WO2018146352A1 - Sonda espectométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda - Google Patents

Sonda espectométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda Download PDF

Info

Publication number
WO2018146352A1
WO2018146352A1 PCT/ES2018/070047 ES2018070047W WO2018146352A1 WO 2018146352 A1 WO2018146352 A1 WO 2018146352A1 ES 2018070047 W ES2018070047 W ES 2018070047W WO 2018146352 A1 WO2018146352 A1 WO 2018146352A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
probe
spectrometric
bulk material
probe according
Prior art date
Application number
PCT/ES2018/070047
Other languages
English (en)
French (fr)
Inventor
Gustavo Daniel Caneda
Original Assignee
Tecnocientifica, S.A.
Ing. Jorgensen & Asoc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnocientifica, S.A., Ing. Jorgensen & Asoc. filed Critical Tecnocientifica, S.A.
Priority to BR112019016607-6A priority Critical patent/BR112019016607B1/pt
Priority to UAA201909861A priority patent/UA125591C2/uk
Priority to RU2019128000A priority patent/RU2751572C2/ru
Priority to AU2018218356A priority patent/AU2018218356B2/en
Priority to US16/308,791 priority patent/US10816457B2/en
Priority to EP18750984.9A priority patent/EP3581918A4/en
Priority to CN201880010850.6A priority patent/CN110462375A/zh
Publication of WO2018146352A1 publication Critical patent/WO2018146352A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to the field of devices, means or arrangements used for sampling bulk material, such as post-harvest grains, and more particularly the invention relates to a spectrometric probe and an automatic jig for direct sampling of the quality and composition parameters of the bulk materials in the same place where they are stored, such as a silo, truck or transport wagon, without the need to take samples that must be transferred to remote units for examination and evaluation .
  • the sampling of post-harvest bulk material is well known, and it is known that it is a fundamental practice to know the conditions of for example grains, prior to their commercialization.
  • the methodology to be used will depend on the type of vehicle or medium in which the grains are transported to the silos or shipping ports.
  • the methods can be the sampling of grains supplied in bags, sampling by drilling, sampling by emptying the bags, sampling of grains supplied in bulk, sampling of the product at rest, sampling of the moving product, cone method, among many others. In all cases, the moisture content measurement and corresponding quality analysis will be carried out on the final sample.
  • the sampling of grains at rest the grains are generally transported in trucks / wagons that enter verification plants to carry out the sampling by means of an automatic probe.
  • an automatic jig is used, which is a probe commanded remotely from a cabin, which is insert several times and in different locations in the truck load, both in chassis and in the trailer to carry out the sampling.
  • a plurality of nozzles along the entire probe open automatically to allow the sample to enter by gravity.
  • samples are taken at the top, middle and bottom, the collected sample being sent to the receiver's cot via a pneumatic arrangement well known in the art, which is separated by sections (Top, Middle, Bottom and bottom nozzle) .
  • the trained operator performs a "commercial" visual quality control, which is a physical analysis in which the sample composition analysis is not performed.
  • some samples must be manually selected, making a set for further processing in a counting spectrometer. From this last procedure, the composition parameters of the grains that were taken as samples are obtained, comparing the results with standard parameters to know if they are suitable for commercialization.
  • It is also another object of the present invention to provide a spectrometric probe for sampling bulk material that comprises at least one sampling module mounted on a section of the probe and which is formed by a box that has at least one front wall having a transparent inspection window, said box also presenting a capacitive sensor that appears outside the box to come into contact with the bulk of the bulk material to be sampled, and at least one optical sampling sensor directed along a reading path to said inspection window being disposed within said box, the optical sampling sensor being operatively connected to a remote control console.
  • Figure 1 shows an illustrative schematic view of an inspection plant for sampling bulk material, where an automatic jig with a spectrometric probe according to the present invention, which is within a mass of material, can be visualized. in bulk contained in a trailer of a transport vehicle, such as a truck box or railroad car;
  • FIG. 2 shows a sectional side view of a sampling module according to the present invention
  • Figure 3 shows a connection diagram between the parts of the present invention.
  • the invention consists of a new spectrometric probe and an automatic jig for bulk material sampling, in where the probe allows to obtain information on parameters of interest of the composition of the material, such as protein, moisture, fat and others, in bulk directly, avoiding the transfer of samples that must be examined in external places under the observation and analysis of trained and specialized personnel, thus optimizing operating times and reducing related costs.
  • the probe of the present invention can operate with wavelengths that vary between visible and NIR, the range being used according to the needs and requirements of each user.
  • the automatic jig of the present invention is indicated by the general reference (1) and comprises a tubular arm that may or may not be a spectrometric probe (2) according to with the present invention, which is actuated by an articulated arm (3) that is fixed through one of its ends to a column (4) having a vertical support (5).
  • the articulated arm (3) can be operated by a pneumatic / electro-pneumatic / hydraulic cylinder (6) which has a fixed end to the base of said support (5) and an opposite end to the first, fixed to said articulated arm ( 3), thus allowing free movement of the probe (2) in any direction and direction.
  • the probe (2) has a lower end (7) and an upper end (8).
  • the probe (2) has a spectrometric sampling module (16), which will be referred to below.
  • the probe (2) and the sampling unit (16) are combined in what is known as an automatic sampling jig and which includes a section (14) with a plurality of ducts (not show) that each have a respective nozzle for sampling grain (14 ').
  • the sampling nozzles (14 ') may be arranged in an upper, intermediate and lower section of the probe (2) and that they are well known in the art field and that for such reasons, they will not enter in descriptive details about them.
  • the probe can internally have a rotating "C" half-rod that is driven by a motor external (not shown).
  • a motor external not shown
  • the probe can internally have a rotating "C" half-rod that is driven by a motor external (not shown).
  • the half-round "C” the grains or bulk material enter allowing sampling from the truck or wagon trailer for later analysis.
  • the samples are transferred to an outside unit or booth (15) in which there is at least one trained and specialized staff that carries out the visual inspection of the samples and, if necessary, to carry out the composition analysis as It is done in conventional practice.
  • both embodiments of the invention that is to say the realization of the probe (2) with the spectrometric sampling module (16), and the realization of the jig, with the section (14) taking physical samples of the grain, are illustrated both in Figure 1 for a matter of reducing the number of drawings but it is clear that the probe (2) and the unit (16) can dispense with the tube section (14), (14 ').
  • the spectrometric probe is provided with the sampling module (16) which prevents the transfer of the grain samples to the outer cabin for the subsequent analysis of their composition. That is, by sampling module 16 according to the present invention, obtaining the different parameters of grain composition can be carried out directly, significantly reducing time and related costs.
  • the sampling module (16) can be incorporated or mounted in the vicinity of the lower end (7) of the probe (2) and comprises a box having a front wall (17) provided with a hole (18) and of a transparent inspection window (19) that can be made of quartz, sapphire or any other optical material that are highly transmissive of NIR (near infrared radiation), a rear wall (20) and two side walls (21).
  • said sampling module (16) may comprise a material selected from the group consisting of metallic, polymeric, ceramic materials or a combination thereof.
  • said sampling module (16) is internally provided with at least one capacitive sensor (22) that can be arranged outwardly and just beyond the hole (18) made in the front wall (17) of the module (16), or flush, to come into contact with the bulk material, and which is connected to an electronic control unit (23).
  • Said sampling module also has at least one optical sampling sensor (24) comprising a lighting source (25) that defines a beam of light along a lighting path directed towards said window (19), and a light reader (26) reflected in the mass of the grain, wherein said reader (26) is directed according to said reading path and is connected to a remote control console (27) by optical fiber (29).
  • said lighting source (25) is mounted on a support (28) and can be a lamp or any type of related light source that is arranged adjacent to said transparent inspection window (19) provided on the wall front (17), while said light reader (26) is a fiber optic reader that is also mounted on said support (28), forming an angle with respect to the horizontal position of the light source (25) between about 35 ° to 45 °.
  • the beam of light emitted by the source (25) affects the sample, producing a reflection of the beam at angles that vary approximately between 35 ° and 45 ° and which is perceived and read by the reader (26) that It is arranged angularly between these angles.
  • the data read by the reader (26) are then sent to the control console (27) who will determine, based on different comparisons and data shots (mathematical model called calibration), the different parameters of grain composition or sample.
  • said control console (27) can contain an NIR spectrometer, being that it can also be visible according to the wavelength used, protected and thermally stabilized. It is of the sealed cabinet type, protected and thermally stabilized, with industrial touch screen display, with integrated diode arrangement, while said optical sensor (24) is an optical sensor that covers the entire spectral bandwidth.
  • the capacitive sensor (22) disposed at the opposite end of the transparent inspection window (19) has been illustrated, this is not a limitation for the invention, since said capacitive sensor can be arranged in the vicinity of the window transparent (19) without any inconvenience.
  • the capacitive sensor (22) when the probe (2) is introduced into the grain, the capacitive sensor (22) is intended to send a signal informing that the sampling module (16) is already completely within the bulk of the bulk material. Conversely, when the probe (2) is removed from the mass of bulk material, the capacitive sensor (22) will detect that it is no longer in contact with the mass of material and this information will be used by the software for, for example , interrupt measurements and data collection.
  • the sampling module (16) also has a linear actuator (9) comprising an actuator (10), for example a stepper motor that moves a piston (1 1) that carries at its end a black plate (12) and a white plate (13) designed to be placed in front of the reading path of the fiber optic reader (26) to determine the limit points, of null reading, that is to say of null reflection by interposition of the black plate and of maximum reading, that is to say of maximum reflection by interposition of the white plate.
  • an actuator (10) for example a stepper motor that moves a piston (1 1) that carries at its end a black plate (12) and a white plate (13) designed to be placed in front of the reading path of the fiber optic reader (26) to determine the limit points, of null reading, that is to say of null reflection by interposition of the black plate and of maximum reading, that is to say of maximum reflection by interposition of the white plate.
  • said black plate is of a material selected from the group consisting of laser cut of matt black anodized aluminum and / or black EVA rubber while said white plate is of a material selected from the group consisting of rectangular cut of glazed Teflon material but it could also be ceramic or metal plate with gold plating 2 to 4 mn thick, Spectralon brand.
  • the linear actuator is moved to extend the piston and lead the black plate to be placed in front of the reading path of the fiber optic reader. There the software then sets the zero point or zero reading point.
  • the actuator is then moved to place the white plate on the reading path of the fiber optic reader which will read the reflection of the light emitted by the lamp that will be reflected on the white plate that is made of a highly reflective material (Spectralon type ).
  • the reading of the light reflected on the white plate will be taken by the software of the equipment as the maximum reflection point.
  • the curves of the reflections measured on the grain will be drawn.
  • This software can perform the central command of the system, acquisition, measurement, data recording and automatic communication with a Cloud computing or with the plant system of the place.
  • the measurement through the use of Near Infrared Radiation is based on the ability of certain molecules to absorb energy in established bands. It is then an energy phenomenon closely related to the distinctive and distinctive kinetics of the different molecules.
  • This energy absorbed by a sample of bulk material results in a spectral image over the entire range of wavelengths in which the spectrometer detector is sensitive, since it is preferably possible to work between 900 nm and 2500 nm but it is understood that the invention is not limited to that range, since it could be used without any inconvenience for any wavelength that varies between 400 nm and 3000 nm, being able to be visible and / or NIR according to the needs of each user, and thus having other spectrometric ranges for the different applications that could occur in the future.
  • the probe of the present invention can operate with wavelengths that vary between NIR or visible according to the needs of each user.
  • This image is distinctive and unique, characteristic of the analyzed product.
  • bands location of peaks
  • the concentration of the different constituents is calculated.
  • each molecular group Proteins, Fatty Acids, Fibers, Starch
  • a truck, wagon or vehicle transporting bulk material grains (30) enters the draft street.
  • the trained and specialized operator enters the Shipment Letter, activating the corresponding registration in the corresponding Software.
  • the Operator of the Draft starts the draft operation.
  • the probe (2) is introduced at the first location of the truck load.
  • the capacitive sensor (22) detects when the mass of bulk material covers the quartz window (19).
  • the spectral acquisition process is automatically triggered by a light beam generated by the source (25) and passing through the window (19).
  • the system works as a "camera", obtaining complete spectra. This "scanning” process continues until the probe (2) reaches the bottom and the sampling nozzles (14) are opened.
  • the software detects the opening pulse and stops the spectral acquisition.
  • partial quality determinations are achieved by probe reduction and by shedding (detection of specific foci and / or repetition of sampling) without loss of time: load loyalty and fraud control.
  • the sampling module that may or may not be incorporated into the draft probe has been designed with the main objective of expanding and closing the grain quality control circle, generating reliable, traceable and historical information for the common good, managing to enhance the sustainable development of regional agricultural productions, improving and optimizing the nutritional composition of raw materials, with the efficient use of resources and through corrective actions.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Un sonda espectrométrica para muestreo de material a granel y calador automático para muestreo de material a granel, el cual permite obtener los parámetros de composición del material a muestrear de manera directa, evitando la extracción y traslado de muestras que deban ser examinadas en dependencias externas bajo la observación y análisis de personal capacitado y especializado, optimizando así tiempos de operación y reduciendo costos afines.

Description

DESCRIPCION
SONDA ESPECTROMÉTRICA PARA MUESTREO DE MATERIAL A GRANEL Y CALADOR AUTOMÁTICO DE MUESTREO QUE INCORPORA LA SONDA
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con el campo de los dispositivos, medios o disposiciones empleados para el muestreo de material a granel, tal como granos pos cosecha, y más particularmente la invención se refiere a una sonda espectrométrica y a un calador automático para el muestreo directo de los parámetros de calidad y composición de los materiales a granel en el mismo lugar en el que se encuentran almacenados, tal como un silo, camión o vagón de transporte, sin necesidad de tomar muestras que deban ser trasladadas hacia dependencias remotas para su examen y evaluación.
Si bien, en la presente descripción se hace referencia de manera ejemplificativa el muestreo de granos, esto no implica que la presente invención se encuentre limitada a los mismos, sino que el muestreo puede llevarse a cabo en diferentes tipos de materiales a granel, ya sea de manera independiente o conjunta con otros dispositivos, disposiciones o medios afines para el muestreo o tratamiento de tales materiales.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
El muestreo de material a granel pos-cosecha es bien conocido, y se sabe que es una práctica fundamental para conocer las condiciones de por ejemplo los granos, previo a su comercialización. Para llevar a cabo el muestreo, la metodología a utilizar va a depender del tipo de vehículo o medio en que se transporten los granos hacia los silos o puertos de embarque. Entre los métodos se pueden encontrar el muestreo de granos suministrados en sacos, muestreo por sondeo, muestreo por vaciado de los sacos, muestreo de granos suministrados a granel, muestreo del producto en estado de reposo, muestreo del producto en movimiento, método del cono, entre tantos otros. En todos los casos, sobre la muestra final se realizará la medición del contenido de humedad y los análisis de calidad correspondientes. En relación al muestreo de granos en estado de reposo, generalmente los granos son transportados en camiones/vagones que ingresan en plantas verificadoras para llevar a cabo el muestreo mediante un calador automático sonda. Teniendo en cuenta que un calado manual por parte de un operario camión por camión no solo resultaría ineficiente y peligroso sino inviable, y que la cola de camiones sería interminable, se utiliza un calador automático que es una sonda comandada remotamente desde una cabina, que se inserta varias veces y en diferentes localizaciones en la carga del camión, tanto en chasis como en el acoplado para llevar a cabo el muestreo.
Una vez insertada la sonda entre los granos almacenados en el chasis/acoplado del camión o vagón, una pluralidad de boquillas a lo largo de toda la sonda se abren automáticamente para permitir el ingreso de la muestra por gravedad. Generalmente, se toman muestras en la parte superior, intermedia e inferior, siendo la muestra colectada enviada al catre del recibidor vía una disposición neumática bien conocida en el arte, la cual está separada por secciones (Superior, Medio, Inferior y boquilla de fondo). Es así que, el operario capacitado realiza un control visual de calidad "comercial", el cual, es un análisis físico en el que no se realiza el análisis de composición de las muestras. Para llevar a cabo el análisis de composición de los granos, se debe seleccionar manualmente algunas muestras, realizando un conjunto para su posterior procesamiento en un espectrómetro de mesada. De este último procedimiento, se obtienen los parámetros de composición de los granos que fueron tomados como muestras, cotejándose los resultados con parámetros estándar para saber si son adecuados para la comercialización.
Si bien, la operación normal de un calado automático convencional incurre un tiempo aproximado de entre 2 a 3 minutos por camión/vagón, según planta y operario, este lapso de tiempo se extiende mucho más si realiza el análisis de composición (proteína, humedad, grasa) de los granos. Esto conlleva mayores tiempos de operación, costos adicionales, y la necesidad de contar estrictamente con personal especializado para llevar a cabo el análisis. Además la muestra no será 100% representativa dependiendo del armado del conjunto por parte del operario, generando subjetividad y costos de manipuleo.
En virtud de lo anteriormente planteado, resultaría conveniente contar con una nueva disposición, dispositivo o calador que permita el muestreo de material a granel a fines de conocer directamente los parámetros de composición en forma directa, sin necesidad de tomar muestras que deban ser trasladadas y que incurran en tiempos adicionales o errores de manipuleo. BREVE DESCRIPCION DE LA INVENCION
Es por lo tanto un objeto de la presente invención proveer una sonda espectrométrica con un módulo de muestreo que se encuentra incorporado o montado en la sonda de manera que permita la toma directa de los parámetros de composición del material a granel, sin necesidad de realizar la toma de muestras del material.
Es aún otro objeto de la presente invención proveer una sonda espectrométrica que reduce notablemente los tiempos de operación así como también los costos afines.
Es además otro objeto de la presente invención proveer un módulo de muestreo que opera directamente con un espectrómetro para llevar a cabo el análisis de composición de los granos o material a granel.
Es todavía otro objeto de la presente invención proveer una sonda espectrométrica que lleva a cabo un muestreo no invasivo, no destructivo e inocuo, que no usa reactivos ni genera residuos químicos. Es aun otro objeto de la presente invención proveer un funcionamiento automático en simultáneo, a tiempo real, con un proceso de calada llevado a cabo en el material a granel.
Es todavía otro objeto de la presente invención proveer un módulo de muestreo que puede operar conjuntamente con una sonda provista de una pluralidad de boquillas para la toma de muestras o bien, una sonda sin boquillas.
Es aun otro objeto de la presente invención proveer una sonda espectrométrica para el muestreo de material a granel que realiza el muestreo de manera directa, sin que sea necesaria la toma de muestras que luego son llevadas a dependencias externas.
Es además otro objeto de la presente invención proveer una sonda espectrométrica para el muestreo de material a granel que comprende al menos un módulo de muestreo montado en una sección de la sonda y que está conformado por una caja que presenta al menos una pared frontal que tiene una ventana transparente de inspección, presentando además dicha caja un sensor capacitivo que asoma por fuera de la caja para entrar en contacto con la masa del material a granel a muestrear, y estando dispuesto dentro de dicha caja al menos un sensor óptico de muestreo dirigido según una trayectoria de lectura hacia dicha ventana de inspección, estando el sensor óptico de muestreo conectado operativamente a una consola de control remota.
Es todavía otro objeto de la presente invención proveer un calador automático para el muestreo de material a granel que incorpora la sonda espectrométrica, el cual comprende dicha sonda accionada por un brazo articulado la cual presenta una pluralidad de boquillas ubicadas en al menos una sección superior, intermedia e inferior de la sonda para toma de muestras, estando el brazo articulado fijo a través de uno de sus extremos a una columna que presenta un soporte vertical, siendo además que, el brazo articulado es accionado por un cilindro neumático/electro-neumático/hidráulico el cual tiene un extremo fijo a la base de dicho soporte vertical y un extremo opuesto al primero, fijo a dicho brazo articulado. BREVE DESCRIPCION DE LOS DIBUJOS
Para mayor claridad y comprensión del objeto de la presente invención, la misma ha sido ilustrada en varias figuras, en las que se ha representado al invento en una de las formas preferidas de realización, todo a título de ejemplo, en donde:
La figura 1 muestra una vista esquemática ilustrativa de una planta de inspección para el muestreo de material a granel, en donde se puede visualizar un calador automático con una sonda espectrométrica de acuerdo con la presente invención, la cual se encuentra dentro de una masa de material a granel contenida en un acoplado de un vehículo de transporte, tal como una caja de camión o vagón de ferrocarril;
La figura 2 muestra una vista lateral en corte de un módulo de muestreo de acuerdo con la presente invención; y La figura 3 muestra un diagrama de conexión entre las partes de la presente invención. DESCRIPCION DETALLADA DE LA INVENCION
Haciendo ahora referencia a las figuras se ve que la invención consiste en una nueva sonda espectrométrica y un calador automático para muestreo de material a granel, en donde la sonda permite obtener información sobre parámetros de interés de la composición del material, tales como proteína, humedad, grasa y otros, a granel de manera directa, evitando el traslado de muestras que deban ser examinadas en lugares externos bajo la observación y análisis de personal capacitado y especializado, optimizando así tiempos de operación y reduciendo costos afines. Se resalta que, al hacer referencia a la operación de "muestreo", se lo debe entender como todo tipo de toma de parámetros muestreo óptico, escaneo ó análisis relacionado con el campo del arte sin que esto implique necesariamente la toma y extracción de muestras físicas del material. Así mismo, la sonda de la presente invención puede operar con longitudes de onda que varían entre visible y NIR, siendo el rango utilizado de acuerdo con las necesidades y requisitos de cada usuario.
Es así que, y de acuerdo con las figuras 1 a 3, el calador automático de la presente invención se encuentra indicado mediante la referencia general (1) y comprende un brazo tubular que puede ser o no, una sonda espectrométrica (2) de acuerdo con la presente invención, la cual es accionada por un brazo articulado (3) que está fijo a través de uno de sus extremos a una columna (4) que presenta un soporte vertical (5). El brazo articulado (3) puede ser accionado por un cilindro neumático/electro-neumático/hidráulico (6) el cual tiene un extremo fijo a la base de dicho soporte (5) y un extremo opuesto al primero, fijo a dicho brazo articulado (3), permitiendo así el movimiento libre de la sonda (2) en cualquier dirección y sentido. A su vez, la sonda (2) presenta un extremo inferior (7) y un extremo superior (8).
De acuerdo con una modalidad de la invención, la sonda (2) presenta un módulo de muestreo espectrométrico (16), al que se hará referencia más abajo.
De acuerdo con otra modalidad de la invención, la sonda (2) y la unidad de muestreo (16) se combinan en lo que se conoce como calador automático de muestreo y que incluye una sección (14) con una pluralidad de conductos (no se muestran) que presentan, cada uno, una respectiva boquilla para toma de muestras de granos (14'). Cabe destacar que, las boquillas para toma de muestra (14') pueden estar dispuestas en una sección superior, intermedia e inferior de la sonda (2) y que son bien conocidas en el campo del arte y que por tales motivos, no se entrarán en detalles descriptivos acerca de las mismas.
Por otro lado, para llevar a cabo la "apertura" de las boquillas o tomas (14'), la sonda puede disponer interiormente de una media caña en "C" giratoria que es accionada por un motor externo (no se muestra). De esta manera, al realizar la apertura de las boquillas (14'), mediante el giro de la media caña en "C", los granos o material a granel ingresan permitiendo la toma de muestras desde el acoplado del camión o vagón para su posterior análisis. Las muestras son trasladadas hacia una dependencia o cabina exterior (15) en la cual se encuentra al menos un personal capacitado y especializado que lleva a cabo la inspección visual de las muestras y en caso de ser necesario, de realizar el análisis de composición tal como se realiza en la práctica convencional.
Se aclara que ambas modalidades de la invención, es decir la realización de la sonda (2) con el módulo de muestreo espectrométrico (16), y la realización del calador, con la sección (14) tomadora de muestras físicas del grano, se ilustran ambas en la Figura 1 por una cuestión de reducción de la cantidad de dibujos pero es claro que la sonda (2) y la unidad (16) pueden prescindir de la sección de tubos (14), (14'). De acuerdo con la presente invención, la sonda espectrométrica está provista del módulo de muestreo (16) el cual evita el traslado de las muestras de grano hacia la cabina exterior para la realización del posterior análisis de composición de las mismas. Es decir, mediante el módulo de muestreo 16 de acuerdo con la presente invención, la obtención de los diferentes parámetros de composición de los granos puede ser llevado a cabo de manera directa, reduciendo notablemente tiempos y costos afines.
Es entonces que, el módulo de muestreo (16) puede estar incorporado o montado en las cercanías del extremo inferior (7) de la sonda (2) y comprende una caja que presenta una pared frontal (17) provista de un orificio (18) y de una ventana transparente de inspección (19) que puede ser de cuarzo, zafiro o cualquier otro material óptico que sean altamente transmisivos del NIR (radiación infrarroja cercana), una pared trasera (20) y sendas paredes laterales (21). En donde, dicho módulo de muestreo (16) puede comprender un material seleccionado del grupo que consiste en materiales metálicos, poliméricos, cerámicos o una combinación de los mismos. Así mismo, dicho módulo de muestreo (16) está provisto interiormente de al menos un sensor capacitivo (22) que puede disponerse hacia fuera y apenas más allá del orificio (18) practicado en la pared frontal (17) del módulo (16), o bien al ras, para entrar en contacto con el material a granel, y el cual se conecta a una unidad de control electrónica (23). Dicho módulo de muestreo además presenta por lo menos un sensor óptico de muestreo (24) que comprende una fuente de iluminación (25) que define un haz de luz a lo largo de una trayectoria de iluminación dirigida hacia dicha ventana (19), y un lector de luz (26) reflejada en la masa del grano, en donde dicho lector (26) está direccionado según dicha trayectoria de lectura y se encuentra conectado a una consola de control remota (27) mediante fibra óptica (29). Se resalta que, dicha fuente de iluminación (25) se encuentra montada en un soporte (28) y puede ser una lámpara o cualquier tipo de fuente lumínica afín que se dispone en adyacencia a dicha ventana transparente de inspección (19) provista en la pared frontal (17), mientras que, dicho lector de luz (26) es un lector de fibra óptica que también se encuentra montado en dicho soporte (28), formando un ángulo con respecto a la posición horizontal de la fuente de iluminación (25) de entre aproximadamente 35° a 45°. De esta forma, el haz de luz emitido por la fuente (25) incide sobre la muestra, produciéndose una reflexión del haz en ángulos que varían aproximadamente entre 35° y 45° y el cual es percibido y leído por el lector (26) que se encuentra dispuesto angularmente entre dichos ángulos. Los datos leídos por el lector (26), luego son enviados a la consola de control (27) quien determinará, en base a diferentes comparaciones y tomas de datos (modelo matemático denominado calibración), los diferentes parámetros de composición de los granos o la muestra.
Por su parte, dicha consola de control (27) puede contener un espectrómetro NIR, siendo que también puede ser visible de acuerdo con la longitud de onda utilizada, protegido y estabilizado térmicamente. La misma es del tipo gabinete estanco, protegido y estabilizado térmicamente, con visualización en pantalla industrial táctil, con arreglo de diodos integrado, mientras que dicho sensor óptico de muestro (24) es un sensor óptico que cubre todo el ancho de banda espectral. Si bien, se ha ilustrado al sensor capacitivo (22) dispuesto en el extremo opuesto a la ventana transparente de inspección (19), esto no es una limitativa para la invención, dado que dicho sensor capacitivo se puede disponer en las cercanías de la ventana transparente (19) sin inconveniente alguno.
Por otra parte, cuando la sonda (2) es introducida en el grano, el sensor capacitivo (22) tiene por objeto enviar una señal informando que el módulo de muestreo (16) ya se encuentra completamente dentro de la masa del material a granel. De manera inversa, cuando se extrae la sonda (2) de la masa de material a granel, el sensor capacitivo (22) detectará que ya no está en contacto con la masa de material y esta información será utilizada por el software para, por ejemplo, interrumpir las mediciones y toma de datos. Para que un software provisto en el equipo pueda parametrizar las mediciones y trazar las curvas correspondientes en un sistema de ejes, el módulo de muestreo (16) cuenta además con un actuador lineal (9) que comprende un accionador (10), por ejemplo un motor paso a paso que mueve un pistón (1 1) que lleva en su extremo una placa negra (12) y una placa blanca (13) destinadas a colocarse frente a la trayectoria de lectura del lector (26) de fibra óptica para determinar los puntos límites, de lectura nula, es decir de reflexión nula por interposición de la placa negra y de lectura máxima, es decir de máxima reflexión por interposición de la placa blanca. En donde, dicha placa negra es de un material seleccionado del grupo que consiste en corte láser de aluminio anodizado negro mate y/o goma EVA negra mientras que dicha placa blanca es de un material seleccionado del grupo que consiste en corte rectangular de material Teflon Vidriado pero podría ser también cerámico o placa metálica con baño de oro de 2 a 4 mn de espesor, marca Spectralon. Así, antes de comenzar la lectura de la reflexión sobre el material a granel, el actuador lineal es movido para extender el pistón y llevar a la placa negra a colocarse frente a la trayectoria de lectura del lector de fibra óptica. Allí el software establece entonces el punto cero o punto de lectura nula. Luego se mueve el actuador para colocar la placa blanca en la trayectoria de lectura del lector de fibra óptica el cual leerá la reflexión de la luz emitida por la lámpara que se reflejará en la placa blanca que está hecha de un material altamente reflectivo (tipo Spectralon). La lectura de la luz reflejada sobre la placa blanca será tomada por el software del equipo como el punto de reflexión máxima. Entonces, entre los puntos de reflexión nula y de reflexión máxima así determinados por el software, se trazarán las curvas de las reflexiones medidas sobre el grano. Dicho software puede realizar el comando central del sistema, adquisición, medición, registro de datos y comunicación automática con una Nube informática o bien con el sistema de planta del lugar.
En relación a la radiación infrarroja cercana NIR, la medición a través del uso de la Radiación Infrarroja Cercana se basa en la capacidad de ciertas moléculas de absorber energía en unas bandas establecidas. Se trata entonces de un fenómeno energético relacionado íntimamente con la cinética propia y distintiva de las diferentes moléculas. Esta energía absorbida por una muestra de material a granel da por resultado una imagen espectral en todo el rango de longitudes de onda en las que el detector del espectrómetro es sensible, siendo que preferiblemente se puede trabajar entre 900 nm y 2500 nm pero entendiéndose que la invención no está limitada a dicho rango, dado que la misma podría utilizarse sin inconveniente alguno para cualquier longitud de onda que varíe entre 400 nm y 3000 nm, pudiendo ser Visible y/o NIR de acuerdo con las necesidades de cada usuario, y teniendo así otros rangos espectrométricos para las distintas aplicaciones que podrían llegar a darse en el futuro. Es decir, la sonda de la presente invención puede operar con longitudes de onda que varían entre NIR o visible de acuerdo con las necesidades de cada usuario. Esta imagen es distintiva y única, característica del producto analizado. Es así que, del análisis de cuales bandas (ubicación de picos) componen el espectro, se concluye qué contiene la muestra. Del análisis de cuanta energía ha sido absorbida (intensidad de picos) se calcula la concentración de los diferentes constituyentes. En donde, cada grupo molecular (Proteínas, Ácidos Grasos, Fibras, Almidón) posee una absorción determinada en bandas específicas, y se comporta como "transparente" frente a bandas no homologas.
En relación al modo de operación de la sonda, primeramente un camión, vagón o vehículo de transporte de material a granel granos (30) ingresa a la calle de calado. El operario capacitado y especializado ingresa la Carta de Porte, activándose el registro correspondiente en el Software correspondiente. El operario del Calador inicia la operación de Calado. La sonda (2) es introducida en la primera localización de la carga del camión. El sensor capacitivo (22) detecta cuando la masa de material a granel cubre la ventana (19) de cuarzo. Se dispara automáticamente el proceso de adquisición espectral mediante un haz lumínico generado por la fuente (25) y que pasa a través de la ventana (19). El sistema trabaja como una "cámara fotográfica", obteniendo espectros completos. Este proceso de "escaneo" continúa hasta que la sonda (2) llega al fondo y las boquillas para toma de muestras (14) son abiertas. El software detecta el pulso de apertura y detiene la adquisición espectral. Realiza un promedio de los espectros tomados en bajada y entrega un resultado parcial por secciones. Esto permite la opción de re-muestreos inmediatos y certeros, ahorrando notables tiempos por repetición de operaciones una vez finalizado el calado. Al iniciar el ascenso, el pulso es detectado por el Software reiniciando la adquisición espectral y continuando con la acumulación de espectros puntuales completos. Al quedar el sensor capacitivo (22) al "aire" (libre de material a granel), llega al software la indicación de finalizar la calada. Promedia y entrega un resultado parcial de calada.
Se repite el proceso en cada calada. Al terminar, se da la orden de finalizar para generar el promedio total del camión, generándose así una grilla completa para nube y sistema. El sistema queda listo para el próximo camión/vagón que se dispara automáticamente con el primer ingreso de la sonda en el mismo.
Es así que, mediante la invención se logra determinaciones de calidad parcial por bajada de sonda y por calada (detección de focos específicos y/o repetición de toma de muestra) sin pérdidas de tiempo: fidelización de cargas y fiscalización de fraudes. Determinaciones promedio finales por camión (final de camión) o vagón. Mapa completo de calidad por calada y sección (superior, medio e inferior). Asociación automática de información con origen del camión/vagón: trazabilidad. Visualización de datos promedios parciales y finales (humedad, proteína, grasa) a tiempo real en consola industrial táctil. Clasificación de materias primas para el mejoramiento de la calidad de productos procesados.
A su vez, se sabe que sin datos, registros históricos y estadísticas reales, no hay forma de mejorar la industria. El valor de la información es crucial para tomar decisiones correctas con el objetivo de potenciar y optimizar: la producción, calidad, infraestructura, posicionamiento ante el mercado, agregado de valor a la cadena productiva, uso eficiente de los recursos tanto de suelos como hídricos, costos y beneficios, agricultura inteligente y sustentable, control y trazabilidad, cuidado del medio ambiente, entre tantas otras. El módulo de muestreo que puede o no, estar incorporado a la sonda de calado, ha sido diseñado con el objetivo principal de ampliar y cerrar el círculo de control de calidad de granos, generando información confiable, trazable e histórica en pos del bien común, logrando potenciar el desarrollo sustentable de las producciones agrícolas regionales, mejorando y optimizando la composición nutricional de las materias primas, con el uso eficiente de los recursos y a través de acciones correctivas.
Por otra parte, debe quedar en claro que si bien en la presente descripción se hace referencia de manera ejemplificativa al muestreo de granos, esto no implica que la presente invención se encuentre limitada a los mismos, sino que el muestreo puede llevarse a cabo en diferentes tipos de materiales a granel, ya sea de manera independiente o conjunta con otros dispositivos, disposiciones o medios afines sin inconveniente alguno.

Claims

REIVINDICACIONES
1. Una sonda espectrométrica para muestreo de material a granel caracterizada porque comprende: al menos un módulo de muestreo montado en una sección de la sonda y que está conformado por una caja que presenta al menos una pared frontal que tiene una ventana transparente de inspección, presentando además dicha caja un sensor capacitivo que asoma por fuera de la caja para entrar en contacto con la masa del material a granel a muestrear, y estando dispuesto dentro de dicha caja al menos un sensor óptico de muestreo dirigido según una trayectoria de lectura hacia dicha ventana de inspección, estando el sensor óptico de muestreo conectado operativamente a una consola de control remota.
2. Una sonda espectrométrica de acuerdo con la reivindicación 1 , caracterizada porque dicho sensor óptico de muestreo comprende una fuente de iluminación que define un haz de luz a lo largo de una trayectoria de iluminación dirigida hacia dicha ventana, y un lector de luz reflejada en la masa del material a granel, en donde dicho lector está direccionado según dicha trayectoria de lectura, estando dicho lector conectado a dicha consola de control mediante fibra óptica.
3. Una sonda espectrométrica de acuerdo con la reivindicación 1 ó 2, caracterizada porque dicho lector de luz reflejada es un lector de fibra óptica.
4. Una sonda espectrométrica de acuerdo con las reivindicaciones precedentes, caracterizada porque dicha fuente de iluminación y dicho lector de fibra óptica están montados en un soporte y se disponen desfasados angularmente entre aproximadamente 35° a 45°.
5. Una sonda espectrométrica de acuerdo con la reivindicación 1 ó 2, caracterizada porque dicha consola de control es un espectrómetro, mientras que dicho sensor óptico es un sensor óptico que cubre todas las bandas espectrométricas.
6. Una sonda espectrométrica de acuerdo con la reivindicación 1 , caracterizada porque dicho sensor capacitivo se encuentra conectado operativamente a una unidad de control electrónica.
7. Una sonda espectrométrica de acuerdo con la reivindicación 1 , caracterizada porque dicho módulo de muestreo comprende dicha pared frontal, una pared trasera y sendas paredes laterales que pueden estar hechas de un material seleccionado del grupo que consiste en materiales metálicos, poliméricos, cerámicos o una combinación de los mismos.
8. Una sonda espectrométrica de acuerdo con la reivindicación 3 ó 7, caracterizada porque el módulo de muestreo cuenta además con un actuador lineal que comprende un accionador conectado a un pistón que lleva en su extremo una placa negra y una placa blanca que se encuentran entre posiciones operativas temporales frente a la trayectoria de lectura del lector de fibra óptica.
9. Una sonda espectrométrica de acuerdo con la reivindicación 8, caracterizada porque dicha placa negra es de un material seleccionado del grupo que consiste en corte láser de aluminio anodizado negro mate y/o goma eva negra mientras que dicha placa blanca es de un material seleccionado del grupo que consiste en corte rectangular de material spectralon de 2 a 4 mn de espesor.
10. Un calador automático para muestreo de material a granel que utiliza la sonda espectrométrica de acuerdo con cualquiera de las reivindicaciones precedentes, caracterizado porque comprende: dicha sonda accionada por un brazo articulado la cual presenta una pluralidad de boquillas ubicadas en al menos una sección superior, intermedia e inferior de la sonda para toma de muestras del material, estando el brazo articulado fijo a través de uno de sus extremos a una columna que presenta un soporte vertical, siendo además que, el brazo articulado es accionado por un cilindro neumático/electro-neumático/hidráulico el cual tiene un extremo fijo a la base de dicho soporte vertical y un extremo opuesto al primero, fijo a dicho brazo articulado.
PCT/ES2018/070047 2017-02-10 2018-01-22 Sonda espectométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda WO2018146352A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019016607-6A BR112019016607B1 (pt) 2017-02-10 2018-01-22 Sonda espectrométrica para amostragem de material a granel e calador automático de amostragem que incorpora a sonda
UAA201909861A UA125591C2 (uk) 2017-02-10 2018-01-22 Спектрометричний зонд для відбору проб насипного матеріалу та автоматичний пробовідбірник для взяття проб, оснащений зондом
RU2019128000A RU2751572C2 (ru) 2017-02-10 2018-01-22 Спектрометрический зонд для отбора образцов сыпучего материала и автоматическое устройство для отбора образцов, содержащее указанный зонд
AU2018218356A AU2018218356B2 (en) 2017-02-10 2018-01-22 Spectrometric probe for sampling bulk material and automatic sample taker for sampling including the probe
US16/308,791 US10816457B2 (en) 2017-02-10 2018-01-22 Spectrometric probe for sampling bulk material and automatic sample taker for sampling including the probe
EP18750984.9A EP3581918A4 (en) 2017-02-10 2018-01-22 SPECTROMETRIC PROBE FOR SAMPLING BULK MATERIAL AND AUTOMATIC SAMPLER FOR SAMPLING WITH THE PROBE
CN201880010850.6A CN110462375A (zh) 2017-02-10 2018-01-22 用于取样散装物料的光谱探头以及配备该探头的用于取样的自动取样器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP20170100339 2017-02-10
ARP170100339A AR107595A1 (es) 2017-02-10 2017-02-10 Sonda espectrométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda

Publications (1)

Publication Number Publication Date
WO2018146352A1 true WO2018146352A1 (es) 2018-08-16

Family

ID=62596967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070047 WO2018146352A1 (es) 2017-02-10 2018-01-22 Sonda espectométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda

Country Status (10)

Country Link
US (1) US10816457B2 (es)
EP (1) EP3581918A4 (es)
CN (1) CN110462375A (es)
AR (1) AR107595A1 (es)
AU (1) AU2018218356B2 (es)
BR (1) BR112019016607B1 (es)
RU (1) RU2751572C2 (es)
UA (1) UA125591C2 (es)
UY (1) UY37579A (es)
WO (1) WO2018146352A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230384476A1 (en) * 2018-09-18 2023-11-30 9371-0184 Québec Inc. Optical probe and method for in situ soil analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3211093A1 (en) * 2021-04-13 2022-10-20 The Gsi Group Llc Autonomous grain probe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789671A (en) * 1971-10-29 1974-02-05 H Larson Particulate material sampling device
US4037476A (en) * 1976-06-21 1977-07-26 Mccrabb James Grain sampling probe
US4616515A (en) * 1983-08-19 1986-10-14 Daniel Dancoine Process and device for automatic sampling of bulk materials contained in transport vehicles
WO2001069213A2 (en) * 2000-03-10 2001-09-20 Textron Systems Corporation Optical probes an methods for spectral analysis
DE102004020350A1 (de) * 2004-04-24 2005-11-10 Sentronic GmbH Gesellschaft für optische Meßsysteme Vorrichtung zur optischen Analyse von Propen
US20070224853A1 (en) * 2006-03-23 2007-09-27 Joachim Mannhardt Apparatus and method for environmentally isolated analysis
WO2009017721A2 (en) * 2007-07-28 2009-02-05 Buglab Llc Particle sensor with wide linear range
US20120086429A1 (en) * 2010-10-08 2012-04-12 Poet Research, Inc. Method and apparatus for measuring moisture content

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1634191A1 (ru) * 1989-07-01 1991-03-15 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Способ отбора опаковой формы кукурузы
SE468334B (sv) * 1991-04-23 1992-12-14 Peter Perten Saett och anordning foer infraroedanalys, speciellt avseende livsmedel
DE19714115C2 (de) * 1997-04-05 1999-12-23 Bran & Luebbe Vorrichtung zur optischen Bestimmung von Inhaltsstoffen eines rieselfähigen Gutes
US6836325B2 (en) * 1999-07-16 2004-12-28 Textron Systems Corporation Optical probes and methods for spectral analysis
DE10348040A1 (de) * 2003-10-15 2005-05-19 Deere & Company, Moline Messeinrichtung
EP1907829A1 (en) * 2005-06-27 2008-04-09 SFK Technology A/S Recording of position-specific wavelength absorption spectra
US9285501B2 (en) * 2008-11-04 2016-03-15 Veris Technologies, Inc. Multiple sensor system and method for mapping soil in three dimensions
CN102686998A (zh) * 2009-12-22 2012-09-19 布勒股份公司 测量散装物料的装置和方法
US8542363B2 (en) * 2010-12-22 2013-09-24 Endress + Hauser Conducta Inc. Self-aligning light source and detector assembly for absorbance measurement
JP5973521B2 (ja) * 2014-10-15 2016-08-23 株式会社クボタ 光学式穀粒評価装置
US10337159B2 (en) * 2016-06-23 2019-07-02 The Texas A&M University System Vis-NIR equipped soil penetrometer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789671A (en) * 1971-10-29 1974-02-05 H Larson Particulate material sampling device
US4037476A (en) * 1976-06-21 1977-07-26 Mccrabb James Grain sampling probe
US4616515A (en) * 1983-08-19 1986-10-14 Daniel Dancoine Process and device for automatic sampling of bulk materials contained in transport vehicles
WO2001069213A2 (en) * 2000-03-10 2001-09-20 Textron Systems Corporation Optical probes an methods for spectral analysis
DE102004020350A1 (de) * 2004-04-24 2005-11-10 Sentronic GmbH Gesellschaft für optische Meßsysteme Vorrichtung zur optischen Analyse von Propen
US20070224853A1 (en) * 2006-03-23 2007-09-27 Joachim Mannhardt Apparatus and method for environmentally isolated analysis
WO2009017721A2 (en) * 2007-07-28 2009-02-05 Buglab Llc Particle sensor with wide linear range
US20120086429A1 (en) * 2010-10-08 2012-04-12 Poet Research, Inc. Method and apparatus for measuring moisture content

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581918A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230384476A1 (en) * 2018-09-18 2023-11-30 9371-0184 Québec Inc. Optical probe and method for in situ soil analysis

Also Published As

Publication number Publication date
UY37579A (es) 2018-08-31
CN110462375A (zh) 2019-11-15
RU2751572C2 (ru) 2021-07-15
AU2018218356A1 (en) 2019-09-26
US20190187046A1 (en) 2019-06-20
UA125591C2 (uk) 2022-04-27
AR107595A1 (es) 2018-05-16
RU2019128000A (ru) 2021-03-10
EP3581918A1 (en) 2019-12-18
BR112019016607A2 (pt) 2020-03-31
BR112019016607B1 (pt) 2023-12-19
RU2019128000A3 (es) 2021-05-28
AU2018218356B2 (en) 2021-07-29
EP3581918A4 (en) 2021-01-06
US10816457B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
ES2441042T3 (es) Sistema para la separación selectiva automática de cítricos afectados por podredumbre
ES2940563T3 (es) Método y aparato para detectar materia
US6559655B1 (en) System and method for analyzing agricultural products on harvesting equipment
WO2018146352A1 (es) Sonda espectométrica para muestreo de material a granel y calador automático de muestreo que incorpora la sonda
US7508517B2 (en) Non-destructive single seed or several seeds NIR analyzer and method
ES2746882T3 (es) Procedimiento, unidad captadora y máquina para detectar defectos de "puntas de azúcar" en patatas
US7483137B2 (en) Non-destructive derivation of weight of single seed or several seeds
ES2296853T3 (es) Medicion del espesor de la pared lateral de un recipiente transparente con un haz de luz de configuracion lineal.
ES2950672T3 (es) Sistema de análisis de sustancias constitutivas móvil, así como procedimiento para la medición de muestra correcta y el guiado de usuario con éste
KR880004307A (ko) 쌀의 아밀로스 및/또는 아밀로펙틴 함유량 측정장치
US11320369B2 (en) Agricultural sampling apparatus and system
CN106574866A (zh) 用于反射测量的测量装置
WO2015155389A1 (es) Sistema y procedimiento automatizado de clasificación de atunes congelados por especie
CN110261324A (zh) 一种多功能光谱分析仪
CN108279213A (zh) 一种全天候植物光谱测量系统与方法
WO2019086727A1 (es) Dispositivo de inspección y caracterización de productos
ES2197978T3 (es) Procedimiento para calibrar un aparato electroscopico.
ES2303620T3 (es) Dispositivo de prueba de lamparas para vehiculos, preferiblemente para automoviles.
CN105823737A (zh) 一种具有自校准功能的反射光谱测量系统
EP1745274B1 (en) Apparatus and method for the non-destructive nir analysis of a single seed or several seeds
US11982616B2 (en) Spectrally resolved imaging for agricultural product assessment
ES2930728T3 (es) Aparato de medición de gas de laboratorio
WO2015166121A1 (es) Dispositivo de medición discreta por reflectancia de nir multibanda del índice glucoacídico en uva para vinificación
ES2285961A1 (es) Sistema automatizado de analisis y clasificacioon de bulbos.
DE19857141A1 (de) Spektrometerzusatz mit einer integrierenden Kugel und Verfahren zur Bestimmung des gerichtet-hemisphärischen Transmissions- und Reflexionsgrades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016607

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018750984

Country of ref document: EP

Effective date: 20190910

ENP Entry into the national phase

Ref document number: 2018218356

Country of ref document: AU

Date of ref document: 20180122

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019016607

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190809