WO2018117441A1 - Superabsorbent polymer and method for manufacturing same - Google Patents

Superabsorbent polymer and method for manufacturing same Download PDF

Info

Publication number
WO2018117441A1
WO2018117441A1 PCT/KR2017/013366 KR2017013366W WO2018117441A1 WO 2018117441 A1 WO2018117441 A1 WO 2018117441A1 KR 2017013366 W KR2017013366 W KR 2017013366W WO 2018117441 A1 WO2018117441 A1 WO 2018117441A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
acrylate
weight
glycol
Prior art date
Application number
PCT/KR2017/013366
Other languages
French (fr)
Korean (ko)
Inventor
윤형기
홍연우
허성범
남대우
장태환
김준규
성보현
김수진
정선정
정지윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170155824A external-priority patent/KR102086050B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780018718.5A priority Critical patent/CN108779266A/en
Priority to EP17883772.0A priority patent/EP3404057A4/en
Priority to US16/080,904 priority patent/US10961356B2/en
Publication of WO2018117441A1 publication Critical patent/WO2018117441A1/en
Priority to US17/172,578 priority patent/US11814489B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a super absorbent polymer and a method for preparing the same.
  • a super absorbent polymer is a synthetic polymer material that can absorb about 500 to 1,000 times its own weight. It is also called SAM (Snper Absorbency Material) or AGM (Absorbent Gel Material). have. Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering index materials, seedling sheets, and freshness retainers in food distribution. It is used. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, Japanese Patent Application Laid-Open No. 56-161408, Japanese Patent Application Laid-Open No.
  • the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing while breaking and cooling the hydrogel polymer in a kneader equipped with several shafts, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt.
  • the photopolymerization method etc. which perform simultaneously are known.
  • the absorption rate which is one of the important properties of the superabsorbent polymer, is associated with the surface dryness of the product which comes into contact with the skin such as a diaper.
  • this absorption rate can be improved by increasing the surface area of the superabsorbent polymer.
  • a blowing agent porous on the surface of the particles of the superabsorbent polymer The method of forming a structure is applied.
  • a general blowing agent is not able to form a sufficient amount of porous structure has a disadvantage that the increase in the rate of absorption is not large.
  • Korean Laid-Open Patent No. 2016-0063956 regulates the size and distribution of internal pores in the preparation of superabsorbent polymers.
  • a method of increasing the rate of absorption under pressure without deterioration has been proposed.
  • the method requires control of the photopolymerization temperature in order to control the size and distribution of the pores, which makes the process complicated and does not exhibit sufficient absorption and absorption rates to meet market demand.
  • the present invention is to provide a super absorbent polymer having a fast absorption rate and absorbent capacity, and having a high bulk density.
  • the present invention is to provide a method for producing the super absorbent polymer.
  • a nonionic bubble stabilizer for solving the above problems, a nonionic bubble stabilizer, a sugar ester having an acidic group and an acrylic acid monomer, polyalkylene oxide (polyalkylene oxide) at least a portion of the acidic group is augmented (sugar esters), internal crosslinkers, and polymerization initiators Polymerizing the monomer composition to form a hydrogel polymer;
  • It provides a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction by mixing the pulverized polymer and the surface crosslinking agent.
  • the base resin has a centrifugal water retention (CRC) of 35 g / g or more, an absorption rate of 40 seconds or less, and a bulk density of 0.51, measured according to the EDANA method WSP 241.3. To 0.70 g / mL, which provides a superabsorbent polymer.
  • CRC centrifugal water retention
  • the superabsorbent polymer according to the present invention stabilizes bubble generation during the polymerization process by using a combination of a specific nonionic polyalkylene oxide and a sugar ester in a predetermined weight ratio as a bubble stabilizer during polymerization, thereby providing high water retention and volume. Density, and fast absorption rate.
  • Superabsorbent polymers are evaluated for their water retention capacity (CRC), pressurized absorption capacity (AUL), and absorption rate as important physical properties. For this purpose, a large amount of pores are formed in the superabsorbent polymer so that water can be quickly sucked or superabsorbent.
  • CRC water retention capacity
  • AUL pressurized absorption capacity
  • absorption rate as important physical properties.
  • a large amount of pores are formed in the superabsorbent polymer so that water can be quickly sucked or superabsorbent.
  • the method of making particle size of resin small is known.
  • there is a limit in reducing the particle size of the superabsorbent polymer and there is a disadvantage in that thinning of the article is difficult because the gel strength becomes weak when the internal pores are formed.
  • the present inventors have completed the present invention by observing that by using a combination of specific bubble stabilizers in polymerization, a superabsorbent polymer having a more stable and even bubble distribution and consequently having a high water holding capacity and a fast absorption rate can be produced. It was.
  • the superabsorbent polymer of the present invention and a manufacturing method thereof will be described in detail.
  • polymer or “polymer” means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges.
  • a polymer having a moisture content (water content) of about 40% by weight or more may be referred to as a hydrous gel polymer.
  • base resin or “base resin powder” is a powder (powder) by drying and grinding the polymer, it means a polymer before performing the surface cross-linking step to be described later.
  • a nonionic bubble stabilizer including an acrylic acid monomer having a acidic group and at least a portion of the acidic group is neutralized, and a polyalkylene oxide.
  • a monomer composition comprising a crosslinking agent, a sugar ester, and a polymerization initiator is polymerized to form a hydrogel polymer.
  • the acrylic acid monomer may have an acid group and at least a portion of the acid group may be neutralized.
  • those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mole 0/0, or 45 to 75 mole 0 /.
  • the range of neutralization can be adjusted according to the final physical properties. However, when the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer.
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
  • the concentration of the acrylic acid monomer in the monomer composition is polymerization time And it may be appropriately adjusted in consideration of reaction conditions and the like, preferably 20 to 90% by weight, or 40 to 70% by weight 0 /.
  • This concentration range may be advantageous in controlling the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need for removing the unbanung monomer after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution.
  • the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered.
  • the concentration of the monomer is too high, some of the monomer may be precipitated or a process problem may occur such as when the pulverization efficiency of the polymerized hydrogel polymer is pulverized, and the physical properties of the super absorbent polymer may be reduced.
  • the monomer composition includes an internal crosslinking agent for improving the physical properties of the hydrogel polymer.
  • the crosslinking agent is a crosslinking agent for crosslinking the inside of the hydrogel polymer, and is used separately from the surface crosslinking agent for crosslinking the surface of the hydrogel polymer in a subsequent process.
  • the internal crosslinking agent is N , N methylenebisacrylamide, trimethyl to propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acryl , Propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate,.
  • the polyethylene glycol diacrylate (PEGDA) when used as the internal crosslinking agent, it may exhibit improved water holding capacity and absorption rate.
  • the internal crosslinking agent is about 100 parts by weight of the acrylic acid monomer. It may be added at a concentration of 0.001 to 1 parts by weight. When the concentration of the internal crosslinking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the internal crosslinking agent is too high, the absorptivity of the resin may be low, which may be undesirable as an absorber.
  • the acrylic acid monomer having the acidic group and neutralized at least a part of the acidic group is as defined above, and polymerized to prepare a hydrogel polymer.
  • the present invention is characterized in that the monomer composition includes, in addition to the polymerization initiator and the internal crosslinking agent, a nonionic bubble stabilizer containing a polyalkylene oxide and a sugar ester.
  • the nonionic bubble stabilizer comprising the polyalkylene oxide serves to form more stable bubbles in the polymerization process with the sugar ester, thereby allowing the hydrogel polymer to be polymerized to have a high water holding capacity and a fast absorption rate. .
  • the polyalkylene oxide is not limited thereto, but may be polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymer, And polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer, and may be at least one selected from the group consisting of (PEO-PPO-PEO) triblock. ) Copolymers can be used.
  • the polyalkylene oxide has a weight average molecular weight of about 500 to about 5,000 g / mol, or about 1,000 to about 4,000 g / md, and the weight of ethylene oxide (EO) in the polyalkylene oxide. It may be more desirable to use PEO-PPO-PEO triblock copolymers having a ratio of 20 to 80 weight 0 /., Or 20 to 60 weight 0 / o.
  • the nonionic bubble stabilizer may be added at a concentration of about 0.001 to about 1 part by weight, or about 0.01 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer.
  • concentration of the nonionic bubble stabilizer is too low, the role of the bubble stabilizer is insignificant to achieve an absorption rate improvement effect.
  • concentration of the nonionic bubble stabilizer is too high, the water holding capacity and the absorption rate may decrease, which may be undesirable.
  • the sugar ester used with the nonionic bubble stabilizer comprising the polyalkylene oxide includes sucrose stearate, sucrose palmitate or sucrose laurate.
  • sucrose stearate can be used.
  • the sugar ester may be added at a concentration of about 0.001 to about 0.08 parts by weight, or about 0.005 to about 0.05 parts by weight, or about 0.01 to about 0.05 parts by weight based on 100 parts by weight of the acrylic acid monomer.
  • concentration of the sugar ester is too low, the role as a bubble stabilizer is difficult to achieve the absorption rate improvement effect, on the contrary, when the concentration of the sugar ester is too high, the water holding capacity may decrease rather.
  • the weight range is preferable in this respect.
  • the sugar ester is preferably contained in a ratio of 1 to 30 parts by weight, or 1 to 20 parts by weight, or 1 to 10 parts by weight with respect to 100 parts by weight of the non-unique bubble stabilizer including the polyalkylene oxide. . If the sugar ester is used in an amount less than 1 part by weight relative to the polyalkylene oxide OO increase part, the absorption rate improvement effect may be insignificant, whereas when used in excess of 30 parts by weight, a large amount of foaming occurs in the composition. In addition, the resin may yellow or discolor in the drying process of the polymer. The weight part range is preferable in this respect.
  • the monomer composition is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium carbonate, calcium bicarbonate, It may further comprise at least one blowing agent selected from the group consisting of calcium carbonate, calcium ratio ⁇ ! "Magnesium bicarbonate and magnesium carbonate.
  • the polymerization initiator is generally used for the production of superabsorbent polymers.
  • a polymerization initiator can be used.
  • a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method.
  • a thermal polymerization initiator is additionally used. Can be.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether).
  • One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone can be used.
  • acylphosphine commercially available ludrin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphane oxide can be used.
  • More various photopolymerization initiators are disclosed on page 1 15 of Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)".
  • thermal polymerization initiator one or more compounds selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid may be used.
  • persulfate initiator sodium persulfate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 , and the like.
  • azo (Azo) initiator sodium persulfate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 , and the like.
  • azo (Azo) initiator an azo (Azo) initiator
  • Dihydrochlorai H (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis -(4-cyanovaleric acid))
  • 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis -(4-cyanovaleric acid)
  • thermal polymerization initiators are disclosed on page 203 of the Odian book "Principle of Polymerization (Wiley, 1981)" and can be referred to this.
  • the polymerization initiator may be added at a concentration of about 0.001 to 1 parts by weight based on 100 parts by weight of the acrylic acid monomer. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of the remaining monomers may be extracted in the final product. On the contrary, when the concentration of the polymerization initiator is too high, it is not preferable because the polymer chain constituting the network is shortened, so that the content of the water-soluble component is increased and the pressure absorption capacity is lowered.
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
  • the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, an internal crosslinking agent, a sugar ester, and a nonionic bubble stabilizer are dissolved in a solvent.
  • the solvent may be used as long as it can dissolve the above-described raw materials.
  • the solvent may be water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl Ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methylcello Solvate, ⁇ , ⁇ -dimethylacetamide, or a combination thereof.
  • the amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer containing in consideration of polymerization heat control and the like.
  • the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, and in the case of the thermal polymerization, the polymerization method has a stirring shaft such as a kneader. It may be carried out in the reactor, in the case of proceeding the light integration may be performed in a semi-unggi equipped with a movable conveyor belt.
  • the hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or heating and heating the reaction vessel.
  • a reaction vessel such as a kneader equipped with a stirring shaft
  • the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the form of particles of several millimeters to several centimeters.
  • the hydrous gel phase polymer may be obtained in various forms according to the concentration and the injection speed of the monomer composition to be injected .
  • a hydrogel polymer of 2 mm to 50 mm can be obtained.
  • a sheet-like hydrogel polymer may be obtained.
  • the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate, while the entire sheet can be polymerized evenly, it is usually adjusted to a thickness of 5 cm to 5 cm It is desirable to be.
  • the hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80% by weight.
  • the water content of the hydrogel polymer is in the above range .
  • Lifting is advantageous in that it optimizes the efficiency in the drying step described below.
  • the moisture content is a weight of water in the total weight of the hydrogel polymer, and may be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer through infrared heating.
  • the drying condition is a total drying time may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C at room temperature and maintained at 180 ° C.
  • the hydrogel polymer obtained through the above steps is subjected to a drying process to impart water absorbency.
  • the step of pulverizing (coarsely pulverizing) the hydrogel polymer before performing the drying process may be performed.
  • the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type. Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like.
  • the coarse grinding may be performed so that the particle diameter of the hydrogel polymer is 2 mm to 10 mm. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of 10 mm or less. However, since excessive particle grinding may occur, the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more.
  • the coarsely pulverizing step because the polymer is carried out in a high water content of the polymer may stick to the surface of the mill may appear.
  • the coarse grinding step may include steam, water, surfactants, anti-fog agents (for example, clay, silica, etc.) as necessary; Persulfate-based initiator, azo-based initiator, hydrogen peroxide, thermal polymerization initiator, epoxy-based crosslinking agent, diol crosslinking agent, crosslinking agent comprising a bifunctional or polyfunctional acrylate of trifunctional group, crosslinking agent of I functional group including hydroxyl group And the like can be added.
  • the step of drying the coarsely pulverized hydrogel polymer is carried out through the step of puncture.
  • the hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of 2 mm to 10 mm through the above-described step, it can be dried at a higher efficiency.
  • Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of 120 to 250 ° C., preferably 140 to 200 ° C., more preferably 150 to 19 TC.
  • the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reaction vessel including the heat medium and the polymer in the drying process. If the drying temperature is low and the drying time is long, the process efficiency is lowered. In order to prevent this, the drying temperature is preferably 120 ° C. or more. In addition, if the dry silver content is higher than necessary, the surface of the hydrogel polymer is excessively dried, so that in the subsequent grinding step The fine powder may increase, and the physical properties of the final resin may be lowered. In order to prevent this, the drying temperature is preferably 250 ° C. or lower.
  • the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes under the drying temperature in consideration of process efficiency and the physical properties of the resin.
  • the drying may be performed using a conventional medium.
  • the drying may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation to the coarsely pulverized hydrogel polymer.
  • drying is preferably carried out even if the dried polymer has a water content of about 0.1 to 10% by weight. That is, when the water content of the dried polymerizer is less than 0.1% by weight, it is not preferable because an increase in manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable.
  • the milling step is a step for optimizing the surface area of the dried polymer, it may be carried out so that the particle diameter of the milled polymer is 150 to 850.
  • a mill a pin mill, a hammer mill, a screw mill, a mill, a disc mill, a jog mill, etc.
  • a mill a pin mill, a hammer mill, a screw mill, a mill, a disc mill, a jog mill, etc.
  • the step of selectively classifying particles having a particle size of 150 to 850 from the polymer particles obtained through the grinding step may be further performed.
  • the polymer (base resin) polymerized, dried and pulverized by the above-described process of the present invention has a water retention capacity (CRC) of about 35 g / g or more, or about 36 g / g or more, measured according to the EDANA method WSP 241.3. Or about 37 g / g or more and about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
  • CRC water retention capacity
  • the base resin has a hop number speed of 40 seconds or less by Vortex method, or . About 39 seconds or less, or about 38 seconds or less and about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more.
  • the base resin has a bulk density of about 0.50 g / mL or more, for example about 51 g / mL or more, or about 0.52 g / mL or more, or about 0.55 g / mL or more, and about 0.70.
  • the base resin is excellent in physical properties such as water-retaining ability and absorption rate, and at the same time may exhibit high productivity with high bulk density.
  • the surface modification is a step of forming a superabsorbent resin having more improved physical properties by inducing crosslinking reaction on the surface of the ground polymer in the presence of a surface crosslinking agent. Through such surface modification, a surface crosslinking layer is formed on the surface of the pulverized polymer particles.
  • the surface modification may be carried out by a conventional method of increasing the crosslinking density of the surface of a polymer particle, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent. It can be performed as.
  • the said surface crosslinking agent is a compound which can react with the functional group which the said polymer has,
  • the structure is not specifically limited.
  • the surface crosslinking agent is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl Ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerol, butanediol, heptanedi, nucleic acid diol trimethyl propane, pentaerythritol, Sorbi may be at least one compound selected from the group consisting of calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium
  • the content of the surface cross-linking agent is the kind of crosslinking agent or reaction conditions It may be appropriately adjusted according to, preferably from 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the content of the surface crosslinking agent is too low, the surface modification is not properly made, the physical properties of the final resin may be lowered.
  • an excessive amount of surface crosslinking agent is used, absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable.
  • the surface modification step the method of mixing the surface cross-linking agent and the pulverized polymer into the reaction tank, the method of spraying the surface cross-linking agent to the pulverized polymer, the continuous supply of the pulverized polymer and surface crosslinking agent to the mixer to be continuously operated It can be carried out in a conventional manner such as a mixing method.
  • water may be additionally added when the surface crosslinking agent is added. As such, the surface crosslinking agent and water are added together to induce even dispersion of the surface crosslinking agent, to prevent agglomeration of the polymer particles, and to further optimize the penetration depth of the surface crosslinking agent into the polymer particles.
  • the amount of water added with the surface crosslinking agent may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the surface modification step may be performed under a temperature of 100 to 250 ° C.
  • the surface modification may be performed for 1 minute to 120 minutes, preferably 1 minute to 100 minutes, more preferably 10 minutes to 60 minutes. That is, the surface modification step may be carried out under the above-described conditions in order to induce a minimum surface crosslinking reaction and to prevent excessive semi-amplification polymer particles from being damaged and deteriorating physical properties.
  • a base resin polymerized and internally crosslinked with a monomer composition including an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, and a surface crosslinking layer formed on the surface of the base resin.
  • the base resin has a water retention capacity (CRC) of 35 g / g or more, measured according to EDANA WSP 241.3, an absorption rate of 40 seconds or less by a vortex method, and a volume. It provides a super absorbent polymer having a bulk density of 0.51 to 0.70 g / mL.
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing a unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
  • the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized.
  • those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0 /., Or 40 to 80 mole 0/0, or 45 to 75 mole 0 /.
  • the range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have.
  • the crosslinked polymer is ⁇ , ⁇ '-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) ) acrylic Level byte, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Latex, nucleic acid diol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaerythyl tetraacrylate
  • the crosslinked polymer may have a centrifugal water retention (CRC) of at least about 35 g / g, or at least about 36 g / g, or at least about 37 g / g, measured according to the EDANA method WSP 241.3.
  • the upper limit of the water retention capacity (CRC) is not particularly limited but may be, for example, about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
  • the crosslinked polymer may have an absorption rate by Vortex of 40 seconds or less, or about 39 seconds or less, or about 38 seconds or less.
  • the lower limit of the absorption rate is specifically. Although not limited, it may be for example about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more.
  • the water holding capacity and the absorption rate is a base resin which is a crosslinked polymer in a form of powder after drying and pulverizing after polymerization of the monomer composition before forming a surface crosslinked layer on the surface of the crosslinked polymer. Measured for.
  • the base resin has a bulk density of at least 0.51 g / mL, for example at least about 0.51 g / mL, or at least about 0.52 g / mL, or at least about 0.55 g / mL, and at least about 0.70 g.
  • the base resin is excellent in physical properties such as water retention and absorption rate, and at the same time may exhibit high productivity with high bulk density.
  • Forming a surface crosslinked layer with respect to the base resin generally increases the pressure absorbency (AUP) and improves the absorption rate (vortex time), but the water retention capacity (CRC) Will decrease. Therefore, in consideration of such a tendency to reduce the water retention capacity, it is very important to prepare a base resin having a high water retention ability to secure the physical properties of the final product.
  • the superabsorbent polymer having the surface crosslinked layer formed on the high water-retaining base resin has little concern about a decrease in water-retaining ability, and at the same time, it has an improved pressure-absorbing capacity and absorption rate, thereby obtaining a higher quality resin.
  • resin may further increase in bulk density.
  • the superabsorbent polymer having the surface crosslinked layer formed on the crosslinked polymer (base resin) having the above water-retaining capacity and absorption rate has a low centrifugal water-retaining capacity (CRC) measured according to the EDANA method WSP 241.3.
  • CRC centrifugal water-retaining capacity
  • the superabsorbent polymer having a surface crosslinked layer formed on the base resin has an absorption rate of 34 seconds or less, or about 33 seconds or less, or about 30 seconds or less, about 10 seconds or more, by a vortex method (or About 15 seconds or more, or about 20 seconds or more.
  • the centrifugal water retention capacity (CRC) is measured according to the EDANA method WSP 241.3, and may be represented by the following Equation 1:
  • W 0 (g) is the weight of the resin (g)
  • W, (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin
  • W 2 (g) is the device weight (g) measured after the resin was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes and then dehydrated at 250 G for 3 minutes using a centrifuge.
  • the measurement of the absorption rate by the vortex method was carried out by putting 50 ml saline with a magnetic stirring bar in a 100 ml beaker, using a stirrer to designate the stirring speed of the magnetic stirring bar at 600 rpm, and then adding 2.0 g of saline to the stirring solution. At the same time the resin is added, the time is measured and the time taken until the vortex disappears in the beaker (unit: seconds) is measured as the vortex time.
  • Polymerization initiator hydrogen peroxide (3 ⁇ 40 2 ) 0.p2 parts by weight (300 ppmw), ascorbic acid
  • Bubble stabilizer 0.016 parts by weight (160 ppmw) of sucrose stearate (S1670), and 0.16 parts by weight (1600 ppmw) of polyalkylene oxide (PEO-PPO-PEO triblock copolymer, Mw: 2550)-thermal with the monomer composition
  • the polymerization reaction was carried out to obtain a polymerized sheet.
  • the polymerized sheet was taken out and cut to a size of 3 cm X 3 cm, and then subjected to a chopping process using a meat chopper to prepare a powder.
  • the powder (cmmb) was dried in an oven capable of transferring air volume up and down. The hot air at 180 ° C.
  • Example 1 a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.01 parts by weight of sodium bicarbonate (SBC) was further included as a blowing agent in the monomer composition.
  • SBC sodium bicarbonate
  • Example 1 Except for changing the components of the monomer composition in Example 1 was prepared in the same manner as in Example 1 to obtain a super absorbent polymer. Comparative Examples 1 to 7
  • Example 1 Except for changing the components of the monomer composition in Example 1 was prepared in the same manner as in Example 1 to obtain a super absorbent polymer.
  • the main components of the monomer composition used in the above Examples and Comparative Examples are summarized in Table 1 as follows.
  • PEO-PPO-PEO triblock sucrose blowing agent (SBC) copolymer (part by weight)
  • Stearate (part by weight)
  • Example 1 0.16 0.016 ⁇ s
  • Example 2 0.16 0.016 '0.01
  • Example 6 0.28 0.028
  • Example 7 0.32 0.032 Comparative Example 1 0.008 0.1
  • the water holding capacity by the no-load absorption ratio of each resin was measured according to EDANA WSP 241.3.
  • the superabsorbent polymers W 0 (g) (about 0.2 g) of the Examples and Comparative Examples were uniformly placed in a nonwoven fabric bag and sealed, and then immersed in normal saline (0.9 wt%) at room temperature. After 30 minutes had elapsed, the water was removed from the bag for 3 minutes under the conditions of 250 G using a centrifuge, and the mass W 2 (g) of the bag was measured. Moreover, mass Wi (g) at that time was measured after performing the same operation
  • the bulk density of the base resin before the surface crosslinking was measured by the following method.
  • the weight of the specific gravity cup (density cup) was measured and recorded as W, and 100 g of the base resin sample was taken in a 250 ml beaker while mixing well so that the particle size was evenly mixed. After filling by filling lightly on the top of the orifice damper, the bottom of the orifice damper was opened to eject the base resin. The base resin sample, which was overflowed onto the specific gravity cup with a spatula, was carefully rolled off using the flat side of the reagent spoon and flattened off. The specific gravity cup containing the base resin was weighed and recorded as W 2 and the bulk density was calculated according to the following Equation 1.
  • Example 1 40.4 35.7 35 25 0.62 Example 2 40.3 36.1 36 22 0.60 Example 3 40.0 37.0 37 25 0.59 Example 4 35.8 31.2 36 27 0.55 Example 5 36.3 31.3 37 26 0.59 Example 6 38.6 31.2 30 22 0.61 Example ⁇ 39.8 32.0 31 20 0.61 Comparative Example 1 40.7 35.3 55 43 0.56 Comparative Example 2 39.0 33.5 50 42 0.58 Comparative Example 3 39.1 33.0 43 35 0.59 Comparative Example 4 38.7 33.6 41 35 0.57 Comparative Example 5 37.6 31.7 42 36 0.58 Comparative Example 6 38.6 32.1 42 38 0.57 Comparative Example 7 37.0 32.0 44 36 0.55 Referring to Tables 1 and 2, the base resins of Examples 1 to 7 according to the preparation method of the present invention exhibited a high water holding capacity of 35 g / g for 40 seconds.
  • Comparative Example From 1 to 7, all of the base resins prepared without the nonionic bubble stabilizer of polyalkylene oxide showed an absorption rate exceeding 40 seconds. Therefore, it was shown that the sugar ester and the blowing agent alone could not achieve the absorption rate of 40 seconds or less, and the same result was obtained even when the content of the sugar ester and the blowing agent was increased than in the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention relates to a superabsorbent polymer and a method for manufacturing the same. According to the present invention, a superabsorbent polymer having a high water retention capacity and absorption rate can be manufactured by using a specific foam stabilizer.

Description

【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin
【기술분야】 Technical Field
관련 출원 (들ᅵ과의 상호 인용  Cross citation with related application (s)
본 출원은 2016년 12월 20일자 한국 특허 출원 제 10-2016-0174930호 및 2017년 1 1월 21일자 한국 특허 출원 제 10-2017-0155824호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0174930 of December 20, 2016 and Korean Patent Application No. 10-2017-0155824 of January 21, 2017, and the Korean Patent Application All content disclosed in these references is included as part of this specification.
본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것이다.  The present invention relates to a super absorbent polymer and a method for preparing the same.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
고흡수성 수지 (super absorbent polymer, SAP)란 자체 무게의 약 5백 내지 1천배 정도의 수분을 흡수할 수 있는 합성 고분자 물질로서, SAM(Snper Absorbency Material), AGM(Absorbent Gel Material) 등으로도 불리우고 있다. 고흡수성 수지는 생리 용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등의 위생 용품, 원예용 토양 보수제, 토목용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제 등 다양한 재료로 널리 사용되고 있다. 이러한 고흡수성 수지를 제조하는 방법으로는 역상 현탁 중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 그 중 역상 현탁 중합을 통한 고흡수성 수지의 제조에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209,. 및 특개소 57-198714 등에 개시되어 있다. 그리고, 수용액 중합을 통한 고흡수성 수지의 제조는 여러 개의 축이 구비된 반죽기 내에서 함수겔상 중합체를 파단 및 냉각하면서 중합하는 열 중합 방법과, 벨트 상에서 고농도의 수용액에 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광 중합 방법 등이 알려져 있다.  A super absorbent polymer (SAP) is a synthetic polymer material that can absorb about 500 to 1,000 times its own weight. It is also called SAM (Snper Absorbency Material) or AGM (Absorbent Gel Material). have. Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering index materials, seedling sheets, and freshness retainers in food distribution. It is used. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, Japanese Patent Application Laid-Open No. 56-161408, Japanese Patent Application Laid-Open No. 57-158209, for the production of a super absorbent polymer through reverse phase suspension polymerization. And Japanese Patent Application Laid-Open No. 57-198714. In addition, the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing while breaking and cooling the hydrogel polymer in a kneader equipped with several shafts, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt. The photopolymerization method etc. which perform simultaneously are known.
한편, 고흡수성 수지의 중요한 물성 중 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있다. 일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 충분한 양의 다공성 구조를 형성시킬 수 없어 흡수 속도의 증가폭이 크지 않은 단점이 있다. On the other hand, the absorption rate, which is one of the important properties of the superabsorbent polymer, is associated with the surface dryness of the product which comes into contact with the skin such as a diaper. In general, this absorption rate can be improved by increasing the surface area of the superabsorbent polymer. For example, using a blowing agent porous on the surface of the particles of the superabsorbent polymer The method of forming a structure is applied. However, a general blowing agent is not able to form a sufficient amount of porous structure has a disadvantage that the increase in the rate of absorption is not large.
다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 홉수 속도는 향상될 수 있더라도, 수지의 보수능 (CRC)과 가압 흡수능 (AUP)이 상대적으로 저하되는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드 -오프 (trade-off)의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다. As another example, there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape. However, although the hop speed of the superabsorbent polymer can be improved through this method, there is a limit that the water retention capacity (CRC) and the pressure absorption capacity (AUP) of the resin are relatively lowered. As such, physical properties such as absorption rate, water retention capacity, and pressure absorption capacity of the superabsorbent polymer are trade-off. Therefore, there is an urgent need for a manufacturing method capable of improving these properties simultaneously.
한국공개특허 제 2016-0063956호는 고흡수성 수지의 제조 과정에서 내부 기공의 크기 및 분포를 조절하여, 겔 강도의. 저하 없이 가압 하에서의 흡수 속도를 높이는 방법을 제안하였다. 그러나, 상기 방법은 기공의 크기 및 분포를 조절하기 위해 광중합 온도의 제어가 필요하여 공정이 복잡해지고 시장의 수요를 충족시킬 만큼 충분한 흡수능과 흡수 속도를 나타나지 못하고 있다.  Korean Laid-Open Patent No. 2016-0063956 regulates the size and distribution of internal pores in the preparation of superabsorbent polymers. A method of increasing the rate of absorption under pressure without deterioration has been proposed. However, the method requires control of the photopolymerization temperature in order to control the size and distribution of the pores, which makes the process complicated and does not exhibit sufficient absorption and absorption rates to meet market demand.
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
이에 본 발명은 빠른 흡수 속도와 흡수능을 가지며, 부피 밀도가 큰 고흡수성 수지를 제공하기 위한 것이다.  Accordingly, the present invention is to provide a super absorbent polymer having a fast absorption rate and absorbent capacity, and having a high bulk density.
. 또한, 본 발명은 상기 고흡수성 수지의 제조 방법을 제공하기 위한 것이다.  . In addition, the present invention is to provide a method for producing the super absorbent polymer.
【과제의 해결 수단】 [Measures of problem]
상기와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 증화된 아크릴산계 단량체, 폴리알킬렌 옥사이드 (polyalkylene oxide)를 포함하는 비이온성 기포 안정제, 슈가 에스터 (sugar ester), 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 형성하는 단계; According to an aspect of the present invention for solving the above problems, a nonionic bubble stabilizer, a sugar ester having an acidic group and an acrylic acid monomer, polyalkylene oxide (polyalkylene oxide) at least a portion of the acidic group is augmented (sugar esters), internal crosslinkers, and polymerization initiators Polymerizing the monomer composition to form a hydrogel polymer;
상기 함수겔상 중합체를 건조하는 단계;  Drying the hydrogel polymer;
상기 건조된 중합체를 분쇄하는 단계; 및  Pulverizing the dried polymer; And
상기 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반웅을 수행하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.  It provides a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction by mixing the pulverized polymer and the surface crosslinking agent.
본 발명의 다른 일 측면에 따르면,  According to another aspect of the present invention,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 베이스 수지; 및 상기 베이스 수지의 표면에 형성된 표면 가교층으로 이루어진 고흡수성 수지에 있어서,  A base resin having an acidic group and polymerized and internally crosslinked with a monomer composition comprising an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a superabsorbent polymer comprising a surface crosslinking layer formed on the surface of the base resin,
상기 베이스 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 35 g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하이며, 부피 밀도 (bulk density)가 0.51 내지 0.70 g/mL인, 고흡수성 수지를 제공한다.  The base resin has a centrifugal water retention (CRC) of 35 g / g or more, an absorption rate of 40 seconds or less, and a bulk density of 0.51, measured according to the EDANA method WSP 241.3. To 0.70 g / mL, which provides a superabsorbent polymer.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 고흡수성 수지는, 중합 시 기포 안정제로 특정한 비이온성의 폴리알킬렌 옥사이드와 슈가 에스터를 소정의 중량비로 조합하여 사용함으로써 중합 공정시 기포 생성을 안정화하며, 이로 인하여 높은 보수능과 부피 밀도, 및 빠른 흡수 속도를 나타낼 수 있다.  The superabsorbent polymer according to the present invention stabilizes bubble generation during the polymerization process by using a combination of a specific nonionic polyalkylene oxide and a sugar ester in a predetermined weight ratio as a bubble stabilizer during polymerization, thereby providing high water retention and volume. Density, and fast absorption rate.
【발명을 실시하기 '위한 구체적인 내용】 - Carrying out the Invention DETAILED ';
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다 "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise,""including," or "having" are intended to indicate that there is a feature, step, component, or combination thereof, and one or more other features, steps, or components. It is to be understood that the present invention does not exclude, in advance, the possibility of the presence or the addition of these or any combination thereof. As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다. 고흡수성 수지는 보수능 (CRC), 가압 흡수능 (AUL) 및 흡수 속도가 중요한 물성으로 평가되고 있으며, 이를 위하여 종래에는 고흡수성 수지의 내부에 기공을 많이 형성하여 물을 빨리 빨아들이게 하거나 또는 고흡수성 수지의 입자 크기를 작게하는 방법 등이 알려져 있다. 그러나, 고흡수성 수지의 입자 크기를 줄이는데에는 한계가 있으며, 내부 기공을 형성하는 경우 겔 강도가 약해지기 때문에 물품의 박막화가 어렵다는 단점이 있다. 이에 저온 발포제와 고온 발포제를 함께 사용하여 고흡수성 수지의 제조 과정에서 내부 기공의 크기 및 분포를 조절하여 흡수 속도를 높이는 방법이 제안되었으나, 기공의 크기 및 분포를 조절하기 위해 중합 온도의 제어가 필요하여 공정이 복잡하고, 35 g/g 이상의 보수능 (CRC) 및 40 초 이하의 흡수 속도 (vortex time)를 갖는 베이스 수지의 제조가 어려워 보다 향상된 흡수능과 흡수 속도를 갖는 고흡수성 수지의 제조방법에 대한 필요성이 여전히 존재한다.  Hereinafter, a super absorbent polymer and a method for preparing the same according to specific embodiments of the present invention will be described in detail. Superabsorbent polymers are evaluated for their water retention capacity (CRC), pressurized absorption capacity (AUL), and absorption rate as important physical properties. For this purpose, a large amount of pores are formed in the superabsorbent polymer so that water can be quickly sucked or superabsorbent. The method of making particle size of resin small is known. However, there is a limit in reducing the particle size of the superabsorbent polymer, and there is a disadvantage in that thinning of the article is difficult because the gel strength becomes weak when the internal pores are formed. Therefore, a method of increasing the absorption rate by controlling the size and distribution of internal pores in the manufacturing process of the super absorbent polymer by using a low temperature foaming agent and a high temperature foaming agent has been proposed, but it is necessary to control the polymerization temperature to control the size and distribution of the pores. The process is complicated, and it is difficult to prepare a base resin having a water retention capacity (CRC) of 35 g / g or more and a vortex time of 40 seconds or less. The need still exists.
본 발명자들은, 중합시 특정한 기포 안정제를 조합하여 사용함으로써, 보다 안정적이고 고른 기포 분포를 나타내어 결과적으로 높은 보수능과 함께 빠른 흡수 속도를 나타내는 고흡수성 수지를 제조할 수 있음에 착안하여 본 발명을 완성하였다. 이하, 본 발명의 고흡수성 수지 및 이의 제조방법을 상세히 설명한다. 참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자' '는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율 (수분 함량)이 약 40 중량% 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다. The present inventors have completed the present invention by observing that by using a combination of specific bubble stabilizers in polymerization, a superabsorbent polymer having a more stable and even bubble distribution and consequently having a high water holding capacity and a fast absorption rate can be produced. It was. Hereinafter, the superabsorbent polymer of the present invention and a manufacturing method thereof will be described in detail. For reference, in the specification of the present invention, "polymer", or "polymer" means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges. Before drying As a state, a polymer having a moisture content (water content) of about 40% by weight or more may be referred to as a hydrous gel polymer.
또한, "베이스 수지 " 또는 "베이스 수지 분말"은 상기 중합체를 건조 및 분쇄하여 파우더 (powder) 형태로 만든 것으로, 후술하는 표면 가교 단계를 수행하기 이전의 중합체를 의미한다.  In addition, "base resin" or "base resin powder" is a powder (powder) by drying and grinding the polymer, it means a polymer before performing the surface cross-linking step to be described later.
본 발명의 일 구현예에 따른 고흡수성 수지의 제조방법에서, 먼저 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 폴리알킬렌 옥사이드 (polyalkylene oxide)를 포함하는 비이온성 기포 안정제, 내부 가교제, 슈가 에스터 (sugar ester), 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 형성한다.  In the method for preparing a super absorbent polymer according to an embodiment of the present invention, a nonionic bubble stabilizer including an acrylic acid monomer having a acidic group and at least a portion of the acidic group is neutralized, and a polyalkylene oxide. A monomer composition comprising a crosslinking agent, a sugar ester, and a polymerization initiator is polymerized to form a hydrogel polymer.
상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰0 /0, 또는 40 내지 80 몰0 /0, 또는 45 내지 75 몰0 /。일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 바람직하게는, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다: The acrylic acid monomer may have an acid group and at least a portion of the acid group may be neutralized. Preferably, those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used. In this case, the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mole 0/0, or 45 to 75 mole 0 /. The range of neutralization can be adjusted according to the final physical properties. However, when the degree of neutralization is too high, polymerization of the monomer may be difficult to proceed due to precipitation of the neutralized monomer. On the contrary, when the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have. Preferably, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1] [Formula 1]
'-COOM1 '-COOM 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
또한, 상기 모노머 조성물 중 아크릴산계 단량체의 농도는 중합 시간 및 반웅 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량%, 또는 40 내지 70 중량 0/。일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 현상을 이용하여 중합 후 미반웅 단량체를 제거할 필요가 없도록 하면서도, 후속 공정인 중합체의 분쇄시 분쇄 효율을 조절하는데 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. In addition, the concentration of the acrylic acid monomer in the monomer composition is polymerization time And it may be appropriately adjusted in consideration of reaction conditions and the like, preferably 20 to 90% by weight, or 40 to 70% by weight 0 /. This concentration range may be advantageous in controlling the grinding efficiency during the grinding of the polymer, which is a subsequent process, while eliminating the need for removing the unbanung monomer after polymerization by using the gel phenomenon appearing in the polymerization reaction of the high concentration aqueous solution. However, when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. On the contrary, when the concentration of the monomer is too high, some of the monomer may be precipitated or a process problem may occur such as when the pulverization efficiency of the polymerized hydrogel polymer is pulverized, and the physical properties of the super absorbent polymer may be reduced.
한편, 상기 모노머 조성물에는 함수겔상 중합체의 물성을 향상시키기 위한 내부 가교제가 포함된다. 상기 가교제는 함수겔상 중합체를 내부를 가교시키기 위한 가교제로서, 후속 공정에서 상기 함수겔상 중합체의 표면을 가교시키기 위한 표면 가교제와는 별개로 사용된다.  On the other hand, the monomer composition includes an internal crosslinking agent for improving the physical properties of the hydrogel polymer. The crosslinking agent is a crosslinking agent for crosslinking the inside of the hydrogel polymer, and is used separately from the surface crosslinking agent for crosslinking the surface of the hydrogel polymer in a subsequent process.
바람직하게는, 내부 가교제는 N,N 메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 디 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 디 (메.타)아크릴레이트, 프로필렌글리콜 디 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄다이올디 (메타)아크릴레이트, . 부틸렌글리콜디 (메타)아크릴레이트, 디에틸렌글리콜 디 (메타)아크릴레이트, 핵산디올디 (메타)아크릴레이트, 트리에틸렌글리콜 디 (메타)아크릴레이트, 트리프로필렌글리콜 디 (메타)아크릴레이트, 테트라에틸렌글리콜 디 (메타)아크릴레이트, 디펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다. Preferably, the internal crosslinking agent is N , N methylenebisacrylamide, trimethyl to propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acryl , Propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate,. Butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetra Ethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaeryth tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, And it may be one or more selected from the group consisting of ethylene carbonate.
보다 바람직하게는 상기 내부 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA)를 사용할 때 보다 향상된 보수능과 흡수 속도를 나타낼 수 있다.  More preferably, when the polyethylene glycol diacrylate (PEGDA) is used as the internal crosslinking agent, it may exhibit improved water holding capacity and absorption rate.
상기 내부 가교제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 1 중량부의 농도로 첨가될 수 있다. 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다. 상기 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체는 앞서 정의한 바와 같으며, 이를 중합하여 함수겔상 중합체를 제조한다. The internal crosslinking agent is about 100 parts by weight of the acrylic acid monomer. It may be added at a concentration of 0.001 to 1 parts by weight. When the concentration of the internal crosslinking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the internal crosslinking agent is too high, the absorptivity of the resin may be low, which may be undesirable as an absorber. The acrylic acid monomer having the acidic group and neutralized at least a part of the acidic group is as defined above, and polymerized to prepare a hydrogel polymer.
특히, 본 발명에서는 상기 모노머 조성물이 중합 개시제 및 내부 가교제 외에, 폴리알킬렌 옥사이드 (polyalkylene oxide)를 포함하는 비이온성 기포 안정제와 슈가 에스터를 포함하는 것을 특징으로 한다.  In particular, the present invention is characterized in that the monomer composition includes, in addition to the polymerization initiator and the internal crosslinking agent, a nonionic bubble stabilizer containing a polyalkylene oxide and a sugar ester.
상기 폴리알킬렌 옥사이드를 포함하는 비이온성 기포 안정제는 슈가 에스터와 함께 중합 공정시 보다 안정된 기포를 형성하는 역할을 하여 이를 포함하여 중합되는 함수겔상 중합체가 높은 보수능 및 빠른 흡수 속도를 가질 수 있게 한다.  The nonionic bubble stabilizer comprising the polyalkylene oxide serves to form more stable bubbles in the polymerization process with the sugar ester, thereby allowing the hydrogel polymer to be polymerized to have a high water holding capacity and a fast absorption rate. .
상기 폴리알킬렌 옥사이드는 이에 한정되는 것은 아니나, 폴리에틸렌 옥사이드 (polyethylene oxide, PEO), 폴리프로필렌 옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 (PEO-PPO) 이블록 (diblock) 공중합체, 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 -폴리에틸렌 옥사이드 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체를 사용할 수 있다.  The polyalkylene oxide is not limited thereto, but may be polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymer, And polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer, and may be at least one selected from the group consisting of (PEO-PPO-PEO) triblock. ) Copolymers can be used.
본 발명의 일 실시예에 따르면, 상기 폴리알킬렌 옥사이드로 중량 평균 분자량은 약 500 내지 약 5,000 g/mol, 또는 약 1,000 내지 약 4,000 g/md이고, 폴리알킬렌 옥사이드 내 에틸렌옥사이드 (EO)의 비율이 20 내지 80 중량0 /。, 또는 20 내지 60 중량0 /o인 PEO-PPO-PEO 삼블록 공중합체를 사용하는 것이 보다 바람직할 수 있다. According to one embodiment of the present invention, the polyalkylene oxide has a weight average molecular weight of about 500 to about 5,000 g / mol, or about 1,000 to about 4,000 g / md, and the weight of ethylene oxide (EO) in the polyalkylene oxide. It may be more desirable to use PEO-PPO-PEO triblock copolymers having a ratio of 20 to 80 weight 0 /., Or 20 to 60 weight 0 / o.
상기 비이온성 기포 안정제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 약 1 중량부, 또는 약 0.01 내지 약 0.5 중량부의 농도로 첨가될 수 있다. 상기 비이온성 기포 안정제의 농도가 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 비이온성 기포 안정제의 농도가 지나치게 높을 경우 보수능 및 흡수 속도가 오히려 하락하여 바람직하지 않을 수 있다. The nonionic bubble stabilizer may be added at a concentration of about 0.001 to about 1 part by weight, or about 0.01 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer. When the concentration of the nonionic bubble stabilizer is too low, the role of the bubble stabilizer is insignificant to achieve an absorption rate improvement effect. On the contrary, if the concentration of the nonionic bubble stabilizer is too high, the water holding capacity and the absorption rate may decrease, which may be undesirable.
상기 폴리알킬렌 옥사이드를 포함하는 비이온성 기포 안정제와 함께 사용하는 상기 슈가 에스터 (sugar ester)로는 수크로스 스테아레이트 (sucrose stearate), 수크로스 팔미테이트 (sucrose palmitate) 또는 수크로스 라우레이트 (sucrose laurate)를 예로 들 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 바람직하게는 수크로스 스테아레이트를 사용할 수 있다.  The sugar ester used with the nonionic bubble stabilizer comprising the polyalkylene oxide includes sucrose stearate, sucrose palmitate or sucrose laurate. For example, but the present invention is not limited thereto. Preferably sucrose stearate can be used.
상기 슈가 에스터는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 약 0.08 중량부, 또는 약 0.005 내지 약 0.05 중량부, 또는 약 0.01 내지 약 0.05 중량부의 농도로 첨가될 수 있다. 상기 슈가 에스터의 농도가 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 슈가 에스터의 농도가 지나치게 높을 경우 보수능이 오히려 하락할 수 있으며,. 또한 중합체의 색깔이나 냄새 품질이 떨어질 수 있어, 이러한 관점에서 상기 중량부 범위가 바람직하다. 또한, 상기 슈가 에스터는 상기 폴리알킬렌 옥사이드를 포함하는 비이은성 기포 안정제 100 중량부에 대하여, 1 내지 30 중량부, 또는 1 내지 20 중량부, 또는 1 내지 10 중량부의 비율로 포함하는 것이 바람직하다. 상기 슈가 에스터가 상기 폴리알킬렌 옥사이드 】00 증량부에 대하여 1 중량부 미만으로 너무 적게 사용되면 흡수 속도 향상 효과가 미미할 수 있고, 반면에 30 중량부를 초과하여 너무 많이 사용되면 조성물에서 거품이 많이 발생하고, 제조된 중합체의 건조 과정에서 수지가 누렇게 변색되거나 탄내가 날 수가 있다. 이러한 관점에서 상기 중량부 범위가 바람직하다.  The sugar ester may be added at a concentration of about 0.001 to about 0.08 parts by weight, or about 0.005 to about 0.05 parts by weight, or about 0.01 to about 0.05 parts by weight based on 100 parts by weight of the acrylic acid monomer. When the concentration of the sugar ester is too low, the role as a bubble stabilizer is difficult to achieve the absorption rate improvement effect, on the contrary, when the concentration of the sugar ester is too high, the water holding capacity may decrease rather. In addition, since the color or odor quality of the polymer may be degraded, the weight range is preferable in this respect. In addition, the sugar ester is preferably contained in a ratio of 1 to 30 parts by weight, or 1 to 20 parts by weight, or 1 to 10 parts by weight with respect to 100 parts by weight of the non-unique bubble stabilizer including the polyalkylene oxide. . If the sugar ester is used in an amount less than 1 part by weight relative to the polyalkylene oxide OO increase part, the absorption rate improvement effect may be insignificant, whereas when used in excess of 30 parts by weight, a large amount of foaming occurs in the composition. In addition, the resin may yellow or discolor in the drying process of the polymer. The weight part range is preferable in this respect.
본 발명의 일 실시예예 따르면, 상기 모노머 조성물은 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비카보네이트 (potassium bicarbonate), 포타슘 카보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate), 口그네슘 비 ^!"보네이트 (magnesium bicarbonate) 및 마그네슴 카보네이트 (magnesium carbonate)으로 이루어진 군으로부터 선택되는 1종 이상의 발포제를 더 포함할 수 있다.  According to an embodiment of the present invention, the monomer composition is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium carbonate, calcium bicarbonate, It may further comprise at least one blowing agent selected from the group consisting of calcium carbonate, calcium ratio ^! "Magnesium bicarbonate and magnesium carbonate.
상기 중합 개시제는, 고흡수성 수지의 제조에 일반적으로 사용되는 증합 개시제를 사용할 수 있다. 상기 중합 개시제로는 중합 방법에 따라 열 증합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 광 중합의 경우에도 열 중합 개시제가 추가로 사용될 수 있다. The polymerization initiator is generally used for the production of superabsorbent polymers. A polymerization initiator can be used. As the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator is additionally used. Can be.
상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (benzyl dimethyl ketal), 아실포스핀 (acyl phosphine), 및 알파 -아미노케톤 (α-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 ludrin TPO, 즉, 2,4,6-트리메틸 -벤조일-트리메틸 포스판 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' '의 1 15 페이지에 개시되어 있으며, 이를 참조할 수 있다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether). One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine, and alpha-aminoketone can be used. As specific examples of acylphosphine, commercially available ludrin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphane oxide can be used. . More various photopolymerization initiators are disclosed on page 1 15 of Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)".
또한, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 았다 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. 또한, 아조 (Azo)계 개시제로는In addition, as the thermal polymerization initiator, one or more compounds selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide, and ascorbic acid may be used. Specifically, as persulfate initiator, sodium persulfate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 , and the like. In addition, as an azo (Azo) initiator
2,2-아조비스 -(2-아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스 -(Ν,Ν-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine 2,2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis- (Ν, Ν-dimethylene) isobutyramidine di Hydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine
dihydrochloride), dihydrochloride),
2- (카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril),  2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril),
2,2-아조비스 [2-(2-이미다졸린 -2-일)프로판] 2,2-azobis [2- (2-imidazolin-2-yl) propane]
디하이드로클로라이 H(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. Dihydrochlorai H (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis -(4-cyanovaleric acid)) Can be. A wider variety of thermal polymerization initiators are disclosed on page 203 of the Odian book "Principle of Polymerization (Wiley, 1981)" and can be referred to this.
상기 중합 개시제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 1 중량부의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.  The polymerization initiator may be added at a concentration of about 0.001 to 1 parts by weight based on 100 parts by weight of the acrylic acid monomer. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow and a large amount of the remaining monomers may be extracted in the final product. On the contrary, when the concentration of the polymerization initiator is too high, it is not preferable because the polymer chain constituting the network is shortened, so that the content of the water-soluble component is increased and the pressure absorption capacity is lowered.
그 외, 상기 모노머 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.  In addition, the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants, and the like, as necessary.
또한, 상기 모노머 조성물은 상기 아크릴산계 단량체, 중합 개시제, 내부 가교제, 슈가 에스터, 및 비이온성 기포 안정제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있^ 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디을, 프로필렌글리콜, 에틸렌글라콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 자일렌, 부티로락톤, 카르비틀, 메틸셀로솔브아세테이트, Ν,Ν-디메틸아세트아미드, 또는 이들의 흔합물 등 사용될 수 있다. 상기 용매의 양은 중합 열 조절 등을 고려하여 상기 아크릴산계 단량체 함홧의 1 내지 5 배의 중량비가 되도록 조절될 수 있다. 한편, 상기 모노머 조성물의 중합 및 가교를 통한 함수겔상 중합체의 형성은 본 발명이 속하는 기술분야에서 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader)와 같은 교반축을 가진 반응기에서 수행될 수 있으며, 광 증합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 수행될 수 있다. In addition, the monomer composition may be prepared in the form of a solution in which raw materials such as the acrylic acid monomer, a polymerization initiator, an internal crosslinking agent, a sugar ester, and a nonionic bubble stabilizer are dissolved in a solvent. In this case, the solvent may be used as long as it can dissolve the above-described raw materials. For example, the solvent may be water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl Ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitle, methylcello Solvate, Ν, Ν-dimethylacetamide, or a combination thereof. The amount of the solvent may be adjusted to be 1 to 5 times the weight ratio of the acrylic acid monomer containing in consideration of polymerization heat control and the like. On the other hand, the formation of the hydrogel polymer through the polymerization and crosslinking of the monomer composition may be carried out by a conventional polymerization method in the art, the process is not particularly limited. As a non-limiting example, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source, and in the case of the thermal polymerization, the polymerization method has a stirring shaft such as a kneader. It may be carried out in the reactor, in the case of proceeding the light integration may be performed in a semi-unggi equipped with a movable conveyor belt.
일례로, 교반축이 구비된 니더와 같은 반웅기에 상기 모노머 조성물을 투입하고, 여기에 열풍을 공급하거나 반웅기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반웅기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자 형태로 얻어질 수 있다. 상기 함수겔상 중합체는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 중량 평균 입경이 . 2 mm 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다. In one example, the hydrogel polymer may be obtained by adding the monomer composition to a reaction vessel such as a kneader equipped with a stirring shaft, and supplying hot air thereto or heating and heating the reaction vessel. In this case, the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the form of particles of several millimeters to several centimeters. The hydrous gel phase polymer may be obtained in various forms according to the concentration and the injection speed of the monomer composition to be injected . A hydrogel polymer of 2 mm to 50 mm can be obtained.
또한, 다른 일례로 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 상기 모노머 조성물에 대한 광 중합을 진행하는 경우에는 시트상의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도톡 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 5 cm 내지 5 cm의 두께로 조절되는 것이 바람직하다.  In another example, when the photopolymerization of the monomer composition is carried out in a reaction vessel equipped with a movable conveyor belt, a sheet-like hydrogel polymer may be obtained. At this time, the thickness of the sheet may vary depending on the concentration and the injection speed of the monomer composition to be injected, in order to ensure the production rate, while the entire sheet can be polymerized evenly, it is usually adjusted to a thickness of 5 cm to 5 cm It is desirable to be.
상기와 같은 방법으로 형성되는 함수겔상 중합체는 약 40 내지 80 중량%의 함수율을 나타낼 수 있다. 상기 함수겔상 중합체의 함수율이 상기 범위에 .들도록 하는 것이 후술할 건조 단계에서의 효율을 최적화한다는 점에서 유리하다. 여기서 함수율은 함수겔상 중합체의 전체 중량에서 수분이 차지하는 중량으로서, 함수겔상 중합체의 중량에서 건조 상태의 중합체 중량을 뺀 값으로 계산될 수 있다. 구체적으로, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분 증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의될 수 있다. 이때, 건조 조건은 상온에서 약 180 °C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조 시간은온도 상승 단계 5분을 포함하여 40분으로 설정될 수 있다. 전술한 단계를 통해 얻어진 함수겔상 중합체는 흡수성의 부여를 위해 건조 공정을 거치게 된다. 그런데, 이러한 건조의 효율을 높이기 위해, 건조 공정의 수행 전에 상기 함수겔상 중합체를 분쇄 (조분쇄)하는 단계가 수행될 수 있다. 비제한적인 예로, 상기 조분쇄에 이용 가능한 분쇄기로는 수직형 절단기 (vertical pulverizer), 터보 커터 (turbo cutter), 터보 글라인더 (turbo grinder), 회전 절단식 분쇄기 (rotary cutter mill), 절단식 분쇄기 (cutter mill), 원판 분쇄기 (disc mill), 조각 파쇄기 (shred crusher), 파쇄기 (crusher), 초퍼 (chopper), 원판식 절단기 (disc cutter) 등을 예로 들 수 있다. The hydrogel polymer formed by the above method may exhibit a water content of about 40 to 80% by weight. The water content of the hydrogel polymer is in the above range . Lifting is advantageous in that it optimizes the efficiency in the drying step described below. Here, the moisture content is a weight of water in the total weight of the hydrogel polymer, and may be calculated by subtracting the dry polymer weight from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer through infrared heating. At this time, the drying condition is a total drying time may be set to 40 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C at room temperature and maintained at 180 ° C. The hydrogel polymer obtained through the above steps is subjected to a drying process to impart water absorbency. However, in order to increase the efficiency of such drying, the step of pulverizing (coarsely pulverizing) the hydrogel polymer before performing the drying process may be performed. As a non-limiting example, the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type. Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like.
이때, 상기 조분쇄는 상기 함수겔상 중합체의 입경이 2 mm 내지 10 mm가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔상 중합체는 10 mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 웅집 현상이 발생할 수 있으므로, 상기 함수겔상 중합체는 2 mm 이상의 입자로 분쇄되는 것이 바람직하다.  At this time, the coarse grinding may be performed so that the particle diameter of the hydrogel polymer is 2 mm to 10 mm. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of 10 mm or less. However, since excessive particle grinding may occur, the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more.
상기 조분쇄 단계는, 중합체의 함수율이 높은 상태에서 수행되기 때문에 분쇄기의 표면에 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 상기 조분쇄 단계에는, 필요에 따라, 스팀, 물, 계면활성제, 웅집 방지제 (예를 들어 clay, silica 등); 과황산염계 개시제, 아조계 개시제, 과산화수소, 열중합 개시제, 에폭시계 가교제, 디올 (diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 I 관능기의 가교제 등이 첨가될 수 있다.  The coarsely pulverizing step, because the polymer is carried out in a high water content of the polymer may stick to the surface of the mill may appear. In order to minimize this phenomenon, the coarse grinding step may include steam, water, surfactants, anti-fog agents (for example, clay, silica, etc.) as necessary; Persulfate-based initiator, azo-based initiator, hydrogen peroxide, thermal polymerization initiator, epoxy-based crosslinking agent, diol crosslinking agent, crosslinking agent comprising a bifunctional or polyfunctional acrylate of trifunctional group, crosslinking agent of I functional group including hydroxyl group And the like can be added.
천술한 단계를 통해 조분쇄된 함수겔상 증합체를 건조하는 단계가 수행된다. 상기 함수겔상 중합체는 전술한 단계를 통해 2 mm 내지 10 mm의 입자로 조분쇄된 상태로 건조 단계에 제공됨에 따라, 보다 높은 효율로 건조가 이루어질 수 있다.  The step of drying the coarsely pulverized hydrogel polymer is carried out through the step of puncture. The hydrogel polymer is provided to the drying step in the coarsely pulverized state of the particles of 2 mm to 10 mm through the above-described step, it can be dried at a higher efficiency.
상기 조분쇄된 함수겔상 중합체의 건조는 120 내지 250 °C , 바람직하게는 140 내지 200°C , 보다 바람직하게는 150 내지 19 TC의 온도 하에서 수행될 수 있다. 이때, 상기 건조 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반웅기 내부의 온도로 정의될 수 있다. 건조 온도가 낮아 건조 시간이 길어질 경우 공정 효을성이 저하되므로, 이를 방지하기 위하여 건조 온도는 120 °C 이상인 것이 바람직하다. 또한, 건조 은도가 필요 이상으로 높을 경우 함수겔상 중합체의 표면이 과하게 건조되어 후속 공정인 분쇄 단계에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 250°C 이하인 것이 바람직하다. Drying of the coarsely pulverized hydrogel polymer may be performed at a temperature of 120 to 250 ° C., preferably 140 to 200 ° C., more preferably 150 to 19 TC. In this case, the drying temperature may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reaction vessel including the heat medium and the polymer in the drying process. If the drying temperature is low and the drying time is long, the process efficiency is lowered. In order to prevent this, the drying temperature is preferably 120 ° C. or more. In addition, if the dry silver content is higher than necessary, the surface of the hydrogel polymer is excessively dried, so that in the subsequent grinding step The fine powder may increase, and the physical properties of the final resin may be lowered. In order to prevent this, the drying temperature is preferably 250 ° C. or lower.
이때, 상기 건조 단계에서의 건조 시간은 특별히 제한되지 않으나, 공정 효율 및 수지의 물성 등을 고려하여, 상기 건조 온도 하에서 20분 내지 90분으로 조절할 수 있다.  At this time, the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes under the drying temperature in consideration of process efficiency and the physical properties of the resin.
상기 건조는 통상의 매체를 이용하여 이루어질 수 있는데, 예를 들어, 상기 조분쇄된 함수겔상 중합체에 대한 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법을 통해 수행될 수 있다.  The drying may be performed using a conventional medium. For example, the drying may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation to the coarsely pulverized hydrogel polymer.
그리고, 이러한 건조는 건조된 중합체가 약 0.1 내지 10 중량%의 함수율을 갖도특 수행되는 것이 바람직하다. 즉, 건조된 증합체의 함수율이 0.1 중량 % 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해 (degradation)가 일어날 수 있어 바람직하지 않다. 그리고, 건조된 중합체의 함수율이 10 중량%를 초과할 경우 후속 공정에서 불량이 발생할 수 있어 바람직하지 않다.  And such drying is preferably carried out even if the dried polymer has a water content of about 0.1 to 10% by weight. That is, when the water content of the dried polymerizer is less than 0.1% by weight, it is not preferable because an increase in manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the moisture content of the dried polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable.
전술한 단계를 통해 건조된 중합체를 분쇄하는 단계가 수행된다. 상기 분쇄 단계는 건조된 중합체의 표면적으로 최적화하기 위한 단계로서, 분쇄된 중합체의 입경이 150 내지 850 가 되도록 수행할 수 있다.  Through the steps described above, a step of pulverizing the dried polymer is performed. The milling step is a step for optimizing the surface area of the dried polymer, it may be carried out so that the particle diameter of the milled polymer is 150 to 850.
이때 분쇄기로는 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill), 조그 밀 (jog mill) 등 통상의 것이 사용될 수 있다. 또한, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻어지는 중합체 입자에서 150 내지 850 의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다.  At this time, a mill, a pin mill, a hammer mill, a screw mill, a mill, a disc mill, a jog mill, etc., may be used. Can be. In addition, in order to manage the physical properties of the super absorbent polymer to be finalized, the step of selectively classifying particles having a particle size of 150 to 850 from the polymer particles obtained through the grinding step may be further performed.
상기와 같은 본 발명의 공정에 의해 중합, 건조, 및 분쇄된 중합체 (베이스 수지)는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 35 g/g 이상, 또는 약 36 g/g 이상, 또는 약 37 g/g 이상이면서 약 50 g/g 이하, 또는 약 45 g/g 이하, 또는 약 42 g/g 이하일 수 있다.  The polymer (base resin) polymerized, dried and pulverized by the above-described process of the present invention has a water retention capacity (CRC) of about 35 g / g or more, or about 36 g / g or more, measured according to the EDANA method WSP 241.3. Or about 37 g / g or more and about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
또한, 상기 베이스 수지는 볼텍스 법 (Vortex)에 의한 홉수 속도가 40초 이하, 또는 .약 39초 이하, 또는 약 38초 이하이면서 약 15초 이상, 또는 약 20초 이상, 또는 약 30초 이상일 수 있다. 또한, 상기 베이스 수지는 부피 밀도 (bulk density)가 0.51 g/mL 이상으로, 예를 들어 약 으51 g/mL 이상, 또는 약 0.52 g/mL 이상, 또는 약 0.55 g/mL 이상이면서, 약 0.70 g/mL 이하, 또는 약 0.68 g/mL 이하, 또는 약 0.65 g/mL 이하로 높은 부피 밀도를 나타낸다. 부피 밀도가 클수록 동일한 부피에서 보다 많은 중량의 수지를 포함할 수 있으므로, 생산성, 운반성 등의 측면에서 보다 유리하다. In addition, the base resin has a hop number speed of 40 seconds or less by Vortex method, or . About 39 seconds or less, or about 38 seconds or less and about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more. In addition, the base resin has a bulk density of about 0.50 g / mL or more, for example about 51 g / mL or more, or about 0.52 g / mL or more, or about 0.55 g / mL or more, and about 0.70. A high bulk density of up to g / mL, or up to about 0.68 g / mL, or up to about 0.65 g / mL. The greater the bulk density, the more the weight of the resin may be included in the same volume, which is more advantageous in terms of productivity, transportability and the like.
종합하여, 상기 베이스 수지는 보수능과 흡수 속도 등의 물성이 우수하며, 동시에 높은 부피 밀도를 가져 고생산성을 나타낼 수 있다.  In sum, the base resin is excellent in physical properties such as water-retaining ability and absorption rate, and at the same time may exhibit high productivity with high bulk density.
전술한 단계를 통해 분쇄된 중합체를 표면 가교제에 의해 표면 개질 (surface modification)하는 단계가 수행된다.  Surface modification of the polymer ground through the above-mentioned steps with a surface crosslinking agent is carried out.
상기 표면 개질은 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반웅을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 개질을 통해 상기 분쇄된 중합체 입자의 표면에는 표면 가교층이 형성된다.  The surface modification is a step of forming a superabsorbent resin having more improved physical properties by inducing crosslinking reaction on the surface of the ground polymer in the presence of a surface crosslinking agent. Through such surface modification, a surface crosslinking layer is formed on the surface of the pulverized polymer particles.
상기 표면 개질 (표면 가교 반웅)은 중합체 입자 표면의 가교 결합 밀도를 증가시키는 통상의 방법으로 수행될 수 있으며, 예를 들어, 표면 가교제를 포함하는 용액과 상기 분쇄된 중합체를 흔합하여 가교 반웅시키는 방법으로 수행될 수 있다.  The surface modification (surface crosslinking reaction) may be carried out by a conventional method of increasing the crosslinking density of the surface of a polymer particle, for example, a method of mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent. It can be performed as.
여기서 상기 표면 가교제는 상기 중합체가 갖는 관능기와 반웅 가능한 화합물로서, 그 구성은 특별히 한정되지 않는다. 다만, 비제한적인 예로, 상기 표면 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 디올, 디프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄디올, 헵탄디을, 핵산디올 트리메틸를프로판, 펜타에리스리콜, 소르비를, 칼슘 수산화물, 마그네슘 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슴 염화물, 알루미늄 염화물, 및 철 염화물로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.  Here, the said surface crosslinking agent is a compound which can react with the functional group which the said polymer has, The structure is not specifically limited. However, by way of non-limiting example, the surface crosslinking agent is ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl Ether, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerol, butanediol, heptanedi, nucleic acid diol trimethyl propane, pentaerythritol, Sorbi may be at least one compound selected from the group consisting of calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride, and iron chloride.
이때, 상기 표면 가교제의 함량은 가교제의 종류나 반웅 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 분쇄된 증합체 100 중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 개질이 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 과량의 표면 가교제가 사용되면 과도한 표면 가교 반응으로 인해 수지의 흡수력이 오히려 저하될 수 있어 바람직하지 않다. At this time, the content of the surface cross-linking agent is the kind of crosslinking agent or reaction conditions It may be appropriately adjusted according to, preferably from 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer. When the content of the surface crosslinking agent is too low, the surface modification is not properly made, the physical properties of the final resin may be lowered. On the contrary, when an excessive amount of surface crosslinking agent is used, absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable.
한편, 상기 표면 개질 단계는, 상기 표면 가교제와 분쇄된 중합체를 반응조에 넣고 흔합하는 방법, 분쇄된 중합체에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 분쇄된 중합체와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등 통상적인 방법으로 수행될 수 있다. 또한, 상기 표면 가교제를 첨가할 때 추가적으로 물이 첨가될 수 있다. 이처럼 표면 가교제와 물이 함께 첨가됨으로써 표면 가교제의 고른 분산이 유도될 수 있고, 중합체 입자의 뭉침 현상이 방지되고, 중합체 입자에 대한 표면 가교제의 침투 깊이가 보다 최적화할 수 있다. 이러한 목적 및 효과를 고려하여, 표면 가교제와 함게 첨가되는 물의 함량은 상기 분쇄된 중합체 100 중량부에 대하여 0.5 내지 10 중량부로 조절될 수 있다. 그리고, 상기 표면 개질 단계는 100 내지 250 °C의 온도 하에서 진행될 수 있다. 또한 상기 표면 개질은 1분 내지 120분, 바람직하게는 1분 내지 100분, 보다 바람직하게는 10분 내지 60분 동안 진행할 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반웅시 증합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여, 상기 표면 개질 단계는 전술한 조건으로 수행될 수 있다. On the other hand, the surface modification step, the method of mixing the surface cross-linking agent and the pulverized polymer into the reaction tank, the method of spraying the surface cross-linking agent to the pulverized polymer, the continuous supply of the pulverized polymer and surface crosslinking agent to the mixer to be continuously operated It can be carried out in a conventional manner such as a mixing method. In addition, water may be additionally added when the surface crosslinking agent is added. As such, the surface crosslinking agent and water are added together to induce even dispersion of the surface crosslinking agent, to prevent agglomeration of the polymer particles, and to further optimize the penetration depth of the surface crosslinking agent into the polymer particles. In view of these objects and effects, the amount of water added with the surface crosslinking agent may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer. In addition, the surface modification step may be performed under a temperature of 100 to 250 ° C. In addition, the surface modification may be performed for 1 minute to 120 minutes, preferably 1 minute to 100 minutes, more preferably 10 minutes to 60 minutes. That is, the surface modification step may be carried out under the above-described conditions in order to induce a minimum surface crosslinking reaction and to prevent excessive semi-amplification polymer particles from being damaged and deteriorating physical properties.
본 발명의 다른 일 구현예에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 베이스 수지 및, 상기 베이스 수지의 표면에 형성된 표면 가교층으로 이루어진 고흡수성' 수지에 있어서, 상기 베이스 수지는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 35 g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하이며, 부피 밀도 (bulk density)가 0.51 내지 0.70 g/mL인, 고흡수성 수지를 제공한다.  According to another embodiment of the present invention, a base resin polymerized and internally crosslinked with a monomer composition including an acrylic acid monomer having an acidic group and at least a portion of the acidic group is neutralized, and a surface crosslinking layer formed on the surface of the base resin. In the super absorbent 'resin, the base resin has a water retention capacity (CRC) of 35 g / g or more, measured according to EDANA WSP 241.3, an absorption rate of 40 seconds or less by a vortex method, and a volume. It provides a super absorbent polymer having a bulk density of 0.51 to 0.70 g / mL.
이에 본 발명에서는 중합시 특정한 비이온성 기포 안정제 및 슈가 에스터를 함께 사용하여 고흡수성 수지의 제조 과정에서 발생한는 기포를 안정화시킴으로써, 높은 보수능, 흡수 속도 및 부피 밀도를 나타낼 수 있다. 바람직하게는, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다: Therefore, in the present invention, a specific nonionic bubble stabilizer and sugar during polymerization By using the esters together to stabilize the bubbles generated during the preparation of the super absorbent polymer, high water holding capacity, absorption rate and bulk density can be exhibited. Preferably, the acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1]  [Formula 1]
R'-COOM1 R'-COOM 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은 블포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. R 1 is an alkyl group having 2 to 5 carbon atoms containing a unsaturated bond, and M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰0 /。, 또는 40 내지 80 몰0 /0, 또는 45 내지 75 몰0 /。일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. Here, the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. Preferably, those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used. In this case, the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0 /., Or 40 to 80 mole 0/0, or 45 to 75 mole 0 /. The range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as elastic rubber that is difficult to handle. have.
바람직하게는, 상기 가교 중합체는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 디 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 디 (메타)아크릴레'이트, 프로필렌글리콜 디 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄디올디 (메타)아크릴레이트, 부틸렌글리콜디 (메타)아크릴레이트, 디에틸렌글리콜 디 (메타)아크릴레이트, 핵산디올디 (메타)아크릴레이트, 트리에틸렌글리콜 디 (메타)아크릴레이트, 트리프로필렌글리콜 디 (메타)아크릴레이트, 테트라에틸렌글리콜 디 (메타)아크릴레이트, 디펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스틀 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상의 내부 가교제에 의해 내부 가교된 것일 수 있다. 보다 바람직하게는 폴리에틸렌글리콜디아크릴레이트 (PEGDA)에 의해 내부 가교된 것일 수 있다. Preferably, the crosslinked polymer is Ν, Ν'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) ) acrylic Level byte, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Latex, nucleic acid diol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaerythyl tetraacrylate, triarylamine, ethylene glycol diglyci It may be internally crosslinked by at least one internal crosslinker selected from the group consisting of dill ether, propylene glycol, glycerin, and ethylene carbonate. More preferably, it may be internally crosslinked by polyethylene glycol diacrylate (PEGDA).
본 발명에서, 상기 가교 중합체는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 약 35 g/g 이상, 또는 약 36 g/g 이상, 또는 약 37 g/g 이상일 수 있다. 보수능 (CRC)의 상한값은 특별히 제한되지 않으나, 예를 들면 약 50 g/g 이하, 또는 약 45 g/g 이하, 또는 약 42 g/g 이하일 수 있다.  In the present invention, the crosslinked polymer may have a centrifugal water retention (CRC) of at least about 35 g / g, or at least about 36 g / g, or at least about 37 g / g, measured according to the EDANA method WSP 241.3. The upper limit of the water retention capacity (CRC) is not particularly limited but may be, for example, about 50 g / g or less, or about 45 g / g or less, or about 42 g / g or less.
또한, 상기 가교 중합체는 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하, 또는 약 39초 이하, 또는 약 38초 이하일 수 있다. 흡수 속도의 하한값은 특별히. 제한되지 않으나, 예를 들면 약 15초 이상, 또는 약 20초 이상, 또는 약 30초 이상일 수 있다.  In addition, the crosslinked polymer may have an absorption rate by Vortex of 40 seconds or less, or about 39 seconds or less, or about 38 seconds or less. The lower limit of the absorption rate is specifically. Although not limited, it may be for example about 15 seconds or more, or about 20 seconds or more, or about 30 seconds or more.
이때, 상기 보수능 및 흡수 속도는 상기 가교 중합체 표면에 표면 가교층을 형성하기 이전으로, 모노머 조성물의 중합 후 건조 및 분쇄하여 파우더 (powder) 형태로 만든 상태의 가교 중합체인 베이스 수지 (base resin)에 대해 측정한 값이다.  At this time, the water holding capacity and the absorption rate is a base resin which is a crosslinked polymer in a form of powder after drying and pulverizing after polymerization of the monomer composition before forming a surface crosslinked layer on the surface of the crosslinked polymer. Measured for.
또한, 상기 베이스 수지는 부피 밀도 (bulk density)가 0.51 g/mL 이상으로, 예를 들어 약 0.51 g/mL 이상, 또는 약 0.52 g/mL 이상, 또는 약 0.55 g/mL 이상이면서 , 약 0.70 g/mL 이하, 또는 약 0.68 g/mL 이하, 또는 약 0.65 g/mL 이하로 높은 부피 밀도를 나타낸다. 부피 밀도가 클수록 동일한 부피에서 보다 많은 중량의 수지를 포함할 수 있으므로, 생산성, 운반성 등의 측면에서 보다 유리하다.  In addition, the base resin has a bulk density of at least 0.51 g / mL, for example at least about 0.51 g / mL, or at least about 0.52 g / mL, or at least about 0.55 g / mL, and at least about 0.70 g. A high bulk density of up to / mL, or up to about 0.68 g / mL, or up to about 0.65 g / mL. The greater the bulk density, the more the weight of the resin may be included in the same volume, which is more advantageous in terms of productivity, transportability and the like.
종합하여, 상기 베이스 수지는 보수능과 흡수 속도 등의 물성이 우수하며, 동시에 높은 부피 밀도를 가져 고생산성을 나타낼 수 있다.  In sum, the base resin is excellent in physical properties such as water retention and absorption rate, and at the same time may exhibit high productivity with high bulk density.
베이스 수지에 대해 표면 가교층을 형성하면, 일반적으로 가압 흡수능 (AUP)은 증가하고 흡수 속도 (vortex time)도 향상되지만, 보수능 (CRC)은 감소하게 된다. 따라서, 이러한 보수능의 감소 경향을 고려할 때 최종 제품의 물성 확보를 위해서는 높은 보수능을 갖는 베이스 수지를 제조하는 것이 매우 중요하다. 보수능이 높은 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 보수능의 하락에 대한 우려가 적으며 이와 동시에 향상된 가압 흡수능과 흡수 속도를 가질 수 있어 보다 고품질의 수지를 수득할 수 있게 된다. 또한, 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 부피 밀도가 더욱 증가할 수 있다. Forming a surface crosslinked layer with respect to the base resin generally increases the pressure absorbency (AUP) and improves the absorption rate (vortex time), but the water retention capacity (CRC) Will decrease. Therefore, in consideration of such a tendency to reduce the water retention capacity, it is very important to prepare a base resin having a high water retention ability to secure the physical properties of the final product. The superabsorbent polymer having the surface crosslinked layer formed on the high water-retaining base resin has little concern about a decrease in water-retaining ability, and at the same time, it has an improved pressure-absorbing capacity and absorption rate, thereby obtaining a higher quality resin. . In addition, the super absorbent polymer having the surface crosslinked layer formed on the base | resin may further increase in bulk density.
예를 들어, 상기와 같은 보수능 및 흡수 속도를 가지는 가교 증합체 (베이스 수지)에 대해 표면 가교층을 형성한 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 약 30 g/g 이상, 또는 약 31 g/g 이상, 또는 약 33 g/g 이상이고, 약 45 g/g 이하, 또는 약 40 g/g 이하, 또는'약 38 g/g 이하일 수 있다. For example, the superabsorbent polymer having the surface crosslinked layer formed on the crosslinked polymer (base resin) having the above water-retaining capacity and absorption rate has a low centrifugal water-retaining capacity (CRC) measured according to the EDANA method WSP 241.3. 30 g / g or more, or about 31 g / g or more, or about 33 g / g or more, about 45 g / g or less, or about 40 g / g or less, or ' about 38 g / g or less.
또한, 상기 베이스 수지에 대해 표면 가교층을 형성한 고흡수성 수지는 볼텍스 법 (Vortex)에 의한 흡수 속도가 34초 이하, 또는 약 33초 이하, 또는 약 30초 이하이고, 약 10초 이상, 또는 약 15초 이상, 또는 약 20초 이상일 수 있다.  In addition, the superabsorbent polymer having a surface crosslinked layer formed on the base resin has an absorption rate of 34 seconds or less, or about 33 seconds or less, or about 30 seconds or less, about 10 seconds or more, by a vortex method (or About 15 seconds or more, or about 20 seconds or more.
상기 원심분리 보수능 (CRC)은 EDANA 법 WSP 241.3에 따라 측정한 것으로, 하기 수학식 1로 표시될 수 있다:  The centrifugal water retention capacity (CRC) is measured according to the EDANA method WSP 241.3, and may be represented by the following Equation 1:
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - W,(g)]/Wo(g)} - 1 CRC (g / g) = {[W 2 (g)-W, (g)] / Wo (g)}-1
상기 수학식 1에서,  In Equation 1,
W0(g)는 수지의 무게 (g)이고, W 0 (g) is the weight of the resin (g),
W,(g)는 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게 (g)이고,  W, (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin,
W2(g)는 상온에 0.9 질량%의 생리식염수에 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 수지를 포함하여 측정한 장치 무게 (g)이다. W 2 (g) is the device weight (g) measured after the resin was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes and then dehydrated at 250 G for 3 minutes using a centrifuge.
상기 볼텍스 법에 의한 흡수 속도의 측정은, 100 ml 비커에 50 ml 식염수를 마그네틱 교반 바와 함께 넣고, 교반기를 사용하여 마그네틱 교반 바의 교반 속도를 600 rpm으로 지정한 후 교반되고 있는 식염수에 2.0 g의 수지를 넣는 동시에 시간을 측정하여 비커 안에 소용돌이가 없어지는 시점까지 걸린 시간 (단위 : 초)을 볼텍스 시간으로 하여 측정한다. The measurement of the absorption rate by the vortex method was carried out by putting 50 ml saline with a magnetic stirring bar in a 100 ml beaker, using a stirrer to designate the stirring speed of the magnetic stirring bar at 600 rpm, and then adding 2.0 g of saline to the stirring solution. At the same time the resin is added, the time is measured and the time taken until the vortex disappears in the beaker (unit: seconds) is measured as the vortex time.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.  Hereinafter, preferred embodiments are presented to help understand the invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
<실시예 > <Example>
실시예 1  Example 1
1-1. 베이스 수지의 제조  1-1. Preparation of Base Resin
아크릴산 100 증량부, 50% 가성소다 (NaOH) 83.3 중량부, 물 89.8 중량부, 하기의 성분들을 흔합하여 모노머 조성물올 제조하였다.  100 parts by weight of acrylic acid, 83.3 parts by weight of 50% caustic soda (NaOH), 89.8 parts by weight of water, and the following components were mixed to prepare a monomer composition.
- 내부 가교제: 폴리에틸렌글리콜디아크릴레이트 (PEGDA; Mw=400) 0.27 중량부 (2700 ppmw) 및 폴리에틸렌글리콜디아크릴레이트 (PEGDA; Internal crosslinkers: 0.27 parts by weight (2700 ppmw) polyethylene glycol diacrylate (PEGDA; Mw = 400) and polyethylene glycol diacrylate (PEGDA;
Mw=200) 0.054 중량부 (540 ppmw) Mw = 200) 0.054 parts by weight (540 ppmw)
- 중합 개시제: 과산화수소 (¾02) 0.p2 중량부 (300 ppmw), 아스코르브산Polymerization initiator: hydrogen peroxide (¾0 2 ) 0.p2 parts by weight (300 ppmw), ascorbic acid
0.05 중량부 (500 ppmw), 과황산칼륨 (KPS) ().2 중량부 (2000 ppmw) 0.05 parts by weight (500 ppmw), potassium persulfate (KPS) () .2 parts by weight (2000 ppmw)
- 기포 안정제: 수크로스 스테아레이트 (S1670) 0.016 중량부 (160 ppmw), 및 폴리알킬렌 옥사이드 (PEO-PPO-PEO triblock copolymer, Mw: 2550) 0.16 중량부 (1600 ppmw) - 상기 모노머 조성물로 열중합 반응을 진행하여 중합된 시트를 얻었다. 중합된 시트를 꺼내어 3 cm X 3 cm의 크기로 자른 후, 미트 쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였디-. 상기 가루 (cmmb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였디-. 180 °C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되도록 하였다. 건조 후, 분쇄기로 분쇄한 다음 분급하여 입경이 150 내지 850 인 입자들을 선별하여 베이스 수지를 제조하였다. Bubble stabilizer: 0.016 parts by weight (160 ppmw) of sucrose stearate (S1670), and 0.16 parts by weight (1600 ppmw) of polyalkylene oxide (PEO-PPO-PEO triblock copolymer, Mw: 2550)-thermal with the monomer composition The polymerization reaction was carried out to obtain a polymerized sheet. The polymerized sheet was taken out and cut to a size of 3 cm X 3 cm, and then subjected to a chopping process using a meat chopper to prepare a powder. The powder (cmmb) was dried in an oven capable of transferring air volume up and down. The hot air at 180 ° C. was uniformly dried by flowing 15 minutes downward and upward and 15 minutes upward and downward, and the water content of the dried body was 2% or less after drying. After drying, it was pulverized with a grinder and classified to sort particles having a particle diameter of 150 to 850 to prepare a base resin.
1-2. 고흡수성 수지의 제조 상기 1-1에서 제조한 베이스 수지 100 중량부에 대하여, 물 4 중량부, 메탄올 4 중량부, 에틸렌글리콜 디글리시딜 에테르 (ethyleneglycol diglycidyl ether) 0.3 중량부, 실리카 (Aerosil 200) 0.06 중량부, 및 옥살산 0.2 중량부를 첨가하여 흔합한 다음, 표면가교온도로 140°C에서 40분 동안 반웅시키고, 분쇄 후 시브 (sieve)를 이용하여 입경이 150 내지 850 μιη의 표면 처리된 고흡수성 수지를 얻었다. 실시예 2 1-2. Preparation of Super Absorbent Resin 4 parts by weight of water, 4 parts by weight of methanol, 0.3 parts by weight of ethyleneglycol diglycidyl ether, 0.06 parts by weight of silica (Aerosil 200), based on 100 parts by weight of the base resin prepared in 1-1. And 0.2 parts by weight of oxalic acid were mixed, followed by reaction at 140 ° C. for 40 minutes at a surface crosslinking temperature, and a surface treated superabsorbent polymer having a particle size of 150 to 850 μιη was obtained using a sieve after grinding. Example 2
상기 실시예 1에서, 모노머 조성물에 발포제로 소디움 비카보네이트 (SBC) 0.01 중량부를 더 포함한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하여 고흡수성 수지를 얻었다. 실시예 3 내지 7  In Example 1, a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.01 parts by weight of sodium bicarbonate (SBC) was further included as a blowing agent in the monomer composition. Examples 3-7
상기 실시예 1에서 모노머 조성물의 성분을 다르게 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하여 고흡수성 수지를 얻었다. 비교예 1 내지 7  Except for changing the components of the monomer composition in Example 1 was prepared in the same manner as in Example 1 to obtain a super absorbent polymer. Comparative Examples 1 to 7
상기 실시예 1에서 모노머 조성물의 성분을 다르게 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하여 고흡수성 수지를 얻었다. 상기 실시예들 및 비교예들에서 사용된 모노머 조성물의 주요 성분에 대해 하기와 같이 표 1에 정리하였다.  Except for changing the components of the monomer composition in Example 1 was prepared in the same manner as in Example 1 to obtain a super absorbent polymer. The main components of the monomer composition used in the above Examples and Comparative Examples are summarized in Table 1 as follows.
【표 11 Table 11
PEO-PPO-PEO triblock수크로스 발포제 (SBC) copolymer (중량부) 스테아레이트 (중량부)  PEO-PPO-PEO triblock sucrose blowing agent (SBC) copolymer (part by weight) Stearate (part by weight)
(중량부)  (Parts by weight)
실시예 1 0.16 0.016 ᅳ 실시예 2 0.16 0.016 ' 0.01 Example 1 0.16 0.016 μs Example 2 0.16 0.016 '0.01
실시예 3 0.16 0.016 0.025  Example 3 0.16 0.016 0.025
실시예 4 0.16 0.016 0.05 Example 4 0.16 0.016 0.05
실시예 5 0.16 0.016 0.2 Example 5 0.16 0.016 0.2
실시예 6 0.28 0.028 - 실시예 7 0.32 0.032 - 비교예 1 - 0.008 0.1 Example 6 0.28 0.028 Example 7 0.32 0.032 Comparative Example 1 0.008 0.1
비교예 2 - 0.016 0.1  Comparative Example 2-0.016 0.1
비교예 3 - 0.032 0.1 Comparative Example 3-0.032 0.1
비교예 4 - 0.04 0.1 Comparative Example 4-0.04 0.1
비교예 5 - 0.056 0.1 Comparative Example 5-0.056 0.1
비교예 6 - 0.032 0.2 Comparative Example 6-0.032 0.2
비교예 7 - 0.032 0.3 Comparative Example 7-0.032 0.3
〈실험예> Experimental Example
상기 실시예들 및 비교예들에서 제조한 고흡수성 수지에 대하여, 다음과 같은 방법으로 물성을 평가하였다.  The physical properties of the superabsorbent polymers prepared in Examples and Comparative Examples were evaluated in the following manner.
상기 물성 평가는 각 실시예 및 비교예에서 표면 가교 이전의 상태인 베이스 수지와, 표면 가교 후의 고흡수성 수지 각각에 대해 수행하였다.  The physical property evaluation was performed for each of the base resin in the state before the surface crosslinking and the superabsorbent polymer after the surface crosslinking in each Example and Comparative Example.
(1) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)  (1) Centrifuge Retention Capacity (CRC)
각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다.  The water holding capacity by the no-load absorption ratio of each resin was measured according to EDANA WSP 241.3.
구체적으로, 실시예 및 비교예의 고흡수성 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후, 상온에서 생리식염수 (0.9 중량 %)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 베이스 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Wi(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다. [수학식 1] Specifically, the superabsorbent polymers W 0 (g) (about 0.2 g) of the Examples and Comparative Examples were uniformly placed in a nonwoven fabric bag and sealed, and then immersed in normal saline (0.9 wt%) at room temperature. After 30 minutes had elapsed, the water was removed from the bag for 3 minutes under the conditions of 250 G using a centrifuge, and the mass W 2 (g) of the bag was measured. Moreover, mass Wi (g) at that time was measured after performing the same operation | movement without using a base resin. Using each mass obtained, CRC (g / g) was computed according to the following formula. [Equation 1]
CRC (g/g) = {[W2(g) - W g^/Woig)} - 1 CRC (g / g) = {[W 2 (g)-W g ^ / Woig)}-1
(2) 흡수 속도 (Vortex time) (2) Vortex time
50 ml 식염수를 100 ml 비커에 마그네틱 바와 함께 넣었다. 교반기를 사용하여 교반 속도를 600 rpm으로 지정하였다. 교반되고 있는 식염수에 2.0 g의 고흡수성 수지를 넣는 동시에 시간을 측정하였다. 비커 안에 소용돌이가 없어지는 시점에 시간 측정을 종료하였다. (3) 부피 밀도 (Bulk Density)  50 ml saline was placed in a 100 ml beaker with a magnetic bar. The stirring speed was specified at 600 rpm using a stirrer. 2.0 g of superabsorbent polymer was added to the stirred saline solution and the time was measured. The time measurement was terminated when the swirl disappeared in the beaker. (3) Bulk Density
표면 가교 이전의 상태인 베이스 수지에 대해 하기와 같은 방법으로 부피 밀도를 측정하였다.  The bulk density of the base resin before the surface crosslinking was measured by the following method.
비중컵 (density cup)의 무게를 측정하여 W,으로 기록하고, 입도가 골고루 섞일 수 있도록 잘 섞어주면서 250 ml 비이커에 베이스 수지 시료 100 g을 취하였다. 오리피스 댐퍼 (orifice damper) 상단에 가볍게 부어 충진시킨 후, 오리피스 댐퍼의 하단부를 열어 베이스 수지를 분출시켰다. 스파출러 (spatula)로 비중컵 위에 넘쳐있는 베이스 수지 시료를 시약 수저의 평평한 면을 사용하여 조심스럽게 걷어내어 평평하게 깎아내었다. 베이스 수지가 들어있는 비중컵의 무게를 측정하고 이를 W2로 기록하고 하기 식 1에 따라 부피 밀도를 계산하였다. The weight of the specific gravity cup (density cup) was measured and recorded as W, and 100 g of the base resin sample was taken in a 250 ml beaker while mixing well so that the particle size was evenly mixed. After filling by filling lightly on the top of the orifice damper, the bottom of the orifice damper was opened to eject the base resin. The base resin sample, which was overflowed onto the specific gravity cup with a spatula, was carefully rolled off using the flat side of the reagent spoon and flattened off. The specific gravity cup containing the base resin was weighed and recorded as W 2 and the bulk density was calculated according to the following Equation 1.
[식 1]  [Equation 1]
겉보기 밀도 (g/ml) = (W2-W,)/100 Apparent density (g / ml) = (W 2 -W,) / 100
Wi: Density cup의 무게 (g)  Wi : Weight of Density cup (g)
W2: Density cup + 베이스 수지의 무게 (g) W 2 : Density cup + weight of base resin (g)
100: Density cup의 부피 (ml) 상기 측정 결과를 하기 표 2에 나타내었다.  100: volume of Density cup (ml) The measurement results are shown in Table 2 below.
【표 2】
Figure imgf000023_0001
베이스 표면 가교베이스 수지 표면 가교 후의 베이스 수지 후의 고흡수성 고흡수성 수지 수지 수지
Table 2
Figure imgf000023_0001
Base surface crosslinking base resin Superabsorbent superabsorbent polymer resin after base resin after surface crosslinking
실시예 1 40.4 35.7 35 25 0.62 실시예 2 40.3 36.1 36 22 0.60 실시예 3 40.0 37.0 37 25 0.59 실시예 4 35.8 31.2 36 27 0.55 실시예 5 36.3 31.3 37 26 0.59 실시예 6 38.6 31.2 30 22 0.61 실시예 Ί 39.8 32.0 31 20 0.61 비교예 1 40.7 35.3 55 43 0.56 비교예 2 39.0 33.5 50 42 0.58 비교예 3 39.1 33.0 43 35 0.59 비교예 4 38.7 33.6 41 35 0.57 비교예 5 37.6 31.7 42 36 0.58 비교예 6 38.6 32.1 42 38 0.57 비교예 7 37.0 32.0 44 36 0.55 상기 표 1 및 2를 참고할 때, 본 발명의 제조방법에 따른 실시예 1 내지 7의 베이스 수지는 35 g/g의 높은 보수능을 나타내면서도 40 초 이하의 빠른 흡수 속도를 가져, 최종적으로는 20초 대의 매우 빠른 흡수 속도와 높은 보수능을 갖는 고흡수성 수지를 수득할 수 있었다. 또한, 부피 밀도가 모두 0.51 g/mL 이상으로 이와 같이 높은 부피 밀도로 인하여 고생산성, 운반 용이성 등의 장점을 가질 수 있다. Example 1 40.4 35.7 35 25 0.62 Example 2 40.3 36.1 36 22 0.60 Example 3 40.0 37.0 37 25 0.59 Example 4 35.8 31.2 36 27 0.55 Example 5 36.3 31.3 37 26 0.59 Example 6 38.6 31.2 30 22 0.61 Example Ί 39.8 32.0 31 20 0.61 Comparative Example 1 40.7 35.3 55 43 0.56 Comparative Example 2 39.0 33.5 50 42 0.58 Comparative Example 3 39.1 33.0 43 35 0.59 Comparative Example 4 38.7 33.6 41 35 0.57 Comparative Example 5 37.6 31.7 42 36 0.58 Comparative Example 6 38.6 32.1 42 38 0.57 Comparative Example 7 37.0 32.0 44 36 0.55 Referring to Tables 1 and 2, the base resins of Examples 1 to 7 according to the preparation method of the present invention exhibited a high water holding capacity of 35 g / g for 40 seconds. With the following fast absorption rate, it was possible to finally obtain a super absorbent polymer having a very fast absorption rate and high water holding capacity in the 20s. In addition, all of the bulk density of 0.51 g / mL or more due to such a high bulk density can have advantages such as high productivity, easy transport.
한편, 비교예 . 1 내지 7을 보면, 폴리알킬렌 옥사이드의 비이온성 기포 안정제 없이 제조한 베이스 수지의 경우 모두 40초를 초과하는 흡수 속도를 나타내었다. 따라서 슈가 에스터와 발포제만으로는 40초 이하의 흡수 속도를 달성할 수 없는 것으로 나타났으며, 슈가 에스터와 발포제의 함량을 실시예보다 증가시켰을 경우에도 마찬가지 결과를 나타내었다.  On the other hand, Comparative Example. From 1 to 7, all of the base resins prepared without the nonionic bubble stabilizer of polyalkylene oxide showed an absorption rate exceeding 40 seconds. Therefore, it was shown that the sugar ester and the blowing agent alone could not achieve the absorption rate of 40 seconds or less, and the same result was obtained even when the content of the sugar ester and the blowing agent was increased than in the examples.

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 , 폴리알킬렌 옥사이드 (polyalkylene oxide)를 포함하는 비이온성 기포 안정제, 슈가 에스터 (sugar ester), 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 형성하는 단계;  Monomer composition having an acidic group and comprising at least a portion of the acidic group having a neutralized acrylic acid monomer, a nonionic bubble stabilizer including polyalkylene oxide, a sugar ester, an internal crosslinking agent, and a polymerization initiator Polymerizing to form a hydrogel polymer;
상기 함수겔상 중합체를 건조하는 단계;  Drying the hydrogel polymer;
상기 건조된 중합체를 분쇄하는 단계; 및  Pulverizing the dried polymer; And
상기 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반응을 수행하는 단계를 포함하는 고흡수성 수지의 제조방법.  Method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction by mixing the pulverized polymer and a surface crosslinking agent.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 폴리알킬렌 옥사이드 (polyalkylene oxide)는, 폴리에틸렌 옥사이드 (polyethylene oxide, PEO), 폴리프로필렌 옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 (PEO-PPO) 이블록 (diblock) 공중합체, 및 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드 -폴리에틸렌 옥사이드 (PEO-PPO-PEO) 삼블록 (triblock) 공중합체로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.  The polyalkylene oxide (polyalkylene oxide), polyethylene oxide (PEO), polypropylene oxide (polypropylene oxide (PPO), polyethylene oxide-polypropylene oxide (PEO-PPO) diblock copolymer, and Polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymer comprising at least one member selected from the group consisting of, a method for producing a super absorbent polymer.
【청구항 3 ] [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 슈가 에스터 (sugar ester)는 수크로스 스테아레이트 (sucrose stearate): 수크로스 팔미테이트 (sucrose palmitate) 및 수크로스 라우레이트 (sucrose laurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법. The sugar ester is sucrose stearate : Sucrose stearate : Sucrose palmitate and sucrose laurate (Sucrose laurate), a super absorbent polymer comprising at least one selected from the group consisting of Manufacturing method.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 아크릴산계 단량체 100 중량부에 대하여 상기 비이온성 기포 안정제를 0.001 내지 1 중량부로 포함하는, 고흡수성 수지의 제조방법. The nonionic bubble based on 100 parts by weight of the acrylic acid monomer A method for producing a super absorbent polymer, comprising from 0.001 to 1 part by weight of a stabilizer.
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 아크릴산계 단량체 100 중량부에 대하여 상기 슈가 에스터를 The sugar ester based on 100 parts by weight of the acrylic acid monomer
0.001 내지 0.08 중량부로 포함하는, 고흡수성 수지의 제조방법. 0.001 to 0.08 parts by weight, comprising a super absorbent polymer.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 슈가 에스터는 상기 폴리알킬렌 옥사이드를 포함하는 비이온성 기포 안정제 100 중량부에 대하여, 1 내지 30 중량부로 포함되는, 고흡수성 수지의 제조방법.  The sugar ester is contained in 1 to 30 parts by weight with respect to 100 parts by weight of the nonionic bubble stabilizer containing the polyalkylene oxide, a method for producing a super absorbent polymer.
【청구항 7] [Claim 7]
제 1항에 .있어서,  According to claim 1,
상기 분쇄된 중합체는 부피 밀도 (bulk density)가 0.51 내지 0.70 g/mL인: 고흡수성 수지의 제조방법.  Wherein the pulverized polymer has a bulk density of 0.51 to 0.70 g / mL.
【청구항 8] [Claim 8]
제 L항에 있어서,  The method of claim L,
상기 모노머 조성물은 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비카보네이트 (potassium bicarbonate), 포타슘 카보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate), 마그네슘 비카보네이트 (magnesium bicarbonate) 및 마그네슘 카보네이트 (magnesium carbonate)으로 이루어진 군으로부터 선택되는 1종 이상의 발포제를 더 포함하는, 고흡수성 수지와제조방법.  The monomer composition is sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, calcium carbonate, magnesium A method for producing a superabsorbent polymer further comprising at least one blowing agent selected from the group consisting of bicarbonate (magnesium bicarbonate) and magnesium carbonate (magnesium carbonate).
【청구항 9】 [Claim 9]
산성기를 가지며 상기 산성기의 적어도 일부가 증화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 베이스 수지, 및 상기 베이스 수지의 표면에 형성된 표면 가교층으로 이루어진 고흡수성 수지에 있어서, Acrylic acid type having an acidic group and at least part of the acidic group is increased A superabsorbent polymer comprising a base resin polymerized and internally crosslinked with a monomer composition comprising a monomer, and a surface crosslinking layer formed on the surface of the base resin,
상기 베이스 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 35 g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 40초 이하이며, 부피 밀도 (bulk density)가 0.51 내지 0.70 g/mL인,  The base resin has a centrifugal water retention (CRC) of 35 g / g or more, an absorption rate of 40 seconds or less, and a bulk density of 0.51, measured according to the EDANA method WSP 241.3. To 0.70 g / mL,
고흡수성 수지.  Superabsorbent polymer.
【청구항 10】 [Claim 10]
게 9항에 있어서,  The method of claim 9,
상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 것인, 고흡수성 수지:  The acrylic acid monomer is represented by Formula 1, super absorbent polymer:
[화학식 1]  [Formula 1]
R'-COOM'  R'-COOM '
상기 화학식 1에서,  In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, M1은 수소원자, 1가 또는 2가 금속, 암모늄가 또는 유기 아민 이다. R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond, and M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium or an organic amine.
【청구항 11】 [Claim 11]
제 9항에 있어서,  The method of claim 9,
상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지.  The acrylic acid monomer is a super absorbent polymer comprising at least one selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
【청구항 12】 [Claim 12]
제 9항에 있어서,  The method of claim 9,
상기 베이스 수지는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 디 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 디 (메타)아크릴레이트, 프로필렌글리콜 디 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크릴레이트, 부탄디올디 (메타)아크릴레이트, 부틸렌글리콜디 (메타)아크릴레이트, 디에틸렌글리콜 디 (메타)아크릴레이트, 핵산디올디 (메타)아크릴레이트, 트리에틸렌글리콜 디 (메타)아크릴레이트, 트리프로필렌글리콜 디 (메타)아크릴레이트, 테트라에틸렌글리콜 디 (메타)아크릴레이트, 디펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상의 내부 가교제에 의해 내부 가교된 것인, 고흡수성 수지. The base resin is Ν, Ν'-methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene Glycol di (meth) acrylate, Polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, triethylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate, pentaeryth tetraacrylate, A superabsorbent polymer that is internally crosslinked by at least one internal crosslinker selected from the group consisting of triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, and ethylene carbonate.
【청구항 13】 [Claim 13]
제 9항에 있어서,  The method of claim 9,
상기 고흡수성 수지는 EDANA 법 WSP 24L3에 따라 측정한 원심분리 보수능 (CRC)이 30 g/g 이상이고, 볼텍스 법 (Vortex)에 의한 흡수 속도가 34초 이하인, 고흡수성 수지.  The superabsorbent polymer is a superabsorbent polymer having a centrifugal water retention capacity (CRC) of 30 g / g or more and a absorption rate of 34 seconds or less according to a vortex method (Vortex), measured according to EDANA method WSP 24L3.
PCT/KR2017/013366 2016-12-20 2017-11-22 Superabsorbent polymer and method for manufacturing same WO2018117441A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018718.5A CN108779266A (en) 2016-12-20 2017-11-22 Super absorbent polymer and preparation method thereof
EP17883772.0A EP3404057A4 (en) 2016-12-20 2017-11-22 Superabsorbent polymer and method for manufacturing same
US16/080,904 US10961356B2 (en) 2016-12-20 2017-11-22 Superabsorbent polymer and preparation method thereof
US17/172,578 US11814489B2 (en) 2016-12-20 2021-02-10 Superabsorbent polymer and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160174930 2016-12-20
KR10-2016-0174930 2016-12-20
KR1020170155824A KR102086050B1 (en) 2016-12-20 2017-11-21 Super absorbent polymer and preparation method thereof
KR10-2017-0155824 2017-11-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/080,904 A-371-Of-International US10961356B2 (en) 2016-12-20 2017-11-22 Superabsorbent polymer and preparation method thereof
US17/172,578 Division US11814489B2 (en) 2016-12-20 2021-02-10 Superabsorbent polymer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018117441A1 true WO2018117441A1 (en) 2018-06-28

Family

ID=62626563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013366 WO2018117441A1 (en) 2016-12-20 2017-11-22 Superabsorbent polymer and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018117441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013639A1 (en) * 2019-07-24 2021-01-28 Basf Se Permeable superabsorbent and process for production thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US5399591A (en) * 1993-09-17 1995-03-21 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
US20080280154A1 (en) * 2005-05-16 2008-11-13 Sumitomo Seika Chemicals Co., Ltd. Process for Producing Water-Absorbing Resin Particles, Water-Absorbing Resin Particles Made by the Process, and Absorbent Materials and Absorbent Articles Made by Using the Particles
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
KR101511820B1 (en) * 2008-12-26 2015-04-13 산다이야 폴리마 가부시키가이샤 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
KR20160063956A (en) 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
US20160272745A1 (en) * 2012-11-21 2016-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US5399591A (en) * 1993-09-17 1995-03-21 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
US20080280154A1 (en) * 2005-05-16 2008-11-13 Sumitomo Seika Chemicals Co., Ltd. Process for Producing Water-Absorbing Resin Particles, Water-Absorbing Resin Particles Made by the Process, and Absorbent Materials and Absorbent Articles Made by Using the Particles
KR101511820B1 (en) * 2008-12-26 2015-04-13 산다이야 폴리마 가부시키가이샤 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
US20160272745A1 (en) * 2012-11-21 2016-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
KR20160063956A (en) 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"UV Coatings: Basics, Recent Developments and New Applications", 2007, ELSEVIER
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
See also references of EP3404057A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013639A1 (en) * 2019-07-24 2021-01-28 Basf Se Permeable superabsorbent and process for production thereof

Similar Documents

Publication Publication Date Title
CN110312755B (en) Method for preparing super absorbent polymer
EP3318594B1 (en) Method for preparing superabsorbent resin
KR102167661B1 (en) Super absorbent polymer and preparation method thereof
US9700873B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared therefrom
CN111433261B (en) Superabsorbent polymer composition and method of making the same
KR102086050B1 (en) Super absorbent polymer and preparation method thereof
WO2015190878A1 (en) Method for manufacturing high absorbency resin and high absorbency resin manufactured through same
WO2016204390A1 (en) Method for manufacturing super absorbent resin
CN108884235B (en) Superabsorbent polymer and method for making the same
US9976003B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared therefrom
EP3521343B1 (en) Absorbent polymer and preparation method therefor
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
WO2017078228A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
WO2016085123A1 (en) Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
KR20190072298A (en) Preparation method for super absorbent polymer
KR20190069103A (en) Preparation method for super absorbent polymer
JP2021534314A (en) Manufacturing method of highly water-absorbent resin and highly water-absorbent resin
WO2018147600A1 (en) Superabsorbent polymer and preparation method therefor
KR102475854B1 (en) Super absorbent polymer and preparation method thereof
CN109563275B (en) Superabsorbent polymer and method of making the same
WO2018117441A1 (en) Superabsorbent polymer and method for manufacturing same
JP2020505477A (en) Super water absorbent resin and method for producing the same
WO2019083211A9 (en) Superabsorbent polymer preparation method
WO2016085152A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
CN116438226A (en) Method for producing superabsorbent polymers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017883772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017883772

Country of ref document: EP

Effective date: 20180814

NENP Non-entry into the national phase

Ref country code: DE