WO2018146365A1 - Particulas purificadas de polen y su uso para administrar nanosistemas - Google Patents

Particulas purificadas de polen y su uso para administrar nanosistemas Download PDF

Info

Publication number
WO2018146365A1
WO2018146365A1 PCT/ES2018/070092 ES2018070092W WO2018146365A1 WO 2018146365 A1 WO2018146365 A1 WO 2018146365A1 ES 2018070092 W ES2018070092 W ES 2018070092W WO 2018146365 A1 WO2018146365 A1 WO 2018146365A1
Authority
WO
WIPO (PCT)
Prior art keywords
purified
pollen particle
pollen
purified pollen
particle
Prior art date
Application number
PCT/ES2018/070092
Other languages
English (en)
French (fr)
Inventor
Noemi Csaba
Diego Pan Delgado
Sonia Reimondez Troitiño
Marcos Garcia Fuentes
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201730152A external-priority patent/ES2613586B2/es
Priority claimed from ES201730151A external-priority patent/ES2613585B2/es
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to EP18750777.7A priority Critical patent/EP3581174A4/en
Priority to US16/484,536 priority patent/US20200129575A1/en
Publication of WO2018146365A1 publication Critical patent/WO2018146365A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L21/00Marmalades, jams, jellies or the like; Products from apiculture; Preparation or treatment thereof
    • A23L21/20Products from apiculture, e.g. royal jelly or pollen; Substitutes therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/84Flavour masking or reducing agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes

Definitions

  • the present disclosure is directed to purified pollen particles, their manufacturing methods and their uses in the administration of encapsulated active ingredients.
  • Transmucosal administration of active ingredients is one of the most accepted forms of administration by patients. It includes, for example, nasal, oral (eg, absorption through the small or large intestine), or ocular administration.
  • the transmucosal route for drug administration has certain limitations inherent in its physicochemical characteristics. In this sense, the most used route of administration is parenteral, which nevertheless has disadvantages. For example, the preparation of injectables requires sterile production conditions, their management usually involves medical personnel, is more uncomfortable for the patient, and implies greater risks of infection caused by the improper use of the needles. For all these reasons, transmucosal administration is in most cases an attractive alternative.
  • oral administration This also occurs in the field of food, where ways of administration of different additives and nutrients that improve existing technology are constantly being sought.
  • the epithelium of the human intestine is highly absorbent, and consists of a large number of microvilli with a total absorption area of up to 350 m 2 , ideal for efficient absorption.
  • the intestinal mucus is a complex hydrogel that comprises proteins, carbohydrates, lipids, salts, and other components. It is secreted and continuously renewed to prevent the entry of pathogens, lubricate and protect the digestive tract, but at the same time allows the passage of nutrients. Due to the presence of this intestinal mucosa barrier and its dynamic nature, the particles administered orally may not have an adequate residence time for absorption, and be eliminated without fulfilling their objective. Mucoadhesive polymers such as some cellulose, polyacrylate, starch or chitosan derivatives have been used to improve the time of residence of the particles in the intestinal tract.
  • nanoparticles When nanoparticles are used, oral administration can be considered a complex stepwise process.
  • the nanoparticles must first reach the intestinal mucosa without degrading, and without releasing the active substance prematurely. Next, it must adhere to the outermost mucosa. This adhesion must be strong enough to prevent its rapid removal, but at the same time allow penetration into the deeper layers of the mucosa. Once the deeper layers of the mucosa have been reached, the nanoparticles must yield the active substance with the required release profile.
  • the administration of therapeutic drugs through the digestive tract has been evaluated using platforms that also use physical methods (Traverso G, Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Polat BE, Anderson DG, Blankschtein D , Langer RJ Pharm Sci 2015, 104, 362-367).
  • the robotic pill is one of the most recent platforms for oral delivery of large molecules.
  • this strategy is promising, it does not cease to involve perforation and alteration of the mucosa, with the risks that this entails, especially in the case of chronic diseases, where repeated administration is necessary, sometimes for years.
  • several efforts have been made in the use of spores or pollen as vehicles for transporting molecules.
  • the spores are produced by lower plants or cryptogams, also known as sporaphytes. Pollen is produced by plants with seeds (spermatophytes), and contains a microgametophyte (male gametophyte). Like their biology, the structure and composition of spores and pollen vary.
  • a pollen particle or a spore is essentially composed of genetic material contained in a cytoplasm, which is covered by a first inner layer called intin in the case of pollen, and endospores in the case of spores. These in turn are coated with a second layer called exina and exospora, respectively.
  • the composition of the cytoplasm, intin and endospora vary.
  • WO2005000280 describes hollow spores, that is, emptied of its cytoplasm and its intin, and free of the lipid layer, prepared from Lycopodium clavatum, which are loaded with dietary or pharmaceutical ingredients and have a protein content of less than 0.5%.
  • These hollow spores are prepared by a complex process of aggressive washing with acidic, basic and organic media. The possibility of using hollow spores as a vehicle for nanosystems is not indicated in this document.
  • WO2006064227 describes the use of this same technology based on the spores of Lycopodium clavatum for the creation of magnetic formulations.
  • Other applications in the name of the same authors describe hollow spore compositions of Lycopodium clavatum following the same principles: WO2007012856 (antioxidant activity), WO2007012857 (topical compositions), WO2009077749 (compositions comprising protective additives), and WO2010004334 (improved whiteness) .
  • exine of the pollen particles has on its surface an additional complex lipid layer mixture of proteins, lipids and other molecules (known as "pollenkitt").
  • Intin is generally formed by cellulose, while exine is composed of a protein material called sporopolenin, and whose exact composition is unknown.
  • Exina is an extremely resistant layer, stable to acidic and basic conditions, and has a porosity high. Given these properties, various technologies have been tested to isolate the exine, that is, empty the inside of the exina from its intin and genetic material, as well as clean the outer surface of the lipid or pollenkitt layer. Once isolated, its use is tested as a vehicle for administration of molecules of interest. Aghavendra C. Mundargi, Michael G.
  • the BSA load comprises incubation or incubation under vacuum.
  • the preparation process described in this document does not include washing with aqueous solutions.
  • the pollen is washed with cyclohexane to extract the lipophilic proteins from its surface. It is reported that, as a result of the treatment, the exina's microchannels collapse, thus losing the pollen particle its structure. The use of pollen is not without problems.
  • pollen can have similar sizes, its morphology and its biocompatibility once treated is not guaranteed, especially in view of the aggressiveness of some of the treatments to which it is subjected. Also consider whether this Treatment will keep your morphology intact, and will be able to incorporate and then protect, and release the products that can be incorporated, for example, nanosystems.
  • Nasal and ocular administration face similar problems to those described above for oral administration, and it is still a challenge to administer active ingredients by these routes so that they have adequate stability and residence time.
  • Said platform is based on purified pollen particles. They are obtained by a pollen purification method that improves its biocompatibility and allows the incorporation of nanosystems in a reproducible way.
  • a first aspect of the invention is a purified pollen particle comprising an intin layer and an exine layer, but whose lipid layer (pollenkitt) has been removed, and which comprises a nanosystem.
  • the purified pollen particles of the invention can be incorporated into different compositions, which constitutes a further aspect of the invention.
  • An additional aspect is also the possibility of its use as a medicine. This opens the possibility of a new platform for use in the manufacture of medicines for the treatment of diseases or medical conditions such as, for example, metabolic, immune, gastrointestinal, cardiovascular, joint, rare, tropical, oncological diseases, among others, and also to prevent infectious diseases, such as vaccines. Preferably, in the case of chronic and / or metabolic diseases that require repeated administrations, in particular mucosal routes. Additional aspects are also its use in the manufacture of a medicament for the controlled release of a pharmaceutically acceptable active ingredient.
  • the capsules of the invention also have excellent use as a food supplement in the administration of a dietary acceptable principle, and for use in the manufacture of a medically administered oral, nasal or ocular administration. Even the possibility of designing treatments in these ways that were not possible before. Not only have excellent stability and adhesion results been obtained.
  • purified pollen particles are obtained by very simple methods from available pollen at economical prices and in viable quantities for industrial application. Therefore, a further aspect of the invention is a process for preparing purified pollen particles comprising the steps of (a) washing a pollen particle in an aqueous medium;
  • stage (c) put the purified pollen particle in contact with a nanosystem; wherein stage (b) can be performed before or after stage (a).
  • An alternative process of the invention is a process for preparing purified pollen particles comprising the steps of
  • stage (b) can be performed before or after stage (a ).
  • said process further comprises (c) contacting a nanosystem with the purified pollen particle.
  • the intin is partially or totally conserved, and the resulting purified pollen particle is more stable in biological fluids (see examples below) than the hollow spores that only retain the exine layer.
  • a further aspect of the invention is therefore the purified pollen particles obtainable by this process, which, as evidenced by the examples, show differentiated properties of biological fluid stability and transportability to, and within, the mucous membranes.
  • the purified pollen particles obtained by the first described procedure incorporate nanosystems by a simple incubation process.
  • the purified pollen particle obtainable by this incubation process also constitutes another aspect of the present invention.
  • the purified pollen particles of the invention can be incorporated into different compositions, which constitutes a further aspect of the invention.
  • An additional aspect is also the possibility of its use as a medicine. This opens the possibility of a new platform for use in the manufacture of medicines for the treatment of diseases or medical conditions such as, for example, metabolic, immune, gastrointestinal, cardiovascular, joint, rare, tropical, oncological diseases, among others, and also to prevent infectious diseases, such as vaccines. Preferably, in the case of chronic and / or metabolic diseases that require repeated administrations, in particular mucosal routes. Additional aspects are also its use in the manufacture of a medicament for the controlled release of a pharmaceutically acceptable active ingredient.
  • the capsules of the invention also have excellent use as a dietary supplement in the administration of a dietary acceptable principle, and for use in the manufacture of a medically administered oral administration, nasal or ocular Even the possibility of designing treatments in these ways that were not possible before.
  • the purified pollen particles obtained by any of the washing procedures described can incorporate nanosystems by a simple incubation process.
  • a further aspect of the invention is a purified pollen particle, preferably equine, comprising an intin layer and an exine layer, but whose lipid layer (pollenkitt) has been removed.
  • a further aspect of the invention is a composition comprising a nanosystem and a purified pollen particle, preferably equine, comprising an intin layer and an exine layer, but whose lipid layer (pollenkitt) has been removed.
  • the purified pollen particles described herein provide a new strategy for the administration of nanosystems, especially for their transmucosal administration. They allow a high number of nanosystems to be administered simultaneously, and improve their chances of adhesion and penetration into the mucosa.
  • Figures 1A, IB, 1C and ID Photographs showing the size and shape of the purified pollen of the invention in different simulated biological media: A) before incubation; B) after incubation at 37 ° C in simulated intestinal fluid; C) after incubation at 37 ° C in simulated gastric fluid; and D) after incubation at 37 ° C in blood.
  • FIG. 2 Scanning electron micrograph of sunflower pollen grains (Helianthus annuus) after different treatments.
  • A Pollen washed with water.
  • B pollen after washing with cyclohexane (see Example 1).
  • C Pollen permeabilized with a solution of hydrochloric acid between 40 Q C and 80 Q C for 5 minutes.
  • D Pollen permeabilized with a solution of perchloric acid between 15 Q C and 40 Q C for 60 min.
  • E Pollen permeabilized with a phosphoric acid solution permeabilized by phosphoric acid treatment above 60 Q C for 120 min.
  • F Pollen washed with cyclohexane and subsequently treated with a proteinase K solution.
  • Figure 3 Measurement of autofluorescence in pollen particles washed with water (a), and in capsules that have been subjected to an additional wash with chloroform / methanol ( b) or with ciciohexane (c). See example 1.
  • the axis of the abscissa shows the wavelength in nm, the axis of ordinate the absorption units.
  • Example 1 Pollen permeabilized with a solution of Phosphoric acid
  • D Pollen permeabilized with a solution of trifluoroacetic acid
  • E Pollen permeabilized with a solution of hydrochloric acid
  • F Pollen permeabilized with a solution of perchloric acid.
  • Figure 6 Fluorescence micrograph of treated pollen samples. A. Internal cut of pollen grain treated with cyclohexane. B. Internal cut of pollen grain permeabilized with phosphoric acid. C. Pollen permeabilized with perchloric acid. D. External view of pollen grain permeabilized with phosphoric acid.
  • FIG 7 Fluorescence micrograph of pollen samples treated with enzymes.
  • A Pollen permeabilized with acid solution.
  • B permeabilized pollen and protease treatment.
  • C Permeabilized pollen treated with carbohydrase and protease enzymes.
  • Figure 8 SEM photographs of the pollen particles that associate A) chitosan nanoparticles; B) protamine nanocapsules and C) protamine nanocapsules after lyophilization.
  • Figure 9 Nanosystem release graph. Measurement of the fluorescence released in the supernatant after a centrifugation process at different times. The axis of the abscissa shows the times in hours, the axis of ordered units of absorption.
  • Figure 10 Microscopy photograph after a hematoxylin / eosin stain in which it is observed how the intestinal wall maintains integrity after extraction and manipulation.
  • Figure 11 Photographs of confocal ex vivo at 120 minutes. In the red channel (Figure 11A) the nanosystems are seen and in the green channel ( Figure 11B) the pollen particles. It is appreciated how the nanosystems have been deposited on the purified pollen particles of the invention.
  • Figure 12 Microscopy photograph showing that pollen grains keep their integrity and morphology in vivo.
  • Figure 13 Microscopy photograph showing the interaction between pollen grains and the intestine wall.
  • purified pollen particle means those pollen particles that have been treated to remove the lipid layer that covers its exterior ("pollenkitt").
  • the treatment also totally or partially empties the cytoplasm inside the particle.
  • the treatment preferably leaves the intin and exine substantially free of the cytoplasm and the lipid layer. Such purification may not be total, and still partially retain the lipid layer.
  • purified pollen particles do not retain more than 50%, preferably not more than 40%, for example, not more than 20%, not more than 10%, more preferably not more than 5% by weight of the lipid layer, with respect to the original weight of the lipid layer.
  • at least 10% of the purified pollen particle has also been removed, for example at least 20%, for example at least 30%, for example at least 40%, for example at least 50%, by for example at least 60%, for example at least 70%, for example at least 80%, for example at least 90% by weight of the cytoplasm, with respect to the original weight of the cytoplasm.
  • purified pollen particles that comprise the intin layer and the exine layer, but do not comprise its lipid layer (pollenkitt), and preferably neither the cytoplasm.
  • the purified pollen particles are obtained through the simple pollen purification method described above and comprising, first washing the pollen particles with aqueous media, and then with an organic solvent, preferably, without at any time the Pollen particles come into contact with basic or acidic media (that is, without pH less than 4.5 or greater than 9)
  • the water is at an essentially neutral pH, for example, at a pH between 5 and 9, preferably between 6 and 8, more preferably between 6.5 and 7, 5.
  • the purification process involves washing at high temperatures.
  • the average expert can adjust the conditions, and it is preferred that the water in the first stage is at a temperature between 15 ° C and 60 ° C, preferably between 20 ° C and 45 ° C.
  • the solvent used in the second stage may also be an alcohol, for example, from 1 to 12 carbon atoms, for example, from 1 to 4 carbon atoms.
  • halogenated hydrocarbons that is, hydrocarbons as defined at the beginning of this paragraph, but in which at least one of the hydrogen atoms has been replaced by a halogen (fluorine, chlorine, bromine or iodine, preferably chlorine).
  • the halogenated hydrocarbon used in the present invention may have the formula C n H ( 2 n -z) Xz (non-cyclic, linear or branched) or C n H 2n -zXz (cyclic) where z is an integer (equal or less than 2n + 2 or 2n, as the case may be) and X is fluorine, chlorine, bromine or iodine, preferably chlorine.
  • this type of solvents are dichloromethane and chloroform. It is also possible to wash using mixtures of organic solvents in different proportions. For example, using a mixture of halogenated hydrocarbon: alcohol in proportions between 1:20 and 20: 1. An example may be the mixture of chloroform and methanol.
  • solvents that can be used in the present invention are those that include a carbonyl or ester group, and that have a low molecular weight, for example, below 250 Da. Extended examples of these solvents are acetone or ethyl acetate. As in the case of water washing, more than one washing with organic solvents can be performed. It is also preferred that the organic solvent wash be carried out at low or moderate temperatures, for example, at a temperature between 15 ° C and 60 ° C, preferably between 20 ° C and 45 ° C.
  • the method of the invention also thus includes the possibility of repeating one or more times the aqueous wash of step (a) and / or the organic solvent wash of step (b) and / or step (c). For example, it may be convenient to perform more than one aqueous wash to facilitate the removal of the cytoplasm.
  • the method of the invention optionally includes one or more enzyme treatments (eg, cellulases and / or amylases). These methods manage to pierce the intin and thus improve its porosity.
  • a particular embodiment of the invention is directed to a process that further comprises an additional step d) comprising at least one of the following treatments: i) washing with an acid solution; ii) enzymatic treatment; iii) wash with a buffered aqueous medium at a pH between 4.5 and 9; iv) wash with detergents.
  • stages i) -iv) the person skilled in the art may select one of them or make combinations thereof according to their needs. The person skilled in the art has at his disposal sufficient analysis and knowledge to be able to make such a selection, as set out in the examples.
  • stages, as well as stages a) and b) are aimed at favoring pollen perforation in order to eliminate the cytoplasm.
  • An additional advantage is that the procedures of the The present invention, including the washes of step d), allows the complete structure of the pollen wall to be preserved, in particular the exine and the intin.
  • a preferred embodiment is directed to a process that further comprises an additional step d) comprising an enzyme treatment.
  • the authors of the invention have proven that treatment with enzymes allows greater control over pollen perforation.
  • a preferred embodiment is directed to a process that further comprises an additional step d) comprising washing with enzymes and washing with detergents.
  • Enzyme treatments of the invention can be carried out with enzymes encompassed within section 3 of the classification of EC numbers (Enzyme Commission numbers), preferably with subsections 3.1; 3.2; 3.3; 3.4; and more preferably within subsection 3.2 with enzymes such as cellulases and 3.4 as proteinases.
  • EC numbers Enzyme Commission numbers
  • the enzyme is selected from hydrolases, carbohydrases, cellulase proteases, ⁇ -xylanases, ⁇ -glucanases, ⁇ -amylases, exo-l., 4-ag! Ucosidases., Lichenases, inulases, pectinases, polygalacturonases and hemicellulases
  • the enzymes employed in the processes described in the present invention are selected from among bacterial Subtilisins, Badlios alkaline proteases, chymotrypsin., Trypsin, proteinase K, OB protease, Actinase E (pronase), Protease S, Pepsin, Bovine pancreas proteases, collagenase, elastase, thrombin, papain, bromelain, thermolysin.
  • the conditions under which it is possible to prepare the purified pollen particles of the invention are not very aggressive and are easy to implement at the industrial level.
  • No preferably comprise high pressures so that the process does not include any step in which the particles are subjected to pressures greater than 10 bar (June 10 Pa).
  • all stages of the process are performed at pressures below 5 bars (0.5 x 10 6 Pa), preferably at pressures below 2 bars (0.2 x 10 6 Pa), usually at atmospheric pressure ( substantially 1 bar (10 5 Pa)).
  • the method of production does not involve any washing in aqueous medium whose pH is less than 4.5, preferably not less than 5, or greater than 9, preferably greater than 8.
  • the purified pollen particles of The invention may have applications in the pharmaceutical and food industry, it is preferred that the solvents be pharmaceutically acceptable. This is not critical to obtain the desired properties, and it must also be taken into account that these purified pollen particles are going to undergo subsequent incubation and / or purification steps before being administered.
  • Each of the washes is performed according to the usual techniques in this field and comprises the formation of a suspension of the pollen grains in water or in organic solvent, usually followed by stirring. The suspension is usually incubated and centrifuged to then remove the supernatant. The resulting particles are usually dried, usually in conditions of moderate temperature, for example, between 4 ° C and 60 ° C, for example, between 20 ° C and 40 ° C.
  • the method of purification of the invention admits a priori the incorporation into the particle of pollen purified of pollen any nanosystem. Such incorporation can occur as a result of adsorption of the nanosystem on the surface of the purified pollen particle, or as a consequence of the absorption of the nanosystem inside the purified pollen particle.
  • the purified pollen particle can also incorporate a pharmaceutically acceptable active ingredient, a dietary acceptable principle or mixtures of both.
  • the purified particles of the invention can thus incorporate the nanosystems, which in turn can comprise a pharmaceutically acceptable active ingredient, a dietary acceptable principle or mixtures of both.
  • the nanosystems can incorporate more than one active ingredient.
  • the incorporation of the nanosystem simply requires putting it in contact with the purified pollen particle obtained after steps (a) and (b).
  • the method of incorporating nanosystems can therefore comprise incubating the nanosystem in the presence of the purified pollen particle. Such incubation can be done in * dry or in the presence of a liquid. Therefore, the preparation procedure may include the steps of
  • the preparation procedure may include the steps of
  • step (c) drying the purified pollen particle after steps (a) and (b); and impregnate the purified pollen particle with the nanosystems, optionally, applying a vacuum.
  • the purified pollen particles thus obtained can be lyophilized. If necessary, a cryoprotectant, for example glucose or trehalose, can be added before proceeding with such lyophilization.
  • a cryoprotectant for example glucose or trehalose
  • This method of purification thus allows the purified pollen particles to subsequently incorporate organic nanosystems, and be capable of transporting them to, and through, the mucous membranes, for example, in the intestine, the buccal, nasal or ocular mucosa.
  • Pollen particles that are used as raw material to be purified can come from different species. Although the pollen particles have different sizes and morphologies, depending on the original species, the purification method of the present invention can be applied to anyone.
  • equine pollen particles are preferred, which comprise needles with a length of at least one mill, for example, between 1 millimeter and 10 microns, or between 1 microns and 7 microns, generally, between 1 micron and 5 microns or between 1.5 microns and 2.5 microns, or between 1.5 microns and 2 microns.
  • they can be particles of the Helianthus family, for example, Helianthus annuus (Sunflower).
  • the pollen particle can come from, for example, Angiosperms or Magnoliophytas, that is, flowering plants.
  • Angiosperms or Magnoliophytas pollen particles may belong to the monocotiledoneas, Chloranthaceae, Ceratophyllaceae, Magnoliidae or Eudicotiledoneas, especially Eudicotiledoneas, with equine species being preferred.
  • the families of Eudicotiledoneas that are most appropriate are Annonaceae, Malvaceae, Meliaceae, Tamaricaceae, Asteraceae, Oleaceae or Caprifoliaceae.
  • equine species especially useful for the purposes of the invention are one or more selected from the group consisting of
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Helianthus sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Pectis sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Tagetes sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Calendula sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Aster sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Doronicum sp.
  • Magno liophyta Eudicot ledóneas Astera is Asteraceae Echinacea sp.
  • the pollen particles used as a raw material in the invention can have different sizes, for example, it can have an average diameter of between 1 millimeter and 400 microns, 1 lump and 300 microns, or between 1 mer and 200 microns, or between 1 mer and 100 microns, for example, between 10 microns and 50 microns, for example, between 15 microns and 40 microns, or between 20 microns and 30 microns, or between 25 microns and 30 microns.
  • Both purified pollen particles such as nanosystems, the pharmaceutically acceptable active ingredient, or the dietary acceptable principle, may be associated with a marker, for example, a fluorescent marker.
  • a marker for example, a fluorescent marker.
  • Non-limiting examples of this type of fluorescent markers are amines reactive dyes (for example, Alexa Fluor ® ), TAM A or Cy Dyes (Cy-dyes). This allows you to track each of them together or separately.
  • the purified pollen particles of the invention have the ability to incorporate nanosystems, preferably organic nanosystems.
  • nanosystem in the term we use it here is a colloid, that is to say a particle in which at least one of its dimensions is in the range between 1 and 1000 nm, preferably, it has an average diameter between 1 nm and 500 nm, more preferably, between 40 nm and 400 nm, measured by photonic correlation spectroscopy in a Malvern Instruments Nanosizer, and having a lyophobic character, that is, it is not dissolved in its external phase (Paul Hiemenz, Raj Rajagopalan, Principies of colloid and Surface chemistry, 3rd Ed., Marcel Dekker, Inc., New York, 1997).
  • the colloidal system is intended to have in its composition at least one fluorescent marker or a pharmacologically active molecule.
  • Said term is considered in the present invention to include, for example, “nanocapsule”, “nanoparticle”, “vesicle”, “micelle”, “nanoemulsion”, “liposome” or “utra-fine particle”.
  • organic nanosystems are those nanosystems whose components are at least partly organic, that is, based on molecules comprising carbon and hydrogen, for example, proteins, carbohydrates or lipids. See for example, Kumar R, Lal SJ Nanomater Mol Nanotechnol 2014, 3, 4.
  • the nanosystems of the invention can be for example polymeric nanosystems.
  • Polymeric nanosystems are widely described in the literature and are known to those skilled in the art, as described for example by Pinto Reis et al., In Nanomedicine: Nanotechnology, Biology, and Medicine 2 (2006) 8-21. Pinto Reis, et al. 2006.
  • the average diameter polydispersity index of the polymeric nanosystems that can be used in the present invention is between 0.1 and 0.5, where the polydispersity index is measured by the photonic correlation spectroscopy technique measured in a Nanosizer from Malvern Instruments.
  • the nanosystem be substantially biodegradable and of low or no toxicity.
  • the nanosystem is considered to be biodegradable when at least one of its components complies with commonly accepted standards, for example, biodegradability standards written by different organizations of Standardization (ISO, CEN, ASTM, DIN, etc.), for example, is 90% biodegradable after 6 months according to UN E-EN-ISO 14852: 2005 (determination of the final aerobic biodegradability of plastic materials in aqueous medium), that is to say 90% of the carbon atoms (C) present in the component were converted to carbon dioxide after six months under the conditions defined in the standard.
  • biodegradability standards written by different organizations of Standardization (ISO, CEN, ASTM, DIN, etc.)
  • nanosystems there are various kinds of nanosystems that can be used in the present invention, many of them commercially available, or that can be prepared by methods described in the state of the art. They can be of the matrix type, that is, polymeric networks containing ionic crosslinks, for example, which contain water soluble polymers. Non-limiting examples of this type of nanosystems are those based on polysaccharides, for example, chitosan (chitosan nanoparticles) or polyamino acids, for example, protamine (protamine nanocapsules).
  • Nanosystems comprising a liquid core surrounded by a coating layer can also be used in the present invention.
  • the core may incorporate different oils, lipid material (for example, fatty acids or phospholipids or mono-, di- or tri-glycerides), in combination with non-ionic surfactants.
  • the coating layer may be a polymer, for example, protamine. See for example the methods described in patent application PCT / ES2013 / 070885.
  • Nanosystems for use in the present invention are solid nanoparticles, such as chitosan nanoparticles, in particular those described in ES2481940B1, ES2093562, Csaba et al, Journal of Controlled Relay, 2017, 245, 62-69; Marcos Garc ⁇ a-Fuentes, M.J.A, Journal of Controlled Relay, 2012, 161 (2), 496-504.
  • chitosan nanoparticles in particular those described in ES2481940B1, ES2093562, Csaba et al, Journal of Controlled Relay, 2017, 245, 62-69; Marcos Garc ⁇ a-Fuentes, M.J.A, Journal of Controlled Relay, 2012, 161 (2), 496-504.
  • a person skilled in the art can know how to prepare these and other polymeric nanosystems according to Nanomedicine: Nanotechnology, Biology, and Medicine 2 (2006) 8-21. Pinto Reis, et al. 2006
  • nanosystems be pharmaceutically acceptable for the applications proposed in the present invention.
  • the purified pollen particles of the invention are stable in vivo, and have a surprising ability to penetrate the intestine mucosa, making them an excellent platform for transmucosal administration of nanosystems, especially for oral administration.
  • the present invention includes the use of purified pollen particles of the invention, especially those incorporating nanosystems, for the manufacture of a medicament. That is, a purified pollen particle of the invention, especially those incorporating nanosystems, for use as a medicament.
  • the purified pollen particles of the invention are therefore especially suitable for use in the manufacture of a transmucosal administration medicament, such as oral administration, ocular administration or nasal administration.
  • purified pollen particles of the invention can be used for ocular administration, including their use for the manufacture of a medicament for the treatment of ocular diseases, for example, for the cure of ocular wounds or macular disease.
  • the purified pollen particles of the present invention can also be used for nasal administration of antigens, especially interesting for the administration of vaccines, which would alleviate the burden that parenteral administration poses to health services, especially in developing countries.
  • a particularly suitable use for purified pollen particles of the invention is the manufacture of a medicament for oral administration and / or for the manufacture of a medicament for the controlled release of an active ingredient. , preferably of release in the digestive tract.
  • the term "digestive tract" means in the present invention the system through which any active ingredient administered orally from its intake to excretion passes. It therefore includes the mouth, throat, esophagus, stomach, small intestine and large intestine, among others.
  • the purified particles of the invention may be useful for the administration of molecules for which only parenteral administration means are known, for example for the administration of antidiabetic peptides.
  • the incorporation of these active substances in nanosystems, and that of these in turn in purified pollen particles allows transport to the epithelium and its controlled release.
  • Mucosal surfaces such as the respiratory or gastrointestinal tract represent the main route of entry of many pathogens and play an integral role in the development of effective defense mechanisms against these.
  • a combined immune response that involves systemic and mucosal immunity is best achieved by transmucosal administration of antigens.
  • active substance refers to a substance used to treat, cure or prevent a medical condition or disease. It also encompasses in the context of the present invention those substances that are used in diagnostic tests. Said active ingredient is part of the nanosystem, and can be, for example, a contrast agent or a vaccine.
  • the active ingredient is a high molecular weight compound, for example, a protein, a peptide, a lipid, an antibody or a nucleic acid. Therefore, the present invention also relates to a composition comprising the purified pollen particle of the invention and a pharmaceutically acceptable excipient. In another aspect, the invention relates to a composition comprising the purified pollen particle of the invention and a dietary acceptable excipient.
  • excipient refers to a diluent or adjuvant with which the active substance is administered.
  • Such pharmaceutical excipients may be sterile liquids, such as water or oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Suitable pharmaceutical excipients are described in "emington's Pharmaceutical Sciences” by E.W. Martin. Such excipients can also be considered as the auxiliary substances necessary to manufacture the desired pharmaceutical form. Its nature and quantities depend, among other factors, on the pharmaceutical form of administration chosen. Said pharmaceutical forms of administration of the pharmaceutical composition will be manufactured according to conventional methods known to those skilled in the art.
  • pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not normally produce an allergic or similar unwanted reaction, such as gastric discomfort, dizziness and the like, when administered to a human being.
  • pharmaceutically acceptable means approved by a federal or state regulatory agency or listed in the US Pharmacopoeia. or other pharmacopoeia generally recognized for use in animals and more particularly in humans.
  • dietary acceptable refers to molecular entities and compositions that are physiologically tolerable, preferably approved for human consumption by a regulatory agency for use with food purposes in animals and more particularly in humans. That is, the use of purified pollen particles of the present invention for the administration of a dietary acceptable principle excludes therapeutic uses, and may serve, for example, for the administration of a taste masker.
  • the present disclosure thus includes methods for treating a subject in need of treatment by administering a therapeutically effective amount of the purified pollen particles of the invention.
  • treatment or “treat” refers in the context of the present invention to the administration of the pharmaceutical compositions of the invention to prevent, reduce or eliminate one or more symptoms associated with a medical condition or disease.
  • treat also covers the elimination, reduction or prevention of the sequelae of said disease or medical condition.
  • reduce is understood in the context of the present invention as the improvement in the situation of the patient, either evaluated by subjective means (perception of the patient as to some particular aspect or in terms of their general condition) or by objective means , for example, biological parameters, for example, levels of an analyte in certain fluids.
  • the term "therapeutically effective amount” refers to the amount of active ingredient calculated to produce the desired effect and will generally be determined, among other reasons, by the characteristics of the active ingredient used and the therapeutic effect to be obtained.
  • the dose of active ingredient administered to a subject in need of treatment for the treatment is in the range of 10 "10 to 10 10 mg / kg body weight, usually between 10 " 3 and 10 3 mg / kg of body weight.
  • the medicament comprising the purified pollen particles of the invention can be found in any form suitable for administration to humans and / or animals, preferably humans, including infants, children and adults and can be prepared by standard procedures known to those skilled in the art. , for example, "Pharmaceutics: The Science of Dosage Forms, second edition, Aulton, ME (ed.) Churchill Livingstone, Edinburgh (2002);” Encyclopedia of Pharmaceutical Technology ", second edition, Swarbrick, J. and Boylan JC (eds .), Marcel Dekker, Inc. New York (2002); “Modern Pharmaceutics", fourth edition, Banker GS and hodes CT (eds.) Marcel Dekker, Inc. New York 2002 and "The Theory and Practice of Industrial Pharmacy", Lachman L, Lieberman H. and Kanig J. (eds.), Lea & Febiger, Philadelphia (1986).
  • the composition of the medication may vary depending on the route of administration.
  • the pharmaceutical composition of the invention can be administered in a plurality of pharmaceutical forms of administration, for example, solid, liquid, etc.
  • said pharmaceutical forms of administration of the pharmaceutical composition of the invention include oral drops (suspension, emulsion, etc.); oral formulations (liquids, suspension, emulsion, gel, paste, powder, etc.); oral lyophilisate; oral gum; powder for oral suspension; granules; gastro-resistant granules; prolonged release granules; modified release granules; granules for oral suspension; powder and solvent for solution or oral suspension; syrup; syrup powder; syrup granules; tablets (for example, soluble tablet, dispersible tablet, coated tablet, film-coated tablet, effervescent tablet, orodispersible tablet, gastro-resistant tablet, prolonged-release tablet, modified-release tablet, oral tablet, chewable tablet, etc.); effervescent powder or granules; envelope, capsule; pills; intra-continuous continuous release device
  • Example 1 Specific examples of pollen purification (example 1), of preparation of nanosystems suitable for the present invention (example 2) and their incorporation into purified pollen particles to form delivery vehicles (example 3) are described below.
  • the results obtained in an ex vivo example (example 4) designed to evaluate the purified pollen particles of the invention are also shown, as well as in vitro and in vivo experiments that show the stability of the purified pollen particles of the invention (examples 5 and 6, respectively). These examples serve to illustrate embodiments of the invention, but which in no case should be considered limiting.
  • Example 1 Purification of purified pollen particles
  • sunflower pollen particles For the purification of the pollen particles, sunflower pollen particles, Helianthus annuus, were started.
  • Stage 1 10 mg of pollen particles were suspended in 20 ml of miliQ water previously heated at 37 ° C for 30 seconds with stirring. The suspension was kept under horizontal stirring overnight at room temperature, and centrifuged the next day at 2500 rpm at 15 ° C for 10 minutes (Hettich Zentrifugen with 1689 rotor). The supernatant was discarded and the process was repeated, washing with 10 ml of miliQ water at 37 ° C. The suspension was centrifuged again at 2500 rpm, at 15 ° C for 5 minutes. The supernatant was discarded and the resulting particles dried at 37 ° C overnight.
  • Stage 2 The material from Step 1 was then re-suspended in miliQ water to prevent the formation of aggregates, and the organic solvent was washed.
  • the first using cyclohexane and the second a mixture of chloroform / methanol.
  • the stability of the material thus obtained was evaluated against in vivo conditions. Specifically, it was incubated for 2 hours at 37 ° C in the following media: simulated intestinal fluid at pH 6.8, simulated gastric fluid at pH 1.2, blood and post-pandial conditions in the upper small intestine, i.e. situation simulation feeding in the intestinal fluid (pH 5.8). After the various tests, the material was evaluated by SEM, without observing significant variations, thus confirming that the purified pollen particles prepared by the simple purification method of the invention are stable in in vivo conditions, in such aggressive media such as gastric and intestinal. Only in the case of incubation in gastric fluid was the formation of salt precipitates and other products observed on the surface of the purified pollen particles.
  • Example 1.2 Wash with acidic aqueous medium
  • 70 mg of purified pollen was suspended in 1 ml of an acid solution (for example, phosphoric acid, sulfuric acid, perchloric acid, or hydrochloric acid) and heated at 70 ° C for 5 minutes with stirring. Depending on the acid and the desired degree of permeabilization, the process can be extended up to 120 minutes.
  • an acid solution for example, phosphoric acid, sulfuric acid, perchloric acid, or hydrochloric acid
  • the pollen was centrifuged at 14000 rpm for 10 minutes, the supernatant was removed and suspended in water for further washing.
  • the pollen sample was homogenized with the help of a vortex agitator and centrifuged again under the same conditions.
  • the washing process in which the addition of 1 ml of water was performed on the sample, was repeated several times.
  • the process of washing and removing acid residues can be carried out by dialysis against water.
  • the resulting particles were dried at 37 ° C overnight.
  • the permeated pollen could be recovered by filtration using filters compatible with the selected acid.
  • the permeated pollen was suspended in water and / or buffer, and filtered again in a washing step.
  • the permeated pollen can be completely neutralized using a buffer for washing with a pH between 3 and 11, preferably between 4.5 and 9. After neutralization the pollen was washed again with water. The material was recovered from the filter and dried.
  • Example 1.2.2 Pollen permeabilization using solutions at a temperature between 15 and 40 Q C
  • 70 mg of purified pollen was suspended in 1 ml of concentrated acid (for example, phosphoric acid, perchloric acid, or hydrochloric acid) and heated at 37 ° C for 1 hour with stirring. Alternatively, the process can be carried out at room temperature.
  • concentrated acid for example, phosphoric acid, perchloric acid, or hydrochloric acid
  • Example 1.3 Enzymatic washing In order to eliminate protein residues (allergens) and increase the size of the pores obtained in example 1.2.1; Two examples of non-limiting enzymatic treatment of sunflower pollen particles (Helianthus annuus) previously pretreated, either permeabilized (such as those obtained in Example 1.2), or alternatively purified from lipids (such as those obtained in the example, are given below) 1.1).
  • Non-limiting examples of proteases are proteinase K, trypsin, papain, bromelain, alkaline protease.
  • Enzyme treatments can be carried out with the enzymes included in section 3 of the classification of EC numbers (Enzyme Commission numbers), preferably with subsections 3.1; 3.2; 3.3; 3.4; and more preferably within subsection 3.2 with enzymes such as cellulases and 3.4 as proteinases.
  • EC numbers Enzyme Commission numbers
  • 70 mg of pretreated pollen was suspended, either with acid solution (product of example 1.2) or, alternatively, with organic solvents (product of example 1.1) in 1 ml of buffer at pH suitable for the hydrolase used, acid for carbohydrate enzymes, or alkaline in case of protease.
  • the reactions were incubated on an orbital shaker at 1000 rpm for a period between 10 minutes to 120 minutes, at the optimum temperature described for each hydrolase, generally 55 Q C for carbohydrase enzymes, and 37 Q C for proteases.
  • the enzymatically treated pollen was purified as described in step 2 of example 1.2.1.
  • the pollen particles obtained after the treatment of step 1 can be subjected to a subsequent treatment with proteases.
  • the purified product of step 1 is resuspended in 1 mL of buffer at pH between 7 and 9, preferably 8, at a concentration of 10 mM at 1 M.
  • the reactions were incubated in an orbital shaker at 1000 rpm for a period between 10 minutes to 120 minutes, at the optimum temperature of the protease.
  • 70 mg of pretreated pollen particles were suspended in 1 ml of buffer with different detergents that allow the elimination of proteins, such as ionic detergents such as sodium dodecyl sulfate (SDS), deoxycholate, colato, Sarcosyl, non-ionic type Triton X-100, DDM, digitonin, Tween-20, zwitterionic type CHAPS, chaotropic urea type, among others.
  • SDS sodium dodecyl sulfate
  • deoxycholate deoxycholate
  • colato Sarcosyl
  • Non-ionic type Triton X-100 DDM
  • digitonin digitonin
  • Tween-20 zwitterionic type CHAPS
  • chaotropic urea type among others.
  • the suspension was kept stirring at 37 Q C for 120 minutes with stirring, and centrifuged at 14000 rpm at 20 ° C for 10 minutes. The supernatant was discarded and the process was repeated, washing with 10 m
  • 70 mg of pretreated pollen particles were incubated in 1 ⁇ L of buffer with detergents compatible with proteolytic activity, such as Urea, Tween-20, Triton X-100 and SDS.
  • detergents compatible with proteolytic activity such as Urea, Tween-20, Triton X-100 and SDS.
  • protease proteinase K was used at a concentration of 1 mg / m L. The reaction was incubated for a time between 5 and 120 min at 37 Q C under stirring. Subsequently the sample was purified as explained in step 1.
  • Example 2 Some examples of organic nanosystems that can be encapsulated
  • Example 2.1 formulation of chitosan nanoparticles / sodium triphosphate (CS / TPP)
  • Chitosan / sodium triphosphate nanoparticles were obtained using a CS / TPP ratio (5: 1) (w / w), by ionic gelation technique, according to patent application WO9804244).
  • a solution of 2 mg / ml of CS and 1.2 mg / ml of TPP in milliQ water was prepared.
  • To get the 0.5 ml nanoparticles of TPP were poured onto 1.5 ml of CS under magnetic stirring and left under stirring for 10 min at 25 ° C. The nanoparticles formed spontaneously.
  • Protamine nanocapsules were prepared by the solvent diffusion technique, according to the ES2481940 patent, according to the following steps:
  • An aqueous phase (10 ml) of protamine was prepared with a final concentration of 1.5 mg / ml. This solution was kept under magnetic stirring at room temperature.
  • the organic phase was rapidly transferred by continuous injection or simple addition, depending on the desired size, to the previously prepared aqueous phase.
  • the nanocapsules form spontaneously.
  • the organic solvents were removed by rotary evaporation. After this step, they can optionally be isolated (e.g. by centrifugation: 30,000 rpm, lh, 15 ⁇ c)
  • lyophilization of the capsules was evaluated for 50 hours at -40 ° C (Labconco Corp.), which were then re-dispersed in a medium of interest, for example, water or buffered water. Both in the case of using lyophilization, and in the case of applying only one incubation, an effective association between the organic nanosystems of example 2 and the particle could be verified (SEM photo, fluorescence measurements and confocal microscope SP5 Leica AOBS-SP5) of purified pollen obtained in example 1. All this without the need to apply aggressive media such as acidic or basic media, to the need to apply high pressures that could compromise the integrity and properties of the capsule.
  • Figure 8 shows the SEM photographs of the pollen particles, prepared according to example 1.1, which associate A) chitosan nanoparticles; B) protamine nanocapsules and C) protamine nanocapsules after lyophilization.
  • an association and release study of the protamine nanosystems of Example 2 was performed.
  • a fluorescence study was carried out, in which the amount of nanosystems was determined in time 0 min. not associated by centrifugation, as a result an association greater than 60% of the nanosystems with the pollen in the different sizes of example 2.2 was determined.
  • a release study was carried out with the nanosystems of Example 2.2 after a lyophilization process, using 5-TAM A (5-Carboxytetramethylrhodamine) covalently bonded to protamine as fluorescent marker in order to obtain an effective nanosystem marking.
  • the release study was carried out by performing incubation with pollen nanosystems in water at 37 Q C with orbital shaking. At determined times up to a maximum of 4 hours fluorescence quantifications were performed using the resulting supernatant after a centrifugation period of 2 minutes at 14000 rpm. The results indicate a sustained release of nanosystems from pollen.
  • the study showed how the number of nanosystems present in the medium is increasing for at least 4 hours, reaching at this point a release around 80% with respect to the initial amount of nanosystems. See figure 9.
  • Example 4 Ex vivo evaluation of purified pollen particles of the invention Preparation of the model
  • Example 5 In vivo evaluation of purified pollen particles of the invention
  • the experiment was performed with Sprague Dawley rats, which were fasted 12 hours before carrying out the experiment.
  • the samples used were 75 milligrams of pollen per 1 milliliter of water, were administered by oral gavage to each of the study rats. The observation was carried out after periods of 1 hour and 3 hours respectively.
  • the rat was sacrificed by using a C0 2 chamber. Subsequently, an incision was made in the abdomen of the animal through which different parts of the digestive tract were removed. Specifically in these studies we focus on different parts of the small intestine (duodenum and jejunum). After tissue extraction and without any treatment, direct observation was performed using an optical microscope at different magnifications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención se refiere a una partícula purificada de polen que conserva su capa de intina y de exina, y que comprende nanosistemas, las composiciones que la incluyen, y a sus usos.

Description

PARTÍCULAS PURIFICADAS DE POLEN Y SU USO PARA ADMINISTRAR NANOSISTEMAS
DESCRIPCIÓN
Campo de la Invención
La presente divulgación se dirige a partículas purificadas de polen, a sus métodos de fabricación y a sus usos en la administración de principios activos encapsulados.
Estado de la Técnica
La administración transmucosa de principios activos, por ejemplo fármacos, es una de las formas más aceptadas de administración por parte de los pacientes. Incluye, por ejemplo, la administración nasal, oral (por ejemplo, absorción a través del intestino delgado o grueso), u ocular. La vía transmucosa para la administración de fármacos presenta ciertas limitaciones inherentes a sus características físico-químicas. En este sentido, la vía de administración más utilizada es la parenteral, la cual sin embargo presenta desventajas. Por ejemplo, la preparación de inyectables requiere condiciones de producción estériles, su manejo suele implicar personal médico, es más incómodo para el paciente, e implica mayores riesgos de infección causados por el uso indebido de las agujas. Por todo ello, la administración transmucosa supone en la mayoría de las ocasiones una alternativa atractiva.
Una de las vías de administración farmacéuticas más frecuentes es la administración oral. Esto ocurre también en el campo de la alimentación, donde se buscan constantemente formas de administración de distintos aditivos y nutrientes que mejoren la tecnología existente. El epitelio del intestino humano es altamente absorbente, y se compone de un gran número de microvellosidades con una superficie total de absorción de hasta 350 m2, ideal para una absorción eficiente.
Dicha ruta no está exenta sin embargo de problemas. Muchos componentes macromoleculares pueden exhibir una baja permeabilidad y escasa estabilidad debido al ambiente agresivo del tracto digestivo. Además de ser estables en este medio, deben superar la barrera de la mucosa para alcanzar su destino y, antes de su eliminación, ser absorbidos.
El mucus intestinal es un hidrogel complejo que comprende proteínas, carbohidratos, lípidos, sales, y otros componentes. Es secretada y renovada continuamente para evitar la entrada de agentes patógenos, lubricar y proteger el tracto digestivo, pero al mismo tiempo permite el paso de nutrientes. Debido a la presencia de esta barrera de mucosa intestinal y de su naturaleza dinámica, las partículas administradas por vía oral pueden no llegar a tener un tiempo de residencia adecuado para su absorción, y ser eliminadas sin cumplir su objetivo. Polímeros mucoadhesivos como algunos derivados de celulosa, poliacrilato, almidón o quitosano, se han utilizado para mejorar el tiempo de residencia de las partículas en el tracto intestinal. Sin embargo, hasta ahora la mayoría de los nanosistemas desarrollados a base de polímeros mucoadhesivos son propensos a permanecer anclados en la capa de moco menos adherente sin llegar a penetrar en la barrera de mucosa intestinal, quedando así expuestos a una rápida eliminación. Cuando se utilizan nanopartículas, la administración oral puede considerarse un complejo proceso por etapas. Las nanopartículas deben primero llegar a la mucosa intestinal sin degradarse, y sin liberar el principio activo de forma prematura. A continuación, debe adherirse a la mucosa más externa. Esta adhesión debe ser lo suficientemente fuerte como para evitar su rápida eliminación, pero al mismo tiempo permitir la penetración en las capas más profundas de la mucosa. Una vez alcanzadas las capas más profundas de la mucosa, las nanopartículas deben ceder el principio activo con el perfil de liberación requerido.
Para conseguir una administración adecuada, se ha evaluado la administración de fármacos terapéuticos a través del tracto digestivo mediante plataformas que utilizan también métodos físicos (Traverso G, Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Polat BE, Anderson DG, Blankschtein D, Langer R J Pharm Sci 2015, 104, 362-367). Por ejemplo, la pildora robótica es una de las plataformas más recientes para el suministro oral de moléculas grandes. Aunque esta estrategia es prometedora, no deja de suponer una perforación y alteración de la mucosa, con los riesgos que esto conlleva, especialmente en el caso enfermedades crónicas, donde es necesaria la administración repetida, a veces durante años. Por otro lado, se han realizado varios esfuerzos en el uso de esporas o de polen como vehículos de transporte de moléculas. Las esporas son producidas por plantas inferiores o criptógamas, también conocidas como esporafitas. El polen es producido por las plantas con semilla (espermatófitos), y contiene un microgametófito (gametófito masculino). Al igual que su biología, la estructura y composición de las esporas y el polen varían. Una partícula de polen o una espora se compone esencialmente de material genético contenido en un citoplasma, el cual está recubierto por una primera capa interior denominada intina en el caso del polen, y endospora en el caso de las esporas. Éstas a su vez se recubren de una segunda capa denominada exina y exospora, respectivamente. La composición del citoplasma, la intina y la endospora varían.
En la literatura se pueden encontrar numerosos trabajos basados en el uso de esporas como vehículos de administración de moléculas.
Varios documentos de la UNIVERSITY OF HULL describen el uso de esporas de Lycopodium clavatum (pteridofitas) para la encapsulación de aceites y fármacos de bajo peso molecular. Por ejemplo, WO2005000280 describe esporas huecas, es decir, vaciadas de su citoplasma y de su intina, y libres de la capa lipídica, preparadas a partir de Lycopodium clavatum, las cuales se cargan con ingredientes dietéticos o farmacéuticos y que tienen un contenido en proteínas inferior al 0,5%. Estas esporas huecas se preparan por un complejo proceso de lavados agresivos con medios ácidos, básicos y orgánicos. No se indica en este documento la posibilidad de utilizar las esporas huecas como vehículo de nanosistemas. En WO2006064227 se describe el uso de esta misma tecnología basada en las esporas de Lycopodium clavatum para la creación de formulaciones magnéticas. En otras solicitudes a nombre de los mismos autores se describen composiciones de esporas huecas de Lycopodium clavatum siguiendo los mismos principios: WO2007012856 (actividad antioxidante), WO2007012857 (composiciones tópicas), WO2009077749 (composiciones que comprenden aditivos protectores), y WO2010004334 (blancura mejorada). En ninguno de los casos se menciona la posibilidad de incorporar nanosistemas a las esporas huecas, y siempre se trata de una exina hueca de esporas de Lycopodium clavatum, libre de la capa exterior lipídica, y preparada a partir de una compleja secuencia de lavados ácidos y básicos, entre otros. Estas esporas huecas tienen una capacidad limitada para controlar el perfil de administración, mostrando tiempos de liberación muy variables. Además, Lorch, M., et al. Chem. Comm., 2009, 6442-6444 han descrito el comportamiento de estas esporas en plasma sanguíneo, y en dicho medio biológico se observa que no son estables y colapsan.
Siguiendo esencialmente los mismos procedimientos, otros grupos de investigación han desarrollado tecnologías alrededor de las esporas huecas de Lycopodium clavatum, por ejemplo, como vehículo de antígenos para vacunas orales (Shashwti U. Atwe, Yunzhe Ma, Harvinder Singh Gilí, Journal of Controlled Reléase, 2014, 194, 45-52).
En Shwan A. Hamad, Amro F. K. Dyab, Simeón D. Stoyanovb, Vesselin N. Paunov J. Mater. Chem., 2011,21, 18018-18023 se describe un procedimiento para la encapsulación de una combinación de células y nanopartículas magnéticas dentro de esporas huecas de Lycopodium clavatum. Dicho procedimiento comprende fracturar las esporas mediante compresión y la posterior incubación en presencia de una mezcla de células y nanopartículas magnéticas. Pese a contemplar la posibilidad de incorporar nanopartículas inorgánicas, el procedimiento descrito en este documento obliga a fracturar la espora, comprometiendo sus propiedades físico-químicas y por tanto su utilidad en sistemas biológicos como vehículo de administración. La exina de las partículas de polen presenta en su superficie una capa lipídica adicional compleja mezcla de proteínas, lípidos y otras moléculas (conocida como "pollenkitt"). La intina está generalmente formada por celulosa, mientras que la exina se compone de un material proteico denominado esporopolenina, y cuya composición exacta no se conoce. La exina es una capa extremadamente resistente, estable a condiciones ácidas y básicas, y presenta una porosidad elevada. Dada estas propiedades, se han ensayado diversas tecnologías que permitan aislar la exina, es decir, vaciar el interior de la exina de su intina y del material genético, así como limpiar la superficie exterior de la capa lipídica o pollenkitt. Una vez aislada, se ensaya su uso como vehículo de administración de moléculas de interés. En aghavendra C. Mundargi, Michael G. Potroz, Soohyun Park, Hitomi Shirahama , Jae Ho Lee, Jeongeun Seo, Nam-Joon Cho, small 2016, 12, No. 9, 1167-1173 se describe el uso de partículas de polen de Helianthus annuus (girasol) lavadas previamente con etil éter para encapsular BSA, y se sugiere la posibilidad de usar distintas esporas de polen para el encapsulamiento de moléculas pequeñas, proteínas, péptidos, factores de crecimiento o biosimilares. La carga del BSA comprende la incubación o la incubación a vacío. El procedimiento de preparación descrito en este documento no incluye lavados con disoluciones acuosas.
Un ejemplo singular puede encontrarse en W. Brandon Goodwin, Ismael J. Gómez, Yunnan Fang, J. Carson Meredith, Kenneth H. Sandhage, Chem. Mater. 2013, 25, 4529-4536, en donde se lavan partículas de polen de Helianthus annuus (girasol) con una mezcla de cloroformo y metanol para su posterior uso como plantillas en la preparación de réplicas a base de óxido de hierro. El producto resultante se somete a pirólisis, quedando únicamente la "cáscara" de óxido de hierro con la forma de la partícula de polen original.
También se pueden encontrar en la literatura estudios que se centran en el estudio de la composición de las partículas de polen, aunque no describen posibles usos de las mismas. Algunos de estos estudios pueden encontrarse en, por ejemplo, Doughty, J.; Hedderson, F.; McCubbin, A.; Dickinson, H. Proc. Nati. Acad. Sel, 1993, 90, 467-471, en donde se lavan esporas de Brassica olerácea con ciclohexano para estudiar las proteínas de recubrimiento así extraídas. En Mohamed Elfatih H. Bashir, Jason M. Ward, Matthew Cummings, Eltayeb E. Karrar, Michael Root, Abu Bekr A. Mohamed, Robert M. Naclerio, Daphne Preuss, PLoS ONE 8(1): e53337 se estudian las proteínas de la corteza del polen de las hierbas de la familia de Poaceae, incluyendo, Cynodon dactylon (Bermuda), Phleum pratense (Timothy), Poa pratensis, o Dactylis glomerata. En este documento se lava el polen con ciclohexano para extraer las proteínas lipofílicas de su superficie. Se reporta que, como resultado del tratamiento, los microcanales de la exina colapsan, perdiendo así la partícula de polen su estructura. El uso de polen no está exento de problemas. Aunque el polen puede tener tamaños similares, su morfología y su biocompatibilidad una vez tratado no está garantizado, especialmente a la vista de la agresividad de algunos de los tratamientos a los que se somete. También hay que considerar si este tratamiento va a mantener intacta su morfología, y será capaz de incorporar y luego proteger, y liberar los productos que se puedan incorporar, por ejemplo, nanosistemas.
La administración nasal y ocular se enfrentan a problemas similares a los expuestos arriba para el caso de la administración oral, y todavía resulta un reto el administrar principios activos por estas vías de forma que tengan una estabilidad y un tiempo de residencia adecuados.
Así pues, sería deseable encontrar métodos alternativos para la administración de nanosistemas que puedan superar las limitaciones arriba indicadas, y puedan obtenerse por métodos sencillos.
Breve Descripción de la invención Los autores de la presente divulgación aportan ahora una plataforma de administración que resuelve los problemas planteados en el estado de la técnica. Dicha plataforma se basa en partículas purificadas de polen. Se obtienen mediante un método de purificación de polen que mejora su biocompatibilidad y permite la incorporación de nanosistemas de una forma reproducible.
Así, un primer aspecto de la invención es una partícula purificada de polen que comprende una capa de intina y una capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado, y que comprende un nanosistema. Aunque en otros estudios se han utilizado esporas huecas como contendores de moléculas, no se ha reportado la posibilidad de eliminar la capa lipídica, ni su posible utilización como plataforma de administración para nanosistemas, y en particular para nanosistemas por vías mucosas. Además, los investigadores han comprobado, tanto en experimentos ex vivo, como in vivo, que el método de purificación sencillo utilizado resulta en partículas purificadas de polen con una sorprendente capacidad de adhesión y, lo que es fundamental, de penetración dentro de la mucosa intestinal, incluso después de la incorporación a su superficie y/o la absorción en su interior de nanosistemas, lo que mejora significativamente el conocimiento actual.
Las partículas purificadas de polen de la invención pueden incorporarse a diferentes composiciones, lo cual constituye un aspecto adicional de la invención. Un aspecto adicional también es la posibilidad de su uso como medicamento. Esto abre la posibilidad de una nueva plataforma para su uso en la fabricación de medicamentos para el tratamiento de enfermedades o condiciones médicas como, por ejemplo, enfermedades metabólicas, inmunes, gastrointestinales, cardiovasculares, articulares, raras, tropicales, oncológicas, entre otras, y además para prevenir enfermedades infecciosas, como vacunas. Preferiblemente, en el caso de enfermedades crónicas y/o metabólicas que requieren administraciones repetidas, en particular por vías mucosas. Aspectos adicionales también son su uso en la fabricación de un medicamento para la liberación controlada de un principio activo farmacéuticamente aceptable. Dada la excelente adhesión a la mucosa intestinal y su estabilidad in vivo, las cápsulas de la invención también tienen un excelente uso como complemento alimenticio en la administración de un principio dietéticamente aceptable, y para su uso en la fabricación de un médicamente de administración oral, nasal u ocular. Incluso, la posibilidad de diseñar tratamientos por estas vías que antes no eran posibles. No sólo se han obtenido excelentes resultados de estabilidad y adhesión. Además, las partículas purificadas de polen se obtienen por métodos muy sencillos a partir de polen disponible a precios económicos y en cantidades viables para su aplicación industrial. Por tanto, un aspecto adicional de la invención es un procedimiento para preparar las partículas purificadas de polen que comprende las etapas de (a) lavar una partícula de polen en un medio acuoso;
(b) lavar con un disolvente orgánico; para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado total o parcialmente; y
(c) poner la partícula purificada de polen en contacto con un nanosistema; en donde la etapa (b) puede realizarse antes o después de la etapa (a).
Un proceso alternativo de la invención es un procedimiento para preparar las partículas purificadas de polen que comprende las etapas de
(a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; y (b) lavar con un disolvente orgánico; para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado total o parcialmente, en donde la etapa (b) puede realizarse antes o después de la etapa (a). En una realización particular dicho proceso además comprende (c) poner en contacto un nanosistema con la partícula purificada de polen. Estos sencillos procesos evitan poner las partículas de polen en contacto con medios básicos y/o ácidos fuertes, contrariamente a los procesos que se divulgan en estado de la técnica, y que comprenden múltiples lavados agresivos con diferentes ácidos y bases (ver por ejemplo, WO2005000280). Con el método de la invención se consigue conservar parcial o totalmente la intina, y la partícula de polen purificada resultante es más estable en fluidos biológicos (ver ejemplos más abajo) que las esporas huecas que sólo conservan la capa de exina. Un aspecto adicional de la invención es por tanto, las partículas purificadas de polen obtenibles por este procedimiento, las cuales, como se evidencia de los ejemplos, muestran unas propiedades diferenciadas de estabilidad en fluido biológicos y de capacidad de transporte a, y dentro de, las mucosas. Las partículas purificadas de polen que se obtienen por el primer procedimiento descrito incorporan nanosistemas mediante un sencillo proceso de incubación. La partícula purificada de polen obtenible por este proceso de incubación también constituye otro aspecto de la presente invención.
Aunque en otros estudios se han utilizado esporas huecas como contendores de moléculas, no se ha reportado la posibilidad de conservar la exina y la intina conjuntamente, ni su posible utilización como plataforma de administración para nanosistemas, y en particular para nanosistemas por vías mucosas. Además, los investigadores han comprobado, tanto en experimentos ex vivo, como in vivo, que cualquiera de los métodos de purificación sencillos utilizados resultan en partículas purificadas de polen con una sorprendente capacidad de adhesión y, lo que es fundamental, de penetración dentro de la mucosa intestinal, incluso después de la incorporación a su superficie y/o la absorción en su interior de nanosistemas, lo que mejora significativamente el conocimiento actual.
Las partículas purificadas de polen de la invención pueden incorporarse a diferentes composiciones, lo cual constituye un aspecto adicional de la invención. Un aspecto adicional también es la posibilidad de su uso como medicamento. Esto abre la posibilidad de una nueva plataforma para su uso en la fabricación de medicamentos para el tratamiento de enfermedades o condiciones médicas como, por ejemplo, enfermedades metabólicas, inmunes, gastrointestinales, cardiovasculares, articulares, raras, tropicales, oncológicas, entre otras, y además para prevenir enfermedades infecciosas, como vacunas. Preferiblemente, en el caso de enfermedades crónicas y/o metabólicas que requieren administraciones repetidas, en particular por vías mucosas. Aspectos adicionales también son su uso en la fabricación de un medicamento para la liberación controlada de un principio activo farmacéuticamente aceptable. Dada la excelente adhesión a la mucosa intestinal y su estabilidad in vivo, las cápsulas de la invención también tienen un excelente uso como complemento alimenticio en la administración de un principio dietéticamente aceptable, y para su uso en la fabricación de un médicamente de administración oral, nasal u ocular. Incluso, la posibilidad de diseñar tratamientos por estas vías que antes no eran posibles. Las partículas purificadas de polen que se obtiene por cualquiera de los procedimientos de lavado descritos pueden incorporar nanosistemas mediante un sencillo proceso de incubación. Por tanto, un aspecto adicional de la invención es una partícula purificada de polen, preferiblemente equinado, que comprende una capa de intina y una capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado. Un aspecto adicional de la invención es una composición que comprende un nanosistema y una partícula purificada de polen, preferiblemente equinado, que comprende una capa de intina y una capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado.
Las partículas purificadas de polen que se describen aquí proporcionan una nueva estrategia para la administración de nanosistemas, especialmente para su administración transmucosa. Permiten administrar de forma simultánea un elevado número de nanosistemas, y mejora sus posibilidades de adhesión y penetración en la mucosa.
Breve Descripción de las Figuras
Figuras 1A, IB, 1C y ID: Fotografías que muestran el tamaño y forma del polen purificado de la invención en diferentes medios biológicos simulados: A) antes de la incubación; B) después de la incubación a 37°C en fluido intestinal simulado; C) después de la incubación a 37°C en fluido gástrico simulado; y D) después de la incubación a 37°C en sangre.
Figura 2: Micrografía electrónica de barrido granos de polen de girasol (Helianthus annuus) tras diferentes tratamientos. A: polen lavado con agua. B: polen tras lavado con ciciohexano (ver Ejemplo 1). C: Polen permeabilizado con una disolución de ácido clorhídrico entre 40QC y 80QC durante 5 minutos. D: Polen permeabilizado con una disolución de ácido perclórico entre 15QC y 40QC durante 60 min. E: Polen permeabilizado con una disolución de ácido fosfórico permeabilizado por tratamiento con ácido fosfórico por encima de 60QC durante 120 min. F: Polen lavado con ciciohexano y tratado posteriormente con una disolución de proteinasa K. Figura 3: Medición de la autofluorescencia en partículas de polen lavadas con agua (a), y en cápsulas que se han sometido a un lavado adicional con cloroformo/metanol (b) o con ciciohexano (c). Ver ejemplo 1. El eje de las abscisas muestra la longitud de onda en nm, el eje de ordenadas las unidades de absorción.
Figura 4: Espectros de absorción de infrarrojos por transformada de Fourier de las muestras de polen tratadas calentando con diferentes disoluciones de ácido. 1. Bandas asociadas a la esporopolenina 1606 y 1515 cm"1. 2. Región amida I donde se encuentran las bandas de tensión de enlace C=0 de las proteínas. 3. Banda asociada a la tensión de estiramiento de los alquenos C=C. 4. Banda característica de la vibración de tensión C=0 de lípidos A. polen lavado con agua. B. polen tras lavado con ciciohexano (ver Ejemplo 1) C: Polen permeabilizado con una disolución de ácido Fosfórico. D: Polen permeabilizado con una disolución de ácido trifluoroacético. E: Polen permeabilizado con una disolución de ácido clorhídrico. F: Polen permeabilizado con una disolución de ácido perclórico.
Figura 5: Espectros de absorción de infrarrojos por transformada de Fourier de las muestras de polen disoluciones de ácido fosfórico a diferentes tiempos. 1. Bandas asociadas a la esporopolenina 1606 y 1515 cm"1. 2. Región amida I donde se encuentran las bandas de tensión de enlace C=0 de las proteínas. 3. Banda asociada a la tensión de estiramiento de los alquenos C=C, 1670 cm"1.
Figura 6: Micrografía de fluorescencia de muestras de polen tratado. A. Corte interno de grano de polen tratado con ciclohexano. B. Corte interno de grano de polen permeabilizado con ácido fosfórico. C. Polen permeabilizado con ácido perclórico. D. Vista externa de grano de polen permeabilizado con ácido fosfórico.
Figura 7: Micrografía de fluorescencia de muestras de polen tratado con enzimas. A. polen permeabilizado con disolución ácida. B. polen permeabilizado y tratamiento con proteasa. C. Polen permeabilizado tratado con enzimas carbohidrasa y proteasa. Figura 8: fotografías SEM de las partículas de polen que asocian A) nanopartículas de quitosano; B) nanocápsulas de protamina y C) nanocápsulas de protamina tras liofilización.
Figura 9: Gráfica de liberación de nanosistemas. Medición de la fluorescencia liberada en el sobrenadante tras un proceso de centrifugación a diferentes tiempos. El eje de las abscisas muestra los tiempos en horas, el eje de ordenadas las unidades de absorción. Figura 10: Fotografía de microscopía tras una tinción hematoxilina/eosina en la que se observa como la pared intestinal mantiene la integridad tras la extracción y manipulación.
Figura 11: Fotografías de confocal ex vivo a los 120 minutos. En el canal rojo (Figura 11A) se ven los nanosistemas y en el canal verde (Figura 11B) las partículas de polen. Se aprecia cómo los nanosistemas se han depositado sobre las partículas de polen purificadas de la invención. Figura 12: Fotografía de microscopía en la que se observa que los granos de polen guardan su integridad y morfología in vivo.
Figura 13: Fotografía de microscopía en la que se observa la interacción entre los granos de polen y la pared del intestino.
Descripción Detallada de la Invención
Partículas purificadas de polen de la Invención
En la presente divulgación se entiende por "partícula purificada de polen" aquellas partículas de polen que han sido tratadas para retirar la capa lipídica que recubre su exterior ("pollenkitt"). Preferiblemente, el tratamiento también vacía total o parcialmente el citoplasma del interior de la partícula. Así pues, el tratamiento deja preferiblemente la intina y la exina sustancialmente libres del citoplasma y de la capa lipídica. Dicha purificación puede no ser total, y todavía retener parcialmente la capa lipídica.
Se entiende en la presente invención que las partículas purificadas de polen no retienen más del 50%, preferiblemente no más del 40%, por ejemplo, no más del 20%, no más del 10%, más preferiblemente no más del 5% en peso de la capa lipídica, con respecto al peso original de la capa lipídica. Preferiblemente también se ha eliminado de la partícula purificada de polen al menos el 10 %, por ejemplo al menos el 20%, por ejemplo al menos el 30%, por ejemplo al menos el 40%, por ejemplo al menos el 50%, por ejemplo al menos el 60%, por ejemplo al menos el 70%, por ejemplo al menos el 80%, por ejemplo al menos el 90% en peso del citoplasma, con respecto al peso original del citoplasma.
Se trata de partículas purificadas de polen que comprenden la capa de intina y la capa de exina, pero no comprenden su capa lipídica (pollenkitt), y preferiblemente tampoco el citoplasma. Las partículas purificadas de polen se obtienen a través del sencillo método de purificación del polen que se ha descrito arriba y que comprende, primero lavar las partículas de polen con medios acuosos, y después con un disolvente orgánico, preferiblemente, sin que en ningún momento las partículas de polen entren en contacto con medios básicos o ácidos (es decir, sin pH menores de 4,5 o mayores de 9)·
Por tanto, en el procedimiento de purificación de las partículas de polen el agua se encuentra a un pH esencialmente neutro, por ejemplo, a un pH de entre 5 y 9, preferiblemente entre 6 y 8, más preferiblemente entre 6,5 y 7,5. Tampoco es necesario que el proceso de purificación implique el lavado a elevadas temperaturas. El experto medio puede ajustar las condiciones, y se prefiere que el agua en la primera etapa se encuentre a una temperatura comprendida entre 15°C y 60°C, preferiblemente, entre 20°C y 45°C. En función del tipo de polen, también es posible realizar un segundo lavado con agua.
Para efectuar el segundo lavado existen a disposición del experto en la materia diversos disolventes orgánicos disponibles. Pueden ser hidrocarburos cíclicos o lineales como, por ejemplo, de fórmula CnH (no-cíclico, lineal o ramificado) o CnH2n (cíclico), de 5 a 20 átomos de carbono (n=5-20). Ejemplos que pueden ser utilizados en la presente invención son el pentano, hexano, heptano, octano, nonano, decano, ciclopentano, o ciclohexano, o mezclas de los mismos, por ejemplo, el ciclohexano. El disolvente utilizado en la segunda etapa también puede ser un alcohol, por ejemplo, de 1 a 12 átomos de carbono, por ejemplo, de 1 a 4 átomos de carbono. Ejemplos que el experto medio en la materia puede utilizar en la presente invención son el metanol, el etanol, el propanol, el ferf-butanol, o mezclas de los mismos. También son ejemplos no limitantes los hidrocarburos halogenados, es decir, hidrocarburos como los definidos al principio de este párrafo, pero en los que al menos uno de los átomos de hidrógeno se ha sustituido por un halógeno (flúor, cloro, bromo o yodo, preferiblemente cloro). El hidrocarburo halogenado utilizado en la presente invención puede tener la fórmula CnH(2n -z)Xz (no-cíclico, lineal o ramificado) o CnH2n-zXz (cíclico) en donde z es un número entero (igual o inferior a 2n+2 o a 2n, según sea el caso) y X es flúor, cloro, bromo o yodo, preferiblemente cloro. Ejemplos de este tipo de disolventes son el diclorometano y el cloroformo. También es posible realizar el lavado utilizando mezclas de disolventes orgánicos en diferentes proporciones. Por ejemplo, utilizando una mezcla de hidrocarburo halogenado:alcohol en proporciones comprendidas entre 1:20 y 20:1. Un ejemplo puede ser la mezcla de cloroformo y metanol.
Otros disolventes que se pueden utilizar en la presente invención son aquellos que incluyen un grupo carbonilo o éster, y que tienen un bajo peso molecular, por ejemplo, por debajo de 250 Da. Ejemplos extendidos de estos disolventes son la acetona o el acetato de etilo. Al igual que en el caso del lavado con agua, se puede realizar más de un lavado con disolventes orgánicos. Se prefiere también que el lavado con disolvente orgánico se haga a temperaturas bajas o moderadas, por ejemplo, a una temperatura comprendida entre 15°C y 60°C, preferiblemente, entre 20°C y 45°C.
El método de la invención también incluye pues la posibilidad de repetir una o más veces el lavado acuoso de la etapa (a) y/o el lavado con disolvente orgánico de la etapa (b) y/o la etapa (c). Por ejemplo, puede ser conveniente realizar más de un lavado acuoso para facilitar la eliminación del citoplasma. El método de la invención opcionalmente incluye uno o más tratamientos con enzimas (por ejemplo, celulasas y/o amilasas). Estos métodos consiguen perforar la intina y mejorar así su porosidad. Así, una realización particular de la invención se dirige a un procedimiento que comprende además una etapa adicional d) que comprende al menos uno de los siguientes tratamientos: i) lavar con una disolución ácida; ii) tratamiento enzimático; iii) lavar con un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; iv) lavar con detergentes. De entre estas etapas i)-iv) el experto en la materia podrá seleccionar una de ellas o realizar combinaciones de las mismas según sus necesidades. El experto en la materia tiene a su disposición análisis y conocimiento suficiente para poder hacer dicha selección, tal y como se recoge en los ejemplos. Estas etapas, al igual que las etapas a) y b) están dirigidas a favorecer la perforación del polen con el fin de eliminar el citoplasma. Una ventaja adicional, como ya se ha comentado anteriormente, es que los procedimientos de la presente invención, incluidos los lavados de la etapa d), permiten conservar la estructura completa de la pared del polen, en particular la exina y la intina.
Una realización preferida se dirige a un procedimiento que comprende además una etapa adicional d) que comprende un tratamiento con enzimas. Los autores de la invención han comprobado que el tratamiento con enzimas permite un mayor control sobre la perforación del polen.
Así pues, una realización preferida se dirige a un procedimiento que comprende además una etapa adicional d) que comprende lavar con enzimas y lavar con detergentes.
Una realización preferida se dirige a un procedimiento para preparar las partículas purificadas de polen que comprende las etapas de
(a') lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; (b') lavar con un disolvente orgánico;
(c') tratamiento enzimático,
para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado total o parcialmente.
Los tratamientos enzimáticos de la invención se pueden llevar a cabo con las enzimas englobadas dentro de la sección 3 de la clasificación de los números EC (Enzyme Commission numbers), preferiblemente con las subsecciones 3.1; 3.2; 3.3; 3.4; y más preferiblemente dentro de la subsección 3.2 con enzimas como las celulasas y 3.4 como las proteinasas.
En una realización preferida, el enzima se selecciona de entre hidrolasas, carbohidrasas, proteasas celulasas, β-xilanasas, β-glucanasas, α-amilasas, exo-l.,4-a-g!ucosidasas., lichenasas, inulasas, pectinasas, poligalacturonasas y hemicelulasas.
En una realización particular, los enzimas empleados en los procesos descritos en la presente invención se seleccionan de entre Subtilisinas bacterianas, proteasas alcalinas de Badlios, quimotripsina., tripsina, proteinasa K, proteasa OB, Actinasa E (pronasa), Proteasa S, Pepsina, proteasas de páncreas bovino, colagenasa, elastasa, trombina, papaína, bromelaína, termolisina.
Como ventaja adicional del tratamiento con enzimas, los autores han observado que los tratamientos de las etapas previas se potencian, son tratamientos muy suaves y además, son tratamientos más específicos que las etapas de lavados con disoluciones acidas.
Por tanto, las condiciones bajo las cuales es posible preparar las partículas purificadas de polen de la invención son poco agresivas y resultan fáciles de implementar a nivel industrial. No comprenden preferiblemente altas presiones de forma que el proceso no incluye ninguna etapa en la que se sometan las partículas a presiones mayores de 10 bares (106 Pa). Por ejemplo, todas las etapas del proceso se realizan a presiones por debajo de los 5 bares (0,5 x 106 Pa), preferiblemente a presiones inferiores a 2 bares (0,2 x 106 Pa), normalmente a presión atmosférica (sustancialmente 1 bar (105 Pa)). Esto hace el proceso más atractivo a nivel industrial y evita que se produzcan fracturas en las partículas de polen. También se prefiere que el método de obtención no implique ningún lavado en medio acuoso cuyo pH sea inferior a 4,5, preferiblemente que no sea inferior a 5, o superior a 9, preferiblemente mayor de 8. Dado que las partículas purificadas de polen de la invención pueden tener aplicaciones en la industria farmacéutica y alimentaria, se prefiere que los disolventes sean farmacéuticamente aceptables. Esto no es crítico para obtener las propiedades deseadas, y además hay que tener en cuenta que estas partículas purificadas de polen se van a someter a subsiguientes etapas de incubación y/o purificación antes de ser administradas. Cada uno de los lavados se realiza de acuerdo con las técnicas habituales en este campo y comprenden la formación de una suspensión de los granos de polen en agua o en disolvente orgánico, seguido normalmente de agitación. La suspensión se suele incubar y centrifugar para después eliminar el sobrenadante. Las partículas resultantes se suelen secar, normalmente en condiciones de temperatura moderada, por ejemplo, entre 4°C y 60°C, por ejemplo, entre 20°C y 40°C.
El método de purificación de la invención admite a priori la incorporación a la partícula de polen purificada de polen cualquier nanosistema. Dicha incorporación puede producirse como consecuencia de la adsorción del nanosistema en la superficie de la partícula purificada de polen, o bien como consecuencia de la absorción del nanosistema en el interior de la partícula purificada de polen. Además, bien como componente del propio nanosistema, o bien como componente adicional, la partícula purificada de polen también puede incorporar un principio activo farmacéuticamente aceptable, un principio dietéticamente aceptable o mezclas de ambos. Las partículas purificadas de la invención pueden pues incorporar los nanosistemas, los cuales a su vez pueden comprender un principio activo farmacéuticamente aceptable, un principio dietéticamente aceptable o mezclas de ambos. En una realización particular, los nanosistemas pueden incorporar más de un principio activo.
La incorporación del nanosistema requiere sencillamente ponerlo en contacto con la partícula purificada de polen obtenida tras las etapas (a) y (b). El procedimiento para incorporar nanosistemas puede comprender por tanto incubar el nanosistema en presencia de la partícula purificada de polen. Dicha incubación puede hacerse en* seco o en presencia de un líquido. Por tanto, el procedimiento de preparación puede incluir las etapas de
(a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; (b) lavar con un disolvente orgánico para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado total o parcialmente, preferiblemente incluyendo también la eliminación total o parcial del citoplasma; y
(c) incubar la partícula purificada de polen en presencia de un nanosistema, por ejemplo, en presencia de un disolvente.
Alternativamente, el procedimiento de preparación puede incluir las etapas de
(a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9;
(b) lavar con un disolvente orgánico para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado total o parcialmente; preferiblemente incluyendo también la eliminación total o parcial del citoplasma;
(c) secar la partícula purificada de polen tras las etapas (a) y (b); y impregnar la partícula purificada de polen con los nanosistemas, opcionalmente, aplicando un vacío.
Adicionalmente, las partículas purificadas de polen así obtenidas pueden liofilizarse. En caso necesario, se puede añadir un crioprotector, por ejemplo, glucosa o trehalosa, antes de proceder a dicha liofilización.
Este método de purificación permite pues que las partículas purificadas de polen posteriormente incorporen nanosistemas orgánicos, y sean capaces de transportarlos a, y a través de, las mucosas, por ejemplo, en el intestino, la mucosa bucal, nasal u ocular. Las partículas de polen que se utilizan como materia prima para ser purificadas pueden provenir de diferentes especies. Aunque las partículas de polen tienen diversos tamaños y morfologías, dependiendo de la especie originaria, el método de purificación de la presente invención puede aplicarse a cualquiera. Por su morfología, se prefieren las partículas de polen equinadas, las cuales comprenden agujas con una longitud de al menos una miera, por ejemplo, de entre 1 miera y 10 mieras, o entre 1 mieras y 7 mieras, generalmente, entre 1 miera y 5 mieras o entre 1,5 mieras y 2,5 mieras, o entre 1,5 mieras y 2 mieras. Por ejemplo, pueden ser partículas de la familia de las Helianthus, por ejemplo, Helianthus annuus (Girasol).
Por su tamaño, disponibilidad y morfología, la partícula de polen puede provenir de, por ejemplo, las Angiospermas o Magnoliophytas, es decir, plantas con flores. Dentro de las Angiospermas o Magnoliophytas las partículas de polen pueden pertenecer a los ciados Monocotiledoneas, Chloranthaceae, Ceratophyllaceae, Magnoliidae o Eudicotiledoneas, especialmente Eudicotiledoneas, prefiriéndose las especies equinadas. Las familias de Eudicotiledoneas que son más apropiadas son Annonaceae, Malvaceae, Meliaceae, Tamaricaceae, Asteraceae, Oleaceae o Caprifoliaceae.
Por ejemplo, especies equinadas especialmente útiles para los propósitos de la invención son una o más seleccionadas del grupo que consiste en
Magno liophyta Eudicot ledóneas Astera les Asteraceae Ambrosia sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Helianthus sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Pectis sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Tagetes sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Stevia sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Caléndula sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Parthenium sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Balsamorhiza sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Cirsium sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Balsamorhiza sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Arnica sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Ambrosia sp
Magno liophyta Eudicot ledóneas Astera es Asteraceae Aster sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Bidens sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Clibadium sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Cosmos sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Doronicum sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Echinacea sp.
Magno liophyta Eudicot ledóneas Astera es Asteraceae Erechtites sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Erigeron sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Gaillardia sp.
Magno liophyta Eudicot ledóneas Astera les Asteraceae Inula sp. Magnoliophyta Eudicotiledóneas Asterales Asteraceae Leucanthemopsis sp.
Magnoliophyta Eudicotiledóneas Asterales Asteraceae Liatris sp.
Magnoliophyta Eudicotiledóneas Asterales Asteraceae Pulicaria sp.
Magnoliophyta Eudicotiledóneas Asterales Asteraceae Scorzonera sp.
Magnoliophyta Eudicotiledóneas Asterales Asteraceae Tetragonotheca sp.
Magnoliophyta Eudicotiledóneas Alismatales Araceae Ulearum sp.
Magnoliophyta Eudicotiledóneas Alismatales Araceae Zomicarpa
Magnoliophyta Eudicotiledóneas Alismatales Araceae Pinellia sp.
Magnoliophyta Eudicotiledóneas Magnoliales Annonaceae Annonaceae sp.
Magnoliophyta Eudicotiledóneas Sapindales Meliaceae Melia sp.
Magnoliophyta Eudicotiledóneas Caryophyllales Tamaricaceae Tamarix sp.
Magnoliophyta Eudicotiledóneas Lamíales Oleaceae Olea sp.
Magnoliophyta Eudicotiledóneas Dipsacales Caprifoliaceae Lonicera sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Malope sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Abutilón sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Hibiscus sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Lavatera sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Sphaeralcea sp.
Magnoliophyta Eudicotiledóneas Málvales Malvaceae Malva sp.
y mezclas de las mismas.
Las partículas de polen utilizadas como materia prima en la invención pueden tener diferentes tamaños, por ejemplo, puede tener un diámetro medio comprendido entre 1 miera y 400 mieras, 1 miera y 300 mieras, o entre 1 miera y 200 mieras, o entre 1 miera y 100 mieras, por ejemplo, entre 10 mieras y 50 mieras, por ejemplo, entre 15 mieras y 40 mieras, o entre 20 mieras y 30 mieras, o entre 25 mieras y 30 mieras.
Tanto las partículas purificadas de polen, como los nanosistemas, el principio activo farmacéuticamente aceptable, o el principio dietéticamente aceptable, pueden estar asociados a un marcador, por ejemplo, un marcador fluorescente. Ejemplos no limitativos de este tipo de marcadores fluorescentes son tintes reactivos a aminas (por ejemplo, Alexa Fluor®), TAM A o Tintes Cy (Cy-dyes). Esto permite hacer un seguimiento de cada uno de ellos de forma conjunta o de forma separada.
Nanosistemas
Las partículas purificadas de polen de la invención tienen la capacidad de incorporar nanosistemas, preferiblemente nanosistemas orgánicos. En la presente divulgación el término "nanosistema" en el término que lo usamos aquí es un coloide, es decir una partícula en la cual al menos una de sus dimensiones está en el rango entre 1 y 1000 nm, preferiblemente, tiene un diámetro medio entre 1 nm y 500 nm, más preferiblemente, entre 40 nm y 400 nm, medido por espectroscopia de correlación fotónica en un Nanosizer de Malvern Instruments, y que tiene carácter liofóbico, es decir, que no está disuelto en su fase externa (Paul Hiemenz, Raj Rajagopalan, Principies of colloid and Surface chemistry, 3rd Ed., Marcel Dekker, Inc., New York, 1997). En el contexto de esta invención el sistema coloidal está destinado a tener en su composición al menos un marcador fluorescencte o una molécula farmacológicamente activa. Dicho término se considera en la presente invención que incluye, por ejemplo, "nanocápsula", "nanopartícula", "vesícula", "micela", "nanoemulsión", "liposoma" o "partícula utra-fina". También entiende el experto medio en la materia que los nanosistemas orgánicos, son aquellos nanosistemas cuyos componentes son al menos en parte orgánicos, es decir, basados en moléculas que comprenden carbono e hidrógeno, por ejemplo, proteínas, carbohidratos o lípidos. Ver por ejemplo, Kumar R, Lal S J Nanomater Mol Nanotechnol 2014, 3, 4. Los nanosistemas de la invención pueden ser por ejemplo nanosistemas poliméricos. Los nanosistemas poliméricos están ampliamente descritos en la literatura y son conocidos por el experto en la materia, como decriben por ejemplo Pinto Reis et al., en Nanomedicine: Nanotechnology, Biology, and Medicine 2(2006) 8-21. Pinto Reis, et al. 2006. El índice de la polidispersidad del diámetro medio de los nanosistemas poliméricos que pueden utilizarse en la presente invención está comprendido entre 0,1 y 0,5, en donde el índice de polidispersidad se mide mediante la técnica de espectroscopia de correlación fotónica medida en un Nanosizer de Malvern Instruments. Por las mismas razones, es preferible que el nanosistema sea sustancialmente biodegradable y de baja o nula toxicidad. Así pues, se considera que el nanosistema es biodegradable cuando al menos uno de sus componentes cumple con los estándares comúnmente aceptados, por ejemplo, las normas de biodegradabilidad redactadas por distintos organismos de normalización (ISO, CEN, ASTM, DIN, etc.), por ejemplo, es biodegradable en un 90% después de 6 meses según la norma UN E-EN-ISO 14852:2005 (determinación de la biodegradabilidad aeróbica final de materiales plásticos en medio acuoso), es decir un 90% de los átomos de carbono (C) presentes en el componente se convirtieron a dióxido de carbono después de seis meses en las condiciones definidas en la norma.
El experto en la materia puede reconocer que existen diversas clases de nanosistemas que puede utilizar en la presente invención, muchos de ellos disponibles comercialmente, o que se pueden preparar por métodos descritos en el estado de la técnica. Pueden ser de tipo matricial, es decir, redes poliméricas que contienen entrecruzamientos iónicos, por ejemplo, que contienen polímeros solubles en agua. Ejemplos no limitativos de este tipo de nanosistemas son aquellos basados en polisacáridos, por ejemplo, quitosano (nanopartículas de quitosano) o en poliaminoácidos, por ejemplo, protamina (nanocápsulas de protamina). Ver por ejemplo el método descrito en Calvo P, emuñán-López C, Vila-Jato J L, lonso MJ J Appl Polym Sci 1997, 63, 125-132 o en Thwala L (2016) Protamine nanocapsules as carriersfor oral peptide delivery. También se pueden utilizar en la presente invención nanosistemas que comprenden un núcleo líquido rodeado de una capa de recubrimiento. El núcleo puede incorporar distintos aceites, material lipídico (por ejemplo, ácidos grasos o fosfolípidos o mono-, di- o tri-glicéridos), en combinación con surfactantes no-iónicos. La capa de recubrimiento puede ser un polímero, por ejemplo, protamina. Ver por ejemplo los métodos descritos en la solicitud de patente PCT/ES2013/070885. Otros nanosistemas adecuados para su uso en la presente invención son nanopartículas sólidas, como por ejemplo, nanopartículas de quitosano, en particular las que se describen en ES2481940B1, ES2093562, Csaba et al, Journal of Controlled Reléase, 2017, 245, 62-69; Marcos García-Fuentes, M.J.A, Journal of Controlled Reléase, 2012, 161 (2), 496-504. Un experto en la materia puede conocer cómo preparar estos y otros nanosistemas poliméricos según Nanomedicine: Nanotechnology, Biology, and Medicine 2(2006) 8-21. Pinto Reis, et al. 2006.
Se prefiere que los nanosistemas sean farmacéuticamente aceptables para las aplicaciones que se proponen en la presente invención.
Aplicaciones Los investigadores han comprobado que las partículas purificadas de polen de la invención son estables in vivo, y tienen una sorprendente capacidad de penetración en la mucosa del intestino, haciendo de ellas una excelente plataforma de administración transmucosa de nanosistemas, en especial, para la administración oral. Así pues, la presente invención incluye el uso de las partículas purificadas de polen de la invención, especialmente aquellas que incorporan nanosistemas, para la fabricación de un medicamento. Es decir, una partícula purificada de polen de la invención, especialmente aquellas que incorporan nanosistemas, para su uso como medicamento. Las partículas purificadas de polen de la invención son por tanto especialmente adecuadas para su uso en la fabricación de un medicamento de administración transmucosa, tal como administración oral, administración ocular o administración nasal.
Por ejemplo, las partículas purificadas de polen de la invención pueden usarse para la administración ocular, incluyendo su uso para la fabricación de un medicamento para el tratamiento de enfermedades oculares, por ejemplo, para la cura de heridas oculares o la enfermedad macular.
Las partículas purificadas de polen de la presente invención también pueden utilizarse para la administración de antígenos por vía nasal, especialmente interesante para la administración de vacunas, lo cual aliviaría la carga que la administración parenteral supone para los servicios sanitarios, especialmente en países en desarrollo.
Dada su buena absorción y penetración en la mucosa intestinal, un uso especialmente adecuado para las partículas purificadas de polen de la invención es la fabricación de un medicamento de administración oral y/o para la fabricación de un medicamento para la liberación controlada de un principio activo, preferiblemente de liberación en el tracto digestivo. Por el término "tracto digestivo" se entiende en la presente invención el sistema por el que transcurre cualquier principio activo administrado oralmente desde su toma hasta la excreción. Incluye por tanto la boca, garganta, esófago, estómago, intestino delgado e intestino grueso, entre otros. Por ejemplo, las partículas purificadas de la invención pueden ser útiles para la administración de moléculas para las que sólo se conocen medios de administración parenteral, por ejemplo para la administración de péptidos antidiabéticos. La incorporación de estos principios activos en nanosistemas, y la de estas a su vez en las partículas purificadas de polen, permite el transporte hasta el epitelio y su liberación controlada.
Una situación en la que la administración transmucosa puede ofrecer ventajas únicas es la administración de antígenos. Las superficies mucosas como el tracto respiratorio o gastrointestinal representan la principal vía de entrada de muchos patógenos y desempeñan un papel integral en el desarrollo de mecanismos de defensa eficaces contra estos. De hecho, una respuesta inmune combinada que implica inmunidad sistémica y mucosa se logra mejor mediante la administración transmucosa de antígenos.
El término "principio activo" se refiere a una sustancia utilizada para tratar, curar o prevenir una condición médica o una enfermedad. También abarca en el contexto de la presente invención aquellas sustancias que se utilizan en pruebas diagnósticas. Dicho principio activo forma parte del nanosistema, y puede ser, por ejemplo, un agente de contraste o una vacuna. En una realización de la invención, el principio activo es un compuesto de alto peso molecular, por ejemplo, una proteína, un péptido, un lípido, un anticuerpo o un ácido nucleico. Por tanto, la presente invención también se refiere a una composición que comprende la partícula purificada de polen de la invención y un excipiente farmacéuticamente aceptable. En otro aspecto, la invención se refiere a una composición que comprende la partícula purificada de polen de la invención y un excipiente dietéticamente aceptable.
El término "excipiente" se refiere a un diluyente o adyuvante con el que se administra el principio activo. Tales excipientes farmacéuticos pueden ser líquidos estériles, tales como agua o aceites, incluyendo los de origen petrolífero, animal, vegetal o sintético, tales como aceite de cacahuete aceite de soja, aceite mineral, aceite de sésamo y similares. Se describen excipientes farmacéuticos adecuados en " emington's Pharmaceutical Sciences" por E.W. Martin. Dichos excipientes también se pueden considerar como las sustancias auxiliares necesarias para fabricar la forma farmacéutica deseada. Su naturaleza y cantidades dependen, entre otros factores, de la forma farmacéutica de administración elegida. Dichas formas farmacéuticas de administración de la composición farmacéutica se fabricarán según métodos convencionales conocidos por el experto en la materia. Puede encontrarse una revisión de diferentes métodos de administración de principios activos, excipientes a utilizar y procedimientos para producirlos en "Tratado de Farmacia Galénica", C. Faulí i Trillo, Luzán 5, S.A. de Ediciones, 1993.
El término "farmacéuticamente aceptable" se refiere a entidades moleculares y composiciones que son fisiológicamente tolerables y no producen normalmente una reacción no deseada alérgica o similar, tal como molestias gástricas, mareos y similares, cuando se administra a un ser humano. Preferiblemente, tal como se utiliza en el presente documento, el término "farmacéuticamente aceptable" significa aprobado por una agencia reguladora del gobierno federal o de un estado o enumerado en la Farmacopea de los EE.UU. u otra farmacopea reconocida generalmente para su uso en animales y más particularmente en seres humanos. De forma análoga, el término "dietéticamente aceptable" se refiere a entidades moleculares y composiciones que son fisiológicamente tolerables, preferiblemente, aprobadas para consumo humano por una agencia reguladora para su uso con propósitos alimentarios en animales y más particularmente en seres humanos. Es decir, el uso de las partículas purificadas de polen de la presente invención para la administración de un principio dietéticamente aceptable excluye usos terapéuticos, y pueden servir, por ejemplo, para la administración de un enmascarador del sabor.
La presente divulgación incluye pues métodos para el tratamiento de un sujeto en necesidad de tratamiento mediante la administración de una cantidad terapéuticamente eficaz de las partículas purificadas de polen de la invención. El término "tratamiento" o "tratar" se refiere en el contexto de la presente invención a la administración de las composiciones farmacéuticas de la invención para prevenir, reducir o eliminar uno o más síntomas asociados con una condición médica o una enfermedad. El término "tratar" también abarca la eliminación, reducción o prevención de las secuelas de dicha enfermedad o condición médica. El término "reducir" se entiende en el contexto de la presente invención como la mejora en la situación del paciente, bien evaluada por medios subjetivos (percepción del paciente en cuanto a algún aspecto particular o en cuanto a su estado general) o por medios objetivos, por ejemplo, parámetros biológicos, por ejemplo, niveles de un analito en determinados fluidos.
El término "cantidad terapéuticamente eficaz" se refiere a la cantidad de principio activo calculada para producir el efecto deseado y estará determinada generalmente, entre otros motivos, por las propias características del principio activo utilizado y el efecto terapéutico que va a obtenerse. En una realización particular, la dosis de principio activo administrada a un sujeto que necesita tratamiento para el tratamiento está en el intervalo de 10"10 a 1010 mg/kg de peso corporal, normalmente entre 10"3 y 103 mg/kg de peso corporal.
El medicamento que comprende las partículas purificadas de polen de la invención puede hallarse en cualquier forma adecuada para su administración a humanos y/o animales, preferentemente humanos, incluyendo bebés, niños y adultos y puede prepararse por procedimientos estándar conocidos por los expertos en la materia, por ejemplo, "Pharmaceutics: The Science of Dosage Forms, segunda edición, Aulton, M.E. (ed.) Churchill Livingstone, Edinburgo (2002); "Encyclopedia of Pharmaceutical Technology", segunda edición, Swarbrick, J. y Boylan J.C. (eds.), Marcel Dekker, Inc. Nueva York (2002); "Modern Pharmaceutics", cuarta edición, Banker G.S. y hodes C.T. (eds.) Marcel Dekker, Inc. Nueva York 2002 y "The Theory and Practice of Industrial Pharmacy", Lachman L, Lieberman H. y Kanig J. (eds.), Lea & Febiger, Filadelfia (1986). La composición del medicamento puede variar dependiendo de la vía de administración.
La composición farmacéutica de la invención, puede administrarse en una pluralidad de formas farmacéuticas de administración, por ejemplo, sólidas, líquidas, etc. Ejemplos ilustrativos, no limitantes de dichas formas farmacéuticas de administración de la composición farmacéutica de la invención incluyen gotas orales (suspensión, emulsión, etc.); formulaciones orales (líquidas, suspensión, emulsión, gel, pasta, polvo, etc.); liofilizado oral; goma oral; polvo para suspensión oral; gránulos; gránulos gastrorresistentes; gránulos de liberación prolongada; gránulos de liberación modificada; gránulos para suspensión oral; polvo y disolvente para disolución o suspensión oral; jarabe; polvo para jarabe; gránulos para jarabe; comprimidos (por ejemplo, comprimido soluble, comprimido dispersable, comprimido recubierto, comprimido recubierto de película, comprimido efervescente, comprimido bucodispersable, comprimido gastrorresistente, comprimido de liberación prolongada, comprimido de liberación modificada, comprimido bucal, comprimido masticable, etc.); polvo o gránulos efervescentes; sobre, cápsula; pildoras; dispositivo intrarruminal de liberación continua; dispositivo intrarruminal de liberación pulsátil; bloque para chupar; premezcla para personal de alimentación medicada; grageas; suspensión, gotas, aerosol, gel, pasta, cápsula bucomucosos etc.; aerosol, comprimido sublinguales, etc.; enjuague bucal; gel, pasta gingivales, etc.; comprimido para chupar; pastilla; gel, bastoncillo, inserto, polvo, suspensión, emulsión dentales, etc.; pasta de dientes; crema; gel; pomada; crema ocular; gel ocular; pomada ocular; colirios (polvo y disolvente para suspensión, loción, disolvente para reconstituir una loción, etc.); inserto oftálmico; crema para los oídos; gel para los oídos; pomada para los oídos; gotas para los oídos (suspensión, emulsión, polvo, etc.); aerosol para los oídos (suspensión, etc.); irrigación para los oídos (emulsión, etc.); tampón para los oídos; bastoncillo para los oídos; crema nasal; gel nasal; pomada nasal; gotas nasales (suspensión, emulsión, etc.); polvo nasal; aerosol nasal (suspensión, emulsión, etc.); irrigación nasal, bastoncillo nasal; crema vaginal; gel vaginal; pomada vaginal; espuma vaginal; suspensión vaginal; emulsión vaginal; cápsula dura o blanda vaginal; comprimido vaginal; comprimido efervescente vaginal; sistema de administración vaginal; crema rectal; gel rectal; pomada rectal; espuma rectal; suspensión rectal; emulsión rectal; polvo para disolución rectal; polvo para suspensión rectal; comprimido para suspensión rectal; supositorio; cápsula rectal; suspensión nebulizadora; polvo para suspensión nebulizadora; emulsión nebulizadora; inhalación presurizada (suspensión, emulsión, etc.); polvo para inhalación; polvo para inhalación (cápsula dura); polvo para inhalación, predispensado; gel para inyección; suspensión para inyección; emulsión para inyección; polvo para suspensión para inyección; polvo y disolvente para suspensión para inyección; disolución para infusión; emulsión para infusión; comprimido de implantación; irrigación vesical; polvo para irrigación vesical; gel uretral; bastoncillo uretral; instilación endotraqueopulmonar (disolución); instilación endotraqueopulmonar; instilación endotraqueopulmonar (suspensión); gel endocervical; polvo y disolvente para gel endocervical; suspensión intramaria; emulsión intramaria; pomada intramamaria; bastoncillo para los pezones; sistema de administración intrauterina; etc.
Ejemplos
A continuación, se describen ejemplos específicos de purificación de polen (ejemplo 1), de preparación de nanosistemas adecuados para la presente invención (ejemplo 2) y su incorporación en las partículas purificadas de polen para formar vehículos de administración (ejemplo 3). También se muestran los resultados obtenidos en un ejemplo ex vivo (ejemplo 4) diseñado para evaluar las partículas purificadas de polen de la invención, así como experimentos in vitro e in vivo que muestran la estabilidad de las partículas purificadas de polen de la invención (ejemplos 5 y 6, respectivamente). Estos ejemplos sirven para ilustrar realizaciones de la invención, pero que en ningún caso se deben considerar limitativos. Ejemplo 1: purificación de partículas purificadas de polen
Ejemplo 1.1. Purificación: lavados acuoso y orgánico
Para la purificación de las partículas de polen se partió de partículas de polen de girasol, Helianthus annuus.
Etapa 1 Se suspendieron 10 mg de partículas de polen en 20 mi de agua miliQ previamente calentada a 37°C durante 30 segundos con agitación. Se mantuvo la suspensión en agitación horizontal durante la noche anterior a temperatura ambiente, y se centrifugó al día siguiente a 2500 rpm a 15°C durante 10 minutos (Hettich Zentrifugen con rotor 1689). Se descartó el sobrenadante y se repitió el proceso, lavando con 10 mi de agua miliQ a 37°C. La suspensión se volvió a centrifugar a 2500 rpm, a 15°C durante 5 minutos. Se descartó el sobrenadante y las partículas resultantes se secaron a 37°C una noche.
Etapa 2 A continuación se re-suspendió el material de la Etapa 1 en agua miliQ para evitar la formación de agregados, y se procedió al lavado con disolvente orgánico. Aquí se presentan dos ejemplos, el primero utilizando ciclohexano, y el segundo una mezcla de cloroformo/metanol.
En el primer caso se añadieron 800 microlitros de ciclohexano a 75 mg del material de la Etapa 1. La suspensión resultante se agitó 30 segundos, se centrifugó a 14000 rpm a 15°C durante 1 minuto (Hettich Zentrifugen con rotor 1689), para después descartar el sobrenadante. Las partículas resultantes se secaron a 37°C durante una noche.
En el segundo caso sobre 50 mg del material de la Etapa 1 se añadieron 10 mi de una mezcla cloroformo/metanol (3:1; v/v). La suspensión se agitó 30 segundos y se filtró mediante una membrana con tamaño de poro de 0,22 mieras, que se lavó con 5 mi de la mezcla cloroformo/metanol. Después de 120 minutos secando a vacío, se recuperó el material del filtro.
Caracterización
Se evaluó la estabilidad del material así obtenido frente a condiciones in vivo. Concretamente, se incubó durante 2 horas a 37°C en los siguientes medios: fluido intestinal simulado a pH 6,8, fluido gástrico simulado a pH 1,2, sangre y condiciones postpandriales en el intestino delgado superior, es decir, simulación de situación de alimentación en el fluido intestinal (pH de 5,8). Tras las diversas pruebas se evaluó por SEM el material, sin observarse variaciones significativas, confirmando así que las partículas purificadas de polen preparadas por el sencillo método de purificación de la invención son estables en condiciones in vivo, en medios tan agresivos como el gástrico y el intestinal. Sólo en el caso de la incubación en fluido gástrico se observó la formación de precipitados de sal y otros productos sobre la superficie de las partículas purificadas de polen. Las fotos de las partículas obtenidas tras la incubación en el fluido intestinal simulado a pH 6,8, el fluido gástrico simulado a pH 1,2, y la sangre, se muestran en las figuras IB, 1C y ID, respectivamente, y se pueden comparar con la foto obtenida antes de la incubación (Figura 1A). Para evaluar los resultados de este procedimiento se comparó la morfología del material obtenido de la Etapa 1, lavado solo con agua, con el material resultante de la Etapa 2, según la invención, lavado con agua y disolvente orgánico. Las fotografías SEM mostraron poros poco definidos en el primer caso, muestra de que la capa que recubre la exina, no se elimina completamente sólo con agua, y es necesario realizar un lavado adicional con un disolvente orgánico, una disolución ácida, un tratamiento enzimático o una disolución de detergentes. Ver figura 2.
Para esta comparación también se midió la autofluorescencia del material obtenido de la Etapa 1, lavado solo con agua, y la del material resultante de la Etapa 2, según la invención, lavado en medio acuoso en pH aproximadamente neutro y disolvente orgánico. En todos los casos la emisión de fluorescencia se produce alrededor de 500 nm, pero en el caso del material preparado por el procedimiento de la invención, el nivel de autofluorescencia fue significativamente inferior, aproximadamente 8000 unidades en el caso del lavado adicional con la mezcla de cloroformo/metanol, y de aproximadamente 4000 unidades en el caso del lavado adicional con ciclohexano. Ver la Figura 3. Esto muestra la distinta modificación que se hace sobre el sistema.
Ejemplo 1.2. Lavado con medio acuoso ácido
Ejemplo 1.2.1 permeabilización de polen utilizando soluciones ácidas por encima de 40QC y por debajo de 80?C
Se suspendieron 70 mg de polen purificado en 1 m i de una disolución ácida (por ejemplo, ácido fosfórico, ácido sulfúrico, ácido perclórico, o ácido clorhídrico) y se calentaron a 70°C durante 5 minutos en agitación. Dependiendo del ácido y el grado de permeabilización deseado, el proceso puede prologarse hasta 120 minutos.
El polen fue centrifugado a 14000 rpm durante 10 minutos, se eliminó el sobrenadante y se suspendió en agua para su lavado adicional. La muestra de polen se homogenizó con ayuda de un agitador tipo vórtex y se centrifugó nuevamente en las mismas condiciones. El proceso de lavado, en el cual se realizó la adición de 1 m i de agua sobre la muestra, se repitió varias veces. El proceso de lavado y eliminación de restos de ácido se puede realizar por diálisis frente a agua. Las partículas resultantes se secaron a 37°C durante una noche.
Alternativamente, el polen permeado pudo ser recuperado por filtración utilizando unos filtros compatibles con el ácido seleccionado. El polen permeado fue suspendido en agua y/o tampón, y filtrado nuevamente en un paso de lavado. Adicionalmente, puede neutralizarse totalmente el polen permeado utilizando un tampón para su lavado con un pH comprendido entre 3 y 11, preferiblemente entre 4,5 y 9. Tras la neutralización el polen fue lavado nuevamente con agua. El material fue recuperado del filtro y secado. Ejemplo 1.2.2: permeabilización de polen utilizando soluciones a temperatura entre 15 y 40 QC
Se suspendieron 70 mg de polen purificado en 1 mi de ácido concentrado (por ejemplo, ácido fosfórico, ácido perclórico, o ácido clorhídrico) y se calentaron a 37°C durante 1 hora en agitación. Alternativamente el proceso puede realizarse a temperatura ambiente.
Caracterización La permea bilización de los gra nos de polen de gi rasol y su morfología fue eva luada media nte técnicas de microscopía óptica, fl uorescencia, confoca l y electrónica de ba rrido (SEM). El contenido en proteína de las muestras fue evaluado por análisis elemental y espectrometría de infrarrojos con derivada de Fourier (FTIR). Ver figura 4, 5 y 6.
A través de microscopía óptica y por la autofluorescencia de las diferentes capas de polen (exina: azul; intina: roja), se pudo observar que tras el tratamiento con las disoluciones ácidas se produjo la evaginación de la capa de intina en el poro germinal del polen, formando protuberancias redondeadas. Tratamientos más prolongados producen una apertura apical, llegando a la exposición completa de la apertura colporada del polen. Se observó que dichos tratamientos vacían total o parcialmente el citoplasma del interior del polen. Ver figura 7.
El espectro de IR del polen sin tratar y tras el tratamiento con ciclohexano son similares, sin embargo, se observa la desaparición de la banda a 1735 cm"1, lo que demuestra la extracción de lípidos, dado que esta banda está descrita como característica de la vibración de tensión C=0 de lípidos, triglicéridos y ésteres de alquilo. Tras el tratamiento con la solución ácida se observa una diminución de la banda a 1630 cm 1 en la región amida I, característica de las proteínas. Del mismo modo, en tratamientos prolongados en disolución ácida se observa una disminución de las bandas a 1606 y 1515 cm"1, características de la esporopolenina, lo que sugiere que la exina empieza a degradarse, tal como puede observarse en las micrografías electrónicas de barrido del polen tratado 300 minutos. Ver figura 4 y 5.
Estos resultados demuestran que es posible controlar el grado de apertura y vaciado de los granos de polen cambiando las condiciones de un tratamiento con una disolución ácida. Estas partículas permeadas deben mostrar mayor capacidad de carga de nanosistemas que aquellas sin este tratamiento, dado que se aumenta el espacio útil de carga.
Ejemplo 1.3. Lavado enzimático Con el fin de eliminar restos proteicos (alérgenos) e incrementar el tamaño de los poros obtenidos en el ejemplo 1.2.1; se ofrecen a continuación dos ejemplos de tratamiento enzimático no-limitativos de partículas de polen de girasol (Helianthus annuus) previamente pretratadas, bien, permeabilizadas (como las obtenidas en el ejemplo 1.2), o alternativamente purificadas de lípidos (como las obtenidas en el ejemplo 1.1). Ejemplos no limitativos de proteasas son la proteinasa K, la tripsina, la papaína, bromelaína, proteasa alcalina. Los tratamientos enzimáticos se pueden llevar a cabo con las enzimas englobadas dentro de la sección 3 de la clasificación de los números EC (Enzyme Commission numbers), preferiblemente con las subsecciones 3.1; 3.2; 3.3; 3.4; y más preferiblemente dentro de la subsección 3.2 con enzimas como las celulasas y 3.4 como las proteinasas.
Se suspendieron 70 mg de polen pretratado, bien con disolución ácida (producto de ejemplo 1.2) o, alternativamente, con disolventes orgánicos (producto de ejemplo 1.1) en 1 mi de tampón a pH adecuado para la hidrolasa empleada, ácido para enzimas carbohidrasas, o alcalino en caso de la proteasa. Se incubaron las reacciones en un agitador orbital a 1000 rpm durante un periodo comprendido entre 10 minutos a 120 minutos, a la temperatura óptima descrita para cada hidrolasa, generalmente 55QC para enzimas carbohidrasas, y 37QC para proteasas.
El polen tratado enzimáticamente fue purificado tal como se describe en la etapa 2 del ejemplo 1.2.1.
Etapa 2
En caso de realización de un tratamiento combinado de enzimas carbohidrasas y proteasas, las partículas de polen obtenidas tras el tratamiento de la etapa 1 pueden someterse a un tratamiento posterior con proteasas. Para ello, el producto purificado de la etapa 1 es resuspendido en 1 mL de tampón a pH entre 7 y 9, preferiblemente 8, a una concentración de 10 mM a 1 M. Se incubaron las reacciones en un agitador orbital a 1000 rpm durante un periodo comprendido entre 10 minutos a 120 minutos, a la temperatura óptima de la proteasa.
Caracterización Tras el tratamiento con hidrolasas se pudo observar que el tratamiento previo se vio potenciado. Con tratamientos más suaves (menor tiempo y/o temperatura) se consiguió la formación de poros en las protuberancias observadas en el polen permeabilizado. A través de estudios cinéticos de concentración y tiempo de reacción, se pudo observar el incremento de la actividad, que se vio reflejada en cambios morfológicos en los granos de polen pretratados. Dada la especificidad de substrato que presentan las enzimas, los tratamientos con carbohidrasas y/o proteasas permiten modular el efecto de hidrólisis, de un modo selectivo y más controlado, que la hidrólisis ácida producida con otros tratamientos, dado que esta última afecta simultáneamente a polisacáridos (exina e intina) como a las proteínas (componentes celulares, alérgenos proteicos, ...).
Ejemplo 1.4. Lavado con detergentes
Con el fin de eliminar restos proteicos (alérgenos); se ofrecen a continuación dos ejemplos de tratamiento enzimático no-limitativos de partículas de polen de girasol (Helianthus annuus) previamente pretratadas, bien, purificadas de lípidos (como las obtenidas en el ejemplo 1.1), permeabilizadas (como las obtenidas en el ejemplo 1.2), tratadas enzimáticamente (como las obtenidas en el ejemplo 1.3) o su uso en combinación de los tratamientos previamente descritos, por ejemplo, co-incubación con detergente y proteasas. Ejemplos no limitativos de detergentes de tipo iónicos Dodecil sulfato de sodio (del inglés SDS), deoxicolato, colato, Sarcosyl, tipo no iónicos Tritón X-100, n-dodecil- -D-maltósido (DDM), digitonina, Tween-20, tipo zwitteriónicos 3-[(3- Colamidopropil) dimetilammonio]-l-propanosulfonato (CHAPS), tipo caotrópicos urea, entre otros.
Etapa 1
Se suspendieron 70 mg de partículas de polen pretratadas en 1 mi de buffer con diferentes detergentes que permitan la eliminación de proteínas, como pueden ser detergentes de tipo iónicos Dodecil sulfato de sodio (del inglés SDS), deoxicolato, colato, Sarcosyl, tipo no iónicos Tritón X-100, DDM, digitonina, Tween-20, tipo zwitteriónicos CHAPS, tipo caotrópicos urea, entre otros. Se mantuvo la suspensión en agitación a 37QC durante 120 minutos con agitación, y se centrifugó a 14000 rpm a 20°C durante 10 minutos. Se descartó el sobrenadante y se repitió el proceso, lavando con 10 mi de agua miliQ a 37°C. La suspensión se volvió a centrifugar a 14000 rpm, a 15°C durante 10 minutos. Se descartó el sobrenadante y las partículas de polen resultantes se secaron a 37°C durante una noche.
Etapa 2
Alternativamente, se realizó la incubación de 70 mg de partículas de polen pretratadas en 1 m L de buffer con detergentes compatibles con la actividad proteolítica, tales como Urea, Tween-20, Tritón X-100 y SDS. Como ejemplo de proteasa se utilizó proteinasa K a una concentración de 1 mg/m L. La reacción se incubó durante un tiempo comprendido entre 5 y 120 min a 37QC en agitación. Posteriormente la muestra fue purificada tal como se explica en la etapa 1.
Ejemplo 2: Algunos ejemplos de nanosistemas orgánicos que pueden ser encapsulados
Se ofrecen a continuación dos ejemplos de preparación no-limitativos de nanosistemas orgánicos que pueden ser encapsulados
Ejemplo 2.1: formulación de nanopartículas de quitosano / trifosfato de sodio (CS/TPP)
Las nanopartículas de quitosano/trifosfato de sodio fueron obtenidas usando una ratio de CS/TPP (5: 1) (w/w), mediante la técnica de gelificación iónica, según la solicitud de patente WO9804244). Se preparó una solución de 2 mg/ml de CS y 1.2 mg/ml de TPP en agua milliQ. Para obtener las nanopartículas 0.5 mi de TPP se vertieron sobre 1.5 mi de CS bajo agitación magnética y se dejaron bajo agitación durante 10 min a 25QC. Las nanopartículas se forman espontáneamente.
Ejemplo 2.2: nanocápsulas de protamina
Las nanocápsulas de protamina se prepararon mediante la técnica de difusión del solvente, según la patente ES2481940, de acuerdo a las siguientes etapas:
1. Se preparó una fase acuosa (10 mi) de protamina con una concentración final de 1,5 mg/ml. Esta solución se mantuvo bajo agitación magnética a temperatura ambiente.
2. Se preparó una fase orgánica de 3 mi de PEG-estearato 40 (5.333 mg/ml), 20 uL glicocolato sódico (250 mg/ml), se mezclaron con vortex (5 segundos) y después se añadieron entre 20 y 100 μί del aceite Miglyol®, dependiendo del tamaño deseado, y la mezcla se agito otra vez por vortex y finalmente se añaden 1.98 mi de acetona
Opcionalmente, para la preparación de nanocápsulas fluorescentes, en esta etapa se añaden 20 microlitros del marcador ^l'-Dioctadecil^^^'^'-Tetrametilindodicarbocianine perclorato (DiD; 2.5 mg/ml) a la fase orgánica.
3. La fase orgánica se transfirió rápidamente mediante inyección continua o adición simple, dependiendo del tamaño deseado, a la fase acuosa previamente preparada. Las nanocápsulas se forman espontáneamente.
4. Tras mantener la suspensión durante 10 minutos, los solventes orgánicos se eliminaron por rotaevaporación. Tras este paso, opcionalmente se pueden aislar (e.j. por ultacentrifugacion: 30.000 rpm, lh, 15 ^c)
Caracterización
Las propiedades de las nanopartículas y nanocápsulas se resumen en la Tabla 1 a continuación índice de Agente
Ejemplo Tamaño (nm) Polidispersión - Potencial Z (mV) fluorescente DiD
Pdl (%)
Ejemplo 2.1 187 0,3 0 -
101 ± 3 0,05 +3 ± 1
Ejemplo 2.2 >60
0,2 +3 ± 1
195 ± 5
Figure imgf000031_0001
Tabla 1
Ejemplo 3: Asociación entre las partículas purificadas de polen y los nanosistemas orgánicos
Sobre 5 mg de las partículas purificadas de polen del ejemplo 1 se añadieron (i) 0,1 mi de las nanopartículas CS/TPP (0,4 mg/ml); o (ii) 0,5 mi de nanocápsulas de protamina (10 mg/ml). Las suspensiones en cada caso se mantuvieron bajo agitación horizontal 30 minutos a 37°C para así obtener vehículos de administración según la invención.
Como etapa adicional opcional se evaluó la liofilizacion de las cápsulas durante 50 horas a -40°C (Labconco Corp.), las cuales después se re-dispersaron en un medio de interés, por ejemplo, agua o agua tamponada. Tanto en el caso de utilizar liofilizacion, como en el caso de aplicar únicamente una incubación, se pudo comprobar (fotografía SEM, medidas de fluorescencia y microscopio confocal SP5 Leica AOBS- SP5) una asociación efectiva entre los nanosistemas orgánicos del ejemplo 2 y la partícula de polen purificada obtenida en ejemplo 1. Todo ello sin la necesidad de aplicar medios agresivos como son medios ácidos o básicos, a la necesidad de aplicar altas presiones que podrían comprometer la integridad y propiedades de la cápsula. En la figura 8 se muestra las fotografías SEM de las partículas de polen, preparadas según el ejemplo 1.1, que asocian A) nanopartículas de quitosano; B) nanocápsulas de protamina y C) nanocápsulas de protamina tras liofilizacion. En el caso de las muestras sometidas a liofilizacion se realizó un estudio de asociación y liberación de los nanosistemas de protamina del ejemplo 2. Para evaluar la asociación se realizó un estudio por fluorescencia, en el cual se determinó a tiempo 0 min la cantidad de nanosistemas no asociados mediante centrifugación, como resultado se determinó una asociación superior al 60% de los nanosistemas con el polen en los diferentes tamaños del ejemplo 2.2.
Se realizó un estudio de liberación con los nanosistemas del ejemplo 2.2 tras un proceso de liofilizacion, utilizando como marcador fluorescente 5-TAM A (5-Carboxytetramethylrhodamine) covalentemente unido a protamina con el objetivo de obtener un mareaje efectivo de los nanosistemas. El estudio de liberación se llevó a cabo realizando una incubación del polen con los nanosistemas en agua a 37QC con agitación orbital. A tiempos determinados hasta un máximo de 4 horas se realizaron cuantificaciones de fluorescencia utilizando el sobrenadante resultante tras un periodo de centrifugación de 2 minutos a 14000 rpm. Los resultados indican una liberación sostenida de los nanosistemas a partir del polen. En el estudio se observó cómo la cantidad de nanosistemas presentes en el medio se va incrementando durante al menos 4 horas, alcanzando en este punto una liberación alrededor del 80 % respecto a la cantidad inicial de nanosistemas. Ver figura 9.
Ejemplo 4: Evaluación ex vivo de las partículas purificadas de polen de la invención Preparación del modelo
Se usaron ratas machos Sprague-Dawley con un peso aproximado de 250 g. Se pusieron en ayunas 18 horas antes del experimento, dejándolas únicamente con acceso a agua. Las ratas fueron sacrificadas utilizando C02 utilizando las condiciones adecuadas en la cámara de hipoxia. Los intestinos fueron extraídos inmediatamente mediante una incisión abdominal y lavados con solución de Krebs (pH 6.5) antes de la preparación de los sacos. Este paso se realiza para la eliminación de residuos de comida que puedan quedar en el intestino. El intestino fue dividido en diferentes partes. Para la administración, las muestras fueron suspendidas en 1 mi de solución de Krebs e introducidos en los sacos con la ayuda de una jeringuilla. Una muestra fue utilizada para la evaluación de la anatomía y la fisiología del intestino tras el tratamiento con hematoxilina-eosina, ver figura 10, y las demás fueron utilizadas para el análisis de la capacidad de mucointeracción del complejo nanosistema y el biomaterial con el intestino mediante microscopía confocal.
Resultados
Destaca el hecho de que la integridad del intestino se mantuvo durante las pruebas realizadas, indicando que los vehículos de administración de la invención son seguras y no provocan efectos secundarios sobre la morfología de los tejidos.
Tras periodos de incubación de las partículas purificadas de polen asociadas a nanosistemas orgánicos se observaron las muestras de tejido intestinal mediante microscopía confocal. En todos los casos se ha podido comprobar que incubaciones de 30 o de 120 minutos conducen a una mejora en la interacción y la retención de los nanosistemas sobre la mucosa intestinal. En las Figuras 11A, 11B y 11C se aprecia en las fotografías de confocal a los 120 minutos cómo las nanopartículas se mantienen sobre las partículas de polen purificadas de la invención. Se ve cómo el canal rojo (Figura 10A), que destaca las nanopartículas, coincide con el canal verde (Figura 11B), que destaca las partículas de polen. Se aprecia pues como los nanosistemas se mantienen depositados sobre las partículas de polen purificadas de la invención. Por el contrario, la administración de los nanosistemas libres no condujo a la retención de cantidades apreciables sobre la mucosa intestinal, y no se observó una fluorescencia significativa por parte de las nanopartículas en el tejido (como se puede observar en las fotografías que se refieren a NCs alta concentración y NCs baja concentración), quedando comprobado el efecto de promoción a la adhesión que se obtiene cuando se combinan las partículas purificadas de polen con los nanosistemas.
Ejemplo 5: evaluación in vivo de las partículas purificadas de polen de la invención
El experimento se realizó con ratas Sprague Dawley, las cuales fueron sometidas a ayuno 12 horas antes de llevar a cabo el experimento.
Las muestras utilizadas fueron de 75 miligramos de polen por 1 mililitro de agua, se administraron mediante oral gavage a cada una de las ratas de estudio. La observación se llevó a cabo tras periodos de 1 hora y 3 horas respectivamente.
Para la extracción de los tejidos se sacrificó a la rata mediante el uso de una cámara de C02. Posteriormente se llevó a cabo una incisión en el abdomen del animal a través cual se extrajeron diferentes partes del tracto digestivo. En concreto en estos estudios nos centramos en diferentes partes del intestino delgado (duodeno y yeyuno). Tras la extracción de los tejidos y sin ningún tipo de tratamiento se realizó la observación directa mediante un microscopio óptico a diferentes aumentos.
Las conclusiones extraídas de estos experimentos fueron que los granos de polen son estables en condiciones in vivo ya que podemos observar su morfología característica conservada mediante microscopía, vemos que la administración oral del polen in vivo puede ser efectiva ya que los granos de polen llegan sin dificultad a diferentes regiones del intestino delgado. Ver Figura 12 y 13. El análisis del tejido mediante cortes transversales permite concluir que la morfología equinada del polen permite un anclaje eficiente de polen al epitelio intestinal. Asimismo, la evaluación histológica (tinción hematoxilina-eosina) no indica ninguna alteración patológica derivada de la administración y residencia prolongada del polen en el tejido.

Claims

REIVINDICACIONES
1. Partícula purificada de polen que comprende una capa de intina y una capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado, y que comprende un nanosistema.
2. La partícula purificada de polen según la reivindicación 1, en la que dicho polen es equinado.
3. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en la que dicho polen es una Magnoliophyta Eudicotiledóneas.
4. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en la que dicho polen es de la familia de las Helianthus.
5. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, que tiene un diámetro medio comprendido entre 1 y 400 mieras.
6. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en donde dicho nanosistema es un nanosistema orgánico.
7. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en donde el nanosistema tiene un diámetro de partícula medio comprendido entre 1 nm y 500 nm, en donde el diámetro medio se mide mediante espectroscopia de correlación fotónica.
8. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en donde el índice de la polidispersidad del diámetro medio del nanosistema orgánico está comprendido entre 0,1 y 0,5, en donde la polidispersidad por anemometría Láser Doppler.
9. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en donde el nanosistema es biodegradable.
10. La partícula purificada de polen según cualquiera de las reivindicaciones anteriores, en donde el nanosistema comprende un principio activo farmacéuticamente aceptable, un principio dietéticamente aceptable o mezclas de ambos.
11. Procedimiento para la preparación de la partícula purificada de polen que se define en cualquiera de las reivindicaciones 1 a 10, que comprende las etapas de
(a) lavar una partícula de polen en un medio acuoso;
(b) lavar con un disolvente orgánico; para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado total o parcialmente; y (c) poner la partícula purificada de polen en contacto con un nanosistema; en donde la etapa (b) puede realizarse antes o después de la etapa (a).
12. Procedimiento para la preparación de una partícula purificada de polen, que comprende las etapas de (a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre
4,5 y 9; y
(b) lavar con un disolvente orgánico para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado total o parcialmente, en donde la etapa (b) puede realizarse antes o después de la etapa (a).
13. El procedimiento según la reivindicación 12, que además comprende poner en contacto un nanosistema con la partícula purificada de polen.
14. El procedimiento según las reivindicaciones 11-13, en donde la partícula no se pone en contacto con un medio de pH menor de 4,5 ni de pH mayor de 9.
15. El procedimiento según cualquiera de las reivindicaciones 11-14, en donde no se fractura la exina de la partícula purificada de polen.
16. El procedimiento según cualquiera de las reivindicaciones 11 a 15, en donde no se somete la partícula purificada de polen a presiones superiores a 5 atmósferas.
17. El procedimiento según cualquiera de las reivindicaciones 11 a 16, que comprende poner en contacto un nanosistema orgánico con la partícula purificada de polen obtenida tras las etapas
(a) y (b).
18. El procedimiento según la reivindicación 17, que comprende las etapas de
(a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; (b) lavar con un disolvente orgánico para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se han eliminado total o parcialmente; y
(c) incubar la partícula purificada de polen en presencia de un nanosistema.
19. El procedimiento según la reivindicación 18, en donde la incubación se lleva a cabo en un disolvente.
20. El procedimiento según la reivindicación 17, que comprende las etapas de
(a) lavar una partícula de polen en un medio acuoso tamponado a un pH comprendido entre 4,5 y 9;
(b) lavar con un disolvente orgánico para obtener la partícula purificada de polen que conserva la capa de intina y la capa de exina, pero cuya capa lipídica (pollenkitt) se ha eliminado total o parcialmente;
(c) secar la partícula purificada de polen obtenida tras las etapas (a) y (b); y impregnar la partícula purificada de polen con los nanosistemas, opcionalmente, aplicando un vacío.
21. El procedimiento según cualquiera de las reivindicaciones 11 a 20, que además comprende una etapa adicional (d) que comprende al menos uno de los siguientes tratamientos: i) lavar con una disolución ácida; ii) lavar con enzimas; iii) lavar con un medio acuoso tamponado a un pH comprendido entre 4,5 y 9; iv) lavar con detergentes.
22. El procedimiento según cualquiera de las reivindicaciones 11 a 21, que comprende una etapa adicional de liofilización.
23. Partícula purificada de polen obtenible por el procedimiento definido en la reivindicación 12.
24. Composición que comprende la partícula purificada de polen definida en cualquiera de las reivindicaciones 1 a 10 o 12.
25. La composición según la reivindicación 24, en donde el nanosistema comprende un principio activo farmacéuticamente aceptable.
26. La composición según la reivindicación 25, que comprende un excipiente farmacéuticamente aceptable.
27. La composición según la reivindicación 26, en donde el nanosistema comprende un principio dietéticamente aceptable.
28. La composición según la reivindicación 27, que comprende un excipiente dietéticamente aceptable.
29. La partícula purificada de polen definida en cualquiera de las reivindicaciones 1 a 10, o reivindicación 12, para su uso como medicamento.
30. Uso de la partícula purificada de polen definida en cualquiera de las reivindicaciones 1 a 10, o reivindicación 12, para la fabricación de un medicamento de administración transmucosal.
31. El uso según la reivindicación 30 para la fabricación de un medicamento de administración oral, de administración ocular o de administración nasal.
32. El uso según cualquiera de las reivindicaciones 30 o 31 para la fabricación de un medicamento para la liberación controlada un principio activo farmacéuticamente aceptable.
33. El uso según la reivindicación 32 en donde dicho principio activo es una proteína, un péptido, un lípido, un anticuerpo, o un ácido nucleico.
34. Uso de la partícula purificada de polen definida en cualquiera de las reivindicaciones 1 a 10, o reivindicación 12, para administrar un principio dietéticamente aceptable.
35. Uso según la reivindicación 34, como enmascarador del sabor.
PCT/ES2018/070092 2017-02-09 2018-02-08 Particulas purificadas de polen y su uso para administrar nanosistemas WO2018146365A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18750777.7A EP3581174A4 (en) 2017-02-09 2018-02-08 PURIFIED POLLEN PARTICLES AND THEIR USE TO DELIVER NANOSYSTEMS
US16/484,536 US20200129575A1 (en) 2017-02-09 2018-02-08 Purified pollen particles and use thereof for administering nanosystems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201730152A ES2613586B2 (es) 2017-02-09 2017-02-09 Partículas purificadas de polen, procedimiento y su uso para administrar nanosistemas
ES201730151A ES2613585B2 (es) 2017-02-09 2017-02-09 Partículas purificadas de polen y su uso para administrar nanosistemas
ES201730152 2017-02-09
ES201730151 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018146365A1 true WO2018146365A1 (es) 2018-08-16

Family

ID=63107951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070092 WO2018146365A1 (es) 2017-02-09 2018-02-08 Particulas purificadas de polen y su uso para administrar nanosistemas

Country Status (3)

Country Link
US (1) US20200129575A1 (es)
EP (1) EP3581174A4 (es)
WO (1) WO2018146365A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111671069A (zh) * 2020-06-22 2020-09-18 烟台新时代健康产业有限公司 一种从破壁松花粉中提取松花粉壁的方法
GB202102748D0 (en) * 2021-02-26 2021-04-14 Botanical Solutions Ltd Exine constructs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2093562A1 (es) 1995-05-26 1996-12-16 Univ Santiago Compostela Estabilizacion de sistemas coloidales mediante formacion de complejos ionicos lipido-polisacarido.
WO1998004244A1 (es) 1996-07-29 1998-02-05 Universidade De Santiago De Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
WO2005000280A2 (en) 2003-06-27 2005-01-06 University Of Hull Dosage form comprising an exine coating of sporopollenin or derivatized sporopollenin
WO2006064227A1 (en) 2004-12-16 2006-06-22 University Of Hull Magnetic resonance contrast media
WO2007012857A1 (en) 2005-07-28 2007-02-01 University Of Hull Topical formulations containing sporopollenin
WO2009077749A1 (en) 2007-12-18 2009-06-25 University Of Hull Formulations comprising exine shells
WO2010004334A2 (en) 2008-07-09 2010-01-14 University Of Hull Exine shells
ES2481940A1 (es) 2012-12-17 2014-07-31 Universidade De Santiago De Compostela Nanocápsulas de protamina
WO2017010945A1 (en) * 2015-07-16 2017-01-19 Nanyang Technological University Microencapsulation of compounds into natural spores and pollen grains

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013552A (en) * 1989-02-06 1991-05-07 Samir Amer Moh Modified pollen grains for delivering biologically active substances to plants and animals

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2093562A1 (es) 1995-05-26 1996-12-16 Univ Santiago Compostela Estabilizacion de sistemas coloidales mediante formacion de complejos ionicos lipido-polisacarido.
WO1998004244A1 (es) 1996-07-29 1998-02-05 Universidade De Santiago De Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
WO2005000280A2 (en) 2003-06-27 2005-01-06 University Of Hull Dosage form comprising an exine coating of sporopollenin or derivatized sporopollenin
WO2006064227A1 (en) 2004-12-16 2006-06-22 University Of Hull Magnetic resonance contrast media
WO2007012857A1 (en) 2005-07-28 2007-02-01 University Of Hull Topical formulations containing sporopollenin
WO2007012856A1 (en) 2005-07-28 2007-02-01 University Of Hull Uses of sporopollenin
WO2009077749A1 (en) 2007-12-18 2009-06-25 University Of Hull Formulations comprising exine shells
WO2010004334A2 (en) 2008-07-09 2010-01-14 University Of Hull Exine shells
ES2481940A1 (es) 2012-12-17 2014-07-31 Universidade De Santiago De Compostela Nanocápsulas de protamina
ES2481940B1 (es) 2012-12-17 2015-05-06 Universidade De Santiago De Compostela Nanocápsulas de protamina
WO2017010945A1 (en) * 2015-07-16 2017-01-19 Nanyang Technological University Microencapsulation of compounds into natural spores and pollen grains

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutics: The Science of Dosage Forms", 2002, CHURCHILL LIVINGSTONE
"The Theory and Practice of Industrial Pharmacy", 1986, LEA & FEBIGER
C. FAULI I TRILLO: "Remington's Pharmaceutical Sciences", 1993, S.A. DE EDICIONES
CALVO PREMUNAN-LOPEZ CVILA-JATO JLLONSO MJ, J APPL POLYM SCI, vol. 63, 1997, pages 125 - 132
CSABA ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 245, 2017, pages 62 - 69
DOUGHTY, J.HEDDERSON, F.MCCUBBIN, A.DICKINSON, H., PROC. NATL. ACAD. SCI., vol. 90, 1993, pages 467 - 471
KUMAR RLAL S, J NANOMATER MOL NANOTECHNOL, vol. 3, 2014, pages 4
LIN, HAISHENG ET AL.: "POLLENKITT WETTING MECHANISM ENABLES SPECIES-SPECIFIC TUNABLE POLLEN ADHESION", LANGMUIR, vol. 29, no. 9, 2013, pages 3012 - 3023, XP055532357 *
LORCH, M. ET AL., CHEM. COMM., 2009, pages 6442 - 6444
MARCOS GARCIA-FUENTES, M.J.A, JOURNAL OF CONTROLLED RELEASE, vol. 161, no. 2, 2012, pages 496 - 504
MOHAMED ELFATIH H. BASHIRJASON M. WARDMATTHEW CUMMINGSELTAYEB E. KARRARMICHAEL ROOTABU BEKR A. MOHAMEDROBERT M. NACLERIODAPHNE PRE, PLOS ONE, vol. 8, no. 1, pages e53337
MUNDARGI, RAGHAVENDRA C. ET AL.: "SUNFLOWER POLLEN AS A DRUG DELIVERY VEHICLE", SMALL, vol. 12, no. 9, 2016, pages 1167 - 1173, XP055351867 *
RAGHAVENDRA C. MUNDARGIMICHAEL G. POTROZSOOHYUN PARKHITOMI SHIRAHAMAJAE HO LEEJEONGEUN SEONAM-JOON CHO, SMALL, vol. 12, no. 9, 2016, pages 1167 - 1173
REISPINTO REIS ET AL., NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE, vol. 2, 2006, pages 8 - 21
See also references of EP3581174A4 *
SHASHWTI U. ATWEYUNZHE MAHARVINDER SINGH GILL, JOURNAL OF CONTROLLED RELEASE, vol. 194, 2014, pages 45 - 52
SHWAN A. HAMADAMRO F. K. DYABSIMEON D. STOYANOVBVESSELIN N. PAUNOV, J. MATER. CHEM., vol. 21, 2011, pages 18018 - 18023
THWALA L, PROTAMINE NANOCAPSULES AS CARRIERS FOR ORAL PEPTIDE DELIVERY, 2016
TRAVERSO GSCHOELLHAMMER CMSCHROEDER AMAA RLAUWERS GYPOLAT BEANDERSON DGBLANKSCHTEIN DLANGER R, J PHARM SCI, vol. 104, 2015, pages 362 - 367
W. BRANDON GOODWINISMAEL J. GOMEZYUNNAN FANGJ. CARSON MEREDITHKENNETH H. SANDHAGE, CHEM. MATER., vol. 25, 2013, pages 4529 - 4536

Also Published As

Publication number Publication date
EP3581174A1 (en) 2019-12-18
EP3581174A4 (en) 2020-12-30
US20200129575A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
AU2018202074B2 (en) Pharmaceutical nanoparticles showing improved mucosal transport
Abourehab et al. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art
Sábio et al. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration
ES2232886T3 (es) Formulaciones de dosificacion de cesion controlada en un momento especifico y metodo para preparar las mismas.
ES2344303T3 (es) Particulas que comprenden un nucleo de nanoparticulas de fosfato calcico, una biomolecula y un acido biliar, los metodos de produccion y el uso terapeutico de las mismas.
KR102310775B1 (ko) 개선된 점막 수송을 나타내는 제약 나노입자
ES2561478T3 (es) Proceso de fabricación de formas de dosificación de retención gástrica
JP5970189B2 (ja) 医薬調製物
TW201114766A (en) Pharmaceutical composition for a hepatitis C viral protease inhibitor
CN106421806A (zh) 一种逐级响应纳米自组装树枝状前药及制备方法和应用
ES2891151T3 (es) Nanosuspensión de materiales naturales y método para su preparación
KR20180033517A (ko) 홍합 접착 단백질 제품, 및 점막 염증을 억제하기 위한 그것의 용도
CA2976811A1 (en) Solid dispersions of ospemifene
WO2018146365A1 (es) Particulas purificadas de polen y su uso para administrar nanosistemas
ES2286951B1 (es) Nanoparticulas bioadhesivas para la administracion de moleculas biologicamente activas.
Bashir et al. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms
WO2017075730A1 (es) Vacuna tratamiento y control patologias infecciosas que utilizan heparan sulfato (hs) como receptor celular
CN104098763B (zh) 一种巯基化泊洛沙姆衍生物载体及其制备方法和应用
ES2613585B2 (es) Partículas purificadas de polen y su uso para administrar nanosistemas
CN107233298B (zh) 一种促进蛋白多肽药物口服吸收的酵母细胞壁微粒制剂
ES2613586A1 (es) Partículas purificadas de polen, procedimiento y su uso para administrar nanosistemas
KR100646446B1 (ko) 나노캡슐화된 생리활성물질의 필름제제 및 그 제조방법
ES2320827B1 (es) "composicion farmaceutica que contiene psyllium y senna".
JP2006524217A (ja) 経口投与用ベクター
CN108403660A (zh) 一种黏膜粘附型微球搭载的黏膜穿透型纳米颗粒及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018750777

Country of ref document: EP

Effective date: 20190909