WO2018147600A1 - Superabsorbent polymer and preparation method therefor - Google Patents

Superabsorbent polymer and preparation method therefor Download PDF

Info

Publication number
WO2018147600A1
WO2018147600A1 PCT/KR2018/001462 KR2018001462W WO2018147600A1 WO 2018147600 A1 WO2018147600 A1 WO 2018147600A1 KR 2018001462 W KR2018001462 W KR 2018001462W WO 2018147600 A1 WO2018147600 A1 WO 2018147600A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
weight
super absorbent
initiator
group
Prior art date
Application number
PCT/KR2018/001462
Other languages
French (fr)
Korean (ko)
Inventor
홍연우
허성범
윤형기
남대우
장태환
김준규
성보현
김수진
정선정
정지윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180012910A external-priority patent/KR102167661B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18751802.2A priority Critical patent/EP3453737B1/en
Priority to US16/307,016 priority patent/US10843170B2/en
Priority to JP2018563870A priority patent/JP6731078B2/en
Priority to CN201880002718.0A priority patent/CN109415516B/en
Publication of WO2018147600A1 publication Critical patent/WO2018147600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • Super Absorbent Polymer is from 500 to 500
  • such superabsorbent polymers are widely used in the field of hygiene products such as diapers and sanitary napkins.
  • the superabsorbent resin is generally included in the pulp.
  • efforts have been made to provide sanitary materials such as thinner diapers, and as a part thereof, the content of pulp is reduced, or more so-called pulpless diapers in which no pulp is used at all. Development is underway.
  • a relatively high absorbent resin is contained in a high proportion, and such superabsorbent Resin particles are inevitably included in a multilayer in the sanitary material.
  • the superabsorbent resin basically needs to exhibit high absorption performance and absorption rate.
  • the absorption rate which is one of the important properties of the superabsorbent polymer, is associated with the surface dryness of the product which comes into contact with the skin such as diapers.
  • this absorption rate can be improved by increasing the surface area of the superabsorbent polymer.
  • a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied.
  • a general blowing agent is not able to form a sufficient amount of porous structure has a disadvantage that the increase in the rate of absorption is not large.
  • the present invention is to provide a super absorbent polymer having a fast absorption rate.
  • the present invention is to provide a method for producing the super absorbent polymer.
  • the present invention is a.
  • the polymerization initiator includes a photoinitiator and a cationic azo initiator
  • the bubble stabilizer includes a sucrose ester and a polyalkylene oxide, to provide a method for producing a super absorbent polymer.
  • the present invention includes a photoinitiator and a cationic azo initiator, and the bubble stabilizer includes a sucrose ester and a polyalkylene oxide, to provide a method for producing a super absorbent polymer.
  • a monomer composition comprising an acrylic acid monomer at least partially neutralize the acidic group, and "includes a surface cross-linked layer formed on the polymerization and internal crosslinking in which the base resin, and the surface of the base resin, ⁇
  • a superabsorbent polymer having a centrifugal water retention (CRC) of 30 g / g or more and a absorption rate of 34 seconds or less by the Vortex method is measured according to the EDANA method WSP 241.3.
  • azo compounds having a specific structure are used as polymerization initiators, and polyalkylene oxides and sucrose esters are used in combination as bubble stabilizers to stably generate bubbles in the polymerization process. Can be adjusted to exhibit high water holding capacity and absorption rate.
  • Superabsorbent polymers are evaluated for their water retention capacity (CRC), pressurized absorption capacity (AUL), and absorption rate, and for this purpose, conventionally, a lot of pores are formed in the superabsorbent polymer so that water can be sucked up quickly or absorbed into water.
  • CRC water retention capacity
  • AUL pressurized absorption capacity
  • absorption rate a lot of pores are formed in the superabsorbent polymer so that water can be sucked up quickly or absorbed into water.
  • the method of making particle size of resin small is known.
  • there is a limitation in reducing the particle size of the superabsorbent polymer and when the internal pores are formed, the gel strength becomes weak, so that the thinning of the article is difficult.
  • polymer or “polymer” means that the acrylic acid monomer is in a polymerized state, and may cover all moisture content ranges or particle size ranges.
  • a polymer having a water content (water content) of about 40% by weight or more after being dried before polymerization may be referred to as a hydrous gel polymer.
  • base resin or “base resin powder” means that the polymer is dried and ground to form a powder.
  • an acid group is included, and at least a part of the acid group includes an acrylic acid monomer, a polymerization initiator, a bubble stabilizer, and an internal crosslinking agent. Combined to form hydrogel polymer.
  • the acrylic acid monomer may have an acid group and at least a portion of the acid group may be neutralized.
  • those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of neutralization can be adjusted according to the final physical properties.
  • the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer.
  • the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have.
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
  • the concentration of the acrylic acid monomer in the monomer composition may be appropriately adjusted in consideration of polymerization time and reaction conditions, preferably about 20 to about 90 weight 0 / ° , or may be about 40 to about 70 weight% have.
  • This concentration range may be advantageous in controlling the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need for removing the unbanung monomer after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution.
  • the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered.
  • the concentration of the monomer is excessively high, a problem may occur in the process, such as the precipitation efficiency of the monomer precipitated or the pulverization of the polymerized hydrogel polymer may be degraded, and the physical properties of the super absorbent polymer may be reduced.
  • the monomer composition includes an internal crosslinking agent for improving the physical properties of the hydrogel polymer.
  • the crosslinking agent is a crosslinking agent for crosslinking the inside of the hydrogel polymer, the surface for crosslinking the surface of the hydrogel polymer in a subsequent process. It is separate from the crosslinking agent.
  • the internal crosslinking agent is ⁇ , ⁇ '-methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylic Propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexane Diuldi (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythrite pentaacrylate, glycerin tri (meta ) Acrylates, pentaerythres, tetraacrylates, triarylamines, ethylene glycol
  • ethylene carbonate At least one selected from the group consisting of ethylene carbonate. More preferably, when the polyethylene glycol diacrylate (PEGDA) and / or nucleic acid diol diacrylate (HDDA) is used as the internal crosslinking agent, it can exhibit improved water retention and absorption rate.
  • PEGDA polyethylene glycol diacrylate
  • HDDA nucleic acid diol diacrylate
  • the internal crosslinking agent is about 100 parts by weight of the acrylic acid monomer.
  • a polymerization initiator includes a cationic azo initiator
  • a bubble stabilizer includes a sucrose ester and a polyalkylene oxide.
  • the polyalkylene oxide together with the sucrose ester, serves to form more stable bubbles in the polymerization process, thereby allowing the hydrous gel polymer to be polymerized to have a high water holding capacity and a fast absorption rate.
  • the polyalkylene oxide is specifically, for example, polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymer And polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer, and may be at least one selected from the group consisting of (PEO-PPO-PEO) triblock ( triblock) copolymer may be used, but is not limited thereto.
  • the weight average molecular weight of the polyalkylene oxide is at least about 500g / mol, less than about 3,000g / mol, or about 1,000 to about 2,700g / m, ethylene oxide in the polyalkylene oxide It may be more preferable to use PEO-PPO-PEO triblock copolymers having a ratio of (EO) of 20 to 80% by weight 0 /., Or 20 to 60% by weight.
  • Polyalkylene oxide having a weight average molecular weight value in the above range When used, it is possible to improve the properties related to absorption and speed, such as Vortex time.
  • the polyalkylene oxide may be added at a concentration of about 0.001 to about 1 part by weight, or about 0.01 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer.
  • sucrose ester used with the bubble stabilizer including the polyalkylene oxide include sucrose stearate, sucrose isobutylate, and sucrose palmitate. Or sucrose laurate (sucrose laurate) and the like, for example, may be used in combination of one or more, but the present invention is not limited thereto.
  • sucrose stearate can be used.
  • the sucrose ester is about 100 parts by weight of the acrylic acid monomer
  • It may be added at a concentration of 0.001 to about 0.1 parts by weight, or about 0.005 to about 0.05 parts by weight.
  • sucrose ester is preferably used in a ratio of about 1 to 50 parts by weight, or about 1 to 10 parts by weight with respect to 100 parts by weight of the polyalkylene oxide.
  • the bubble stabilizer including the polyalkylene oxide and the sucrose ester may be added in an amount of about 0.001 to about 2 parts by weight, or about 0.01 to about 1 part by weight based on 100 parts by weight of the acrylic acid monomer.
  • the cationic azo initiator is used together with a sucrose ester and a polyalkylene oxide, it is possible to realize a fast vortex absorption rate in a high CRC region with respect to the superabsorbent polymer to be produced, and at the same time, remains in the polymerization process. It is possible to reduce the monomer content.
  • the residual monomer content of the base resin is about 450 ppm or less, or about 300 ppm, based on the EDANA method WSP 210.3. It may be from about 450ppm, preferably from about 350ppm to about 400ppm, and based on the surface-treated superabsorbent resin, may be about 350ppm or less, or about 250ppm to about 350ppm, preferably about 250ppm or more It may be 300 ppm or less.
  • cationic azo initiators examples include azo ' nitrile initiators (trade name: Wako V-501), azoamide initiators (trade name: Wako VA-086), azo amidine initiators (brand names: Wako VA-057, V -50), and azo imidazoline-based initiators (trade names: Wako VA-061, VA-044) and the like, but the present invention is not necessarily limited thereto.
  • a cationic azo initiator can be used together with the polymerization initiator generally used for manufacture of the existing superabsorbent polymer, as follows.
  • a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method.
  • a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, a certain amount of heat is generated. Can be.
  • photoinitiator for example, benzoin ether, dialkyl acetophenone, hydroxyl alkyl ketone (hydroxyl) one or more compounds selected from the group consisting of alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone have.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide may be used.
  • More various photoinitiators are disclosed on page 115 of Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)".
  • the thermal polymerization initiator may be used at least one compound selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid.
  • the persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ) and the like.
  • azo-based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochloride), 2,2-azobis- ( ⁇ , N-dimethylene) isobutyramidine dihydrochloride (2,2-azobis-
  • the polymerization initiator is about 100 parts by weight of the acrylic acid monomer.
  • the monomer composition is.
  • Sodium bicarbonate, Sodium carbonate, Potassium bicarbonate 1 "Potassium bicarbonate, Potassium ⁇ l" Potassium carbonate, Calcium bicarbonate, Calcium carbonate bicarbonate), magnesium bicarbonate (magnesium bicarbonate) and magnesium carbonate (magnesium carbonate) may further include at least one blowing agent selected from the group consisting of.
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, and antioxidants, as necessary.
  • the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, an internal crosslinking agent, a sucrose ester, and a bubble stabilizer are dissolved in a solvent.
  • any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials.
  • the solvent water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucanonone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methyl cellosolve acetate ⁇ , ⁇ -dimethylacetamide, or a combination thereof may be used.
  • the amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer content in consideration of polymerization heat control and the like.
  • the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited.
  • the polymerization The method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, in which the thermal polymerization may be performed in a reaction vessel having a stirring shaft such as a kneader. It can be carried out in a semi-unggi equipped with a movable conveyor belt.
  • a hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or heating and heating the reaction vessel.
  • the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the form of particles of several millimeters to several centimeters.
  • the functional polymer is a gel may be obtained in various forms depending on the concentration and the injection rate of the "monomer composition to be injected, it is usually a weight-average particle diameter of 2mm to 50mm of a function gel polymer can be obtained.
  • a sheet-like hydrogel polymer may be obtained.
  • the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of about 0.5cm to about 5cm It is preferable to be.
  • the hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80% by weight. It is advantageous in that the water content of the hydrogel polymer falls within the range to optimize the efficiency in the drying step described later.
  • the moisture content is an increase in water occupying the total weight of the hydrogel polymer, and may be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer through infrared heating.
  • the drying conditions may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and then maintained at 180 ° C.
  • the hydrogel polymer obtained through the above-mentioned steps is used for imparting absorbency. It goes through a drying process.
  • the step of pulverizing (coarsely pulverizing) the hydrogel polymer before performing the drying process may be performed.
  • the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type.
  • a cutter mill a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like.
  • the coarse grinding may be performed such that the particle size of the hydrogel polymer is about 2 mm to about 10 mm. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of about 10 mm or less. However, excessive ⁇ To avoid the possibility of ungjip phenomenon between particles during milling, the functional polymer gel is preferably ground to a particle of about 2mm or more.
  • the coarsely pulverizing step because the polymer is carried out in a high water content of the polymer may stick to the surface of the mill may appear.
  • the coarse grinding step may include steam, water, surfactants, anti-agglomerating agents (eg clay, silica, etc.) as necessary; Persulfate-based initiator, azo-based initiator I, hydrogen peroxide, thermal polymerization initiator, epoxy-based cross-linking agent, diol cross-linking agent, cross-linked body comprising a acrylate of a bifunctional group or a polyfunctional group of at least three functional groups, 1 containing a hydroxyl group A crosslinking agent of a functional group, etc. can be added.
  • the step of drying the coarsely pulverized hydrogel polymer is carried out.
  • the hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of about 2mm to about 10mm through the above-described step, it can be dried at a higher efficiency.
  • Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of about 120 to about 2501 :, preferably about 140 to about 200 ° C, more preferably about 150 to about 190 ° C.
  • the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reaction vessel including the heat medium and the polymer in the drying process. Low drying temperature reduces drying time The longer the process, the lower the efficiency, so the drying temperature is about
  • the drying temperature is higher than necessary, the surface of the hydrogel polymer may be excessively dried to increase the generation of fine powder in the subsequent grinding step, and the physical properties of the final resin may be lowered. It is preferred that it is about 250 ° C or less.
  • the drying time in the drying step is not particularly limited, but may be adjusted to about 20 minutes to about 90 minutes under the drying temperature in consideration of process efficiency and the physical properties of the resin.
  • the drying may be done using a conventional medium, for example, the hot air supply tank to the grinding function gel polymer, infrared irradiation, microwave irradiation may be performed through a method such as ultraviolet irradiation or.
  • drying is preferably carried out so that the dried polymer has a water content of about 0.1 to about 10 weight 0 /. That is, when the moisture content of the dried polymer is less than about 0.1 weight 0 / °, it is not preferable because an increase in the manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds about 10% by weight, defects may occur in subsequent processes, which is not preferable.
  • the milling step is a step for optimizing the surface area of the dried polymer, it may be carried out so that the particle diameter of the milled polymer is about 150 to about 850 / m.
  • the grinding mill may be a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, or the like. Can be.
  • the step of selectively classifying particles having a particle size of 150 to 850 from the polymer particles obtained through the grinding step may be further performed.
  • the polymer (base resin) polymerized, dried and pulverized by the above-described process of the present invention has a water retention capacity (CRC) of about 35 g / g or more, or about 37 g / g or more, as measured according to the EDANA method WSP 241.3, or About 40 g / g or more and about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
  • the absorption rate by Vortex may be 42 seconds or less, or about 40 seconds or less and about 25 seconds or more, or about 30 seconds or more, or about 35 seconds or more.
  • the surface modification is a step of forming a superabsorbent polymer having more improved physical properties by inducing crosslinking reaction on the surface of the ground polymer in the presence of a surface crosslinking agent. Through such surface modification, a surface crosslinking layer is formed on the surface of the pulverized polymer particles.
  • the surface modification may be carried out by a conventional method of increasing the crosslinking density of the polymer particle surface, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent. It can be performed as.
  • the said surface crosslinking agent is a compound which can react with the functional group which the said polymer has,
  • the structure is not specifically limited.
  • the surface crosslinking agent is ethylene glycol diglycidyl ether, polyester styrene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol di Glycidyl ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane di, dipropylene glycol, polypropylene glycol, glycerin, polyglycerine, butanedi, heptanediol, nucleic acid ditrimethyl, propane, penta EPO recalled, sorbitan beetle, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride,
  • the content of the surface crosslinking agent may be appropriately adjusted according to the type of crosslinking agent or reaction conditions, and preferably, about 0.001 to about 5 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the content of the surface crosslinking agent is too low, the surface modification is not properly made, the physical properties of the final resin may be lowered.
  • excessive surface crosslinking agents are used The crosslinking reaction may lower the absorptivity of the resin, which is not preferable.
  • the surface modification step the method of mixing the surface cross-linking agent and the pulverized polymer in the reaction tank, the method of spraying the surface cross-linking agent to the pulverized polymer, the continuous supply of the pulverized polymer and surface cross-linking agent to the mixer to be continuously operated It can be carried out in a conventional manner such as a mixing method.
  • water may be additionally added when the surface crosslinking agent is added.
  • the surface crosslinking agent and water are added together to induce even dispersion of the surface crosslinking agent, to prevent aggregation of the polymer particles, and to further optimize the penetration depth of the surface crosslinking agent into the polymer particles.
  • the amount of water added together with the surface crosslinking agent may be adjusted to about 0.5 to about 10 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the surface crosslinking may be performed at a temperature of about 175 to about 200 ° C, and may be continuously performed after the drying and grinding steps proceed to a relatively high temperature. More preferably, it may proceed under a temperature of about 180 to about 195 ° C.
  • the surface crosslinking reaction may proceed for about 1 to about 120 minutes, or about 1 to about 100 minutes, or about 10 to about 60 minutes. That is, in order to induce a minimum surface crosslinking reaction and to prevent the polymer particles from being damaged due to excessive reaction and deteriorating physical properties, the above-described surface crosslinking reaction may be performed.
  • a base resin polymerized and internally crosslinked with a monomer composition including an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, and a surface crosslinking layer formed on the surface of the base resin.
  • the base resin is a super absorbent polymer having a water retention capacity (CRC) of 35 g / g or more measured according to the EDANA method WSP 241.3, the absorption rate by the Vortex method (Vortex) of 40 seconds or less to provide.
  • CRC water retention capacity
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
  • the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized.
  • those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the acrylic acid-based monomer may be about 40 to about 95 mole 0 /., Or from about 40 to about 80 mol%, or from about 45 to about 75 mole 0/0.
  • the range of neutralization can be adjusted according to the final physical properties.
  • the degree of neutralization is too high, it may be difficult for the polymerization to proceed smoothly due to the precipitation of the thickened monomer.
  • the degree of neutralization is too low, the absorbency of the polymer may be greatly reduced and may exhibit properties such as elastic rubber, which is difficult to handle.
  • the crosslinked polymer is ⁇ , ⁇ '-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) ) Acrylate, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Nucleic Acid Diol Di (meth) acrylate, Triethylene Glycol Di (meth) acrylate, Tripropylene Glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaeryth tetraacrylate,
  • the crosslinked polymer is centrifuged as measured according to the EDANA method WSP 241.3 .
  • the water retention capacity (CRC) may be at least about 35 g / g, or at least about 36 g / g, or at least about 40 g / g.
  • the upper limit of the water holding capacity (CRC) is not particularly limited but may be, for example, about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
  • the crosslinked polymer may be less than or equal to the absorption speed by the vortex method (Vortex) not more than 40 seconds, or less than about 39 seconds, or from about '37 seconds.
  • the lower limit of the absorption rate is not particularly limited, but may be, for example, about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more.
  • the water retention capacity and the absorption rate is a base resin which is a crosslinked polymer in the form of powder after drying and pulverizing after polymerization of the monomer composition before forming a surface crosslinked layer on the surface of the crosslinked polymer. Measured for.
  • Forming a surface crosslinked layer with respect to the base resin generally increases the pressure absorbency (AUP) and improves the absorption rate (vortex time), but decreases the water retention capacity (CRC). Therefore, in consideration of such a tendency to reduce the water retention capacity, it is very important to prepare a base resin having a high water retention ability to secure the physical properties of the final product.
  • the superabsorbent polymer having the surface crosslinked layer formed on the high water-retaining base resin has little concern about a decrease in water-retaining ability, and at the same time, it has an improved pressure-absorbing capacity and absorption rate, thereby obtaining a higher quality resin. .
  • the superabsorbent polymer in which the surface crosslinked layer is formed with respect to the crosslinked polymer (base resin) having the above water-retaining capacity and absorption rate is EDANA.
  • the centrifugal water retention (CRC) measured according to method WSP 241.3 is at least about 30 g / g, or at least about 31 g / g, or at least about 34 g / g, at most about 45 g / g, or at most about 40 g / g, or About 36 g / g or less.
  • the superabsorbent polymer having a surface crosslinked layer formed on the base resin has an absorption rate of 34 seconds or less, or about 33 seconds or less, or about 30 seconds or less, about 10 seconds or more, by a vortex method (or About 15 seconds or more, or about 20 seconds or more.
  • CRC centrifugal water retention capacity
  • W 0 (g) is the weight of the resin (g)
  • W, (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin
  • W 2 (g) is the device weight (g) measured after the resin was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes and then dehydrated at 250 G for 3 minutes using a centrifuge.
  • the measured surface tension ( sur f ace tension) value of at least about 40 mN / m, preferably about 40 to about 70 mN / m, or about 60 to It may be desirable to be about 70 mN / m.
  • This surface tension is measured, for example, at room temperature of 23 ⁇ 2 ° C. Can be measured. The specific measuring method of surface tension is described in the Example mentioned later.
  • the surface tension of the superabsorbent polymer may be a measure for evaluating urine leakage in a diaper including the superabsorbent polymer as physical properties that are distinguished from water-retaining capacity, pressure-absorbing capacity, liquid permeability, and the like.
  • the surface tension swells the superabsorbent polymer in saline, and means the surface tension measured for the saline, and if the surface tension of the superabsorbent polymer is low, urine leakage is likely to occur in a diaper manufactured by the same.
  • the super absorbent polymer of one embodiment it is possible to produce a high-quality sanitary article by reducing the possibility of leakage by having a suitable surface tension while maintaining high fluidity and the like.
  • a monomer composition was prepared by mixing 100 parts by weight of acrylic acid, 83.3 parts by weight of 50% caustic soda (NaOH), 89.8 parts by weight of water, and the following components.
  • -Polymerization initiator 0.1 part by weight (10 ppm) of cationic azo initiator (V50), 0.02 part by weight (300 ppmw) of hydrogen peroxide (H 2 0 2 ), 0.05 part by weight (500 ppmw) of ascorbic acid, 0.2 parts by weight of potassium persulfate (KPS) Part (2000ppmw)
  • Bubble stabilizer 0.016 parts (160 ppmw) of sucrose stearate (S 1670), and 0.16 parts (1600 ppmw) of polyalkylene oxide (PEO-PPO-PEO triblock copolymer, Mw: 2550)
  • Thermal polymerization reaction was carried out with the monomer composition to obtain a polymerized sheet.
  • the polymerized sheet was taken out and cut to a size of 3 cm 3 cm, and then subjected to a chopping process using a meat chopper to prepare a powder.
  • the powder (cmmb) was dried in an oven capable of transferring air volume up and down.
  • the hot air at 180 ° C. was heated uniformly from 15 minutes downwards to 15 minutes and upwards from downwards to 15 minutes, and dried to have a water content of 2% or less. After drying, it was pulverized with a grinder and classified to sort particles having a particle diameter of 150 to 850 to prepare a base resin.
  • the examples and the comparative example resins W0 placed uniformly on the envelope of the nonwoven fabric sealing (seal) one after, immersion in physiological saline is a sodium chloride solution of 0.9 weight 0 /.
  • a sodium chloride solution of 0.9 weight 0 /.
  • the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W2 (g) of the bag was measured.
  • the mass W1 (g) at that time was measured.
  • CRC (g / g) was calculated according to Equation 1 below.
  • W0 (g) is the initial weight of superabsorbent resin (g)
  • Wl (g) is absorbed by immersion in physiological saline for 30 minutes without using superabsorbent resin, and then centrifuge at 250G for 3 minutes.
  • the device weight measured after dehydration> W2 (g) is absorbed by immersing the superabsorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, and includes the superabsorbent resin.
  • the supernatant (the solution just below the surface) was then pipetted and transferred to another clean cup and measured using a surface tensionmeter Kruss K11 / K100.
  • the said measurement was progressed by the same method also about the base resin manufactured by the manufacture process of an Example and a comparative example. The measurement results are shown in Table 2 below.
  • the base resin and the super absorbent polymer prepared according to the comparative example it can be seen that the CRC value is lowered, or the Vortex absorption rate is lowered, in particular, in Comparative Examples 5 and 6, a relatively high content of polyalkyl
  • the surface tension value is very small compared to the superabsorbent polymer according to the embodiment of the present invention.

Abstract

The present invention relates to a superabsorbent polymer and a preparation method therefor. According to the present invention, a superabsorbent polymer having a high retention capacity and absorption rate can be prepared by using specific foam stabilizers and polymerization initiators.

Description

【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin and Method for Making the Same
【기술분야】 Technical Field
관련 출원 (들 라의 상호 인용  Reciprocal Citation of Related Application (s
본 출원은 2017년 2월 10일자 한국 특허 출원 제 10-2017-0018678호 및 2018년 2월 1일자 한국 특허 출원 제 10-2018-0012910호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 【배경기술】  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0018678 dated February 10, 2017 and Korean Patent Application No. 10-2018-0012910 dated February 1, 2018. All content disclosed in the literature is included as part of this specification. The present invention relates to a super absorbent polymer having a fast absorption rate and a method for producing the same. Background Art
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 Super Absorbent Polymer (SAP) is from 500 to 500
1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생용품 외에 원예용 토양 보수재 , 토목, 건축용 지수재 , 육묘용 시트, 식품유통분야에서의 신선도 유지재, 및 찜질용 등의 재료로 널리 사용되고 있다. It is a synthetic polymer material that can absorb up to 1,000 times of water, and each developer has a different name such as SAM (Super Absorbency Material) and AGM (Absorbent Gel Material). Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in gardening soil repair materials, civil engineering, building index materials, seedling sheets, food freshness maintaining materials in addition to hygiene products such as paper diapers for children, and It is widely used as a material for steaming.
많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 필프리스 (pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다. 이와 같이, 필프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다. In many cases, such superabsorbent polymers are widely used in the field of hygiene products such as diapers and sanitary napkins. In such sanitary materials, the superabsorbent resin is generally included in the pulp. However, in recent years, efforts have been made to provide sanitary materials such as thinner diapers, and as a part thereof, the content of pulp is reduced, or more so-called pulpless diapers in which no pulp is used at all. Development is underway. As such, in the case of a sanitary material in which the content of the peel is reduced or the pulp is not used, a relatively high absorbent resin is contained in a high proportion, and such superabsorbent Resin particles are inevitably included in a multilayer in the sanitary material. In order for the overall superabsorbent polymer particles contained in the multilayer to absorb the liquid such as urine more efficiently, the superabsorbent resin basically needs to exhibit high absorption performance and absorption rate.
한편, 고흡수성 수지의 중요한 물성 중 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있다. 일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 충분한 양의 다공성 구조를 형성시킬 수 없어 흡수 속도의 증가폭이 크지 않은 단점이 있다.  On the other hand, the absorption rate, which is one of the important properties of the superabsorbent polymer, is associated with the surface dryness of the product which comes into contact with the skin such as diapers. In general, this absorption rate can be improved by increasing the surface area of the superabsorbent polymer. For example, a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied. However, a general blowing agent is not able to form a sufficient amount of porous structure has a disadvantage that the increase in the rate of absorption is not large.
다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 흡수 속도는 향상될 수 있더라도, 수지의 보수능 (CRC)과 가압 흡수능 (AUP)이 상대적으로 저하되는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드 -오프 (trade-off)의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다. 【발명의 상세한 설명】  As another example, there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape. However, although the absorption rate of the super absorbent polymer can be improved through this method, there is a limit that the water retention capacity (CRC) and the pressurized absorption capacity (AUP) of the resin are relatively lowered. As such, physical properties such as absorption rate, water retention capacity, and pressure absorption capacity of the superabsorbent polymer are trade-off. Therefore, there is an urgent need for a manufacturing method capable of improving these properties simultaneously. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 빠른 흡수 속도를 가지는 고흡수성 수지를 제공하기 위한 것이다.  The present invention is to provide a super absorbent polymer having a fast absorption rate.
또한, 본 발명은 상기 고흡수성 수지의 제조 방법을 제공하기 위한 것이다.  In addition, the present invention is to provide a method for producing the super absorbent polymer.
【기술적 해결방법】 Technical Solution
본 발명은  The present invention
중합 개시제, 기포 안정제, 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 아크릴산계 단량체를 가교 중합하여, 함수겔상 중합체를 형성하는 단계 ; In the presence of a polymerization initiator, a bubble stabilizer, and an internal crosslinking agent, at least a portion of Crosslinking and polymerizing an acrylic acid monomer having a neutralized acidic group to form a hydrous gel polymer;
상기 함수겔상 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And
표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리를 통해 표면 가교하여 고흡수성 수지 입자를 형성하는 단계를 포함하고,  In the presence of a surface crosslinking liquid, surface crosslinking the base resin powder through heat treatment to form superabsorbent polymer particles,
상기 중합 개시제는, 광 개시제 및 양이온성 아조계 개시제를 포함하며, 상기 기포 안정제는 자당류 에스터 (sucrose ester) 및 폴리알킬렌 옥사이드를 포함하는, 고흡수성 수지의 제조 방법을 제공한다. 또한, 본 발명은,  The polymerization initiator includes a photoinitiator and a cationic azo initiator, and the bubble stabilizer includes a sucrose ester and a polyalkylene oxide, to provide a method for producing a super absorbent polymer. In addition, the present invention,
산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 단량체 조성물을 '중합 및 내부 가교시킨 베이스 수지, 및 상기 베이스 수지의 표면에 형성된 표면 가교층을 포함하고, A monomer composition comprising an acrylic acid monomer at least partially neutralize the acidic group, and "includes a surface cross-linked layer formed on the polymerization and internal crosslinking in which the base resin, and the surface of the base resin,
EDANA 법 WSP 241.3에 따라 측정한 원심 분리 보수능 (CRC)이 30g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 34초 이하인, 고흡수성 수지를 제공한다.  A superabsorbent polymer having a centrifugal water retention (CRC) of 30 g / g or more and a absorption rate of 34 seconds or less by the Vortex method is measured according to the EDANA method WSP 241.3.
[발명의 효과】 [Effects of the Invention】
본 발명에 따른 고흡수성 수지는, 중합 시, 중합 개시제로 특정 구조의 아조계 화합물을 사용하고, 기포 안정제로 특정한 폴리알킬렌 옥사이드와 자당류 에스터를 조합하여 사용하여, 중합 공정에서 기포 발생을 안정적으로 조절하여, 높은 보수능과 흡수 속도를 나타낼 수 있다. 【발명의 실시를 위한 형태】  In the superabsorbent polymer according to the present invention, azo compounds having a specific structure are used as polymerization initiators, and polyalkylene oxides and sucrose esters are used in combination as bubble stabilizers to stably generate bubbles in the polymerization process. Can be adjusted to exhibit high water holding capacity and absorption rate. [Form for implementation of invention]
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise", "include" or "have" refer to a feature that is implemented, It is to be understood that one or more of the steps, elements, or combinations thereof are intended to be present, but do not preclude the existence or addition of one or more other features or steps, elements, or combinations thereof in advance.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다. 고흡수성 수지는 보수능 (CRC), 가압 흡수능 (AUL) 및 흡수 속도가 중요한 물성으로 평가되고 있으며, 이를 위하여 종래에는 고흡수성 수지의 내부에 기공을 많이 형성하여 물을 빨리 빨아들이게 하거나 또는 고흡수성 수지의 입자 크기를 작게 하는 방법 등이 알려져 있다. 그러나, 고흡수성 수지의 입자 크기를 줄이는 데에는 한계가 있으며, 내부 기공을 형성.하는 경우 겔 강도가 약해지기 때문에 물품의 박막화가 어렵다는 단점이 있다.  Hereinafter, a super absorbent polymer and a method for preparing the same according to specific embodiments of the present invention will be described in detail. Superabsorbent polymers are evaluated for their water retention capacity (CRC), pressurized absorption capacity (AUL), and absorption rate, and for this purpose, conventionally, a lot of pores are formed in the superabsorbent polymer so that water can be sucked up quickly or absorbed into water. The method of making particle size of resin small is known. However, there is a limitation in reducing the particle size of the superabsorbent polymer, and when the internal pores are formed, the gel strength becomes weak, so that the thinning of the article is difficult.
이에 저온 발포제와 고온 발포제를 함께 사용하여 고흡수성 수지의 제조 과정에서 내부 기공의 크기 및 분포를 조절하여 흡수 속도를 높이는 방법이 제안되었으나, 기공의 크기 및 분포를 조절하기 위해 중합 온도의 제어가 필요하여 공정이 복잡하고, 높은 수준의 보수능 (CRC) 및 빠른 흡수 속도 (vortex time)를 갖는 베이스 수지의 제조가 어려워, 보다 향상된 흡수능과 흡수 속도를 갖는 고흡수성 수지의 제조 방법에 대한 필요성이 여전히 존재한다.  Therefore, a method of increasing the absorption rate by controlling the size and distribution of internal pores in the manufacturing process of the super absorbent polymer by using a low temperature foaming agent and a high temperature foaming agent has been proposed, but it is necessary to control the polymerization temperature to control the size and distribution of the pores. The process is complicated, and it is difficult to prepare a base resin having a high level of water retention (CRC) and a fast vortex time, and there is still a need for a method of preparing a superabsorbent polymer having improved absorption and absorption rates. exist.
본 발명자들은, 중합 시 특정한 기포 안정제를 조합하여 사용하고, 양이온성 아조계 중합 개시제를 사용함으로써, 보다 안정적이고 고른 기포 분포를 나타내어 결과적으로 높은 보수능과 함께 빠른 흡수 속도를 나타내는 고흡수성 수지를 제조할 수 있음에 착안하여 본 발명을 완성하였다. 이하, 본 발명의 고흡수성 수지 및 이의 제조 방법을 상세히 설명한다. 참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자 "는 아크릴산계 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율 (수분 함량)이 약 40 중량 % 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다. The present inventors use a combination of specific bubble stabilizers in polymerization, and use cationic azo polymerization initiators to produce superabsorbent polymers that exhibit more stable and even bubble distribution, and consequently exhibit high water retention and fast absorption rates. With this in mind, it has been completed the present invention. Hereinafter, the super absorbent polymer of the present invention and a method for producing the same will be described in detail. For reference, in the specification of the present invention, "polymer", or "polymer" means that the acrylic acid monomer is in a polymerized state, and may cover all moisture content ranges or particle size ranges. Among the above polymers, a polymer having a water content (water content) of about 40% by weight or more after being dried before polymerization may be referred to as a hydrous gel polymer.
또한, "베이스 수지 " 또는 "베이스 수지 분말"은 상기 중합체를 건조 및 분쇄하여 파우더 (powder) 형태로 만든 것을 의미한다. 본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법에서는, 먼저 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 중합 개시제, 기포 안정제, 및 내부 가교제를 포함하는, 단량체 조성물을 증합하여 함수겔상 중합체를 형성한다.  In addition, "base resin" or "base resin powder" means that the polymer is dried and ground to form a powder. In the method for preparing a super absorbent polymer according to an embodiment of the present invention, first, an acid group is included, and at least a part of the acid group includes an acrylic acid monomer, a polymerization initiator, a bubble stabilizer, and an internal crosslinking agent. Combined to form hydrogel polymer.
상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰0 /0, 또는 40 내지 80 몰 %, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. The acrylic acid monomer may have an acid group and at least a portion of the acid group may be neutralized. Preferably, those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used. In this case, the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mol%, or 45 to 75 mol%. The range of neutralization can be adjusted according to the final physical properties. However, when the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer. On the contrary, when the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have.
바람직하게는, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다:  Preferably, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1]  [Formula 1]
R'-COOM1 R'-COOM 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond, and M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
또한, 상기 단량체 조성물 중 아크릴산계 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 약 20 내지 약 90 중량0 /。, 또는 약 40 내지 약 70중량 %일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 현상을 이용하여 중합 후 미반웅 단량체를 제거할 필요가 없도록 하면서도, 후속 공정인 중합체의 분쇄시 분쇄 효율을 조절하는데 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 자나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. In addition, the concentration of the acrylic acid monomer in the monomer composition may be appropriately adjusted in consideration of polymerization time and reaction conditions, preferably about 20 to about 90 weight 0 / ° , or may be about 40 to about 70 weight% have. This concentration range may be advantageous in controlling the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need for removing the unbanung monomer after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution. However, when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. On the contrary, if the concentration of the monomer is excessively high, a problem may occur in the process, such as the precipitation efficiency of the monomer precipitated or the pulverization of the polymerized hydrogel polymer may be degraded, and the physical properties of the super absorbent polymer may be reduced.
한편, 상기 단량체 조성물에는 함수겔상 중합체의 물성을 향상시키기 위한 내부 가교제가 포함된다. 상기 가교제는 함수겔상 중합체를 내부를 가교시키기 위한 가교제로서, 후속 공정에서 상기 함수겔상 중합체의 표면을 가교시키기 위한 표면. 가교제와는 별개이다.  On the other hand, the monomer composition includes an internal crosslinking agent for improving the physical properties of the hydrogel polymer. The crosslinking agent is a crosslinking agent for crosslinking the inside of the hydrogel polymer, the surface for crosslinking the surface of the hydrogel polymer in a subsequent process. It is separate from the crosslinking agent.
바람직하게는, 내부 가교제는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 디 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 디 (메타)아크릴레이트, 프로필렌글리콜 디 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄다이올디 (메타)아크릴레이트, 부틸렌글리콜디 (메타)아크릴레이트, 디에틸렌글리콜 디 (메타)아크릴레이트, 헥산디을디 (메타)아크릴레이트, 트리에틸렌글리콜 디 (메타)아크릴레이트, 트리프로필렌글리콜 디 (메타)아크릴레이트, 테트라에틸렌글리콜 디 (메타)아크릴레이트, 디펜타에리스리틀 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린., 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 보다 바람직하게는 상기 내부 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA) 및 /또는 핵산디올디아크릴레이트 (HDDA)를 사용할 때 보다 향상된 보수능과 흡수 속도를 나타낼 수 있다. Preferably, the internal crosslinking agent is Ν, Ν'-methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylic Propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexane Diuldi (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythrite pentaacrylate, glycerin tri (meta ) Acrylates, pentaerythres, tetraacrylates, triarylamines, ethylene glycol diglycidyl ethers, Propylene glycol, glycerin . , And at least one selected from the group consisting of ethylene carbonate. More preferably, when the polyethylene glycol diacrylate (PEGDA) and / or nucleic acid diol diacrylate (HDDA) is used as the internal crosslinking agent, it can exhibit improved water retention and absorption rate.
상기 내부 가교제는 상기 아크릴산계 단량체 100중량부에 대하여 약 The internal crosslinking agent is about 100 parts by weight of the acrylic acid monomer.
0.001 내지 약 1중량부의 농도로 첨가될 수 있다. 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다. 또한, 본 발명에서는 상기 단량체 조성물 및 내부 가교제 외에, 중합 개시제로, 양이온성 아조계 개시제를 포함하며, 기포 안정제로 자당류 에스터 및 폴리알킬렌 옥사이드를 포함하는 특징이 있다. It may be added at a concentration of 0.001 to about 1 part by weight. When the concentration of the internal crosslinking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the internal crosslinking agent is too high, the absorptivity of the resin may be low, which may be undesirable as an absorber. In addition, in the present invention, in addition to the monomer composition and the internal crosslinking agent, a polymerization initiator includes a cationic azo initiator, and a bubble stabilizer includes a sucrose ester and a polyalkylene oxide.
상기 폴리알킬렌 옥사이드는, 자당류 에스터와 함께, 중합 공정 시, 보다 안정된 기포를 형성하는 역할을 하여 이를 포함하여 중합되는 함수겔상 중합체가 높은 보수능 및 빠른 흡수 속도를 가질 수 있게 한다.  The polyalkylene oxide, together with the sucrose ester, serves to form more stable bubbles in the polymerization process, thereby allowing the hydrous gel polymer to be polymerized to have a high water holding capacity and a fast absorption rate.
상기 폴리알킬렌 옥사이드는, 구체적으로 예를 들어, 폴리에틸렌 옥사이드 (polyethylene oxide, PEO), 폴리프로필렌 옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 (PEO-PPO) 이블록 (diblock) 공중합체, 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 -폴리에틸렌 옥사이드 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체를 사용할 수 있으나, 이에 한정되는 것은 아나다.  The polyalkylene oxide is specifically, for example, polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymer And polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer, and may be at least one selected from the group consisting of (PEO-PPO-PEO) triblock ( triblock) copolymer may be used, but is not limited thereto.
본 발명의 일 실시예에 따르면, 상기 폴리알킬렌 옥사이드의 중량 평균 분자량은 약 500g/mol 이상, 약 3,000g/mol 미만, 또는 약 1,000 내지 약 2,700g/m 이고, 폴리알킬렌 옥사이드 내 에틸렌옥사이드 (EO)의 비율이 20 내지 80중량0 /。, 또는 20 내지 60중량 %인 PEO-PPO-PEO 삼블록 공중합체를 사용하는 것이 보다 바람직할 수 있다. According to one embodiment of the invention, the weight average molecular weight of the polyalkylene oxide is at least about 500g / mol, less than about 3,000g / mol, or about 1,000 to about 2,700g / m, ethylene oxide in the polyalkylene oxide It may be more preferable to use PEO-PPO-PEO triblock copolymers having a ratio of (EO) of 20 to 80% by weight 0 /., Or 20 to 60% by weight.
상기 범위의 중량 평균 분자량 값을 가지는 폴리알킬렌 옥사이드를 사용하는 경우, Vortex 시간 등, 흡수.속도와 관련된 물성을 개선시킬 수 있다. 상기 폴리알킬렌 옥사이드는 상기 아크릴산계 단량체 100중량부에 대하여 약 0.001 내지 약 1중량부, 또는 약 0.01 내지 약 0.5중량부의 농도로 첨가될 수 있다. Polyalkylene oxide having a weight average molecular weight value in the above range When used, it is possible to improve the properties related to absorption and speed, such as Vortex time. The polyalkylene oxide may be added at a concentration of about 0.001 to about 1 part by weight, or about 0.01 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer.
상기 폴리알킬렌 옥사이드의 농도가 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 폴리알킬렌 옥사이드의 농도가 지나치게 높을 경우 보수능 및 흡수 속도가 오히려 하락하거나, 표면 장력이 낮아지는 문제점이 발생할 수 있다. 표면 장력의 경우, 고흡수성 수지 등을 기저귀 등의 흡수성 물품에 적용하였을 때 dryness와 관련이 있는데, 고흡수성 수지의 표면 장력이 낮아질수록 고흡수성 수지가 수분을 흡수한 후 다시 바깥으로 배어나오는 수분의 양이 많아지게 된다. 상기 폴리알킬렌 옥사이드를 포함하는 기포 안정제와 함께 사용하는 상기 자당류 에스터 (sucrose ester)로는 수크로스 스테아레이트 (sucrose stearate), 수크로스 이소부티레이트 (sucrose, isobutylate), 수크로스 팔미테이트 (sucrose palmitate) 또는 수크로스 라우레이트 (sucrose laurate) 등을 예로 들 수 있고, 이중 하나 이상을 흔합하여 사용할 수도 있으나, 본 발명이 이에 한정되는 것은 아니다. 바람직하게는 수크로스 스테아레이트를 사용할 수 있다. When the concentration of the polyalkylene oxide is too low, the role as a bubble stabilizer is insufficient to achieve the absorption rate improvement effect, on the contrary, when the concentration of the polyalkylene oxide is too high, the water holding capacity and the absorption rate is rather reduced, or the surface tension This lowering problem may occur. The surface tension is related to dryness when the superabsorbent resin etc. is applied to absorbent articles such as diapers.The lower the surface tension of the superabsorbent polymer, the more absorbed the moisture is and the more the absorbent resin is drained out. The amount of will be increased. Examples of the sucrose ester used with the bubble stabilizer including the polyalkylene oxide include sucrose stearate, sucrose isobutylate, and sucrose palmitate. Or sucrose laurate (sucrose laurate) and the like, for example, may be used in combination of one or more, but the present invention is not limited thereto. Preferably sucrose stearate can be used.
상기 자당류 에스터는 상기 아크릴산계 단량체 100중량부에 대하여 약 The sucrose ester is about 100 parts by weight of the acrylic acid monomer
0.001 내지 약 0.1중량부, 또는 약 0.005 내지 약 0.05중량부의 농도로 첨가될 수 있다. ' It may be added at a concentration of 0.001 to about 0.1 parts by weight, or about 0.005 to about 0.05 parts by weight. '
상기 자당류 에스터의 농도가 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상 7ᅵ 자당류 에스터의 농도가 지나치게 높을 경우 중합시 보수능 및 흡수 속도가 오히려 저하되어 바람직하지 않을 수 있다. The character when the concentration of the saccharide ester is too low, the function as bubble stabilizer mimihayeo difficult to achieve the improved rate of absorption effects, whereas the 7 i Here preferably the concentration of the saccharide ester is too high, polymerization beam SAT and the absorption rate is rather lowered You can't.
또한, 상기 자당류 에스터는 상기 폴리알킬렌 옥사이드 100중량부에 대하여, 약 1 내지 50중량부, 또는 약 1 내지 10중량부의 비율로 사용하는 것이 바람직하다. 그리고, 상기 폴리알킬렌 옥사이드 및 자당류 에스터를 포함하는 기포 안정제는 상기 아크릴산계 단량체 100중량부에 대하여 약 0.001 내지 약 2중량부, 또는 약 0.01 내지 약 1중량부의 함량으로 첨가될 수 있다. 그리고, 상기 양이온성 아조계 개시제를, 자당류 에스터 및 폴리알킬렌 옥사이드와 함께 사용하는 경우, 제조되는 고흡수성 수지에 대하여 높은 CRC 영역에서 빠른 볼텍스 흡수 속도를 구현할 수 있으며, 동시에, 증합 과정에서 잔류 모노머 함량을 감소시킬 수 있게 된다. In addition, the sucrose ester is preferably used in a ratio of about 1 to 50 parts by weight, or about 1 to 10 parts by weight with respect to 100 parts by weight of the polyalkylene oxide. In addition, the bubble stabilizer including the polyalkylene oxide and the sucrose ester may be added in an amount of about 0.001 to about 2 parts by weight, or about 0.01 to about 1 part by weight based on 100 parts by weight of the acrylic acid monomer. In addition, when the cationic azo initiator is used together with a sucrose ester and a polyalkylene oxide, it is possible to realize a fast vortex absorption rate in a high CRC region with respect to the superabsorbent polymer to be produced, and at the same time, remains in the polymerization process. It is possible to reduce the monomer content.
구체적으로, 상기 양이온성 아조계 개시제를, 자당류 에스터 및 폴리알킬렌 옥사이드와 함께 사용하는 경우, EDANA 법 WSP 210.3을 기준으로 하였을 때, 베이스 수지의 잔류 모노머 함량이 약 450ppm 이하, 또는, 약 300ppm 내지 약 450ppm일 수 있고, 바람직하게는 약 350ppm 이상 약 400ppm 이하일 수 있고, 표면 처리된 고흡수성 수지 기준으로는, 약 350ppm 이하, 또는 약 250ppm 내지 약 350ppm일 수 있고, 바람직하게는 약 250ppm 이상 약 300ppm 이하일 수 있다.  Specifically, when the cationic azo initiator is used together with a sucrose ester and a polyalkylene oxide, the residual monomer content of the base resin is about 450 ppm or less, or about 300 ppm, based on the EDANA method WSP 210.3. It may be from about 450ppm, preferably from about 350ppm to about 400ppm, and based on the surface-treated superabsorbent resin, may be about 350ppm or less, or about 250ppm to about 350ppm, preferably about 250ppm or more It may be 300 ppm or less.
사용 가능한 양이온성 아조계 개시제로는, 아조 ' 니트릴계 개시제 (상품명: Wako V-501), 아조 아마이드계 개시제 (상품명: Wako VA-086), 아조 아미딘계 개시제 (상품명: Wako VA-057, V-50), 및 아조 이미다졸린계 개시제 (상품명: Wako VA-061, VA-044) 등을 들 수 있으나, 본 발명이 반드시 이에 한정되는 것은 아니다. Examples of cationic azo initiators that can be used include azo ' nitrile initiators (trade name: Wako V-501), azoamide initiators (trade name: Wako VA-086), azo amidine initiators (brand names: Wako VA-057, V -50), and azo imidazoline-based initiators (trade names: Wako VA-061, VA-044) and the like, but the present invention is not necessarily limited thereto.
양이은성 아조계 개시제는, 하기와 같이, 기존의 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제와 함께 사용할 수 있다.  A cationic azo initiator can be used together with the polymerization initiator generally used for manufacture of the existing superabsorbent polymer, as follows.
상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 광 중합의 경우에도 열 중합 개시제가 추가로 사용될 수 있다.  As the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method. However, even by the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, a certain amount of heat is generated. Can be.
상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (benzyl dimethyl ketal), 아실포스핀 (acyl phosphine), 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물아 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6- 트리메틸 -벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' '의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다. As the photoinitiator, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkyl ketone (hydroxyl) one or more compounds selected from the group consisting of alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone have. As specific examples of the acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide may be used. . More various photoinitiators are disclosed on page 115 of Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)".
또한, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. In addition, the thermal polymerization initiator may be used at least one compound selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid. Specifically, the persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ) and the like.
또한, 아조 (Azo)계 개시제로는 2,2-아조비스 -(2- 아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2- 아조비스 -(Ν,Ν-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis- In addition, azo-based initiators include 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2-amidinopropane) dihydrochloride), 2,2-azobis- (Ν, N-dimethylene) isobutyramidine dihydrochloride (2,2-azobis-
(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(N, N-dimethylene) isobutyramidine dihydrochloride), 2-
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2 아조비스 [2-(2- 이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin-2- y])propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산 )(4,4-azobis-(4- cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)' '의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. (Carbamoyl-azo) isobutyronitrile nitrile (2- (carbamoylazo) isobutylonitril), the 2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- ( 2 -imidazolin- 2 -y]) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)), and the like. . More various thermal polymerization initiators are disclosed on page 203 of the Odian book "Principle of Polymerization (Wiley, 1981)".
상기 중합 개시제는 상기 아크릴산계 단량체 100중량부에 대하여 약 The polymerization initiator is about 100 parts by weight of the acrylic acid monomer.
0.001 내지 약 1중량부의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧 져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다. 본 발명의 일 실시예예 따르면, 상기 단량체 조성물은 . 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비 ?1"보네이트 (potassium bicarbonate), 포타슘 ^l"보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate), 마그네슘 비카보네이트 (magnesium bicarbonate) 및 마그네슘 카보네이트 (magnesium carbonate)으로 이루어진 군으로부터 선택되는 1종 이상의 발포제를 더 포함할 수 있다. 그 외, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다. It may be added at a concentration of 0.001 to about 1 part by weight. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of the remaining monomers may be extracted in the final product. On the contrary, when the concentration of the polymerization initiator is too high, the polymer chain forming the network is shortened. It is not preferable because the physical properties of the resin, such as the content of the water-soluble component is high and the pressure absorption capacity is lowered. According to one embodiment of the invention, the monomer composition is. Sodium bicarbonate, Sodium carbonate, Potassium bicarbonate 1 "Potassium bicarbonate, Potassium ^ l" Potassium carbonate, Calcium bicarbonate, Calcium carbonate bicarbonate), magnesium bicarbonate (magnesium bicarbonate) and magnesium carbonate (magnesium carbonate) may further include at least one blowing agent selected from the group consisting of. In addition, the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, and antioxidants, as necessary.
또한, 상기 단량체 조성물은 상기 아크릴산계 단량체, 중합 개시제, 내부 가교제, 자당류 에스터, 및 기포 안정제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다.  In addition, the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, an internal crosslinking agent, a sucrose ester, and a bubble stabilizer are dissolved in a solvent.
이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 틀루엔, 자일렌, 부티로락톤, 카르비틀, 메틸셀로솔브아세테이트, Ν,Ν-디메틸아세트아미드, 또는 이들의 흔합물 등 사용될 수 있다. 상기 용매의 양은 중합 열 조절 등을 고려하여 상기 아크릴산계 단량체 함량의 1 내지 5 배의 중량비가 되도록 조절될 수 있다. 한편, 상기 단량체 조성물의 중합 및 가교를 통한 함수겔상 중합체의 형성은 본 발명이 속하는 기술분야에서 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader)와 같은 교반축을 가진 반웅기에서 수행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 수행될 수 있다. In this case, any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials. For example, as the solvent, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucanonone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methyl cellosolve acetate Ν, Ν-dimethylacetamide, or a combination thereof may be used. The amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer content in consideration of polymerization heat control and the like. On the other hand, the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited. As a non-limiting example, the polymerization The method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, in which the thermal polymerization may be performed in a reaction vessel having a stirring shaft such as a kneader. It can be carried out in a semi-unggi equipped with a movable conveyor belt.
· 일례로, 교반축이 구비된 니더와 같은 반웅기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반웅기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반웅기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자 형태로 얻어질 수 있다. 상기 함수겔상 중합체는 주입되는' 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 중량 평균 입경이 2mm 내지 50mm인 함수겔상 중합체가 얻어질 수 있다. For example, a hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or heating and heating the reaction vessel. In this case, the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the form of particles of several millimeters to several centimeters. The functional polymer is a gel may be obtained in various forms depending on the concentration and the injection rate of the "monomer composition to be injected, it is usually a weight-average particle diameter of 2mm to 50mm of a function gel polymer can be obtained.
또한, 다른 일례로 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트상의 함수겔상 증합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 약 0.5cm 내지 약 5cm의 두께로 조절되는 것이 바람직하다.  In another example, when the photopolymerization of the monomer composition is performed in a semi-unggi equipped with a movable conveyor belt, a sheet-like hydrogel polymer may be obtained. At this time, the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of about 0.5cm to about 5cm It is preferable to be.
상기와 같은 방법으로 형성되는 함수겔상 중합체는 약 40 내지 80중량%의 함수율을 나타낼 수 있다. 상기 함수겔상 중합체의 함수율이 상기 범위에 들도록 하는 것이 후술할 건조 단계에서의 효율을 최적화한다는 점에서 유리하다.  The hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80% by weight. It is advantageous in that the water content of the hydrogel polymer falls within the range to optimize the efficiency in the drying step described later.
여기서 함수율은 함수겔상 중합체의 전체 중량에서 수분이 차지하는 증량으로서, 함수겔상 중합체의 중량에서 건조 상태의 중합체 중량을 뺀 값으로 계산될 수 있다. 구체적으로, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분 증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의될 수 있다. 이때, 건조 조건은 상온에서 약 180 °C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조 시간은 온도 상승 단계 5분을 포함하여 40분으로 설정될 수 있다. Here, the moisture content is an increase in water occupying the total weight of the hydrogel polymer, and may be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer through infrared heating. At this time, the drying conditions may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and then maintained at 180 ° C.
전술한 단계를 통해 얻어진 함수겔상 중합체는 흡수성의 부여를 위해 건조 공정을 거치게 된다. 그런데, 이러한 건조의 효율을 높이기 위해, 건조 공정의 수행 전에 상기 함수겔상 중합체를 분쇄 (조분쇄)하는 단계가 수행될 수 있다. The hydrogel polymer obtained through the above-mentioned steps is used for imparting absorbency. It goes through a drying process. By the way, in order to increase the drying efficiency, the step of pulverizing (coarsely pulverizing) the hydrogel polymer before performing the drying process may be performed.
비제한적인 예로, 상기 조분쇄에 이용 가능한 분쇄기로는 수직형 절단기 (vertical pulverizer), 터보 커터 (turbo cutter), 터보 글라인더 (turbo grinder), 회전 절단식 분쇄기 (rotary cutter mill), 절단식 분쇄기 (cutter mill), 원판 분쇄기 (disc mill), 조각 파쇄기 (shred crusher), 파쇄기 (crusher), 초퍼 (chopper), 원판식 절단기 (disc cutter) 등을 예로 들 수 있다.  As a non-limiting example, the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type. Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like.
이때, 상기 조분쇄는 상기 함수겔상 중합체의 입경이 약 2mm 내지 약 10mm가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔상 중합체는 약 10mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 웅집 현상이 발생할 수 있으므로, 상기 함수겔상 중합체는 약 2mm 이상의 입자로 분쇄되는 것이 바람직하다. In this case, the coarse grinding may be performed such that the particle size of the hydrogel polymer is about 2 mm to about 10 mm. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of about 10 mm or less. However, excessive To avoid the possibility of ungjip phenomenon between particles during milling, the functional polymer gel is preferably ground to a particle of about 2mm or more.
상기 조분쇄 단계는, 중합체의 함수율이 높은 상태에서 수행되기 때문에 분쇄기의 표면에 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 상기 조분쇄 단계에는, 필요에 따라, 스팀, 물, 계면활성제, 응집 방지제 (예를 들어 clay, silica 등); 과황산염계 개시제, 아조계 개시저 I, 과산화수소, 열중합 개시제, 에폭시계 가교제, 디올 (diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교체, 수산화기를 포함하는 1 관능기의 가교제 등이 첨가될 수 있다.  The coarsely pulverizing step, because the polymer is carried out in a high water content of the polymer may stick to the surface of the mill may appear. In order to minimize this phenomenon, the coarse grinding step may include steam, water, surfactants, anti-agglomerating agents (eg clay, silica, etc.) as necessary; Persulfate-based initiator, azo-based initiator I, hydrogen peroxide, thermal polymerization initiator, epoxy-based cross-linking agent, diol cross-linking agent, cross-linked body comprising a acrylate of a bifunctional group or a polyfunctional group of at least three functional groups, 1 containing a hydroxyl group A crosslinking agent of a functional group, etc. can be added.
전술한 단계를 통해 조분쇄된 함수겔상 중합체를 건조하는 단계가 수행된다. 상기 함수겔상 중합체는 전술한 단계를 통해 약 2mm 내지 약 10mm의 입자로 조분쇄된 상태로 건조 단계에 제공됨에 따라, 보다 높은 효율로 건조가 이루어질 수 있다.  Through the above-described steps, the step of drying the coarsely pulverized hydrogel polymer is carried out. The hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of about 2mm to about 10mm through the above-described step, it can be dried at a higher efficiency.
상기 조분쇄된 함수겔상 증합체의 건조는 약 120 내지 약 2501:, 바람직하게는 약 140 내지 약 200 °C , 보다 바람직하게는 약 150 내지 약 190°C의 온도 하에서 수행될 수 있다. 이때, 상기 건조 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반웅기 내부의 온도로 정의될 수 있다. 건조 온도가 낮아 건조 시간이 길어질 경우 공정 효율성이 저하되므로, 이를 방지하기 위하여 건조 온도는 약Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of about 120 to about 2501 :, preferably about 140 to about 200 ° C, more preferably about 150 to about 190 ° C. In this case, the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reaction vessel including the heat medium and the polymer in the drying process. Low drying temperature reduces drying time The longer the process, the lower the efficiency, so the drying temperature is about
120 °C 이상인 것이 바람직하다. 또한, 건조 온도가 필요 이상으로 높을 경우 함수겔상 중합체의 표면이 과하게 건조되어 후속 공정인 분쇄 단계에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 약 250°C 이하인 것이 바람직하다. It is preferable that it is more than 120 ° C. In addition, when the drying temperature is higher than necessary, the surface of the hydrogel polymer may be excessively dried to increase the generation of fine powder in the subsequent grinding step, and the physical properties of the final resin may be lowered. It is preferred that it is about 250 ° C or less.
이때, 상기 건조 단계에서의 건조 시간은 특별히 제한되지 않으나, 공정 효율 및 수지의 물성 등을 고려하여, 상기 건조 온도 하에서 약 20분 내지 약 90분으로 조절할 수 있다.  At this time, the drying time in the drying step is not particularly limited, but may be adjusted to about 20 minutes to about 90 minutes under the drying temperature in consideration of process efficiency and the physical properties of the resin.
상기 건조는 통상의 매체를 이용하여 이루어질 수 있는데, 예를 들어, 상기 조분쇄된 함수겔상 중합체에 대한 열풍 공급, 적외선 조사, 극초단파 조사 : 또는 자외선 조사 등의 방법을 통해 수행될 수 있다. The drying may be done using a conventional medium, for example, the hot air supply tank to the grinding function gel polymer, infrared irradiation, microwave irradiation may be performed through a method such as ultraviolet irradiation or.
그리고, 이러한 건조는 건조된 중합체가 약 0.1 내지 약 10중량0 /。의 함수율을 갖도록 수행되는 것이 바람직하다. 즉, 건조된 중합체의 함수율이 약 0.1중량0 /。 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해 (degradation)가 일어날 수 있어 바람직하지 않다. 그리고, 건조된 중합체의 함수율이 약 10중량 %를 초과할 경우 후속 공정에서 불량이 발생할 수 있어 바람직하지 않다. And such drying is preferably carried out so that the dried polymer has a water content of about 0.1 to about 10 weight 0 /. That is, when the moisture content of the dried polymer is less than about 0.1 weight 0 / °, it is not preferable because an increase in the manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds about 10% by weight, defects may occur in subsequent processes, which is not preferable.
전술한 단계를 통해 건조된 중합체를 분쇄하는 단계가 수행된다. 상기 분쇄 단계는 건조된 중합체의 표면적으로 최적화하기 위한 단계로서, 분쇄된 중합체의 입경이 약 150 내지 약 850/ m가 되도록 수행할 수 있다.  Through the steps described above, a step of pulverizing the dried polymer is performed. The milling step is a step for optimizing the surface area of the dried polymer, it may be carried out so that the particle diameter of the milled polymer is about 150 to about 850 / m.
이때 분쇄가로는 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill), 조그 밀 (jog mill) 등 통상의 것이 사용될 수 있다. 또한, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻어지는 중합체 입자에서 150 내지 850 의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다.  At this time, the grinding mill may be a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, or the like. Can be. In addition, in order to manage the physical properties of the super absorbent polymer to be finalized, the step of selectively classifying particles having a particle size of 150 to 850 from the polymer particles obtained through the grinding step may be further performed.
상기와 같은 본 발명의 공정에 의해 중합, 건조, 및 분쇄된 중합체 (베이스 수지)는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 35g/g 이상, 또는 약 37g/g 이상, 또는 약 40g/g 이상이면서 약 50g/g 이하, 또는 약 45g/g 이하, 또는 약 42g/g 이하일 수 있다. 또한, 볼텍스 법 (Vortex)에 의한 흡수 속도가 42초 이하, 또는 약 40초 이하이면서 약 25초 이상, 또는 약 30초 이상, 또는 약 35초 이상일 수 있다. 이후는, 전술한 단계를 통해 분쇄된 중합체의 표면을 개질하는 단계로, 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리를 통해 표면 가교하여 고흡수성 수지 입자를 형성하는 단계이다. The polymer (base resin) polymerized, dried and pulverized by the above-described process of the present invention has a water retention capacity (CRC) of about 35 g / g or more, or about 37 g / g or more, as measured according to the EDANA method WSP 241.3, or About 40 g / g or more and about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less. Further, the absorption rate by Vortex may be 42 seconds or less, or about 40 seconds or less and about 25 seconds or more, or about 30 seconds or more, or about 35 seconds or more. Subsequently, in the step of modifying the surface of the pulverized polymer through the above-described steps, in the presence of a surface crosslinking solution containing a surface crosslinking agent, surface crosslinking the base resin powder through heat treatment to form superabsorbent polymer particles to be.
상기 표면 개질은 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반웅을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 개질을 통해 상기 분쇄된 중합체 입자의 표면에는 표면 가교층이 형성된다.  The surface modification is a step of forming a superabsorbent polymer having more improved physical properties by inducing crosslinking reaction on the surface of the ground polymer in the presence of a surface crosslinking agent. Through such surface modification, a surface crosslinking layer is formed on the surface of the pulverized polymer particles.
상기 표면 개질 (표면 가교 반웅)은 중합체 입자 표면의 가교 결합 밀도를 증가시키는 통상의 방법으로 수행될 수 있으며, 예를 들어, 표면 가교제를 포함하는 용액과 상기 분쇄된 중합체를 흔합하여 가교 반웅시키는 방법으로 수행될 수 있다.  The surface modification (surface crosslinking reaction) may be carried out by a conventional method of increasing the crosslinking density of the polymer particle surface, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent. It can be performed as.
여기서 상기 표면 가교제는 상기 중합체가 갖는 관능기와 반웅 가능한 화합물로서 , 그 구성은 특별히 한정되지 않는다. 다만, 비제한적인 예로, 상기 표면 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 디을, 디프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄디을, 헵탄디올, 핵산디을 트리메틸를프로판, 펜타에리스리콜, 소르비틀, 칼슘 수산화물, 마그네슘 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슘 염화물, 알루미늄 염화물, 및 철 '염화물로 이루어진 군에서 선택된Here, the said surface crosslinking agent is a compound which can react with the functional group which the said polymer has, The structure is not specifically limited. However, by way of non-limiting example, the surface crosslinking agent is ethylene glycol diglycidyl ether, polyester styrene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol di Glycidyl ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane di, dipropylene glycol, polypropylene glycol, glycerin, polyglycerine, butanedi, heptanediol, nucleic acid ditrimethyl, propane, penta EPO recalled, sorbitan beetle, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron, selected from the group consisting of chloride
1종 이상의 화합물일 수 있다. It may be one or more compounds.
이때, 상기 표면 가교제의 함량은 가교제의 종류나 반웅 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 분쇄된 중합체 100중량부에 대하여 약 0.001 내지 약 5중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 개질이 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 과량의 표면 가교제가 사용되면 과도한 표면 가교 반웅으로 인해 수지의 흡수력이 오히려 저하될 수 있어 바람직하지 않다. 한편, 상기 표면 개질 단계는, 상기 표면 가교제와 분쇄된 중합체를 반응조에 넣고 흔합하는 방법, 분쇄된 중합체에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 분쇄된 중합체와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등 통상적인 방법으로 수행될 수 있다. In this case, the content of the surface crosslinking agent may be appropriately adjusted according to the type of crosslinking agent or reaction conditions, and preferably, about 0.001 to about 5 parts by weight based on 100 parts by weight of the pulverized polymer. When the content of the surface crosslinking agent is too low, the surface modification is not properly made, the physical properties of the final resin may be lowered. On the contrary, excessive surface crosslinking agents are used The crosslinking reaction may lower the absorptivity of the resin, which is not preferable. On the other hand, the surface modification step, the method of mixing the surface cross-linking agent and the pulverized polymer in the reaction tank, the method of spraying the surface cross-linking agent to the pulverized polymer, the continuous supply of the pulverized polymer and surface cross-linking agent to the mixer to be continuously operated It can be carried out in a conventional manner such as a mixing method.
또한, 상기 표면 가교제를 첨가할 때 추가적으로 물이 첨가될 수 있다. 이처럼 표면 가교제와 물이 함께 첨가됨으로써 표면 가교제의 고른 분산이 유도될 수 있고, 중합체 입자의 뭉침 현상이 방지되고, 중합체 입자에 대한 표면 가교제의 침투 깊이가 보다 최적화할 수 있다. 이러한 목적 및 효과를 고려하여, 표면 가교제와 함게 첨가되는 물의 함량은 상기 분쇄된 중합체 100중량부에 대하여 약 0.5 내지 약 10중량부로 조절될 수 있다.  In addition, water may be additionally added when the surface crosslinking agent is added. As such, the surface crosslinking agent and water are added together to induce even dispersion of the surface crosslinking agent, to prevent aggregation of the polymer particles, and to further optimize the penetration depth of the surface crosslinking agent into the polymer particles. In view of these objects and effects, the amount of water added together with the surface crosslinking agent may be adjusted to about 0.5 to about 10 parts by weight based on 100 parts by weight of the pulverized polymer.
그리고, 상기 표면 가교는 약 175 내지 약 200 °C의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 보다 바람직하게는, 약 180 내지 약 195 °C의 온도 하에서 진행될 수 있다.  In addition, the surface crosslinking may be performed at a temperature of about 175 to about 200 ° C, and may be continuously performed after the drying and grinding steps proceed to a relatively high temperature. More preferably, it may proceed under a temperature of about 180 to about 195 ° C.
이때. 상기 표면 가교 반웅은 약 1 내지 약 120분, 또는 약 1 내지 약 100분, 또는 약 10 내지 약 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반웅을 유도하면서도 과도한 반응시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반웅의 조건으로 진행될 수 있다. 본 발명의 다른 일 구현예에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 단량체 조성물을 중합 및 내부 가교시킨 베이스 수지 및, 상기 베이스 수지의 표면에 형성된 표면 가교층으로 이루어진 고흡수성 수지에 있어서, 상기 베이스 수지는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 35g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하인, 고흡수성 수지를 제공한다.  At this time. The surface crosslinking reaction may proceed for about 1 to about 120 minutes, or about 1 to about 100 minutes, or about 10 to about 60 minutes. That is, in order to induce a minimum surface crosslinking reaction and to prevent the polymer particles from being damaged due to excessive reaction and deteriorating physical properties, the above-described surface crosslinking reaction may be performed. According to another embodiment of the present invention, a base resin polymerized and internally crosslinked with a monomer composition including an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, and a surface crosslinking layer formed on the surface of the base resin. In the super absorbent polymer consisting of, the base resin is a super absorbent polymer having a water retention capacity (CRC) of 35 g / g or more measured according to the EDANA method WSP 241.3, the absorption rate by the Vortex method (Vortex) of 40 seconds or less to provide.
이에 본 발명에서는 중합시 특정한 기포 안정제 및 자당류 에스터를 함께 사용하여 고흡수성 수지의 제조 과정에서 발생하는 기포를 안정화시킴으로써, 높은 보수능과 흡수 속도를 나타낼 수 있다. Therefore, in the present invention, by using a specific bubble stabilizer and sucrose ester together during polymerization, bubbles generated during the preparation of superabsorbent polymers are avoided. By stabilizing, high water holding capacity and absorption rate can be exhibited.
바람직하게는, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다:  Preferably, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1]  [Formula 1]
R'-COOM1 R'-COOM 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 약 40 내지 약 95 몰0 /。, 또는 약 40 내지 약 80몰 %, 또는 약 45 내지 약 75몰0 /0일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 증화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다ᅳ Here, the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. Preferably, those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used. In this case, the neutralization degree of the acrylic acid-based monomer may be about 40 to about 95 mole 0 /., Or from about 40 to about 80 mol%, or from about 45 to about 75 mole 0/0. The range of neutralization can be adjusted according to the final physical properties. However, when the degree of neutralization is too high, it may be difficult for the polymerization to proceed smoothly due to the precipitation of the thickened monomer. On the contrary, when the degree of neutralization is too low, the absorbency of the polymer may be greatly reduced and may exhibit properties such as elastic rubber, which is difficult to handle. There is
. 바람직하게는, 상기 가교 중합체는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 디 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 디 (메타)아크릴레이트, 프로필렌글리콜 디 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄디올디 (메타)아크릴레이트, 부틸렌글리콜디 (메타)아크릴레이트, 디에틸렌글리콜 디 (메타)아크릴레이트, 핵산디올디 (메타)아크릴레이트, 트리에틸렌글리콜 디 (메타)아크릴레이트, 트리프로필렌글리콜 디 (메타)아크릴레이트, 테트라에틸렌글리콜 디 (메타)아크릴레이트, 디펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상의 내부 가교제에 의해 내부 가교된 것일 수 있다. 보다 바람직하게는 폴리에틸렌글리콜디아크릴레이트 (PEGDA) 및 /또는 핵산디올디아크릴레이트 (HDDA)에 의해 내부 가교된 것일 수 있다. . Preferably, the crosslinked polymer is Ν, Ν'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) ) Acrylate, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Nucleic Acid Diol Di (meth) acrylate, Triethylene Glycol Di (meth) acrylate, Tripropylene Glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaeryth tetraacrylate, triarylamine, ethylene glycol diglyci It may be internally crosslinked by at least one internal crosslinker selected from the group consisting of dill ether, propylene glycol, glycerin, and ethylene carbonate. More preferably, it may be internally crosslinked by polyethylene glycol diacrylate (PEGDA) and / or nucleic acid diol diacrylate (HDDA).
본 발명에서, 상기 가교 중합체는 EDANA 법 WSP 241.3에 따라 측정한 원심분리. 보수능 (CRC)이 약 35g/g 이상, 또는 약 36g/g 이상, 또는 약 40g/g 이상일 수 있다. 보수능 (CRC)의 상한값은 특별히 제한되지 않으나, 예를 들면 약 50g/g 이하, 또는 약 45g/g 이하, 또는 약 42g/g 이하일 수 있다. In the present invention, the crosslinked polymer is centrifuged as measured according to the EDANA method WSP 241.3 . The water retention capacity (CRC) may be at least about 35 g / g, or at least about 36 g / g, or at least about 40 g / g. The upper limit of the water holding capacity (CRC) is not particularly limited but may be, for example, about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
또한, 상기 가교 중합체는 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하, 또는 약 39초 이하, 또는 약 ' 37초 이하일 수 있다. 흡수 속도의 하한값은 특별히 제한되지 않으나, 예를 들면 약 15초 이상, 또는 약 20초 이상, 또는 약 30초 이상일 수 있다. In addition, the crosslinked polymer may be less than or equal to the absorption speed by the vortex method (Vortex) not more than 40 seconds, or less than about 39 seconds, or from about '37 seconds. The lower limit of the absorption rate is not particularly limited, but may be, for example, about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more.
이때, 상기 보수능 및 흡수 속도는 상기 가교 중합체 표면에 표면 가교층을 형성하기 이전으로, 단량체 조성물의 중합 후 건조 및 분쇄하여 파우더 (powder) 형태로 만든 상태의 가교 중합체인 베이스 수지 (base resin)에 대해 측정한 값이다.  At this time, the water retention capacity and the absorption rate is a base resin which is a crosslinked polymer in the form of powder after drying and pulverizing after polymerization of the monomer composition before forming a surface crosslinked layer on the surface of the crosslinked polymer. Measured for.
베이스 수지에 대해 표면 가교층을 형성하면, 일반적으로 가압 흡수능 (AUP)은 증가하고 흡수 속도 (vortex time)도 향상되지만, 보수능 (CRC)은 감소하게 된다. 따라서, 이러한 보수능의 감소 경향을 고려할 때 최종 제품의 물성 확보를 위해서는 높은 보수능을 갖는 베이스 수지를 제조하는 것이 매우 중요하다. 보수능이 높은 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 보수능의 하락에 대한 우려가 적으며 이와 동시에 향상된 가압 흡수능과 흡수 속도를 가질 수 있어 보다 고품질의 수지를 수득할 수 있게 된다.  Forming a surface crosslinked layer with respect to the base resin generally increases the pressure absorbency (AUP) and improves the absorption rate (vortex time), but decreases the water retention capacity (CRC). Therefore, in consideration of such a tendency to reduce the water retention capacity, it is very important to prepare a base resin having a high water retention ability to secure the physical properties of the final product. The superabsorbent polymer having the surface crosslinked layer formed on the high water-retaining base resin has little concern about a decrease in water-retaining ability, and at the same time, it has an improved pressure-absorbing capacity and absorption rate, thereby obtaining a higher quality resin. .
예를 들어, 상기와 같은 보수능 및 흡수 속도를 가지는 가교 중합체 (베이스 수지)에 대해 표면 가교층을 형성한 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 약 30g/g 이상, 또는 약 31g/g 이상, 또는 약 34g/g 이상이고, 약 45g/g 이하, 또는 약 40g/g 이하, 또는 약 36g/g 이하일 수 있다. For example, the superabsorbent polymer in which the surface crosslinked layer is formed with respect to the crosslinked polymer (base resin) having the above water-retaining capacity and absorption rate is EDANA. The centrifugal water retention (CRC) measured according to method WSP 241.3 is at least about 30 g / g, or at least about 31 g / g, or at least about 34 g / g, at most about 45 g / g, or at most about 40 g / g, or About 36 g / g or less.
또한, 상기 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 볼텍스 법 (Vortex)에 의한 흡수 속도가 34초 이하, 또는 약 33초 이하, 또는 약 30초 이하이고, 약 10초 이상, 또는 약 15초 이상, 또는 약 20초 이상일 수 있다.  In addition, the superabsorbent polymer having a surface crosslinked layer formed on the base resin has an absorption rate of 34 seconds or less, or about 33 seconds or less, or about 30 seconds or less, about 10 seconds or more, by a vortex method (or About 15 seconds or more, or about 20 seconds or more.
상기 원심분리 보수능 (CRC)은 EDANA 법 WSP 241.3에 따라 측정한 것으로, 하기 수학식 1로 표시될 수 있다:  The centrifugal water retention capacity (CRC) is measured according to the EDANA method WSP 241.3, and may be represented by Equation 1 below:
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - \ν,(Ε)]/\ν0(§)} - 1 CRC (g / g) = {[W 2 (g)-\ ν, ( Ε )] / \ ν 0 ( § )}-1
상기 수학식 1에서,  In Equation 1,
W0(g)는 수지의 무게 (g)이고, W 0 (g) is the weight of the resin (g),
W,(g)는 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게 (g)이고,  W, (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin,
W2(g)는 상온에 0.9 질량%의 생리 식염수에 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 수지를 포함하여 측정한 장치 무게 (g)이다. W 2 (g) is the device weight (g) measured after the resin was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes and then dehydrated at 250 G for 3 minutes using a centrifuge.
상기 볼텍스 법에 의한 흡수 속도의 측정은, 100ml 비커에 50ml 식염수를 마그네틱 교반 바와 함께 넣고, 교반기를 사용하여 마그네틱 교반 바의 교반 속도를 600rpm으로 지정한 후 교반되고 있는 식염수에 2.0g의 수지를 넣는 동시에 시간을 측정하여 비커 안에 소용돌이가 없어지는 시점까지 걸린 시간 (단위 : 초)을 볼텍스 시간으로 하여 측정한다. 또한, 상기 고흡수성 수지는, 생리 식염수에 의한 팽윤 시 , 구체적으로, Measurement of the absorption rate by the vortex method, 50ml saline into a 100ml beaker with a magnetic stir bar, using a stirrer to specify a stirring speed of 600rpm and then put 2.0g of resin in the saline stirred Measure the time and measure the time (in seconds) to the point where the swirl disappears in the beaker as the vortex time. In addition, the super absorbent polymer, when swelling with physiological saline, specifically,
0.9중량% 염화 나트륨 수용액에 의해 팽윤시키고, 해당 염화 나트륨 수용액에 대하여 측정한 표면 장력 (surface tension) 값이 약 40mN/m 이상, 바람직하게는 약 40 내지 약 70mN/m, 또는 약 60 내지 약 70mN/m인 것이 바람직할 수 있다. 이러한 표면 장력은, 예를 들어, 23±2 °C의 상온에서, 표면 장력 측정기를 사용하여 측정할 수 있다. 표면 장력의 구체적인 측정 방법은 후술하는 실시예에 기재되어 있다. Swelled with 0.9% by weight aqueous sodium chloride solution, and the measured surface tension ( sur f ace tension) value of at least about 40 mN / m, preferably about 40 to about 70 mN / m, or about 60 to It may be desirable to be about 70 mN / m. This surface tension is measured, for example, at room temperature of 23 ± 2 ° C. Can be measured. The specific measuring method of surface tension is described in the Example mentioned later.
. 고흡수성 수지의 표면 장력은 보수능, 가압흡수능, 통액성 등과는 구분되는 물성으로 상기 고흡수성 수지를 포함하는 기저귀에서의 소변 누출 (leakage)을 평가할 수 있는 척도로 될 수 있다. 상기 표면 장력은 고흡수성 수지를 염수에 팽윤시키고, 해당 염수에 대해 측정한 표면 장력올 의미하며 , 고흡수성 수지의 표면 장력이 낮을 경우 이를 포함하여 제조되는 기저귀 등에서 소변이 새는 현상이 발생할 가능성이 높다. 일 구현예의 고흡수성 수지에 따르면, 높은 통액성 등을 유지하면서도 적정한 범위의 표면 장력을 가짐으로써 누출 발생 가능성을 줄여 고품질의 위생용품을 생산할 수 있다. 상기 고흡수성 수지의 표면 장력이 지나치게 낮아지는 경우, 소변의 샘 현상, 즉, rewet이 증가할 수 있으며, 표면 장력이 지나치게 높아지는 경우에는, 표면 가교층이 불균일하게 형성되어 통액성 등의 물성이 저하될 수 있다ᅳ 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.  . The surface tension of the superabsorbent polymer may be a measure for evaluating urine leakage in a diaper including the superabsorbent polymer as physical properties that are distinguished from water-retaining capacity, pressure-absorbing capacity, liquid permeability, and the like. The surface tension swells the superabsorbent polymer in saline, and means the surface tension measured for the saline, and if the surface tension of the superabsorbent polymer is low, urine leakage is likely to occur in a diaper manufactured by the same. . According to the super absorbent polymer of one embodiment, it is possible to produce a high-quality sanitary article by reducing the possibility of leakage by having a suitable surface tension while maintaining high fluidity and the like. When the surface tension of the superabsorbent polymer is too low, urine leakage, that is, rewet may increase, and when the surface tension is excessively high, the surface crosslinking layer may be unevenly formed, thereby deteriorating physical properties such as liquid permeability. Hereinafter, the operation and effect of the invention will be described in more detail with reference to specific embodiments of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
<실시예 > <Example>
실시예  Example
실시예 1  Example 1
1-1. 베이스 수지의 제조  1-1. Preparation of Base Resin
아크릴산 100 중량부, 50% 가성소다 (NaOH) 83.3 중량부, 물 89.8 중량부, 하기의 성분들을 흔합하여 모노머 조성물을 제조하였다.  A monomer composition was prepared by mixing 100 parts by weight of acrylic acid, 83.3 parts by weight of 50% caustic soda (NaOH), 89.8 parts by weight of water, and the following components.
- 내부 가교제: 폴리에틸렌글리콜디아크릴레이트 (PEGDA; Mw=400) 0.27 중량부 (2700ppmw) 및 폴리에틸렌글리콜디아크릴레이트 (PEGDA; Mw=200) 0.054 중량부 (540ppmw)  Internal crosslinker: 0.27 parts by weight (2700 ppmw) of polyethylene glycol diacrylate (PEGDA; Mw = 400) and 0.054 parts by weight (540 ppmw) of polyethylene glycol diacrylate (PEGDA; Mw = 200)
- 중합 개시제: 양이온성 아조계 개시제 (V50) 0.1 중량부 (lOOOppmw), 과산화수소 (H202) 0.02 중량부 (300ppmw), 아스코르브산 0.05 증량부 (500ppmw), 과황산칼륨 (KPS) 0.2 중량부 (2000ppmw) - 기포 안정제: 수크로스 스테아레이트 (S 1670) 0.016 중량부 (160ppmw), 및 폴리알킬렌 옥사이드 (PEO-PPO-PEO triblock copolymer, Mw: 2550) 0.16 중량부 (1600ppmw) -Polymerization initiator: 0.1 part by weight (10 ppm) of cationic azo initiator (V50), 0.02 part by weight (300 ppmw) of hydrogen peroxide (H 2 0 2 ), 0.05 part by weight (500 ppmw) of ascorbic acid, 0.2 parts by weight of potassium persulfate (KPS) Part (2000ppmw) Bubble stabilizer: 0.016 parts (160 ppmw) of sucrose stearate (S 1670), and 0.16 parts (1600 ppmw) of polyalkylene oxide (PEO-PPO-PEO triblock copolymer, Mw: 2550)
상기 모노머 조성물로 열중합 반웅을 진행하여 중합된 시트를 얻었다. 중합된 시트를 꺼내어 3cm 3cm의 크기로 자른 후, 미트 쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (cmmb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 180 °C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되도록 하였다. 건조 후, 분쇄기로 분쇄한 다음 분급하여 입경이 150 내지 850 인 입자들을 선별하여 베이스 수지를 제조하였다. Thermal polymerization reaction was carried out with the monomer composition to obtain a polymerized sheet. The polymerized sheet was taken out and cut to a size of 3 cm 3 cm, and then subjected to a chopping process using a meat chopper to prepare a powder. The powder (cmmb) was dried in an oven capable of transferring air volume up and down. The hot air at 180 ° C. was heated uniformly from 15 minutes downwards to 15 minutes and upwards from downwards to 15 minutes, and dried to have a water content of 2% or less. After drying, it was pulverized with a grinder and classified to sort particles having a particle diameter of 150 to 850 to prepare a base resin.
1-2. 고흡수성 수지의 제조 1-2. Preparation of Super Absorbent Resin
상기 1 -1에서 제조한 베이스 수지 100 중량부에 대하여, 물 4 중량부, 메탄을 4 중량부, 에틸렌글리콜 디글리시딜 에테르 (ethyleneglycol diglycidyl ether) 0.3 중량부, 실리카 (AerOSil 200) 0.06 증량부, 및 옥살산 으2 중량부를 첨가하여 흔합한 다음, 표면가교온도로 140 °C에서 40분 동안 반응시키고, 분쇄 후 시브 (sieve)를 이용하여 입경이 150 내지 850 의 표면 처리된 고흡수성 수지를 얻었다. 4 parts by weight of water, 4 parts by weight of methane, 0.3 parts by weight of ethyleneglycol diglycidyl ether, and silica (Aer OS il 200) based on 100 parts by weight of the base resin prepared in 1-1. The mixture was added with 2 parts by weight of oxalic acid, and then mixed. Then, the mixture was reacted at 140 ° C. for 40 minutes at a surface crosslinking temperature, and the surface treated super absorbent polymer having a particle diameter of 150 to 850 using a sieve. Got.
실시예 2 내지 7 및 비교예 1 내지 6  Examples 2-7 and Comparative Examples 1-6
각 성분의 함량을 달리 하여, 상기 실시예 1과 동일하게 고흡수성 수지를 제조하였다. 실시예 8, 9; 및 비교예 8  By varying the content of each component, a super absorbent polymer was prepared in the same manner as in Example 1. Examples 8, 9; And Comparative Example 8
기포 안정제로, 중량 평균 분자량 값이 다른 폴리알킬렌 옥사이드 (PEO- As bubble stabilizer, polyalkylene oxides with different weight average molecular weight values (PEO-
PPO-PEO triblock copolymer)를 사용하고, 함 을 달리한 것을 제외하고는, 상기 실시예 1과 동일하게 고흡수성 수지를 제조하였다. 실시예 및 비교예에서 사용한 각 성분의 함량은 하기 표 1과 같다. 【표 1 ] Using a PPO-PEO triblock copolymer), except that the box, the superabsorbent polymer was prepared in the same manner as in Example 1. The content of each component used in Examples and Comparative Examples is shown in Table 1 below. Table 1
Figure imgf000023_0001
실험예: 고흡수성 수지의 물성 평가
Figure imgf000023_0001
Experimental Example: Evaluation of Physical Properties of Super Absorbent Polymer
상기 실시예 및 비교예에서 제조한 고흡수성 수지의 물성을 이하의 방법으로 평가하였다.  The physical properties of the super absorbent polymers prepared in Examples and Comparative Examples were evaluated by the following method.
(1) 흡수 속도 (Vortex) (1) Absorption Rate (Vortex)
100 11 비커에, 0.9 중량0 /。의 NaCl 용액 50 를 넣은 후, 교반기를 이용하여 600 rpm로 교반하면서, 상기 실시예 및 비교예에서 제조한 고흡수성 수지 2 g를 각각 첨가하였다. 그리고, 교반에 의해 생기는 액체의 소용돌이 (vortex)가 없어져, 매끄러운 표면이 생길 때까지의 시간을 측정하고, 그 결과를 볼텍스 제거 시간 (흡수 속도; vortex)으로 나타내었다. In a 100 11 beaker, 0.9 weight of 0 /. NaCl solution 50 was added, and the stirrer was 2 g of superabsorbent polymers prepared in Examples and Comparative Examples were added thereto while stirring at 600 rpm. Then, the time until the vortex of the liquid generated by stirring disappeared and a smooth surface was measured, and the result was expressed as the vortex removal time (absorption rate; vortex).
(2) 원심분리 보수능 (Centrifuge Retention Capacity, CRC) (2) Centrifuge Retention Capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 실시예 및 비교예의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다. According to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 241.3, the centrifugal water retention capacity (CRC) was measured for the superabsorbent polymers of Examples and Comparative Examples by the unloaded absorption ratio.
구체적으로, 실시예 및 비교예의 수지 W0(g, 약 0.2 g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 중량0 /。의 염화 나트륨 수용액으로 되는 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정하였다. 또한 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Wl(g)을 측정했다. 이렇게 얻어진 각 질량을 이용하여 하기 수학식 1에 따라 CRC(g/g)를 산출하였다. Specifically, the examples and the comparative example resins W0 (g, about 0.2 g) placed uniformly on the envelope of the nonwoven fabric sealing (seal) one after, immersion in physiological saline is a sodium chloride solution of 0.9 weight 0 /. To room temperature I was. After 30 minutes, the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W2 (g) of the bag was measured. Moreover, after carrying out the same operation without using a super absorbent polymer, the mass W1 (g) at that time was measured. Using each mass thus obtained, CRC (g / g) was calculated according to Equation 1 below.
[수학식 1]  [Equation 1]
CRC(g/g) = {[W2(g) - Wl(g) - W0(g)]/W0(g)}  CRC (g / g) = {[W2 (g)-Wl (g)-W0 (g)] / W0 (g)}
상기 수학식 1에서,  In Equation 1,
W0(g)는 고흡수성 수지의 초기 무게 (g)이고, Wl(g)는 고흡수성 수지를 사용하지 않고, 생리 식염수에 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고> W2(g)는 상온에서 생리 식염수에 고흡수성 수지를 30분 동안 침수하여 흡수시킨 다음, 원심분리기를 사용하여 250G로 3분간 탈수한 후에, 고흡수성 수지를 포함하여 측정한 장치 무게이다. (3) 표면 장력 W0 (g) is the initial weight of superabsorbent resin (g), Wl (g) is absorbed by immersion in physiological saline for 30 minutes without using superabsorbent resin, and then centrifuge at 250G for 3 minutes. The device weight measured after dehydration> W2 (g) is absorbed by immersing the superabsorbent resin in physiological saline for 30 minutes at room temperature, and then dehydrated at 250G for 3 minutes using a centrifuge, and includes the superabsorbent resin. The weight of the device measured by (3) surface tension
모든 과정은 항온항습실 (온도 23±2 °C , 상대습도 45±10%)에서 진행하였다. All procedures were performed in a constant temperature and humidity room (temperature 23 ± 2 ° C, relative humidity 45 ± 10%).
0.9 중량0 /。 염화나트륨으로 구성된 생리 식염수 150g을 250mL 비이커에 담고 마그네틱 바로 교반하였다. 상기 실시예 및 비교예에서 제조된 고흡수성 수지 각 l .Og을 교반 중인 용액에 넣어 3분간 교반한 후, 교반을 멈추고 팽윤된 고흡수성 수지가 바닥에 가라앉도록 15분 이상 방치하였다. 150 g of saline solution consisting of 0.9 weight of 0 / ° sodium chloride was placed in a 250 mL beaker and stirred with a magnetic bar. Each l.Og of the superabsorbent polymer prepared in Examples and Comparative Examples was added to the stirring solution, stirred for 3 minutes, and the stirring was stopped and left for at least 15 minutes to allow the swollen superabsorbent resin to sink to the bottom.
그 후 상층액 (표면의 바로 밑 부분의 용액)을 피펫으로 추출하고 다른 깨끗한 컵으로 옮긴 후 표면 장력 측정기 (surface tensionmeter Kruss K11/K100)를 이용하여 측정하였다. 상기 측정은, 실시예 및 비교예 제조 과정에서 각 제조되는 베이스 수지에 대해서도 동일한 방법으로 진행하였다. 상기 측정한 결과를 하기 표 2에 나타내었다.  The supernatant (the solution just below the surface) was then pipetted and transferred to another clean cup and measured using a surface tensionmeter Kruss K11 / K100. The said measurement was progressed by the same method also about the base resin manufactured by the manufacture process of an Example and a comparative example. The measurement results are shown in Table 2 below.
【표 2】 Table 2
Figure imgf000025_0001
비교예 1 39.1 48 36.8 38 - 비교예 2 37.6 45 35.4 36 - 비교예 3 37.6 47 35.2 36 - 비교예 4 38.6 44 36.1 35 - 비교예 5 38.5 39 35.9 31 39.4
Figure imgf000025_0001
Comparative Example 1 39.1 48 36.8 38-Comparative Example 2 37.6 45 35.4 36-Comparative Example 3 37.6 47 35.2 36-Comparative Example 4 38.6 44 36.1 35-Comparative Example 5 38.5 39 35.9 31 39.4
비교예 6 38.0 37 36.4 32 36.1  Comparative Example 6 38.0 37 36.4 32 36.1
비교예 7 38.9 37 36.8 36 - 비교예 8 37.5 . 38 36.2 37 - 상기 표 2를 참조하면, 본원 실시예에 따라 제조된 베이스 수지 및 고흡수성 수지는, 높은 CRC 값을 가지는 동시에, Vortex 흡수 속도가 매우 빠른 것을 알 수 있다.  Comparative Example 7 38.9 37 36.8 36-Comparative Example 8 37.5. 38 36.2 37-Referring to Table 2, it can be seen that the base resin and the super absorbent polymer prepared according to the present example have a high CRC value and a very high Vortex absorption rate.
그러나, 비교예에 따라 제조된 베이스 수지 및 고흡수성 수지는, CRC 값이 저하되거나, Vortex 흡수 속도가 느려지는 것을 확인할 수 있으며, 특히, 비교예 5, 6의 경우, 상대적으로 많은 함량의 폴리알킬렌 옥사이드계 화합물을 사용하여, 본 발명의 실시예에 따른 고흡수성 수지에 비해, 표면 장력 값이 매우 작아지는 것을 알 수 있다.  However, the base resin and the super absorbent polymer prepared according to the comparative example, it can be seen that the CRC value is lowered, or the Vortex absorption rate is lowered, in particular, in Comparative Examples 5 and 6, a relatively high content of polyalkyl By using the ethylene oxide-based compound, it can be seen that the surface tension value is very small compared to the superabsorbent polymer according to the embodiment of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
중합 개시제, 기포 안정제, 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 아크릴산계 단량체를 가교 중합하여, 함수겔상 중합체를 형성하는 단계;  In the presence of a polymerization initiator, a bubble stabilizer, and an internal crosslinking agent, crosslinking polymerization of an acrylic acid monomer having at least part of a neutralized acid group to form a hydrous gel polymer;
상기 함수겔상 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및  Drying, pulverizing and classifying the hydrogel polymer to form a base resin powder; And
표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리를 통해 표면 가교하여 고흡수성 수지 입자를 형성하.는 단계를 포함하고,  In the presence of a surface crosslinking solution, surface crosslinking the base resin powder through heat treatment to form superabsorbent resin particles,
상기 중합 개시제는, 광 개시제 및 양이온성 아조계 개시제를 포함하며, 상기 기포 안정제는 자당류 에스터 (sucrose ester) 및 폴리알킬렌 옥사이드를 포함하는,  The polymerization initiator includes a photoinitiator and a cationic azo initiator, the bubble stabilizer comprises a sucrose ester and a polyalkylene oxide,
고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 자당류 에스터는 수크로스 스테아레이트 (sucrose stearate), 수크로스 이소부티레이트 (sucrose isobutylate), 수크로스 팔미테이트 (sucrose palmitate) 및 수크로스 라우레이트 (sucrose laurate)로 이루어진 군에서 선택되는 1종 이상올 포함하는, 고흡수성 수지의 제조 방법.  The sucrose ester is at least one selected from the group consisting of sucrose stearate, sucrose isobutylate, sucrose palmitate and sucrose laurate. The manufacturing method of the superabsorbent polymer containing.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 폴리알킬렌 옥사이드는, 폴리에틸렌 옥사이드 (polyethylene oxide, PEO), 폴리프로필렌 옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드- 폴리프로필렌 옥사이드 (PEO-PPO) 이블록 (diblock) 공증합체, 및 폴리에틸렌 옥사이드—폴리프로필렌 옥사이드 -폴리에틸렌 옥사이드 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조 방법. The polyalkylene oxides include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymers, and polyethylene oxide—poly Propylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer comprising one or more selected from the group consisting of Method for producing a super absorbent polymer.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 자당류 에스터는, 상기 폴리알킬렌 옥사이드 100중량부에 대하여 , 1 내지 50중량부로 사용되는,  The sucrose ester is used in 1 to 50 parts by weight based on 100 parts by weight of the polyalkylene oxide,
고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 기포 안정제는, 상기 아크릴산계 단량체 100중량부에 대하여 0.001 내지 2중량부로 사용되는,  The bubble stabilizer is used in 0.001 to 2 parts by weight based on 100 parts by weight of the acrylic acid monomer,
고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 양이온성 아조계 개시제는, 아조 니트릴계 개시제, 아조 아마이드계 개시제, 아조 아미딘계 개시제, 및 아조 이미다졸린계 개시제로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는,  The cationic azo initiator comprises at least one compound selected from the group consisting of an azo nitrile initiator, an azo amide initiator, an azo amidine initiator, and an azo imidazoline initiator.
고흡수성 .수지의 제조 방법.  Super Absorbent .Resin Preparation Method.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 증합 개시제는, 상기 아크릴산계 단량체 100중량부에 대하여 0.001 내지 1중량부로 사용되는,  The polymerization initiator is used in 0.001 to 1 part by weight based on 100 parts by weight of the acrylic acid monomer,
고흡수성 수지와 제조 방법.  Superabsorbent polymer and manufacturing method.
【청구항 8 ] [Claim 8]
제 1항에 있어서, 상기 열처리 온도는 , 175 내지 200 °C인, The method of claim 1, The heat treatment temperature is 175 to 200 ° C.,
고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 가교 중합은, 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비카보네이트 (potassium bicarbonate), 포타슘 카보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate), 마그네슘 비카보네이트 (magnesium bicarbonate) 및 마그네슘 카보네이트 (magnesium carbonate)으로 이루어진 군으로부터 선택되는 1종 이상의 발포제를 더 사용하여 진행되는,  The crosslinking polymerization is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, calcium carbonate, Further using one or more blowing agents selected from the group consisting of magnesium bicarbonate and magnesium carbonate,
고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer.
【청구항 10】 [Claim 10]
산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 단량체 조성물을 중합 및 내부 가교시킨 베이스 수지, 및 상기 베이스 수지의 표면에 형성된 표면 가교층을 포함하고,  A base resin polymerized and internally crosslinked with a monomer composition comprising at least a portion of an acidic group neutralized acrylic acid monomer, and a surface crosslinking layer formed on the surface of the base resin,
EDANA 법 WSP 241.3에 따라 측정한 원심 분리 보수능 (CRC)이 30g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 34초 이하인,  The centrifugal water holding capacity (CRC) measured according to EDANA method WSP 241.3 is 30 g / g or more, and the absorption rate by Vortex method is 34 seconds or less,
고흡수성 수지.  Superabsorbent polymer.
【청구항 1 1】 [Claim 1 11]
제 10항에 있어서,  The method of claim 10,
생리 식염수에 의한 팽윤 시 , 표면 장력 값이 40mN/m 이상인, 고흡수성 수지.  A super absorbent polymer having a surface tension value of 40 mN / m or more upon swelling with physiological saline.
PCT/KR2018/001462 2017-02-10 2018-02-02 Superabsorbent polymer and preparation method therefor WO2018147600A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18751802.2A EP3453737B1 (en) 2017-02-10 2018-02-02 Superabsorbent polymer and preparation method therefor
US16/307,016 US10843170B2 (en) 2017-02-10 2018-02-02 Superabsorbent polymer and preparation method thereof
JP2018563870A JP6731078B2 (en) 2017-02-10 2018-02-02 Super absorbent polymer and method for producing the same
CN201880002718.0A CN109415516B (en) 2017-02-10 2018-02-02 Superabsorbent polymer and method of making the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0018678 2017-02-10
KR20170018678 2017-02-10
KR10-2018-0012910 2018-02-01
KR1020180012910A KR102167661B1 (en) 2017-02-10 2018-02-01 Super absorbent polymer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018147600A1 true WO2018147600A1 (en) 2018-08-16

Family

ID=63107218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001462 WO2018147600A1 (en) 2017-02-10 2018-02-02 Superabsorbent polymer and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2018147600A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122217A1 (en) * 2018-12-12 2020-06-18 住友精化株式会社 Water-absorptive resin particle, absorption body, and absorptive article
JP2020121090A (en) * 2019-01-30 2020-08-13 住友精化株式会社 Water absorption resin particle, absorber, and absorbent article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160729A (en) * 1997-02-07 1999-03-05 Mitsui Chem Inc Water absorbing resin and its production
KR20010087042A (en) * 2000-03-06 2001-09-15 성재갑 A method of preparing resin absorbing water
KR20070094741A (en) * 2004-12-10 2007-09-21 니폰 쇼쿠바이 컴파니 리미티드 Method for surface-treatment of water absorbent resin
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
KR20160138998A (en) * 2014-03-26 2016-12-06 스미토모 세이카 가부시키가이샤 Method for producing water-absorbent resin particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160729A (en) * 1997-02-07 1999-03-05 Mitsui Chem Inc Water absorbing resin and its production
KR20010087042A (en) * 2000-03-06 2001-09-15 성재갑 A method of preparing resin absorbing water
KR20070094741A (en) * 2004-12-10 2007-09-21 니폰 쇼쿠바이 컴파니 리미티드 Method for surface-treatment of water absorbent resin
KR20160138998A (en) * 2014-03-26 2016-12-06 스미토모 세이카 가부시키가이샤 Method for producing water-absorbent resin particle
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453737A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122217A1 (en) * 2018-12-12 2020-06-18 住友精化株式会社 Water-absorptive resin particle, absorption body, and absorptive article
JP2020121090A (en) * 2019-01-30 2020-08-13 住友精化株式会社 Water absorption resin particle, absorber, and absorbent article

Similar Documents

Publication Publication Date Title
CN108026282B (en) Method for preparing superabsorbent polymer
KR102167661B1 (en) Super absorbent polymer and preparation method thereof
CN110312755B (en) Method for preparing super absorbent polymer
CN108884234B (en) Superabsorbent polymer and method for making same
CN109071834B (en) Method for preparing super absorbent polymer
WO2015190878A1 (en) Method for manufacturing high absorbency resin and high absorbency resin manufactured through same
CN111433261B (en) Superabsorbent polymer composition and method of making the same
CN108884235B (en) Superabsorbent polymer and method for making the same
WO2016204390A1 (en) Method for manufacturing super absorbent resin
KR102086050B1 (en) Super absorbent polymer and preparation method thereof
WO2018004161A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2018117390A1 (en) Superabsorbent polymer and method for preparing same
WO2016056866A1 (en) Method for preparing super absorbent resin
US9976003B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared therefrom
US11278866B2 (en) Super absorbent polymer and its preparation method
WO2017078228A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
WO2016085123A1 (en) Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
WO2018080238A2 (en) Superabsorbent polymer and method for producing same
WO2018147600A1 (en) Superabsorbent polymer and preparation method therefor
JP2021517927A (en) Highly water-absorbent resin and its manufacturing method
KR102475854B1 (en) Super absorbent polymer and preparation method thereof
CN109071831B (en) Method for producing superabsorbent polymers
WO2018117441A1 (en) Superabsorbent polymer and method for manufacturing same
WO2019083211A9 (en) Superabsorbent polymer preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563870

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018751802

Country of ref document: EP

Effective date: 20181203

NENP Non-entry into the national phase

Ref country code: DE