WO2018146832A1 - Production method for rubber-reinforcing cord, rubber-reinforcing cord, and rubber product - Google Patents

Production method for rubber-reinforcing cord, rubber-reinforcing cord, and rubber product Download PDF

Info

Publication number
WO2018146832A1
WO2018146832A1 PCT/JP2017/027738 JP2017027738W WO2018146832A1 WO 2018146832 A1 WO2018146832 A1 WO 2018146832A1 JP 2017027738 W JP2017027738 W JP 2017027738W WO 2018146832 A1 WO2018146832 A1 WO 2018146832A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
reinforcing cord
rubber reinforcing
latex
fiber
Prior art date
Application number
PCT/JP2017/027738
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 啓介
直哉 水越
真也 片桐
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2017548491A priority Critical patent/JP6247799B1/en
Publication of WO2018146832A1 publication Critical patent/WO2018146832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof

Definitions

  • the present invention relates to a method for manufacturing a rubber reinforcing cord, a rubber reinforcing cord, and a rubber product.
  • reinforcing cords containing reinforcing fibers such as glass fibers and chemical fibers in matrix rubber.
  • a coating is provided on the surface of the reinforcing fiber in order to enhance the adhesion between the matrix rubber and the reinforcing fiber.
  • chlorosulfonated polyethylene rubber is widely used because of its high heat resistance (Patent Documents 1 to 6).
  • Japanese Examined Patent Publication No. 4-56053 Japanese Patent Laid-Open No. 11-158744 JP 2007-291332 A Japanese Patent Laid-Open No. 2004-3044 JP 2008-291395 A Japanese Patent Publication No. 45-028497
  • the film containing chlorosulfonated polyethylene rubber is formed by applying a treatment agent containing chlorosulfonated polyethylene rubber latex to the surface of the reinforcing fiber and then drying. Since the pH value of the treatment agent used for forming the coating affects properties such as adhesion of the coating to be formed, it is known to adjust the pH value by adding a base (such as ammonia) to the treatment agent. ing.
  • a base such as ammonia
  • one of the objects of the present invention is to provide a rubber reinforcing cord provided with a coating containing chlorosulfonated polyethylene rubber, wherein the rubber reinforcing cord is provided with improved adhesion of the coating. is there. Furthermore, another object of the present invention is to provide a rubber product reinforced by such a rubber reinforcing cord, in which the matrix rubber and the rubber reinforcing cord are bonded with high adhesive force.
  • the inventors of the present invention aimed to improve the adhesiveness of a coating containing chlorosulfonated polyethylene rubber, and after intensive studies, the pH value and free chlorine of chlorosulfonated polyethylene rubber latex used for the preparation of a treatment agent for coating formation Ascertaining the fact that the concentration has a great influence on the adhesion of the coating film to be formed, the present inventors have reached the following method for producing a rubber reinforcing cord and rubber reinforcing cord of the present invention.
  • the present invention is a method of manufacturing a rubber reinforcing cord for reinforcing a rubber product, A phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex having a pH value of more than 4.0 and less than 7.0 are mixed to produce the phenol-derived aromatic compound-formaldehyde resin and the chlorosulfonated product.
  • a step of preparing a treating agent containing polyethylene rubber latex Applying the treatment agent to at least part of the surface of the rubber reinforcing fiber and drying to obtain a rubber reinforcing cord having a film formed on at least part of the surface of the rubber reinforcing fiber; Including The chlorine content in the coating is 1 to 30% by mass, A method for manufacturing a rubber reinforcing cord is provided.
  • the present invention is a rubber reinforcing cord for reinforcing a rubber product, A rubber reinforcing fiber, and a coating formed on at least a part of the surface of the rubber reinforcing fiber,
  • the coating is formed by applying a treatment agent containing a phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex to the rubber reinforcing fiber and drying it,
  • the pH value of the chlorosulfonated polyethylene rubber latex is more than 4.0 and less than 7.0;
  • the chlorine content in the coating is 1 to 30% by mass, Provide a cord for rubber reinforcement.
  • the present invention also provides a rubber reinforcing cord obtained by the method for manufacturing a rubber reinforcing cord of the present invention or a rubber product reinforced with the rubber reinforcing cord of the present invention.
  • a rubber reinforcing cord provided with a coating containing chlorosulfonated polyethylene rubber which realizes an improvement in the adhesion of the coating
  • An improved rubber reinforcing cord can be provided.
  • the rubber product of the present invention is reinforced with such a rubber reinforcing cord, it can be a rubber product in which the matrix rubber and the rubber reinforcing cord are bonded with high adhesive force.
  • the rubber reinforcing cord of the present embodiment is a cord for reinforcing a rubber product.
  • the rubber reinforcing cord includes a rubber reinforcing fiber and a coating formed on at least a part of the surface of the rubber reinforcing fiber.
  • the coating is formed by applying a treatment agent containing a phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex to a rubber reinforcing fiber and drying it.
  • the pH value of the chlorosulfonated polyethylene rubber (hereinafter referred to as CSM) latex contained in the treatment agent is more than 4.0 and less than 7.0.
  • the chlorine content in the coating is 1 to 30% by mass.
  • one embodiment of a method for producing a rubber reinforcing cord of the present embodiment is A phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex having a pH value of more than 4.0 and less than 7.0 are mixed to produce the phenol-derived aromatic compound-formaldehyde resin and the chlorosulfonated product.
  • the rubber reinforcing fiber included in the rubber reinforcing cord of the present embodiment and the reinforcing fiber used in the method of manufacturing the rubber reinforcing cord may be fibers that can enhance the shape stability and strength of the rubber product,
  • the material and shape are not particularly limited.
  • the rubber reinforcing fiber examples include glass fiber, polyvinyl alcohol fiber typified by vinylon fiber, polyester fiber, nylon, polyamide fiber such as aramid (aromatic polyamide), polyarylate fiber, polyketone fiber, carbon fiber, or polyparaffin.
  • a phenylene benzoxazole (PBO) fiber etc. can be utilized.
  • carbon fibers and glass fibers that are excellent in dimensional stability, heat resistance, tensile strength, and the like are preferably used.
  • glass fiber having sufficient strength for example, high strength glass fiber).
  • the type of glass in the glass fiber is not particularly limited, but a high strength glass excellent in tensile strength is preferable to a general alkali-free glass.
  • the configuration of the fiber is not particularly limited.
  • a fiber having an average diameter of 5 to 13 ⁇ m, which is the minimum constituent unit of the fiber is preferable.
  • 50 to 2000 filaments are bundled with a sizing agent to produce a rubber reinforcing fiber.
  • a plurality of rubber reinforcing fibers may be bundled to form a fiber strand.
  • the rubber reinforcing fiber may be twisted. Good. What is necessary is just to set the number of twists suitable for the number of twists according to the fiber to be used. For example, when glass fiber is used as the rubber reinforcing fiber, the number of twists is preferably in the range of 0 to 4.0 turns / 25 mm. Moreover, according to the thickness and specification of a required cord for rubber reinforcement, the twist may be applied in a plurality of times, and the twist direction is not limited.
  • a strand may be formed by twisting a fiber strand in which several reinforcing fibers are bundled, and then a cord may be formed by bundling several strands and twisting the strand.
  • the apparatus used for preparation of such a fiber strand and a cord is not specifically limited, For example, a ring twister, a fryer twister, a strand wire machine etc. can be used.
  • the fiber strand is formed by converging a plurality of rubber reinforcing fibers.
  • the fiber strand may be formed using a rubber reinforcing fiber having a coating formed on the surface, or on the surface.
  • a fiber strand may be formed using the fiber for rubber reinforcement before a film is provided, and a film may be formed after that.
  • the coating is formed by applying the treatment agent to at least a part of the surface of the rubber reinforcing fiber and drying it (removing the solvent in the treatment agent).
  • the treating agent is aqueous and is prepared by mixing a phenol-derived aromatic compound-formaldehyde resin and CSM latex.
  • the content of the phenol-derived aromatic compound-formaldehyde resin in the treatment agent is preferably 1% by mass or more, more preferably 3% by mass or more, and still more preferably 5% by mass or more in terms of solid content mass ratio.
  • the content of the phenol-derived aromatic compound-formaldehyde resin in the treating agent is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass or less in terms of solid content.
  • the treatment agent contains a phenol-derived aromatic compound-formaldehyde resin in a solid content mass ratio of 1% by mass or more, a coating film having an excellent function as a fiber protective layer can be formed.
  • the treating agent contains a phenol-derived aromatic compound-formaldehyde resin in a solid content mass ratio of 20% by mass or less, the dynamic fatigue resistance of the formed film can be improved.
  • Phenol-derived aromatic compound examples include mono- or polyvalent hydroxyphenol, mono- or polyvalent chlorophenol, and the like.
  • An example of a phenol-derived aromatic compound-formaldehyde resin is resorcinol-formaldehyde resin.
  • the content of the CSM latex in the treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more in terms of solid content.
  • the content of the CSM latex in the treatment agent is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less in terms of solid content.
  • a CSM latex having a pH value in the range of more than 4.0 and less than 7.0 is used for preparing the treatment agent. .
  • the pH value of the CSM latex is 4.1 or more.
  • the pH value of the CSM latex is less than 7.0. And preferably 6.9 or less, more preferably 6.0 or less.
  • a pH adjusting agent may be added to the CSM latex before preparing the treatment agent.
  • the pH adjuster may contain at least one selected from the group consisting of ammonia, sodium hydroxide and sodium carbonate.
  • the chlorine content in the treating agent needs to be adjusted so that the chlorine content in the formed film is in the range of 1 to 30% by mass.
  • Factors that determine the chlorine content in the treating agent include the amount of chlorine on the polymer of the CSM and the free chlorine resulting from the hydrolysis reaction that occurs during the long term storage of the CSM latex. Therefore, in consideration of an increase in free chlorine, the amount of chlorine on the polymer of the CSM to be used is determined so that the chlorine content in the formed film is in the range of 1 to 30% by mass.
  • the amount of chlorine on the polymer can be changed in CSM, the amount of chlorine on the polymer in CSM is adjusted so that the chlorine content in the coating formed by the treatment agent is within the range of 1 to 30% by mass. It is good to change.
  • the adhesion of the coating is achieved by appropriately selecting the CSM polymer grade of the CSM latex used and adjusting the chlorine content in the treating agent so that the chlorine content in the coating is 30% by mass or less. Can be improved.
  • the chlorine content in the coating is preferably 2 to 25% by mass.
  • the chlorine content rate in a film is obtained by measuring the chlorine content rate of the formed film using an energy dispersive X-ray fluorescence analyzer (EDX).
  • EDX energy dispersive X-ray fluorescence analyzer
  • the treating agent may further contain a rubber latex other than the CSM latex in order to increase the adhesion of the coating or improve the stability.
  • the treatment agent is butadiene latex, butadiene-styrene copolymer latex, dicarboxylated butadiene-styrene copolymer latex, vinylpyridine / butadiene / styrene / terpolymer latex, isoprene rubber latex, acrylonitrile-butadiene copolymer latex.
  • at least one selected from the group consisting of a hydrogenated acrylonitrile-butadiene copolymer latex and a polyolefin emulsion may be included.
  • the total of these latexes and / or emulsions contained in the treatment agent is, for example, 5 to 85% by mass, preferably 15 to 80% by mass.
  • a filler, a plasticizer, an anti-aging agent, a metal oxide, a crosslinking aid, and the like may be appropriately added to the treatment agent.
  • the treating agent may further contain additives such as isocyanate and thermosetting resin.
  • the pH value of the CSM latex used for preparing the treatment agent is within the range of more than 4.0 and less than 7.0
  • the pH value of the prepared treatment agent is further adjusted. May be. Therefore, a base such as ammonia or sodium hydroxide may be further added to the treatment agent as a pH adjuster.
  • the pH value of the treatment agent is adjusted within a range of 5.0 to 12.0, for example.
  • the thickness of the coating and the ratio of the coating to the entire rubber reinforcing cord are not particularly limited and can be appropriately determined according to the characteristics required for the rubber reinforcing cord, the type of rubber reinforcing fiber, and the like. .
  • the ratio of the coating to the entire rubber reinforcing cord is 5 to 30% by mass.
  • the content is 7 to 27% by mass, more preferably 10 to 25% by mass.
  • the coating only needs to be provided on at least a part of the surface of the rubber reinforcing fiber, in order to further improve the adhesion between the rubber reinforcing fiber and the matrix rubber and the fray resistance of the rubber reinforcing fiber. Is preferably provided so as to cover the entire rubber reinforcing fiber.
  • Another film may be provided on the above film.
  • Another coating is not particularly limited because it may be appropriately selected from known coatings according to the type of matrix rubber.
  • a film containing CSM and a crosslinking agent can be used.
  • the method of applying the treatment agent and the drying method There are no particular limitations on the method of applying the treatment agent and the drying method. Usually, after a fiber reinforcing fiber or a fiber strand in which the rubber reinforcing fiber is bundled is immersed in a bath containing a treatment agent, the film is formed by drying in a drying furnace to remove the solvent.
  • a plurality of reinforcing fibers or fiber strands on which a film is formed may be produced and twisted together. Thereby, a plurality of reinforcing fibers can be adhered to each other through the coating.
  • a process for forming the film may be performed next.
  • the rubber product of this embodiment will be described.
  • the rubber product of this embodiment includes a matrix rubber and a rubber reinforcing cord embedded in the matrix rubber.
  • the rubber reinforcing cord As the rubber reinforcing cord, the rubber reinforcing cord of the present embodiment is used.
  • the means for embedding the rubber reinforcing cord in the matrix rubber of the rubber product is not particularly limited, and known means can be applied.
  • the rubber product of this embodiment has both high heat resistance derived from the characteristics of matrix rubber and high strength and high bending fatigue resistance by embedding a rubber reinforcing cord. Therefore, this rubber product can be applied to various uses, and is particularly suitable for uses such as a timing belt of a vehicle engine.
  • the rubber product of this embodiment is prepared, for example, by first preparing the rubber reinforcing cord of this embodiment, and then embedding the rubber reinforcing cord in a matrix rubber containing rubber and a crosslinking agent, and the reaction of the crosslinking agent is performed. Heat treatment is performed under sufficiently proceeding conditions to simultaneously crosslink the rubber of the rubber reinforcing cord film and the matrix rubber of the rubber product.
  • Examples 1 to 20 and Comparative Examples 1 to 10 ⁇ Manufacture of rubber reinforcing cord> Glass fibers (rubber reinforcing fibers) in which 200 glass filaments (E glass composition, average diameter 9 ⁇ m) were bundled were prepared. Three glass fibers were drawn and impregnated with the treating agents shown in Tables 2 to 5 below, followed by heat treatment at 250 ° C. for 2 minutes to dry the treating agent, thereby producing fiber strands. In the fiber strand, a film was formed so as to cover the surfaces of the three glass fibers. The three glass fibers were bonded together by this coating.
  • Tables 2 to 5 Glass fibers (rubber reinforcing fibers) in which 200 glass filaments (E glass composition, average diameter 9 ⁇ m) were bundled were prepared. Three glass fibers were drawn and impregnated with the treating agents shown in Tables 2 to 5 below, followed by heat treatment at 250 ° C. for 2 minutes to dry the treating agent, thereby producing fiber strands. In the fiber strand, a
  • Examples 5 to 8, 11, 14, and 18 and Comparative Examples 2, 4, 5, and 8, ammonia was added to the CSM latex in order to adjust the pH value of the CSM latex.
  • Tables 2 to 5 show the pH values of the CSM latex before and after pH adjustment.
  • a pH adjuster was also added to the prepared treating agent to adjust the pH value of the treating agent to 10.5.
  • the fiber strands thus obtained were twisted in the Z direction at a rate of 2.0 times / 25 mm. Then, 11 strands of twisted fiber strands were aligned and twisted in the S direction at a rate of 2.0 times / 25 mm. The ratio of the coating film in the rubber reinforcing cord thus obtained was 20% by mass.
  • the evaluation items and methods for the rubber reinforcing cords of the examples and comparative examples are as follows.
  • the rubber reinforcing cord was embedded in a matrix rubber having the composition shown in Table 1, and heat-treated at 150 ° C. for 20 minutes to produce a test piece (flat belt) having a width of 25 mm, a length of 100 mm, and a thickness of 5 mm.
  • the test piece was pulled in the longitudinal direction with a tensile tester until the matrix rubber and the rubber reinforcing cord were peeled off. Whether the peeled state between the matrix rubber and the rubber reinforcing cord, that is, the failure mode of the test piece is “rubber failure” in which the rubber reinforcing cord and the matrix rubber are bonded to each other, or is “rubber failure”.
  • interfacial debonding refers to a form in which delamination between the matrix rubber and the rubber reinforcing cord does not cause rubber breakage, and the surface of the peeled rubber reinforcing cord was broken. Indicates that the presence of rubber is less than 20%.
  • the abundance ratio of rubber at the peeling interface was determined using a printed image of a photograph of the peeling interface. Specifically, first, a photograph is taken so that the whole peeling interface in the sample piece enters, the whole sample piece is cut out from the printed image of the photograph, and the weight W of the printed image of the whole sample piece is measured. . Next, the rubber portion is cut out from the printed image of the entire test piece, and the entire weight w of the cut rubber portion is measured. From the values of the obtained weights W and w, the ratio of remaining rubber ((w / W) ⁇ 100%) is determined. The results are shown in Tables 2-5.
  • the pH value of the CSM latex used for the preparation of the treatment agent is in the range of more than 4.0 and less than 7.0, and the chlorine content in the coating is 1-30.
  • the rubber reinforcing cords of Examples 1 to 20 in the mass% range had a peeled form of rubber breakage and had excellent adhesion to the matrix rubber.
  • the rubber reinforcing cord of the present invention has excellent adhesion to the matrix rubber of the rubber product, it can be applied as a rubber reinforcing cord for various rubber products including rubber products that require strength and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

A method for producing a rubber-reinforcing cord that is for reinforcing a rubber product. The method includes: a step for mixing a phenolic aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex that has a pH of more than 4.0 but less than 7.0 to prepare a treating agent that contains the phenolic aromatic compound-formaldehyde resin and the chlorosulfonated polyethylene rubber latex; and a step for applying the treating agent to at least one portion of the surface of rubber-reinforcing fibers and drying to obtain a rubber-reinforcing cord in which a coating film has been formed on at least one portion of the surface of the rubber-reinforcing fibers. The chlorine content of the coating film is 1–30 mass%.

Description

ゴム補強用コードの製造方法、ゴム補強用コード及びゴム製品Rubber reinforcing cord manufacturing method, rubber reinforcing cord and rubber product
 本発明は、ゴム補強用コードの製造方法、ゴム補強用コード及びゴム製品に関する。 The present invention relates to a method for manufacturing a rubber reinforcing cord, a rubber reinforcing cord, and a rubber product.
 歯付きゴムベルトなどのゴム製品について、その強度や耐久性を向上させるために、ガラス繊維や化学繊維などの補強用繊維を含む補強用コードをマトリックスゴム内に埋設することが広く行われている。補強用コードでは、一般に、マトリックスゴムと補強用繊維との接着性を高めるために、補強用繊維の表面に被膜が設けられる。このような被膜の材料として、クロロスルフォン化ポリエチレンゴムは、その高い耐熱性から幅広く使用されている(特許文献1~6)。 In order to improve the strength and durability of rubber products such as toothed rubber belts, it is widely practiced to embed reinforcing cords containing reinforcing fibers such as glass fibers and chemical fibers in matrix rubber. In the reinforcing cord, generally, a coating is provided on the surface of the reinforcing fiber in order to enhance the adhesion between the matrix rubber and the reinforcing fiber. As a material for such a film, chlorosulfonated polyethylene rubber is widely used because of its high heat resistance (Patent Documents 1 to 6).
特公平4-56053号公報Japanese Examined Patent Publication No. 4-56053 特開平11-158744号公報Japanese Patent Laid-Open No. 11-158744 特開2007-291332号公報JP 2007-291332 A 特開2004-3044号公報Japanese Patent Laid-Open No. 2004-3044 特開2008-291395号公報JP 2008-291395 A 特公昭45-028497号公報Japanese Patent Publication No. 45-028497
 クロロスルフォン化ポリエチレンゴムを含む被膜は、クロロスルフォン化ポリエチレンゴムラテックスを含む処理剤を補強用繊維の表面に塗布したのち乾燥させることによって形成される。被膜の形成に用いられる処理剤のpH値は、形成される被膜の接着性などの特性に影響を及ぼすため、処理剤に塩基(アンモニアなど)を添加してpH値を調整することが知られている。 The film containing chlorosulfonated polyethylene rubber is formed by applying a treatment agent containing chlorosulfonated polyethylene rubber latex to the surface of the reinforcing fiber and then drying. Since the pH value of the treatment agent used for forming the coating affects properties such as adhesion of the coating to be formed, it is known to adjust the pH value by adding a base (such as ammonia) to the treatment agent. ing.
 しかし、処理剤のpH調整のみによって改善できる被膜の接着性には限界があり、被膜の接着性については更なる向上が求められていた。 However, there is a limit to the adhesiveness of the coating that can be improved only by adjusting the pH of the treatment agent, and further improvement has been required for the adhesiveness of the coating.
 そこで、本発明の目的の一つは、クロロスルフォン化ポリエチレンゴムを含む被膜が設けられたゴム補強用コードであって、被膜の接着性の向上が実現されたゴム補強用コードを提供することである。さらに、本発明の別の目的の一つは、そのようなゴム補強用コードによって補強された、マトリックスゴムとゴム補強用コードとが高い接着力で接着されたゴム製品を提供することである。 Accordingly, one of the objects of the present invention is to provide a rubber reinforcing cord provided with a coating containing chlorosulfonated polyethylene rubber, wherein the rubber reinforcing cord is provided with improved adhesion of the coating. is there. Furthermore, another object of the present invention is to provide a rubber product reinforced by such a rubber reinforcing cord, in which the matrix rubber and the rubber reinforcing cord are bonded with high adhesive force.
 本発明者らは、クロロスルフォン化ポリエチレンゴムを含む被膜の接着性向上を目的とし、鋭意検討の末、被膜形成用の処理剤の調製に用いられるクロロスルフォン化ポリエチレンゴムラテックスのpH値及び遊離塩素濃度が、形成される被膜の接着性に大きな影響を及ぼすという事実を突き止め、以下の本発明のゴム補強用コードの製造方法及びゴム補強用コードに至った。 The inventors of the present invention aimed to improve the adhesiveness of a coating containing chlorosulfonated polyethylene rubber, and after intensive studies, the pH value and free chlorine of chlorosulfonated polyethylene rubber latex used for the preparation of a treatment agent for coating formation Ascertaining the fact that the concentration has a great influence on the adhesion of the coating film to be formed, the present inventors have reached the following method for producing a rubber reinforcing cord and rubber reinforcing cord of the present invention.
 本発明は、ゴム製品を補強するためのゴム補強用コードを製造する方法であって、
 フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、pH値が4.0を超え7.0未満であるクロロスルフォン化ポリエチレンゴムラテックスとを混合して、前記フェノール由来芳香族化合物-ホルムアルデヒド樹脂と前記クロロスルフォン化ポリエチレンゴムラテックスとを含有する処理剤を調製する工程と、
 前記処理剤をゴム補強用繊維の少なくとも表面の一部に塗布して乾燥させて、前記ゴム補強用繊維の少なくとも表面の一部に被膜が形成されたゴム補強用コードを得る工程と、
を含み、
 前記被膜における塩素含有率が1~30質量%である、
ゴム補強用コードの製造方法を提供する。
The present invention is a method of manufacturing a rubber reinforcing cord for reinforcing a rubber product,
A phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex having a pH value of more than 4.0 and less than 7.0 are mixed to produce the phenol-derived aromatic compound-formaldehyde resin and the chlorosulfonated product. A step of preparing a treating agent containing polyethylene rubber latex;
Applying the treatment agent to at least part of the surface of the rubber reinforcing fiber and drying to obtain a rubber reinforcing cord having a film formed on at least part of the surface of the rubber reinforcing fiber;
Including
The chlorine content in the coating is 1 to 30% by mass,
A method for manufacturing a rubber reinforcing cord is provided.
 また、本発明は、ゴム製品を補強するためのゴム補強用コードであって、
 ゴム補強用繊維と、前記ゴム補強用繊維の少なくとも表面の一部に形成された被膜とを含み、
 前記被膜は、フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、クロロスルフォン化ポリエチレンゴムラテックスとを含む処理剤を、前記ゴム補強用繊維に塗布して乾燥させることによって形成されており、
 前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.0を超え7.0未満であり、
 前記被膜における塩素含有率が1~30質量%である、
ゴム補強用コードを提供する。
Moreover, the present invention is a rubber reinforcing cord for reinforcing a rubber product,
A rubber reinforcing fiber, and a coating formed on at least a part of the surface of the rubber reinforcing fiber,
The coating is formed by applying a treatment agent containing a phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex to the rubber reinforcing fiber and drying it,
The pH value of the chlorosulfonated polyethylene rubber latex is more than 4.0 and less than 7.0;
The chlorine content in the coating is 1 to 30% by mass,
Provide a cord for rubber reinforcement.
 また、本発明は、上記本発明のゴム補強用コードの製造方法で得られたゴム補強用コード、又は、上記本発明のゴム補強用コードで補強されたゴム製品を提供する。 The present invention also provides a rubber reinforcing cord obtained by the method for manufacturing a rubber reinforcing cord of the present invention or a rubber product reinforced with the rubber reinforcing cord of the present invention.
 本発明のゴム補強用コードの製造方法及び本発明のゴム補強用コードによれば、クロロスルフォン化ポリエチレンゴムを含む被膜が設けられたゴム補強用コードであって、被膜の接着性の向上が実現されたゴム補強用コードを提供することができる。また、本発明のゴム製品は、このようなゴム補強用コードで補強されているので、マトリックスゴムとゴム補強用コードとが高い接着力で接着されたゴム製品とできる。 According to the method for manufacturing a rubber reinforcing cord of the present invention and the rubber reinforcing cord of the present invention, a rubber reinforcing cord provided with a coating containing chlorosulfonated polyethylene rubber, which realizes an improvement in the adhesion of the coating An improved rubber reinforcing cord can be provided. Further, since the rubber product of the present invention is reinforced with such a rubber reinforcing cord, it can be a rubber product in which the matrix rubber and the rubber reinforcing cord are bonded with high adhesive force.
 以下、本発明の実施形態について具体的に説明する。なお、以下の記載は本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described. The following description does not limit the present invention.
[ゴム補強用コード及びゴム補強用コードの製造方法]
 本実施形態のゴム補強用コードは、ゴム製品を補強するためのコードである。このゴム補強用コードは、ゴム補強用繊維と、ゴム補強用繊維の少なくとも表面の一部に形成された被膜とを含む。被膜は、フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、クロロスルフォン化ポリエチレンゴムラテックスとを含む処理剤を、ゴム補強用繊維に塗布して乾燥させることによって形成されている。処理剤に含まれるクロロスルフォン化ポリエチレンゴム(以下、CSMと記載する。)ラテックスのpH値は、4.0を超え7.0未満である。また、被膜における塩素含有率は1~30質量%である。
[Rubber reinforcing cord and rubber reinforcing cord manufacturing method]
The rubber reinforcing cord of the present embodiment is a cord for reinforcing a rubber product. The rubber reinforcing cord includes a rubber reinforcing fiber and a coating formed on at least a part of the surface of the rubber reinforcing fiber. The coating is formed by applying a treatment agent containing a phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex to a rubber reinforcing fiber and drying it. The pH value of the chlorosulfonated polyethylene rubber (hereinafter referred to as CSM) latex contained in the treatment agent is more than 4.0 and less than 7.0. The chlorine content in the coating is 1 to 30% by mass.
 また、本実施形態のゴム補強用コードの製造方法の一実施形態は、
 フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、pH値が4.0を超え7.0未満であるクロロスルフォン化ポリエチレンゴムラテックスとを混合して、前記フェノール由来芳香族化合物-ホルムアルデヒド樹脂と前記クロロスルフォン化ポリエチレンゴムラテックスとを含有する処理剤を調製する工程と、
 前記処理剤をゴム補強用繊維の少なくとも表面の一部に塗布して乾燥させて、前記ゴム補強用繊維の少なくとも表面の一部に被膜が形成されたゴム補強用コードを得る工程と、
を含み、
 前記被膜における塩素含有率が1~30質量%である、
製造方法である。
In addition, one embodiment of a method for producing a rubber reinforcing cord of the present embodiment is
A phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex having a pH value of more than 4.0 and less than 7.0 are mixed to produce the phenol-derived aromatic compound-formaldehyde resin and the chlorosulfonated product. A step of preparing a treating agent containing polyethylene rubber latex;
Applying the treatment agent to at least part of the surface of the rubber reinforcing fiber and drying to obtain a rubber reinforcing cord having a film formed on at least part of the surface of the rubber reinforcing fiber;
Including
The chlorine content in the coating is 1 to 30% by mass,
It is a manufacturing method.
 以下、本実施形態のゴム補強用コード及びゴム補強用コードの製造方法について、より具体的に説明する。 Hereinafter, the rubber reinforcing cord and the method for manufacturing the rubber reinforcing cord of the present embodiment will be described more specifically.
 (補強用繊維)
 本実施形態のゴム補強用コードに含まれるゴム補強用繊維及びゴム補強用コードの製造方法で用いられる補強用繊維は、ゴム製品の形状安定性や強度を高めることができる繊維であればよく、その材質や形状は特に限定されない。
(Reinforcing fiber)
The rubber reinforcing fiber included in the rubber reinforcing cord of the present embodiment and the reinforcing fiber used in the method of manufacturing the rubber reinforcing cord may be fibers that can enhance the shape stability and strength of the rubber product, The material and shape are not particularly limited.
 ゴム補強用繊維としては、例えば、ガラス繊維、ビニロン繊維に代表されるポリビニルアルコール繊維、ポリエステル繊維、ナイロン、アラミド(芳香族ポリアミド)などのポリアミド繊維、ポリアリレート繊維、ポリケトン繊維、炭素繊維又はポリパラフェニレンベンゾオキサゾール(PBO)繊維などを利用することができる。これらのなかでも、寸法安定性、耐熱性及び引張り強度などに優れる炭素繊維及びガラス繊維が好適に用いられる。例えば、高い耐久性が要求されるゴム製品を補強するためのゴム補強用コードを作製する場合には、十分な強度を有するガラス繊維(例えば高強度ガラス繊維)を用いることが好ましい。 Examples of the rubber reinforcing fiber include glass fiber, polyvinyl alcohol fiber typified by vinylon fiber, polyester fiber, nylon, polyamide fiber such as aramid (aromatic polyamide), polyarylate fiber, polyketone fiber, carbon fiber, or polyparaffin. A phenylene benzoxazole (PBO) fiber etc. can be utilized. Among these, carbon fibers and glass fibers that are excellent in dimensional stability, heat resistance, tensile strength, and the like are preferably used. For example, when producing a rubber reinforcing cord for reinforcing a rubber product that requires high durability, it is preferable to use glass fiber having sufficient strength (for example, high strength glass fiber).
 ガラス繊維におけるガラスの種類は、特に限定されるものではないが、一般的な無アルカリガラスよりも、引張り強度に優れる高強度ガラスが好ましい。 The type of glass in the glass fiber is not particularly limited, but a high strength glass excellent in tensile strength is preferable to a general alkali-free glass.
 なお、繊維の構成は特に限定されるものではないが、例えばガラス繊維の場合は、繊維の最小構成単位であるフィラメントの平均径が5~13μmのものが好ましい。例えば、このフィラメント50~2000本を集束剤によって集束して、ゴム補強用繊維を作製する。複数本のゴム補強用繊維を集束して繊維ストランドとしてもよい。 The configuration of the fiber is not particularly limited. For example, in the case of glass fiber, a fiber having an average diameter of 5 to 13 μm, which is the minimum constituent unit of the fiber, is preferable. For example, 50 to 2000 filaments are bundled with a sizing agent to produce a rubber reinforcing fiber. A plurality of rubber reinforcing fibers may be bundled to form a fiber strand.
 また、ゴム補強用繊維とゴム製品のマトリックスゴムとの接着性、及び、ゴム補強用繊維の耐ほつれ性をさらに向上させるために、ゴム補強用繊維(又は繊維ストランド)に撚りが施されてもよい。撚り数は、使用する繊維に応じて適切な撚り数を設定すればよい。例えば、ゴム補強用繊維としてガラス繊維を用いる場合には、撚り数は0~4.0回/25mmの範囲であることが好ましい。また、必要なゴム補強用コードの太さや仕様に合わせて、複数回に分けて撚りを施してもよく、その撚り方向も限定されない。2段階に分けて撚りを施す場合には、例えば補強用繊維を数本束ねた繊維ストランドを下撚りして子縄を作り、さらにその子縄を数本束ねて上撚りしてコードを形成するとよい。このような繊維ストランド及びコードの作製に用いられる装置は、特に限定されないが、例えば、リング撚糸機、フライヤー撚糸機、撚り線機などを用いることができる。 Further, in order to further improve the adhesion between the rubber reinforcing fiber and the matrix rubber of the rubber product and the fray resistance of the rubber reinforcing fiber, the rubber reinforcing fiber (or fiber strand) may be twisted. Good. What is necessary is just to set the number of twists suitable for the number of twists according to the fiber to be used. For example, when glass fiber is used as the rubber reinforcing fiber, the number of twists is preferably in the range of 0 to 4.0 turns / 25 mm. Moreover, according to the thickness and specification of a required cord for rubber reinforcement, the twist may be applied in a plurality of times, and the twist direction is not limited. In the case of twisting in two stages, for example, a strand may be formed by twisting a fiber strand in which several reinforcing fibers are bundled, and then a cord may be formed by bundling several strands and twisting the strand. . Although the apparatus used for preparation of such a fiber strand and a cord is not specifically limited, For example, a ring twister, a fryer twister, a strand wire machine etc. can be used.
 上述したように、繊維ストランドは複数のゴム補強用繊維を集束させて形成されるが、表面に被膜が形成されているゴム補強用繊維を用いて繊維ストランドが形成されてもよいし、表面に被膜が設けられる前のゴム補強用繊維を用いて繊維ストランドが形成されて、その後に被膜が形成されてもよい。 As described above, the fiber strand is formed by converging a plurality of rubber reinforcing fibers. However, the fiber strand may be formed using a rubber reinforcing fiber having a coating formed on the surface, or on the surface. A fiber strand may be formed using the fiber for rubber reinforcement before a film is provided, and a film may be formed after that.
 (被膜)
 被膜は、処理剤をゴム補強用繊維の少なくとも表面の一部に塗布し、それを乾燥させる(処理剤中の溶媒を除去する)ことによって形成されている。
(Coating)
The coating is formed by applying the treatment agent to at least a part of the surface of the rubber reinforcing fiber and drying it (removing the solvent in the treatment agent).
 処理剤は水性であり、フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、CSMラテックスとを混合することによって調製される。 The treating agent is aqueous and is prepared by mixing a phenol-derived aromatic compound-formaldehyde resin and CSM latex.
 処理剤におけるフェノール由来芳香族化合物-ホルムアルデヒド樹脂の含有率は、固形分質量比で、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。また、処理剤におけるフェノール由来芳香族化合物-ホルムアルデヒド樹脂の含有率は、固形分質量比で、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がより好ましい。処理剤がフェノール由来芳香族化合物-ホルムアルデヒド樹脂を固形分質量比で1質量%以上含むことにより、繊維の保護層としての機能に優れた被膜を形成できる。一方、処理剤がフェノール由来芳香族化合物-ホルムアルデヒド樹脂を固形分質量比で20質量%以下含むことにより、形成される被膜の耐動的疲労性を向上させることができる。 The content of the phenol-derived aromatic compound-formaldehyde resin in the treatment agent is preferably 1% by mass or more, more preferably 3% by mass or more, and still more preferably 5% by mass or more in terms of solid content mass ratio. In addition, the content of the phenol-derived aromatic compound-formaldehyde resin in the treating agent is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass or less in terms of solid content. When the treatment agent contains a phenol-derived aromatic compound-formaldehyde resin in a solid content mass ratio of 1% by mass or more, a coating film having an excellent function as a fiber protective layer can be formed. On the other hand, when the treating agent contains a phenol-derived aromatic compound-formaldehyde resin in a solid content mass ratio of 20% by mass or less, the dynamic fatigue resistance of the formed film can be improved.
 フェノール由来芳香族化合物-ホルムアルデヒド樹脂におけるフェノール由来芳香族化合物としては、例えば、モノ又は多価ヒドロキシフェノール、モノ又は多価クロロフェノールなどが挙げられる。フェノール由来芳香族化合物-ホルムアルデヒド樹脂の一例として、レゾルシノール-ホルムアルデヒド樹脂を挙げることができる。 Phenol-derived aromatic compound—Examples of the phenol-derived aromatic compound in the formaldehyde resin include mono- or polyvalent hydroxyphenol, mono- or polyvalent chlorophenol, and the like. An example of a phenol-derived aromatic compound-formaldehyde resin is resorcinol-formaldehyde resin.
 処理剤におけるCSMラテックスの含有率は、固形分質量比で、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。また、処理剤におけるCSMラテックスの含有率は、固形分質量比で、99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。処理剤がCSMラテックスを固形分質量比で10質量%以上含むことにより、形成される被膜の耐熱特性を向上させることができる。 The content of the CSM latex in the treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more in terms of solid content. In addition, the content of the CSM latex in the treatment agent is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less in terms of solid content. When the treatment agent contains CSM latex in a solid content mass ratio of 10% by mass or more, the heat resistance of the formed film can be improved.
 CSMラテックスは、長期保存過程で加水分解反応してpH値の低下を引き起こす。このpH値の低下は、形成される被膜の接着性に大きな影響を及ぼす。そこで、本実施形態では、最終的に形成される被膜の接着性を向上させるために、処理剤の調製にpH値が4.0を超え7.0未満の範囲内であるCSMラテックスが用いられる。pH値が4.0を超えるCSMラテックスを用いることにより、形成される被膜の接着性が向上する。形成される被膜の接着性のより確実な向上のために、CSMラテックスのpH値を4.1以上とすることが好ましい。一方、pH値が7.0以上となると、ラテックスとしての状態を保つことが困難となって、形成される被膜の接着性の向上が困難となるため、CSMラテックスのpH値を7.0未満とし、好ましくは6.9以下とし、より好ましくは6.0以下とする。CSMラテックスのpH値を上記範囲内に調整するために、処理剤の調製前にCSMラテックスにpH調整剤を添加してもよい。pH調整剤は、アンモニア、水酸化ナトリウム及び炭酸ナトリウムからなる群より選ばれる少なくともいずれか1種を含有してもよい。 CSM latex undergoes a hydrolysis reaction during a long-term storage process, causing a decrease in pH value. This decrease in pH value greatly affects the adhesiveness of the formed film. Therefore, in this embodiment, in order to improve the adhesiveness of the finally formed film, a CSM latex having a pH value in the range of more than 4.0 and less than 7.0 is used for preparing the treatment agent. . By using a CSM latex having a pH value exceeding 4.0, the adhesion of the formed film is improved. In order to improve the adhesion of the formed film more reliably, it is preferable that the pH value of the CSM latex is 4.1 or more. On the other hand, when the pH value is 7.0 or more, it becomes difficult to maintain the state as a latex, and it becomes difficult to improve the adhesiveness of the formed film. Therefore, the pH value of the CSM latex is less than 7.0. And preferably 6.9 or less, more preferably 6.0 or less. In order to adjust the pH value of the CSM latex within the above range, a pH adjusting agent may be added to the CSM latex before preparing the treatment agent. The pH adjuster may contain at least one selected from the group consisting of ammonia, sodium hydroxide and sodium carbonate.
 処理剤における塩素含有率が高すぎる場合、処理剤のpH調整が困難となり、その結果、形成される被膜の接着性を向上させることが困難になる。このような問題を生じさせないために、処理剤における塩素含有率は、形成される被膜における塩素含有率が1~30質量%の範囲内となるように調整される必要がある。処理剤における塩素含有率を決定する要因には、CSMのポリマー上の塩素量と、CSMラテックスの長期保存過程で起こる加水分解反応に起因する遊離塩素とが含まれる。そこで、遊離塩素の増加も考慮した上で、用いるCSMのポリマー上の塩素量を決定し、形成される被膜における塩素含有率が1~30質量%の範囲内となるようにする。なお、CSMではポリマー上の塩素量の変更が可能であるので、処理剤によって形成される被膜における塩素含有率が1~30質量%の範囲内となるように、CSMのポリマー上の塩素量を変更するとよい。具体的には、被膜における塩素含有率が30質量%以下となるように、使用されるCSMラテックスのCSMポリマーのグレードを適宜選択して処理剤における塩素含有率を調整することにより、被膜の接着性を向上させることができる。被膜における塩素含有率は、2~25質量%とすることが好ましい。なお、被膜における塩素含有率は、形成された被膜の塩素含有率をエネルギー分散型蛍光X線分析装置(EDX)を用いて測定することによって得られる。 When the chlorine content in the treating agent is too high, it becomes difficult to adjust the pH of the treating agent, and as a result, it becomes difficult to improve the adhesion of the formed film. In order not to cause such a problem, the chlorine content in the treatment agent needs to be adjusted so that the chlorine content in the formed film is in the range of 1 to 30% by mass. Factors that determine the chlorine content in the treating agent include the amount of chlorine on the polymer of the CSM and the free chlorine resulting from the hydrolysis reaction that occurs during the long term storage of the CSM latex. Therefore, in consideration of an increase in free chlorine, the amount of chlorine on the polymer of the CSM to be used is determined so that the chlorine content in the formed film is in the range of 1 to 30% by mass. Since the amount of chlorine on the polymer can be changed in CSM, the amount of chlorine on the polymer in CSM is adjusted so that the chlorine content in the coating formed by the treatment agent is within the range of 1 to 30% by mass. It is good to change. Specifically, the adhesion of the coating is achieved by appropriately selecting the CSM polymer grade of the CSM latex used and adjusting the chlorine content in the treating agent so that the chlorine content in the coating is 30% by mass or less. Can be improved. The chlorine content in the coating is preferably 2 to 25% by mass. In addition, the chlorine content rate in a film is obtained by measuring the chlorine content rate of the formed film using an energy dispersive X-ray fluorescence analyzer (EDX).
 処理剤は、被膜の接着力を高めたり安定性を改善したりするために、CSMラテックス以外のゴムラテックスなどをさらに含んでいてもよい。例えば、処理剤は、ブタジエンラテックス、ブタジエン-スチレン共重合体ラテックス、ジカルボキシル化ブタジエン-スチレン共重合体ラテックス、ビニルピリジン・ブタジエン・スチレン・ターポリマーラテックス、イソプレンゴムラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、水素添加アクリロニトリル-ブタジエン共重合体ラテックス及びポリオレフィンエマルジョンからなる群より選ばれる少なくともいずれか1種を含んでいてもよい。処理剤に含まれるこれらのラテックス及び/又はエマルジョンの合計は、例えば5~85質量%であり、好ましくは15~80質量%である。 The treating agent may further contain a rubber latex other than the CSM latex in order to increase the adhesion of the coating or improve the stability. For example, the treatment agent is butadiene latex, butadiene-styrene copolymer latex, dicarboxylated butadiene-styrene copolymer latex, vinylpyridine / butadiene / styrene / terpolymer latex, isoprene rubber latex, acrylonitrile-butadiene copolymer latex. In addition, at least one selected from the group consisting of a hydrogenated acrylonitrile-butadiene copolymer latex and a polyolefin emulsion may be included. The total of these latexes and / or emulsions contained in the treatment agent is, for example, 5 to 85% by mass, preferably 15 to 80% by mass.
 処理剤には、被膜の接着力を高めたり安定性を改善したりするために、充填材、可塑剤、老化防止剤、金属酸化物及び架橋助剤などが適宜加えられてもよい。例えば、処理剤は、イソシアネート及び熱硬化系樹脂などの添加材をさらに含んでいてもよい。 In order to increase the adhesive force of the coating or improve the stability, a filler, a plasticizer, an anti-aging agent, a metal oxide, a crosslinking aid, and the like may be appropriately added to the treatment agent. For example, the treating agent may further contain additives such as isocyanate and thermosetting resin.
 なお、処理剤の調製に用いられるCSMラテックスのpH値を4.0を超え7.0未満の範囲内とすることは上述のとおりであるが、さらに調製された処理剤のpH値を調整してもよい。したがって、処理剤には、アンモニアや水酸化ナトリウムなどの塩基がpH調整剤としてさらに添加されてもよい。なお、処理剤のpH値は、例えば5.0~12.0の範囲内に調整される。 Although it is as described above that the pH value of the CSM latex used for preparing the treatment agent is within the range of more than 4.0 and less than 7.0, the pH value of the prepared treatment agent is further adjusted. May be. Therefore, a base such as ammonia or sodium hydroxide may be further added to the treatment agent as a pH adjuster. The pH value of the treatment agent is adjusted within a range of 5.0 to 12.0, for example.
 被膜の厚さや、ゴム補強用コード全体に占める被膜の割合には特に限定はなく、ゴム補強用コードに要求される特性やゴム補強用繊維の種類などに応じて適宜決定することが可能である。例えば、ゴム補強用繊維とゴム製品のマトリックスゴムとの接着性及びゴム補強用繊維の耐ほつれ性をさらに向上させるためには、ゴム補強用コード全体に占める被膜の割合を5~30質量%とすることが好ましく、7~27質量%とすることがより好ましく、10~25質量%とすることがさらに好ましい。 The thickness of the coating and the ratio of the coating to the entire rubber reinforcing cord are not particularly limited and can be appropriately determined according to the characteristics required for the rubber reinforcing cord, the type of rubber reinforcing fiber, and the like. . For example, in order to further improve the adhesion between the rubber reinforcing fiber and the matrix rubber of the rubber product and the fray resistance of the rubber reinforcing fiber, the ratio of the coating to the entire rubber reinforcing cord is 5 to 30% by mass. Preferably, the content is 7 to 27% by mass, more preferably 10 to 25% by mass.
 なお、被膜は、ゴム補強用繊維の表面の少なくとも一部に設けられていればよいが、ゴム補強用繊維とマトリックスゴムとの接着性及びゴム補強用繊維の耐ほつれ性をさらに向上させるためには、ゴム補強用繊維の全体を覆うように設けられていることが好ましい。 The coating only needs to be provided on at least a part of the surface of the rubber reinforcing fiber, in order to further improve the adhesion between the rubber reinforcing fiber and the matrix rubber and the fray resistance of the rubber reinforcing fiber. Is preferably provided so as to cover the entire rubber reinforcing fiber.
 必要に応じて、上記の被膜上にさらに別の被膜が設けられていてもよい。別の被膜は、マトリックスゴムの種類に応じて公知の被膜から適宜選択すればよいため、特には限定されない。例えば、CSM及び架橋剤を含む被膜などを用いることができる。 If necessary, another film may be provided on the above film. Another coating is not particularly limited because it may be appropriately selected from known coatings according to the type of matrix rubber. For example, a film containing CSM and a crosslinking agent can be used.
 処理剤の塗布方法及び乾燥方法については特に限定はない。通常は、処理剤の入った浴槽中にゴム補強用繊維又はゴム補強用繊維を集束した繊維ストランドを浸漬した後、乾燥炉内で乾燥して溶媒を除去して被膜を形成する。 There are no particular limitations on the method of applying the treatment agent and the drying method. Usually, after a fiber reinforcing fiber or a fiber strand in which the rubber reinforcing fiber is bundled is immersed in a bath containing a treatment agent, the film is formed by drying in a drying furnace to remove the solvent.
 被膜が形成された補強用繊維又は繊維ストランドを複数作製して、それらを撚り合わせてもよい。これにより、被膜を介して複数の補強用繊維を互いに密着させることができる。 A plurality of reinforcing fibers or fiber strands on which a film is formed may be produced and twisted together. Thereby, a plurality of reinforcing fibers can be adhered to each other through the coating.
 上記被膜の上にさらに別の被膜を設ける場合は、次に、その被膜を形成するための工程を実施するとよい。 In the case where another film is provided on the above film, a process for forming the film may be performed next.
[ゴム製品]
 本実施形態のゴム製品について説明する。本実施形態のゴム製品は、マトリックスゴムと、マトリックスゴムに埋め込まれたゴム補強用コードとを含む。ゴム補強用コードには、上記の本実施形態のゴム補強用コードが用いられる。ゴム製品のマトリックスゴムにゴム補強用コードを埋設する手段は、特に限定されるものではなく、公知の手段を適用できる。本実施形態のゴム製品は、マトリックスゴムの特性に由来する高い耐熱性と、ゴム補強用コードを埋設することによる高い強度及び高い耐屈曲疲労性とを併せ備える。したがって、このゴム製品は、様々な用途に適用でき、車輌用エンジンのタイミングベルトなどの用途に特に適している。
[Rubber product]
The rubber product of this embodiment will be described. The rubber product of this embodiment includes a matrix rubber and a rubber reinforcing cord embedded in the matrix rubber. As the rubber reinforcing cord, the rubber reinforcing cord of the present embodiment is used. The means for embedding the rubber reinforcing cord in the matrix rubber of the rubber product is not particularly limited, and known means can be applied. The rubber product of this embodiment has both high heat resistance derived from the characteristics of matrix rubber and high strength and high bending fatigue resistance by embedding a rubber reinforcing cord. Therefore, this rubber product can be applied to various uses, and is particularly suitable for uses such as a timing belt of a vehicle engine.
 本実施形態のゴム製品は、例えば、まず本実施形態のゴム補強用コードを準備し、次にこのゴム補強用コードをゴムと架橋剤とを含むマトリックスゴムに埋め込み、そして、架橋剤の反応が充分に進行する条件で熱処理を行い、ゴム補強用コードの被膜のゴムとゴム製品のマトリックスゴムとを同時に架橋する。 The rubber product of this embodiment is prepared, for example, by first preparing the rubber reinforcing cord of this embodiment, and then embedding the rubber reinforcing cord in a matrix rubber containing rubber and a crosslinking agent, and the reaction of the crosslinking agent is performed. Heat treatment is performed under sufficiently proceeding conditions to simultaneously crosslink the rubber of the rubber reinforcing cord film and the matrix rubber of the rubber product.
 以下、実施例及び比較例を挙げて、本発明の実施形態をさらに具体的に説明する。 Hereinafter, the embodiments of the present invention will be described more specifically with reference to examples and comparative examples.
[実施例1~20及び比較例1~10]
 <ゴム補強用コードの製造>
 ガラスフィラメント(Eガラス組成、平均直径9μm)を200本集束したガラス繊維(ゴム補強用繊維)を用意した。このガラス繊維を3本引き揃えて、以下の表2~5に示す処理剤を含浸させたのち、250℃で2分間熱処理を施して処理剤を乾燥させて、繊維ストランドを作製した。繊維ストランドでは、3本のガラス繊維の表面を覆うように被膜が形成されていた。3本のガラス繊維は、この被膜によって互いに接着されていた。なお、実施例5~8,11,14及び18、並びに、比較例2,4,5及び8では、CSMラテックスのpH値を調整するために、CSMラテックスにアンモニアが添加された。表2~5には、pH調整前後のCSMラテックスのpH値が示されている。また、実施例1~20及び比較例1~6においては、調製された処理剤にもpH調整剤が添加されて、処理剤のpH値が10.5に調整された。
[Examples 1 to 20 and Comparative Examples 1 to 10]
<Manufacture of rubber reinforcing cord>
Glass fibers (rubber reinforcing fibers) in which 200 glass filaments (E glass composition, average diameter 9 μm) were bundled were prepared. Three glass fibers were drawn and impregnated with the treating agents shown in Tables 2 to 5 below, followed by heat treatment at 250 ° C. for 2 minutes to dry the treating agent, thereby producing fiber strands. In the fiber strand, a film was formed so as to cover the surfaces of the three glass fibers. The three glass fibers were bonded together by this coating. In Examples 5 to 8, 11, 14, and 18 and Comparative Examples 2, 4, 5, and 8, ammonia was added to the CSM latex in order to adjust the pH value of the CSM latex. Tables 2 to 5 show the pH values of the CSM latex before and after pH adjustment. In Examples 1 to 20 and Comparative Examples 1 to 6, a pH adjuster was also added to the prepared treating agent to adjust the pH value of the treating agent to 10.5.
 このようにして得られた繊維ストランドを、2.0回/25mmの割合でZ方向に下撚りした。そして、下撚りした繊繊ストランドを11本引き揃え、2.0回/25mmの割合でS方向に上撚りした。このようにして得たゴム補強用コードにおける被膜の割合は、20質量%であった。 The fiber strands thus obtained were twisted in the Z direction at a rate of 2.0 times / 25 mm. Then, 11 strands of twisted fiber strands were aligned and twisted in the S direction at a rate of 2.0 times / 25 mm. The ratio of the coating film in the rubber reinforcing cord thus obtained was 20% by mass.
 各実施例及び各比較例のゴム補強用コードについての評価項目及びその方法は、以下のとおりである。 The evaluation items and methods for the rubber reinforcing cords of the examples and comparative examples are as follows.
 <被膜における塩素含有率>
 ゴム補強用コードの表面から被膜の一部をカッターナイフで摘出し、EDX(日本電子株式会社製「JSM-IT100」)でその被膜の塩素含有率を分析した。
<Chlorine content in coating>
A part of the film was extracted from the surface of the rubber reinforcing cord with a cutter knife, and the chlorine content of the film was analyzed by EDX (“JSM-IT100” manufactured by JEOL Ltd.).
 <マトリックスゴムとの接着性(破壊形態)>
 ゴム補強用コードを、表1に示す組成を有するマトリックスゴムに埋め込み、150℃で20分間熱処理を行って、幅25mm、長さ100mm、厚さ5mmの試験片(平ベルト)を作製した。この試験片を、マトリックスゴムとゴム補強用コードとが剥離するまで、引張試験機で長手方向に引っ張った。マトリックスゴムとゴム補強用コードとの間の剥離状態、すなわち試験片の破壊形態が、ゴム補強用コードとマトリックスゴムとが接着したまま破壊が生じた「ゴム破壊」であるのか、マトリックスゴムとゴム補強用コードとの界面で剥離が生じたことによる、ゴム破壊なしの「界面剥離」であるのか、あるいは「ゴム破壊」と「界面剥離」との間の状態である「部分破壊」であるのか、を確認した。より詳しく説明すると、「ゴム破壊」とは、マトリックスゴムとゴム補強用コードとの界面で剥離するのではなく、マトリックスゴム内に亀裂が入って破壊された形態のことであり、ゴム補強用コードにおける剥離界面の90%以上がマトリックスゴムによって覆われている状態をいう。「部分破壊」とは、ゴム補強用コードにおける剥離界面の20%以上90%未満がマトリックスゴムによって覆われている状態をいう。一方、「界面剥離」とは、マトリックスゴムとゴム補強用コードとの間で剥離して、ゴム破壊が起こっていない形態のことであり、剥離されたゴム補強用コードの表面において、破壊されたゴムの存在が20%未満であることを示す。ここで、剥離界面におけるゴムの存在割合は、剥離界面の写真の印刷画像を用いて求めた。具体的には、先ず、試料片における剥離界面の全体が入るように写真をとり、その写真の印刷画像から試料片全体を切り取って、切り取られた試料片全体の印刷画像の重量Wを量る。次に、その試験片全体の印刷画像からゴムの箇所を切り取って、切り取られたゴムの箇所の全体の重量wを量る。得られた重量W,wの値から、残存するゴムの存在割合((w/W)×100%)を求める。結果を表2~5に示す。
<Adhesiveness with matrix rubber (destructive form)>
The rubber reinforcing cord was embedded in a matrix rubber having the composition shown in Table 1, and heat-treated at 150 ° C. for 20 minutes to produce a test piece (flat belt) having a width of 25 mm, a length of 100 mm, and a thickness of 5 mm. The test piece was pulled in the longitudinal direction with a tensile tester until the matrix rubber and the rubber reinforcing cord were peeled off. Whether the peeled state between the matrix rubber and the rubber reinforcing cord, that is, the failure mode of the test piece is “rubber failure” in which the rubber reinforcing cord and the matrix rubber are bonded to each other, or is “rubber failure”. Whether it is “interfacial debonding” without rubber breakage due to delamination at the interface with the reinforcing cord, or “partial destructive” between “rubber destructive” and “interfacial debonding” ,It was confirmed. More specifically, “rubber breakage” is a form in which the matrix rubber is not broken at the interface between the matrix rubber and the rubber reinforcing cord, but is broken due to cracks in the matrix rubber. In this state, 90% or more of the peeling interface is covered with matrix rubber. “Partial failure” refers to a state in which 20% or more and less than 90% of the peeling interface in the rubber reinforcing cord is covered with matrix rubber. On the other hand, “interfacial debonding” refers to a form in which delamination between the matrix rubber and the rubber reinforcing cord does not cause rubber breakage, and the surface of the peeled rubber reinforcing cord was broken. Indicates that the presence of rubber is less than 20%. Here, the abundance ratio of rubber at the peeling interface was determined using a printed image of a photograph of the peeling interface. Specifically, first, a photograph is taken so that the whole peeling interface in the sample piece enters, the whole sample piece is cut out from the printed image of the photograph, and the weight W of the printed image of the whole sample piece is measured. . Next, the rubber portion is cut out from the printed image of the entire test piece, and the entire weight w of the cut rubber portion is measured. From the values of the obtained weights W and w, the ratio of remaining rubber ((w / W) × 100%) is determined. The results are shown in Tables 2-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2及び3に示されているように、処理剤の調製に用いられるCSMラテックスのpH値が4.0を超え7.0未満の範囲内であり、かつ被膜における塩素含有率が1~30質量%の範囲内である実施例1~20のゴム補強用コードは、剥離形態がゴム破壊であり、マトリックスゴムとの優れた接着性を有していた。これに対し、表4及び5に示されているように、処理剤の調製に用いられるCSMラテックスのpH値が4.0以下又は7.0以上である比較例1~6のゴム補強用コードと、被膜における塩素含有率が30質量%を超えている比較例7~10のゴム補強用コードは、剥離形態が部分破壊又は界面破剥離であり、マトリックスゴムとの接着性が不十分であった。 As shown in Tables 2 and 3, the pH value of the CSM latex used for the preparation of the treatment agent is in the range of more than 4.0 and less than 7.0, and the chlorine content in the coating is 1-30. The rubber reinforcing cords of Examples 1 to 20 in the mass% range had a peeled form of rubber breakage and had excellent adhesion to the matrix rubber. On the other hand, as shown in Tables 4 and 5, the rubber reinforcing cords of Comparative Examples 1 to 6 in which the pH value of the CSM latex used for the preparation of the treatment agent is 4.0 or less or 7.0 or more In the rubber reinforcing cords of Comparative Examples 7 to 10 in which the chlorine content in the coating exceeds 30% by mass, the peeling form is partial fracture or interfacial fracture peeling, and the adhesiveness to the matrix rubber is insufficient. It was.
 本発明のゴム補強用コードは、ゴム製品のマトリックスゴムとの優れた接着性を有するので、強度や耐久性が求められるゴム製品を含む様々なゴム製品のゴム補強用コードとして適用できる。
 
 
Since the rubber reinforcing cord of the present invention has excellent adhesion to the matrix rubber of the rubber product, it can be applied as a rubber reinforcing cord for various rubber products including rubber products that require strength and durability.

Claims (21)

  1.  ゴム製品を補強するためのゴム補強用コードを製造する方法であって、
     フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、pH値が4.0を超え7.0未満であるクロロスルフォン化ポリエチレンゴムラテックスとを混合して、前記フェノール由来芳香族化合物-ホルムアルデヒド樹脂と前記クロロスルフォン化ポリエチレンゴムラテックスとを含有する処理剤を調製する工程と、
     前記処理剤をゴム補強用繊維の少なくとも表面の一部に塗布して乾燥させて、前記ゴム補強用繊維の少なくとも表面の一部に被膜が形成されたゴム補強用コードを得る工程と、
    を含み、
     前記被膜における塩素含有率が1~30質量%である、
    ゴム補強用コードの製造方法。
    A method of manufacturing a rubber reinforcing cord for reinforcing a rubber product,
    A phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex having a pH value of more than 4.0 and less than 7.0 are mixed to produce the phenol-derived aromatic compound-formaldehyde resin and the chlorosulfonated product. A step of preparing a treating agent containing polyethylene rubber latex;
    Applying the treatment agent to at least part of the surface of the rubber reinforcing fiber and drying to obtain a rubber reinforcing cord having a film formed on at least part of the surface of the rubber reinforcing fiber;
    Including
    The chlorine content in the coating is 1 to 30% by mass,
    A method of manufacturing a rubber reinforcing cord.
  2.  前記処理剤を調製する工程よりも前に、前記クロロスルフォン化ポリエチレンゴムラテックスのpH値を、pH調整剤を用いて4.0を超え7.0未満に調整する工程をさらに含む、
    請求項1に記載のゴム補強用コードの製造方法。
    Before the step of preparing the treatment agent, further comprising the step of adjusting the pH value of the chlorosulfonated polyethylene rubber latex to more than 4.0 and less than 7.0 using a pH adjusting agent;
    The manufacturing method of the cord for rubber reinforcement of Claim 1.
  3.  前記pH調整剤が、アンモニア、水酸化ナトリウム及び炭酸ナトリウムからなる群より選ばれる少なくともいずれか1種を含有する、
    請求項2に記載のゴム補強用コードの製造方法。
    The pH adjuster contains at least one selected from the group consisting of ammonia, sodium hydroxide and sodium carbonate;
    A method for producing a rubber reinforcing cord according to claim 2.
  4.  前記処理剤の調製に用いられる前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.1~6.9である、
    請求項1~3のいずれか1項に記載のゴム補強用コードの製造方法。
    The pH value of the chlorosulfonated polyethylene rubber latex used for the preparation of the treating agent is 4.1 to 6.9.
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 3.
  5.  前記処理剤の調製に用いられる前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.1~6.0である、
    請求項4に記載のゴム補強用コードの製造方法。
    The pH value of the chlorosulfonated polyethylene rubber latex used for the preparation of the treatment agent is 4.1 to 6.0.
    The manufacturing method of the cord for rubber reinforcement of Claim 4.
  6.  前記被膜における塩素含有率が2~25質量%である、
    請求項1~5のいずれか1項に記載のゴム補強用コードの製造方法。
    The chlorine content in the coating is 2 to 25% by mass,
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 5.
  7.  前記処理剤におけるフェノール由来芳香族化合物-ホルムアルデヒド樹脂の含有率が、固形分質量比で1~20質量%である、
    請求項1~6のいずれか1項に記載のゴム補強用コードの製造方法。
    The content ratio of the phenol-derived aromatic compound-formaldehyde resin in the treating agent is 1 to 20% by mass in terms of solid content mass ratio.
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 6.
  8.  前記処理剤におけるクロロスルフォン化ポリエチレンゴムラテックスの含有率が、固形分質量比で10~90質量%である、
    請求項1~7のいずれか1項に記載のゴム補強用コードの製造方法。
    The content of the chlorosulfonated polyethylene rubber latex in the treating agent is 10 to 90% by mass in terms of solid content.
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 7.
  9.  前記処理剤が、ブタジエンラテックス、ブタジエン-スチレン共重合体ラテックス、ジカルボキシル化ブタジエン-スチレン共重合体ラテックス、ビニルピリジン・ブタジエン・スチレン・ターポリマーラテックス、イソプレンゴムラテックス、アクリロニトリル-ブタジエン共重合体ラテックス、水素添加アクリロニトリル-ブタジエン共重合体ラテックス及びポリオレフィンエマルジョンからなる群より選ばれる少なくともいずれか1種をさらに含有する、
    請求項1~8のいずれか1項に記載のゴム補強用コードの製造方法。
    The treating agent is butadiene latex, butadiene-styrene copolymer latex, dicarboxylated butadiene-styrene copolymer latex, vinylpyridine / butadiene / styrene / terpolymer latex, isoprene rubber latex, acrylonitrile-butadiene copolymer latex, Further containing at least one selected from the group consisting of hydrogenated acrylonitrile-butadiene copolymer latex and polyolefin emulsion,
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 8.
  10.  前記フェノール由来芳香族化合物が、モノ又は多価ヒドロキシフェノールである、
    請求項1~9のいずれか1項に記載のゴム補強用コードの製造方法。
    The phenol-derived aromatic compound is mono- or polyhydric hydroxyphenol,
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 9.
  11.  前記被膜の質量が、前記ゴム補強用コードの質量の5~30%である、
    請求項1~10のいずれか1項に記載のゴム補強用コードの製造方法。
    The mass of the coating is 5 to 30% of the mass of the rubber reinforcing cord.
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 10.
  12.  前記ゴム補強用繊維が、ガラス繊維及び炭素繊維からなる群から選ばれる少なくともいずれか1種である、
    請求項1~11のいずれか1項に記載のゴム補強用コードの製造方法。
    The rubber reinforcing fiber is at least one selected from the group consisting of glass fiber and carbon fiber,
    The method for producing a rubber reinforcing cord according to any one of claims 1 to 11.
  13.  前記ゴム補強用繊維がガラス繊維である、
    請求項12に記載のゴム補強用コードの製造方法。
    The rubber reinforcing fiber is a glass fiber,
    The manufacturing method of the cord for rubber reinforcement of Claim 12.
  14.  前記ガラス繊維が高強度ガラス繊維である、
    請求項12又は13に記載のゴム補強用コードの製造方法。
    The glass fiber is a high-strength glass fiber,
    A method for producing a rubber reinforcing cord according to claim 12 or 13.
  15.  ゴム製品を補強するためのゴム補強用コードであって、
     ゴム補強用繊維と、前記ゴム補強用繊維の少なくとも表面の一部に形成された被膜とを含み、
     前記被膜は、フェノール由来芳香族化合物-ホルムアルデヒド樹脂と、クロロスルフォン化ポリエチレンゴムラテックスとを含む処理剤を、前記ゴム補強用繊維に塗布して乾燥させることによって形成されており、
     前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.0を超え7.0未満であり、
     前記被膜における塩素含有率が1~30質量%である、
    ゴム補強用コード。
    A rubber reinforcing cord for reinforcing a rubber product,
    A rubber reinforcing fiber, and a coating formed on at least a part of the surface of the rubber reinforcing fiber,
    The coating is formed by applying a treatment agent containing a phenol-derived aromatic compound-formaldehyde resin and a chlorosulfonated polyethylene rubber latex to the rubber reinforcing fiber and drying it,
    The pH value of the chlorosulfonated polyethylene rubber latex is more than 4.0 and less than 7.0;
    The chlorine content in the coating is 1 to 30% by mass,
    Cord for rubber reinforcement.
  16.  前記クロロスルフォン化ポリエチレンゴムラテックスは、前記処理剤の調製前にpH調整剤によってpH値が4.0を超え7.0未満に調整されたものである、
    請求項15に記載のゴム補強用コード。
    The chlorosulfonated polyethylene rubber latex is one having a pH value adjusted to more than 4.0 and less than 7.0 by a pH adjuster before the preparation of the treatment agent.
    The rubber reinforcing cord according to claim 15.
  17.  前記pH調整剤が、アンモニア、水酸化ナトリウム及び炭酸ナトリウムからなる群より選ばれる少なくともいずれか1種を含有する、
    請求項16に記載のゴム補強用コード。
    The pH adjuster contains at least one selected from the group consisting of ammonia, sodium hydroxide and sodium carbonate;
    The rubber reinforcing cord according to claim 16.
  18.  前記処理剤に用いられる前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.1~6.9である、
    請求項15~17のいずれか1項に記載のゴム補強用コード。
    The pH value of the chlorosulfonated polyethylene rubber latex used for the treatment agent is 4.1 to 6.9.
    The rubber reinforcing cord according to any one of claims 15 to 17.
  19.  前記処理剤に用いられる前記クロロスルフォン化ポリエチレンゴムラテックスのpH値が4.1~6.0である、
    請求項18に記載のゴム補強用コード。
    The pH value of the chlorosulfonated polyethylene rubber latex used in the treatment agent is 4.1 to 6.0.
    The rubber reinforcing cord according to claim 18.
  20.  請求項1~14のいずれか1項に記載のゴム補強用コードの製造方法で得られたゴム補強用コード、又は、請求項15~19のいずれか1項に記載のゴム補強用コードで補強されたゴム製品。 The rubber reinforcing cord obtained by the method for manufacturing a rubber reinforcing cord according to any one of claims 1 to 14, or the rubber reinforcing cord according to any one of claims 15 to 19 is reinforced with the rubber reinforcing cord. Rubber products.
  21.  前記ゴム補強用コードがマトリックスゴムに埋設されたゴムベルトである、請求項20に記載のゴム製品。
     
    21. The rubber product according to claim 20, wherein the rubber reinforcing cord is a rubber belt embedded in a matrix rubber.
PCT/JP2017/027738 2017-02-13 2017-07-31 Production method for rubber-reinforcing cord, rubber-reinforcing cord, and rubber product WO2018146832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548491A JP6247799B1 (en) 2017-02-13 2017-07-31 Rubber reinforcing cord manufacturing method, rubber reinforcing cord and rubber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/005154 2017-02-13
JP2017005154 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146832A1 true WO2018146832A1 (en) 2018-08-16

Family

ID=63108134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027738 WO2018146832A1 (en) 2017-02-13 2017-07-31 Production method for rubber-reinforcing cord, rubber-reinforcing cord, and rubber product

Country Status (1)

Country Link
WO (1) WO2018146832A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4632500B1 (en) * 1967-08-10 1971-09-22
JPH0147511B2 (en) * 1980-12-19 1989-10-13 Seitetsu Kagaku Kogyo Kk
JPH02141441A (en) * 1988-11-21 1990-05-30 Central Glass Co Ltd Rubber reinforcing glass fiber
JPH06508652A (en) * 1991-06-27 1994-09-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Stabilized chlorinated resin latex
JPH11158744A (en) * 1997-11-26 1999-06-15 Nippon Glass Fiber Co Ltd Glass fiber cord for rubber-reinforcement and rubber belt
JP2008169532A (en) * 2006-12-11 2008-07-24 Central Glass Co Ltd Coating liquid for glass fiber coating and rubber-reinforcing glass fiber using the same
WO2012141020A1 (en) * 2011-04-11 2012-10-18 住友精化株式会社 Chlorosulfonated polyethylene latex

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4632500B1 (en) * 1967-08-10 1971-09-22
JPH0147511B2 (en) * 1980-12-19 1989-10-13 Seitetsu Kagaku Kogyo Kk
JPH02141441A (en) * 1988-11-21 1990-05-30 Central Glass Co Ltd Rubber reinforcing glass fiber
JPH06508652A (en) * 1991-06-27 1994-09-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Stabilized chlorinated resin latex
JPH11158744A (en) * 1997-11-26 1999-06-15 Nippon Glass Fiber Co Ltd Glass fiber cord for rubber-reinforcement and rubber belt
JP2008169532A (en) * 2006-12-11 2008-07-24 Central Glass Co Ltd Coating liquid for glass fiber coating and rubber-reinforcing glass fiber using the same
WO2012141020A1 (en) * 2011-04-11 2012-10-18 住友精化株式会社 Chlorosulfonated polyethylene latex

Similar Documents

Publication Publication Date Title
EP2719824A1 (en) Reinforcement cord for reinforcing rubber product, and rubber product using same
JP6713993B2 (en) Rubber reinforcing cord and rubber product using the same
WO2015098105A1 (en) Water-based treatment agent for forming rubber-reinforcing cord, rubber-reinforcing cord formed using same and production method therefor, and rubber product employing rubber-reinforcing cord
JP6445748B1 (en) Rubber reinforcing cord and rubber product using the same
JP6603008B1 (en) Rubber reinforcing cord, manufacturing method thereof, and rubber product
EP1818443A1 (en) Rubber-reinforcing cord, method for manufacturing same, and rubber article using same
JPH0725898B2 (en) Textiles for rubber reinforcement
CN107438680B (en) Cord comprising multifilament para-aramid yarn containing non-round filaments
JP6247799B1 (en) Rubber reinforcing cord manufacturing method, rubber reinforcing cord and rubber product
WO2018146832A1 (en) Production method for rubber-reinforcing cord, rubber-reinforcing cord, and rubber product
JP6265917B2 (en) Carbon fiber cord for reinforcing rubber products and rubber product using the same
JP6185690B1 (en) Rubber reinforcing cord manufacturing method, rubber reinforcing cord and rubber product
US20040219359A1 (en) Coated glass fibers for reinforcing rubber
CN111727287A (en) Rubber reinforcing cord and rubber product using same
JP6196577B2 (en) Dip cord for rubber reinforcement and method for manufacturing the same
JP2007186818A (en) Fiber treating agent, cord for reinforcement of rubber produced by utilizing the agent and rubber product utilizing the cord for reinforcement
JP5653772B2 (en) Aramid core wire and power transmission belt
JP4465514B2 (en) Polyester fiber cord processing method
CA2479059A1 (en) Ruber-reinforcing glass fiber treatment agent, rubber-reinforcing cord using the fiber treatment agent, and rubber product
JP2010001570A (en) Aramid fiber cord for reinforcing rubber belt and method for producing the same and rubber belt using the same
JPH03167376A (en) Treating agent for rubber-reinforcing fiber
JP2020083919A (en) Adhesive agent, manufacturing method of adhesive agent, formed part and latex
JP2002004139A (en) Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same
CN114514344B (en) Hybrid tire cord and method for manufacturing same
JP2020083918A (en) Adhesive agent, manufacturing method of adhesive agent and formed part

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548491

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895876

Country of ref document: EP

Kind code of ref document: A1