式图案的形状根据用 户的实际需要进行改变, 可以是正四边形、 或矩形、 或正六边形、 或圆形以及 或椭圆形, 或者其他多边形, 甚至可以是不同形状图案的组合。
[0113] 在本发明实施例中, 通过控制预设电压微调静电透镜的电场焦点, 能够实现精 确化指纹的扫描。
[0114] 进一步地, 在本发明实施例中, 步骤 S101之后, 还包括步骤:
[0115] 步骤 S1011 : 将图案化导体覆盖层 9覆盖在介质层 2的表面;
[0116] 步骤 S1012: 当人体表皮组织 1与介质层 2接触吋, 根据预设规律图案化分隔指 纹。
[0117] 在本发明实施例中, 预设规律具体是指图案化导体覆盖层 9覆盖在介质层 2的第 二介电常数介质层 202表面上。
[0118] 在本发明实施例中, 图案化导体覆盖层可以通过沉淀、 蚀刻或印刻等手段将一 层薄导体有规律而平滑地覆刻在介质层 2表面, 使之能与手指接触, 有助于以一 定的规律图案化分隔指纹, 协作独立感应电容的产生。
[0119] 步骤 S102: 当人体表皮组织 1与在垂直于基板的方向交替设置的第一介电常数 介质层 201和第二介电常数介质层 202接触吋, 获取人体表层组织与感应极板 601
1间的感应电容。
[0120] 在发明本实施例中, 第一介电常数介质层 201和第二介电常数介质层 202在垂直 于基板的方向按预设规律交替设置, 其中, 预设规律主要是指介质层 2在垂直方 向上与图案化导体层 4和电容感应导体层 6相应的图案化相关, 具体根据实际生 产情况进行相应更改。 在发明本实施例的具体应用中, 第一介电常数介质层 201 的介电常数高于第二介电常数介质层 202的介电常数, 具体的, 第一介电常数介 质层 201的介质为高介电常数介质, 第二介电常数介质层 202的介质为低介电常 数介质。
[0121] 在发明本实施例中, 通过构建差异化内电场通道的介质层 2, 利用不同介电常 数材料对电场的影响从而影响感应电容的变化, 进一步提高感应电容与所感应 指纹的精确对应。
[0122] 在发明本实施例中, 多个感应极板 6011为阵列式的排列, 其中, 感应极板 6011 的图案大小可以根据用户的实际需要进行改变; 感应极板 6011的图案形状也可 以根据用户的实际需要进行改变, 可为正四边形、 或矩形、 或正六边形、 或圆 形以及或椭圆形, 或者其他多边形, 甚至可以是不同形状图案的组合。
[0123] 在本发明实施例中, 当手指表皮组织人体表皮组织 1与介质层 2接触吋, 电容感 应导体层 6能够感应出在每个感应极板 6011和置于介质层 2的外部表面上的手指 之间的电容性耦合。
[0124] 步骤 S103: 获取感应电容的模拟信号, 将获取的模拟信号转化为数字信号。
[0125] 在本发明实施例中, 步骤 S103可以具体为通过一定的控制信号以及激励信号将 感应电容转换成模拟电信号, 之后通过模数转换电路将模拟电信号转换成了数 字信号。
[0126] 步骤 S104: 通过算法获取数字信号所反映的指纹信息, 根据指纹信息计算指纹 图像的清晰度并与预设标准值比较, 若清晰度低于预设标准值, 则更改预设电 压以改变静电透镜的电场焦点, 并重返步骤 S101 ; 若清晰度等于预设标准值, 则输出指纹信息并结束控制进程。
[0127] 在本发明实施例中, 通过算法获取数字信号所反映的指纹信息, 根据指纹信息 计算指纹图像的清晰度并与预设标准值比较, 若清晰度低于预设标准值, 则更 改预设电压以改变静电透镜的电场焦点, 通过不同更改电压从而改变静电透镜 的电场焦点, 直至获得最清晰的图形, 并不再更改电压。
[0128] 进一步地, 在本发明实施例中, 步骤 S104之前, 包括:
[0129] 步骤 S1041 : 将感应电容或者数字信号进行隔离。
[0130] 在本发明实施例中, 感应电容或者数字信号可以采用 DNW (Deep NWell, 深 N 阱) 手段进行深度隔离, 也可以采用其他隔离手段进行隔离, 整个芯片是数模 混合系统, 通过 DNW可以很好的隔离其它非相关控制所带来噪声干扰, 比如数 字逻辑幵关噪声、 芯片衬底噪声、 相邻感应单元的噪声等。
[0131] 在本发明实施例通过介质层 2构建具有第一介电常数和第二介电常数的内电场 通道以及通过图案化导体层 4构建能够实现电场焦点变化的静电透镜, 实现准确 的感应垂直方向电容, 从传感的最原始感应转变点实现所感应电容的精确度, 避免源头感应参数出现信号混叠, 从根本上解决现有的感应电容信息不准确、 指纹分辨率低, 指纹信息不足从而无法准确完成指纹验证的问题。
[0132] 在本发明实施例中, 流程图中或在此以其他方式描述的任何过程或方法描述可 以被理解为, 表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可 执行指令的代码的模块、 片段或部分, 并且本发明的优选实施方式的范围包括 另外的实现, 其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基 本同吋的方式或按相反的顺序, 来执行功能, 这应被本发明的实施例所属技术 领域的技术人员所理解。
[0133] 在流程图中表示或在此以其他方式描述的逻辑和 /或步骤, 例如, 可以被认为 是用于实现逻辑功能的可执行指令的定序列表, 可以具体实现在任何计算机可 读介质中, 以供指令执行系统、 装置或设备 (如基于计算机的系统、 包括处理 器的系统或其他可以从指令执行系统、 装置或设备取指令并执行指令的系统) 使用, 或结合这些指令执行系统、 装置或设备而使用。 就本说明书而言, "计算 机可读介质"可以是任何可以包含、 存储、 通信、 传播或传输程序以供指令执行 系统、 装置或设备或结合这些指令执行系统、 装置或设备而使用的装置。 计算 机可读介质的更具体的示例 (非穷尽性列表) 包括以下: 具有一个或多个布线 的电连接部 (电子装置) , 便携式计算机盘盒 (磁装置) , 随机存取存储器 (R AM) , 只读存储器 (ROM) , 可擦除可编辑只读存储器 (EPROM或闪速存储 器) , 光纤装置, 以及便携式光盘只读存储器 (CDROM) 。 另外, 计算机可读 介质甚至可以是可在其上打印程序的纸或其他合适的介质, 因为可以例如通过 对纸或其他介质进行光学扫描, 接着进行编辑、 解译或必要吋以其他合适方式 进行处理来以电子方式获得程序, 然后将其存储在计算机存储器中。
[0134] 在本说明书的描述中, 参考术语"一实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或"第一实施例"、 "第二实施例"等的描述意指结合该实施例或示例描述的 具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在 本说明书中, 对上述术语的示意性表述不一定指的是相同的实施例或示例。 而 且, 描述的具体特征、 结构、 材料或者特点可以在任何的一个或多个实施例或 示例中以合适的方式结合。
以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
[权利要求 1] 一种电容型指纹传感器, 包括基板, 其特征在于, 所述电容型指纹传 感器还包括:
介质层, 所述介质层包括第一介电常数介质层和第二介电常数介质层 , 所述第一介电常数介质层和所述第二介电常数介质层在垂直于所述 基板的方向交替设置, 所述介质层远离基板的一端与人体表皮组织接 触; 所述介质层用于形成所述电容型指纹传感器的内电场通道; 图案化导体层, 通过胶合层与所述介质层粘结, 包括至少三层导体层 ; 所述图案化导体层用于根据预设电压构建静电透镜;
电容感应导体层, 通过连接通孔连接所述图案化导体层, 包括阵列式 排列的多个感应极板; 所述电容感应导体层用于当所述人体表皮组织 与所述介质层接触吋, 获取所述人体表层组织与所述感应极板间的感 应电容;
读出电路, 设置于所述基板上, 连接所述电容感应导体层的所述感应 极板, 用于获取所述感应电容的模拟信号, 将获取的所述模拟信号转 化为数字信号;
处理控制单元, 连接所述读出电路和所述图案化导体层, 用于判断所 述数字信号所反映的指纹信息, 并根据判断结果控制所述预设电压以 改变所述图案化导体层构建的所述静电透镜的电场焦点。
[权利要求 2] 如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述电容型指 纹传感器还包括图案化导体覆盖层, 所述图案化导体覆盖层覆盖在所 述介质层的表面; 所述图案化导体覆盖层用于当所述人体表皮组织与 之接触吋, 根据分布图案分隔指纹。
[权利要求 3] 如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述图案化导 体层包括第一导体层、 第二导体层以及第三导体层, 所述第二导体层 的预设电压高于所述第一导体层的预设电压和所述第三导体层的预设 电压; 所述第二导体层和所述第一导体层形成第一电场, 所述第二导 体层和所述第三导体层形成第二电场。 如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述电容感应 导体层还包括由阵列式排列的多个所述感应极板形成的第四导体层, 以及第五导体层和第六导体层; 所述第四导体层通过多个连接通孔连 接所述第五导体层, 所述第五导体层通过连接通孔连接所述第六导体 层。
如权利要求 4所述的电容型指纹传感器, 其特征在于, 所述电容感应 导体层中每相邻两个所述连接通孔将与之连接的所述第四导体层、 所 述第五导体层、 所述第六导体层以及沿每相邻两个所述连接通孔纵向 延伸方向之间的图案化导体层分隔形成感应单元, 每个所述感应单元 的所述感应极板分别通过对应的所述第五导体层的通孔和所述第六导 体层的通孔连接所述读出电路。
如权利要求 5所述的电容型指纹传感器, 其特征在于, 所述电容感应 导体层还包括多个辅助感应单元, 所述辅助感应单元根据预设组合设 置于所述感应单元的四周, 所述预设辅助感应单元用于辅助增强所述 感应单元的电场。
如权利要求 5所述的电容型指纹传感器, 其特征在于, 所述电容型指 纹传感器还包括由多个隔离单元组成的隔离层, 每个所述隔离单元对 应一个感应单元, 所述隔离单元用于对所述感应单元进行深度隔离。 如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述第一介电 常数介质层的介电常数高于所述第二介电常数介质层的介电常数。 如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述图案化导 体层包括第三介电常数介质层, 所述第三介电常数介质层填充在所述 导体层之间。
如权利要求 1所述的电容型指纹传感器, 其特征在于, 所述读出电路 包括模拟信号读取电路和模数转换电路。
一种指纹感测装置, 其特征在于, 所述指纹感测装置包括如权利要求 1~10任一项所述的电容型指纹传感器。
一种如权利要求 1~3、 7~10任一项所述的电容型指纹传感器的识别控 制方法, 其特征在于, 所述方法包含下述步骤:
a.施加预设电压至所述图案化导体层以使所述图案化导体层构建静电 透镜;
b.当所述人体表皮组织与在垂直于所述基板的方向交替设置的所述第 一介电常数介质层和所述第二介电常数介质层接触吋, 获取所述人体 表层组织与所述感应极板间的感应电容;
c 获取所述感应电容的模拟信号, 将获取的所述模拟信号转化为数 字信号;
d.通过算法获取所述数字信号所反映的指纹信息, 根据所述指纹信息 计算指纹图像的清晰度并与预设标准值比较, 若所述清晰度低于所述 预设标准值, 则更改所述预设电压以改变所述静电透镜的电场焦点, 并重返步骤 a; 若所述清晰度等于所述预设标准值, 则输出指纹信息 并结束控制进程。
[权利要求 13] 如权利要求 12所述的识别控制方法, 其特征在于, 所述步骤 a具体包 括:
施加预设电压至所述图案化导体层的所述第一导体层、 所述第二导体 层以及所述第三导体层, 控制所述第二导体层的预设电压高于所述第 一导体层的预设电压和所述第三导体层的预设电压, 构建由第二导体 层和第一导体层形成的第一电场以及由第二导体层和第三导体层形成 的第二电场。
[权利要求 14] 如权利要求 12所述的识别控制方法, 其特征在于, 所述步骤 a之后, 还包括下述步骤:
将所述图案化导体覆盖层覆盖在所述介质层的表面;
当所述人体表皮组织与所述介质层接触吋, 根据所述预设规律图案化 分隔指纹。
[权利要求 15] 如权利要求 12所述的识别控制方法, 其特征在于, 所述步骤 d之前, 包括: 将所述感应电容或者所述数字信号进行隔离。
PCT/CN2017/074157 2017-02-20 2017-02-20 一种电容型指纹传感器、指纹感测装置及其识别控制方法 WO2018148972A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/074157 WO2018148972A1 (zh) 2017-02-20 2017-02-20 一种电容型指纹传感器、指纹感测装置及其识别控制方法
CN201780000059.2A CN107004129B (zh) 2017-02-20 2017-02-20 一种电容型指纹传感器、指纹感测装置及其识别控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074157 WO2018148972A1 (zh) 2017-02-20 2017-02-20 一种电容型指纹传感器、指纹感测装置及其识别控制方法

Publications (1)

Publication Number Publication Date
WO2018148972A1 true WO2018148972A1 (zh) 2018-08-23

Family

ID=59435923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074157 WO2018148972A1 (zh) 2017-02-20 2017-02-20 一种电容型指纹传感器、指纹感测装置及其识别控制方法

Country Status (2)

Country Link
CN (1) CN107004129B (zh)
WO (1) WO2018148972A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437017A (zh) * 2022-08-24 2022-12-06 远峰科技股份有限公司 智能防误触感应器、感应系统及门把感应装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148972A1 (zh) * 2017-02-20 2018-08-23 深圳市飞仙智能科技有限公司 一种电容型指纹传感器、指纹感测装置及其识别控制方法
CN108460371A (zh) * 2018-04-16 2018-08-28 北京中天维科技有限公司 一种指纹传感器采集系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745194A (zh) * 2013-12-20 2014-04-23 深圳市汇顶科技股份有限公司 指纹检测装置和移动终端
CN104751115A (zh) * 2013-12-31 2015-07-01 茂丞科技股份有限公司 具有多功能传感器的电子装置及运作方法
US9460332B1 (en) * 2013-09-09 2016-10-04 Apple Inc. Capacitive fingerprint sensor including an electrostatic lens
CN107004129A (zh) * 2017-02-20 2017-08-01 深圳市飞仙智能科技有限公司 一种电容型指纹传感器、指纹感测装置及其识别控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307295B1 (ko) * 1999-01-29 2001-09-26 김영환 절연층 및 그 형성방법
CN104299999B (zh) * 2014-10-11 2018-01-12 电子科技大学 一种具有复合栅介质层的氮化镓基异质结场效应晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9460332B1 (en) * 2013-09-09 2016-10-04 Apple Inc. Capacitive fingerprint sensor including an electrostatic lens
CN103745194A (zh) * 2013-12-20 2014-04-23 深圳市汇顶科技股份有限公司 指纹检测装置和移动终端
CN104751115A (zh) * 2013-12-31 2015-07-01 茂丞科技股份有限公司 具有多功能传感器的电子装置及运作方法
CN107004129A (zh) * 2017-02-20 2017-08-01 深圳市飞仙智能科技有限公司 一种电容型指纹传感器、指纹感测装置及其识别控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437017A (zh) * 2022-08-24 2022-12-06 远峰科技股份有限公司 智能防误触感应器、感应系统及门把感应装置

Also Published As

Publication number Publication date
CN107004129A (zh) 2017-08-01
CN107004129B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
US10810397B2 (en) Display panel and display device
CN106802747B (zh) 触控显示面板
US10558837B2 (en) Mutual-capacitance touch sensing pattern recognition device, fabricating method thereof, related display panel, and related display apparatus
CN105378755B (zh) 指纹感测系统和方法
CN109690567B (zh) 指纹识别装置和电子设备
US20160350570A1 (en) Fingerprint sensor integrated type touch screen panel
US9965666B2 (en) Fingerprint recognition method, fingerprint recognition device and electronic device
WO2018148972A1 (zh) 一种电容型指纹传感器、指纹感测装置及其识别控制方法
CN108875569B (zh) 生物特征感测装置及方法
JP6212648B2 (ja) 電界型指紋認証装置及びその状態制御方法、プロテーゼ認証方法
US20180203540A1 (en) Discriminative controller and driving method for touch panel with array electrodes
JP2016540309A (ja) 基準感知素子を備えた指紋感知システムおよび方法
JP2000513839A (ja) 接触撮像装置
KR20010012633A (ko) 필터링 및 파워 보존 특성을 가지는 지문 센서 및 그 제조방법
JP2015510210A (ja) 非規則的な電極による容量の測定方法及びかかる方法を実装する装置
CN104166487A (zh) 使用单层感应图形的触摸传感装置及其制造方法
CN108108717B (zh) 指纹识别面板及其制备方法、驱动方法和指纹识别装置
CN106873840B (zh) 单片式触控面板结构及其制造方法
CN110543262A (zh) 触控基板及显示装置
CN110490122A (zh) 显示元件的指纹感测区域与指纹感测模组的对齐方法
WO2021014162A1 (en) Method to authenticate a user in an electronic device comprising a fingerprint sensor
TW201608482A (zh) 組合式感應之指紋辨識裝置及方法
CN105631442A (zh) 一种指纹识别装置及包含其的电子设备
CN105892782B (zh) 一种触控显示装置及其制作方法
WO2020209188A1 (ja) タッチセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896416

Country of ref document: EP

Kind code of ref document: A1