WO2018148893A1 - 数据传输方法和设备 - Google Patents

数据传输方法和设备 Download PDF

Info

Publication number
WO2018148893A1
WO2018148893A1 PCT/CN2017/073679 CN2017073679W WO2018148893A1 WO 2018148893 A1 WO2018148893 A1 WO 2018148893A1 CN 2017073679 W CN2017073679 W CN 2017073679W WO 2018148893 A1 WO2018148893 A1 WO 2018148893A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio bearer
access network
bearer identifier
network device
indication information
Prior art date
Application number
PCT/CN2017/073679
Other languages
English (en)
French (fr)
Inventor
李永翠
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17896870.7A priority Critical patent/EP3576459B1/en
Priority to CN201780085881.3A priority patent/CN110268747B/zh
Priority to PCT/CN2017/073679 priority patent/WO2018148893A1/zh
Publication of WO2018148893A1 publication Critical patent/WO2018148893A1/zh
Priority to US16/540,855 priority patent/US11368990B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present application relates to the field of communications and, more particularly, to a data transmission method and apparatus.
  • the user equipment Before the handover of the user equipment (User Equipment, UE), the user equipment first receives a Packet Data Convergence Protocol Service Data Unit (PDCP SDU) from the source base station, and starts receiving PDCP from the target base station after the handover.
  • PDCP SDU Packet Data Convergence Protocol Service Data Unit
  • SDU Some of the PDCP SDUs are transferred from the source base station to the target base station, and some PDCP SDUs are source base stations that have been sent to the terminal but have not yet been acknowledged.
  • the data communication between the source base station and the target base station is realized by direct forwarding tunnel or indirect forwarding tunnel.
  • the granularity of the indirect forwarding tunnel or the direct forwarding tunnel is per session per.
  • the target base station cannot send the Packet Data Convergence Protocol (PDCP) packet to the user equipment through the correct radio bearer.
  • PDCP Packet Data Convergence Protocol
  • the embodiment of the present application provides a data transmission method and device.
  • the target access network device can accurately determine a radio bearer that transmits PDCP data, and improve data transmission. rate.
  • the embodiment of the present application provides a data transmission method, including: a source access network device encapsulates indication information in an encapsulation header of a packet data convergence protocol (PDCP) data, where the indication information is used to indicate a target access network device.
  • PDCP packet data convergence protocol
  • the source access network device when the terminal device switches from the source access network device to the target access network device, the source access network device adds the buffered PDCP data to add the encapsulated header of the PDCP data.
  • the instruction information is used to indicate that the target access network device sends the PDCP data to the corresponding radio bearer, so that the packet is sent to the correct radio bearer, and the tunnel when the forwarding tunnel is the session session granularity or the group size granularity is solved. The problem of data in the switching process cannot be accurately forwarded.
  • the indication information includes: a first radio bearer identifier; or a quality of service label; or a quality of service label and an Internet Protocol (IP) address of the terminal device; or a second radio bearer identifier; or a third radio bearer identifier;
  • IP Internet Protocol
  • the first radio bearer identifier is allocated by the control plane network element, and is used to identify a radio bearer between the access network and the terminal device;
  • the QoS label is a core network user plane network element and a source access network.
  • the information in the encapsulation header of the transmitted message is used to identify the quality of service requirement for the data transmission;
  • the second radio bearer identifier is allocated by the target access network, and is used to identify the target access network device and the a radio bearer between the terminal devices;
  • the third radio bearer identifier is allocated by the source access network, and is used to identify the wireless bearer between the source access network device and the terminal device Loaded.
  • the indication information may be the first radio bearer identifier, or the QoS label, or the QoS label and the terminal device IP address, or the second radio bearer identifier, or the third radio bearer identifier, the source.
  • the access network device encapsulates the indication information in the encapsulation header of the PDCP data, and sends the PDCP data to the target access network device, so that the target access network device according to the indication information encapsulated in the encapsulation header of the PDCP data The PDCP data is sent to the corresponding radio bearer.
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device, including:
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device by using a forwarding tunnel, where the forwarding tunnel is used to transmit service packets of one or more terminal devices; the source access network device
  • the encapsulating the indication information in the encapsulation header of the PDCP data includes: when the forwarding tunnel is a session granularity tunnel, the first radio bearer identifier, the quality of service label, the second radio bearer identifier, and the third wireless At least one of the bearer identifiers is encapsulated in a package header of the PDCP data; or
  • the forwarding tunnel is a group-sized tunnel
  • the first radio bearer identifier, the second radio bearer identifier, the third radio bearer identifier, and the at least one of the QoS label and the terminal device IP address are encapsulated in the tunnel
  • the header of the PDCP data is encapsulated.
  • the method before the source access network device sends the PDCP data encapsulated with the indication information to the target access network device, the method further includes:
  • the source access network device receives a handover request acknowledgement message from the target access network device
  • the source access network device After receiving the handover request acknowledgement message, the source access network device determines that the second radio bearer identifier is the indication information.
  • the handover request acknowledgement message includes: a second radio bearer identifier; or a correspondence between the second radio bearer identifier and the third radio bearer identifier; or the second The correspondence between the radio bearer identifier and the quality of service tag.
  • the determining, by the source access network device, the second radio bearer identifier is the indication information, including:
  • the second radio bearer identifier is the indication information.
  • the source access network device determines the indication information according to the handover request acknowledgement message, including:
  • the indication information is determined to be the third radio bearer identifier.
  • the method before the source access network device sends the PDCP data encapsulated with the indication information to the target access network device, the method further includes:
  • the source access network device determines a radio bearer that sends the PDCP data
  • the indication information is the first radio bearer identifier
  • the source access network device determines a quality of service label that sends the PDCP data, and determines that the indication information is the quality of service label;
  • the source access network device determines a quality of service label that sends the PDCP data and the terminal device IP address, and determines that the indication information is the quality of service label and the terminal device IP address;
  • the source access network device determines the source radio bearer that sends the PDCP data, and determines that the indication information is the third radio bearer identifier according to the correspondence between the source radio bearer and the third radio bearer identifier.
  • the source access network device encapsulates the indication information in a package header of the PDCP data, including:
  • the indication information is encapsulated in a data link layer protocol encapsulation header of the PDCP data.
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device, including:
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device through the core network user plane network element.
  • the embodiment of the present application provides a data transmission method, including: a target access network device receives a packet data convergence protocol (PDCP) data from a source access network device, where the encapsulation header of the PDCP data includes indication information, where the indication is The information is used to indicate the radio bearer used by the target access network device to send the PDCP data.
  • the target access network device sends the PDCP data to the terminal device on the radio bearer according to the indication information.
  • PDCP packet data convergence protocol
  • the target access network device receives the PDCP data processed by the source access network device during the handover process of the terminal device from the source access network device to the target access network device, where the PDCP data is received.
  • the indication information is sent to the target access network device to send the PDCP data to the corresponding radio bearer, so that the target access network device sends the packet to the correct radio bearer, and the forwarding tunnel is
  • a session session granularity or a group-level granularity tunnel is used, the problem of data in the handover process cannot be accurately forwarded.
  • the indication information includes: a first radio bearer identifier; or a quality of service label; or a quality of service label and the terminal device Internet Protocol IP address; or a second radio bearer identifier Or a third radio bearer identifier;
  • the first radio bearer identifier is allocated by the control plane network element, and is used to identify a radio bearer between the access network and the terminal device;
  • the QoS label is a core network user plane network element and a source access network.
  • the information in the encapsulation header of the transmitted message is used to identify the quality of service requirement for the data transmission;
  • the second radio bearer identifier is allocated by the target access network, and is used to identify the target access network device and the
  • the radio bearer between the terminal devices is configured to be used by the source access network to identify the radio bearer between the source access network device and the terminal device.
  • the indication information may be the first radio bearer identifier, or the QoS label, or the QoS label and the terminal device IP address, or the second radio bearer identifier, or the third radio bearer identifier, the source.
  • the access network device encapsulates the indication information in the encapsulation header of the PDCP data, and sends the PDCP data to the target access network device, so that the target access network device according to the indication information encapsulated in the encapsulation header of the PDCP data The PDCP data is sent to the corresponding radio bearer.
  • the indication information includes the first radio bearer identifier
  • the indication information includes the quality of service label
  • determining that the radio bearer corresponding to the quality of service label is a radio bearer used for transmitting the PDCP data
  • the radio bearer corresponding to the IP address of the terminal device is a radio bearer used for transmitting the PDCP data;
  • the indication information includes the second radio bearer identifier, determining that the radio bearer identified by the second radio bearer identifier is a radio bearer used for transmitting the PDCP data; or
  • the indication information includes the third radio bearer identifier, determining a second radio bearer identifier corresponding to the third radio bearer identifier, determining that the radio bearer identified by the second radio bearer identifier is used to send the PDCP data Hosted.
  • the method further includes: the target access network device saves the second radio bearer identifier and the third radio The corresponding relationship of the bearer identifier.
  • the target access network device receives the PDCP data sent by the source access network device, including:
  • the target access network device receives the PDCP data sent by the source access network device by using a forwarding tunnel, where the forwarding tunnel is used to transmit service packets of one or more terminal devices;
  • the method also includes:
  • the indication information includes: the first radio bearer identifier; or the QoS label; or the second radio bearer identifier; or the third radio bearer identifier; or
  • the indication information includes: the first radio bearer identifier; or the second radio bearer identifier; or the third radio bearer identifier; or the QoS label and the terminal device IP address .
  • the method before the target access network device receives the PDCP data sent by the source access network device, the method further includes:
  • the target access network device sends the handover request acknowledgement message to the source access network device, where the handover request acknowledgement message includes: the second radio bearer identifier; or the correspondence between the second radio bearer identifier and the third radio bearer identifier a relationship; or a correspondence between the second radio bearer identifier and the quality of service tag.
  • the encapsulation header of the PDCP data is encapsulated with indication information, including:
  • the indication information is encapsulated in a transport layer protocol encapsulation header of the PDCP data;
  • the indication information is encapsulated in a data link layer protocol encapsulation header of the PDCP data.
  • the target access network device receives the PDCP data from the source access network device, where the target access network device is connected from the source through the core network user plane network element.
  • the network access device receives PDCP data.
  • the embodiment of the present application provides a data transmission device, which can execute the module or unit of the method in the first aspect or any optional implementation manner of the first aspect.
  • the embodiment of the present application provides a data transmission device, which can execute the module or unit of the method in the second aspect or any alternative implementation manner of the second aspect.
  • a device for wireless communication comprising a memory, a transceiver, and a processor having stored thereon program code for indicating execution of the first aspect or any optional implementation thereof, for a transceiver
  • the specific signal transceiving is performed under the driving of the processor.
  • the processor can implement various operations performed by the source access network device in the method.
  • an apparatus for wireless communication comprising a memory, a transceiver, and a processor having stored thereon program code for indicating execution of the second aspect or any optional implementation thereof, the transceiver For performing specific signal transceiving under the driving of the processor, when the code is executed, the processor can implement various operations performed by the target access network device in the method.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a communication system using a data transmission method of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of switching between access networks using a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a forwarding tunnel.
  • FIG. 5 is a schematic diagram of another forwarding tunnel.
  • FIG. 6 is a schematic flowchart of a data transmission method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission method according to still another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a data transmission device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a data transmission device according to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication system 100 includes a terminal device 110, an access network device 120, a control plane network element 130, a forwarding plane network element 140, and a data network 150.
  • the communication system 100 communicates via an interface.
  • the terminal device 110 can establish a user plane connection with the access network device 120 through the bearer, and can also establish a communication signaling connection with the control plane network element 130 through the interface.
  • the terminal device 110 includes, but is not limited to, a terminal device, which may be an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station. , a remote terminal, a mobile terminal, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • a terminal device which may be an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • a remote terminal a mobile terminal, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • PLMN Public Land Mobile Network
  • Access network device 120 may be a device that communicates with terminal device 110, such as a base station or base station controller or the like. However, it will be appreciated that the access network device 120 can communicate with any number of terminal devices similar to the terminal device 110. Access network device 120 can also communicate with control plane network element 130 via an interface. Similarly, the access network device 120 can also communicate with the forwarding plane network element 140 through the interface. Each access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices (eg, UEs) located within the coverage area (cell), and the access network device can support different standard communication protocols, or Different communication modes can be supported.
  • terminal devices eg, UEs
  • the access network device 120 can provide a wireless access service for the terminal device, for example, the access network device 120 It is an Evolved Node B (eNodeB), or a Wireless Fidelity Access Point (WiFi AP), or a Worldwide Interoperability for Microwave Access Base Station (WiMAX).
  • eNodeB Evolved Node B
  • WiFi AP Wireless Fidelity Access Point
  • WiMAX Worldwide Interoperability for Microwave Access Base Station
  • BS Evolved Node B
  • WiFi AP Wireless Fidelity Access Point
  • WiMAX Worldwide Interoperability for Microwave Access Base Station
  • BS Evolved Node B
  • WiFi AP Wireless Fidelity Access Point
  • WiMAX Worldwide Interoperability for Microwave Access Base Station
  • BS Evolved Node B
  • WiFi AP Wireless Fidelity Access Point
  • WiMAX Worldwide Interoperability for Microwave Access Base Station
  • BS Evolved Node B
  • communication may also be performed between the access network device 120 (the source access network 121 and the target access network 122), for example, at the terminal device 111, the terminal device 112, or the terminal device 113.
  • the access network is switched, the data buffered by the source access network 121 needs to be transmitted to the target access network 122.
  • the source access network 121 can communicate with the target access network 122 through a direct forwarding tunnel.
  • the source access network 121 can also communicate with the target access network 122 through an indirect forwarding tunnel to complete data forwarding.
  • the indirect forwarding tunnel is established on the forwarding plane network element 140.
  • the source access network first transmits the data to the forwarding plane network element 140, and then the forwarding plane network element 140 forwards the data to the target access network device.
  • the forwarding tunnel between the source access network 121 and the target access network 122 may be a session session granularity tunnel or a group size granular tunnel.
  • the data transmitted between the source access network 121 and the target access network 122 may be Packet Data Convergence Protocol (PDCP) data, or some other Data, for example, IP data, is transmitted in a message transmission format of a tunnel between the source access network and the target access network.
  • PDCP Packet Data Convergence Protocol
  • IP data IP data
  • the control plane network element 130 is responsible for the mobility management and forwarding path management in the communication system 100.
  • the packet forwarding policy is sent to the forwarding plane network element 140, and the gateway forwarding plane (Gateway User Plane, GW-U) is reported according to the report.
  • the text forwarding policy performs packet processing and forwarding.
  • the control plane network element 130 may be a Software Defined Network (SDN) controller, a Gateway Control Plane (GW-C), a Mobility Management Entity (MME), or a network element. All or part of the control function formed.
  • SDN Software Defined Network
  • GW-C Gateway Control Plane
  • MME Mobility Management Entity
  • All or part of the control function formed the software-defined network technology provides an effective way for the bottleneck problem of the gateway signaling processing.
  • the interface signaling processing function is placed in the general computing.
  • On the platform it becomes a control plane network element (Control Plane, CP), and the function of forwarding data on the user plane is placed on a dedicated hardware platform, and becomes a forwarding plane network element (User Plane, UP).
  • the control plane network element 130 can also be divided into a mobility management network element and a session management network element, wherein the mobility management network element is responsible for mobility management of the terminal device, such as a terminal device attached network, a location change of the terminal device, and the like, and a session management network.
  • the element is responsible for session management of the terminal device, such as session establishment, modification, release, and the like.
  • the MME is mainly responsible for mobility management and session management of the control plane, such as user authentication, handover, mobility management of idle state terminals, user context, and bearer management.
  • the forwarding plane network element 140 is responsible for packet processing and forwarding.
  • the forwarding plane network element 140 may be a forwarding plane function of the P-GW, a forwarding plane function of the S-GW, a physical or virtual forwarding device such as a router or a switch.
  • the data network 150 provides a data transmission service for the user, and may be a Packet Data Network (PDN), such as the Internet (Internet), IP Multi-media Service (IP IMS). Wait.
  • PDN Packet Data Network
  • Internet Internet
  • IP IMS IP Multi-media Service
  • the terminal device 110 or the access network device 120 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D (Device to Device) network or a M2M (Machine to Machine) network or other network.
  • PLMN public land mobile network
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is only a simplified schematic diagram of the network. Other network devices may also be included, which are not shown in FIG.
  • the data transmission method and device provided by the embodiments of the present application may be applied to a terminal device, where the terminal device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 3 is a schematic flowchart of a data transmission method 200 according to an embodiment of the present application. As shown in FIG. 3, the method 200 includes the following.
  • the source access network device encapsulates the indication information in an encapsulation header of the packet data convergence protocol PDCP data, where the indication information is used to indicate the radio bearer used by the target access network device to send the PDCP data.
  • the source access network device determines whether the buffered packet has been subjected to PDCP processing. If the PDCP is not processed (for example, the packet is an IP packet), the packet is not processed, and the packet that is not processed by the PDCP is directly encapsulated into a transmission packet of the source access network device and the target access network device. The text format is sent to the target access network device. If the PDCP process has been performed, that is, the packet is the PDCP data, the packet needs to be processed as follows. In the embodiment of the present application, the indication information is encapsulated in the PDCP data header, and then the PDCP is encapsulated with the indication information. The data is sent to the target access network device.
  • the indication information includes at least one of the following information: a first radio bearer identifier; a quality of service label; a quality of service label and the terminal device IP address; a second radio bearer identifier; and a third radio bearer identifier.
  • the first radio bearer identifier is allocated by the CP and is used to identify a radio bearer between the access network and the terminal device.
  • the first radio bearer identifier is consistent when the source access network device and the target access network device are switched.
  • the source access network device may determine, according to the first radio bearer identifier, Terminal equipment
  • the target access network device may also determine, according to the first radio bearer identifier, the radio bearer that sends the PDCP data to the terminal device.
  • the QoS marking is information in the encapsulation header of the packet transmitted between the core network user plane network element and the source access network, and is used to identify the service quality requirement of the data transmission, and the different quality of service labels are different.
  • the radio bearer, the target access network device establishes radio resources according to the QoS marking.
  • the second radio bearer identifier is allocated by the target access network device, and is used to identify the radio bearer between the target access network device and the terminal device. For example, the second radio bearer identifier is used to identify the target access.
  • the second radio bearer identifier can only indicate radio bearer information in the target access network, and the radio bearer information cannot be indicated in other access networks.
  • the third radio bearer identifier is allocated by the source access network device, and is used to identify the radio bearer between the source access network device and the terminal device. For example, the third radio bearer identifier is used to identify the source access. A radio bearer capable of transmitting the PDCP data between the network device and the terminal device.
  • the third radio bearer identifier can only indicate radio bearer information in the source access network, and the radio bearer information cannot be indicated in other access networks.
  • the difference between the second radio bearer identifier or the third radio bearer identifier and the first radio bearer identifier is: (1) the assignor is different, the first radio bearer identifier is allocated by the CP, and the second radio bearer identifier is Or the third radio bearer identifier is allocated by the access network; (2) the length of time that remains unchanged is different: the first radio bearer identifier remains unchanged even when the terminal device switches; and the second wireless
  • the bearer identifier or the third radio bearer identifier may change when the terminal device switches to a different access network, and the new target radio bearer identifier is allocated by the switched target access network.
  • the source access network device may encapsulate the indication information in a transport layer protocol encapsulation header of the PDCP data.
  • the transport layer protocol is described by taking a general packet radio service tunneling protocol for user plane (GTP-U) as an example.
  • GTP-U general packet radio service tunneling protocol for user plane
  • the header structure of the GTP-U protocol is shown in Table 1:
  • the embodiment of the present application may extend the GTP-U so that the GTP-U protocol supports encapsulation of the indication information.
  • the extension method includes two cases: (1) directly extending GTP-U; (2) extending the GTP-U protocol through the next-generation extended header type.
  • the source access network device may also encapsulate the indication information in a data link layer protocol encapsulation header of the PDCP data.
  • the extension manner is: directly extending the PDCP protocol, so that the PDCP protocol supports encapsulation of the indication information.
  • the PDCP protocol uses a 12-bit sequence number (SN).
  • the expansion method is shown in Table 4:
  • the PDCP data may be byte 4 to byte N in Table 4.
  • the target access network device may determine, according to the indication information, a radio bearer that sends PDCP data.
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device.
  • the source access network device sends the PDCP data to the target access network device by using a forwarding tunnel.
  • the forwarding tunnel is used to transmit service packets of one or more terminal devices.
  • the forwarding tunnel may be a direct forwarding tunnel or an indirect forwarding tunnel.
  • the forwarding tunnel may be a session granularity tunnel or a group granularity tunnel.
  • the specific processing manner of the PDCP data may be classified into two cases according to the granularity of the forwarding tunnel:
  • the forwarding tunnel is a session granularity tunnel
  • the indication information may be at least one of a first radio bearer identifier, a QoS marking, a second radio bearer identifier, and a third radio bearer identifier.
  • the forwarding tunnel is a session granularity tunnel
  • the first radio bearer identifier, or the QoS label, or the second radio bearer identifier, or the third radio bearer identifier is encapsulated as the indication information in the encapsulation header of the PDCP data.
  • the processed PDCP data can be sent to the target access network device by using a forwarding tunnel between the source access network device and the target access network device.
  • the forwarding tunnel may be a direct forwarding tunnel or an indirect forwarding tunnel.
  • the PDCP data may be uplink PDCP data or downlink PDCP data.
  • the source access network device receives the downlink packet, determines the radio bearer corresponding to the downlink packet according to the QoS marking of the downlink packet, and then the source access network device pairs the downlink.
  • the packet is processed, such as decapsulation and encapsulation processing, and the processed packet is PDCP data.
  • the source access network device determines the first radio bearer identifier corresponding to the PDCP data according to the corresponding relationship between the radio bearer and the first radio bearer identifier, and encapsulates the first radio bearer identifier into the encapsulation header of the PDCP data.
  • the source access network device receives the downlink packet, determines the QoS marking corresponding to the downlink packet according to the QoS marking of the downlink packet, and then the source access network device processes some downlink packets, such as Decapsulation and encapsulation processing, and the processed message is PDCP data.
  • the source access network device encapsulates the QoS marking as indication information in a packed header of the PDCP data.
  • the source access network device receives the downlink packet, and determines the radio bearer corresponding to the downlink packet according to the encapsulation header information of the downlink packet.
  • the source access network device receives the downlink packet, determines the QoS marking corresponding to the downlink packet according to the QoS marking of the downlink packet, and then the source access network device processes some downlink packets, such as Encapsulation and encapsulation processing, and the processed message is PDCP data.
  • the source access network device determines the second radio bearer identifier corresponding to the PDCP data according to the correspondence between the QoS marking and the second radio bearer identifier, and encapsulates the second radio bearer identifier into the encapsulation header of the PDCP data.
  • the source access network device receives the downlink packet, and determines the radio bearer corresponding to the downlink packet according to the encapsulation header information of the downlink packet.
  • the source access network device receives the downlink packet, determines the radio bearer corresponding to the downlink packet according to the QoS marking of the downlink packet, and then the source access network device processes some downlink packets, such as Decapsulation and encapsulation processing, and the processed message is PDCP data.
  • the source access network device determines the third radio bearer identifier corresponding to the PDCP data according to the correspondence between the radio bearer and the third radio bearer identifier, and determines the PDCP according to the correspondence between the third radio bearer identifier and the second radio bearer identifier.
  • the second radio bearer identifier corresponding to the data, and the second radio bearer identifier is encapsulated into the encapsulation header of the PDCP data.
  • the source access network device receives the downlink packet, determines the radio bearer corresponding to the downlink packet according to the QoS marking of the downlink packet, and then the source access network device processes some downlink packets, such as Decapsulation and encapsulation processing, and the processed message is PDCP data.
  • the source access network device determines the third radio bearer identifier corresponding to the PDCP data according to the corresponding relationship between the radio bearer and the third radio bearer identifier, and encapsulates the third radio bearer identifier into the encapsulation header of the PDCP data.
  • the radio bearer corresponding to the downlink packet is determined, and then the source access network device processes part of the downlink packet, such as decapsulation and encapsulation processing, and the processed packet is PDCP data.
  • the source access network may determine the second radio bearer identifier corresponding to the PDCP data according to the correspondence between the third radio bearer identifier and the second radio bearer identifier, or according to the correspondence between the QoS marking and the second radio bearer identifier, and The second radio bearer identifier is encapsulated into the encapsulation header of the PDCP data; the source access network may also directly determine the third radio bearer identifier, and encapsulate the third radio bearer identifier into the encapsulation header of the PDCP data.
  • the processed PDCP data can be sent to the target access network device by using a forwarding tunnel between the source access network device and the target access network device.
  • the forwarding tunnel may be a direct forwarding tunnel or an indirect forwarding tunnel;
  • the indication information may be the second radio bearer identifier or the third radio bearer identifier.
  • the forwarding tunnel is a group-sized tunnel.
  • the indication information may be at least one of a first radio bearer identifier, a QoS label, a terminal device IP address, a second radio bearer identifier, and a third radio bearer identifier.
  • the forwarding tunnel is a group-wide tunnel
  • the first radio bearer identifier, or the QoS label and the terminal device IP address, or the second radio bearer identifier, or the third radio bearer identifier are encapsulated as indication information.
  • the header of the PDCP data is encapsulated.
  • the processed PDCP data can be sent to the target access network device by using a forwarding tunnel between the source access network device and the target access network device.
  • the forwarding tunnel may be a direct forwarding tunnel or an indirect forwarding tunnel.
  • the source access network device receives the downlink packet, determines the QoS marking and the terminal device IP address corresponding to the downlink packet according to the QoS marking (terminal device IP address) of the downlink packet, and then the source access network device.
  • Some downlink packets are processed, such as decapsulation and encapsulation processing, and the processed packets are PDCP data.
  • the source access network device encapsulates the QoS marking and the terminal device IP address into the encapsulation header of the PDCP data.
  • the source access network device may identify the first radio bearer identifier, or the quality of service label QoS marking, or the second radio bearer identifier, or The third radio bearer identifier is used as the indication information; in the scenario that the forwarding tunnel is a group granularity tunnel, the source access network device may use the first radio bearer, or the QoS marking and the terminal device IP address, or the second radio bearer identifier, or the The three radio bearer identifiers are used as indication information.
  • the access network device may not be aware of the granularity of the tunnel.
  • the source access network device passes the core network control plane network element and the target access network device.
  • Performing signaling communication such as sending a handover request message to the target access network device, receiving a handover request acknowledgement message sent by the target access network device, and performing data communication with the target access network device through the core network user plane network element, such as The target access network device sends PDCP data.
  • the forwarding tunnel may be a tunnel of session granularity.
  • the source access network device may send PDCP data to the target access network device through the direct forwarding tunnel, or may send the target access network device through the indirect forwarding tunnel.
  • PDCP data may be Simultaneously performing services on multiple radio bearers (for example, terminal 2 performs services on bearer a and bearer b, terminal 3 performs services on bearer e and bearer f), and may perform services only on one radio bearer (for example, Terminal 1 only performs traffic on bearer c).
  • a source access network device can simultaneously conduct business with multiple terminals, such as terminal 1, terminal 2, and terminal 3.
  • the terminal 2 switches from the source access network to the target access network, it disconnects from the radio bearers a and b of the source access network device, establishes radio bearers j and k with the target access network device, and the source access network. A forwarding tunnel between the device and the target access network device.
  • the source access network device sends the PDCP data encapsulated with the indication information to the target access network device, so that the target access network device determines the bearer j that sends the PDCP data.
  • the indication information may be the first radio bearer identifier; or the QoS label; or the second radio bearer identifier; or the third radio bearer identifier.
  • the forwarding tunnel may be a group granularity tunnel.
  • the source access network device may send PDCP data to the target access network device through the direct forwarding tunnel, or may send the target access network device through the indirect forwarding tunnel.
  • PDCP data may be a group granularity tunnel.
  • a terminal device can perform services on multiple radio bearers at the same time (for example, terminal 2 performs services on bearer a and bearer b, terminal 3 performs services on bearer e and bearer f), and can also perform only on one radio bearer. Service (for example, terminal 1 only performs services on bearer c).
  • a source access network device can simultaneously conduct business with multiple terminals, such as terminal 1, terminal 2, and terminal 3.
  • Terminals with the same service type can be divided into groups. As shown in the figure, terminal 1 and terminal 3 occupy one group resource, and terminal 2 occupies one group resource. Similarly, when the terminal 2 switches from the source access network to the target access network, it disconnects from the radio bearers a and b of the source access network device, establishes the radio bearers j and k with the target access network device, and the source. A forwarding tunnel between the access network device and the target access network device. The source access network device sends the PDCP data encapsulated with the indication information to the target access network device, so that the target access network device determines the bearer j that sends the PDCP data. At this time, the indication information may be the service quality label and the IP address of the terminal device 2; or the second radio bearer identifier; or the third radio bearer identifier.
  • the source access network device sends the PDCP data to the target access network device by using a core network user plane network element. At this time, the source access network device sends the PDCP data to the target access network device through an indirect forwarding tunnel.
  • the target access network device receives the PDCP data from the source access network device, where the encapsulation header of the PDCP data includes indication information, where the indication information is used to indicate the radio bearer used by the target access network device to send the PDCP data.
  • the target access network device receives the PDCP data from the source access network device by using the forwarding tunnel.
  • the target access network device sends the PDCP data to the terminal device on the radio bearer according to the indication information.
  • the target access network device determines, according to the indication information, a radio bearer that sends the PDCP data, and sends the PDCP data to the terminal device on the radio bearer.
  • the indication information is the first radio bearer identifier
  • the indication information is the second radio bearer identifier
  • the corresponding radio bearer is the radio bearer used to transmit the PDCP data.
  • the radio bearer corresponding to the QoS tag and the terminal device IP address is a radio bearer used for transmitting the PDCP data.
  • the method 300 includes:
  • the source access network device sends a handover request message to the target access network device.
  • the handover request message may carry at least one of a bearer level QoS parameter, an uplink user plane tunnel information, and the following information: a third radio bearer identifier, a quality of service label.
  • the handover request message may further carry the terminal device IP address.
  • the third radio bearer identifier is allocated by the source access network device, and is used to identify a radio bearer between the source access network device and the terminal device.
  • the third radio bearer identifier can only indicate radio bearer information in the source access network, and the radio bearer information cannot be indicated in other access networks.
  • the source access network device establishes a third radio bearer according to the context information sent by the control plane network element, and allocates a third radio bearer identifier.
  • the parameter is optional when the quality of service tag QoS marking is pre-configured on the access network device.
  • the context information sent by the control plane network element includes a quality of service label.
  • the third radio bearer identifier includes at least one radio bearer identifier.
  • the third radio bearer identifier may include an identifier of the bearer a of the terminal 2 and an identifier of the bearer b, or may be an identifier including the bearer e of the terminal 3 and an identifier of the bearer f. It may be the identity of the bearer c of the terminal 1.
  • the target access network device receives the handover request message from the source access network device, allocates a second radio bearer identifier, and determines a handover request acknowledgement message corresponding to the handover request message according to the handover request message.
  • the handover request acknowledgement message may include: a second radio bearer identifier, or a correspondence between the second radio bearer identifier and the third radio bearer identifier, or a correspondence between the second radio bearer identifier and the quality of service label .
  • the handover request acknowledgement message may not include the foregoing second radio bearer identifier, the correspondence between the second radio bearer identifier and the third radio bearer identifier, or the correspondence between the second radio bearer identifier and the QoS label.
  • the target access network device saves a correspondence between the second radio bearer identifier and the third radio bearer identifier.
  • the second radio bearer identifier includes at least one radio bearer identifier.
  • the second radio bearer identifier includes the identifier ID_J of the radio bearer j and the identifier ID_K of the radio bearer k.
  • the second radio bearer identifier may include the identifier ID_J and the bearer of the bearer j.
  • the third radio bearer identifier may include the identifier ID_A of the bearer a and the identifier ID_B of the bearer b.
  • the source access network device determines that the correspondence between the second radio bearer identifier and the third radio bearer identifier may be: the radio bearer identifier J corresponds to the radio bearer identifier A, and the radio bearer identifier K corresponds to the radio bearer identifier B.
  • the second radio bearer identifier may include the identifier a, the identifier b, the identifier c, and the QoS in the source access network.
  • the marking can include QoS marking A, QoS marking B, QoS marking C.
  • the source access network device determines that the correspondence between the second radio bearer identifier and the QoS marking may be: the identifier a corresponds to the QoS marking A, the identifier b corresponds to the QoS marking B, and the identifier c corresponds to the QoS marking C.
  • Second radio bearer identifier QoS marking Identification a QoS marking A Logo b QoS marking B Logo c QoS marking C
  • the target access network device sends a handover request acknowledgement message to the source access network device.
  • the handover request acknowledgement message carries at least one of a UL forwarding tunnel information, a DL forwarding tunnel information, and the following information: a second radio bearer identifier, a second radio Corresponding relationship between the bearer identifier and the third radio bearer identifier, and the correspondence between the second radio bearer identifier and the QoS marking.
  • the uplink forwarding tunnel information includes the IP of the target access network, the tunnel endpoint identifier 1 of the target access network (for example, the target AN TEID1), and the like.
  • the downlink forwarding tunnel information includes the IP of the target access network, the tunnel endpoint identifier 2 of the target access network (for example, the target AN TEID2), and the like.
  • the source access network device receives a handover request acknowledgement message sent by the target access network device.
  • the source access network device determines a correspondence between the second radio bearer identifier and the third radio bearer identifier.
  • the source access network device sends a wireless connection reconfiguration message to the terminal device, indicating that the target access network device is ready to take over the terminal device.
  • the source access network device sends a state transition message to the target access network device, and carries the Packet Data Convergence Protocol Sequence Number (PDCP SN) receiving status of each bearer, and the downlink PDCP SN sends the status. status.
  • PDCP SN Packet Data Convergence Protocol Sequence Number
  • the source access network device processes the buffered packet and sends the packet to the target access network device through a forwarding tunnel between the source access network device and the target access network device.
  • the source access network device determines whether the buffered packet has been processed by the PDCP.
  • the packet is not processed (for example, the packet is an IP packet)
  • the packet is not processed, and the packet that is not processed by the PDCP is directly encapsulated into a transmission packet of the source access network device and the target access network device.
  • the text format is sent to the target access network device.
  • the packet needs to be processed as follows.
  • the indication information is encapsulated in the PDCP data header, and then the PDCP is encapsulated with the indication information.
  • the data is sent to the target access network device.
  • the forwarding tunnel is a session granularity tunnel
  • the indication information may be a second radio bearer identifier, or Therefore, it is the third radio bearer identifier, and may also be a QoS marking.
  • the source access network device determines to encapsulate the QoS makring into the encapsulation header of the PDCP data according to the QoS marking corresponding to the PDCP data. For example, the following line data is used as an example.
  • the source access network device determines the QoS marking corresponding to the downlink data according to the QoS marking of the received downlink data, and then the source access network device processes the downlink data, such as encapsulation, Decapsulate and get PDCP data.
  • the source access network device determines the second radio bearer identifier corresponding to the PDCP data according to the QoS marking corresponding to the PDCP data and the correspondence between the second radio bearer identifier and the QoS marking, and further determines the second radio bearer.
  • the identifier is encapsulated in the PDCP data as indication information.
  • the source access network device determines the radio bearer corresponding to the PDCP data according to the QoS marking corresponding to the PDCP data, and determines the third radio bearer identifier corresponding to the PDCP data according to the correspondence between the radio bearer and the third radio bearer identifier. And the third radio bearer identifier is encapsulated in the PDCP data as indication information.
  • the source access network device determines the radio bearer corresponding to the PDCP data according to the QoS marking corresponding to the PDCP data, and determines the third radio bearer identifier corresponding to the PDCP data according to the correspondence between the radio bearer and the third radio bearer identifier. And determining, according to the correspondence between the third radio bearer identifier and the second radio bearer identifier, the second radio bearer identifier corresponding to the PDCP data, and encapsulating the second radio bearer identifier as the indication information in the PDCP data.
  • the indication information may be a second radio bearer identifier, a third radio bearer identifier, or a QoS marking and a terminal device IP address.
  • the source access network device determines to encapsulate the QoS marking and the terminal device IP address into the encapsulation header of the PDCP data according to the QoS marking and the terminal device IP address corresponding to the PDCP data.
  • the following line data is used as an example.
  • the source access network device determines the QoS marking and the terminal device IP address corresponding to the downlink data according to the QoS marking of the received downlink data, and then the source access network device performs the downlink data. Processing, such as encapsulation, decapsulation, to obtain PDCP data.
  • the target access network device receives PDCP data encapsulated with the indication information from the source access network device, and determines, according to the indication information, the radio bearer used for transmitting the PDCP data.
  • the indication information is the second radio bearer identifier
  • the radio bearer corresponding to the QoS marking is determined to be the radio bearer used for transmitting the PDCP data.
  • the radio bearer corresponding to the QoS tag and the terminal device IP address is a radio bearer used for transmitting the PDCP data.
  • the terminal device sends a wireless connection reconfiguration complete to the target access network device, indicating that the terminal device has accessed the target access network device; and the target access network device is directed to the control plane.
  • the network element CP sends a path switching request, and carries the downlink user plane tunnel information.
  • the CP sends a user plane path update request to the UP, carries the downlink user plane tunnel information, and the UP returns the user plane path response message; the UP sends the end of the path before the handover.
  • the end tag which may be an end marker message, indicating that this is the last message on the path before the handover, and the end tag is sent by the UP to the source access network.
  • the source access network device forwards the packet to the target access network device; the CP sends a path switch confirmation message to the target access network device; the target access network device sends a release resource message to the source access network device to trigger the source connection.
  • the network access device releases resources related to the terminal device, including radio resources and control plane resources.
  • Steps 310 to 380 may refer to the description of steps 201 to 204 in FIG. 2, and details are not described herein again.
  • the source access network device may determine the second radio bearer identifier, that is, the radio bearer identifier allocated by the target access network device, as the indication information; or determine the service quality label as the indication information; The service quality label and the IP address of the terminal device are determined as the indication information.
  • the third radio bearer identifier that is, the radio bearer identifier allocated by the source access network device, may also be determined as the indication information.
  • the source access network device when the terminal device switches from the source access network device to the target access network device, the source access network device adds the indication information to the encapsulated header of the PDCP data by processing the buffered PDCP data. And sending the packet to the target access network device through the forwarding tunnel between the source access network device and the target access network device, and the target access network device sends the packet to the packet according to the encapsulated header information of the received packet.
  • the problem that the data in the handover process cannot be accurately forwarded when the forwarding tunnel is a tunnel with a session session granularity or a group size is solved.
  • the method 400 shown in FIG. is different from the method 300 in that the radio bearer identifier is allocated by the access network device in the method 300.
  • the radio bearer identifier is allocated by the control plane network element CP.
  • the method 400 includes:
  • the source access network device sends handover request information to the target access network device.
  • the handover request may carry a bearer level QoS parameter, uplink user plane tunnel information, and at least one of the following information: a first radio bearer identifier, a QoS marking.
  • the handover request may also carry the terminal device IP address.
  • the first radio bearer identifier is allocated by the CP and is used to identify a radio bearer between the access network and the terminal device.
  • the QoS marking is information in the encapsulation header of the packet transmitted between the core network user plane network element and the source access network, and is used to identify the service quality requirement of the data transmission, and the different quality of service labels are different.
  • the radio bearer, the target access network device establishes radio resources according to the QoS marking.
  • the parameter is optional when the quality of service tag QoS marking is pre-configured on the access network device.
  • the context information sent by the control plane network element includes a quality of service label.
  • the target access network device receives the handover request message from the source access network device, allocates a radio resource to the terminal device, and determines a handover request acknowledgement message corresponding to the handover request message according to the handover request message.
  • the handover request acknowledgement message carries the first radio bearer identifier, the UL forwarding tunnel information, and the DL forwarding tunnel information.
  • the uplink forwarding tunnel information includes the IP of the target access network, the tunnel endpoint identifier 1 of the target access network (for example, the target AN TEID1), and the like.
  • the downlink forwarding tunnel information includes the IP of the target access network, the tunnel endpoint identifier 2 of the target access network (for example, the target AN TEID2), and the like.
  • the target access network device sends a handover request acknowledgement message to the source access network device.
  • the source access network device receives a handover request acknowledgement message sent by the target access network device.
  • the source access network device sends a wireless connection reconfiguration message to the terminal device, indicating that the target access network device is ready to take over the terminal device.
  • the source access network device sends a state transition message to the target access network device, carrying each bearer The Packet Data Convergence Protocol Sequence Number (PDCP SN) reception status and the downlink PDCP SN transmission status.
  • PDCP SN Packet Data Convergence Protocol Sequence Number
  • the source access network device processes the buffered packet and sends the packet to the target access network device through the forwarding tunnel between the source access network device and the target access network device.
  • the source access network device determines whether the buffered packet has been processed by the PDCP.
  • the packet is not processed, and the packet that is not processed by the PDCP is directly encapsulated into the source access network device and the target access network.
  • the device transmits the packet format and sends it to the target access network device.
  • the packet is the PDCP data
  • the packet is processed as follows.
  • the indication information is encapsulated in the PDCP data header, and then the packet is encapsulated.
  • the PDCP data indicating the information is sent to the target access network device.
  • the forwarding tunnel is a session granularity tunnel
  • the indication information may be the first radio bearer identifier or the QoS marking.
  • the source access network device determines to encapsulate the first radio bearer identifier into the encapsulation header of the PDCP data according to the first radio bearer identifier corresponding to the PDCP data.
  • the following line data is used as an example.
  • the source access network device determines the first radio bearer identifier corresponding to the downlink data according to the QoS marking of the received downlink data, and then the source access network device processes the downlink data. Such as encapsulation, decapsulation, get PDCP data.
  • the source access network device determines to encapsulate the QoS makring into the encapsulation header of the PDCP data according to the QoS marking corresponding to the PDCP data.
  • the following line data is used as an example.
  • the source access network device determines the QoS marking corresponding to the downlink data according to the QoS marking of the received downlink data, and then the source access network device processes the downlink data, such as encapsulation, Decapsulate and get PDCP data.
  • the forwarding tunnel is a group-wide tunnel
  • the indication information may be a first radio bearer identifier, a quality of service label, and a terminal device IP address.
  • the source access network device determines to encapsulate the QoS marking and the terminal device IP address into the encapsulation header of the PDCP data according to the QoS marking and the terminal device IP address corresponding to the PDCP data.
  • the following line data is used as an example.
  • the source access network device determines the QoS marking and the terminal device IP address corresponding to the downlink data according to the QoS marking of the received downlink data, and then the source access network device performs the downlink data. Processing, such as encapsulation, decapsulation, to obtain PDCP data.
  • the source access network device determines a radio bearer that sends the PDCP data.
  • the source access network device determines the indication information according to the radio bearer. For example, the source access network device determines that the indication information is the first radio bearer identifier according to the correspondence between the radio bearer and the first radio bearer identifier, and may determine the indication according to the correspondence between the radio bearer and the QoS label.
  • the information is the quality of service label; and the indication information is determined to be the quality of service label and the terminal device IP address according to the correspondence between the radio bearer and the quality of service label and the terminal device IP address.
  • the target access network device receives the PDCP data encapsulated with the indication information from the source access network device, and determines, according to the indication information, the radio bearer used for transmitting the PDCP data.
  • the indication information is the first radio bearer identifier
  • the radio bearer corresponding to the QoS marking is determined to be the radio bearer used for transmitting the PDCP data.
  • the radio bearer corresponding to the QoS tag and the terminal device IP address is a radio bearer used for transmitting the PDCP data.
  • the terminal device sends a radio connection reconfiguration complete to the target access network device, indicating that the terminal device has access to the target access network device; and the target access network device is directed to the control plane.
  • the network element CP sends a path switching request, and carries the downlink user plane tunnel information.
  • the CP sends a user plane path update request to the UP, carries the downlink user plane tunnel information, and the UP returns the user plane path response message; the UP sends the end of the path before the handover.
  • the tag may be an end marker message indicating that the last packet on the path before the handover is sent by the UP to the source access network device, and then Forwarding to the target access network device by the source access network device; the CP sends a path switch confirmation message to the target access network device; the target access network device sends a release resource message to the source access network device to trigger the source access network device Release terminal device related resources, including wireless resources, control plane resources, and so on.
  • Steps 410 to 480 can refer to the description of steps 201 to 204 in FIG. 2, and details are not described herein again.
  • the source access network device may determine the first radio bearer identifier, that is, the radio bearer identifier allocated by the CP, as the indication information; and may also determine the QoS marking as the indication information; The terminal device IP address is used as the indication information.
  • the source access network device when the terminal device switches from the source access network device to the target access network device, the source access network device adds the first packet to the encapsulated header of the PDCP data by processing the buffered PDCP data.
  • a radio bearer identifier, or a QoS marking, or a QoS marking and a UE IP address and sent to the target access network device through a forwarding tunnel between the source access network device and the target access network device, and the target access network device receives the
  • the encapsulation header information of the received packet is sent to the correct radio bearer, which solves the problem that the forwarding tunnel cannot be accurately forwarded during the handover process when the forwarding tunnel is a session session granularity or a group size granularity tunnel.
  • FIG. 8 is a schematic block diagram of a data transmission device 500 in accordance with an embodiment of the present application. As shown in FIG. 8, the device 500 includes:
  • the encapsulating unit 510 is configured to encapsulate the indication information in an encapsulation header of the packet data convergence protocol PDCP data, where the indication information is used to indicate a radio bearer used by the target access network device to send the PDCP data;
  • the sending unit 520 is configured to send, to the target access network device, the PDCP data encapsulated with the indication information.
  • the indication information includes at least one of the following information: a first radio bearer identifier; a quality of service label; a quality of service label and the terminal device IP address; a second radio bearer identifier; and a third radio bearer identifier;
  • the first radio bearer identifier is allocated by the control plane network element, and is used to identify a radio bearer between the access network and the terminal device;
  • the QoS label is a core network user plane network element and a source access network.
  • the information in the encapsulation header of the transmitted message is used to identify the quality of service requirement for the data transmission;
  • the second radio bearer identifier is allocated by the target access network, and is used to identify the target access network device and the
  • the radio bearer between the terminal devices is configured to be used by the source access network to identify the radio bearer between the source access network device and the terminal device.
  • the sending unit 520 is configured to:
  • the package unit 510 is used to:
  • the forwarding tunnel is a session granularity tunnel
  • at least one of the first radio bearer identifier, the quality of service label, the second radio bearer identifier, and the third radio bearer identifier is encapsulated in a encapsulated header of the PDCP data.
  • Medium or
  • the second radio bearer identifier, the third radio bearer identifier, and at least one of the QoS label and the terminal device IP address are encapsulated in a package header of the PDCP data.
  • the device 500 before the transmitting unit 520 sends the PDCP data encapsulated with the indication information to the target access network device, the device 500 further includes:
  • the receiving unit 530 is configured to receive a handover request acknowledgement message from the target access network device.
  • the determining unit 540 is configured to determine, after receiving the handover request acknowledgement message, the second radio bearer identifier as the indication information.
  • the handover request acknowledgement message includes: the second radio bearer identifier; or a correspondence between the second radio bearer identifier and the third radio bearer identifier; or a correspondence between the second radio bearer identifier and the quality of service label relationship.
  • the determining unit 540 is configured to:
  • the second radio bearer identifier is the indication information.
  • the determining unit 540 is configured to:
  • the indication information is determined to be the third radio bearer identifier.
  • the determining unit 540 is further configured to:
  • the indication information is the first radio bearer identifier
  • the indication information is a third radio bearer identifier according to the correspondence between the radio bearer and the third radio bearer identifier.
  • the encapsulating unit 510 is configured to:
  • the indication information is encapsulated in a data link layer protocol encapsulation header of the PDCP data.
  • the sending unit 520 is configured to:
  • FIG. 9 is a schematic block diagram of a data transmission device 600 in accordance with an embodiment of the present application. As shown in FIG. 9, the device 600 includes:
  • the receiving unit 610 is configured to receive, from the source access network device, a packet data convergence protocol PDCP data, where the PDCP is The encapsulation header of the data includes indication information, where the indication information is used to indicate the radio bearer used by the target access network device to send the PDCP data;
  • the sending unit 620 is configured to send the PDCP data to the terminal device on the radio bearer according to the indication information.
  • the indication information includes: a first radio bearer identifier; or a quality of service label; or a quality of service label and the terminal device Internet Protocol IP address; or a second radio bearer identifier; or a third radio bearer identifier;
  • the first radio bearer identifier is allocated by the control plane network element, and is used to identify a radio bearer between the access network and the terminal device;
  • the QoS label is a core network user plane network element and a source access network.
  • the information in the encapsulation header of the transmitted message is used to identify the quality of service requirement for the data transmission;
  • the second radio bearer identifier is allocated by the target access network, and is used to identify the target access network device and the
  • the radio bearer between the terminal devices is configured to be used by the source access network to identify the radio bearer between the source access network device and the terminal device.
  • the device 600 further includes: a determining unit 630, configured to: when the indication information includes the first radio bearer identifier, determine that the radio bearer identified by the first radio bearer identifier is a radio bearer used for sending the PDCP data ;or
  • the indication information includes the quality of service label
  • determining that the radio bearer corresponding to the quality of service label is a radio bearer used for transmitting the PDCP data
  • the indication information includes the QoS tag and the terminal device IP address, determining that the radio bearer corresponding to the QoS tag and the terminal device IP address is a radio bearer used for transmitting the PDCP data; or
  • the indication information includes the second radio bearer identifier, determining that the radio bearer identified by the second radio bearer identifier is a radio bearer used for transmitting the PDCP data; or
  • the indication information includes the third radio bearer identifier, determining the second radio bearer identifier corresponding to the third radio bearer identifier, and further determining that the radio bearer identified by the second radio bearer identifier is to send the PDCP data
  • the radio bearer used.
  • the device when the indication information includes the third radio bearer identifier, the device further includes:
  • the saving unit 640 is configured to save a correspondence between the second radio bearer identifier and the third radio bearer identifier.
  • the receiving unit 610 is configured to receive, by using a forwarding tunnel, the PDCP data sent by the source access network device, where the forwarding tunnel is used to transmit a service packet of one or more terminal devices;
  • the determining unit 630 is configured to:
  • the indication information includes: the first radio bearer identifier; or the QoS label; or the second radio bearer identifier; or the third radio bearer identifier; or
  • the indication information includes: the first radio bearer identifier; or the second radio bearer identifier; or the third radio bearer identifier; or the QoS label and the terminal device IP address .
  • the receiving unit 610 receives the PDCP data sent by the source access network device.
  • the sending unit 620 is configured to send the handover request acknowledgement message to the source access network device, where the handover request acknowledgement message includes: the second radio bearer identifier; or the correspondence between the second radio bearer identifier and the third radio bearer identifier a relationship; or a correspondence between the second radio bearer identifier and the quality of service tag.
  • the encapsulation header of the PDCP data is encapsulated with indication information, including:
  • the indication information is encapsulated in a transport layer protocol encapsulation header of the PDCP data;
  • the indication information is encapsulated in a data link layer protocol encapsulation header of the PDCP data.
  • the receiving unit 610 is configured to:
  • the PDCP data is received from the source access network device through the core network user plane network element.
  • FIG. 10 is a schematic block diagram of a communication device 700 provided by an embodiment of the present application.
  • the communication device 700 includes:
  • the memory 710 is configured to store a program, where the program includes a code
  • the transceiver 720 is configured to communicate with other devices;
  • the processor 730 is configured to execute program code in the memory 710.
  • the processor 730 can implement various operations performed by the source access network device in the method 200 in FIG. 3, the method 300 in FIG. 6, or the method 400 in FIG. , will not repeat them here.
  • the communication device 700 can be a source access network device.
  • the transceiver 720 is configured to perform specific signal transceiving under the driving of the processor 730.
  • the processor 730 may further implement the operations performed by the target access network device in the method 200 in FIG. 3, the method 300 in FIG. 6, or the method 400 in FIG. , will not repeat them here.
  • the communication device 700 can be a target access network device.
  • the processor 730 may be a central processing unit (CPU), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 710 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 710 may also include a non-volatile random access memory. For example, the memory 710 can also store information of the device type.
  • the transceiver 720 can be used to implement signal transmission and reception functions, such as frequency modulation and demodulation functions or upconversion and down conversion functions.
  • At least one step of the above method may be performed by an integrated logic circuit of hardware in the processor 730, or the integrated logic circuit may perform the at least one step driven by an instruction in a software form.
  • communication device 700 can be a chip or chipset.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 730 reads the information in the memory and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center By wire (for example coaxial Cable, fiber, digital subscriber line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和设备,终端设备从源接入网设备向目标接入网设备切换过程中,源接入网设备通过对缓存的PDCP数据进行处理,使得目标接入网设备在转发隧道为会话session粒度或组group粒度的隧道时,准确转发切换过程中的数据。所述方法包括:源接入网设备将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载;该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据。

Description

数据传输方法和设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输方法和设备。
背景技术
随着高频频谱的不断使用,通信小区变得越来越小,热点小区的出现,进一步加剧了通信小区切换的频率。当用户设备(User Equipment,UE)发生切换前,用户设备先从源基站接收一些分组数据汇聚协议的业务数据单元(Packet Data Convergence Protocol Service Data Unit,PDCP SDU),切换后开始从目标基站接收PDCP SDU(其中一些PDCP SDU是由源基站转给目标基站,并且有一些PDCP SDU是源基站已发给终端但尚未得到确认的)。源基站与目标基站的数据通信是通过直接转发隧道或间接转发隧道来实现,而在未来第五代(5th-Generation,5G)通信中,间接转发隧道或直接转发隧道的粒度为每个会话per session或每个组per group,此时,目标基站无法将分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)报文通过正确的无线承载发送给用户设备。
因此,如何在小区切换时,尤其是间接转发隧道或直接转发隧道为会话session粒度或组group粒度的隧道时,让目标接入网设备(基站)将PDCP数据通过正确的无线承载发送给用户设备,提高数据传输速率,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种数据传输方法和设备,在终端设备从源接入网设备向目标接入网设备切换时,目标接入网设备能够准确确定发送PDCP数据的无线承载,提高数据传输速率。
第一方面,本申请实施例提供了一种数据传输方法,包括:源接入网设备将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载;该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据。
因此,在本申请实施例中,终端设备从源接入网设备向目标接入网设备切换过程中,源接入网设备通过对缓存的PDCP数据进行处理,在该PDCP数据的封装头中添加用于指示目标接入网设备将该PDCP数据发送到相应的无线承载的指示信息,实现将报文发送到正确的无线承载上,解决了当转发隧道为会话session粒度或组group粒度的隧道时,无法准确转发切换过程中的数据的问题。
可选地,在第一方面的一种实现方式中,该指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与该终端设备因特网协议(Internet Protocol,IP)地址;或第二无线承载标识;或第三无线承载标识;
其中,该第一无线承载标识,是由控制面网元分配的,用于标识接入网与该终端设备之间的无线承载;该服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;该第二无线承载标识,是由目标接入网分配的,用于标识该目标接入网设备与该终端设备之间的无线承载;该第三无线承载标识,是由源接入网分配的,用于标识该源接入网设备与该终端设备之间的无线承 载。
因此,在本申请实施例中,指示信息可以是第一无线承载标识,或服务质量标签,或服务质量标签与该终端设备IP地址,或第二无线承载标识,或第三无线承载标识,源接入网设备将指示信息封装在该PDCP数据的封装头中,并将该PDCP数据发送到目标接入网设备,使得目标接入网设备根据该PDCP数据的封装头中封装的指示信息,将该PDCP数据发送到相应的无线承载。
可选地,在第一方面的一种实现方式中,该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据,包括:
该源接入网设备通过转发隧道向该目标接入网设备发送封装有该指示信息的该PDCP数据,该转发隧道用于传输一个或多个终端设备的业务报文;该源接入网设备将指示信息封装在PDCP数据的封装头中,包括:当该转发隧道为会话粒度的隧道时,将该第一无线承载标识,该服务质量标签,该第二无线承载标识,以及该第三无线承载标识中的至少一种封装在PDCP数据的封装头中;或
当该转发隧道为组粒度的隧道时,将该第一无线承载标识,该第二无线承载标识,该第三无线承载标识,以及该服务质量标签与终端设备IP地址中的至少一种封装在PDCP数据的封装头中。
可选地,在第一方面的一种实现方式中,在该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据之前,该方法还包括:
该源接入网设备从该目标接入网设备接收切换请求确认消息;
该源接入网设备收到该切换请求确认消息后,确定该第二无线承载标识为该指示信息。
可选地,在第一方面的一种实现方式中,该切换请求确认消息包括:第二无线承载标识;或该第二无线承载标识与该第三无线承载标识的对应关系;或该第二无线承载标识与该服务质量标签的对应关系。
可选地,在第一方面的一种实现方式中,该源接入网设备确定第二无线承载标识为该指示信息,包括:
根据该第二无线承载标识与该第三无线承载标识的对应关系,或根据该第二无线承载标识与该服务质量标签的对应关系,确定该第二无线承载标识为该指示信息。
可选地,在第一方面的一种实现方式中,该源接入网设备根据该切换请求确认消息确定该指示信息,包括:
当该切换请求确认消息中未包括该第二无线承载标识、该第二无线承载标识与该第三无线承载标识的对应关系,以及该第二无线承载标识与该服务质量标签的对应关系中的任一种信息时,确定该指示信息为该第三无线承载标识。
可选地,在第一方面的一种实现方式中,在该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据之前,该方法还包括:
该源接入网设备确定发送该PDCP数据的无线承载,
根据该无线承载与该第一无线承载标识的对应关系,确定该指示信息为该第一无线承载标识;或
该源接入网设备确定发送该PDCP数据的服务质量标签,确定该指示信息为该服务质量标签;或
该源接入网设备确定发送该PDCP数据的服务质量标签和该终端设备IP地址,确定该指示信息为该服务质量标签和该终端设备IP地址;或
该源接入网设备确定发送该PDCP数据的源无线承载,根据该源无线承载与该第三无线承载标识的对应关系,确定该指示信息为第三无线承载标识。
可选地,在第一方面的一种实现方式中,该源接入网设备将指示信息封装在PDCP数据的封装头中,包括:
将指示信息封装在该PDCP数据的传输层协议封装头中;或
将指示信息封装在该PDCP数据的数据链路层协议封装头中。
可选地,在第一方面的一种实现方式中,该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据,包括:
该源接入网设备通过核心网用户面网元向该目标接入网设备发送封装有该指示信息的该PDCP数据。
第二方面,本申请实施例提供了一种数据传输方法,包括:目标接入网设备从源接入网设备接收分组数据汇聚协议PDCP数据,该PDCP数据的封装头中包括指示信息,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载;该目标接入网设备根据该指示信息,在该无线承载上向该终端设备发送该PDCP数据。
因此,在本申请实施例中,终端设备从源接入网设备向目标接入网设备切换过程中,目标接入网设备接收到经源接入网设备处理过的PDCP数据,在该PDCP数据的封装头中添加用于指示目标接入网设备将该PDCP数据发送到相应的无线承载的指示信息,实现目标接入网设备将报文发送到正确的无线承载上,解决了当转发隧道为会话session粒度或组group粒度的隧道时,无法准确转发切换过程中的数据的问题。
可选地,在第二方面的一种实现方式中,该指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与该终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
其中,该第一无线承载标识,是由控制面网元分配的,用于标识接入网与该终端设备之间的无线承载;该服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;该第二无线承载标识,是由目标接入网分配的,用于标识该目标接入网设备与该终端设备之间的无线承载;该第三无线承载标识,是由源接入网分配的,用于标识该源接入网设备与该终端设备之间的无线承载。
因此,在本申请实施例中,指示信息可以是第一无线承载标识,或服务质量标签,或服务质量标签与该终端设备IP地址,或第二无线承载标识,或第三无线承载标识,源接入网设备将指示信息封装在该PDCP数据的封装头中,并将该PDCP数据发送到目标接入网设备,使得目标接入网设备根据该PDCP数据的封装头中封装的指示信息,将该PDCP数据发送到相应的无线承载。
可选地,在第二方面的一种实现方式中,当该指示信息包括该第一无线承载标识时,确定该第一无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该服务质量标签时,确定与该服务质量标签对应的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该服务质量标签与该终端设备IP地址时,确定与该服务质量标签 与该终端设备IP地址对应的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该第二无线承载标识时,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该第三无线承载标识时,确定与该第三无线承载标识,对应的第二无线承载标识,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
可选地,在第二方面的一种实现方式中,当该指示信息包括该第三无线承载标识时,该方法还包括:该目标接入网设备保存该第二无线承载标识与第三无线承载标识的对应关系。
可选地,在第二方面的一种实现方式中,该目标接入网设备接收该源接入网设备发送的该PDCP数据,包括:
该目标接入网设备通过转发隧道接收该源接入网设备发送的该PDCP数据,该转发隧道用于传输一个或多个终端设备的业务报文;
该方法还包括:
当该转发隧道为会话粒度的隧道时,该指示信息包括:该第一无线承载标识;或该服务质量标签;或该第二无线承载标识;或该第三无线承载标识;或
当该转发隧道为组粒度的隧道时,该指示信息包括:该第一无线承载标识;或该第二无线承载标识;或该第三无线承载标识;或该服务质量标签与该终端设备IP地址。
可选地,在第二方面的一种实现方式中,在该目标接入网设备接收该源接入网设备发送的该PDCP数据之前,该方法还包括:
该目标接入网设备向该源接入网设备发送该切换请求确认消息,该切换请求确认消息包括:该第二无线承载标识;或该第二无线承载标识与该第三无线承载标识的对应关系;或该第二无线承载标识与该服务质量标签的对应关系。
可选地,在第二方面的一种实现方式中,该PDCP数据的封装头中封装有指示信息,包括:
该PDCP数据的传输层协议封装头中封装有该指示信息;或
该PDCP数据的数据链路层协议封装头中封装有该指示信息。
可选地,在第二方面的一种实现方式中,该目标接入网设备从源接入网设备接收PDCP数据,包括:该目标接入网设备通过核心网用户面网元从该源接入网设备接收PDCP数据。
第三方面,本申请实施例提供了一种数据传输设备,可以执行第一方面或第一方面的任一可选的实现方式中的方法的模块或者单元。
第四方面,本申请实施例提供了一种数据传输设备,可以执行第二方面或第二方面的任一可选的实现方式中的方法的模块或者单元。
第五方面,提供了一种无线通信的设备,包括存储器、收发器和处理器,该存储器上存储有可以用于指示执行上述第一方面或其任意可选的实现方式的程序代码,收发器用于在处理器的驱动下执行具体的信号收发,当该代码被执行时,该处理器可以实现方法中源接入网设备执行的各个操作。
第六方面,提供了一种无线通信的设备,包括存储器、收发器和处理器,该存储器上存储有可以用于指示执行上述第二方面或其任意可选的实现方式的程序代码,收发器 用于在处理器的驱动下执行具体的信号收发,当该代码被执行时,该处理器可以实现方法中目标接入网设备执行的各个操作。
第七方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是使用本申请实施例的一种数据传输方法的通信系统的示意图。
图2是使用本申请实施例的一种数据传输方法的接入网之间切换的示意图。
图3是根据本申请实施例的一种数据传输方法的示意性流程图。
图4是一种转发隧道的示意图。
图5是另一种转发隧道的示意图。
图6是根据本申请另一实施例的一种数据传输方法的示意性流程图。
图7是根据本申请再一实施例的一种数据传输方法的示意性流程图。
图8是根据本申请实施例的一种数据传输设备的示意性框图。
图9是根据本申请另一实施例的一种数据传输设备的示意性框图。
图10示出了本申请实施例提供的通信设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是使用本申请的一种数据传输方法的通信系统的示意图。如图1所示,该通信系统100包括终端设备110,接入网设备120,控制面网元130,转发面网元140和数据网络150。另外,本领域普通技术人员可以理解,该通信系统100不同的设备之间通过接口进行通信。
终端设备110可以通过承载与接入网设备120建立用户面连接,也可以通过接口与控制面网元130建立通信信令连接。可选地,在本申请实施例中,该终端设备110包括但不限于终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动终端、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、物联网中的终端设备、虚拟现实设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的终端设备等。
接入网设备120可以是与终端设备110进行通信的设备,例如,基站或基站控制器等。然而,可以理解,该接入网设备120可以与类似于终端设备110的任意数目终端设备通信。接入网设备120还可以通过接口与控制面网元130进行通信。同样,接入网设备120还可以通过接口与转发面网元140进行通信。每个接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备(例如UE)进行通信,接入网设备可以支持不同制式的通信协议,或者可以支持不同的通信模式。可选地,该接入网设备120可以为终端设备提供无线接入服务,例如,该接入网设备120以 是演进型基站(Evolved Node B,eNodeB),或者是无线保真接入点(Wireless Fidelity Access Point,WiFi AP)、或者是全球微波接入互操作性基站(Worldwide Interoperability for Microwave Access Base Station,WiMAX BS),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为未来5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
可选地,如图2所示,接入网设备120(源接入网121与目标接入网122)之间也可以进行通信,例如,在终端设备111、终端设备112或终端设备113进行接入网切换时,就需要将源接入网121缓存的数据传输给目标接入网122。
例如,如图2所示,该源接入网121可以通过直接转发隧道与目标接入网122进行通信。
再例如,如图2所示,该源接入网121还可以通过间接转发隧道与目标接入网122进行通信,完成数据转发,该间接转发隧道是建立在转发面网元140的基础上的,源接入网首先将数据传输到转发面网元140,然后,转发面网元140将数据转发到目标接入网设备。
可选地,如图2所示,该源接入网121与该目标接入网122之间的转发隧道可以是会话session粒度的隧道,也可以是组group粒度的隧道。
可选地,如图2所示,该源接入网121与该目标接入网122之间传输的数据可以是分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)数据,也可以是一些其它的数据,例如,IP数据,这些数据以源接入网与目标接入网之间的隧道的报文传输格式进行传输。
控制面网元130,负责该通信系统100中的移动性管理、转发路径管理,如向转发面网元140下发报文转发策略,指示网关转发面(Gateway User Plane,GW-U)根据报文转发策略进行报文处理和转发。控制面网元130可以是软件定义网络(Software Defined Network,SDN)控制器、网关控制面(Gateway Control Plane,GW-C)、移动性管理实体(Mobility Management Entity,MME)或以上网元融合后形成的控制功能的全部或部分。其中,软件定义网络技术为网关信令处理的瓶颈问题提供了有效的途径,通过进一步将网关的控制面接口信令处理功能和用户面转发数据功能分离,将接口信令处理功能放在通用计算平台上,成为控制面网元(Control Plane,CP),将用户面转发数据的功能放在专用硬件平台上,成为转发面网元(User Plane,UP)。控制面网元130还可以分为移动性管理网元和会话管理网元,其中移动性管理网元负责终端设备的移动性管理,如终端设备附着网络、终端设备的位置变化等,会话管理网元负责终端设备的会话管理,如会话建立、修改、释放等。另外,通过网关设备控制和转发的解耦,大大简化了硬件平台的设计,降低了硬件平台的成本,有利于加快移动分组数据网络部署。MME主要负责控制面的移动性管理和会话管理,如用户的鉴权、切换、空闲状态终端的移动性管理、用户上下文以及承载管理等。
转发面网元140负责报文处理与转发。转发面网元140可以是P-GW的转发面功能、S-GW的转发面功能、路由器、交换机等物理或虚拟的转发设备。
数据网络150为用户提供数据传输服务,可以是分组数据网络(Packet Data Network,PDN),例如因特网(Internet)、因特网协议多媒体业务(IP Multi-media Service,IP IMS) 等。
终端设备110或接入网设备120可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D(Device to Device)网络或者M2M(Machine to Machine)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请实施例提供的数据传输方法和设备,可以应用于终端设备,该终端设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(MMU,Memory Management Unit)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
图3是根据本申请实施例的一种数据传输方法200的示意性流程图。如图3所示,该方法200包括以下内容。
在201中,源接入网设备将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载。
可选地,在执行201之前,源接入网设备判断缓存的报文是否已经进行了PDCP处理。如果未进行PDCP处理(例如,报文是IP报文),则不需要对报文进行处理,直接将未进行PDCP处理的报文封装成源接入网设备与目标接入网设备的传输报文格式,并发送给目标接入网设备。如果已经进行了PDCP处理,即该报文是PDCP数据,则需要对报文进行如下处理,在本申请实施例中是将指示信息封装在PDCP数据头中,然后,将封装有指示信息的PDCP数据发送给目标接入网设备。
可选地,该指示信息包括以下信息中的至少一种:第一无线承载标识;服务质量标签;服务质量标签与该终端设备IP地址;第二无线承载标识;第三无线承载标识。
例如,该第一无线承载标识是由CP分配的,用于标识接入网与该终端设备之间的无线承载。可选地,该第一无线承载标识在该源接入网设备和该目标接入网设备之间切换时保持一致,例如,该源接入网设备可以根据该第一无线承载标识确定向该终端设备发 送PDCP数据的无线承载,同样,该目标接入网设备也可以根据该第一无线承载标识确定向该终端设备发送PDCP数据的无线承载。
该服务质量标签(QoS marking)为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求,不同的服务质量标签对应不同的无线承载,目标接入网设备根据该QoS marking建立无线资源。
该第二无线承载标识是由目标接入网设备分配的,用于标识该目标接入网设备与该终端设备之间的无线承载,例如,该第二无线承载标识用于标识该目标接入网设备和该终端设备之间能够传输该PDCP数据的无线承载。可选地,该第二无线承载标识只能在目标接入网中指示无线承载信息,在其他接入网中无法指示无线承载信息。
该第三无线承载标识是由源接入网设备分配的,用于标识该源接入网设备与该终端设备之间的无线承载,例如,该第三无线承载标识用于标识该源接入网设备和该终端设备之间能够传输该PDCP数据的无线承载。可选地,该第三无线承载标识只能在源接入网中指示无线承载信息,在其他接入网中无法指示无线承载信息。
其中,该第二无线承载标识或该第三无线承载标识与该第一无线承载标识的区别在于:(1)分配者不同,第一无线承载标识是由CP分配的,该第二无线承载标识或该第三无线承载标识则是由接入网分配的;(2)维持不变的时间长度不同:第一无线承载标识即使在终端设备发生切换时,依然保持不变;而该第二无线承载标识或该第三无线承载标识可能在终端设备切换到不同接入网时就会发生变化,由切换后的目标接入网分配新的无线承载标识。
可选地,源接入网设备可以将指示信息封装在该PDCP数据的传输层协议封装头中。
例如,传输层协议以通信分组无线服务用户面隧道协议(General Packet Radio Service tunneling protocol for user plane,GTP-U)为例进行说明。
GTP-U协议的头结构如表1所示:
表1
Figure PCTCN2017073679-appb-000001
本申请实施例可以通过扩展GTP-U,以使GTP-U协议支持该指示信息的封装。具体 扩展方式包括2种情况:(1)直接扩展GTP-U;(2)通过下一代扩展头类型扩展GTP-U协议。
情况一,直接扩展GTP-U协议,如表2所示:
表2
Figure PCTCN2017073679-appb-000002
情况二,间接扩展,通过传输层协议的自身扩展能力进行扩展,例如,GTP-U通过下一代扩展头类型扩展。如表3所示。
表3
字节1   0x01
字节2-3   指示信息
字节4   下一代扩展头类型
可选地,源接入网设备也可以将指示信息封装在该PDCP数据的数据链路层协议封装头中。
例如,扩展方式为:直接扩展PDCP协议,以使PDCP协议支持该指示信息的封装。该PDCP协议采用12bit的序列号(sequence number,SN),扩展方式如表4所示:
表4
Figure PCTCN2017073679-appb-000003
可选地,PDCP数据可以是表4中的字节4到字节N。
可选地,目标接入网设备可以根据该指示信息确定发送PDCP数据的无线承载。
在202中,该源接入网设备向该目标接入网设备发送封装有该指示信息的该PDCP数据。
可选地,该源接入网设备通过转发隧道向该目标接入网设备发送该PDCP数据。例如,该转发隧道用于传输一个或多个终端设备的业务报文。
可选地,转发隧道可以是直接转发隧道,也可以是间接转发隧道。
可选地,该转发隧道可以是会话粒度的隧道,也可以是组粒度的隧道。
可选地,对PDCP数据的具体处理方式可以根据转发隧道的粒度分为两种情况:
情况一,转发隧道为会话粒度的隧道
可选地,当该转发隧道为会话粒度的隧道时,该指示信息可以是第一无线承载标识、服务质量标签QoS marking、第二无线承载标识和第三无线承载标识中的至少一种。
可选地,当该转发隧道为会话粒度的隧道时,将第一无线承载标识,或服务质量标签,或第二无线承载标识,或第三无线承载标识作为指示信息封装在PDCP数据的封装头中。并通过源接入网设备与目标接入网设备之间的转发隧道,可将处理后的PDCP数据发送给目标接入网设备。此时,该转发隧道可以是直接转发隧道,也可以是间接转发隧道。
需要说明的是,该PDCP数据可以是上行PDCP数据,也可以是下行PDCP数据。
例如,以下行报文为例,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking)确定该下行报文对应的无线承载,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备根据该无线承载与第一无线承载标识的对应关系,确定该PDCP数据对应的第一无线承载标识,并将该第一无线承载标识封装到该PDCP数据的封装头中。
又例如,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking)确定该下行报文对应的QoS marking,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备将该QoS marking作为指示信息封装在该PDCP数据的封装头中。可选地,源接入网设备接收下行报文,还根据下行报文的封装头信息确定该下行报文对应的无线承载。
又例如,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking)确定下行报文对应的QoS marking,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备根据QoS marking与第二无线承载标识的对应关系,确定该PDCP数据对应的第二无线承载标识,并将该第二无线承载标识封装到该PDCP数据的封装头中。可选地,源接入网设备接收下行报文,还根据下行报文的封装头信息确定该下行报文对应的无线承载。
又例如,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking)确定该下行报文对应的无线承载,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备根据无线承载与第三无线承载标识的对应关系,确定该PDCP数据对应的第三无线承载标识,并根据第三无线承载标识与第二无线承载标识的对应关系,确定该PDCP数据对应的第二无线承载标识,并将该第二无线承载标识封装到该PDCP数据的封装头中。
再例如,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking)确定该下行报文对应的无线承载,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备根据无线承载与第三无线承载标识的对应关系,确定该PDCP数据对应的第三无线承载标识,并将该第三无线承载标识封装到该PDCP数据的封装头中。
确定该下行报文对应的无线承载,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网可以根据第三无线承载标识与第二无线承载标识的对应关系,或者,根据QoS marking与第二无线承载标识的对应关系,确定该PDCP数据对应的第二无线承载标识,并将该第二无线承载标识封装到该PDCP数据的封装头中;源接入网也可以直接确定第三无线承载标识,并将该第三无线承载标识封装到该PDCP数据的封装头中。通过源接入网设备与目标接入网设备之间的转发隧道,可将处理后的PDCP数据发送给目标接入网设备。此时,该转发隧道可以是直接转发隧道,也可以是间接转发隧道;该指示信息可以是该第二无线承载标识,也可以是该第三无线承载标识。
情况二,转发隧道为组粒度的隧道
可选地,当该转发隧道为组粒度的隧道时,该指示信息可以是第一无线承载标识、服务质量标签和终端设备IP地址、第二无线承载标识和第三无线承载标识中的至少一种。
可选地,当该转发隧道为组粒度的隧道时,将第一无线承载标识,或服务质量标签和终端设备IP地址,或第二无线承载标识,或第三无线承载标识作为指示信息封装在PDCP数据的封装头中。并通过源接入网设备与目标接入网设备之间的转发隧道,可将处理后的PDCP数据发送给目标接入网设备。此时,该转发隧道可以是直接转发隧道,也可以是间接转发隧道。
例如,源接入网设备接收下行报文,根据下行报文的封装头信息(QoS marking,终端设备IP地址)确定该下行报文对应的QoS marking和终端设备IP地址,然后源接入网设备对部分下行报文进行处理,如解封装、封装处理,处理后的报文为PDCP数据。源接入网设备将该QoS marking与终端设备IP地址封装到该PDCP数据的封装头中。
其它举例与情况1类似,此处不再赘述。
需要说明的是,上述描述是指在转发隧道为会话粒度的隧道的场景下,源接入网设备可将第一无线承载标识、或服务质量标签QoS marking、或第二无线承载标识、或第三无线承载标识作为指示信息;在转发隧道为组粒度的隧道的场景下,源接入网设备可将第一无线承载、或QoS marking和终端设备IP地址、或第二无线承载标识、或第三无线承载标识作为指示信息。然而,接入网设备可不用感知隧道的粒度。
可选地,上述情况中,当源接入网设备与目标接入网设备之间通过间接转发隧道进行通信连接时,源接入网设备通过核心网控制面网元与该目标接入网设备进行信令通信,如向目标接入网设备发送切换请求消息、接收目标接入网设备发送的切换请求确认消息;通过核心网用户面网元与该目标接入网设备进行数据通信,如向目标接入网设备发送PDCP数据。
例如,如图4所示,该转发隧道可以是会话粒度的隧道。在终端设备2从源接入网切换到目标接入网时,源接入网设备可以通过直接转发隧道向目标接入网设备发送PDCP数据,也可以通过间接转发隧道向目标接入网设备发送PDCP数据。一个终端设备可以 同时在多个无线承载上执行业务(例如,终端2在承载a和承载b上执行业务,终端3在承载e和承载f上执行业务),也可以只在一个无线承载上执行业务(例如,终端1只在承载c上执行业务)。一个源接入网设备可以同时与多个终端进行业务往来,如,终端1,终端2和终端3。如图所示,每个终端设备至少存在一个会话资源。终端2从源接入网切换至目标接入网时,其与源接入网设备的无线承载a和b断开,建立与目标接入网设备的无线承载j和k,以及源接入网设备与目标接入网设备之间的转发隧道。源接入网设备将封装有指示信息的PDCP数据发送给目标接入网设备,以便于该目标接入网设备确定发送该PDCP数据的承载j。此时,该指示信息可以是该第一无线承载标识;或服务质量标签;或第二无线承载标识;或第三无线承载标识。
又例如,如图5所示,该转发隧道可以是组粒度的隧道。在终端设备2从源接入网切换到目标接入网时,源接入网设备可以通过直接转发隧道向目标接入网设备发送PDCP数据,也可以通过间接转发隧道向目标接入网设备发送PDCP数据。一个终端设备可以同时在多个无线承载上执行业务(例如,终端2在承载a和承载b上执行业务,终端3在承载e和承载f上执行业务),也可以只在一个无线承载上执行业务(例如,终端1只在承载c上执行业务)。一个源接入网设备可以同时与多个终端进行业务往来,如,终端1,终端2和终端3。具有相同业务类型的终端可以划分为群组,如图所示,终端1和终端3占用一个组资源,终端2占用一个组资源。类似的,终端2从源接入网切换至目标接入网时,其与源接入网设备的无线承载a和b断开,建立与目标接入网设备的无线承载j和k,以及源接入网设备与目标接入网设备之间的转发隧道。源接入网设备将封装有指示信息的PDCP数据发送给目标接入网设备,以便于该目标接入网设备确定发送该PDCP数据的承载j。此时,该指示信息可以是该服务质量标签和终端设备2的IP地址;或该第二无线承载标识;或该第三无线承载标识。
可选地,该源接入网设备通过核心网用户面网元向该目标接入网设备发送该PDCP数据。此时,源接入网设备通过间接转发隧道向该目标接入网设备发送该PDCP数据。
在203中,目标接入网设备从源接入网设备接收该PDCP数据,该PDCP数据的封装头中包括指示信息,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载。
可选地,该目标接入网设备通过上述转发隧道从该源接入网设备接收该PDCP数据。
在204中,该目标接入网设备根据该指示信息,在该无线承载上向该终端设备发送该PDCP数据。
可选地,目标接入网设备根据该指示信息,确定发送该PDCP数据的无线承载,并在该无线承载上向该终端设备发送该PDCP数据。
当指示信息为第一无线承载标识时,确定该第一无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为第二无线承载标识时,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为第三无线承载标识时,确定与该第三无线承载标识,对应的第二无线承载标识,进而,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为服务质量标签QoS marking时,确定与该服务质量标签QoS marking 对应的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为QoS marking与终端设备IP地址时,确定与该服务质量标签与该终端设备IP地址对应的无线承载为发送该PDCP数据所用的无线承载。
可选地,可以作为一个实施例,如图6所示,该方法300包括:
在310中,源接入网设备向目标接入网设备发送切换请求消息。
该切换请求消息可以携带承载等级QoS参数、上行用户面隧道信息,以及以下信息中的至少一种:第三无线承载标识、服务质量标签。
可选地,当转发隧道为组粒度的隧道时,该切换请求消息还可以携带终端设备IP地址。
可选地,该第三无线承载标识是由源接入网设备分配的,用于标识该源接入网设备与该终端设备之间的无线承载。可选地,该第三无线承载标识只能在源接入网中指示无线承载信息,在其他接入网中无法指示无线承载信息。可选地,在会话建立过程中,源接入网设备是根据控制面网元发送的上下文信息建立第三无线承载,并分配第三无线承载标识。可选地,当该服务质量标签QoS marking是预配置在接入网设备上时,该参数为可选的。其中,该控制面网元发送的上下文信息包括服务质量标签。
可选地,该第三无线承载标识包括至少一个无线承载标识。
例如,如图4或图5所示,该第三无线承载标识可以包括终端2的承载a的标识和承载b的标识,也可以是包括终端3的承载e的标识和承载f的标识,还可以是终端1的承载c的标识。
在320中,目标接入网设备从源接入网设备接收该切换请求消息,分配第二无线承载标识,并根据该切换请求消息确定该切换请求消息对应的切换请求确认消息。
例如,切换请求确认消息可包括:第二无线承载标识,或,该第二无线承载标识与该第三无线承载标识的对应关系,或,该第二无线承载标识与该服务质量标签的对应关系。
此外,切换请求确认消息也可不包含上述第二无线承载标识、该第二无线承载标识与该第三无线承载标识的对应关系、或、该第二无线承载标识与该服务质量标签的对应关系。
可选地,目标接入网设备保存第二无线承载标识与第三无线承载标识之间的对应关系。
可选地,第二无线承载标识包括至少一个无线承载标识。
例如,在图4或图5的例子中,该第二无线承载标识包括无线承载j的标识ID_J,无线承载k的标识ID_K。
例如,如表5所示,结合图4或图5的例子,第二无线承载标识与第三无线承载标识的对应关系,具体如下描述:第二无线承载标识可以包括承载j的标识ID_J和承载k的标识ID_K,第三无线承载标识可以包括承载a的标识ID_A和承载b的标识ID_B,源接入网设备确定第二无线承载标识与第三无线承载标识的对应关系可以是:无线承载标识J对应无线承载标识A,无线承载标识K对应无线承载标识B。
表5
Figure PCTCN2017073679-appb-000004
Figure PCTCN2017073679-appb-000005
例如,如表6所示,第二无线承载标识与服务质量标签QoS marking的对应关系,具体描述如下:第二无线承载标识可以包括标识a,标识b,标识c,源接入网中的QoS marking可以包括QoS marking A,QoS marking B,QoS marking C。源接入网设备确定第二无线承载标识与QoS marking的对应关系可以是:标识a对应QoS marking A,标识b对应QoS marking B,标识c对应QoS marking C。
表6
第二无线承载标识 QoS marking
标识a QoS marking A
标识b QoS marking B
标识c QoS marking C
在330中,目标接入网设备向源接入网设备发送切换请求确认消息。
可选地,该切换请求确认消息携带上行转发隧道信息(UL forwarding tunnel information)、下行转发隧道信息(DL forwarding tunnel information),以及以下信息中的至少一种:第二无线承载标识、第二无线承载标识与第三无线承载标识的对应关系、第二无线承载标识与QoS marking的对应关系。
上行转发隧道信息,包括目标接入网的IP、目标接入网的隧道端点标识1(例如,目标AN TEID1)等。
下行转发隧道信息,包括目标接入网的IP、目标接入网的隧道端点标识2(例如,目标AN TEID2)等。
在340中,源接入网设备接收目标接入网设备发送的切换请求确认消息。
可选地,当切换请求确认消息携带第二无线承载标识时,源接入网设备确定第二无线承载标识与第三无线承载标识的对应关系。
在350中,源接入网设备向该终端设备发送无线连接重配置消息,表明目标接入网设备已经准备好接管该终端设备。
在360中,源接入网设备向目标接入网设备发送状态转移消息,携带每个承载的上行分组数据汇聚协议序列号(Packet Data Convergence Protocol Sequence Number,PDCP SN)接收状态、下行PDCP SN发送状态。
在370中,源接入网设备对缓存的报文进行处理,并通过源接入网设备与目标接入网设备之间的转发隧道发送给目标接入网设备。
可选地,源接入网设备判断缓存的报文是否已经进行了PDCP处理。
如果未进行PDCP处理(例如,报文是IP报文),则不需要对报文进行处理,直接将未进行PDCP处理的报文封装成源接入网设备与目标接入网设备的传输报文格式,并发送给目标接入网设备。
如果已经进行了PDCP处理,即该报文是PDCP数据,则需要对报文进行如下处理,在本申请实施例中是将指示信息封装在PDCP数据头中,然后,将封装有指示信息的PDCP数据发送给目标接入网设备。
情况一,转发隧道为会话粒度的隧道,该指示信息可以是第二无线承载标识,也可 以是第三无线承载标识,还可以是服务质量标签(QoS marking)。
例如,源接入网设备根据该PDCP数据对应的QoS marking,确定将QoS makring封装到该PDCP数据的封装头中。其中,以下行数据为例,源接入网设备根据接收到的下行数据的封装头(QoS marking)确定下行数据对应的QoS marking,然后源接入网设备对该下行数据进行处理,如封装、解封装,得到PDCP数据。
又例如,源接入网设备根据该PDCP数据对应的QoS marking,以及第二无线承载标识与QoS marking的对应关系,确定该PDCP数据对应的第二无线承载标识,进而,确定将第二无线承载标识作为指示信息封装在该PDCP数据中。
又例如,源接入网设备根据该PDCP数据对应的QoS marking确定该PDCP数据对应的无线承载,根据无线承载与第三无线承载标识的对应关系,确定该PDCP数据对应的第三无线承载标识,并将第三无线承载标识作为指示信息封装在该PDCP数据中。
又例如,源接入网设备根据该PDCP数据对应的QoS marking确定该PDCP数据对应的无线承载,根据无线承载与第三无线承载标识的对应关系,确定该PDCP数据对应的第三无线承载标识,并根据第三无线承载标识与第二无线承载标识的对应关系,确定该PDCP数据对应的第二无线承载标识,并将第二无线承载标识作为指示信息封装在该PDCP数据中。
情况二,当转发隧道为组粒度的隧道时,该指示信息可以是第二无线承载标识,也可以是第三无线承载标识,还可以是QoS marking和终端设备IP地址。
例如,源接入网设备根据该PDCP数据对应的QoS marking和终端设备IP地址,确定将QoS marking和终端设备IP地址封装到该PDCP数据的封装头中。其中,以下行数据为例,源接入网设备根据接收到的下行数据的封装头(QoS marking)确定下行数据对应的QoS marking和终端设备IP地址,然后源接入网设备对该下行数据进行处理,如封装、解封装,得到PDCP数据。
在380中,目标接入网设备从源接入网设备接收封装有指示信息的PDCP数据,并根据该指示信息确定发送该PDCP数据所用的无线承载。
例如,当指示信息为第二无线承载标识时,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为第三无线承载标识时,确定与该第三无线承载标识,对应的第二无线承载标识,进而,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为服务质量标签QoS marking时,确定与该服务质量标签QoS marking对应的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为QoS marking与终端设备IP地址时,确定与该服务质量标签与该终端设备IP地址对应的无线承载为发送该PDCP数据所用的无线承载。
在步骤380之后,还可以包括一些其它步骤,例如,终端设备向目标接入网设备发送无线连接重配置完成,表明该终端设备已接入目标接入网设备;目标接入网设备向控制面网元CP发送路径切换请求,携带下行用户面隧道信息;CP向UP发送用户面路径更新请求,携带上述下行用户面隧道信息,UP返回用户面路径应答消息;UP在切换前的路径上发送结束标记,该结束标记,具体可以是结束标记(end marker)报文,该结束标记,表明这是切换前的路径上的最后一个报文,该结束标记由UP发送给源接入网设 备,再由源接入网设备转发给目标接入网设备;CP向目标接入网设备发送路径切换确认消息;目标接入网设备向源接入网设备发送释放资源消息,以触发源接入网设备释放终端设备相关的资源,包括无线资源、控制面资源等。
步骤310至380可参考图2中步骤201至204的描述,此处不再赘述。
在上述几种情况下,源接入网设备可以确定第二无线承载标识,即目标接入网设备分配的无线承载标识,作为该指示信息;也可以确定服务质量标签作为该指示信息;也可以确定服务质量标签和终端设备的IP地址作为该指示信息;也可以确定第三无线承载标识,即源接入网设备分配的无线承载标识,作为该指示信息。
因此,在方法300中,终端设备从源接入网设备向目标接入网设备切换过程中,源接入网设备通过对缓存的PDCP数据进行处理,在该PDCP数据的封装头中添加指示信息,并通过源接入网设备与目标接入网设备之间的转发隧道发送给目标接入网设备,由目标接入网设备根据接收到的报文的封装头信息,实现将报文发送到正确的无线承载上,解决了当转发隧道为会话session粒度或组group粒度的隧道时,无法准确转发切换过程中的数据的问题。
可选地,可以作为一个实施例,如图7所示的方法400。该方法400与方法300的区别在于,方法300中无线承载标识由接入网设备分配,而本实施例方法400中,无线承载标识由控制面网元CP分配。例如,该方法400包括:
在410中,源接入网设备向目标接入网设备发送切换请求信息。
可选地,当转发隧道为会话粒度的隧道时,该切换请求可以携带承载等级QoS参数、上行用户面隧道信息,以及以下信息中的至少一种:第一无线承载标识、QoS marking。
可选地,当转发隧道为组粒度的隧道时,该切换请求还可以携带终端设备IP地址。
例如,该第一无线承载标识是由CP分配的,用于标识接入网与该终端设备之间的无线承载。该服务质量标签(QoS marking)为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求,不同的服务质量标签对应不同的无线承载,目标接入网设备根据该QoS marking建立无线资源。可选地,当该服务质量标签QoS marking是预配置在接入网设备上时,该参数为可选的。其中,该控制面网元发送的上下文信息包括服务质量标签。
在420中,目标接入网设备从源接入网设备接收该切换请求消息,为该终端设备分配无线资源,并根据该切换请求消息确定该切换请求消息对应的切换请求确认消息。
可选地,该切换请求确认消息携带该第一无线承载标识、上行转发隧道信息(UL forwarding tunnel information)、下行转发隧道信息(DL forwarding tunnel information)。
上行转发隧道信息,包括目标接入网的IP、目标接入网的隧道端点标识1(例如,目标AN TEID1)等。
下行转发隧道信息,包括目标接入网的IP、目标接入网的隧道端点标识2(例如,目标AN TEID2)等。
在430中,目标接入网设备向源接入网设备发送切换请求确认消息。
在440中,源接入网设备接收目标接入网设备发送的切换请求确认消息。
在450中,源接入网设备向该终端设备发送无线连接重配置消息,表明目标接入网设备已经准备好接管该终端设备。
在460中,源接入网设备向目标接入网设备发送状态转移消息,携带每个承载的上 行分组数据汇聚协议序列号(Packet Data Convergence Protocol Sequence Number,PDCP SN)接收状态、下行PDCP SN发送状态。
在470中,源接入网设备对缓存的报文进行处理,并通过源接入网设备与目标接入网设备之间的转发隧道发送给目标接入网设备。
可选地,源接入网设备判断缓存的报文是否已经进行了PDCP处理。
可选地,如果未进行PDCP处理(例如,报文是IP报文),则不需要对报文进行处理,直接将未进行PDCP处理的报文封装成源接入网设备与目标接入网设备的传输报文格式,并发送给目标接入网设备。
可选地,如果已经进行了PDCP处理,即该报文是PDCP数据,则需要对报文进行如下处理,在本申请实施例中是将指示信息封装在PDCP数据头中,然后,将封装有指示信息的PDCP数据发送给目标接入网设备。
情况一,转发隧道为会话粒度的隧道,该指示信息可以是第一无线承载标识,也可以是服务质量标签QoS marking。
例如,源接入网设备根据该PDCP数据对应的第一无线承载标识,确定将第一无线承载标识封装到该PDCP数据的封装头中。其中,以下行数据为例,源接入网设备根据接收到的下行数据的封装头(QoS marking)确定下行数据对应的第一无线承载标识,然后源接入网设备对该下行数据进行处理,如封装、解封装,得到PDCP数据。
又例如,源接入网设备根据该PDCP数据对应的QoS marking,确定将QoS makring封装到该PDCP数据的封装头中。其中,以下行数据为例,源接入网设备根据接收到的下行数据的封装头(QoS marking)确定下行数据对应的QoS marking,然后源接入网设备对该下行数据进行处理,如封装、解封装,得到PDCP数据。
情况二,转发隧道为组粒度的隧道,该指示信息可以是第一无线承载标识,服务质量标签和终端设备IP地址。
例如,源接入网设备根据该PDCP数据对应的QoS marking和终端设备IP地址,确定将QoS marking和终端设备IP地址封装到该PDCP数据的封装头中。其中,以下行数据为例,源接入网设备根据接收到的下行数据的封装头(QoS marking)确定下行数据对应的QoS marking和终端设备IP地址,然后源接入网设备对该下行数据进行处理,如封装、解封装,得到PDCP数据。
可选地,在该源接入网设备向该目标接入网设备发送该PDCP数据之前,该源接入网设备确定发送该PDCP数据的无线承载。可选地,源接入网设备根据该无线承载确定该指示信息。例如,源接入网设备根据该无线承载与第一无线承载标识的对应关系,确定该指示信息为该第一无线承载标识;也可以根据该无线承载与服务质量标签的对应关系,确定该指示信息为该服务质量标签;还可以根据该无线承载与服务质量标签和终端设备IP地址的对应关系,确定该指示信息为该服务质量标签和终端设备IP地址。
在480中,目标接入网设备从源接入网设备接收封装有指示信息的PDCP数据,并根据该指示信息确定发送该PDCP数据所用的无线承载。
例如,当指示信息为第一无线承载标识时,确定该第一无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为服务质量标签QoS marking时,确定与该服务质量标签QoS marking对应的无线承载为发送该PDCP数据所用的无线承载。
当指示信息为QoS marking与终端设备IP地址时,确定与该服务质量标签与该终端设备IP地址对应的无线承载为发送该PDCP数据所用的无线承载。
在步骤480之后,还可以包括一些其它步骤,例如,终端设备向目标接入网设备发送无线连接重配置完成,表明该终端设备已接入目标接入网设备;目标接入网设备向控制面网元CP发送路径切换请求,携带下行用户面隧道信息;CP向UP发送用户面路径更新请求,携带上述下行用户面隧道信息,UP返回用户面路径应答消息;UP在切换前的路径上发送结束标记,该结束标记,具体可以是结束标记(end marker)报文,该结束标记,表明这是切换前的路径上的最后一个报文,该结束标记由UP发送给源接入网设备,再由源接入网设备转发给目标接入网设备;CP向目标接入网设备发送路径切换确认消息;目标接入网设备向源接入网设备发送释放资源消息,以触发源接入网设备释放终端设备相关的资源,包括无线资源、控制面资源等。
步骤410至480可参考图2中步骤201至204的描述,此处不再赘述。
在上述几种情况下,源接入网设备可以确定第一无线承载标识,即CP分配的无线承载标识,作为该指示信息;也可以确定QoS marking,作为该指示信息;还可以确定QoS marking与终端设备IP地址,作为该指示信息。
因此,在方法400中,终端设备从源接入网设备向目标接入网设备切换过程中,源接入网设备通过对缓存的PDCP数据进行处理,在该PDCP数据的封装头中添加第一无线承载标识,或QoS marking,或QoS marking及UE IP地址,并通过源接入网设备与目标接入网设备之间的转发隧道发送给目标接入网设备,由目标接入网设备根据接收到的报文的封装头信息,实现将报文发送到正确的无线承载上,解决了当转发隧道为会话session粒度或组group粒度的隧道时,无法准确转发切换过程中的数据的问题。
图8是根据本申请实施例的一种数据传输设备500的示意性框图。如图8所示,该设备500包括:
封装单元510,用于将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载;
发送单元520,用于向该目标接入网设备发送封装有该指示信息的该PDCP数据。
可选地,该指示信息包括以下信息中的至少一种:第一无线承载标识;服务质量标签;服务质量标签与该终端设备IP地址;第二无线承载标识;第三无线承载标识;
其中,该第一无线承载标识,是由控制面网元分配的,用于标识接入网与该终端设备之间的无线承载;该服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;该第二无线承载标识,是由目标接入网分配的,用于标识该目标接入网设备与该终端设备之间的无线承载;该第三无线承载标识,是由源接入网分配的,用于标识该源接入网设备与该终端设备之间的无线承载。
可选地,发送单元520用于:
通过转发隧道向该目标接入网设备发送该PDCP数据,该转发隧道用于传输一个或多个终端设备的业务报文;
该封装单元510用于:
当该转发隧道为会话粒度的隧道时,将该第一无线承载标识,该服务质量标签,该第二无线承载标识,以及该第三无线承载标识中的至少一种封装在PDCP数据的封装头 中;或
当该转发隧道为组粒度的隧道时,将该第二无线承载标识,该第三无线承载标识,以及该服务质量标签与终端设备IP地址中的至少一种封装在PDCP数据的封装头中。
可选地,在该发送单元520向该目标接入网设备发送封装有该指示信息的该PDCP数据之前,该设备500还包括:
接收单元530,用于从该目标接入网设备接收切换请求确认消息;
确定单元540,用于收到该切换请求确认消息后,确定该第二无线承载标识为该指示信息。
可选地,该切换请求确认消息包括:该第二无线承载标识;或该第二无线承载标识与该第三无线承载标识的对应关系;或该第二无线承载标识与该服务质量标签的对应关系。
可选地,确定单元540用于:
根据该第二无线承载标识与该第三无线承载标识的对应关系,或根据该第二无线承载标识与该服务质量标签的对应关系,确定该第二无线承载标识为该指示信息。
可选地,确定单元540用于:
当该切换请求确认消息中未包括该第二无线承载标识、该第二无线承载标识与该第三无线承载标识的对应关系,以及该第二无线承载标识与该服务质量标签的对应关系中的任一种信息时,确定该指示信息为该第三无线承载标识。
可选地,在该发送单元520向该目标接入网设备发送封装有该指示信息的该PDCP数据之前,该确定单元540还用于:
确定发送该PDCP数据的无线承载;
根据该无线承载与该第一无线承载标识的对应关系,确定该指示信息为该第一无线承载标识;或
确定发送该PDCP数据的该服务质量标签,进而,确定该指示信息为该服务质量标签;或
确定发送该PDCP数据的服务质量标签和该终端设备IP地址,进而,确定该指示信息为该服务质量标签和终端设备IP地址;或
确定发送该PDCP数据的无线承载,根据该无线承载与该第三无线承载标识的对应关系,确定该指示信息为第三无线承载标识。
可选地,该封装单元510用于:
将指示信息封装在该PDCP数据的传输层协议封装头中;或
将指示信息封装在该PDCP数据的数据链路层协议封装头中。
可选地,该发送单元520用于:
通过核心网用户面网元向该目标接入网设备发送封装有该指示信息的该PDCP数据。
应理解,根据本申请实施例的一种数据传输设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3中的方法200、图6中的方法300和图7中的方法400中源接入网设备的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的一种数据传输设备600的示意性框图。如图9所示,该设备600包括:
接收单元610,用于从源接入网设备接收分组数据汇聚协议PDCP数据,该PDCP 数据的封装头中包括指示信息,该指示信息用于指示目标接入网设备发送该PDCP数据所用的无线承载;
发送单元620,用于根据该指示信息,在该无线承载上向该终端设备发送该PDCP数据。
可选地,该指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与该终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
其中,该第一无线承载标识,是由控制面网元分配的,用于标识接入网与该终端设备之间的无线承载;该服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;该第二无线承载标识,是由目标接入网分配的,用于标识该目标接入网设备与该终端设备之间的无线承载;该第三无线承载标识,是由源接入网分配的,用于标识该源接入网设备与该终端设备之间的无线承载。
可选地,该设备600还包括:确定单元630,用于当该指示信息包括该第一无线承载标识时,确定该第一无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该服务质量标签时,确定与该服务质量标签对应的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该服务质量标签与该终端设备IP地址时,确定与该服务质量标签与该终端设备IP地址对应的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该第二无线承载标识时,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载;或
当该指示信息包括该第三无线承载标识时,确定与该第三无线承载标识,对应的该第二无线承载标识,进而,确定该第二无线承载标识所标识的无线承载为发送该PDCP数据所用的无线承载。
可选地,当该指示信息包括该第三无线承载标识时,该设备还包括:
保存单元640,用于保存该第二无线承载标识与第三无线承载标识的对应关系。
可选地,该接收单元610用于通过转发隧道接收该源接入网设备发送的该PDCP数据,该转发隧道用于传输一个或多个终端设备的业务报文;
该确定单元630用于:
当该转发隧道为会话粒度的隧道时,该指示信息包括:该第一无线承载标识;或该服务质量标签;或该第二无线承载标识;或该第三无线承载标识;或
当该转发隧道为组粒度的隧道时,该指示信息包括:该第一无线承载标识;或该第二无线承载标识;或该第三无线承载标识;或该服务质量标签与该终端设备IP地址。
可选地,在该接收单元610接收该源接入网设备发送的该PDCP数据之前,
该发送单元620用于向该源接入网设备发送该切换请求确认消息,该切换请求确认消息包括:该第二无线承载标识;或该第二无线承载标识与该第三无线承载标识的对应关系;或该第二无线承载标识与该服务质量标签的对应关系。
可选地,该PDCP数据的封装头中封装有指示信息,包括:
该PDCP数据的传输层协议封装头中封装有该指示信息;或
该PDCP数据的数据链路层协议封装头中封装有该指示信息。
可选地,该接收单元610用于:
通过核心网用户面网元从该源接入网设备接收PDCP数据。
应理解,根据本申请实施例的一种数据传输设备600中的各个单元的上述和其它操作和/或功能分别为了实现图3中的方法200、图6中的方法300和图7中的方法400中目标接入网设备的相应流程,为了简洁,在此不再赘述。
图10示出了本申请实施例提供的通信设备700的示意性框图,该通信装置700包括:
存储器710,用于存储程序,该程序包括代码;
收发器720,用于和其他设备进行通信;
处理器730,用于执行存储器710中的程序代码。
可选地,当该代码被执行时,该处理器730可以实现图3中的方法200、图6中的方法300或图7中的方法400中源接入网设备执行的各个操作,为了简洁,在此不再赘述。此时,通信装置700可以为源接入网设备。收发器720用于在处理器730的驱动下执行具体的信号收发。
可选地,当该代码被执行时,该处理器730还可以实现图3中的方法200、图6中的方法300或图7中的方法400中目标接入网设备执行各个操作,为了简洁,在此不再赘述。此时,通信装置700可以为目标接入网设备。
应理解,在本申请实施例中,该处理器730可以是中央处理单元(Central Processing Unit,CPU),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器710可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器710的一部分还可以包括非易失性随机存取存储器。例如,存储器710还可以存储设备类型的信息。
收发器720可以是用于实现信号发送和接收功能,例如频率调制和解调功能或叫上变频和下变频功能。
在实现过程中,上述方法的至少一个步骤可以通过处理器730中的硬件的集成逻辑电路完成,或该集成逻辑电路可在软件形式的指令驱动下完成该至少一个步骤。因此,通信装置700可以是个芯片或者芯片组。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器730读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴 电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (30)

  1. 一种数据传输方法,其特征在于,包括:
    源接入网设备将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,所述指示信息用于指示目标接入网设备发送所述PDCP数据所用的无线承载;
    所述源接入网设备向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与所述终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
    其中,所述第一无线承载标识,是由控制面网元分配的,用于标识接入网与所述终端设备之间的无线承载;所述服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;所述第二无线承载标识,是由目标接入网分配的,用于标识所述目标接入网设备与所述终端设备之间的无线承载;所述第三无线承载标识,是由源接入网分配的,用于标识所述源接入网设备与所述终端设备之间的无线承载。
  3. 根据权利要求2所述的方法,其特征在于,所述源接入网设备向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据,包括:
    所述源接入网设备通过转发隧道向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据;
    所述源接入网设备将指示信息封装在PDCP数据的封装头中,包括:
    当所述转发隧道为会话粒度的隧道时,将所述第一无线承载标识,所述服务质量标签,所述第二无线承载标识,以及所述第三无线承载标识中的至少一种封装在PDCP数据的封装头中;或
    当所述转发隧道为组粒度的隧道时,将所述第一无线承载标识,所述第二无线承载标识,所述第三无线承载标识,以及所述服务质量标签与所述终端设备IP地址中的至少一种封装在PDCP数据的封装头中。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述源接入网设备向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据之前,所述方法还包括:
    所述源接入网设备从所述目标接入网设备接收切换请求确认消息;
    所述源接入网设备收到所述切换请求确认消息后,确定所述第二无线承载标识为所述指示信息。
  5. 根据权利要求4所述的方法,其特征在于,所述切换请求确认消息包括:所述第二无线承载标识;或所述第二无线承载标识与所述第三无线承载标识的对应关系;或所述第二无线承载标识与所述服务质量标签的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述源接入网设备确定所述第二无线承载标识为所述指示信息,包括:
    根据所述第二无线承载标识与所述第三无线承载标识的对应关系,或根据所述第二无线承载标识与所述服务质量标签的对应关系,确定所述指示信息为所述第二无线承载标识。
  7. 根据权利要求2至6中任一所述的方法,其特征在于,在所述源接入网设备向所 述目标接入网设备发送封装有所述指示信息的所述PDCP数据之前,所述方法还包括:
    所述源接入网设备确定发送所述PDCP数据的无线承载,
    根据所述无线承载与所述第一无线承载标识的对应关系,确定所述指示信息为所述第一无线承载标识;或
    所述源接入网设备确定发送所述PDCP数据的所述服务质量标签,确定所述指示信息为所述服务质量标签;或
    所述源接入网设备确定发送所述PDCP数据的服务质量标签和所述终端设备IP地址,确定所述指示信息为所述服务质量标签和所述终端设备IP地址;或
    所述源接入网设备确定发送所述PDCP数据的无线承载,根据所述无线承载与所述第三无线承载标识的对应关系,确定所述指示信息为第三无线承载标识。
  8. 根据权利要求1至7中任一所述的方法,其特征在于,所述源接入网设备将指示信息封装在PDCP数据的封装头中,包括:
    将指示信息封装在所述PDCP数据的传输层协议封装头中;或
    将指示信息封装在所述PDCP数据的数据链路层协议封装头中。
  9. 根据权利要求1至8中任一所述的方法,其特征在于,所述源接入网设备向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据,包括:
    所述源接入网设备通过核心网用户面网元向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据。
  10. 一种数据传输方法,其特征在于,包括:
    目标接入网设备从源接入网设备接收分组数据汇聚协议PDCP数据,所述PDCP数据的封装头中包括指示信息,所述指示信息用于指示目标接入网设备发送所述PDCP数据所用的无线承载;
    所述目标接入网设备根据所述指示信息,在所述无线承载上向所述终端设备发送所述PDCP数据。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与所述终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
    其中,所述第一无线承载标识,是由控制面网元分配的,用于标识接入网与所述终端设备之间的无线承载;所述服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;所述第二无线承载标识,是由目标接入网分配的,用于标识所述目标接入网设备与所述终端设备之间的无线承载;所述第三无线承载标识,是由源接入网分配的,用于标识所述源接入网设备与所述终端设备之间的无线承载。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述指示信息包括所述第一无线承载标识时,确定所述第一无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述服务质量标签时,确定与所述服务质量标签对应的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述服务质量标签与所述终端设备IP地址时,确定与所述服务质量标签和所述终端设备IP地址对应的无线承载为发送所述PDCP数据所用的无线承 载;或
    当所述指示信息包括所述第二无线承载标识时,确定所述第二无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述第三无线承载标识时,确定与所述第三无线承载标识,对应的所述第二无线承载标识,确定所述第二无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载。
  13. 根据权利要求12所述的方法,其特征在于,当所述指示信息包括所述第三无线承载标识时,所述方法还包括:
    所述目标接入网设备保存所述第二无线承载标识与第三无线承载标识的对应关系。
  14. 根据权利要求11至13中任一所述的方法,其特征在于,所述目标接入网设备接收所述源接入网设备发送的所述PDCP数据,包括:
    所述目标接入网设备通过转发隧道接收所述源接入网设备发送的所述PDCP数据;
    当所述转发隧道为会话粒度的隧道时,所述指示信息包括:所述第一无线承载标识;或所述服务质量标签;或所述第二无线承载标识;或所述第三无线承载标识;或
    当所述转发隧道为组粒度的隧道时,所述指示信息包括:所述第一无线承载标识;或所述第二无线承载标识;或所述第三无线承载标识;或所述服务质量标签与所述终端设备IP地址。
  15. 根据权利要求11至14中任一所述的方法,其特征在于,在所述目标接入网设备从源接入网设备接收PDCP数据之前,所述方法还包括:
    所述目标接入网设备向所述源接入网设备发送切换请求确认消息,所述切换请求确认消息包括:所述第二无线承载标识;或所述第二无线承载标识与所述第三无线承载标识的对应关系;或所述第二无线承载标识与所述服务质量标签的对应关系。
  16. 一种数据传输设备,其特征在于,包括:
    封装单元,用于将指示信息封装在分组数据汇聚协议PDCP数据的封装头中,所述指示信息用于指示目标接入网设备发送所述PDCP数据所用的无线承载;
    发送单元,用于向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据。
  17. 根据权利要求16所述的设备,其特征在于,所述指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与所述终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
    其中,所述第一无线承载标识,是由控制面网元分配的,用于标识接入网与所述终端设备之间的无线承载;所述服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;所述第二无线承载标识,是由目标接入网分配的,用于标识所述目标接入网设备与所述终端设备之间的无线承载;所述第三无线承载标识,是由源接入网分配的,用于标识所述源接入网设备与所述终端设备之间的无线承载。
  18. 根据权利要求17所述的设备,其特征在于,发送单元用于:
    通过转发隧道向所述目标接入网设备发送所述PDCP数据;
    所述封装单元用于:
    当所述转发隧道为会话粒度的隧道时,将所述第一无线承载标识,所述服务质量标签,所述第二无线承载标识,以及所述第三无线承载标识中的至少一种封装在待发送所 述终端设备的PDCP数据的封装头中;或
    当所述转发隧道为组粒度的隧道时,将所述第二无线承载标识,所述第三无线承载标识,以及所述服务质量标签与终端设备IP地址中的至少一种封装在待发送所述终端设备的PDCP数据的封装头中。
  19. 根据权利要求17或18所述的设备,其特征在于,在所述发送单元向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据之前,所述设备还包括:
    接收单元,用于从所述目标接入网设备接收切换请求确认消息;
    确定单元,用于确定所述第二无线承载标识为所述指示信息。
  20. 根据权利要求19所述的设备,其特征在于,所述切换请求确认消息包括:所述第二无线承载标识;或所述第二无线承载标识与所述第三无线承载标识的对应关系;或所述第二无线承载标识与所述服务质量标签的对应关系。
  21. 根据权利要求20所述的设备,其特征在于,确定单元用于:
    根据所述第二无线承载标识与所述第三无线承载标识的对应关系,或根据所述第二无线承载标识与所述服务质量标签的对应关系,确定所述指示信息为所述第二无线承载标识。
  22. 根据权利要求17至21中任一所述的设备,其特征在于,在所述发送单元向所述目标接入网设备发送封装有所述指示信息的所述PDCP数据之前,所述确定单元还用于:
    确定发送所述PDCP数据的无线承载;
    根据所述无线承载与所述第一无线承载标识的对应关系,确定所述指示信息为所述第一无线承载标识;或
    确定发送所述PDCP数据的所述服务质量标签,确定所述指示信息为所述服务质量标签;或
    确定发送所述PDCP数据的服务质量标签和所述终端设备IP地址,确定所述指示信息为所述服务质量标签和所述终端设备IP地址;或
    确定发送所述PDCP数据的无线承载,根据所述无线承载与所述第三无线承载标识的对应关系,确定所述指示信息为第三无线承载标识。
  23. 一种数据传输设备,其特征在于,包括:
    接收单元,用于从源接入网设备接收分组数据汇聚协议PDCP数据,所述PDCP数据的封装头中包括指示信息,所述指示信息用于指示目标接入网设备发送所述PDCP数据所用的无线承载;
    发送单元,用于根据所述指示信息,在所述无线承载上向所述终端设备发送所述PDCP数据。
  24. 根据权利要求23所述的设备,其特征在于,所述指示信息包括:第一无线承载标识;或服务质量标签;或服务质量标签与所述终端设备因特网协议IP地址;或第二无线承载标识;或第三无线承载标识;
    其中,所述第一无线承载标识,是由控制面网元分配的,用于标识接入网与所述终端设备之间的无线承载;所述服务质量标签为核心网用户面网元与源接入网之间传输的报文的封装头中的信息,用于标识数据传输的服务质量要求;所述第二无线承载标识,是由目标接入网分配的,用于标识所述目标接入网设备与所述终端设备之间的无线承载; 所述第三无线承载标识,是由源接入网分配的,用于标识所述源接入网设备与所述终端设备之间的无线承载。
  25. 根据权利要求24所述的设备,其特征在于,所述设备还包括:确定单元,
    用于当所述指示信息包括所述第一无线承载标识时,确定所述第一无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述服务质量标签时,确定与所述服务质量标签对应的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述服务质量标签与所述终端设备IP地址时,确定与所述服务质量标签和所述终端设备IP地址对应的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述第二无线承载标识时,确定所述第二无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载;或
    当所述指示信息包括所述第三无线承载标识时,确定与所述第三无线承载标识,对应的所述第二无线承载标识,确定所述第二无线承载标识所标识的无线承载为发送所述PDCP数据所用的无线承载。
  26. 根据权利要求25所述的设备,其特征在于,当所述指示信息包括所述第三无线承载标识时,所述设备还包括:
    保存单元,用于保存所述第二无线承载标识与第三无线承载标识的对应关系。
  27. 根据权利要求24至26中任一所述的设备,其特征在于,
    所述接收单元用于通过转发隧道接收所述源接入网设备发送的所述PDCP数据;
    所述确定单元用于:
    当所述转发隧道为会话粒度的隧道时,所述指示信息包括:所述第一无线承载标识;或所述服务质量标签;或所述第二无线承载标识;或所述第三无线承载标识;或
    当所述转发隧道为组粒度的隧道时,所述指示信息包括:所述第一无线承载标识;或所述第二无线承载标识;或所述第三无线承载标识;或所述服务质量标签与所述终端设备IP地址。
  28. 根据权利要求24至27中任一所述的设备,其特征在于,在所述接收单元接收所述源接入网设备发送的所述PDCP数据之前,
    所述发送单元向所述源接入网设备发送切换请求确认消息,所述切换请求确认消息包括:所述第二无线承载标识;或所述第二无线承载标识与所述第三无线承载标识的对应关系;或所述第二无线承载标识与所述服务质量标签的对应关系。
  29. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,所述计算机执行如权利要求1至9中任一所述的方法。
  30. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,所述计算机执行如权利要求10至15中任一所述的方法。
PCT/CN2017/073679 2017-02-15 2017-02-15 数据传输方法和设备 WO2018148893A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17896870.7A EP3576459B1 (en) 2017-02-15 2017-02-15 Data transmission method and device
CN201780085881.3A CN110268747B (zh) 2017-02-15 2017-02-15 数据传输方法和设备
PCT/CN2017/073679 WO2018148893A1 (zh) 2017-02-15 2017-02-15 数据传输方法和设备
US16/540,855 US11368990B2 (en) 2017-02-15 2019-08-14 Data transmission method and device for determining a radio bearer for handover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073679 WO2018148893A1 (zh) 2017-02-15 2017-02-15 数据传输方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/540,855 Continuation US11368990B2 (en) 2017-02-15 2019-08-14 Data transmission method and device for determining a radio bearer for handover

Publications (1)

Publication Number Publication Date
WO2018148893A1 true WO2018148893A1 (zh) 2018-08-23

Family

ID=63170082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073679 WO2018148893A1 (zh) 2017-02-15 2017-02-15 数据传输方法和设备

Country Status (4)

Country Link
US (1) US11368990B2 (zh)
EP (1) EP3576459B1 (zh)
CN (1) CN110268747B (zh)
WO (1) WO2018148893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3873132A4 (en) * 2018-11-20 2022-01-19 Huawei Technologies Co., Ltd. DATA COMMUNICATION METHOD AND APPARATUS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778541B2 (en) 2017-07-19 2020-09-15 Level 3 Communications, Llc Systems and methods for automated verification and reconfiguration of disconnected network devices
US10432240B1 (en) * 2018-05-22 2019-10-01 Micron Technology, Inc. Wireless devices and systems including examples of compensating power amplifier noise
CN113873572A (zh) * 2019-04-04 2021-12-31 Oppo广东移动通信有限公司 无线通信的方法和终端设备
US10763905B1 (en) 2019-06-07 2020-09-01 Micron Technology, Inc. Wireless devices and systems including examples of mismatch correction scheme
CN113452471A (zh) * 2020-03-26 2021-09-28 伊姆西Ip控股有限责任公司 用于数据处理的方法、电子设备以及计算机程序产品
US10972139B1 (en) 2020-04-15 2021-04-06 Micron Technology, Inc. Wireless devices and systems including examples of compensating power amplifier noise with neural networks or recurrent neural networks
US11496341B2 (en) 2020-08-13 2022-11-08 Micron Technology, Inc. Wireless devices and systems including examples of compensating I/Q imbalance with neural networks or recurrent neural networks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080051084A1 (en) * 2006-08-23 2008-02-28 Alessio Casati Telecommunications system and method for early transmission of data
CN101365168A (zh) * 2007-08-10 2009-02-11 北京三星通信技术研究有限公司 数据转发的方法
CN102006640A (zh) * 2010-12-07 2011-04-06 北京北方烽火科技有限公司 一种lte系统中的切换方法和装置
CN102026398A (zh) * 2009-09-15 2011-04-20 普天信息技术研究院有限公司 Lte中继系统中分组汇聚协议的实现方法和装置
CN102958122A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 群组切换时的承载控制方法及装置
CN105471763A (zh) * 2014-09-04 2016-04-06 中兴通讯股份有限公司 控制报文传输方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594043B2 (en) 2007-03-21 2013-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Selective packet forwarding for LTE mobility
CN101436984B (zh) * 2007-11-13 2012-09-05 华为技术有限公司 数据传输方法及设备
RU2508611C2 (ru) * 2009-03-20 2014-02-27 Телефонактиеболагет Л М Эрикссон (Пабл) Идентификация однонаправленного радиоканала для транзитного автосоединения и ретрансляции в расширенном lte
US8532056B2 (en) * 2009-04-13 2013-09-10 Qualcomm Incorporated Device mobility for split-cell relay networks
CN102791008B (zh) * 2011-05-16 2017-10-27 南京中兴新软件有限责任公司 跨基站切换过程中数据的反传方法及基站
US9479973B2 (en) * 2012-08-02 2016-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Node and method for handing over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
US20180167854A1 (en) * 2014-09-25 2018-06-14 Sharp Kabushiki Kaisha Terminal device, mme, and control method
US10772021B2 (en) * 2014-12-05 2020-09-08 Qualcomm Incorporated Low latency and/or enhanced component carrier discovery for services and handover
US10524173B2 (en) * 2016-02-24 2019-12-31 Cisco Technology, Inc. System and method to facilitate sharing bearer information in a network environment
EP3516922B1 (en) * 2016-09-30 2021-07-14 Samsung Electronics Co., Ltd. Method and apparatus for establishing dual-connectivity to transmit data in new radio communication architecture
CN108024294B (zh) * 2016-11-02 2020-08-07 中兴通讯股份有限公司 切换方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080051084A1 (en) * 2006-08-23 2008-02-28 Alessio Casati Telecommunications system and method for early transmission of data
CN101365168A (zh) * 2007-08-10 2009-02-11 北京三星通信技术研究有限公司 数据转发的方法
CN102026398A (zh) * 2009-09-15 2011-04-20 普天信息技术研究院有限公司 Lte中继系统中分组汇聚协议的实现方法和装置
CN102006640A (zh) * 2010-12-07 2011-04-06 北京北方烽火科技有限公司 一种lte系统中的切换方法和装置
CN102958122A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 群组切换时的承载控制方法及装置
CN105471763A (zh) * 2014-09-04 2016-04-06 中兴通讯股份有限公司 控制报文传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576459A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3873132A4 (en) * 2018-11-20 2022-01-19 Huawei Technologies Co., Ltd. DATA COMMUNICATION METHOD AND APPARATUS

Also Published As

Publication number Publication date
EP3576459A4 (en) 2020-02-26
EP3576459A1 (en) 2019-12-04
US11368990B2 (en) 2022-06-21
US20190373651A1 (en) 2019-12-05
EP3576459B1 (en) 2022-04-06
CN110268747A (zh) 2019-09-20
CN110268747B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2018148893A1 (zh) 数据传输方法和设备
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11979787B2 (en) Radio access network node, radio terminal, and method therefor
JP6945659B2 (ja) 情報処理方法および関連装置
EP4250867A2 (en) Communication method and apparatus for device-to-device system, and storage medium
KR101617575B1 (ko) 무선 통신 네트워크 내의 소규모 데이터 통신
JP7017586B2 (ja) 無線通信方法、ネットワーク機器及び端末装置
CN109005562B (zh) 传输数据的方法、装置和系统
WO2019214729A1 (zh) 数据处理的方法和设备
TWI711332B (zh) 無線通信的方法和裝置
WO2022032865A1 (zh) 通路描述符传输方法及相关装置
JP7100135B6 (ja) データ伝送制御方法および関連製品
WO2021138807A1 (zh) 服务质量QoS参数配置方法及相关装置
US20220287137A1 (en) Ran node, radio terminal, and methods therefor
CN113285827A (zh) 数据传输方法、系统及相关装置
TW202013936A (zh) 無線通訊方法和通訊設備
WO2018227564A1 (zh) 通信方法、终端设备和网络设备
US10542461B2 (en) Apparatuses and methods therein for relaying an ongoing data session
US11172449B2 (en) Communication method and device
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统
WO2018165864A1 (zh) 一种数据传输方法、控制面设备及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017896870

Country of ref document: EP

Effective date: 20190828