WO2018146943A1 - Sparger and culture apparatus - Google Patents

Sparger and culture apparatus Download PDF

Info

Publication number
WO2018146943A1
WO2018146943A1 PCT/JP2017/045282 JP2017045282W WO2018146943A1 WO 2018146943 A1 WO2018146943 A1 WO 2018146943A1 JP 2017045282 W JP2017045282 W JP 2017045282W WO 2018146943 A1 WO2018146943 A1 WO 2018146943A1
Authority
WO
WIPO (PCT)
Prior art keywords
sparger
culture
gas supply
culture vessel
supply pipe
Prior art date
Application number
PCT/JP2017/045282
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 浅倉
浩二 中村
博志 大川
Original Assignee
キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリン株式会社 filed Critical キリン株式会社
Priority to JP2018566783A priority Critical patent/JP7220567B2/en
Publication of WO2018146943A1 publication Critical patent/WO2018146943A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • C12M1/08Apparatus for enzymology or microbiology with gas introduction means with draft tube

Definitions

  • the present invention relates to a sparger and a culture apparatus using the same.
  • a culture tank containing a culture solution seeded with the cells and the like, and for aerating air to the culture solution in the culture tank A culture apparatus having a sparger and a stirring blade that stirs the culture solution in the culture tank is known (Patent Document 1, etc.).
  • the culture solution is agitated by mechanically moving the stirring blade in the culture tank to increase the chance of contact between the culture solution and cells or to promote cell dispersion.
  • the cells and the like may be damaged by contact between the cells and the stirring blade during the cultivation of the cells and the like.
  • cells that do not have a cell membrane like mesenchymal stem cells and are extremely weak against shearing force are greatly damaged by contact with a stirring blade and cannot be efficiently cultured. is there.
  • a lower portion of a pair of culture tubes is connected by a bent tube to form a U A culture tank formed in a letter shape, connected to the lower part of the left and right culture cylinders, gas blowing means for alternately supplying gas to the culture solution, connected to the upper part of the left and right culture cylinders, and supplied into the culture cylinder
  • gas blowing means for alternately supplying gas to the culture solution, connected to the upper part of the left and right culture cylinders, and supplied into the culture cylinder
  • the culture solution can be moved left and right in a U-shaped culture tank by alternately supplying gas to the left and right culture tubes, There is a problem that a sufficient agitation effect cannot be obtained from the viewpoint of increasing the chance of contact between the culture solution and cells and promoting cell dispersion.
  • the present invention provides a sparger that can provide a sufficient stirring effect by supplying gas to a culture solution and that does not cause splashing of the culture solution, and a culture apparatus using the same.
  • the purpose is to provide.
  • the present invention provides a sparger for introducing a gas into a culture vessel in the form of bubbles, the sparger main body at least partially comprising a porous body, and the culture vessel
  • the entire sparger body is preferably composed of the porous body, the average pore diameter of the porous body is preferably 20 to 50 ⁇ m, and the porous body is 20 to 50 ⁇ m. It is preferable to have pores with a pore size distribution of
  • the bottom surface of the bottomed hole is preferably positioned below the center of the sparger body in a state where the opening of the bottomed hole is positioned upward.
  • the main body is preferably substantially spherical, and the diameter of the sparger main body is preferably 10 to 20 mm.
  • the present invention also includes a culture vessel capable of containing a culture, a sparger according to the invention provided in the culture vessel, one end inserted into the bottomed hole, and the other end supplied with gas. And a sparger provided in the culture vessel so that the porous body faces the bottom of the culture vessel.
  • the flow rate of the gas supplied to the sparger through the gas supply pipe is preferably 300 to 700 mL / min, and the bottom of the culture vessel is preferably substantially hemispherical.
  • the present invention it is possible to provide a sparger that can obtain a sufficient stirring effect by supplying gas to the culture solution and does not cause the liquid splash of the culture solution, and a culture apparatus using the sparger. it can.
  • FIG. 1 is a side view showing a schematic configuration of a culture apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view showing a schematic configuration of the culture apparatus in one embodiment of the present invention.
  • FIG. 3A is a perspective view illustrating a schematic configuration of a cap according to an embodiment of the present invention.
  • FIG. 3B is a top view illustrating a schematic configuration of the cap according to the embodiment of the present invention.
  • FIG. 4 is a perspective view showing a schematic configuration of a sparger in one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a sparger in one embodiment of the present invention.
  • FIG. 6 is a side view for explaining the operational effects of the culture apparatus according to the embodiment of the present invention.
  • FIG. 1 is a side view illustrating a schematic configuration of a culture apparatus according to the present embodiment
  • FIG. 2 is a side view illustrating a schematic configuration of the culture apparatus according to the present embodiment
  • FIG. 3A is a cap according to the present embodiment
  • FIG. 3B is a top view showing the schematic configuration of the cap
  • FIG. 4 is a perspective view showing the schematic configuration of the sparger in the present embodiment
  • FIG. It is sectional drawing which shows schematic structure of the sparger in this embodiment
  • FIG. 6 is a side view for demonstrating the effect in the culture apparatus which concerns on this embodiment.
  • a culture apparatus 1 includes a culture container 2 that can accommodate a culture object, a sparger 3 provided in the culture container 2, and a gas supply pipe attached to the sparger 3. 4.
  • a gas supply unit (not shown) is connected to the gas supply tube 4, and gas (air) is supplied in the form of bubbles from the gas supply unit to the culture solution via the gas supply tube 4 and the sparger 3. it can.
  • Examples of the culture medium that can be cultured in the culture apparatus 1 according to the present embodiment include animal cells, plant bodies, plant tissues, plant cells, algae, fungi, yeasts, aerobic bacteria, and the like.
  • the culture solution 8 (see FIG. 6) that can be accommodated in the culture vessel 2 together with the culture object is suitable for the culture object.
  • Dulbecco's modified Eagle (DMEM) medium Roswell Park Memorial Institute ( (RPMI) 1640 medium, Murashige scoog (MS) medium, Gamborg B5 medium, Luria Bertani (LB) medium, YPD Broth (Yeast Extract-Peptone-Dextrose) medium, PD Broth (Potato Dextrose) medium and the like.
  • the culture vessel 2 is made of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, polyester resin such as polytrimethylene terephthalate, polytrimethylene naphthalate, olefin resin such as polyethylene or polypropylene, polycarbonate resin, polyacrylate resin. Further, it may be made of a resin material such as a polyamide resin, glass or the like.
  • the capacity of the culture vessel 2 is, for example, 500 mL to 200 L, preferably 1 L to 20 L.
  • the culture container 2 includes a mouth portion 21, a neck portion 22 that continues to the mouth portion 21, a shoulder portion 23 that continues to the neck portion 22, and a trunk portion 24 that continues to the lower end of the shoulder portion 23, And a bottom portion 25 continuous with the lower end of the body portion 24.
  • the mouth portion 21 has a substantially cylindrical shape, and a thread for attaching the cap 5 (see FIG. 3) is formed on the outer surface of the mouth portion 21 on the opening end side. Thereby, after accommodating to-be-cultured material and the culture solution 8 (refer FIG. 6) in the culture container 2, the culture container 2 can be sealed by attaching the cap 5 to the opening
  • the shoulder portion 23 is configured by a curved structure that curves from the continuous portion with the neck portion 22 toward the outside of the culture vessel 2 and gradually increases in diameter toward the trunk portion 24.
  • the bottom portion 25 has a convex curved shape toward the outside of the culture vessel 2, that is, a substantially hemispherical shape (so-called round bottom). Since the bottom 25 of the culture vessel 2 has a round bottom, the objects to be cultured that settle in the culture vessel 2 can be collected below the sparger 3, so that the culture is performed by gas (air) discharged from the sparger 3. By stirring the liquid 8, the culture object can be efficiently dispersed.
  • the cap 5 can be made of a resin material such as polyethylene or polypropylene, or a metal material such as aluminum.
  • the diameter (outer diameter) of the cap 5 can be appropriately set according to the size of the mouth portion 21 of the culture vessel 2, but is, for example, about 28 to 52 mm, and preferably about 28 to 38 mm.
  • the top surface 51 of the cap 5 has a first hole 52 through which the gas supply pipe 4 (see FIG. 1) can be inserted, and a culture solution into the culture vessel 2.
  • An exhaust filter 55 is provided inside the top surface 51 of the cap 5 so as to cover at least the third hole 54.
  • the sparger 3 provided in the culture vessel 2 is formed along a substantially spherical sparger body 31 and the radial direction of the sparger body 31, and the gas supply pipe 4 ( 1) and a bottomed hole 32 into which one end is inserted.
  • the opening 33 of the bottomed hole portion 32 of the sparger 3 is directed upward, it is sufficient that at least the lower half of the sparger body 31 is made of a porous body, and the entire sparger body 31 is made of a porous body. It may be constituted by.
  • the gas (air) is bubbled through the gas supply pipe 4 inserted into the bottomed hole 32 and the culture vessel 2 While being able to be introduced into the inside, bubbles are discharged from the sparger body 31 toward the bottom 25 of the culture vessel 2.
  • a flow of the culture solution 8 (see FIG. 6) is generated upward from the bottom of the culture vessel 2, and the culture solution 8 convects in the entire culture vessel 2. Therefore, the culture solution 8 in the culture vessel 2 can be agitated by supplying gas (air) from the sparger 3.
  • Examples of the material constituting the sparger body 31 include resin materials such as polyethylene, polypropylene, polymethyl methacrylate, polystyrene, and fluororesin, and ceramic materials such as alumina and SiC.
  • the porous body constituting at least the lower half or the whole of the sparger body 31 with the opening 33 of the bottomed hole portion 32 of the sparger body 31 facing upward has pores having an average pore diameter of 20 to 50 ⁇ m. It is particularly preferable to have pores having an average pore diameter of 20 to 30 ⁇ m. If the average pore diameter of the pores of the porous body is less than 20 ⁇ m, there is a risk of liquid splashing on the surface of the culture solution, and if it exceeds 50 ⁇ m, the effect of stirring the culture solution in the culture vessel 2 is insufficient. There is a risk of becoming.
  • the pores of the porous body constituting at least the lower half or the whole of the sparger body 31 preferably have random pore diameters within a predetermined pore diameter distribution range, and randomly within a pore diameter distribution range of 20 to 50 ⁇ m. It is more preferable to have a fine pore diameter. Since the pores in the porous body have random pore diameters within a predetermined pore diameter distribution range, particularly within a pore diameter distribution range of 20 to 50 ⁇ m, the stirring effect of the culture medium in the culture vessel 2 can be improved. .
  • the average pore size and pore size distribution in the porous body can be measured by a laser microscope (for example, VK-X200 (manufactured by Keyence Corporation)).
  • the bottomed hole portion 32 plays a role as a gas supply pipe connection portion to which the gas supply pipe 4 is connected, and has an inner diameter into which one end of the gas supply pipe 4 can be inserted.
  • the inside diameter of the tube 4 is such that it cannot be easily pulled out.
  • the bottom surface 34 of the bottomed hole portion 32 is positioned below the center C of the sparger body 31 in a state where the opening 33 of the bottomed hole portion 32 is positioned upward. Since the bottom surface 34 of the bottomed hole portion 32 is positioned below the center C of the sparger body 31, the gas supply tube 4 is made to have a bottomed hole so that one end of the gas supply tube 4 is brought into contact with the bottom surface 34.
  • one end of the gas supply pipe 4 can be positioned below the center of the sparger body 31.
  • gas air
  • the center C of the sparger body 31 means the center of gravity when the sparger body 31 is spherical.
  • the length D between the bottom surface 34 of the bottomed hole 32 and the center C of the sparger body 31 (the length in the radial direction of the sparger body 31) is 10 to 40% of the diameter of the sparger body 31. Can be set to a degree.
  • the inner diameter of the bottomed hole 32 can be appropriately set such that the gas supply pipe 4 can be inserted and the gas supply pipe 4 cannot be easily removed, and can be set to about 6 to 8 mm, for example.
  • the size of the sparger body 31 is not particularly limited, and can be set as appropriate according to the capacity (size) of the culture vessel 2.
  • the culture vessel 2 has a capacity of about 500 mL to 5000 mL.
  • the diameter of the sparger body 31 is preferably about 10 to 20 mm. If the diameter of the sparger body 31 is about 10 to 20 mm, the culture solution 8 can be sufficiently stirred by the gas (bubbles) discharged from the sparger body 31.
  • the position of the sparger 3 in the culture vessel 2 is not particularly limited.
  • the distance T from the bottom 25 of the culture vessel 2 to the lower end of the sparger 3 is determined by the amount of the object to be cultured that stays in the bottom 25 by gas (air) discharged from the sparger 3 toward the bottom 25 of the culture vessel 2 Any distance that can be dispersed in the culture solution 8 may be used.
  • the distance T is preferably about 5 mm or less, and more preferably about 0 to 3 mm. If the distance T exceeds 5 mm, culturing caused by bubbles discharged from the sparger 3 may cause the culture object to stay in the bottom 25 of the culture vessel 2 without being stirred.
  • the sparger 3 in this embodiment uses an upper mold and a lower mold having cavities in accordance with the shape of the sparger main body 31, and fills the cavities with resin particles having a predetermined particle diameter, and heats them. Then, it can be produced by partially fusing adjacent resin particles.
  • the sparger 3 composed of a porous body having a predetermined pore size distribution can be produced in the same manner as described above using resin particles having a predetermined particle size distribution.
  • the sparger 3 whose lower half is made of a porous body is formed by applying a resin material such as an epoxy resin to the upper half of the sparger body 31 manufactured as described above, and the upper half of the pores in the upper half. It can be made by filling with material.
  • the culture object and the culture solution are accommodated in the culture vessel 2, and gas (air) is supplied to the culture solution from the gas supply unit (not shown) via the gas supply pipe 4. Supply.
  • the gas (air) that has passed through the gas supply pipe 4 is discharged in the form of bubbles through the pores of the porous body of the sparger body 31.
  • the bottom surface 34 of the bottomed hole portion 32 of the sparger body 31 is positioned below the center of the sparger body 31 (on the bottom 25 side of the culture vessel 2), so that one end of the gas supply pipe 4 is It is located below the center of the sparger body 31.
  • the gas (air) that has passed through the gas supply pipe 4 is discharged from the porous body of the sparger body 31, but one end of the gas supply pipe 4 (that is, the gas discharge port) is the center C of the sparger body 31. If it is located above, the gas (air) discharged from the sparger body 31 (porous body) will be directed upward from the sparger body 31. However, as in the present embodiment, the gas (air) discharged from the sparger body 31 is positioned below the center C of the sparger body 31 so that the sparger is directed toward the bottom of the culture vessel 2.
  • the flow rate of the gas (air) supplied to the culture solution via the gas supply pipe 4 is preferably set to about 300 to 700 mL / min, more preferably about 400 to 500 mL / min. If the flow rate of the gas (air) is less than 300 mL / min, there is a possibility that at least a part of the culture object will stay in the bottom 25 of the culture vessel 2. If the flow rate exceeds 700 mL / min, the liquid of the culture solution Liquid splashes may occur on the surface, and the exhaust filter 55 may be contaminated.
  • a sufficient stirring effect can be obtained without increasing the amount of gas (air) supplied to the culture solution. It is possible to prevent the exhaust filter 55 from being contaminated without causing splashing or the like.
  • Example 1 A sparger 3 having a bottomed hole portion 32 having a diameter of 10 mm and an average pore diameter of 20 ⁇ m and having an inner diameter of 6 mm, a gas supply pipe 4, a culture vessel 2 having an internal volume of 3000 mL, and a cap 5 And the culture apparatus 1 having the structure shown in FIG. 1 was assembled.
  • Example 2 A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 15 mm, and the culture device 1 was assembled.
  • Example 3 A gas supply tube 4, a culture vessel 2, and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 20 mm, and the culture device 1 was assembled.
  • Example 4 A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 25 mm, and the culture device 1 was assembled.
  • Example 5 Example 1 except that an epoxy resin is applied to the surface of the upper half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the upper half are filled with the epoxy resin.
  • a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
  • Example 6 Example 2 except that an epoxy resin was applied to the upper half surface of the sparger body 31 with the bottomed hole 32 facing upward, and the upper half pores were filled with the epoxy resin.
  • a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
  • Example 7 Example 3 except that the upper half surface of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward is coated with epoxy resin and the upper half pores are filled with the epoxy resin.
  • a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
  • Example 8 Example 4 except that an epoxy resin was applied to the surface of the upper half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the upper half were filled with the epoxy resin.
  • a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
  • Example 9 A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 6 except that the sparger 3 was composed of a porous material having an average pore diameter of 50 ⁇ m, and the culture device 1 was assembled.
  • Example 10 A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 7 except that the sparger 3 was composed of a porous material having an average pore diameter of 50 ⁇ m, and the culture device 1 was assembled.
  • Example 11 The gas supply tube 4, the culture vessel 2 and the cap 5 were the same as in Example 2 except that the sparger 3 was composed of a porous body having pores with random pore sizes in the pore size distribution range of 20 to 50 ⁇ m. And the culture apparatus 1 was assembled.
  • Example 12 The gas supply tube 4, the culture vessel 2, and the cap 5 are the same as in Example 3 except that the sparger 3 is composed of a porous material having pores with random pore sizes in the pore size distribution range of 20 to 50 ⁇ m. And the culture apparatus 1 was assembled.
  • Test Example 2 In the culture apparatus 1 of Examples 1 to 4, the gas supply pipe 4 was connected to the sparger 3 so that one end of the gas supply pipe 4 was located below the center of the sparger body 31, and Similarly, a test for evaluating the stirring efficiency was conducted. In Test Example 2, the gas flow rate was varied in the range of 300 to 900 mL / min, and the stirring efficiency at each flow rate was evaluated. The results are shown in Table 3.
  • Test Example 3 In the culture apparatuses 1 of Examples 1 to 12 and Comparative Examples 1 to 4, the gas supply pipe 4 is connected to the sparger 3 so that one end of the gas supply pipe 4 is located below the center of the sparger body 31. In the same manner as in Test Example 1, a test for evaluating the stirring efficiency was conducted. In Test Example 3, the gas flow rate was varied in the range of 300 to 700 mL / min, and the stirring efficiency at each flow rate was evaluated. The results are shown in Table 4.
  • Example 5 in which the lower half of the sparger body is made of a porous body, compared to Examples 1 to 4 in which the entire sparger body is made of a porous body. It was confirmed that ⁇ 8 was superior in stirring effect.
  • Examples 6 and 7 in which the average pore diameter of the porous body is relatively smaller than those in Examples 9 and 10 in which the average pore diameter of the porous body is relatively large are more effective for stirring. It was confirmed to be excellent.
  • Example 11 and Example 12 in which the entire sparger body is composed of a porous body, the pores of the porous body have random pore sizes within a predetermined pore size distribution range. As a result, turbulent flow can be generated in the culture solution in the culture vessel, and it was confirmed that the stirring effect was excellent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A sparger for introducing a gas in the form of bubbles into a culture vessel is equipped with a sparger main body of which at least a part is formed from a porous body and a gas supply tube connection section to which a gas supply tube for supplying a gas to be introduced into the culture vessel to the sparger main body is connected, wherein the gas supply tube connection section is composed of a closed-end perforated section which is formed in the sparger main body and through which the gas supply tube can be inserted, and at least a lower half part of the sparger main body is formed from a porous body when an opening in the closed-end perforated section is turned up.

Description

スパージャー及び培養装置Sparger and culture equipment
 本発明は、スパージャー及びそれを用いた培養装置に関する。 The present invention relates to a sparger and a culture apparatus using the same.
 従来、微生物、細胞等の被培養物を好気的に培養するための装置として、当該細胞等を播種した培養液を収容する培養槽と、培養槽内の培養液にエアーを通気するためのスパージャーと、培養槽内の培養液を攪拌する攪拌翼とを有する培養装置が知られている(特許文献1等)。 Conventionally, as an apparatus for aerobically cultivating cultures such as microorganisms and cells, a culture tank containing a culture solution seeded with the cells and the like, and for aerating air to the culture solution in the culture tank A culture apparatus having a sparger and a stirring blade that stirs the culture solution in the culture tank is known (Patent Document 1, etc.).
 このような培養装置においては、培養槽内の攪拌翼を機械的に動かすことにより培養液を攪拌し、培養液と細胞等との接触機会を増加させたり、細胞の分散を促したりしている。しかし、細胞等の培養中に細胞等と攪拌翼とが接触することで、細胞等を傷つけてしまうおそれがある。特に、間葉系幹細胞のように細胞膜を有さず、せん断力に対して極めて弱い細胞等は、攪拌翼との接触によって大きなダメージを受けてしまい、効率的に培養することができないという問題がある。 In such a culture apparatus, the culture solution is agitated by mechanically moving the stirring blade in the culture tank to increase the chance of contact between the culture solution and cells or to promote cell dispersion. . However, there is a possibility that the cells and the like may be damaged by contact between the cells and the stirring blade during the cultivation of the cells and the like. In particular, cells that do not have a cell membrane like mesenchymal stem cells and are extremely weak against shearing force are greatly damaged by contact with a stirring blade and cannot be efficiently cultured. is there.
 このような課題を解決するために、従来、攪拌翼を使用することなく培養液に通気されるガスにより培養液を攪拌する培養装置として、一対の培養筒の下部を屈曲筒で連結してU字状に形成される培養槽と、左右の培養筒の下部に接続され、培養液にガスを交互に供給するガス吹込手段と、左右の培養筒の上部に接続され、培養筒内に供給されたガスを交互に排出する排気手段とを備えるものが提案されている(特許文献2等)。 In order to solve such a problem, conventionally, as a culture apparatus that stirs a culture solution with a gas that is vented to the culture solution without using a stirring blade, a lower portion of a pair of culture tubes is connected by a bent tube to form a U A culture tank formed in a letter shape, connected to the lower part of the left and right culture cylinders, gas blowing means for alternately supplying gas to the culture solution, connected to the upper part of the left and right culture cylinders, and supplied into the culture cylinder Have been proposed that include exhaust means for alternately discharging the gas (Patent Document 2, etc.).
特開2015-142546号公報JP2015-142546A 特開2012-115232号公報JP 2012-115232 A
 特許文献2に開示されている培養装置においては、左右の培養筒のそれぞれに交互にガスが供給されることで、U字状の培養槽内において培養液を左右に移動させることができるものの、培養液と細胞等との接触機会の増加や細胞の分散促進という観点から十分な攪拌効果が得られないという問題がある。 In the culture apparatus disclosed in Patent Document 2, the culture solution can be moved left and right in a U-shaped culture tank by alternately supplying gas to the left and right culture tubes, There is a problem that a sufficient agitation effect cannot be obtained from the viewpoint of increasing the chance of contact between the culture solution and cells and promoting cell dispersion.
 十分な攪拌効果を得るためにガス供給量を増大させると、培養液の液はね等が生じ、排気手段に設けられているフィルタ等に培養液が接してしまうことで、フィルタ等の汚染、目詰まり等が生じるおそれや、逆流により培養液が汚染されるおそれがある。 When the gas supply amount is increased in order to obtain a sufficient stirring effect, liquid splashing of the culture solution occurs, and the culture solution comes into contact with the filter provided in the exhaust means, so that contamination of the filter, There is a risk of clogging or the like, or the culture solution may be contaminated by backflow.
 上記課題に鑑みて、本発明は、培養液へのガスの供給により十分な攪拌効果が得られ、かつ培養液の液はね等を生じさせることのないスパージャー及びそれを用いた培養装置を提供することを目的とする。 In view of the above problems, the present invention provides a sparger that can provide a sufficient stirring effect by supplying gas to a culture solution and that does not cause splashing of the culture solution, and a culture apparatus using the same. The purpose is to provide.
 上記課題を解決するために、本発明は、培養容器内に気体を気泡状で導入するためのスパージャーであって、少なくとも一部が多孔質体により構成されるスパージャー本体と、前記培養容器内に導入される気体を前記スパージャー本体に供給するための気体供給管が接続される気体供給管接続部とを備え、前記気体供給管接続部は、前記スパージャー本体に形成されてなる、前記気体供給管を挿入可能な有底孔部により構成され、前記有底孔部の開口を上方に向けた状態において、前記スパージャー本体の少なくとも下半分が前記多孔質体により構成されることを特徴とするスパージャーを提供する。 In order to solve the above-mentioned problems, the present invention provides a sparger for introducing a gas into a culture vessel in the form of bubbles, the sparger main body at least partially comprising a porous body, and the culture vessel A gas supply pipe connecting part to which a gas supply pipe for supplying gas introduced into the sparger main body is connected, and the gas supply pipe connecting part is formed on the sparger main body, It is composed of a bottomed hole part into which the gas supply pipe can be inserted, and in a state where the opening of the bottomed hole part faces upward, at least the lower half of the sparger body is composed of the porous body. Provide the featured sparger.
 上記発明において、前記スパージャー本体の全体が前記多孔質体により構成されるのが好ましく、前記多孔質体の平均細孔径が20~50μmであるのが好ましく、前記多孔質体は、20~50μmの細孔径分布の細孔を有するのが好ましい。 In the above invention, the entire sparger body is preferably composed of the porous body, the average pore diameter of the porous body is preferably 20 to 50 μm, and the porous body is 20 to 50 μm. It is preferable to have pores with a pore size distribution of
 上記発明において、前記有底孔部の底面は、前記有底孔部の開口を上方に向けて位置させた状態において、前記スパージャー本体の中心よりも下方に位置するのが好ましく、前記スパージャー本体は、略球状であるのが好ましく、前記スパージャー本体の直径は、10~20mmであるのが好ましい。 In the above invention, the bottom surface of the bottomed hole is preferably positioned below the center of the sparger body in a state where the opening of the bottomed hole is positioned upward. The main body is preferably substantially spherical, and the diameter of the sparger main body is preferably 10 to 20 mm.
 また、本発明は、被培養物を収容可能な培養容器と、前記培養容器内に設けられる上記発明に係るスパージャーと、一端部が前記有底孔部に挿入され、他端部が気体供給部に連続する気体供給管とを備え、前記スパージャーは、前記培養容器の底部に前記多孔質体を対向させるようにして前記培養容器内に設けられることを特徴とする培養装置を提供する。 The present invention also includes a culture vessel capable of containing a culture, a sparger according to the invention provided in the culture vessel, one end inserted into the bottomed hole, and the other end supplied with gas. And a sparger provided in the culture vessel so that the porous body faces the bottom of the culture vessel.
 上記発明において、前記気体供給管を通じて前記スパージャーに供給される気体の流量が、300~700mL/minであるのが好ましく、前記培養容器の底部は、略半球形状であるのが好ましい。 In the above invention, the flow rate of the gas supplied to the sparger through the gas supply pipe is preferably 300 to 700 mL / min, and the bottom of the culture vessel is preferably substantially hemispherical.
 本発明によれば、培養液へのガスの供給により十分な攪拌効果が得られ、かつ培養液の液はね等を生じさせることのないスパージャー及びそれを用いた培養装置を提供することができる。 According to the present invention, it is possible to provide a sparger that can obtain a sufficient stirring effect by supplying gas to the culture solution and does not cause the liquid splash of the culture solution, and a culture apparatus using the sparger. it can.
図1は、本発明の一実施形態に係る培養装置の概略構成を示す側面図である。FIG. 1 is a side view showing a schematic configuration of a culture apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態における培養装置の概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of the culture apparatus in one embodiment of the present invention. 図3Aは、本発明の一実施形態におけるキャップの概略構成を示す斜視図である。FIG. 3A is a perspective view illustrating a schematic configuration of a cap according to an embodiment of the present invention. 図3Bは、本発明の一実施形態におけるキャップの概略構成を示す上面図である。FIG. 3B is a top view illustrating a schematic configuration of the cap according to the embodiment of the present invention. 図4は、本発明の一実施形態におけるスパージャーの概略構成を示す斜視図である。FIG. 4 is a perspective view showing a schematic configuration of a sparger in one embodiment of the present invention. 図5は、本発明の一実施形態におけるスパージャーの概略構成を示す断面図である。FIG. 5 is a cross-sectional view showing a schematic configuration of a sparger in one embodiment of the present invention. 図6は、本発明の一実施形態に係る培養装置における作用効果を説明するための側面図である。FIG. 6 is a side view for explaining the operational effects of the culture apparatus according to the embodiment of the present invention.
 本発明の実施の形態について、図面を参照しながら説明する。図1は、本実施形態に係る培養装置の概略構成を示す側面図であり、図2は、本実施形態における培養装置の概略構成を示す側面図であり、図3Aは、本実施形態におけるキャップの概略構成を示す斜視図であり、図3Bは、当該キャップの概略構成を示す上面図であり、図4は、本実施形態におけるスパージャーの概略構成を示す斜視図であり、図5は、本実施形態におけるスパージャーの概略構成を示す断面図であり、図6は、本実施形態に係る培養装置における作用効果を説明するための側面図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side view illustrating a schematic configuration of a culture apparatus according to the present embodiment, FIG. 2 is a side view illustrating a schematic configuration of the culture apparatus according to the present embodiment, and FIG. 3A is a cap according to the present embodiment. FIG. 3B is a top view showing the schematic configuration of the cap, FIG. 4 is a perspective view showing the schematic configuration of the sparger in the present embodiment, and FIG. It is sectional drawing which shows schematic structure of the sparger in this embodiment, FIG. 6 is a side view for demonstrating the effect in the culture apparatus which concerns on this embodiment.
 図1に示すように、本実施形態に係る培養装置1は、被培養物を収容可能な培養容器2と、培養容器2内に設けられるスパージャー3と、スパージャー3に取り付けられる気体供給管4とを備える。なお、気体供給管4には気体供給部(図示せず)が接続され、気体供給管4及びスパージャー3を介して気体供給部から培養液に気体(空気)を気泡状で供給することができる。 As shown in FIG. 1, a culture apparatus 1 according to this embodiment includes a culture container 2 that can accommodate a culture object, a sparger 3 provided in the culture container 2, and a gas supply pipe attached to the sparger 3. 4. Note that a gas supply unit (not shown) is connected to the gas supply tube 4, and gas (air) is supplied in the form of bubbles from the gas supply unit to the culture solution via the gas supply tube 4 and the sparger 3. it can.
 本実施形態に係る培養装置1において培養され得る被培養物としては、例えば、動物細胞、植物体、植物組織、植物細胞、藻類、真菌、酵母、好気性細菌等が挙げられる。また、被培養物とともに培養容器2内に収容され得る培養液8(図6参照)は、被培養物に適したものが用いられ、例えば、ダルベッコ改変イーグル(DMEM)培地、ロスウェルパークメモリアルインスティテュート(RPMI)1640培地、ムラシゲスクーグ(MS)培地、ガンボーグB5培地、ルリアベルターニ(LB)培地、YPD Broth(Yeast Extract-Peptone-Dextrose)培地、PD Broth(Potato Dextrose)培地等が挙げられる。 Examples of the culture medium that can be cultured in the culture apparatus 1 according to the present embodiment include animal cells, plant bodies, plant tissues, plant cells, algae, fungi, yeasts, aerobic bacteria, and the like. Moreover, the culture solution 8 (see FIG. 6) that can be accommodated in the culture vessel 2 together with the culture object is suitable for the culture object. For example, Dulbecco's modified Eagle (DMEM) medium, Roswell Park Memorial Institute ( (RPMI) 1640 medium, Murashige scoog (MS) medium, Gamborg B5 medium, Luria Bertani (LB) medium, YPD Broth (Yeast Extract-Peptone-Dextrose) medium, PD Broth (Potato Dextrose) medium and the like.
 培養容器2は、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート等のポリエステル系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリカーボネート樹脂、ポリアクリレート樹脂、ポリアミド樹脂等の樹脂材料や、ガラス等により構成され得る。培養容器2の容量は、例えば500mL~200Lであり、好ましくは1L~20Lである。 The culture vessel 2 is made of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, polyester resin such as polytrimethylene terephthalate, polytrimethylene naphthalate, olefin resin such as polyethylene or polypropylene, polycarbonate resin, polyacrylate resin. Further, it may be made of a resin material such as a polyamide resin, glass or the like. The capacity of the culture vessel 2 is, for example, 500 mL to 200 L, preferably 1 L to 20 L.
 図2に示すように、培養容器2は、口部21と、口部21に連続する首部22と、首部22に連続する肩部23と、肩部23の下端に連続する胴部24と、胴部24の下端に連続する底部25とを備える。口部21は、略円筒状であり、口部21の開口端側の外側面には、キャップ5(図3参照)を取り付けるためのねじ山が形成されている。これにより、培養容器2に被培養物及び培養液8(図6参照)を収容した後に、口部21にキャップ5を取り付けることで、培養容器2を密封することができる。 As shown in FIG. 2, the culture container 2 includes a mouth portion 21, a neck portion 22 that continues to the mouth portion 21, a shoulder portion 23 that continues to the neck portion 22, and a trunk portion 24 that continues to the lower end of the shoulder portion 23, And a bottom portion 25 continuous with the lower end of the body portion 24. The mouth portion 21 has a substantially cylindrical shape, and a thread for attaching the cap 5 (see FIG. 3) is formed on the outer surface of the mouth portion 21 on the opening end side. Thereby, after accommodating to-be-cultured material and the culture solution 8 (refer FIG. 6) in the culture container 2, the culture container 2 can be sealed by attaching the cap 5 to the opening | mouth part 21. FIG.
 肩部23は、首部22との連続部から培養容器2の外側に向かって湾曲し、胴部24に向かって徐々に拡径する湾曲構造により構成されている。底部25は、培養容器2の外側に向かって凸状の湾曲形状、すなわち略半球形状(いわゆる丸底)を有する。培養容器2の底部25が丸底であることで、培養容器2内で沈降する被培養物をスパージャー3の下方に集めることができるため、スパージャー3から吐出される気体(空気)により培養液8を攪拌することで、被培養物を効率的に分散させることができる。 The shoulder portion 23 is configured by a curved structure that curves from the continuous portion with the neck portion 22 toward the outside of the culture vessel 2 and gradually increases in diameter toward the trunk portion 24. The bottom portion 25 has a convex curved shape toward the outside of the culture vessel 2, that is, a substantially hemispherical shape (so-called round bottom). Since the bottom 25 of the culture vessel 2 has a round bottom, the objects to be cultured that settle in the culture vessel 2 can be collected below the sparger 3, so that the culture is performed by gas (air) discharged from the sparger 3. By stirring the liquid 8, the culture object can be efficiently dispersed.
 キャップ5は、ポリエチレン、ポリプロピレン等の樹脂材料やアルミニウム等の金属材料により構成され得る。キャップ5の直径(外径)は、培養容器2の口部21の大きさに応じて適宜設定され得るものではあるが、例えば、28~52mm程度であり、好ましくは28~38mm程度である。 The cap 5 can be made of a resin material such as polyethylene or polypropylene, or a metal material such as aluminum. The diameter (outer diameter) of the cap 5 can be appropriately set according to the size of the mouth portion 21 of the culture vessel 2, but is, for example, about 28 to 52 mm, and preferably about 28 to 38 mm.
 図3A及び図3Bに示すように、キャップ5の天面51には、気体供給管4(図1参照)を挿通可能な第1孔部52と、培養容器2内に培養液を導入するための培養液導入管6(図1参照)を挿通可能な第2孔部53と、培養容器2内から排気するための排気管7(図1参照)を挿通可能な第3孔部54とが形成されている。キャップ5の天面51の内側には、少なくとも第3孔部54を覆うように排気フィルタ55が設けられている。キャップ5の内側面には、培養容器2の口部21に螺合可能なねじ山が形成されている。 As shown in FIGS. 3A and 3B, the top surface 51 of the cap 5 has a first hole 52 through which the gas supply pipe 4 (see FIG. 1) can be inserted, and a culture solution into the culture vessel 2. A second hole 53 through which the culture medium introduction pipe 6 (see FIG. 1) can be inserted, and a third hole 54 through which the exhaust pipe 7 (see FIG. 1) for exhausting from the inside of the culture vessel 2 can be inserted. Is formed. An exhaust filter 55 is provided inside the top surface 51 of the cap 5 so as to cover at least the third hole 54. On the inner surface of the cap 5, a thread that can be screwed into the mouth portion 21 of the culture vessel 2 is formed.
 図4及び5に示すように、培養容器2内に設けられるスパージャー3は、略球状のスパージャー本体31と、スパージャー本体31の径方向に沿って形成されてなり、気体供給管4(図1参照)の一端部が挿入される有底孔部32とを有する。スパージャー3の有底孔部32の開口33を上方に向けた状態において、スパージャー本体31の少なくとも下半分が多孔質体により構成されていればよく、スパージャー本体31の全体が多孔質体により構成されていてもよい。スパージャー本体31の少なくとも下半分又は全体が多孔質体により構成されていることで、有底孔部32に挿入される気体供給管4を介して、気体(空気)を気泡状で培養容器2内に導入することができるとともに、スパージャー本体31から培養容器2の底部25に向かって気泡が吐出される。培養容器2の底部25に向かって気泡が吐出されることで、培養容器2の底部から上方に向かう培養液8(図6参照)の流れが生じ、培養容器2全体において培養液8が対流するため、スパージャー3からの気体(空気)の供給により培養容器2内における培養液8の攪拌が可能となる。 As shown in FIGS. 4 and 5, the sparger 3 provided in the culture vessel 2 is formed along a substantially spherical sparger body 31 and the radial direction of the sparger body 31, and the gas supply pipe 4 ( 1) and a bottomed hole 32 into which one end is inserted. In the state where the opening 33 of the bottomed hole portion 32 of the sparger 3 is directed upward, it is sufficient that at least the lower half of the sparger body 31 is made of a porous body, and the entire sparger body 31 is made of a porous body. It may be constituted by. Since at least the lower half or the whole of the sparger body 31 is made of a porous body, the gas (air) is bubbled through the gas supply pipe 4 inserted into the bottomed hole 32 and the culture vessel 2 While being able to be introduced into the inside, bubbles are discharged from the sparger body 31 toward the bottom 25 of the culture vessel 2. When the bubbles are discharged toward the bottom 25 of the culture vessel 2, a flow of the culture solution 8 (see FIG. 6) is generated upward from the bottom of the culture vessel 2, and the culture solution 8 convects in the entire culture vessel 2. Therefore, the culture solution 8 in the culture vessel 2 can be agitated by supplying gas (air) from the sparger 3.
 スパージャー本体31を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルメタアクリレート、ポリスチレン、フッ素樹脂等の樹脂材料やアルミナ、SiC等のセラミック材料等が挙げられる。 Examples of the material constituting the sparger body 31 include resin materials such as polyethylene, polypropylene, polymethyl methacrylate, polystyrene, and fluororesin, and ceramic materials such as alumina and SiC.
 スパージャー本体31の有底孔部32の開口33を上方に向けた状態において当該スパージャー本体31の少なくとも下半分又は全体を構成する多孔質体は、平均細孔径20~50μmの細孔を有するのが好ましく、平均細孔径20~30μmの細孔を有するのが特に好ましい。多孔質体の細孔の平均細孔径が20μm未満であると、培養液の液面において液はねが生じるおそれがあり、50μmを超えると、培養容器2内における培養液の攪拌効果が不十分となるおそれがある。 The porous body constituting at least the lower half or the whole of the sparger body 31 with the opening 33 of the bottomed hole portion 32 of the sparger body 31 facing upward has pores having an average pore diameter of 20 to 50 μm. It is particularly preferable to have pores having an average pore diameter of 20 to 30 μm. If the average pore diameter of the pores of the porous body is less than 20 μm, there is a risk of liquid splashing on the surface of the culture solution, and if it exceeds 50 μm, the effect of stirring the culture solution in the culture vessel 2 is insufficient. There is a risk of becoming.
 スパージャー本体31の少なくとも下半分又は全体を構成する多孔質体の細孔は、所定の細孔径分布の範囲においてランダムな細孔径を有するのが好ましく、20~50μmの細孔径分布の範囲においてランダムな細孔径を有するのがより好ましい。多孔質体における細孔が、所定の細孔径分布の範囲、特に20~50μmの細孔径分布の範囲においてランダムな細孔径を有することで、培養容器2内における培養液の攪拌効果を向上させ得る。なお、多孔質体における平均細孔径及び細孔径分布は、レーザー顕微鏡(例えば、VK-X200(キーエンス社製))により測定され得る。 The pores of the porous body constituting at least the lower half or the whole of the sparger body 31 preferably have random pore diameters within a predetermined pore diameter distribution range, and randomly within a pore diameter distribution range of 20 to 50 μm. It is more preferable to have a fine pore diameter. Since the pores in the porous body have random pore diameters within a predetermined pore diameter distribution range, particularly within a pore diameter distribution range of 20 to 50 μm, the stirring effect of the culture medium in the culture vessel 2 can be improved. . The average pore size and pore size distribution in the porous body can be measured by a laser microscope (for example, VK-X200 (manufactured by Keyence Corporation)).
 有底孔部32は、気体供給管4が接続される気体供給管接続部としての役割を果たすものであり、気体供給管4の一端部を挿入可能な内径であって、挿入された気体供給管4が容易に抜けることのない程度の内径を有する。有底孔部32の底面34は、有底孔部32の開口33を上方に向けて位置させた状態において、スパージャー本体31の中心Cよりも下方に位置する。有底孔部32の底面34がスパージャー本体31の中心Cよりも下方に位置することで、気体供給管4の一端部を底面34に当接させるようにして気体供給管4を有底孔部32に挿入すれば、気体供給管4の一端部をスパージャー本体31の中心よりも下方に位置させることができる。その結果、スパージャー本体31の下方から培養容器2の底部25に向けて気体(空気)を吐出させることができる。なお、スパージャー本体31の中心Cとは、スパージャー本体31を球状としたときの重心を意味するものとする。 The bottomed hole portion 32 plays a role as a gas supply pipe connection portion to which the gas supply pipe 4 is connected, and has an inner diameter into which one end of the gas supply pipe 4 can be inserted. The inside diameter of the tube 4 is such that it cannot be easily pulled out. The bottom surface 34 of the bottomed hole portion 32 is positioned below the center C of the sparger body 31 in a state where the opening 33 of the bottomed hole portion 32 is positioned upward. Since the bottom surface 34 of the bottomed hole portion 32 is positioned below the center C of the sparger body 31, the gas supply tube 4 is made to have a bottomed hole so that one end of the gas supply tube 4 is brought into contact with the bottom surface 34. If inserted into the portion 32, one end of the gas supply pipe 4 can be positioned below the center of the sparger body 31. As a result, gas (air) can be discharged from below the sparger body 31 toward the bottom 25 of the culture vessel 2. The center C of the sparger body 31 means the center of gravity when the sparger body 31 is spherical.
 有底孔部32の底面34とスパージャー本体31の中心Cとの間の長さD(スパージャー本体31の径方向における長さ)は、スパージャー本体31の直径に対して10~40%程度に設定され得る。 The length D between the bottom surface 34 of the bottomed hole 32 and the center C of the sparger body 31 (the length in the radial direction of the sparger body 31) is 10 to 40% of the diameter of the sparger body 31. Can be set to a degree.
 有底孔部32の内径は、気体供給管4を挿入可能であって、気体供給管4が容易に抜けない程度に適宜設定され得るものであり、例えば、6~8mm程度に設定され得る。 The inner diameter of the bottomed hole 32 can be appropriately set such that the gas supply pipe 4 can be inserted and the gas supply pipe 4 cannot be easily removed, and can be set to about 6 to 8 mm, for example.
 スパージャー本体31の大きさは、特に限定されるものではなく、培養容器2の容量(大きさ)等に応じて適宜設定され得るものであるが、培養容器2の容量が500mL~5000mL程度である場合、スパージャー本体31の直径は10~20mm程度であるのが好ましい。スパージャー本体31の直径が10~20mm程度であれば、スパージャー本体31から吐出される気体(気泡)により、培養液8を十分に攪拌することができる。 The size of the sparger body 31 is not particularly limited, and can be set as appropriate according to the capacity (size) of the culture vessel 2. The culture vessel 2 has a capacity of about 500 mL to 5000 mL. In some cases, the diameter of the sparger body 31 is preferably about 10 to 20 mm. If the diameter of the sparger body 31 is about 10 to 20 mm, the culture solution 8 can be sufficiently stirred by the gas (bubbles) discharged from the sparger body 31.
 培養容器2内におけるスパージャー3の位置は、特に限定されるものではない。例えば、培養容器2の底部25からスパージャー3の下端までの距離Tは、スパージャー3から培養容器2の底部25に向かって吐出される気体(空気)により底部25に滞留する被培養物を培養液8内で分散させ得る程度の距離であればよい。当該距離Tは、5mm以下程度であるのが好ましく、0~3mm程度であるのがより好ましい。当該距離Tが5mmを超えると、スパージャー3から吐出される気泡により生じる対流によって、被培養物が攪拌されずに培養容器2の底部25に滞留してしまうおそれがある。 The position of the sparger 3 in the culture vessel 2 is not particularly limited. For example, the distance T from the bottom 25 of the culture vessel 2 to the lower end of the sparger 3 is determined by the amount of the object to be cultured that stays in the bottom 25 by gas (air) discharged from the sparger 3 toward the bottom 25 of the culture vessel 2 Any distance that can be dispersed in the culture solution 8 may be used. The distance T is preferably about 5 mm or less, and more preferably about 0 to 3 mm. If the distance T exceeds 5 mm, culturing caused by bubbles discharged from the sparger 3 may cause the culture object to stay in the bottom 25 of the culture vessel 2 without being stirred.
 なお、本実施形態におけるスパージャー3は、スパージャー本体31の形状に則したキャビティーを有する上金型及び下金型を用い、キャビティー内に所定の粒径の樹脂粒子を充填し、加熱して隣接する樹脂粒子同士を部分的に融着させることで作製され得る。所定の細孔径分布を有する多孔質体により構成されるスパージャー3は、所定の粒径分布を有する樹脂粒子を用いて、上記と同様にして作製され得る。下側半分が多孔質体により構成されるスパージャー3は、上記のようにして作製されたスパージャー本体31の上側半分にエポキシ樹脂等の樹脂材料を塗布し、上側半分の細孔を当該樹脂材料にて埋めることで作製され得る。 In addition, the sparger 3 in this embodiment uses an upper mold and a lower mold having cavities in accordance with the shape of the sparger main body 31, and fills the cavities with resin particles having a predetermined particle diameter, and heats them. Then, it can be produced by partially fusing adjacent resin particles. The sparger 3 composed of a porous body having a predetermined pore size distribution can be produced in the same manner as described above using resin particles having a predetermined particle size distribution. The sparger 3 whose lower half is made of a porous body is formed by applying a resin material such as an epoxy resin to the upper half of the sparger body 31 manufactured as described above, and the upper half of the pores in the upper half. It can be made by filling with material.
 上述した構成を有する培養装置1において、培養容器2内に被培養物と培養液とを収容し、気体供給部(図示せず)から気体供給管4を介して培養液に気体(空気)を供給する。気体供給管4を通った気体(空気)は、スパージャー本体31の多孔質体の細孔を通じて気泡状になって吐出される。このとき、スパージャー本体31の有底孔部32の底面34が当該スパージャー本体31の中心よりも下方(培養容器2の底部25側)に位置することで、気体供給管4の一端部はスパージャー本体31の中心よりも下方に位置することになる。 In the culture apparatus 1 having the above-described configuration, the culture object and the culture solution are accommodated in the culture vessel 2, and gas (air) is supplied to the culture solution from the gas supply unit (not shown) via the gas supply pipe 4. Supply. The gas (air) that has passed through the gas supply pipe 4 is discharged in the form of bubbles through the pores of the porous body of the sparger body 31. At this time, the bottom surface 34 of the bottomed hole portion 32 of the sparger body 31 is positioned below the center of the sparger body 31 (on the bottom 25 side of the culture vessel 2), so that one end of the gas supply pipe 4 is It is located below the center of the sparger body 31.
 気体供給管4を通った気体(空気)は、スパージャー本体31の多孔質体から吐出されるが、気体供給管4の一端部(すなわち、気体の吐出口)がスパージャー本体31の中心Cよりも上方に位置すると、スパージャー本体31(多孔質体)から吐出される気体(空気)は、スパージャー本体31から上方に向かってしまう。しかしながら、本実施形態のように、スパージャー本体31の中心Cよりも下方に位置することで、スパージャー本体31から吐出される気体(空気)は、培養容器2の底部に向かうようにスパージャー本体31から気体(空気)が吐出され(矢印A)、スパージャー本体31と培養容器2の底部25との間から上方に向かうような培養液の流れ(矢印B)を生じさせる(図6参照)。この流れ(矢印B)により、被培養物を培養容器2の底部25に滞留させることなく培養液8を攪拌することができる。 The gas (air) that has passed through the gas supply pipe 4 is discharged from the porous body of the sparger body 31, but one end of the gas supply pipe 4 (that is, the gas discharge port) is the center C of the sparger body 31. If it is located above, the gas (air) discharged from the sparger body 31 (porous body) will be directed upward from the sparger body 31. However, as in the present embodiment, the gas (air) discharged from the sparger body 31 is positioned below the center C of the sparger body 31 so that the sparger is directed toward the bottom of the culture vessel 2. Gas (air) is discharged from the main body 31 (arrow A), and a culture fluid flow (arrow B) is generated so as to move upward from between the sparger main body 31 and the bottom 25 of the culture vessel 2 (see FIG. 6). ). With this flow (arrow B), the culture solution 8 can be agitated without causing the culture object to stay in the bottom 25 of the culture vessel 2.
 気体供給管4を介して培養液に供給される気体(空気)の流量は、300~700mL/min程度に設定されるのが好ましく、400~500mL/min程度に設定されるのがより好ましい。当該気体(空気)の流量が300mL/min未満であると、被培養物の少なくとも一部が培養容器2の底部25に滞留してしまうおそれがあり、700mL/minを超えると、培養液の液面において液はねが生じてしまい、排気フィルタ55の汚染を生じさせるおそれがある。 The flow rate of the gas (air) supplied to the culture solution via the gas supply pipe 4 is preferably set to about 300 to 700 mL / min, more preferably about 400 to 500 mL / min. If the flow rate of the gas (air) is less than 300 mL / min, there is a possibility that at least a part of the culture object will stay in the bottom 25 of the culture vessel 2. If the flow rate exceeds 700 mL / min, the liquid of the culture solution Liquid splashes may occur on the surface, and the exhaust filter 55 may be contaminated.
 上述したように、本実施形態におけるスパージャー3及び培養装置1によれば、培養液への気体(空気)の供給量を多くせずに、十分な攪拌効果が得られるため、培養液の液はね等を生じさせることがなく、排気フィルタ55が汚染するのを抑制することができる。 As described above, according to the sparger 3 and the culture apparatus 1 of the present embodiment, a sufficient stirring effect can be obtained without increasing the amount of gas (air) supplied to the culture solution. It is possible to prevent the exhaust filter 55 from being contaminated without causing splashing or the like.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は、下記の実施例等に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
〔実施例1〕
 直径が10mm、平均細孔径が20μmの多孔質体により構成され、内径6mmの有底孔部32を有するスパージャー3と、気体供給管4と、内容量3000mLの培養容器2と、キャップ5とを準備し、図1に示す構造の培養装置1を組み立てた。
[Example 1]
A sparger 3 having a bottomed hole portion 32 having a diameter of 10 mm and an average pore diameter of 20 μm and having an inner diameter of 6 mm, a gas supply pipe 4, a culture vessel 2 having an internal volume of 3000 mL, and a cap 5 And the culture apparatus 1 having the structure shown in FIG. 1 was assembled.
〔実施例2〕
 スパージャー3が直径15mmの多孔質体により構成される以外は、実施例1と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
[Example 2]
A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 15 mm, and the culture device 1 was assembled.
〔実施例3〕
 スパージャー3が直径20mmの多孔質体により構成される以外は、実施例1と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 3
A gas supply tube 4, a culture vessel 2, and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 20 mm, and the culture device 1 was assembled.
〔実施例4〕
 スパージャー3が直径25mmの多孔質体により構成される以外は、実施例1と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 4
A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 1 except that the sparger 3 was composed of a porous body having a diameter of 25 mm, and the culture device 1 was assembled.
〔実施例5〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の上側半分の表面にエポキシ樹脂を塗布し、当該上側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例1と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 5
Example 1 except that an epoxy resin is applied to the surface of the upper half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the upper half are filled with the epoxy resin. In the same manner as above, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔実施例6〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の上側半分の表面にエポキシ樹脂を塗布し、当該上側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例2と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 6
Example 2 except that an epoxy resin was applied to the upper half surface of the sparger body 31 with the bottomed hole 32 facing upward, and the upper half pores were filled with the epoxy resin. In the same manner as above, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔実施例7〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の上側半分の表面にエポキシ樹脂を塗布し、当該上側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例3と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 7
Example 3 except that the upper half surface of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward is coated with epoxy resin and the upper half pores are filled with the epoxy resin. In the same manner as above, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔実施例8〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の上側半分の表面にエポキシ樹脂を塗布し、当該上側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例4と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 8
Example 4 except that an epoxy resin was applied to the surface of the upper half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the upper half were filled with the epoxy resin. In the same manner as above, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔実施例9〕
 スパージャー3が平均細孔径50μmの多孔質体により構成される以外は、実施例6と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 9
A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 6 except that the sparger 3 was composed of a porous material having an average pore diameter of 50 μm, and the culture device 1 was assembled.
〔実施例10〕
 スパージャー3が平均細孔径50μmの多孔質体により構成される以外は、実施例7と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 10
A gas supply tube 4, a culture vessel 2 and a cap 5 were prepared in the same manner as in Example 7 except that the sparger 3 was composed of a porous material having an average pore diameter of 50 μm, and the culture device 1 was assembled.
〔実施例11〕
 スパージャー3が細孔径分布20~50μmの範囲でランダムな細孔径の細孔を有する多孔質体により構成される以外は、実施例2と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 11
The gas supply tube 4, the culture vessel 2 and the cap 5 were the same as in Example 2 except that the sparger 3 was composed of a porous body having pores with random pore sizes in the pore size distribution range of 20 to 50 μm. And the culture apparatus 1 was assembled.
〔実施例12〕
 スパージャー3が細孔径分布20~50μmの範囲でランダムな細孔径の細孔を有する多孔質体により構成される以外は、実施例3と同様にして気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
Example 12
The gas supply tube 4, the culture vessel 2, and the cap 5 are the same as in Example 3 except that the sparger 3 is composed of a porous material having pores with random pore sizes in the pore size distribution range of 20 to 50 μm. And the culture apparatus 1 was assembled.
〔比較例1〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の下側半分の表面にエポキシ樹脂を塗布し、当該下側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例1と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
[Comparative Example 1]
Implementation was performed except that epoxy resin was applied to the surface of the lower half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the lower half were filled with the epoxy resin. In the same manner as in Example 1, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔比較例2〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の下側半分の表面にエポキシ樹脂を塗布し、当該下側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例2と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
[Comparative Example 2]
Implementation was performed except that epoxy resin was applied to the surface of the lower half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the lower half were filled with the epoxy resin. In the same manner as in Example 2, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔比較例3〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の下側半分の表面にエポキシ樹脂を塗布し、当該下側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例3と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
[Comparative Example 3]
Implementation was performed except that epoxy resin was applied to the surface of the lower half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the lower half were filled with the epoxy resin. In the same manner as in Example 3, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔比較例4〕
 有底孔部32の開口を上方に向けた状態におけるスパージャー本体31の下側半分の表面にエポキシ樹脂を塗布し、当該下側半分の細孔を当該エポキシ樹脂にて埋めた以外は、実施例4と同様にしてスパージャー3、気体供給管4、培養容器2及びキャップ5を準備し、培養装置1を組み立てた。
[Comparative Example 4]
Implementation was performed except that epoxy resin was applied to the surface of the lower half of the sparger body 31 with the opening of the bottomed hole portion 32 facing upward, and the pores of the lower half were filled with the epoxy resin. In the same manner as in Example 4, a sparger 3, a gas supply pipe 4, a culture vessel 2 and a cap 5 were prepared, and the culture apparatus 1 was assembled.
〔試験例1〕
 実施例3の培養装置1において、気体供給管4の一端部が有底孔部32の開口近傍に位置するように気体供給管4をスパージャー3に接続した場合、気体供給管4の一端部がスパージャー本体31の中心Cよりも上側に位置するように気体供給管4をスパージャー3に接続した場合、気体供給管4の一端部がスパージャー本体31の中心よりも下側に位置するように気体供給管4をスパージャー3に接続した場合の3つの態様について、攪拌効率を評価する試験を行った。
[Test Example 1]
In the culture apparatus 1 of Example 3, when the gas supply pipe 4 is connected to the sparger 3 so that one end of the gas supply pipe 4 is positioned in the vicinity of the opening of the bottomed hole portion 32, one end of the gas supply pipe 4 When the gas supply pipe 4 is connected to the sparger 3 so as to be positioned above the center C of the sparger body 31, one end of the gas supply pipe 4 is positioned below the center of the sparger body 31. Thus, the test which evaluates stirring efficiency was done about three aspects at the time of connecting the gas supply pipe | tube 4 to the sparger 3. FIG.
 当該試験において、培養容器2内に培養液8としてグルコース溶液を2500mL収容するとともに、被培養物の代わりとして直径3mmのナイロン樹脂製のビーズを100個投入した。そして、気体の流量を600mL/minに設定し、通気開始から5分後において培養容器2内で浮遊・攪拌しているビーズの個数をカウントし、攪拌率(=浮遊ビーズの個数/投入ビーズの個数×100(%))を求め、表1に示す指標に基づいて攪拌効率を評価した。結果を表2に示す。 In this test, 2500 mL of a glucose solution as a culture solution 8 was accommodated in the culture vessel 2, and 100 nylon resin beads having a diameter of 3 mm were placed in place of the culture object. Then, the gas flow rate was set to 600 mL / min, and the number of beads suspended and agitated in the culture vessel 2 was counted 5 minutes after the start of aeration, and the agitation rate (= the number of suspended beads / the number of charged beads). The number x 100 (%)) was determined, and the stirring efficiency was evaluated based on the indices shown in Table 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、気体供給管4の一端部をスパージャー本体31の中心Cよりも下側に位置させることで、スパージャー3から吐出される気泡により十分な攪拌効果が得られることが確認された。 As shown in Table 2, a sufficient agitation effect can be obtained by bubbles discharged from the sparger 3 by positioning one end of the gas supply pipe 4 below the center C of the sparger body 31. confirmed.
〔試験例2〕
 実施例1~4の培養装置1において、気体供給管4の一端部がスパージャー本体31の中心よりも下側に位置するように気体供給管4をスパージャー3に接続し、試験例1と同様にして攪拌効率を評価する試験を行った。なお、試験例2において、気体の流量を300~900mL/minの範囲で変動させ、各流量における攪拌効率を評価した。結果を表3に示す。
[Test Example 2]
In the culture apparatus 1 of Examples 1 to 4, the gas supply pipe 4 was connected to the sparger 3 so that one end of the gas supply pipe 4 was located below the center of the sparger body 31, and Similarly, a test for evaluating the stirring efficiency was conducted. In Test Example 2, the gas flow rate was varied in the range of 300 to 900 mL / min, and the stirring efficiency at each flow rate was evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、スパージャー3の直径が小さいほど、より優れた攪拌効果が得られることが確認された。また、気体流量が800mL/min以上になると、攪拌効果は優れるものの、培養液の液面において液はねが生じていることが確認された。したがって、気体流量を300~700mL/minに設定することで、液はねを生じさせることなく、培養液を十分に攪拌し得ることが確認された。 As shown in Table 3, it was confirmed that the smaller the diameter of the sparger 3, the better the stirring effect. In addition, when the gas flow rate was 800 mL / min or more, it was confirmed that although the stirring effect was excellent, liquid splashing occurred on the liquid surface of the culture solution. Therefore, it was confirmed that by setting the gas flow rate to 300 to 700 mL / min, the culture solution can be sufficiently stirred without causing splashing.
〔試験例3〕
 実施例1~12及び比較例1~4の培養装置1において、気体供給管4の一端部がスパージャー本体31の中心よりも下側に位置するように気体供給管4をスパージャー3に接続し、試験例1と同様にして攪拌効率を評価する試験を行った。なお、試験例3において、気体の流量を300~700mL/minの範囲で変動させ、各流量における攪拌効率を評価した。結果を表4に示す。
[Test Example 3]
In the culture apparatuses 1 of Examples 1 to 12 and Comparative Examples 1 to 4, the gas supply pipe 4 is connected to the sparger 3 so that one end of the gas supply pipe 4 is located below the center of the sparger body 31. In the same manner as in Test Example 1, a test for evaluating the stirring efficiency was conducted. In Test Example 3, the gas flow rate was varied in the range of 300 to 700 mL / min, and the stirring efficiency at each flow rate was evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、スパージャー本体の上側半分が多孔質体により構成される比較例1~4においては、攪拌効果が不十分であり、スパージャー本体の下側半分又は全体が多孔質体により構成される実施例1~12においては、スパージャーから吐出される気泡によって十分な攪拌効果が得られることが確認された。 As shown in Table 4, in Comparative Examples 1 to 4 in which the upper half of the sparger body is composed of a porous body, the stirring effect is insufficient, and the lower half or the whole of the sparger body is a porous body. In Examples 1 to 12 constituted by the above, it was confirmed that a sufficient stirring effect was obtained by the bubbles discharged from the sparger.
 また、実施例1~8の結果から、スパージャー本体の全体が多孔質体により構成される実施例1~4よりも、スパージャー本体の下側半分が多孔質体により構成される実施例5~8の方が攪拌効果に優れることが確認された。 Further, from the results of Examples 1 to 8, Example 5 in which the lower half of the sparger body is made of a porous body, compared to Examples 1 to 4 in which the entire sparger body is made of a porous body. It was confirmed that ˜8 was superior in stirring effect.
 さらに、多孔質体の平均細孔径が相対的に大きい実施例9及び実施例10よりも、多孔質体の平均細孔径が相対的に小さい実施例6及び実施例7の方が、攪拌効果に優れることが確認された。 Further, Examples 6 and 7 in which the average pore diameter of the porous body is relatively smaller than those in Examples 9 and 10 in which the average pore diameter of the porous body is relatively large are more effective for stirring. It was confirmed to be excellent.
 さらにまた、スパージャー本体の全体が多孔質体により構成される実施例11及び実施例12であっても、多孔質体の細孔が、所定の細孔径分布の範囲でランダムな細孔径を有することで、培養容器内の培養液に乱流を生じさせることができるため、攪拌効果に優れることが確認された。 Furthermore, even in Example 11 and Example 12 in which the entire sparger body is composed of a porous body, the pores of the porous body have random pore sizes within a predetermined pore size distribution range. As a result, turbulent flow can be generated in the culture solution in the culture vessel, and it was confirmed that the stirring effect was excellent.
1…培養装置
2…培養容器
3…スパージャー
 31…スパージャー本体
 32…有底孔部
4…気体供給管
5…キャップ
DESCRIPTION OF SYMBOLS 1 ... Culture apparatus 2 ... Culture container 3 ... Sparger 31 ... Sparger main body 32 ... Bottomed hole part 4 ... Gas supply pipe 5 ... Cap

Claims (10)

  1.  培養容器内に気体を気泡状で導入するためのスパージャーであって、
     少なくとも一部が多孔質体により構成されるスパージャー本体と、
     前記培養容器内に導入される気体を前記スパージャー本体に供給するための気体供給管が接続される気体供給管接続部と
    を備え、
     前記気体供給管接続部は、前記スパージャー本体に形成されてなる、前記気体供給管を挿入可能な有底孔部により構成され、
     前記有底孔部の開口を上方に向けた状態において、前記スパージャー本体の少なくとも下半分が前記多孔質体により構成されることを特徴とするスパージャー。
    A sparger for introducing gas into the culture vessel in the form of bubbles,
    A sparger body at least partially composed of a porous body;
    A gas supply pipe connecting portion to which a gas supply pipe for supplying the gas introduced into the culture vessel to the sparger body is connected;
    The gas supply pipe connecting portion is formed by a bottomed hole portion into which the gas supply pipe can be inserted, formed in the sparger body.
    In the state where the opening of the bottomed hole portion is directed upward, at least the lower half of the sparger body is constituted by the porous body.
  2.  前記スパージャー本体の全体が前記多孔質体により構成されることを特徴とする請求項1に記載のスパージャー。 The sparger according to claim 1, wherein the whole sparger body is constituted by the porous body.
  3.  前記多孔質体の平均細孔径が20~50μmであることを特徴とする請求項1又は2に記載のスパージャー。 The sparger according to claim 1 or 2, wherein the porous body has an average pore diameter of 20 to 50 µm.
  4.  前記多孔質体は、20~50μmの細孔径分布の細孔を有することを特徴とする請求項1~3のいずれかに記載のスパージャー。 The sparger according to any one of claims 1 to 3, wherein the porous body has pores having a pore size distribution of 20 to 50 µm.
  5.  前記有底孔部の底面は、前記有底孔部の開口を上方に向けて位置させた状態において、前記スパージャー本体の中心よりも下方に位置することを特徴とする請求項1~4のいずれかに記載のスパージャー。 5. The bottom surface of the bottomed hole portion is located below the center of the sparger body in a state where the opening of the bottomed hole portion is positioned upward. The sparger according to any one.
  6.  前記スパージャー本体は、略球状であることを特徴とする請求項1~5のいずれかに記載のスパージャー。 The sparger according to any one of claims 1 to 5, wherein the sparger body is substantially spherical.
  7.  前記スパージャー本体の直径は、10~20mmであることを特徴とする請求項6に記載のスパージャー。 The sparger according to claim 6, wherein the sparger body has a diameter of 10 to 20 mm.
  8.  被培養物を収容可能な培養容器と、
     前記培養容器内に設けられる請求項1~7のいずれかに記載のスパージャーと、
     一端部が前記有底孔部に挿入され、他端部が気体供給部に連続する気体供給管と
    を備え、
     前記スパージャーは、前記培養容器の底部に前記多孔質体を対向させるようにして前記培養容器内に設けられることを特徴とする培養装置。
    A culture vessel capable of accommodating a culture,
    The sparger according to any one of claims 1 to 7, provided in the culture vessel;
    One end portion is inserted into the bottomed hole portion, and the other end portion includes a gas supply pipe continuing to the gas supply portion,
    The sparger is provided in the culture vessel so that the porous body faces the bottom of the culture vessel.
  9.  前記気体供給管を通じて前記スパージャーに供給される気体の流量が、300~700mL/minであることを特徴とする請求項8に記載の培養装置。 The culture apparatus according to claim 8, wherein the flow rate of the gas supplied to the sparger through the gas supply pipe is 300 to 700 mL / min.
  10.  前記培養容器の底部は、略半球形状であることを特徴とする請求項8又は9に記載の培養装置。 The culture apparatus according to claim 8 or 9, wherein the bottom of the culture vessel has a substantially hemispherical shape.
PCT/JP2017/045282 2017-02-10 2017-12-18 Sparger and culture apparatus WO2018146943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566783A JP7220567B2 (en) 2017-02-10 2017-12-18 Sparger and culture equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022951 2017-02-10
JP2017-022951 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018146943A1 true WO2018146943A1 (en) 2018-08-16

Family

ID=63108110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045282 WO2018146943A1 (en) 2017-02-10 2017-12-18 Sparger and culture apparatus

Country Status (2)

Country Link
JP (1) JP7220567B2 (en)
WO (1) WO2018146943A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078264A (en) * 1993-06-21 1995-01-13 Tokyo Gas Co Ltd Bioreactor
JPH10201467A (en) * 1997-01-20 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Judgement of growth of material to be cultured and culture apparatus therefor
JP2011256150A (en) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd Production method of 9-fluorenones
JP2015524792A (en) * 2012-06-26 2015-08-27 ジーイー・ヘルスケア・アクスイェ・セルスカプ Preparation of compositions containing gaseous microbubbles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078264A (en) * 1993-06-21 1995-01-13 Tokyo Gas Co Ltd Bioreactor
JPH10201467A (en) * 1997-01-20 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Judgement of growth of material to be cultured and culture apparatus therefor
JP2011256150A (en) * 2010-06-11 2011-12-22 Taoka Chem Co Ltd Production method of 9-fluorenones
JP2015524792A (en) * 2012-06-26 2015-08-27 ジーイー・ヘルスケア・アクスイェ・セルスカプ Preparation of compositions containing gaseous microbubbles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OKUMURA , TAISEI ET AL.: "Microbubble '' for Microbial Culture", JGC TECHNICAL JOURNAL, vol. 01, no. 01, 2011, pages 1 - 6 *
TANINO, TAKANORI ET AL.: "Surfactant Decomposition by Discharge Plasma in Microbubble Dispersed Water", JOURNAL OF THE INSTITUTE OF ELECTROSTATICS JAPAN, vol. 34, no. 1, 2010, pages 31 - 36 *

Also Published As

Publication number Publication date
JPWO2018146943A1 (en) 2020-01-23
JP7220567B2 (en) 2023-02-10

Similar Documents

Publication Publication Date Title
JP6892486B2 (en) Culture method
US10155924B2 (en) Multilayer tissue culture vessel
US20170226458A1 (en) Spheroid trap insert
US20200181552A1 (en) Handling features for microcavity cell culture vessel
US9174181B2 (en) Disposable bioreactor for culturing cells in a nutrient medium
US20200131461A1 (en) Cell culture vessel
CN109312284B (en) Impeller oscillation reduction container and rotary flask for culturing cells
US9499290B2 (en) Stationary bubble reactors
US7709251B2 (en) Method and apparatus for transferring growth media and infection fluids to a cell growth bag
WO2015156367A1 (en) Octagonal pillar-shaped cell culture container
JP2016202180A (en) Device and system for cell culture
US7850365B1 (en) Toroidal convection mixing device
JP6827322B2 (en) Container for the growth of biological entities
WO2018146943A1 (en) Sparger and culture apparatus
CN111615424A (en) Method and apparatus for generating fine bubbles
JP3214876U (en) Culture substrate
US5879932A (en) Slow release microorganism dispenser
US6730509B2 (en) Controlled release dispenser
WO2019014610A1 (en) Cell culture vessel for 3d culture and methods of culturing 3d cells
GB2301374A (en) Vessel for culturing plantlets
JP2023525733A (en) Bioreactor for orbital shaking of cell cultures, especially suspension cultures
KR102541149B1 (en) Membranes for diffusers that produce ultra-fine bubbles
CN218811793U (en) Hanging drop culture plate and hanging drop culture device
US20150132827A1 (en) Emulsifier Centrifuge Tube Fermenter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896217

Country of ref document: EP

Kind code of ref document: A1