WO2018145570A1 - 一种数据压缩方法及装置 - Google Patents

一种数据压缩方法及装置 Download PDF

Info

Publication number
WO2018145570A1
WO2018145570A1 PCT/CN2018/073859 CN2018073859W WO2018145570A1 WO 2018145570 A1 WO2018145570 A1 WO 2018145570A1 CN 2018073859 W CN2018073859 W CN 2018073859W WO 2018145570 A1 WO2018145570 A1 WO 2018145570A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband signal
value
amplitude
discrete baseband
bit
Prior art date
Application number
PCT/CN2018/073859
Other languages
English (en)
French (fr)
Inventor
李庆华
孙华荣
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US16/485,444 priority Critical patent/US10742255B2/en
Priority to JP2019543837A priority patent/JP7282682B2/ja
Priority to EP18751308.0A priority patent/EP3582462B1/en
Priority to KR1020197026748A priority patent/KR102236736B1/ko
Publication of WO2018145570A1 publication Critical patent/WO2018145570A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3059Digital compression and data reduction techniques where the original information is represented by a subset or similar information, e.g. lossy compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • H04L67/5651Reducing the amount or size of exchanged application data

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a data compression method and apparatus.
  • TD-LTE Time Division Long Term Evolution
  • 5G 5th Generation
  • the requirements for data transmission are also increasing.
  • the TD-LTE system or the 5G system is responsible for data transmission.
  • the data transmission requirements of optical fibers in base stations are also increasing.
  • the mobile communication system usually implements data transmission by the base station, and the indoor baseband unit (BBU) and the remote radio unit (RRU) respectively perform the baseband processing and radio frequency processing functions of the base station, and the BBU and the RRU Optical fiber is used for data transmission. It is mainly used to transmit operation and maintenance data and IQ signals (also called baseband signals). The interfaces at both ends are called IR interfaces. At present, the transmission of the original data is mainly performed between the base stations. Under the prior art, the IR interface compression technology can be used, and the reliable and efficient transmission of large data amounts can be completed with a limited bandwidth, but the conventional compression method can only achieve 1 /2 data volume compression.
  • the maximum sampling width of the IQ signal is 16 bits, and the optical fiber needs to be 8/10 encoded when transmitting the IQ signal (transferring 8-bit data conversion bit 10 bits of data) Therefore, for an 8-antenna device, the maximum transmission rate of the air interface based on the TD-LTE standard or the 5G-based standard is 9.8304 Gbps, which can be calculated by the following formula:
  • the embodiment of the present invention provides a data compression method and device, which are used to solve the problem that when a base station transmits data through an optical fiber, a single optical fiber cannot meet the data transmission requirement, and the existing data compression method has a compression efficiency. Low problem.
  • a data compression method comprising:
  • phase values of the discrete baseband signals and the adjusted amplitude values are respectively bit-cut according to the bit widths respectively corresponding to the phase values of the discrete baseband signals and the adjusted amplitude values, and the phase values after the bits are truncated Combining with the amplitude values after bit truncation, a compressed discrete baseband signal is obtained.
  • the baseband signal is sampled to obtain a plurality of discrete baseband signals, including:
  • the baseband signal is sampled by using a preset sampling rate to obtain a sampling result, wherein the sampling rate satisfies a Nyquist sampling law;
  • the sampling result is filtered to obtain a number of discrete baseband signals.
  • calculating a phase value and an amplitude value of a discrete baseband signal, and adjusting an amplitude value corresponding to the one discrete baseband signal, so that the adjusted amplitude value satisfies a preset peak-to-average ratio including:
  • the method before performing bit truncation on the phase value of the discrete baseband signal and the adjusted amplitude value respectively, the method further includes:
  • the discrete baseband signal is preprocessed such that the phase value of the one discrete baseband signal and the adjusted amplitude value each have a maximum effective bit width.
  • phase values of the discrete baseband signals and the adjusted amplitude values are respectively bit-cut according to the bit widths respectively corresponding to the phase values of the discrete baseband signals and the adjusted amplitude values, including:
  • the sign bit of the adjusted amplitude value of the discrete baseband signal is removed and saturated, including:
  • a data compression device comprising:
  • An acquiring unit configured to acquire a baseband signal
  • a sampling unit configured to sample the baseband signal to obtain a plurality of discrete baseband signals
  • a transform unit configured to calculate a phase value and an amplitude value of each discrete baseband signal, and respectively adjust an amplitude value corresponding to each of the discrete baseband signals, so that the adjusted amplitude value satisfies a preset peak-to-average ratio
  • the processing unit is configured to perform the following operations on each discrete baseband signal separately:
  • phase values of the discrete baseband signals and the adjusted amplitude values are respectively bit-cut according to the bit widths respectively corresponding to the phase values of the discrete baseband signals and the adjusted amplitude values, and the phase values after the bits are truncated Combining with the amplitude values after bit truncation, a compressed discrete baseband signal is obtained.
  • the sampling unit is configured to:
  • the baseband signal is sampled by using a preset sampling rate to obtain a sampling result, wherein the sampling rate satisfies a Nyquist sampling law;
  • the sampling result is filtered to obtain a number of discrete baseband signals.
  • the transforming unit uses to:
  • the processing unit is configured to:
  • the discrete baseband signal is preprocessed such that the phase value of the one discrete baseband signal and the adjusted amplitude value each have a maximum effective bit width.
  • phase value of the discrete baseband signal and the adjusted amplitude value are respectively bit-cut according to a bit width respectively corresponding to a phase value of the discrete baseband signal and the adjusted amplitude value
  • processing is performed.
  • Unit is used to:
  • the processing unit is configured to:
  • the obtained baseband signal is first sampled, and a plurality of discrete baseband signals are obtained, so that the first compression can be realized without distortion, and then each discrete is calculated.
  • the amplitude value and the phase value of the baseband signal are adjusted correspondingly according to the preset peak-to-average ratio, wherein the phase value remains unchanged, and then, the bit width set in advance according to the adjusted amplitude value and phase value is set.
  • the truncation can reduce the data bits of the baseband signal accordingly, thereby reducing the amount of data transmitted, effectively improving the compression efficiency, thereby saving fiber resources, and being compatible with existing TD-LTE systems or 5G systems, such that There is no need to change the existing communication system structure, which saves costs.
  • FIG. 1 is a flowchart of a data compression method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an uplink transmission data compression process according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a downlink transmission data compression process according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a data compression apparatus according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • the existing communication system when each base station transmits data through an optical fiber, a single optical fiber cannot meet the data transmission requirement, and the existing data compression method has a problem that the compression efficiency is too low.
  • a design is redesigned.
  • the data compression method is that the baseband signal is first sampled to achieve initial compression, and then the amplitude value of the baseband signal is adjusted, so that the adjusted amplitude value satisfies a preset peak-to-average ratio and the phase value is maintained. Then, according to the correspondingly set bit width, the phase value and the adjusted amplitude value are bit-cut to achieve re-compression.
  • a method for data compression is as follows:
  • Step 100 Acquire a baseband signal.
  • the baseband signal refers to an In-phase Quadrature (IQ) signal
  • the IQ signal includes two signals, one is an I signal, and one is a Q signal.
  • the sampling rate is 30.72MSPS.
  • the data transmission bandwidth that needs to be satisfied by a single fiber between the BBU and the RRU can be expressed by the following formula: 30.72Msps ⁇ 16bit ⁇ 2
  • Step 110 Sampling the acquired baseband signal to obtain a plurality of discrete baseband signals.
  • the baseband signal is sampled by using a preset sampling rate to obtain a sampling result, wherein the sampling rate satisfies the Nyquist sampling law, and the sampling result is filtered to obtain a plurality of discrete baseband signals.
  • the sampling rate is 30.72MSPS
  • the sampling rate is 30.72MSPS
  • the data transmission bandwidth that needs to be met by a single fiber between the current BBU and the RRU can be expressed by the following formula: 20.48Msps ⁇ 16bit ⁇ 2
  • the data transmission bandwidth required for a single fiber between the BBU and the RRU is reduced by 1/3, achieving 2/3 compression.
  • Step 120 Calculate the phase value and the amplitude value of each discrete baseband signal, and adjust the amplitude value of each discrete baseband signal accordingly, so that the adjusted amplitude value satisfies the preset peak-to-average ratio.
  • phase value and the amplitude value of each of the discrete baseband signals are calculated, and the amplitude values of each of the discrete baseband signals are adjusted accordingly, so that the adjusted amplitude value satisfies a preset peak-to-average ratio, in the embodiment of the present invention.
  • a discrete baseband signal can be considered as an Orthogonal Frequency Division Multiplexing (OFDM) symbol in an LTE system, or a Single-Carrier Frequency-Division Multiple Access (SC-)
  • the FDMA symbol can also be regarded as a time slot or a sub-frame in a 3G system, which is not limited herein.
  • the phase value and the amplitude value in a discrete baseband signal can be obtained in the following two ways, and the amplitude value is performed. Adjust accordingly.
  • transforming a discrete baseband signal from the time domain to the amplitude phase domain actually transforms the baseband signal from a rectangular coordinate to a polar coordinate, that is, a corresponding phase value and amplitude value can be obtained.
  • the buffer length is 128 points, and then, for the above 128
  • the amplitude values of the points are subjected to power statistics to obtain the amplitude power mean, that is, the Root Mean Square (RMS) value, wherein the preferred preset power average is -13.5 db (obtained by long-term statistics).
  • RMS Root Mean Square
  • the amplitude value of OFDM symbol 1 can be amplified by 100 times to reach the preset power.
  • the mean value, wherein the magnification of the amplitude value can be determined by the following formula:
  • the “magnification db value” in the above formula is substituted into the specific value “40db”, and the multiple of the amplitude value can be calculated as “100” by calculation.
  • Manner 2 transform a discrete baseband signal from the time domain to the amplitude phase domain to obtain a corresponding phase value and amplitude value, and determine a corresponding amplitude power mean based on the amplitude value, and determine whether the amplitude power mean is greater than a preset power peak, and determine When it is greater than, the amplitude power average of a discrete baseband signal is saturated, and the corresponding amplitude value is adjusted accordingly. Otherwise, the amplitude value corresponding to a discrete baseband signal remains unchanged.
  • the preset power peak is set according to the peak-to-average ratio characteristic of the LTE system.
  • the preset power peak value is -13.5db. If the average amplitude power in the current OFDM symbol is calculated to be -53.5db, then the current amplitude value is saturated, and -13.5dbFS is taken as the target amplitude power average. Reduce the current amplitude value by a factor of 100.
  • the preset power peak value is -53.5 db
  • the average amplitude power in the current OFDM symbol is calculated to be -43.5 db
  • the amplitude value in the current OFDM symbol remains unchanged, and no adjustment is made.
  • Step 130 Perform bit truncation on the corresponding phase value and the adjusted amplitude value according to the bit width respectively set for each phase value of the discrete baseband signal and the adjusted amplitude value.
  • each discrete baseband signal needs to be preprocessed, so that the phase value of each discrete baseband signal and the adjusted amplitude value respectively correspond to each other.
  • the effective bit width is the largest.
  • the sign bit of the adjusted amplitude value is removed, and saturation processing is performed, and then, based on the one-bit symbol bit, the bit width set according to the adjusted amplitude value of the corresponding one of the discrete baseband signals is set.
  • bit-cutting the lower bits of the adjusted amplitude value with the removed sign bit, and the phase width of a discrete baseband signal according to the bit width set corresponding to the phase value of a discrete baseband signal The value is truncated.
  • the adjusted amplitude value is set to a bit width of 8 bits in advance, and the bit value preset in the phase value is 8 bits, corresponding to the mode 1 in step 120, the average amplitude power of the current OFDM symbol is adjusted to -13.5 db, and then removed. The highest-order sign bit in 16bit is saturated. Then, the lower bit of 7bit is truncated, rounded up, and finally the 8-bit amplitude value data is obtained, and 8 bits are removed from the phase value to obtain 8-bit phase value data.
  • Step 140 Combine each phase value of the bit-cut signal and the amplitude value after the bit-cutting of each discrete baseband signal to obtain a plurality of compressed discrete baseband signals.
  • the data of the required bit width is intercepted, and the phase value after bit truncation of each discrete baseband signal and the amplitude value after bit truncation are respectively combined to obtain a plurality of compressed discrete baseband signals.
  • the data transmission bandwidth that needs to be satisfied by the single fiber between the current BBU and the RRU can be expressed by the following formula: 20.48Msps ⁇ 15bit
  • the "20.48 Msps" is the current sampling rate, and the "15 bit” is the current sampling width of the system.
  • the data transmission bandwidth required for a single fiber between the BBU and the RRU is reduced. 2/3, achieving 1/3 compression, the above formula shows that the original two I / Q signals are compressed into one IQ signal, and the sampling width is also reduced.
  • the Error Vector Magnitude (EVM) value is about 1.6%, and when the 1/4 compression is achieved, the EVM value is about 4%, and the distortion is better during transmission. small.
  • the one or several discrete baseband signals may also be taken from the pole.
  • the coordinates are restored to the Cartesian coordinates, that is, from the amplitude phase domain to the time domain (frequency domain), and then the discrete baseband signal (IQ signal) is directly truncated by the preset bit width instead of the corresponding amplitude.
  • the value and phase values are bit truncated separately.
  • the bit width of the discrete baseband signal is consistent with that in step 110, and is still illustrated by the example of step 110, assuming that the preset bit width is 8 bits, for a 16-bit discrete baseband signal, directly
  • the 16-bit discrete baseband signal bit is truncated to 8 bits, that is, the data transmission bandwidth "20.48 Msps ⁇ 16 bit ⁇ 2" is compressed to "20.48 Msps ⁇ 8 bit ⁇ 2", compared with the initial required data transmission bandwidth "30.72 Msps ⁇ 16 bits ⁇ 2", which reduces the data transmission bandwidth required for a single fiber between the BBU and the RRU by 2/3, achieving 1/3 compression.
  • the 16-bit discrete baseband signal bit is directly truncated to 7 bits, that is, the data transmission bandwidth "20.48 Msps ⁇ 16 bit ⁇ 2" is compressed into “ 20.48Msps ⁇ 7bit ⁇ 2", compared with the initial required data transmission bandwidth "30.72Msps ⁇ 16bit ⁇ 2", so that the data transmission bandwidth required for a single fiber between the BBU and the RRU is reduced by 3/4, achieving 1 /4 compression.
  • the data compression process of the BBU to the RRU in the downlink transmission process is as follows:
  • Step 200 Zero-interpolate the input baseband signal to form a sampling rate of 61.44 MSPS.
  • Step 201 Perform rate conversion of 61.44 MSPS to 20.48 MSPS by using a rate conversion PFIR filter.
  • Step 202 The output result of the rate conversion PFIR filter is obtained by extracting one every three points to obtain a sampling rate of the final 20.48 MSPS.
  • Step 203 compress the output data of the sampling rate of 20.48 MSPS, and the currently selected solution is as follows:
  • Option 1 The IQ signal bit is directly truncated to 8 bits according to the rounding method.
  • Solution 2 The IQ signal is compressed to 8 bits according to the A rate compression method (nonlinear function compression method).
  • Solution 3 According to the Cordic transform method, the amplitude value and the phase value of the IQ signal are first calculated, and then the bit value and the phase value are respectively rounded off by the bit truncation process, that is, the solution provided in the first embodiment.
  • Step 204 After the BBU completes the compression of the IQ signal, the compressed IQ signal is transmitted to the RRU through the IR interface.
  • Step 205 After receiving the compressed IQ signal, the RRU decompresses and restores the 16-bit IQ signal.
  • the specific decompression scheme is as follows:
  • the tail is directly zero-padded.
  • the decompression is performed according to the A-rate decompression method.
  • the Cordic transform to the amplitude phase domain, the same Cordic transform is used for decompression.
  • Step 206 After the IQ signal is restored to 16 bits, two zeros are interpolated three times and restored to 61.44 MSPS by the PFIR filter to be integrated into the existing RRU link.
  • the data compression process of the RRU to the BBU in the uplink transmission process is as follows:
  • Step 300 The input 61.44 Msps IQ signal is directly passed through the PFIR filter and subjected to 3 times sampling.
  • Step 301 Starting from the start time of an OFDM symbol, starting from the length of the CP/2, the buffer length is 128 points, then performing power statistics on the 128 points (calculating the RMS value), and then performing AGC adjustment according to the RMS value. .
  • the AGC adjustment has the following two options:
  • Solution 1 Using the RMS value and the preset power average, the power to be adjusted is obtained, and the amplitude value is adjusted accordingly.
  • Solution 2 According to the peak-to-average ratio characteristic of the LTE system, the power peak is set, and saturation processing is performed according to the power peak.
  • Step 302 Perform saturation processing on all data in the current OFDM symbol.
  • Step 303 Perform rounding off processing on the data to obtain a corresponding compressed IQ signal, and transmit the same to the BBU through the IR interface.
  • Step 304 After receiving the compressed IQ signal, the BBU performs zero padding to obtain an IQ signal of 20.48 Msps.
  • Step 305 Continue to perform 3-time interpolation on the IQ signal of 20.48 Msps. Then, the interpolation result is filtered by the PFIR filter, and the filtered result is double-sampled to obtain an IQ signal of 30.72 Msps.
  • the data compression apparatus includes at least an obtaining unit 40, a sampling unit 41, a transforming unit 42, and a processing unit 43, where
  • An obtaining unit 40 configured to acquire a baseband signal
  • a sampling unit 41 configured to sample the baseband signal to obtain a plurality of discrete baseband signals
  • the transform unit 42 is configured to calculate a phase value and an amplitude value of each discrete baseband signal, and respectively adjust an amplitude value corresponding to each of the discrete baseband signals, so that the adjusted amplitude value satisfies a preset peak-to-average ratio;
  • the processing unit 43 is configured to perform the following operations on each discrete baseband signal:
  • phase values of the discrete baseband signals and the adjusted amplitude values are respectively bit-cut according to the bit widths respectively corresponding to the phase values of the discrete baseband signals and the adjusted amplitude values, and the phase values after the bits are truncated Combining with the amplitude values after bit truncation, a compressed discrete baseband signal is obtained.
  • the sampling unit 41 is configured to:
  • the baseband signal is sampled by using a preset sampling rate to obtain a sampling result, wherein the sampling rate satisfies a Nyquist sampling law;
  • the sampling result is filtered to obtain a number of discrete baseband signals.
  • the transforming unit 42 Used for:
  • Transforming the one discrete baseband signal from a time domain (frequency domain) to an amplitude phase domain obtaining corresponding phase values and amplitude values, and determining a corresponding amplitude power mean based on the amplitude values, and based on the amplitude power mean and a preset power average, calculating a difference between the average value of the amplitude power and the preset power average, and performing amplification or reduction processing on the amplitude value corresponding to the one discrete baseband signal based on the difference; or,
  • the processing unit 43 before performing bit truncation on the phase value and the adjusted amplitude value of the one discrete baseband signal, respectively, the processing unit 43 is configured to:
  • the discrete baseband signal is preprocessed such that the phase value of the one discrete baseband signal and the adjusted amplitude value each have a maximum effective bit width.
  • Unit 43 is used to:
  • the processing unit 43 is configured to:
  • the obtained baseband signal is first sampled, and a plurality of discrete baseband signals are obtained, so that the first compression can be realized without distortion, and then each discrete is calculated.
  • the amplitude value and the phase value of the baseband signal are adjusted correspondingly according to the preset peak-to-average ratio, wherein the phase value remains unchanged, and then, the bit width set in advance according to the adjusted amplitude value and phase value is set.
  • the truncation can reduce the data bits of the baseband signal accordingly, thereby reducing the amount of data transmitted, effectively improving the compression efficiency, thereby saving fiber resources, and being compatible with existing TD-LTE systems or 5G systems, such that There is no need to change the existing communication system structure, which saves costs.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

本发明涉及移动通信领域,尤其涉及一种数据压缩方法及装置,为了解决现有技术中压缩效率过低的问题,该方法为,通过对获取的基带信号先进行采样,并获得若干离散基带信号,实现初步压缩,然后,计算每一个离散基带信号的幅度值和相位值,并基于预设为调整后的幅度值和相位值设置的位宽分别对应进行位截断,并将位截断后的相位值数据和幅度值数据进行组合,获得最终压缩后的离散基带信号,这样,在不失真的前提下,通过按照预先设置的位宽进行位截断,能相应的减少了基带信号的数据位,从而降低了传输的数据量,有效提高了压缩效率,进而节约了光纤资源。

Description

一种数据压缩方法及装置
本申请要求在2017年02月13日提交中国专利局、申请号为201710075836.1、发明名称为“一种数据压缩方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信领域,尤其涉及一种数据压缩方法及装置。
背景技术
随着分时长期演进(Time Division Long Term Evolution,TD-LTE)系统和5G系统的发展,对数据传输的要求也越来越高,相应的,TD-LTE系统或5G系统中负责数据传输的基站中光纤的数据传输要求也越来越高。
一般来说,可以通过增加光纤数量以满足数据传输的要求,但这种做法相对来说,成本会大大增加。
移动通信系统通常是由基站实现数据传输,而室内基带单元设备(Building Baseband Unit,BBU)及射频远端设备(Remote Radio Unit,RRU)分别承担基站的基带处理和射频处理功能,BBU与RRU之间采用光纤进行数据传输,主要用于传输操作维护数据和IQ信号(也称基带信号),两端的接口称为IR接口。目前来说,各基站间主要是进行原始数据的传输,现有技术下,可以采用IR接口压缩技术,能用有限的带宽完成大数据量的可靠有效传输,但传统的压缩方法仅能实现1/2数据量的压缩。
在TD-LTE系统或5G系统中,IQ信号的最大采样宽度为16bit,而且光纤在传输IQ信号时,还需要对其进行8/10编码(将8位的数据转换位10位的数据进行传输),因此,对于8天线的设备来说,基于TD-LTE标准或基于5G标准的空口最大传输速率为9.8304Gbps,可采用如下公式计算获得:
30.72M*32bit*8天线*(10/8)=9.8304Gbps
若继续采用4G系统中的10G光纤的话,足够适用,但在TD-LTE系统或5G系统中,配备的是25G光纤,而且25G光纤在传输IQ信号时,需要对其进行64/66编码(将64位数据转换为66位数据),相当于3根10G光纤,因此,对于5G系统的64天线的3D-MIMD设备来说,在未压缩的情况下,需要3根25G光纤才能满足信号传输要求,若还是使用传统的压缩方法(实现1/2数据量压缩),仍然需要2根25G光纤,单根25G光纤仍然无法满足信号传输要求,必须采取更高效的压缩方法,使得单根25G光纤能满足信号传输要求。
因此,需要设计一种新的数据压缩方法,以提高压缩效率。
发明内容
本发明实施例提供一种数据压缩方法及装置,用以解决现有通信系统中,各个基站通过光纤传输数据时,单根光纤无法满足数据传输要求,以及现有的数据压缩方法存在压缩效率过低的问题。
本发明实施例提供的具体技术方案如下:
一种数据压缩方法,包括:
获取基带信号;
对所述基带信号进行采样,获得若干离散基带信号;
计算每一个离散基带信号的相位值和幅度值,分别对所述每一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比;
分别对每一个离散基带信号执行如下操作:
按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,并将位截断后的相位值和位截断后的幅度值进行组合,获得压缩离散基带信号。
可选的,对所述基带信号进行采样,获得若干离散基带信号,包括:
采用预设的采样速率对所述基带信号进行采样,获得采样结果,其中,所述采样速率满足奈奎斯特采样定律;
对所述采样结果进行滤波,获得若干离散基带信号。
可选的,计算一个离散基带信号的相位值和幅度值,对所述一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比,包括:
将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,以及基于所述幅度功率均值与预设的功率均值,计算所述幅度功率均值与所述预设的功率均值之间的差值,并基于所述差值,对所述一个离散基带信号对应的幅度值进行放大或缩小处理;或者,
将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,判断所述幅度功率均值是否大于预设的功率峰值,确定大于时,对所述一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的幅度值进行相应调整,否则,所述一个离散基带信号对应的幅度值维持不变。
可选的,在对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断之 前,还包括:
对所述一个离散基带信号进行预处理,使得所述一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
可选的,按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,包括:
去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理;
基于一位符号位,对按照对应所述一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应所述一个离散基带信号的相位值设置的位宽,对所述一个离散基带信号的相位值进行位截断。
可选的,去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理,包括:
判断所述一个离散基带信号调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
一种数据压缩装置,包括:
获取单元,用于获取基带信号;
采样单元,用于对所述基带信号进行采样,获得若干离散基带信号;
变换单元,用于计算每一个离散基带信号的相位值和幅度值,分别对所述每一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比;
处理单元,用于分别对每一个离散基带信号执行如下操作:
按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,并将位截断后的相位值和位截断后的幅度值进行组合,获得压缩离散基带信号。
可选的,对所述基带信号进行采样,获得若干离散基带信号时,所述采样单元用于:
采用预设的采样速率对所述基带信号进行采样,获得采样结果,其中,所述采样速率满足奈奎斯特采样定律;
对所述采样结果进行滤波,获得若干离散基带信号。
可选的,计算一个离散基带信号的相位值和幅度值,对所述一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比时,所述变换单元用于:
将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,以及基于所述幅度功率均值与预设的功率均 值,计算所述幅度功率均值与所述预设的功率均值之间的差值,并基于所述差值,对所述一个离散基带信号对应的幅度值进行放大或缩小处理;或者,
将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,判断所述幅度功率均值是否大于预设的功率峰值,确定大于时,对所述一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的幅度值进行相应调整,否则,所述一个离散基带信号对应的幅度值维持不变。
可选的,在对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断之前,所述处理单元用于:
对所述一个离散基带信号进行预处理,使得所述一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
可选的,按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断时,所述处理单元用于:
去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理;
基于一位符号位,对按照对应所述一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应所述一个离散基带信号的相位值设置的位宽,对所述一个离散基带信号的相位值进行位截断。
可选的,去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理时,所述处理单元用于:
判断所述一个离散基带信号调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
综上所述,本发明实施例中,通过对获取的基带信号先进行采样,并获得若干离散基带信号,这样,能在不失真的前提下,实现第一次压缩,然后,计算每一个离散基带信号的幅度值和相位值,并基于预设的峰均比对幅度值进行相应的调整,其中,相位值维持不变,接着,按照预先为调整后的幅度值和相位值设置的位宽,分别对应进行位截断,并将位截断后的相位值数据和幅度值数据进行组合,获得最终压缩后的离散基带信号,这样,在不失真的前提下,通过按照预先设置的位宽进行位截断,能相应的减少了基带信号的数据位,从而降低了传输的数据量,有效提高了压缩效率,进而节约了光纤资源,而且还能与现有的TD-LTE系统或5G系统兼容,这样,无需再改动现有的通信系统结构,节约了成本。
附图说明
图1为本发明实施例中数据压缩方法流程图;
图2为本发明实施例中上行传输数据压缩过程示意图;
图3为本发明实施例中下行传输数据压缩过程示意图;
图4为本发明实施例中数据压缩装置结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
为了解决现有通信系统中,各个基站通过光纤传输数据时,单根光纤无法满足数据传 输要求,以及现有的数据压缩方法存在压缩效率过低的问题,本发明实施例中,重新设计了一种数据压缩方法,该方法为,先对基带信号进行采样,实现初步压缩,然后,调整基带信号的幅度值,使得调整后的幅度值满足预设的峰均比,并维持相位值不变,接着,按照各自对应设置的位宽,对相位值和调整后的幅度值进行位截断,实现再次压缩。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将通过具体实施例对本发明的方案进行详细描述,当然,本发明并不限于以下实施例。
参阅图1所示,本发明实施例中,数据压缩的方法流程如下:
步骤100:获取基带信号。
具体的,本发明实施例中,基带信号即是指正交(In-phase Quadrature,IQ)信号,IQ信号包含两路信号,一路为I信号,一路为Q信号。
例如,LTE系统在采用20M带宽的情况下,采样速率为30.72MSPS,此时,BBU和RRU之间单根光纤需要满足的数据传输带宽可以通过如下公式表示:30.72Msps×16bit×2
其中,“30.72Msps”表示为当前采样速率,“16bit”表示系统当前的采样宽度,“2”表示当前共有两路I/Q信号。
步骤110:对获取的基带信号进行采样,获得若干离散基带信号。
具体的,采用预设的采样速率对基带信号进行采样,获得采样结果,其中,采样速率满足奈奎斯特采样定律,并对上述采样结果进行滤波,获得若干离散基带信号。
例如,LTE系统在采用20M带宽的情况下,采样速率为30.72MSPS,通过将30.72MSPS降低为20.48MSPS,当前BBU和RRU之间单根光纤需要满足的数据传输带宽可以通过如下公式表示:20.48Msps×16bit×2
其中,“0.48Msps”表示为当前采样速率,“16bit”表示系统当前的采样宽度,“2”表示当前共有两路I/Q信号。
相较于步骤100中的原始的基带信号,使得BBU和RRU之间单根光纤需要满足的数据传输带宽降低了1/3,实现了2/3的压缩。
步骤120:计算每一个离散基带信号的相位值和幅度值,并对每一个离散基带信号的幅度值进行相应的调整,使得调整后的幅度值满足预设的峰均比。
具体的,计算每一个离散基带信号的相位值和幅度值,并对每一个离散基带信号的幅度值进行相应的调整,使得调整后的幅度值满足预设的峰均比,本发明实施例中,一个离散基带信号可以认为是LTE系统中的一个正交频分复用(Orthogonal Frequency Division  Multiplexing,OFDM)符号,或者是一个单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号,也可以认为是3G系统中一个时隙或一个子帧,在此不做限定,具体可以采用如下两种方式获取一个离散基带信号内的相位值和幅度值,并对幅度值进行相应调整。
方式一:
将一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于幅度值确定对应的幅度功率均值,以及基于幅度功率均值与预设的功率均值,计算幅度功率均值与预设的功率均值之间的差值,并基于差值,对一个离散基带信号对应的幅度值进行放大或缩小处理。
进一步地,将一个离散基带信号从时域变换到幅度相位域,实际上是将基带信号从直角坐标变换为极坐标,即可以获得对应的相位值和幅度值。
本发明实施例中,较佳的,从一个OFDM符号起始时刻开始,从二分之一个循环前缀(Cyclic Prefix,CP)长度处开始缓存,缓存长度为128个点,然后,对上述128个点的幅度值进行功率统计,以获得幅度功率均值,即均方根值(Root Mean Square,RMS)值,其中,优选的预设的功率均值为-13.5db(经长期统计获得)。
例如,假设OFDM符号1的RMS值计算为-53.5db,相较于预设的功率均值-13.5db,相差了40db,因此,可以将OFDM符号1幅度值放大100倍,以达到预设的功率均值,其中,幅度值放大倍数的确定可以采用如下公式:
20*log10(幅度值倍数)=放大db数值
上述公式中的“放大db数值”代入具体数值“40db”,即可通过计算获知幅度值倍数为“100”。
方式二:将一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于幅度值确定对应的幅度功率均值,判断幅度功率均值是否大于预设的功率峰值,确定大于时,对一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的幅度值进行相应调整,否则,一个离散基带信号对应的幅度值维持不变。
本发明实施例中,预设的功率峰值是根据LTE系统的峰均比特性设置的。
例如,假设预设的功率峰值为-13.5db,若计算得到当前OFDM符号内的幅度功率均值为-53.5db,那么,对当前幅度值进行饱和处理,将-13.5dbFS作为目标幅度功率均值,并将当前幅度值缩小100倍。
又例如,假设预设的功率峰值为-53.5db,若计算得到当前OFDM符号内的幅度功率均值为-43.5db,则当前OFDM符号内的幅度值维持不变,不做调整。
步骤130:按照分别对应每一个离散基带信号的相位值和调整后的幅度值设置的位宽,对各自对应的相位值和调整后的幅度值进行位截断。
具体的,在对各自对应的相位值和调整后的幅度值进行位截断之前,需要对每一个离散基带信号进行预处理,使得每一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
进一步地,以一个OFDM符号为例,去掉调整后的幅度值的符号位,并进行饱和处理,然后,基于一位符号位,对按照对应一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应一个离散基带信号的相位值设置的位宽,对一个离散基带信号的相位值进行位截断。
其中,在去掉调整后的幅度值的符号位时,需要判断该调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
例如,假设调整后的幅度值预先设置的位宽为8bit,相位值预先设置的位宽为8bit,对应步骤120中的方式一,将当前OFDM符号的幅度功率均值调整到-13.5db后,去掉16bit中的最高位符号位,做饱和处理,然后,将7bit的低位进行位截断,进行4舍五入处理,最后得到8bit幅度值数据,以及,对相位值去掉8bit,获得8bit相位值数据。
步骤140:分别将每一个离散基带信号各自进行位截断后的相位值和位截断后的幅度值进行组合,获得若干压缩离散基带信号。
具体的,通过进行位截断,截取到所需的位宽的数据,并分别将每一个离散基带信号各自进行位截断后的相位值和位截断后的幅度值进行组合,获得若干压缩离散基带信号。
例如,若位截断后的幅度值为7bit,位截断后的相位值为8bit,组合获得15bit的IQ信号数据,当前BBU和RRU之间单根光纤需要满足的数据传输带宽可以通过如下公式表示:20.48Msps×15bit
其中,“20.48Msps”表示为当前采样速率,“15bit”表示系统当前的采样宽度,相较于步骤100中的原始的IQ信号,使得BBU和RRU之间单根光纤需要满足的数据传输带宽降低了2/3,实现了1/3的压缩,由上述公式可知,原来的两路I/Q信号压缩为一路IQ信号,采样宽度也减少了。
又例如,若位截断后的幅度值为7bit,位截断后的相位值为7bit,组合获得14bit的IQ信号数据,当前BBU和RRU之间单根光纤需要满足的数据传输带宽可以通过如下公式表示:20.48Msps×14bit
其中,20.48Msps为当前采样速率,14bit表示系统当前的采样宽度,相较于步骤100中的原始的IQ信号,使得BBU和RRU之间单根光纤需要满足的数据传输带宽降低了3/4,实现了1/4的压缩,由上述公式可知,原来的两路I/Q信号压缩为一路IQ信号,采样宽度也减少了。
而且,经过试验验证,实现1/3压缩时,误差向量幅度(Error Vector Magnitude,EVM)值在1.6%左右,实现1/4压缩时,EVM值在4%左右,在传输过程中失真度较小。
当然,本发明实施例中,在执行完步骤120后,即,将一个或若干个离散基带信号的幅度值调整到合适的峰均比后,也可以将该一个或若干个离散基带信号从极坐标还原至直角坐标中,即,从幅度相位域还原至时域(频域)中,然后,直接采用预设的位宽对离散基带信号(IQ信号)进行位截断,而不是对对应的幅度值和相位值分别进行位截断。
例如,执行完步骤120后,离散基带信号的位宽与步骤110中的一致,仍以步骤110的示例进行说明,假设预设的位宽为8bit,对于16bit的离散基带信号来说,直接将16bit的离散基带信号位截断为8bit,即,将数据传输带宽“20.48Msps×16bit×2”压缩为“20.48Msps×8bit×2”,相对于初始所需的数据传输带宽“30.72Msps×16bit×2”,使得BBU和RRU之间单根光纤需要满足的数据传输带宽降低了2/3,实现了1/3的压缩。
又例如,假设预设的位宽为7bit,对于16bit的离散基带信号来说,直接将16bit的离散基带信号位截断为7bit,即,将数据传输带宽“20.48Msps×16bit×2”压缩为“20.48Msps×7bit×2”,相对于初始所需的数据传输带宽“30.72Msps×16bit×2”,使得BBU和RRU之间单根光纤需要满足的数据传输带宽降低了3/4,实现了1/4的压缩。
因此,无论是在极坐标系中分别对幅度值和相位值分别进行位截断,还是在直角坐标系中,直接对离散基带信号进行位截断,均属于本发明保护的范围。
下面结合具体的实施场景,对本发明上述实施例作进一步详细说明。
场景一(下行传输):
参阅图2所示,本发明实施例中,BBU向RRU的下行传输过程中数据压缩过程如下:
步骤200:对输入的基带信号,进行零插值,形成61.44MSPS的采样速率。
步骤201:采用速率变换PFIR滤波器,实现61.44MSPS到20.48MSPS的采样变换。
步骤202:对速率变换PFIR滤波器的输出结果,按照每3个点抽取一个的方式,获得最终20.48MSPS的采样速率。
步骤203:对输出的20.48MSPS的采样速率的数据进行压缩,目前可选的方案如下:
方案一:按照四舍五入的方式,直接将IQ信号位截断为8bit。
方案二:对IQ信号按照A率压缩方法(非线性函数压缩方法),压缩为8bit。
方案三:按照Cordic变换方法,先计算IQ信号的幅度值和相位值,然后分别对幅度值和相位值进行四舍五入的位截断处理,即实施例一提供的方案。
方案四:按照Cordic变换方法,先计算IQ信号的幅度值和相位值,然后对相位值进行四舍五入的位截断处理,对幅度值按照A率压缩方法进行压缩。
步骤204:BBU完成对IQ信号的压缩后,将压缩后的IQ信号通过IR接口传递至RRU上。
步骤205:RRU接收到压缩后的IQ信号后,对其进行解压,还原至16bit的IQ信号,具体解压方案如下:
对于四舍五入位截断的数据,尾部直接补零,对于使用A率压缩方法进行压缩的,按照A率解压方法进行解压,对于采用Cordic变换为幅度相位域的,采用相同的Cordic变换进行解压。
步骤206:当IQ信号恢复到16bit后,将进行3倍内插补两个零,并通过PFIR滤波器恢复到61.44MSPS,从而集成到现有的RRU链路上。
场景二(上行传输):
参阅图3所示,本发明实施例中,RRU向BBU的上行传输过程中数据压缩过程如下:
步骤300:将输入的61.44Msps的IQ信号直接通过PFIR滤波器,并进行3倍采样。
步骤301:从一个OFDM符号起始时刻起,从CP/2长度处开始缓存,缓存长度为128个点,然后对这128个点做功率统计(计算RMS值),然后根据RMS值进行AGC调整。其中,AGC调整有如下两种方案:
方案一:利用RMS值以及预设的功率均值,得到需要调整的功率,并对幅度值进行相应调整。
方案二:根据LTE系统的峰均比特性,设定功率峰值,并根据功率峰值,进行饱和处理。
步骤302:对当前OFDM符号内的所有数据进行饱和处理。
步骤303:对数据进行四舍五入位截断处理,获得对应的压缩后的IQ信号,并通过IR接口传输至BBU上。
步骤304:BBU接收到压缩后的IQ信号后,对其进行补零,得到20.48Msps的IQ信号。
步骤305:继续对20.48Msps的IQ信号进行3倍内插,然后,将内插结果通过PFIR滤波器进行滤波,并对滤波后的结果进行2倍采样,获得30.72Msps的IQ信号。
基于上述实施例,参阅图4所示,本发明实施例中,数据压缩装置,至少包括获取单元40、采样单元41、变换单元42和处理单元43,其中,
获取单元40,用于获取基带信号;
采样单元41,用于对所述基带信号进行采样,获得若干离散基带信号;
变换单元42,用于计算每一个离散基带信号的相位值和幅度值,分别对所述每一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比;
处理单元43,用于分别对每一个离散基带信号执行如下操作:
按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,并将位截断后的相位值和位截 断后的幅度值进行组合,获得压缩离散基带信号。
可选的,对所述基带信号进行采样,获得若干离散基带信号时,所述采样单元41用于:
采用预设的采样速率对所述基带信号进行采样,获得采样结果,其中,所述采样速率满足奈奎斯特采样定律;
对所述采样结果进行滤波,获得若干离散基带信号。
可选的,计算一个离散基带信号的相位值和幅度值,对所述一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比时,所述变换单元42用于:
将所述一个离散基带信号从时域(频域)变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,以及基于所述幅度功率均值与预设的功率均值,计算所述幅度功率均值与所述预设的功率均值之间的差值,并基于所述差值,对所述一个离散基带信号对应的幅度值进行放大或缩小处理;或者,
将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,判断所述幅度功率均值是否大于预设的功率峰值,确定大于时,对所述一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的幅度值进行相应调整,否则,所述一个离散基带信号对应的幅度值维持不变。
可选的,在对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断之前,所述处理单元43用于:
对所述一个离散基带信号进行预处理,使得所述一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
可选的,按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断时,所述处理单元43用于:
去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理;
基于一位符号位,对按照对应所述一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应所述一个离散基带信号的相位值设置的位宽,对所述一个离散基带信号的相位值进行位截断。
可选的,去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理时,所述处理单元43用于:
判断所述一个离散基带信号调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
综上所述,本发明实施例中,通过对获取的基带信号先进行采样,并获得若干离散基 带信号,这样,能在不失真的前提下,实现第一次压缩,然后,计算每一个离散基带信号的幅度值和相位值,并基于预设的峰均比对幅度值进行相应的调整,其中,相位值维持不变,接着,按照预先为调整后的幅度值和相位值设置的位宽,分别对应进行位截断,并将位截断后的相位值数据和幅度值数据进行组合,获得最终压缩后的离散基带信号,这样,在不失真的前提下,通过按照预先设置的位宽进行位截断,能相应的减少了基带信号的数据位,从而降低了传输的数据量,有效提高了压缩效率,进而节约了光纤资源,而且还能与现有的TD-LTE系统或5G系统兼容,这样,无需再改动现有的通信系统结构,节约了成本。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种数据压缩方法,其特征在于,包括:
    获取基带信号;
    对所述基带信号进行采样,获得若干离散基带信号;
    计算每一个离散基带信号的相位值和幅度值,分别对所述每一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比;
    分别对每一个离散基带信号执行如下操作:
    按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,并将位截断后的相位值和位截断后的幅度值进行组合,获得压缩离散基带信号。
  2. 如权利要求1所述的方法,其特征在于,对所述基带信号进行采样,获得若干离散基带信号,包括:
    采用预设的采样速率对所述基带信号进行采样,获得采样结果,其中,所述采样速率满足奈奎斯特采样定律;
    对所述采样结果进行滤波,获得若干离散基带信号。
  3. 如权利要求1或2所述的方法,其特征在于,计算一个离散基带信号的相位值和幅度值,对所述一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比,包括:
    将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,以及基于所述幅度功率均值与预设的功率均值,计算所述幅度功率均值与所述预设的功率均值之间的差值,并基于所述差值,对所述一个离散基带信号对应的幅度值进行放大或缩小处理;或者,
    将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,判断所述幅度功率均值是否大于预设的功率峰值,确定大于时,对所述一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的幅度值进行相应调整,否则,所述一个离散基带信号对应的幅度值维持不变。
  4. 如权利要求1所述的方法,其特征在于,在对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断之前,还包括:
    对所述一个离散基带信号进行预处理,使得所述一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
  5. 如权利要求1所述的方法,其特征在于,按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,包括:
    去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理;
    基于一位符号位,对按照对应所述一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应所述一个离散基带信号的相位值设置的位宽,对所述一个离散基带信号的相位值进行位截断。
  6. 如权利要求5所述的方法,其特征在于,去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理,包括:
    判断所述一个离散基带信号调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
  7. 一种数据压缩装置,其特征在于,包括:
    获取单元,用于获取基带信号;
    采样单元,用于对所述基带信号进行采样,获得若干离散基带信号;
    变换单元,用于计算每一个离散基带信号的相位值和幅度值,分别对所述每一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比;
    处理单元,用于分别对每一个离散基带信号执行如下操作:
    按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断,并将位截断后的相位值和位截断后的幅度值进行组合,获得压缩离散基带信号。
  8. 如权利要求7所述的装置,其特征在于,对所述基带信号进行采样,获得若干离散基带信号时,所述采样单元用于:
    采用预设的采样速率对所述基带信号进行采样,获得采样结果,其中,所述采样速率满足奈奎斯特采样定律;
    对所述采样结果进行滤波,获得若干离散基带信号。
  9. 如权利要求7或8所述的装置,其特征在于,计算一个离散基带信号的相位值和幅度值,对所述一个离散基带信号对应的幅度值进行调整,使调整后的幅度值满足预设的峰均比时,所述变换单元用于:
    将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,以及基于所述幅度功率均值与预设的功率均值,计算所述幅度功率均值与所述预设的功率均值之间的差值,并基于所述差值,对所述一个离散基带信号对应的幅度值进行放大或缩小处理;或者,
    将所述一个离散基带信号从时域变换到幅度相位域,获得对应的相位值和幅度值,并基于所述幅度值确定对应的幅度功率均值,判断所述幅度功率均值是否大于预设的功率峰值,确定大于时,对所述一个离散基带信号的幅度功率均值进行饱和处理,并对相对应的 幅度值进行相应调整,否则,所述一个离散基带信号对应的幅度值维持不变。
  10. 如权利要求7所述的装置,其特征在于,在对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断之前,所述处理单元用于:
    对所述一个离散基带信号进行预处理,使得所述一个离散基带信号的相位值和调整后的幅度值各自对应的有效位宽最大。
  11. 如权利要求7所述的装置,其特征在于,按照分别对应一个离散基带信号的相位值和调整后的幅度值设置的位宽,对所述一个离散基带信号的相位值和调整后的幅度值分别进行位截断时,所述处理单元用于:
    去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理;
    基于一位符号位,对按照对应所述一个离散基带信号的调整后的幅度值设置的位宽进行相应调整,并对应调整后的位宽,对去掉符号位的调整后的幅度值的低位进行位截断,以及按照对应所述一个离散基带信号的相位值设置的位宽,对所述一个离散基带信号的相位值进行位截断。
  12. 如权利要求11所述的装置,其特征在于,去掉所述一个离散基带信号的调整后的幅度值的符号位,并进行饱和处理时,所述处理单元用于:
    判断所述一个离散基带信号调整后的幅度值去掉符号位后是否溢出,若是,则取溢出的幅度值对应的饱和值,作为去掉符号位的调整后的幅度值;否则,不做处理。
PCT/CN2018/073859 2017-02-13 2018-01-23 一种数据压缩方法及装置 WO2018145570A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/485,444 US10742255B2 (en) 2017-02-13 2018-01-23 Data compression method and device
JP2019543837A JP7282682B2 (ja) 2017-02-13 2018-01-23 データ圧縮方法および装置
EP18751308.0A EP3582462B1 (en) 2017-02-13 2018-01-23 Data compression method and device
KR1020197026748A KR102236736B1 (ko) 2017-02-13 2018-01-23 데이터 압축 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710075836.1A CN108429713B (zh) 2017-02-13 2017-02-13 一种数据压缩方法及装置
CN201710075836.1 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018145570A1 true WO2018145570A1 (zh) 2018-08-16

Family

ID=63107164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073859 WO2018145570A1 (zh) 2017-02-13 2018-01-23 一种数据压缩方法及装置

Country Status (6)

Country Link
US (1) US10742255B2 (zh)
EP (1) EP3582462B1 (zh)
JP (1) JP7282682B2 (zh)
KR (1) KR102236736B1 (zh)
CN (1) CN108429713B (zh)
WO (1) WO2018145570A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019237285A1 (en) * 2018-06-13 2019-12-19 Qualcomm Incorporated Explicit channel state information (csi) with spatial and time domain compression
CN109239689B (zh) * 2018-09-17 2020-07-14 西安空间无线电技术研究所 一种基于fpga的雷达成像处理自动截位系统
CN109769255B (zh) * 2018-12-21 2020-11-06 京信通信系统(中国)有限公司 数据压缩方法、装置、计算机设备和存储介质
CN112213690B (zh) * 2020-09-29 2022-05-24 电子科技大学 一种相位压缩采样的时差测量方法
CN115632668A (zh) * 2022-09-08 2023-01-20 鹏城实验室 数字接收机基带信号降采样方法、装置、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588653A (zh) * 2008-05-20 2009-11-25 大唐移动通信设备有限公司 射频拉远的远端模块、近端模块、系统及方法
WO2013044492A1 (zh) * 2011-09-30 2013-04-04 华为技术有限公司 上行基带信号压缩方法、解压缩方法、装置和系统
CN103888146A (zh) * 2014-03-31 2014-06-25 华为技术有限公司 一种数据压缩的方法、装置和通信设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699602B2 (ja) * 1999-01-07 2005-09-28 富士通株式会社 プリディストーション装置及びその方法
US6556965B1 (en) * 1999-03-24 2003-04-29 Legerity, Inc. Wired and cordless telephone systems with extended frequency range
JP4278332B2 (ja) * 2001-06-29 2009-06-10 日本電信電話株式会社 光送信器および光伝送システム
CN1849763A (zh) 2003-09-30 2006-10-18 松下电器产业株式会社 发送装置以及峰值抑制方法
CN1849764A (zh) * 2003-09-30 2006-10-18 松下电器产业株式会社 发送装置以及峰值抑制方法
US7391367B2 (en) * 2004-09-28 2008-06-24 Raytheon Company Optically frequency generated scanned active array
CN100553244C (zh) * 2005-07-20 2009-10-21 电子科技大学中山学院 一种低复杂度正交频分复用通信系统降低峰平比方法
JP4963089B2 (ja) * 2007-07-24 2012-06-27 三星電子株式会社 送信装置
EP2198543B1 (en) * 2007-09-14 2016-12-14 Semtech Corporation High-speed serializer, related components, systems and methods
US20110123192A1 (en) * 2008-01-28 2011-05-26 Technion Research And Development Foundation Ltd. Optical Under-Sampling And Reconstruction Of Sparse Multiband Signals
US8111646B1 (en) * 2009-07-30 2012-02-07 Chang Donald C D Communication system for dynamically combining power from a plurality of propagation channels in order to improve power levels of transmitted signals without affecting receiver and propagation segments
CN102257567B (zh) * 2009-10-21 2014-05-07 松下电器产业株式会社 音响信号处理装置、音响编码装置及音响解码装置
EP2383949B1 (en) * 2010-04-29 2016-01-06 Xieon Networks S.à r.l. Method and arrangement for signal processing in a communication system
CN102340471B (zh) * 2010-07-19 2014-09-10 大唐移动通信设备有限公司 基带拉远场景下的信号传输方法、设备和系统
KR101867612B1 (ko) * 2010-11-19 2018-06-14 한국전자통신연구원 데이터 송수신 장치 및 방법
CN102843720B (zh) * 2011-06-24 2017-03-22 中兴通讯股份有限公司 分布式基站系统中数据的压缩、解压缩方法、装置及系统
CN103036835B (zh) * 2011-10-10 2015-11-11 京信通信系统(中国)有限公司 一种ofdm系统的峰均比抑制方法及设备
CA2885238C (en) * 2012-10-31 2021-10-12 Commscope Technologies Llc Digital baseband transport in telecommunications distribution systems
JP5958336B2 (ja) 2012-12-28 2016-07-27 富士通株式会社 送信信号電力制御装置及び通信装置
CN103905122A (zh) * 2012-12-28 2014-07-02 中国移动通信集团江苏有限公司 一种双模基站Ir接口间数据传输的方法及系统
CN105027520B (zh) * 2013-01-16 2019-03-12 爱立信(中国)通信有限公司 针对无线电基站的复值ofdm数据压缩和解压缩
CN104378117B (zh) * 2013-08-15 2017-11-14 京信通信系统(中国)有限公司 数据压缩方法及装置、数据传输方法及系统
JP6043260B2 (ja) * 2013-09-11 2016-12-14 日本電信電話株式会社 通信システム及び光信号伝送方法
CN103812608B (zh) * 2013-12-26 2017-04-26 西安交通大学 一种iq数据压缩方法和系统
CN104821861B (zh) * 2015-03-09 2018-05-01 大唐移动通信设备有限公司 一种信号处理方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588653A (zh) * 2008-05-20 2009-11-25 大唐移动通信设备有限公司 射频拉远的远端模块、近端模块、系统及方法
WO2013044492A1 (zh) * 2011-09-30 2013-04-04 华为技术有限公司 上行基带信号压缩方法、解压缩方法、装置和系统
CN103888146A (zh) * 2014-03-31 2014-06-25 华为技术有限公司 一种数据压缩的方法、装置和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582462A4

Also Published As

Publication number Publication date
CN108429713B (zh) 2020-06-16
KR20190113962A (ko) 2019-10-08
EP3582462A1 (en) 2019-12-18
EP3582462A4 (en) 2020-02-19
CN108429713A (zh) 2018-08-21
US10742255B2 (en) 2020-08-11
JP2020511046A (ja) 2020-04-09
JP7282682B2 (ja) 2023-05-29
US20200007185A1 (en) 2020-01-02
KR102236736B1 (ko) 2021-04-06
EP3582462B1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2018145570A1 (zh) 一种数据压缩方法及装置
TWI606710B (zh) 用於雲端無線電存取網路之修改架構以及用於前傳資料之壓縮的方式
US8989088B2 (en) OFDM signal processing in a base transceiver system
US9059778B2 (en) Frequency domain compression in a base transceiver system
CN102075467B (zh) 同相正交信号iq数据压缩方法及装置
US10230394B2 (en) Methods for compressing and decompressing IQ data, and associated devices
WO2016029485A1 (zh) 一种天线信息的发送、接收方法和设备
US10129069B2 (en) Data transmission method and apparatus
WO2011103767A1 (zh) 一种数字预失真处理方法及设备
WO2013044492A1 (zh) 上行基带信号压缩方法、解压缩方法、装置和系统
US20140269987A1 (en) Combined multi-stage crest factor reduction and interpolation of a signal
US20150372711A1 (en) Data compression method, data restoration method, apparatuses, and system
WO2013170623A1 (zh) 一种射频信号的控制方法和设备
EP3360260A1 (en) Crest factor reduction in a radio transmitter
JP4951537B2 (ja) 無線通信ネットワークおよび無線基地局装置および無線通信ネットワークにおける通信方法
WO2014136193A1 (ja) 基地局装置、基地局システムおよびiqデータの圧縮方法
WO2015143602A1 (zh) 物理层数据的传输方法及数据传输设备
You Near-lossless compression/decompression algorithms for digital data transmitted over fronthaul in C-RAN
CN111818572B (zh) 一种信息传输方法及设备
CN102821069A (zh) 基站及基站侧上行数据压缩方法
EP4297495A1 (en) Communication method and communication apparatus
WO2024051653A1 (zh) 一种通信方法、装置及设备
WO2021197348A1 (zh) 一种全球移动通信系统gsm数据的通信方法和相关装置
WO2023179849A1 (en) Apparatus, method and computer program
CN106936512A (zh) 光信号发送装置和光信号接收装置及光纤通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026748

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018751308

Country of ref document: EP