JP2002004139A - Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same - Google Patents
Method for producing glass fiber cord for rubber reinforcement and rubber product containing the sameInfo
- Publication number
- JP2002004139A JP2002004139A JP2000188616A JP2000188616A JP2002004139A JP 2002004139 A JP2002004139 A JP 2002004139A JP 2000188616 A JP2000188616 A JP 2000188616A JP 2000188616 A JP2000188616 A JP 2000188616A JP 2002004139 A JP2002004139 A JP 2002004139A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- rubber
- fiber cord
- strand
- rfl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
- C03C25/32—Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C03C25/34—Condensation polymers of aldehydes, e.g. with phenols, ureas, melamines, amides or amines
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
- C03C25/27—Rubber latex
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ゴム製品に埋設
され、その強度や寸法安定性を高めるガラス繊維コード
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass fiber cord which is embedded in a rubber product and has improved strength and dimensional stability.
【0002】[0002]
【従来の技術】レゾルシン・ホルムアルデヒド樹脂ラテ
ックス(以下、「RFL」とする)でガラス繊維を被覆
すれば、ガラス繊維同士の相互摩耗が抑制され、それを
埋設したゴム製品の屈曲疲労性などの諸物性が向上する
ことが知られている。たとえば特公昭48−11599
号公報には、ガラス繊維のストランドにサイジング剤を
適量付着させ、RFL混合液で処理し、無撚のまま合糸
して、110℃以下に加熱し、さらに110〜230℃
でベーキングすることにより、機械的性能およびゴムと
の接着性に優れたガラス繊維コードが得られることが記
載されている。また、特公昭49−40627号公報に
は、撚り数0.7回/インチ以下のガラス繊維をRFL分散
液で処理し、これに20回/インチの撚りを掛け、さらにR
FL分散液で処理し、張力1.0g/d(2.22g/Tex)、
175℃で乾燥させるゴム補強用ガラス繊維コードの製
造方法が記載されている。2. Description of the Related Art If glass fibers are coated with a resorcinol-formaldehyde resin latex (hereinafter referred to as "RFL"), mutual abrasion between the glass fibers is suppressed, and various factors such as bending fatigue of rubber products in which the glass fibers are embedded are suppressed. It is known that physical properties are improved. For example, Japanese Patent Publication No. 48-11599
In the publication, a suitable amount of a sizing agent is attached to a glass fiber strand, treated with an RFL mixed solution, untwisted, heated to 110 ° C or lower, and further heated to 110 to 230 ° C.
It is described that a glass fiber cord excellent in mechanical performance and adhesion to rubber can be obtained by baking. Japanese Patent Publication No. 49-40627 discloses that a glass fiber having a twist of 0.7 turns / inch or less is treated with an RFL dispersion liquid, and this is twisted at 20 turns / inch.
Treated with FL dispersion, tension 1.0 g / d (2.22 g / Tex),
A method for producing a glass fiber cord for rubber reinforcement dried at 175 ° C. is described.
【0003】[0003]
【発明が解決しようとする課題】ところが、特公昭48
−11599号公報に記載のガラス繊維コードは、無撚
のまま合糸されるため、引っ張り強度は高いが、一体性
が弱く、その結果耐屈曲疲労性が低いという問題があっ
た。また、特公昭49−40627号公報に記載のガラ
ス繊維コードは、RFLをガラス繊維に定着させる加熱
温度が低いため、RFLの重合が十分でなく、その結果
ガラス繊維とRFLの剥離が生じ易いという問題があっ
た。[Problems to be solved by the invention]
The glass fiber cord described in JP-A-11599 is twisted without twisting, and thus has a high tensile strength, but has a problem of poor integrity and low bending fatigue resistance. Further, the glass fiber cord described in JP-B-49-40627 has a low heating temperature for fixing the RFL to the glass fiber, so that the polymerization of the RFL is not sufficient, and as a result, the glass fiber and the RFL are easily peeled off. There was a problem.
【0004】この発明は、このような従来技術に存する
課題に着目してなされたものである。その目的とすると
ころは、RFLをガラス繊維のストランド全体に行き渡
らせかつ強固に定着させることにより、一体性が高く屈
曲疲労による強度劣化やRFLの剥離などが発生し難い
ゴム補強用ガラス繊維コードの製造方法を提供すること
にある。さらには、このガラス繊維コードを補強材とし
て埋設することにより、引っ張り強度や屈曲疲労性の極
めて高いゴム製品を提供することにある。[0004] The present invention has been made in view of such problems in the prior art. The purpose is to spread the RFL over the entire strand of glass fiber and firmly fix it, so that the strength of the glass fiber cord for rubber reinforcement is high and the strength is not easily degraded due to bending fatigue or the RFL is hardly peeled off. It is to provide a manufacturing method. Another object of the present invention is to provide a rubber product having extremely high tensile strength and bending fatigue by embedding the glass fiber cord as a reinforcing material.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明のゴム補強用ガラス繊維コー
ドの製造方法は、ガラス繊維のストランドにレゾルシン
・ホルムアルデヒド樹脂ゴムラテックス混合液を塗布
し、80〜150℃で加熱乾燥させ、このストランドを
複数引き揃えて撚糸し、張力0.3〜2.0g/Tex、2
00〜300℃で熱処理するものである。According to a first aspect of the present invention, there is provided a method for producing a glass fiber cord for rubber reinforcement, comprising the step of: mixing a resorcinol-formaldehyde resin rubber latex mixture on a glass fiber strand. It is applied and dried by heating at 80 to 150 ° C., a plurality of the strands are aligned and twisted, and a tension of 0.3 to 2.0 g / Tex, 2
The heat treatment is performed at 00 to 300 ° C.
【0006】請求項2に記載の発明のゴム製品は、請求
項1に記載の方法により製造されたガラス繊維コードを
含有するものである。The rubber product according to the second aspect of the present invention contains a glass fiber cord produced by the method according to the first aspect.
【0007】[0007]
【発明の実施の形態】以下、この発明の実施形態につい
て詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.
【0008】紡糸されたガラスフィラメントをゴム補強
用ガラス繊維コードに加工するまでの工程は、概略すれ
ば以下の4つに大別される。 第一工程 : 熔融ガラスを紡糸し、ストランドとして
巻き取る。 第二工程 : ストランドにRFL混合液を塗布し、8
0〜150℃の環境下で乾燥させる。 第三工程 : 乾燥させたストランドを複数本束ねて撚
糸する。 第四工程 : 撚糸後、このガラス繊維に0.3〜2.
0g/Texの張力を掛けつつ、200〜300℃の環境下
で熱処理する。[0008] The steps up to processing the spun glass filament into a glass fiber cord for rubber reinforcement are roughly divided into the following four. First step: The molten glass is spun and wound as a strand. Second step: Apply the RFL mixture to the strand,
Dry in an environment of 0 to 150 ° C. Third step: A plurality of dried strands are bundled and twisted. Fourth step: After twisting, the glass fiber is coated with 0.3-2.
While applying a tension of 0 g / Tex, heat treatment is performed in an environment of 200 to 300 ° C.
【0009】第一工程では、平均径5〜20μmのガラ
スフィラメントを200〜1,000本集束して、スト
ランドとして巻き取る。紡糸の際に、ガラスフィラメン
トにサイジング剤を塗布してもよい。サイジング剤とし
ては、シランカップリング剤にアミノシラン類や潤滑油
を添加した混合物が好適である。ストランドは、撚りを
掛けられてもよいが、紡糸集束されたままの無撚状態が
好ましい。第二工程でRFL混合液を塗布した際に、R
FLがストランドの内部にまで浸透し易いからである。In the first step, 200 to 1,000 glass filaments having an average diameter of 5 to 20 μm are bundled and wound as a strand. During spinning, a sizing agent may be applied to the glass filament. As the sizing agent, a mixture obtained by adding an aminosilane or a lubricating oil to a silane coupling agent is preferable. The strands may be twisted, but preferably are in a non-twisted state while being spun and bundled. When the RFL mixture is applied in the second step, R
This is because FL easily penetrates into the inside of the strand.
【0010】つぎに、第二工程では、RFL混合液を適
量塗布するが、塗布の方法はとくに限定されるものでは
なく、噴霧法、ローラーコート法、浸漬法など公知の方
法を用いることができる。なかでも、RFLがストラン
ド全体に均一に行き渡り易く、またその付着量を調整し
易いことから、浸漬法が最も好ましい。浸漬法の具体的
使用態様としては、RFL混合液で充たされた槽にスト
ランドを一旦浸漬し、通過させ、滴るRFL混合液を除
去する方法などが挙げられる。RFLの固形分付着率
は、付着後のストランドの重量を基準として15〜25
重量%が好ましい。15重量%より低い場合は、RFL
がガラスフィラメント間に十分に行き渡らなくなり、ガ
ラスフィラメント同士の相互摩擦が生じ易くなる。一
方、25重量%を越えると、RFL混合液の加熱乾燥処
理に時間が掛かり、また局部的に付着量の多い部分がで
き易くなるなどストランドの均質性を損なうおそれがあ
る。RFLを塗布されたストランドは、80〜150℃
の環境下で加熱処理される。環境温度が80℃より低い
場合は、RFLの重合があまり進行せずまた溶媒が蒸発
し難いことから、RFLがガラスフィラメントに付着せ
ずに流出し易くなる。一方、150℃を越えると、溶媒
の蒸発が速くなり過ぎて、ガラスフィラメント間に気泡
が発生し、ストランドの一体性が低下する。また、RF
Lの重合が進み過ぎて、第四工程におけるストランド同
士の接着が不十分となる。さらに好ましい環境温度は、
100〜130℃である。加熱乾燥処理の時間は、ガラ
スフィラメントの集束本数、RFL濃度または付着量な
どに左右されるため一概には言えないが、9μmのガラ
スフィラメントを200本集束したストランドに濃度2
0重量%のRFLを固形分付着率20重量%で付着させ
る場合は、15〜60秒とすることが好ましい。これ
は、本発明者らの多くの実験結果より、初めて明らかに
なった範囲である。Next, in the second step, an appropriate amount of the RFL mixed solution is applied, but the application method is not particularly limited, and a known method such as a spraying method, a roller coating method, and a dipping method can be used. . Among them, the immersion method is most preferable because the RFL easily spreads uniformly over the entire strand and the amount of adhesion is easily adjusted. As a specific usage mode of the immersion method, a method of once immersing the strand in a tank filled with the RFL mixed solution, passing the strand, and removing the dripping RFL mixed solution, and the like can be mentioned. The solids deposition rate of the RFL is 15 to 25 based on the weight of the strand after deposition.
% By weight is preferred. If less than 15% by weight, RFL
Does not spread sufficiently between the glass filaments, and mutual friction between the glass filaments is likely to occur. On the other hand, if it exceeds 25% by weight, it takes time to heat and dry the RFL mixed solution, and there is a possibility that the homogeneity of the strand is impaired, for example, a portion having a large amount of adhesion is easily formed locally. The strand coated with RFL is 80 to 150 ° C.
Heat treatment under the environment of When the environmental temperature is lower than 80 ° C., the polymerization of the RFL does not proceed so much and the solvent is hardly evaporated, so that the RFL easily flows out without adhering to the glass filament. On the other hand, if the temperature exceeds 150 ° C., the solvent evaporates too quickly, bubbles are generated between the glass filaments, and the integrity of the strand is reduced. Also, RF
The polymerization of L proceeds excessively, and the adhesion between the strands in the fourth step becomes insufficient. A more preferable ambient temperature is
100-130 ° C. The time of the heating and drying treatment cannot be determined unconditionally because it depends on the number of bundles of glass filaments, the RFL concentration or the amount of adhesion, etc.
When 0% by weight of RFL is deposited at a solids deposition rate of 20% by weight, the time is preferably 15 to 60 seconds. This is the range that became clear for the first time from the results of many experiments by the present inventors.
【0011】RFLは、レゾルシンおよびホルムアルデ
ヒドの反応生成物とゴムラテックスとの混合物である。
ゴムラテックスとしては、天然ゴム、スチレン・ブタジ
エン共重合体、スチレン・ブタジエン・ビニルビリジン
共重合体、ブタジエン・アクリロニトリル共重合体、ブ
チルゴム、クロロブレンゴム、ネオブレンゴム、カルキ
シル化ブタジエン・スチレン共重合体またはクロルスル
ホン化ポリエチレンなどが例示される。ゴムラテックス
は、上記の二種以上の混合物でもよく、またレゾルシン
とホルムアルデヒドを反応させる反応系に反応前から共
存させてもよい。RFLは、水で希釈して固形分濃度1
5〜30重量%とし、製造後数日間熟成させることが好
ましい。RFL is a mixture of the reaction product of resorcinol and formaldehyde with rubber latex.
Examples of the rubber latex include natural rubber, styrene / butadiene copolymer, styrene / butadiene / vinylpyridine copolymer, butadiene / acrylonitrile copolymer, butyl rubber, chlorobrene rubber, neobrene rubber, calxylated butadiene / styrene copolymer or chlorinated rubber. Examples thereof include sulfonated polyethylene. The rubber latex may be a mixture of two or more of the above, or may coexist in a reaction system for reacting resorcinol and formaldehyde before the reaction. RFL is diluted with water to obtain a solid concentration of 1
It is preferable to adjust the amount to 5 to 30% by weight and ripen it for several days after the production.
【0012】第三工程では、ストランドを複数本束ねて
撚糸するが、その集束本数や撚り数はとくに限定されな
い。しかし、引っ張り強度と屈曲疲労性のバランスの点
から、下撚り数1.0〜4.0回/25mm、集束フィラメ
ント本数1,800〜12,000本、上撚り数1.0
〜4.0回/25mmが好適である。ストランドの集束体
は、撚り(下撚りされた場合は、上撚りを指す)を掛け
られることにより、その一体性が高まる。すなわち、撚
りが掛けられなければ、ストランド同士は第四工程の加
熱処理によるRFLの接着によってのみ拘束されること
になるからである。この一体性の高さに起因して、ガラ
ス繊維コードは、屈曲疲労による性能劣化が起こり難
い。一方、撚りが掛けられることにより、ストランドは
変形し(延び)易くなるが、補強対象のゴム製品の変形
性を上回るほどではない。In the third step, a plurality of strands are bundled and twisted, but the number of bundles and the number of twists are not particularly limited. However, from the viewpoint of the balance between tensile strength and flex fatigue, the number of priming twists is 1.0 to 4.0 times / 25 mm, the number of bundled filaments is 1,800 to 12,000, and the number of ply twists is 1.0.
~ 4.0 times / 25mm is preferred. The bundle of strands is twisted (in the case of sub-twisting, indicates a top-twisting), thereby increasing its integrity. That is, if the twist is not applied, the strands are restricted only by the adhesion of the RFL by the heat treatment in the fourth step. Due to the high degree of integrity, the performance of the glass fiber cord hardly deteriorates due to bending fatigue. On the other hand, the strand is easily deformed (elongated) due to the twist, but not so much as to exceed the deformability of the rubber product to be reinforced.
【0013】第四工程では、0.3〜2.0g/Texの張
力を掛けつつ、200〜300℃の環境下でストランド
の撚糸を熱処理する。適度な張力と温度で熱処理するこ
とにより、各ストランドに付着したRFL同士が重合
し、ストランドの撚糸が一体化して、ゴム補強用ガラス
繊維コードが形成される。この張力が0.3g/Texより
小さい場合は、ストランドの撚糸の緊縛が緩み、その一
体性が損なわれる。一方、2.0g/Texを越えると、ガ
ラスフィラメント間に浸透したRFLが絞り出され、R
FLによる接着性が低下することになる。また、環境温
度が200℃より低い場合は、ストランドの撚糸の内部
にまで熱がなかなか伝わらず、内部でのRFLの重合が
不十分になり易い。一方、300℃を越えると、ストラ
ンドの撚糸の表層にあるRFLが変性し易くなる。この
熱処理は、熱風循環式炉を用いて、処理時間30〜12
0秒が適当である。In the fourth step, the twisted yarn of the strand is heat-treated at 200 to 300 ° C. while applying a tension of 0.3 to 2.0 g / Tex. By performing the heat treatment at an appropriate tension and temperature, the RFL attached to each strand is polymerized, and the strands of the strands are integrated to form a glass fiber cord for rubber reinforcement. If this tension is less than 0.3 g / Tex, the binding of the twisted strand of the strand is loosened, and its integrity is impaired. On the other hand, if it exceeds 2.0 g / Tex, RFL that has permeated between the glass filaments is squeezed out, and R
Adhesion by FL will be reduced. On the other hand, when the ambient temperature is lower than 200 ° C., the heat is not easily transmitted to the inside of the twisted yarn of the strand, and the polymerization of the RFL inside tends to be insufficient. On the other hand, when the temperature exceeds 300 ° C., the RFL on the surface layer of the twisted strand of the strand is likely to be modified. This heat treatment is performed using a hot-air circulation furnace for a processing time of 30 to 12 hours.
0 seconds is appropriate.
【0014】ガラス繊維コードは、公知の方法により各
種ゴム製品に埋設され、そのゴム製品の引っ張り強度や
耐屈曲疲労性を向上させる。ゴム製品の種類は、とくに
限定されるものではないが、高い引っ張り強度と耐屈曲
疲労性を要求されるタイミングベルトが好適である。ま
た、ゴム製品のゴムマトリックスは、ガラス繊維コード
との接着性の点から、上記RFLのゴムラテックスと同
種のものが好ましい。The glass fiber cord is embedded in various rubber products by a known method, and improves the tensile strength and flex fatigue resistance of the rubber product. The type of rubber product is not particularly limited, but a timing belt that requires high tensile strength and flex fatigue resistance is suitable. Further, the rubber matrix of the rubber product is preferably the same as the rubber latex of the above-mentioned RFL from the viewpoint of adhesion to the glass fiber cord.
【0015】[0015]
【実施例】以下、実施例および比較例により、この発明
をさらに具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0016】(実施例1)レゾルシン8重量部、濃度3
7重量%のホルマリン12重量部、固形分含率40重量
%のスチレン・ブタジエン・ビニルピリジン・ターポリ
マーラテックス200重量部および水230重量部を撹
拌混合し十分に熟成させて、固形分含有率20重量%の
RFL混合液を製造した。これを浸漬法により150番
手の無撚ストランド(ECG150)を3本合糸したも
のに固形分付着率20重量%となるように塗布した。そ
の後直ぐに100℃に設定した熱風循環乾燥炉内にこの
ストランドの集束体を投入し、この炉内を35秒かけて
通過させた(以下、この加熱処理を「熱処理1」とす
る)。つづいて、このストランドの集束体を撚り数4.
0回/25mmで下撚りし、さらに13本合わせて下撚りと
逆方向に2.0回/25mmで上撚りした。そして、0.6g
/Texの張力を掛けつつ、230℃に設定した熱風循環乾
燥炉内を70秒かけて通過させ(以下、この熱処理を
「熱処理2」とする)、ゴム補強用ガラス繊維コードを
製造した。なお、上記ECG150は、前記RFLと同
じ組成成分で配合率を調整したRFL混合液、アミノシ
ランA1100および潤滑油からなるサイズ組成物を、
固形分付着率0.5重量%となるよう塗布した無撚スト
ランドである。(Example 1) Resorcinol 8 parts by weight, concentration 3
12 parts by weight of 7% by weight of formalin, 200 parts by weight of styrene / butadiene / vinylpyridine / terpolymer latex having a solids content of 40% by weight and 230 parts by weight of water are mixed and aged sufficiently to obtain a solid content of 20%. A weight percent RFL mixture was prepared. This was applied by dipping to three non-twisted strands (ECG150) having a count of 150 to form a solid adhesion rate of 20% by weight. Immediately thereafter, the bundle of strands was put into a hot-air circulating drying oven set at 100 ° C., and passed through the oven for 35 seconds (hereinafter, this heat treatment is referred to as “heat treatment 1”). Subsequently, the number of twists of this bundle of strands is 4.
Twisting was performed at 0 times / 25 mm, and 13 pieces were combined and twisted at 2.0 times / 25 mm in the opposite direction to the twisting. And 0.6g
While applying a tension of / Tex, the glass fiber cord was passed through a hot air circulating drying oven set at 230 ° C. for 70 seconds (hereinafter, this heat treatment is referred to as “heat treatment 2”) to produce a glass fiber cord for rubber reinforcement. Note that the ECG 150 is a size composition comprising an RFL mixed solution, an aminosilane A1100, and a lubricating oil, the mixing ratio of which is adjusted with the same composition component as the RFL,
It is a non-twisted strand applied so as to have a solid content of 0.5% by weight.
【0017】このガラス繊維コードについて、屈曲摩耗
性、接着性、引張強度および寸法安定性(変化率)をつ
ぎの方法で測定した。その結果を、下記「表1」に示
す。 屈曲摩耗性(回) : ガラス繊維コードの一端に荷重
を掛け、所定の治具を用いて定角、定速度で繰り返し折
り曲げ、破断までの折り曲げ回数を測定する。 接着性(kg/25mm) : ガラス繊維コードを25mm巾
のゴムマトリックス上に隙間無く並べ、所定の加硫条件
でその一端を接着した。ガラス繊維コードの接着されな
かった他端とゴムマトリックスとを個別に治具に固定
し、これらを引き裂くように荷重を掛け、その際の剥離
強度を測定した。 引張強度(kg/本) : 定荷重速度試験機(島津製作
所社製 オートグラフ)を用いて、ガラス繊維コードが
破断する時の荷重を測定した。 寸法変化率(%): ガラス繊維コードに20kgの荷重
を掛け、その時の伸び率を測定した。With respect to this glass fiber cord, the bending abrasion, adhesion, tensile strength and dimensional stability (rate of change) were measured by the following methods. The results are shown in Table 1 below. Flex wear (times): A load is applied to one end of a glass fiber cord, and it is repeatedly bent at a constant angle and a constant speed using a predetermined jig, and the number of times of bending until breakage is measured. Adhesion (kg / 25 mm): Glass fiber cords were arranged on a rubber matrix having a width of 25 mm without any gap, and one end thereof was adhered under predetermined vulcanization conditions. The other end of the glass fiber cord, which was not adhered, and the rubber matrix were individually fixed to a jig, a load was applied so as to tear them, and the peel strength at that time was measured. Tensile strength (kg / piece): The load when the glass fiber cord was broken was measured using a constant load speed tester (Autograph manufactured by Shimadzu Corporation). Dimensional change (%): A load of 20 kg was applied to the glass fiber cord, and the elongation at that time was measured.
【0018】(実施例2)熱処理2において、熱風循環
乾燥炉内の設定温度を250℃にし、50秒かけてスト
ランドの撚糸を通過させた以外は、実施例1と同様にし
てゴム補強用ガラス繊維コードを製造した。また、実施
例1と同様にして、このガラス繊維コードの物性を測定
した。その結果を、下記「表1」に併せて示す。(Example 2) In the heat treatment 2, a glass for reinforcing rubber was prepared in the same manner as in Example 1 except that the set temperature in the hot air circulating drying oven was set to 250 ° C and the strands of the strand were passed over 50 seconds. A fiber cord was manufactured. The physical properties of this glass fiber cord were measured in the same manner as in Example 1. The results are shown in Table 1 below.
【0019】(実施例3)熱処理2において、熱風循環
乾燥炉内の設定温度を275℃にし、35秒かけてスト
ランドの撚糸を通過させた以外は、実施例1と同様にし
てゴム補強用ガラス繊維コードを製造した。また、実施
例1と同様にして、このガラス繊維コードの物性を測定
した。その結果を、下記「表1」に併せて示す。(Example 3) In the heat treatment 2, a glass for reinforcing rubber was prepared in the same manner as in Example 1 except that the set temperature in the hot air circulating drying oven was set to 275 ° C and the strands of the strand were passed over 35 seconds. A fiber cord was manufactured. The physical properties of this glass fiber cord were measured in the same manner as in Example 1. The results are shown in Table 1 below.
【0020】(比較例1)熱処理2を行わない以外は実
施例1と同様にして、ストランドの撚糸を製造した。ま
た、実施例1と同様にして、ストランドの撚糸の物性を
測定した。その結果を、下記「表1」に併せて示す。Comparative Example 1 A twisted strand was produced in the same manner as in Example 1 except that the heat treatment 2 was not performed. Further, in the same manner as in Example 1, the physical properties of the twisted strand were measured. The results are shown in Table 1 below.
【0021】(比較例2)熱処理1において熱風循環乾
燥炉内の設定温度を90℃にし、ストランドの集束体に
下撚りおよび上撚りを施さず、熱処理2において炉内温
度を185℃、通過時間35秒に設定した以外は、実施
例1と同様にしてゴム補強用ガラス繊維コードを製造し
た。また、実施例1と同様にして、このガラス繊維コー
ドの物性を測定した。その結果を、下記「表1」に併せ
て示す。(Comparative Example 2) In the heat treatment 1, the set temperature in the hot air circulating drying furnace was set to 90 ° C., and the strands were not twisted or twisted. A glass fiber cord for rubber reinforcement was manufactured in the same manner as in Example 1 except that the time was set to 35 seconds. The physical properties of this glass fiber cord were measured in the same manner as in Example 1. The results are shown in Table 1 below.
【0022】(比較例3)熱処理1において炉内温度を
85℃に、熱処理2において炉内温度を175℃、通過
時間90秒、ストランドの張力2.22g/Texに設定し
た以外は、実施例1と同様にしてゴム補強用ガラス繊維
コードを製造した。また、実施例1と同様にして、この
ガラス繊維コードの物性を測定した。その結果を、下記
「表1」に併せて示す。(Comparative Example 3) In the heat treatment 1, the furnace temperature was set to 85 ° C, and in the heat treatment 2, the furnace temperature was set to 175 ° C, the passage time was 90 seconds, and the strand tension was 2.22 g / Tex. In the same manner as in Example 1, a glass fiber cord for rubber reinforcement was produced. The physical properties of this glass fiber cord were measured in the same manner as in Example 1. The results are shown in Table 1 below.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【発明の効果】この発明は、以上のように構成されてい
ることから、つぎのような効果を奏する。請求項1に記
載の発明によれば、RFLがガラス繊維のストランド全
体に行き渡りかつ強固に定着するので、一体性が高く屈
曲疲労による強度劣化やRFLの剥離などが生じ難いゴ
ム補強用ガラス繊維コードが確実に得られる。According to the present invention having the above-described structure, the following effects can be obtained. According to the first aspect of the present invention, since the RFL spreads over the entire strand of the glass fiber and is firmly fixed, the glass fiber cord for rubber reinforcement has high integrity and hardly causes strength deterioration due to bending fatigue, peeling of the RFL, and the like. Is surely obtained.
【0025】請求項2に記載の発明によれば、上記ガラ
ス繊維コードを補強材として埋設することにより、引っ
張り強度や耐屈曲疲労性の極めて高いゴム製品が得られ
る。According to the second aspect of the present invention, a rubber product having extremely high tensile strength and bending fatigue resistance can be obtained by embedding the glass fiber cord as a reinforcing material.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // F16G 1/08 C03C 25/02 N Fターム(参考) 4G060 BA02 BC01 BC07 BC11 BD15 BD22 CB01 4J002 AC001 DL006 FA046 FB266 4L036 MA04 MA33 PA18 PA21 PA26 PA46 UA06 UA07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // F16G 1/08 C03C 25/02 NF term (reference) 4G060 BA02 BC01 BC07 BC11 BD15 BD22 CB01 4J002 AC001 DL006 FA046 FB266 4L036 MA04 MA33 PA18 PA21 PA26 PA46 UA06 UA07
Claims (2)
ホルムアルデヒド樹脂ゴムラテックス混合液を塗布し、
80〜150℃で加熱乾燥させ、 このストランドを複数引き揃えて撚糸し、 張力0.3〜2.0g/Tex、200〜300℃で熱処理
するゴム補強用ガラス繊維コードの製造方法。(1) Resorcinol is added to a glass fiber strand.
Apply a formaldehyde resin rubber latex mixture,
A method for producing a glass fiber cord for rubber reinforcement, wherein the strand is heated and dried at 80 to 150 ° C, a plurality of the strands are aligned, twisted, and heat-treated at a tension of 0.3 to 2.0 g / Tex at 200 to 300 ° C.
ガラス繊維コードを含有するゴム製品。2. A rubber product containing a glass fiber cord produced by the method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000188616A JP2002004139A (en) | 2000-06-23 | 2000-06-23 | Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000188616A JP2002004139A (en) | 2000-06-23 | 2000-06-23 | Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002004139A true JP2002004139A (en) | 2002-01-09 |
Family
ID=18688374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000188616A Pending JP2002004139A (en) | 2000-06-23 | 2000-06-23 | Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002004139A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1686212A1 (en) * | 2003-09-25 | 2006-08-02 | Nippon Sheet Glass Co.,Ltd. | Rubber reinforcing cord, method of producing the cord, and rubber product using the cord |
JP2007197553A (en) * | 2006-01-26 | 2007-08-09 | Central Glass Co Ltd | Coating liquid for glass fiber and rubber-reinforcing glass fiber using the same |
JP2011241267A (en) * | 2010-05-17 | 2011-12-01 | Sumitomo Bakelite Co Ltd | Interfacial reinforcement-treated glass filler and phenolic resin molding material |
JP5367582B2 (en) * | 2007-11-15 | 2013-12-11 | 日本板硝子株式会社 | Reinforcing cord and rubber product using the same |
JPWO2012169207A1 (en) * | 2011-06-10 | 2015-02-23 | 日本板硝子株式会社 | Reinforcing cord for reinforcing rubber product and rubber product using the same |
-
2000
- 2000-06-23 JP JP2000188616A patent/JP2002004139A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1686212A1 (en) * | 2003-09-25 | 2006-08-02 | Nippon Sheet Glass Co.,Ltd. | Rubber reinforcing cord, method of producing the cord, and rubber product using the cord |
EP1686212A4 (en) * | 2003-09-25 | 2007-10-10 | Nippon Sheet Glass Co Ltd | Rubber reinforcing cord, method of producing the cord, and rubber product using the cord |
JP2007197553A (en) * | 2006-01-26 | 2007-08-09 | Central Glass Co Ltd | Coating liquid for glass fiber and rubber-reinforcing glass fiber using the same |
JP5367582B2 (en) * | 2007-11-15 | 2013-12-11 | 日本板硝子株式会社 | Reinforcing cord and rubber product using the same |
JP2011241267A (en) * | 2010-05-17 | 2011-12-01 | Sumitomo Bakelite Co Ltd | Interfacial reinforcement-treated glass filler and phenolic resin molding material |
JPWO2012169207A1 (en) * | 2011-06-10 | 2015-02-23 | 日本板硝子株式会社 | Reinforcing cord for reinforcing rubber product and rubber product using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2270281C2 (en) | Method of production of reinforcing component on base of carbon fiber for pneumatic tire | |
JP4801675B2 (en) | Rubber reinforcement cord | |
JP4755994B2 (en) | Rubber reinforcing cord and rubber belt using the same | |
WO2005098123A1 (en) | Composition for cord coating, cord for rubber reinforcement made with the same, and rubber product made with the same | |
JP2002004139A (en) | Method for producing glass fiber cord for rubber reinforcement and rubber product containing the same | |
JP3754132B2 (en) | Fiber treatment agent for reinforcing rubber, reinforcing fiber, and rubber reinforcement | |
JPH0725898B2 (en) | Textiles for rubber reinforcement | |
JPWO2006051873A1 (en) | Rubber reinforcing cord, method for manufacturing the same, and rubber product using the same | |
JP4396945B2 (en) | Rubber reinforcing cord, manufacturing method thereof, and rubber product using the same | |
JP6265917B2 (en) | Carbon fiber cord for reinforcing rubber products and rubber product using the same | |
JPH11217739A (en) | Glass fiber cord for reinforcing rubber | |
JPH0456053B2 (en) | ||
JPH0657568A (en) | Fiber cord for reinforcement and rubber-cord composite material produced by using the cord | |
JP2752744B2 (en) | Treatment agent for fiber for rubber reinforcement | |
JP2003268678A (en) | Glass fiber treating agent for rubber reinforcement, rubber reinforcing cord using the same and rubber product | |
JP3967609B2 (en) | Glass fiber treating agent for rubber reinforcement, rubber reinforcing cord and rubber product using the same | |
JP2001114906A (en) | Glass fiber for rubber reinforcement and manufacturing method thereof | |
JP6395649B2 (en) | Rubber reinforcing cord and rubber product using the same | |
JPH0925141A (en) | Treatment of glass fiber and treating device | |
JPH08120573A (en) | Glass fiber for reinforcement of hydrogenated nitrile rubber | |
JP6850644B2 (en) | How to manufacture high-strength dip cord | |
JP2918826B2 (en) | Method of manufacturing tensile body for belt | |
JP2003253569A (en) | Agent for treating glass fiber for rubber reinforcement, rubber-reinforcing cord produced by using the agent and rubber product | |
JPH09111669A (en) | Glass fiber for rubber reinforcement and its production | |
JPH0318820B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070420 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091201 |