WO2016029485A1 - 一种天线信息的发送、接收方法和设备 - Google Patents

一种天线信息的发送、接收方法和设备 Download PDF

Info

Publication number
WO2016029485A1
WO2016029485A1 PCT/CN2014/085642 CN2014085642W WO2016029485A1 WO 2016029485 A1 WO2016029485 A1 WO 2016029485A1 CN 2014085642 W CN2014085642 W CN 2014085642W WO 2016029485 A1 WO2016029485 A1 WO 2016029485A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
antenna information
base station
information
antenna
Prior art date
Application number
PCT/CN2014/085642
Other languages
English (en)
French (fr)
Inventor
吴晔
毕晓艳
乔德礼
陈大庚
余荣道
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480050863.8A priority Critical patent/CN105580466B/zh
Priority to EP14901006.8A priority patent/EP3179796B1/en
Priority to CN201911152302.XA priority patent/CN110890906B/zh
Priority to PCT/CN2014/085642 priority patent/WO2016029485A1/zh
Publication of WO2016029485A1 publication Critical patent/WO2016029485A1/zh
Priority to US15/445,575 priority patent/US10299111B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • H04B7/0693Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and a device for transmitting and receiving antenna information.
  • the first generation communication system adopts analog technology and frequency division multiple access technology to realize mobile two-way communication.
  • the second generation communication system uses digital time division multiple access technology and code division multiple access technology to improve the call quality and implementation of the first generation communication system.
  • Low-speed data transmission; the accompanying third-generation communication system and the fourth-generation communication system not only improve the call quality of voice services, but also improve the data transmission speed.
  • multiple input and multiple output (English: Multiple-Input and Multiple-Output; MIMO) technology is used.
  • An essential feature of MIMO technology is the use of multiple transmit antennas and multiple receive antennas.
  • the MIMO technology treats multipath wireless communication as a whole by transmitting and receiving.
  • One way is to increase the spatial dimension of data multiplexing, so that multiple copies of data space are multiplexed to the same time-frequency resource; Yes: Send the same data on multiple transmit antennas and/or receive the same data with multiple receive antennas to obtain control diversity gain.
  • the MIMO technology increases the channel capacity without increasing the bandwidth, thereby achieving high communication capacity and high spectrum resource utilization.
  • the channel capacity increases linearly with the increase of the number of antennas.
  • the number of antennas configured in the terminal device is also increased from the original one antenna to four antennas, or even more. Then, since the terminal device side also uses multiple antennas for data transmission or reception, not only when estimating the number of channels used for transmitting data, but also calculating complexity compared to single input and output (English: Single Input Single Output; abbreviation: SISO)
  • SISO Single Input Single Output
  • an embodiment of the present invention provides a method and a device for transmitting and receiving antenna information, which are used to solve the problem of how to acquire antenna information of a terminal device in time.
  • a device for transmitting antenna information including:
  • An acquiring module configured to acquire first antenna information, where the first antenna information includes a maximum uplink number supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports at least one of the switching antennas;
  • a sending module configured to send the first antenna information to the base station, where the first antenna information is used to enable the base station to determine a transmission resource used for communication with the terminal device.
  • the sending device further includes:
  • the receiving module is configured to receive the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information
  • the acquiring module is further configured to acquire, by the terminal device, the transmission information, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the sending module is further configured to send the transmission information to a base station.
  • the sending module is specifically configured to send radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • the sending module is specifically configured to use physical uplink
  • the channel PUSCH transmits the first antenna information to the base station.
  • the sending module is specifically configured to send the first antenna information to the base station by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the acquiring module is further configured to: when the first antenna information changes, acquire the changed second antenna information;
  • the sending module is further configured to send the second antenna information to the base station.
  • the sending device further includes:
  • an update message sending module configured to send an update message to the base station when the first antenna information changes before sending the second antenna information to the base station, where the update message is used for The base station informs the antenna device that the antenna information changes.
  • the second antenna information includes The number of antennas after the change
  • the sending module is specifically configured to send a random access request to the base station, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas;
  • the changed number of antennas is transmitted to the base station through a physical uplink shared channel PUSCH according to a setting manner.
  • the sending device is a terminal device.
  • a receiving device for antenna information including:
  • a receiving module configured to receive first antenna information that is sent by the terminal device, where the first antenna information includes a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switch antenna. at least one;
  • a determining module configured to determine, according to the received first antenna information, a transmission resource used for communication with the terminal device
  • a communication module configured to communicate with the terminal device by using the transmission resource.
  • the receiving device further includes:
  • the sending module is configured to send a capability query message to the terminal device, where the capability query message is used to request the terminal device to report the capability information that includes the first antenna information.
  • the capability information further includes transmission information of the terminal device
  • the receiving module is further configured to receive the transmission information sent by the terminal device, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the receiving module is specifically configured to receive radio resource control RRC signaling sent by the terminal device, where the RRC signaling carries the first antenna information.
  • the receiving module is specifically configured to receive, by using a physical uplink shared channel, a PUSCH, first antenna information that is sent by the terminal device.
  • the receiving module is specifically configured to receive a random access request sent by the terminal device, and obtain the first antenna information sent by the terminal device by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the receiving module is further configured to receive second antenna information that is sent by the terminal device, where the second antenna information is sent when the first antenna information of the terminal device changes.
  • the receiving module is specifically configured to receive update information sent by a terminal device, where the update information is used to Notifying the base station that the antenna information of the terminal device changes;
  • the sending module is further configured to send a capability query message to the terminal device.
  • the second antenna information includes The number of antennas after the change
  • the receiving module is specifically configured to receive a random access request sent by the terminal device, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence
  • the random access sequence is determined according to the changed number of antennas
  • the number of changed antennas transmitted by the terminal device is received through the physical uplink shared channel PUSCH.
  • a device for transmitting antenna information including:
  • a processor configured to acquire first antenna information, where the first antenna information includes a maximum uplink number supported by the terminal device, an antenna number supported by the terminal device, and whether the terminal device supports at least one of the switch antennas;
  • a signal transmitter configured to send the first antenna information to a base station, where the first antenna information is used to enable the base station to determine a transmission resource used for communication with the terminal device.
  • the sending device further includes:
  • the signal receiver is configured to receive the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information
  • the processor is further configured to acquire transmission information, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer number;
  • the signal transmitter is further configured to send the transmission information to a base station.
  • the signal transmitter is specifically configured to send radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • the signal transmitter is specifically configured to send the first antenna information to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the signal transmitter is specifically configured to pass physical random
  • the access channel PRACH sends the first antenna information to the base station.
  • the processor is further configured to: when the first antenna information changes, acquire the changed second antenna information;
  • the signal transmitter is further configured to send the second antenna information to the base station.
  • the signal transmitter is further configured to: before sending the second antenna information to the base station, And when the first antenna information changes, sending an update message to the base station, where the update message is used to notify the base station that the antenna information of the terminal device changes.
  • the second antenna information includes The number of antennas after the change
  • the signal transmitter is specifically configured to send a random access request to the base station, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas;
  • the changed number of antennas is transmitted to the base station through a physical uplink shared channel PUSCH according to a setting manner.
  • the sending device is a terminal device.
  • a device for receiving antenna information including:
  • a signal receiver configured to receive first antenna information that is sent by the terminal device, where the first antenna information includes a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switch antenna. At least one;
  • a processor configured to determine, according to the received first antenna information, a transmission resource used for communication with the terminal device, and communicate with the terminal device by using the transmission resource.
  • the receiving device further includes: a signal sending module, where:
  • the signal sending module is configured to send a capability query message to the terminal device, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information of the terminal device
  • the signal receiver is further configured to receive the transmission information sent by the terminal device, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the signal receiver is specifically configured to receive radio resource control RRC signaling sent by the terminal device, where the RRC signaling carries the first antenna information.
  • the signal receiver is specifically configured to receive, by using a physical uplink shared channel, a PUSCH, first antenna information that is sent by the terminal device.
  • the signal receiver is specifically configured to receive a random transmission by the terminal device.
  • the access request acquires the first antenna information sent by the terminal device by using the physical random access channel PRACH.
  • the signal receiver is further configured to receive second antenna information that is sent by the terminal device, where the second antenna information is sent when the first antenna information of the terminal device changes.
  • the signal receiver is further configured to receive update information sent by the terminal device, where the update information is used by Notifying the base station that the antenna information of the terminal device changes;
  • the second antenna information includes The number of antennas after the change
  • the signal receiver is specifically configured to receive a random access request sent by the terminal device, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence
  • the random access sequence is determined according to the changed number of antennas
  • the number of changed antennas transmitted by the terminal device is received through the physical uplink shared channel PUSCH.
  • a method for transmitting antenna information including:
  • the terminal device acquires the first antenna information, where the first antenna information includes a maximum uplink number supported by the terminal device, an antenna number supported by the terminal device, and whether the terminal device supports at least one of the switch antennas;
  • the terminal device sends the first antenna information to a base station, where the first antenna information is used to enable the base station to determine a transmission resource used for communication with the terminal device.
  • the method further includes:
  • the terminal device receives the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information
  • the method further includes:
  • the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer number;
  • the terminal device sends the transmission information to a base station.
  • the sending, by the terminal device, the first antenna information to a base station includes:
  • the terminal device sends radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • the sending, by the terminal device, the first antenna information to a base station includes:
  • the terminal device sends the first antenna information to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the terminal device sends the first antenna signal to a base station.
  • Interest including:
  • the terminal device sends the first antenna information to the base station by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the method further includes:
  • the terminal device acquires the changed second antenna information; and sends the second antenna information to the base station.
  • the method before the sending the second antenna information to the base station, the method further includes:
  • the terminal device sends an update message to the base station, where the update message is used to notify the base station that the antenna information of the terminal device changes.
  • the second antenna information includes The number of antennas after the change
  • the terminal device sends a random access to the base station, where the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas;
  • the changed number of antennas is transmitted to the base station through a physical uplink shared channel PUSCH according to a setting manner.
  • a method for receiving antenna information including:
  • first antenna information sent by the terminal device, where the first antenna information includes the The maximum number of upstream streams supported by the terminal device, the number of antennas supported by the terminal device, and whether the terminal device supports at least one of the switching antennas;
  • the method further includes:
  • the capability information further includes transmission information of the terminal device
  • the method further includes:
  • the terminal device And receiving, by the terminal device, the transmission information, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the receiving, by the base station, the first antenna information sent by the terminal device includes:
  • the receiving, by the base station, the first antenna information sent by the terminal device includes:
  • the first antenna information sent by the terminal device is received through the physical uplink shared channel PUSCH.
  • the receiving, by the base station, the first antenna information sent by the terminal device includes:
  • the receiving the random access request sent by the terminal device and acquiring the first antenna information sent by the terminal device by using the physical random access channel PRACH.
  • the method further includes:
  • the second antenna information that is sent by the receiving terminal device includes:
  • the second antenna information includes The number of antennas after the change
  • the second antenna information sent by the receiving terminal device includes:
  • the random access includes a random access sequence
  • the random access sequence is determined according to the changed number of antennas
  • the number of changed antennas transmitted by the terminal device is received through the physical uplink shared channel PUSCH.
  • the embodiment of the present invention obtains the first antenna information of the terminal device, where the first antenna information is used to represent the current capability of the terminal device to use the antenna, where the first antenna information includes at least The maximum number of uplinks supported by the terminal device, the number of antennas supported by the terminal device, and whether the terminal device supports one or more of the switching antennas; and transmitting the first antenna information to the base station, so that the terminal device can be based on its own service. It is necessary to control the antenna deployed by itself and report its antenna information to the base station in time. On the one hand, the terminal device adaptively adjusts the number of antennas used, which effectively improves the power consumption of the terminal device caused by the increase in the number of antennas.
  • the problem of strong electromagnetic radiation on the other hand, enabling the base station to acquire the antenna information of the terminal device in time, and determining the channel quality between the base station and the terminal device according to the antenna information of the terminal device, and reasonably arranging the communication service scheduling channel initiated by the terminal device Resources improve the communication capability between the terminal device and the base station.
  • FIG. 1 is a schematic structural diagram of a system for transmitting and receiving antenna information according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a method for transmitting antenna information according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic flowchart diagram of a method for receiving antenna information according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus for transmitting antenna information according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a device for receiving antenna information according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting antenna information according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for receiving antenna information according to Embodiment 7 of the present invention.
  • an embodiment of the present invention provides a method and a device for transmitting and receiving antenna information, which acquires first antenna information of a terminal device, where the first antenna information includes a maximum uplink supported by the terminal device. Number, number of antennas supported by the terminal device, and whether the terminal device Supporting at least one of the switching antennas; and transmitting the first antenna information to the base station, so that the terminal device can control the antenna deployed by itself according to the needs of the service, and report the antenna information to the base station in time.
  • the terminal device adaptively adjusts the number of antennas used, effectively improving the power consumption of the terminal device due to the increase in the number of antennas and the problem of strong electromagnetic radiation, and on the other hand, enabling the base station to acquire the antenna information of the terminal device in time, and According to the antenna information of the terminal device, the channel quality between the base station and the terminal device is determined, and the channel resource is reasonably allocated for the communication service initiated by the terminal device, thereby improving the communication capability between the terminal device and the base station.
  • the terminal device may be a wireless terminal or a wired terminal, and the wireless terminal may be a communication device providing voice service and/or data service, a handheld device having a wireless connection function, a wearable device or a connection to a wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (English: Radio Access Network; RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has
  • RAN Radio Access Network
  • the computer of the mobile terminal for example, may be a portable, pocket, handheld, wearable, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal can also be called a system, a subscriber unit (English: Subscriber Unit; abbreviation: SU), a subscriber station (English: Subscriber Station; abbreviation: SS), a mobile station (English: Mobile Station; abbreviation: MB), a mobile station ( Mobile), remote station (English: Remote Station; abbreviation: RS), access point (English: Access Point; abbreviation: AP), remote terminal (English: Remote Terminal; abbreviation: RT), access terminal (English: Access Terminal; abbreviation: AT), user terminal (English: User Terminal; abbreviation: UT), user agent (English: User Agent; abbreviation: UA), terminal device (English: User Device; abbreviation: UD), or user equipment ( English: User Equipment; abbreviation: UE).
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame and the IP packet into each other as a router between the wireless terminal and the rest of the access network, wherein the rest of the access network can include an internet protocol (English: Internetwork Protocol; abbreviation: IP) network.
  • IP internet protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station in GSM or CDMA (English: Base Transceiver Station; abbreviation: BTS), may also be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e- NodeB, evolutional Node B), this application is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Long Term Evolution
  • LTE NodeB or eNB or e- NodeB, evolutional Node B
  • system and “network” are used interchangeably herein throughout this application.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the terminal device cannot send antenna information to the base station.
  • the base station does not know the current antenna information of the terminal device when scheduling the terminal device.
  • the scheduling resources are not well configured for the terminal device, so that the communication quality between the base station and the terminal device is good.
  • the base station needs to acquire the antenna information of the base station, and determine the resources for communication with the terminal device according to the antenna information, so that the communication service scheduling initiated by the terminal device is reasonably made.
  • the channel resources improve the communication capability between the terminal device and the base station.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic structural diagram of a system for transmitting and receiving antenna information according to Embodiment 1 of the present invention.
  • the system includes a terminal device 11 and a base station 12, and the terminal device 11 and the base station 12 are wirelessly connected.
  • the terminal device 11 is configured to acquire antenna information of the terminal device, and send the antenna information to the base station 12.
  • the antenna information is used to describe a situation in which the terminal device currently uses an antenna.
  • the antenna information includes at least one of a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports switching antenna information or the like.
  • the terminal device 11 obtains the maximum number of layers for the uplink spatial multiplexing (English: Maximum number of Layers for uplink spatial multiplexing).
  • the maximum number of upstream flows supported is different.
  • the maximum number of upstream flows supported by the terminal device may be 1, 2, 4, 8, or 16.
  • the maximum number of upstream flows supported by the terminal device is obtained according to the number of deployed antennas and the parameters of the deployed antenna.
  • the terminal device 11 determines the number of supported antennas (English: antenna number). For different terminal devices, the number of supported antennas is different. For example, the number of antennas supported by the terminal device may be less than 8 antennas, and greater than or equal to 8 antennas but less than 16 Root antenna, 16 antennas or more.
  • the number of supported antennas varies depending on the configuration performance of the terminal device.
  • the number of supported antennas can be determined.
  • the terminal device 11 determines whether a switch antenna (English: Smart Switch on/off of UE's antenna ports) is supported.
  • some terminal devices support switching antenna information, and some do not support switching antenna information.
  • the terminal device can determine whether to support switching antenna information by using identification information, for example, 1 indicates Support switch antenna information, 0 means that switch antenna information is not supported.
  • the base station 12 is configured to receive antenna information sent by the terminal device 11 , determine, according to the antenna information, a transmission resource that communicates with the terminal device, and utilize the transmission resource and the terminal. Communication between end devices.
  • the antenna information is used to describe a situation in which the terminal device currently uses an antenna.
  • the terminal device 11 is configured with N antennas (where N is an integer and the value is greater than 1), and the terminal device 11 transmits data and receives data using the N antennas.
  • the base station 12 is configured with M antennas (where M is an integer and the value is greater than 1), and the base station 12 uses the M antennas to communicate with one or more terminal devices 11.
  • the terminal device 11 includes an antenna module 111, an antenna information management module 112, and an antenna information reporting module 113.
  • the antenna module 111 includes an antenna port that is turned on or off by the terminal device, and stores parameter values such as a frequency band supported by each antenna that is turned on, a standing wave ratio, and isolation between different antennas that are in an open state.
  • the terminal device can trigger the antenna port to be turned on or off according to the service requirement, thereby controlling the number of antennas used by the terminal.
  • the antenna information management module 112 is configured to manage antenna information of the terminal device.
  • the antenna information management module 112 reads the antenna information of the terminal device from the antenna module 111; or, when the antenna information of the terminal device in the antenna module 111 changes, triggers the transmission of the changed antenna information to the antenna information management module 112.
  • the antenna information is used to represent information about the current terminal device using the antenna, and specifically includes the number of currently enabled antennas, the frequency band supported by the antenna in the on state, the standing wave ratio, and the isolation between different antennas in the open state. One or more.
  • the antenna information management module obtains the antenna information of the terminal device from the antenna module, which may occur in real time, may occur periodically, or may occur when receiving an antenna information query message sent by the base station or received.
  • a terminal information inquiry message is sent to the base station, it is not limited here.
  • the antenna information reporting module 113 is configured to report the antenna information of the terminal device acquired by the antenna information management 112 module to the base station.
  • the antenna information reporting module 113 acquires the terminal device acquired by the antenna information management module.
  • the manner in which the antenna information is reported to the base station includes one or more of the following methods:
  • the antenna information reporting module 113 carries the antenna information of the terminal device acquired by the antenna information management module in a radio resource control (English: Radio Resource Control; abbreviation: RRC) signaling, and sends the information to the base station;
  • a radio resource control English: Radio Resource Control; abbreviation: RRC
  • the antenna information reporting module 113 transmits the antenna information of the terminal device acquired by the antenna information management module to the base station through a physical uplink shared channel (English: Physical Uplink Shared Channel; abbreviated: PUSCH);
  • PUSCH Physical Uplink Shared Channel
  • the antenna information reporting module 113 transmits the antenna information of the terminal device acquired by the antenna information management module to the base station by using the physical random access channel.
  • the antenna information reporting module 113 reports the antenna information of the terminal device acquired by the antenna information management module to the base station, and may be sent to the base station when the antenna information management module acquires the antenna information of the terminal device, or may be received.
  • the antenna information management module may be configured to trigger the antenna information reporting module to send to the base station when the antenna information of the terminal device changes, which is not specifically limited herein.
  • the antenna information management module 112 is further configured to acquire, from the antenna module 111, current antenna information of the terminal device.
  • the antenna information reporting module 113 is configured to send current antenna information to the base station.
  • the antenna information reporting module 113 is configured to: when the antenna information management module 112 determines that the antenna information of the terminal device changes, the triggering antenna information reporting module 113 sends the antenna information update information to the base station.
  • the antenna information update information is used to notify that the antenna information of the terminal device changes.
  • the terminal device 11 further includes a receiving module 114, wherein:
  • the receiving module 114 is configured to receive the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information, where the capability information includes antenna information of the terminal device.
  • the capability information further includes transmission information of the terminal device, where the The transmission information is used to represent information used by the terminal device to transmit data, where the transmission information includes at least one of uplink and downlink peak rate, uplink and downlink maximum modulation order, and maximum downlink multiplexing layer number.
  • the transmission information is used to represent information used by the terminal device to transmit data, where the transmission information includes at least one of uplink and downlink peak rate, uplink and downlink maximum modulation order, and maximum downlink multiplexing layer number.
  • the transmission information includes at least one or more of the following information:
  • Downstream peak rate (English: Downlink Peak Rate);
  • Uplink Peak Rate (English: Uplink Peak Rate);
  • the antenna information reporting module 113 is specifically configured to send the changed antenna information to the base station according to the capability query message.
  • the antenna information reporting module 113 is specifically configured to send the number of changed antennas to the base station.
  • the manner in which the antenna information reporting module 113 sends the changed number of antennas to the base station includes but is not limited to:
  • the number of changed antennas is channel coded and interleaved according to the setting manner, and then transmitted to the base station through the physical uplink shared channel PUSCH.
  • the base station 12 includes a receiving module 121, a demodulation module 122, a terminal capability management module 123, and a scheduling module 124.
  • the receiving module 121 is configured to receive antenna information sent by the terminal device.
  • the manner in which the receiving module 121 receives the antenna information sent by the terminal device includes but is not limited to:
  • the first mode is to receive the RRC signaling sent by the terminal device, where the RRC signaling carries the antenna information.
  • the second mode is: receiving a PUSCH sent by the terminal device, where the PUSCH carries antenna information.
  • the third mode is: receiving a random access request sent by the terminal device, where the random access request carries the antenna information and is sent through a physical random access channel.
  • the demodulation module 122 is configured to parse the received antenna information, determine the current antenna information of the terminal device, and save the parsed current antenna information in the terminal capability management module 123.
  • the scheduling module 124 is configured to acquire current antenna information of the terminal device from the terminal capability management module 123, and determine a transmission resource for communication with the terminal device, and communicate with the terminal device by using the transmission resource. .
  • the base station further includes: a sending module 125, where:
  • the sending module 125 is configured to send a capability query message to the terminal device.
  • the receiving module 121 is further configured to receive the changed antenna information sent by the terminal device, where the changed antenna information is sent by the terminal device when determining that the antenna information changes.
  • the receiving module 121 is specifically configured to receive antenna information update information sent by the terminal device, where the antenna information update information is used to notify the base station that the antenna information changes.
  • the sending module 125 is further configured to query information about antenna information sent to the terminal device.
  • the receiving module 121 is specifically configured to receive the changed antenna information sent by the terminal device.
  • the manner in which the receiving module 121 receives the changed antenna information sent by the terminal device includes:
  • the base station and the terminal device can establish a correspondence between the random access sequence and the number of antennas in advance through negotiation.
  • the terminal device initiates a random access request to the base station device, where the random access request includes a random access sequence corresponding to the number of antennas A, and the base station receives the random transmission sent by the terminal device.
  • the access sequence After the access sequence is obtained, the number of antennas after the terminal change can be determined according to the random access sequence.
  • the terminal device acquires the first antenna information of the terminal, and sends the first antenna information to the base station, where the first antenna information includes at least the maximum uplink supported by the terminal device.
  • the number of streams, the number of antennas supported by the terminal device, and whether the terminal device supports one or more of the switching antennas, and when receiving the antenna information the base station determines channel resources for communication with the terminal device according to the antenna information, and The terminal device can communicate with the base station by using the determined channel resource, so that the terminal device can control the antenna deployed by the terminal device according to the needs of the service, and report the antenna information to the base station in time.
  • the terminal device adaptively adjusts the use of the antenna.
  • the base station can acquire the antenna information of the terminal device in time, and determine the base station according to the antenna information of the terminal device.
  • the channel quality between terminal devices is reasonable for the terminal Initiated traffic scheduling channel resources to improve the communication capabilities between the terminal and the base station.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic flowchart diagram of a method for transmitting antenna information according to Embodiment 2 of the present invention.
  • the method can be as follows.
  • Step 201 The terminal device receives a capability query message sent by the base station.
  • the capability query message is used to request the terminal device to report the antenna information and the transmission information of the terminal.
  • the antenna information includes at least one of a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switching antenna.
  • the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer number.
  • the transmission information includes at least one or more of the following information:
  • Downstream peak rate (English: Downlink Peak Rate);
  • Uplink Peak Rate (English: Uplink Peak Rate);
  • Step 202 The terminal device acquires first antenna information.
  • the first antenna information is used to represent information about the current use of the antenna by the terminal device.
  • the first antenna information includes at least one of a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switching antenna.
  • the first antenna information is used to cause the base station to determine a transmission resource used for communication with the terminal device.
  • the terminal device obtains the Maximum number of Layers for uplink spatial multiplexing from the antenna module in the terminal device.
  • the maximum number of upstream streams supported by different terminal devices is different.
  • the maximum number of upstream flows supported by the terminal device may be 1, 2, 4, 8, 16, or the like.
  • the terminal device obtains the number of antennas supported by the antenna module in the terminal device (English: antenna number). For different terminal devices, the number of supported antennas is different. For example, the number of antennas supported by the terminal device may be less than 8 antennas. More than or equal to 8 antennas but less than 16 antennas, 16 antennas or more.
  • the terminal device obtains the switch antenna information from the antenna module in the terminal device (English: Smart Switch on/off of UE's antenna ports). For different terminal devices, some terminal devices support switch antenna information, and some do not support When the antenna information is switched, the terminal device can determine whether to support the switch antenna information by using the identifier information, for example, 1 indicates that the switch antenna information is supported, and 0 indicates that the switch antenna information is not supported.
  • the maximum number of uplinks supported by the terminal device, the number of antennas supported by the terminal device, and whether the terminal device supports the switch antenna may be stored in the antenna module of the terminal device during the initialization phase of the terminal device.
  • the first antenna information includes at least one of a current number of open antennas, a frequency band supported by an antenna in an open state, a standing wave ratio, and isolation between different antennas in an open state.
  • the terminal device obtains antenna information from the antenna module inside the terminal device, including but not limited to one or more of the following:
  • the standing wave ratio (English: Standing Wave Ratio; abbreviation: SWR) indicates the index of the degree of matching between the antenna feeder and the base station.
  • step 201 and step 202 are not limited to the sequence described in the second embodiment of the present invention. Step 201 may be performed before step 201 or step 201 and step 202 may be performed at the same time.
  • step 201 may also be implemented after step 203.
  • Step 203 The terminal device sends the first antenna information to the base station.
  • step 203 the manner in which the terminal device sends the first antenna information to the base station includes but is not limited to the following manners:
  • the terminal device sends radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • Manner 2 The terminal device sends the first antenna information to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • Manner 3 The terminal device sends the first antenna information to the base station by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • Step 204 The terminal device acquires second antenna information when the first antenna information changes.
  • Step 205 The terminal device sends the second antenna information to the base station.
  • step 205 when the first antenna information of the terminal device changes, the terminal device sends an update message to the base station.
  • the update message is used to notify the base station that the antenna information of the terminal device changes.
  • the terminal device receives the capability query message sent by the base station.
  • the terminal device sends the second antenna information to the base station.
  • the second antenna information includes the changed number of antennas
  • the manner in which the terminal device sends the second antenna information to the base station includes but is not limited to:
  • Manner 1 The terminal device sends a random access request to the base station, where the random access request carries the changed number of antennas.
  • Manner 2 The terminal device sends a random access to the base station, where the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas.
  • the terminal device and the base station negotiate or the base station configures a correspondence between the random access sequence and the open antenna value for the terminal device according to requirements
  • the terminal device determines that the number of antennas changes, the number of the changed antennas is utilized. Determining a random access sequence, and using the random access sequence to initiate random access to the base station, so that the base station can determine the number of antennas after the terminal device changes according to the received random access sequence.
  • Manner 3 The changed number of antennas is sent to the base station through a physical uplink shared channel (PUSCH) according to a setting manner.
  • PUSCH physical uplink shared channel
  • the terminal device performs channel coding on the uplink transmission data and the Cyclic Redundancy Check (English: Cyclic Redundancy Check; CRC), and passes the channel changed data through punching or filling. Rate matching is performed to obtain the number of bits that match the physical channel.
  • CRC Cyclic Redundancy Check
  • channel coding includes, but is not limited to, using a convolutional code method, a low density parity check code (English: Low Density Parity Check; abbreviation: LDPC), and the like.
  • the terminal device converts the changed number of antennas into a binary number, and performs channel coding on the binary number to obtain a bit corresponding to the changed number of antennas.
  • channel coding the binary number includes, but is not limited to, using a convolutional code method, employing a linear coding method, and the like.
  • the number of open antennas of a terminal device typically includes 1, 2, 4, 8, 12, 16, etc., if a binary digit of 5 digits is used: 00001 indicates that 1 antenna is turned on; 00010 indicates that 2 antennas are turned on; and 00100 indicates that 4 is turned on. Root antenna; 01000 means to open 8 antennas; 01100 means to turn on 12 antennas; 10000 means to turn on 16 antennas.
  • the terminal device multiplexes the bits obtained by matching the uplink data rate with the bits corresponding to the changed number of antennas, and performs channel interleaving on the multiplexed bits.
  • the terminal device sends the channel interleaving result to the base station through the PUSCH.
  • the first antenna information of the terminal device is obtained by using the solution of the second embodiment of the present invention, where the first antenna information includes at least the maximum number of uplinks supported by the terminal device, the number of antennas supported by the terminal device, and whether the terminal device supports Transmitting one or more of the antennas; and transmitting the first antenna information to the base station, so that the terminal device can control the antenna deployed by the terminal device according to its own service requirements, and report its antenna information to the base station in time.
  • the terminal device adaptively adjusts the number of antennas used, effectively improving the power consumption of the terminal device due to the increase in the number of antennas and the problem of strong electromagnetic radiation, and on the other hand, enabling the base station to acquire the antenna information of the terminal device in time. And determining the channel quality between the base station and the terminal device according to the antenna information of the terminal device, and reasonably scheduling the channel resource for the communication service initiated by the terminal device, thereby improving the communication capability between the terminal device and the base station.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 3 is a schematic flowchart diagram of a method for receiving antenna information according to Embodiment 3 of the present invention.
  • the method can be as follows.
  • Step 301 The base station sends a capability query message to the terminal device.
  • the capability query message is used to request the terminal device to report capability information including the first antenna information and the transmission information.
  • the transmission information is used to represent information that is used by the terminal device to transmit data, where the information includes at least an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the information includes at least an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the transmission information includes at least one or more of the following information:
  • Downstream peak rate (English: Downlink Peak Rate);
  • Uplink Peak Rate (English: Uplink Peak Rate);
  • Step 302 The base station receives the first antenna information sent by the terminal device.
  • the antenna information is used to represent information about the current use of the antenna by the terminal device.
  • the antenna information includes at least one of a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports switching antenna information.
  • the antenna information includes at least one of a current number of open antennas, a frequency band supported by an antenna in an open state, and an isolation between a standing wave ratio and different antennas in an open state.
  • step 302 the manner in which the base station receives the antenna information sent by the terminal device includes but is not limited to:
  • Manner 1 Receive radio resource control RRC signaling sent by the terminal device, where the RRC signaling carries the first antenna information.
  • Manner 2 The first antenna information sent by the terminal device is received by using the physical uplink shared channel PUSCH.
  • Manner 3 The receiving the random access request sent by the terminal device, and acquiring the first antenna information sent by the terminal device by using the physical random access channel PRACH.
  • the method further includes:
  • the second antenna information is sent when the first antenna information of the terminal device changes.
  • the update information sent by the terminal device is received.
  • the update information is used to notify the base station that the antenna information of the terminal device changes.
  • a capability query message sent by the base station to the terminal device; and receiving second antenna information sent by the terminal device.
  • the manner in which the base station receives the second antenna information sent by the terminal device includes but is not limited to:
  • Manner 1 receiving a random access request sent by the terminal device, where the random access request carries the changed number of antennas;
  • Manner 2 receiving a random access sequence sent by the terminal device, and determining, according to a preset correspondence between the random access sequence and the number of antennas, the number of antennas that are changed by the terminal device corresponding to the received random sequence;
  • Manner 3 The number of changed antennas sent by the terminal device is received through the physical uplink shared channel PUSCH.
  • the base station receives the transmission information of the terminal device that is sent by the terminal device.
  • Step 303 The base station determines, according to the first antenna information, a transmission resource that performs communication with the terminal device.
  • Step 304 The base station uses the transmission resource to communicate with the terminal device.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 4 is a schematic structural diagram of a device for transmitting antenna information according to Embodiment 4 of the present invention.
  • the device includes: an obtaining module 41 and a sending module 42, wherein:
  • the obtaining module 41 is configured to acquire first antenna information, where the first antenna information includes a maximum uplink number supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports at least one of the switching antennas;
  • the sending module 42 is configured to send the first antenna information to the base station, where the first antenna information is used to enable the base station to determine a transmission resource used for communication with the terminal device.
  • the sending device further includes: a receiving module 43, where:
  • the receiving module 43 is configured to receive the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information
  • the acquiring module 41 is further configured to acquire, by the terminal device, the transmission information, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the sending module 42 is further configured to send the transmission information to a base station.
  • the sending module 42 is specifically configured to send radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • the sending module 42 is specifically configured to send the first antenna information to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the sending module 42 is specifically configured to send the first antenna information to the base station by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the acquiring module 41 is further configured to: when the first antenna information changes, acquire the changed second antenna information;
  • the sending module 42 is further configured to send the second antenna information to the base station.
  • the sending device further includes: an update message sending module 44, where:
  • An update message sending module 44 configured to send an update message to the base station when the first antenna information changes before sending the second antenna information to the base station, where the update message is used to send The base station informs the antenna device of the terminal device to change.
  • the second antenna information includes a changed number of antennas
  • the sending module 42 is specifically configured to send a random access request to the base station, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas;
  • the changed number of antennas is transmitted to the base station through a physical uplink shared channel PUSCH according to a setting manner.
  • the sending device in the fourth embodiment of the present invention may be a terminal device.
  • the terminal device can control the antenna deployed by itself according to its own service requirements, and report its antenna information to the base station in time.
  • the terminal device adaptively adjusts the number of antennas used, which effectively improves the number of antennas.
  • the terminal device consumes a large amount of power and has a strong electromagnetic radiation problem.
  • the base station can acquire the antenna information of the terminal device in time, and determine the channel quality between the base station and the terminal device according to the antenna information of the terminal device, which is reasonably a terminal device.
  • the initiated communication service schedules channel resources, which improves the communication capability between the terminal device and the base station.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the receiving device includes: a receiving module 51, a determining module 52, and a communication module 53, wherein:
  • the receiving module 51 is configured to receive first antenna information that is sent by the terminal device, where the first antenna information includes a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switch antenna. At least one;
  • a determining module 52 configured to determine, according to the received first antenna information, a transmission resource used for communication with the terminal device;
  • the communication module 53 is configured to communicate with the terminal device by using the transmission resource.
  • the receiving device further includes: a sending module 54, where:
  • the sending module 54 is configured to send a capability query message to the terminal device, where the capability query message is used to request the terminal device to report the capability information that includes the first antenna information.
  • the capability information further includes transmission information of the terminal device
  • the receiving module 51 is further configured to receive the transmission information sent by the terminal device, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the receiving module 51 is specifically configured to receive radio resource control RRC signaling sent by the terminal device, where the RRC signaling carries the first antenna information.
  • the receiving module 51 is specifically configured to receive, by using a physical uplink shared channel, a PUSCH, first antenna information that is sent by the terminal device.
  • the receiving module 51 is specifically configured to receive a random access request sent by the terminal device, and acquire the first antenna information sent by the terminal device by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the receiving module 51 is further configured to receive second antenna information that is sent by the terminal device, where the second antenna information is sent when the first antenna information of the terminal device changes.
  • the receiving module 51 is specifically configured to receive update information sent by the terminal device, where the update information is used to notify the base station that the antenna information of the terminal device changes;
  • the sending module is further configured to send a capability query message to the terminal device.
  • the second antenna information includes the number of changed antennas
  • the receiving module 51 is specifically configured to receive a random access request sent by the terminal device, where the random access request carries the changed number of antennas; or
  • the random access includes a random access sequence
  • the random access sequence is determined according to the changed number of antennas
  • the number of changed antennas transmitted by the terminal device is received through the physical uplink shared channel PUSCH.
  • the sending device in the fourth embodiment of the present invention may be a base station device.
  • FIG. 6 is a schematic structural diagram of a device for transmitting antenna information according to Embodiment 6 of the present invention.
  • the transmitting device is provided with the functions of the first embodiment of the present invention to the third embodiment of the present invention.
  • the transmitting device may adopt a general computer system structure, and the computer system may be a processor-based computer.
  • the transmitting device entity comprises a signal transmitter 61, a signal receiver 62 and at least one processor 63, and the signal transmitter 61, the signal receiver 62 and the at least one processor 63 are connected by a bus 64.
  • Processor 63 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 63 is configured to acquire first antenna information, where the first antenna information includes a maximum uplink number supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports at least one of the switch antennas.
  • the signal transmitter 61 is configured to send the first antenna information to a base station, where the first antenna information is used to enable the base station to determine a transmission resource used for communication with the terminal device.
  • the signal receiver 62 is configured to receive the capability query message sent by the base station, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information
  • the processor 63 is further configured to acquire transmission information, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer number;
  • the signal transmitter 61 is further configured to send the transmission information to a base station.
  • the signal transmitter 61 is specifically configured to send radio resource control RRC signaling to the base station, where the RRC signaling carries the first antenna information.
  • the signal transmitter 61 is specifically configured to send the first antenna information to the base station by using a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the signal transmitter 61 is specifically configured to send the first antenna information to the base station by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the processor 63 is further configured to: when the first antenna information changes, acquire the changed second antenna information;
  • the signal transmitter 61 is further configured to send the second antenna information to the base station.
  • the signal transmitter 61 is further configured to send an update message to the base station when the first antenna information changes before sending the second antenna information to the base station, where the update message is used by the And notifying the base station that the antenna information of the terminal device changes.
  • the second antenna information includes a changed number of antennas
  • the signal transmitter 61 is specifically configured to send a random access request to the base station, where the random access request carries the changed number of antennas;
  • the random access includes a random access sequence, and the random access sequence is determined according to the changed number of antennas;
  • the changed number of antennas is transmitted to the base station through a physical uplink shared channel PUSCH according to a setting manner.
  • the sending device according to Embodiment 6 of the present invention may be a terminal device.
  • FIG. 7 is a schematic structural diagram of a device for receiving antenna information according to Embodiment 7 of the present invention, where the receiving device is configured to perform the functions of Embodiment 1 to Embodiment 3 of the present invention, and the receiving device may be configured.
  • a general purpose computer system architecture which may be a processor-based computer.
  • the receiving device entity includes a signal transmitter 71, a signal receiver 72 and at least one processor 73, and the signal transmitter 71, the signal receiver 72 and the at least one processor 73 pass between The bus 74 is connected.
  • the processor 73 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the signal receiver 72 is configured to receive first antenna information that is sent by the terminal device, where the first antenna information includes a maximum number of uplinks supported by the terminal device, a number of antennas supported by the terminal device, and whether the terminal device supports the switch antenna. At least one of them;
  • the processor 73 is configured to determine, according to the received first antenna information, a transmission resource used for communication with the terminal device, and communicate with the terminal device by using the transmission resource.
  • the receiving device further includes: a signal sending module 71, where:
  • the signal sending module 71 is configured to send a capability query message to the terminal device, where the capability query message is used to request the terminal device to report capability information including the first antenna information.
  • the capability information further includes transmission information of the terminal device
  • the signal receiver 72 is further configured to receive the transmission information sent by the terminal device, where the transmission information includes at least one of an uplink and downlink peak rate, an uplink and downlink maximum modulation order, and a maximum downlink multiplexing layer.
  • the signal receiver 72 is configured to receive radio resource control RRC signaling sent by the terminal device, where the RRC signaling carries the first antenna information.
  • the signal receiver 72 is configured to receive, by using a physical uplink shared channel, a PUSCH, first antenna information that is sent by the terminal device.
  • the signal receiver 72 is configured to receive a random access request sent by the terminal device, and obtain the first antenna information sent by the terminal device by using a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the signal receiver 72 is further configured to receive second antenna information that is sent by the terminal device, where the second antenna information is sent when the first antenna information of the terminal device changes.
  • the signal receiver 72 is further configured to receive update information sent by the terminal device, where the update information is used to notify the base station that the antenna information of the terminal device changes;
  • the second antenna information includes the number of changed antennas
  • the signal receiver 72 is specifically configured to receive a random access request sent by the terminal device, where the random access request carries the changed number of antennas; or
  • the random access includes a random access sequence
  • the random access sequence is determined according to the changed number of antennas
  • the number of changed antennas transmitted by the terminal device is received through the physical uplink shared channel PUSCH.
  • the sending device according to Embodiment 6 of the present invention may be a base station device.
  • the terminal device can control the antenna deployed by itself according to its own service requirements, and report its antenna information to the base station in time.
  • the terminal device adaptively adjusts the number of antennas used, which effectively improves the number of antennas.
  • the terminal device consumes a large amount of power and has a strong electromagnetic radiation problem.
  • the base station can acquire the antenna information of the terminal device in time, and determine the channel quality between the base station and the terminal device according to the antenna information of the terminal device, which is reasonably a terminal device.
  • the initiated communication service schedules channel resources, which improves the communication capability between the terminal device and the base station.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of the instruction device that implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种天线信息的发送、接收方法和设备,内容包括:获取终端设备的第一天线信息,所述第一天线信息中至少包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的一种或者多种;并将所述第一天线信息发送给基站,这样,终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。

Description

一种天线信息的发送、接收方法和设备 技术领域
本发明涉及无线通信技术领域,尤其涉及一种天线信息的发送、接收方法和设备。
背景技术
随着移动通信技术的发展,人们的生产与生活发生了巨大变化。第一代通信系统采用了模拟技术和频分多址技术实现了移动双向通话;第二代通信系统采用数字时分多址技术和码分多址技术改进了第一代通信系统的通话质量以及实现了低速数据传输;随之出现的第三代通信系统以及第四代通信系统不仅提升了语音业务的通话质量,而且改善了数据传输速度。
而在第三代通信系统以及第四代通信系统中,使用了多输入多输出(英文:Multiple-Input and Multiple-Output;缩写:MIMO)技术。
MIMO技术的基本特征是使用多个发射天线和多个接收天线。具体地,MIMO技术将多径无线通信与发射、接收视为一个整体,一种方式是:增加数据复用的空间维度,使得多份数据空间复用到相同的时频资源;另一种方式是:在多个发射天线上发送相同的数据和/或用多个接收天线接收相同的数据,获得控件分集增益。这样,MIMO技术在不增加带宽的情况下增加了信道容量,从而实现了高的通信容量和高的频谱资源利用率。
然而信道容量的随着天线数量的增加而线性增大,为了满足MIMO技术的要求,终端设备中配置的天线数量也由原来的1根天线增加至4根天线,甚至更多。那么由于终端设备侧也采用多根天线进行数据的发射或接收,不仅在估算用于传输数据的信道数时,相比于单输入输出(英文:Single Input Single Output;缩写:SISO)计算复杂度增加,而且由于终端设备侧天线数量的增加,随之增加了基站选择与终端设备进行数据传输的信道的复杂度,如何及时获取终端设备的天线信息成为亟需解决的问题。
发明内容
有鉴于此,本发明实施例提供了一种天线信息的发送、接收方法和设备,用于解决如何及时获取终端设备的天线信息的问题。
根据本发明的第一方面,提供了一种天线信息的发送设备,包括:
获取模块,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
发送模块,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
结合本发明的第一方面可能的实施方式,在第一种可能的实施方式中,所述发送设备还包括:
接收模块,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
结合本发明的第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息中还包括传输信息;
所述获取模块,还用于终端设备获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
所述发送模块,还用于向基站发送所述传输信息。
结合本发明的第一方面可能的实施方式,或者结合本发明的第一方面的第一种可能的实施方式,或者结合本发明的第一方面的第二种可能的实施方式,在第三种可能的实施方式中,所述发送模块,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第一方面可能的实施方式,或者结合本发明的第一方面的第一种可能的实施方式,或者结合本发明的第一方面的第二种可能的实施方式,在第四种可能的实施方式中,所述发送模块,具体用于通过物理上行共 享信道PUSCH向所述基站发送所述所述第一天线信息。
结合本发明的第一方面可能的实施方式,或者结合本发明的第一方面的第一种可能的实施方式,或者结合本发明的第一方面的第二种可能的实施方式,在第五种可能的实施方式中,所述发送模块,具体用于通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
结合本发明的第一方面可能的实施方式,或者结合本发明的第一方面的第一种可能的实施方式,或者结合本发明的第一方面的第二种可能的实施方式,或者结合本发明的第一方面的第三种可能的实施方式,或者结合本发明的第一方面的第四种可能的实施方式,或者结合本发明的第一方面的第五种可能的实施方式,在第六种可能的实施方式中,所述获取模块,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
所述发送模块,还用于向所述基站发送所述第二天线信息。
结合本发明的第一方面的第六种可能的实施方式,在第七种可能的实施方式中,所述发送设备还包括:
更新消息发送模块,用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
结合本发明的第一方面的第六种可能的实施方式,或者结合本发明的第一方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包括变化后的天线数量;
所述发送模块,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
结合本发明的第一方面可能的实施方式,或者结合本发明的第一方面的 第一种可能的实施方式,或者结合本发明的第一方面的第二种可能的实施方式,或者结合本发明的第一方面的第三种可能的实施方式,或者结合本发明的第一方面的第四种可能的实施方式,或者结合本发明的第一方面的第五种可能的实施方式,或者结合本发明的第一方面的第六种可能的实施方式,或者结合本发明的第一方面的第七种可能的实施方式,或者结合本发明的第一方面的第八种可能的实施方式,在第九种可能的实施方式中,所述发送设备为终端设备。
根据本发明的第二方面,提供了一种天线信息的接收设备,包括:
接收模块,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
确定模块,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;
通信模块,用于利用所述传输资源与所述终端设备进行通信。
结合本发明的第二方面可能的实施方式,在第一种可能的实施方式中,所述接收设备还包括:
发送模块,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
结合本发明的第二方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息还包含了所述终端设备的传输信息;
所述接收模块,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
结合本发明的第二方面可能的实施方式,或者结合本发明的第二方面的第一种可能的实施方式,或者结合本发明的第二方面的第二种可能的实施方式,在第三种可能的实施方式中,所述接收模块,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第二方面可能的实施方式,或者结合本发明的第二方面的第一种可能的实施方式,或者结合本发明的第二方面的第二种可能的实施方式,在第四种可能的实施方式中,所述接收模块,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
结合本发明的第二方面可能的实施方式,或者结合本发明的第二方面的第一种可能的实施方式,或者结合本发明的第二方面的第二种可能的实施方式,在第五种可能的实施方式中,所述接收模块,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
结合本发明的第二方面可能的实施方式,或者结合本发明的第二方面的第一种可能的实施方式,或者结合本发明的第二方面的第二种可能的实施方式,或者结合本发明的第二方面的第三种可能的实施方式,或者结合本发明的第二方面的第四种可能的实施方式,或者结合本发明的第二方面的第五种可能的实施方式,在第六种可能的实施方式中,所述接收模块,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
结合本发明的第二方面的第六种可能的实施方式,在第七种可能的实施方式中,所述接收模块,具体用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
所述发送模块,还用于向所述终端设备发送的能力查询消息。
结合本发明的第二方面的第六种可能的实施方式,或者结合本发明的第二方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包含了变化后的天线数量;
所述接收模块,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
根据本发明的第三方面,提供了一种天线信息的发送设备,包括:
处理器,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
信号发射器,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
结合本发明的第三方面可能的实施方式,在第一种可能的实施方式中,所述发送设备还包括:
信号接收器,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
结合本发明的第三方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息中还包括传输信息;
所述处理器,还用于获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
所述信号发射器,还用于向基站发送所述传输信息。
结合本发明的第三方面可能的实施方式,或者结合本发明的第三方面的第一种可能的实施方式,或者结合本发明的第三方面的第二种可能的实施方式,在第三种可能的实施方式中,所述信号发射器,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第三方面可能的实施方式,或者结合本发明的第三方面的第一种可能的实施方式,或者结合本发明的第三方面的第二种可能的实施方式,在第四种可能的实施方式中,所述信号发射器,具体用于通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
结合本发明的第三方面可能的实施方式,或者结合本发明的第三方面的第一种可能的实施方式,或者结合本发明的第三方面的第二种可能的实施方式,在第五种可能的实施方式中,所述信号发射器,具体用于通过物理随机 接入信道PRACH向所述基站发送所述第一天线信息。
结合本发明的第三方面可能的实施方式,或者结合本发明的第三方面的第一种可能的实施方式,或者结合本发明的第三方面的第二种可能的实施方式,或者结合本发明的第三方面的第三种可能的实施方式,或者结合本发明的第三方面的第四种可能的实施方式,或者结合本发明的第三方面的第五种可能的实施方式,在第六种可能的实施方式中,所述处理器,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
所述信号发射器,还用于向所述基站发送所述第二天线信息。
结合本发明的第三方面的第六种可能的实施方式,在第七种可能的实施方式中,所述信号发射器,还用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
结合本发明的第三方面的第六种可能的实施方式,或者结合本发明的第三方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包括变化后的天线数量;
所述信号发射器,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
结合本发明的第三方面可能的实施方式,或者结合本发明的第三方面的第一种可能的实施方式,或者结合本发明的第三方面的第二种可能的实施方式,或者结合本发明的第三方面的第三种可能的实施方式,或者结合本发明的第三方面的第四种可能的实施方式,或者结合本发明的第三方面的第五种可能的实施方式,或者结合本发明的第三方面的第六种可能的实施方式,或者结合本发明的第三方面的第七种可能的实施方式,或者结合本发明的第三 方面的第八种可能的实施方式,在第九种可能的实施方式中,所述发送设备为终端设备。
根据本发明的第四方面,提供了一种天线信息的接收设备,包括:
信号接收器,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
处理器,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;利用所述传输资源与所述终端设备进行通信。
结合本发明的第四方面可能的实施方式,在第一种可能的实施方式中,所述接收设备还包括:信号发送模块,其中:
所述信号发送模块,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
结合本发明的第四方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息还包含了所述终端设备的传输信息;
所述信号接收器,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
结合本发明的第四方面可能的实施方式,或者结合本发明的第四方面的第一种可能的实施方式,或者结合本发明的第四方面的第二种可能的实施方式,在第三种可能的实施方式中,所述信号接收器,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第四方面可能的实施方式,或者结合本发明的第四方面的第一种可能的实施方式,或者结合本发明的第四方面的第二种可能的实施方式,在第四种可能的实施方式中,所述信号接收器,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
结合本发明的第四方面可能的实施方式,或者结合本发明的第四方面的 第一种可能的实施方式,或者结合本发明的第四方面的第二种可能的实施方式,在第五种可能的实施方式中,所述信号接收器,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
结合本发明的第四方面可能的实施方式,或者结合本发明的第四方面的第一种可能的实施方式,或者结合本发明的第四方面的第二种可能的实施方式,或者结合本发明的第四方面的第三种可能的实施方式,或者结合本发明的第四方面的第四种可能的实施方式,或者结合本发明的第四方面的第五种可能的实施方式,在第六种可能的实施方式中,所述信号接收器,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
结合本发明的第四方面的第六种可能的实施方式,在第七种可能的实施方式中,所述信号接收器,还用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
向所述终端设备发送的能力查询消息。
结合本发明的第四方面的第六种可能的实施方式,或者结合本发明的第四方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包含了变化后的天线数量;
所述信号接收器,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
根据本发明的第五方面,提供了一种天线信息的发送方法,包括:
终端设备获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
所述终端设备向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
结合本发明的第五方面可能的实施方式,在第一种可能的实施方式中,所述方法还包括:
所述终端设备接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
结合本发明的第五方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息中还包括传输信息;
所述方法还包括:
终端设备获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
所述终端设备向基站发送所述传输信息。
结合本发明的第五方面可能的实施方式,或者结合本发明的第五方面的第一种可能的实施方式,或者结合本发明的第五方面的第二种可能的实施方式,在第三种可能的实施方式中,其特征在于,所述终端设备向基站发送所述第一天线信息,包括:
所述终端设备向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第五方面可能的实施方式,或者结合本发明的第五方面的第一种可能的实施方式,或者结合本发明的第五方面的第二种可能的实施方式,在第四种可能的实施方式中,所述终端设备向基站发送所述第一天线信息,包括:
所述终端设备通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
结合本发明的第五方面可能的实施方式,或者结合本发明的第五方面的第一种可能的实施方式,或者结合本发明的第五方面的第二种可能的实施方式,在第五种可能的实施方式中,所述终端设备向基站发送所述第一天线信 息,包括:
所述终端设备通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
结合本发明的第五方面可能的实施方式,或者结合本发明的第五方面的第一种可能的实施方式,或者结合本发明的第五方面的第二种可能的实施方式,或者结合本发明的第五方面的第三种可能的实施方式,或者结合本发明的第五方面的第四种可能的实施方式,或者结合本发明的第五方面的第五种可能的实施方式,在第六种可能的实施方式中,所述方法还包括:
当所述终端设备的所述第一天线信息发生变化时,所述终端设备获取变化后的第二天线信息;并向所述基站发送所述第二天线信息。
结合本发明的第五方面的第六种可能的实施方式,在第七种可能的实施方式中,在向所述基站发送所述第二天线信息之前,所述方法还包括:
当所述终端设备的所述第一天线信息发生变化时,所述终端设备向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
结合本发明的第五方面的第六种可能的实施方式,或者结合本发明的第五方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包括变化后的天线数量;
所述终端设备向所述基站发送所述第二天线信息,包括:
所述终端设备向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
所述终端设备向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
根据本发明的第六方面,提供了一种天线信息的接收方法,包括:
接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述 终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;
利用所述传输资源与所述终端设备进行通信。
结合本发明的第六方面可能的实施方式,在第一种可能的实施方式中,所述方法还包括:
向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
结合本发明的第六方面的第一种可能的实施方式,在第二种可能的实施方式中,所述能力信息还包含了所述终端设备的传输信息;
所述方法还包括:
接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
结合本发明的第六方面可能的实施方式,或者结合本发明的第六方面的第一种可能的实施方式,或者结合本发明的第六方面的第二种可能的实施方式,在第三种可能的实施方式中,所述基站接收终端设备发送的第一天线信息,包括:
接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
结合本发明的第六方面可能的实施方式,或者结合本发明的第六方面的第一种可能的实施方式,或者结合本发明的第六方面的第二种可能的实施方式,在第四种可能的实施方式中,所述基站接收终端设备发送的第一天线信息,包括:
通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
结合本发明的第六方面可能的实施方式,或者结合本发明的第六方面的第一种可能的实施方式,或者结合本发明的第六方面的第二种可能的实施方 式,在第五种可能的实施方式中,所述基站接收终端设备发送的第一天线信息,包括:
接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
结合本发明的第六方面可能的实施方式,或者结合本发明的第六方面的第一种可能的实施方式,或者结合本发明的第六方面的第二种可能的实施方式,或者结合本发明的第六方面的第三种可能的实施方式,或者结合本发明的第六方面的第四种可能的实施方式,或者结合本发明的第六方面的第五种可能的实施方式,在第六种可能的实施方式中,所述方法还包括:
接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
结合本发明的第六方面的第六种可能的实施方式,在第七种可能的实施方式中,所述接收终端设备发送的第二天线信息,包括:
接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
向所述终端设备发送的能力查询消息。
结合本发明的第六方面的第六种可能的实施方式,或者结合本发明的第六方面的第七种可能的实施方式,在第八种可能的实施方式中,所述第二天线信息包含了变化后的天线数量;
所述接收终端设备发送的第二天线信息,包括:
接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
本发明实施例通过获取终端设备的第一天线信息,所述第一天线信息用于表征当前所述终端设备使用天线的能力,所述第一天线信息中至少包括了 终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的一种或者多种;并将所述第一天线信息发送给基站,这样,终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种天线信息的发送、接收系统的结构示意图;
图2为本发明实施例二提供的一种天线信息的发送方法的流程示意图;
图3为本发明实施例三提供的一种天线信息的接收方法的流程示意图;
图4为本发明实施例四提供的一种天线信息的发送设备的结构示意图;
图5为本发明实施例五提供的一种天线信息的接收设备的结构示意图;
图6为本发明实施例六提供的一种天线信息的发送设备的结构示意图;
图7为本发明实施例七提供的一种天线信息的接收设备的结构示意图。
具体实施方式
为了实现本发明的目的,本发明实施例提供了一种天线信息的发送、接收方法和设备,获取终端设备的第一天线信息,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否 支持开关天线中的至少一个;并将所述第一天线信息发送给基站,这样,终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
需要说明的是,本申请将结合终端设备和/或基站来描述。
其中,终端设备,可以是无线终端也可以是有线终端,无线终端可以是指提供语音业务和/或数据业务的通信设备,具有无线连接功能的手持式设备,穿戴式设备或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(英文:Radio Access Network;缩写:RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、穿戴式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文:Personal Communication Service;缩写:PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol;缩写:SIP)话机、无线本地环路(英文:Wireless Local Loop;缩写:WLL)站、个人数字助理(英文:Personal Digital Assistant;缩写:PDA)等设备。无线终端也可以称为系统、用户单元(英文:Subscriber Unit;缩写:SU)、用户站(英文:Subscriber Station;缩写:SS),移动站(英文:Mobile Station;缩写:MB)、移动台(Mobile)、远程站(英文:Remote Station;缩写:RS)、接入点(英文:Access Point;缩写:AP)、远程终端(英文:Remote Terminal;缩写:RT)、接入终端(英文:Access Terminal;缩写:AT)、用户终端(英文:User Terminal;缩写:UT)、用户代理(英文:User Agent;缩写:UA)、终端设备(英文:User Device;缩写:UD)、或用户装备(英文:User Equipment;缩写:UE)等。
基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(英文:Internetwork Protocol;缩写:IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(英文:Base Transceiver Station;缩写:BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请并不限定。
另外,本申请中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在目前技术中,终端设备无法向基站发送天线信息,一方面由于终端设备上天线数量有限,不需要向基站发送天线信息,另一方面并不存在终端设备向基站发送天线信息的方式,随着终端设备侧天线数量的增加,基站在对终端设备进行调度时,由于不知道终端设备侧当前的天线信息,将不能很好地为终端设备配置调度资源,使得基站与终端设备之间的通信质量无法保证,因此为了保证基站与终端设备之间数据传输的质量,基站需要获取基站的天线信息,并根据该天线信息确定与终端设备进行通信的资源,这样使得合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
下面结合说明书附图对本发明各个实施例进行详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
如图1所示,为本发明实施例一提供的一种天线信息的发送、接收系统的结构示意图。所述系统包含了终端设备11和基站12,终端设备11与基站12之间无线连接。
所述终端设备11,用于获取终端设备的天线信息,并将所述天线信息发送给基站12。
其中,所述天线信息用于表征当前所述终端设备使用天线的情况。
所述天线信息中包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线信息等中的至少一个。
具体地,终端设备11获取支持的最大上行流数(英文:Maximum number of Layers for uplink spatial multiplexing)。
对于不同的终端设备,支持的最大上行流数不同,例如:终端设备支持的最大上行流数可以为1、2、4、8、16等。
可选的,在终端设备11初始化阶段,根据部署的天线数量以及部署天线的参数,得到终端设备支持的最大上行流数。
终端设备11确定支持的天线数量(英文:antenna number),对于不同的终端设备,支持的天线数量不同,例如:终端设备支持的天线数量可以为小于8根天线、大于等于8根天线但小于16根天线、大于等于16根天线等。
可选的,由于终端设备的配置性能不同,支持的天线数量也不同。在终端设备初始化阶段,能够确定支持的天线数量。
终端设备11确定是否支持开关天线(英文:Smart Switch on/off of UE’s antenna ports)。
对于不同的终端设备,有的终端设备支持开关天线信息,有的不支持开关天线信息,那么终端设备在确定是否支持开关天线信息时,可以通过标识信息确定是否支持开关天线信息,例如:1表示支持开关天线信息,0表示不支持开关天线信息。
所述基站12,用于接收终端设备11发送的天线信息;根据所述天线信息,确定与所述终端设备之间进行通信的传输资源;利用所述传输资源与所述终 端设备之间进行通信。
其中,所述天线信息用于表征当前所述终端设备使用天线的情况。
具体地,终端设备11配置了N根天线(其中,N为整数、且数值大于1),终端设备11利用这N根天线发送数据和接收数据。
基站12配置了M根天线(其中,M为整数、且数值大于1),基站12利用这M根天线与一个或者多个终端设备11进行通信。
可选地,终端设备11包括了天线模块111、天线信息管理模块112和天线信息上报模块113。
其中,天线模块111包括了终端设备开启或关闭的天线端口,还存储了开启的每一根天线支持的频段、驻波比、处于开启状态的不同天线之间的隔离度等参数值。
终端设备能够根据业务需要触发该天线端口开启或者关闭,由此控制终端使用的天线数量。
天线信息管理模块112,用于管理终端设备的天线信息。
具体地,天线信息管理模块112从天线模块111中读取终端设备的天线信息;或者,天线模块111中终端设备的天线信息发送变化时触发将变化后的天线信息发送给天线信息管理模块112。
具体地,天线信息用于表征当前终端设备使用天线的信息,具体包含了当前开启天线数量、处于开启状态的天线支持的频段、驻波比、处于开启状态的不同天线之间的隔离度中的一种或者多种。
需要说明的是,天线信息管理模块从天线模块获取终端设备的天线信息可以是实时发生的,也可以是周期发生的,还可以是在接收到基站发送的天线信息查询消息时发生的或者在接收到基站发送的终端信息查询消息时发生的,这里不做限定。
天线信息上报模块113,用于将天线信息管理112模块获取的终端设备的天线信息上报给基站。
具体地,天线信息上报模块113将天线信息管理模块获取的终端设备的 天线信息上报给基站的方式包含了以下方式的一种或者多种:
天线信息上报模块113将天线信息管理模块获取的终端设备的天线信息携带在无线资源控制(英文:Radio Resource Control;缩写:RRC)信令中发送给基站;
天线信息上报模块113将天线信息管理模块获取的终端设备的天线信息通过物理上行共享信道(英文:Physical Uplink Shared Channel;缩写:PUSCH)上发送给基站;
天线信息上报模块113利用物理随机接入信道将天线信息管理模块获取的终端设备的天线信息发送给基站。
需要说明的是,天线信息上报模块113将天线信息管理模块获取的终端设备的天线信息上报给基站可以是在天线信息管理模块获取到终端设备的天线信息时发送给基站的,也可以是在接收到基站发送的天线信息查询消息时发送给基站的,还可以是天线信息管理模块确定终端设备的天线信息发生变化时触发天线信息上报模块发送给基站的,这里不做具体限定。
可选地,天线信息管理模块112,还用于从天线模块111获取终端设备当前的天线信息。
天线信息上报模块113,用于将当前的天线信息发送给基站。
具体地,天线信息上报模块113,具体用于在天线信息管理模块112确定终端设备的天线信息发生变化时,触发天线信息上报模块113向基站发送天线信息更新信息。
其中,所述天线信息更新信息用于告知所述终端设备的天线信息发生变化。
所述终端设备11还包含了接收模块114,其中:
接收模块114,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求终端设备上报能力信息,所述能力信息包含了所述终端设备的天线信息。
可选地,所述能力信息还包含了所述终端设备的传输信息,其中,所述 传输信息用于表征所述终端设备具备的用于传输数据的信息,所述传输信息中至少包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的一种或者多种。
具体地,所述传输信息至少包含了以下信息中的一种或者多种:
下行峰值速率(英文:Downlink Peak Rate);
上行峰值速率(英文:Uplink Peak Rate);
下行最大调制阶数(英文:Maximum Downlink Modulation);
上行最大调制阶数(英文:Maximum Uplink Modulation);
最大下行复用层数(英文:Maximum number of Layers for downlink spatial multiplexing)。
天线信息上报模块113,具体用于根据所述能力查询消息,将变化后的天线信息发送给所述基站。
具体地,若所述变化后的天线信息包含了发生变化的天线数量,则天线信息上报模块113,具体用于将发生变化的天线数量发送给基站。
具体地,天线信息上报模块113将发生变化的天线数量发送给基站的方式包括但不限于:
向基站发送随机接入请求,其中,所述随机接入请求中携带了发生变化的天线数量;或
选择与发生变化的天线数量对应的随机接入序列,利用所述随机接入序列向基站发起随机接入;或
按照设定方式将发生变化的天线数量进行信道编码交织后通过物理上行共享信道PUSCH发送给基站。
基站12包含了接收模块121、解调模块122、终端能力管理模块123和调度模块124。
其中,接收模块121,用于接收终端设备发送的天线信息。
具体地,接收模块121接收终端设备发送的天线信息的方式包括但不限于:
第一种方式:接收终端设备发送的RRC信令,其中,所述RRC信令中携带了天线信息。
第二种方式:接收终端设备发送的PUSCH,其中,所述PUSCH中携带了天线信息。
第三种方式:接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了天线信息并通过物理随机接入信道发送。
解调模块122,用于对接收到的所述天线信息进行解析,确定出终端设备当前的天线信息,并将解析得到的终端设备当前的天线信息保存在终端能力管理模块123中。
调度模块124,用于从终端能力管理模块123中获取终端设备当前的天线信息,并确定与所述终端设备之间进行通信的传输资源;利用所述传输资源与所述终端设备之间进行通信。
所述基站还包括:发送模块125,其中:
所述发送模块125,用于向终端设备发送能力查询消息。
可选地,所述接收模块121,还用于接收终端设备发送的变化后的天线信息,其中,所述变化后的天线信息是由终端设备在确定天线信息发生变化时发送的。
具体地,所述接收模块121,具体用于接收终端设备发送的天线信息更新信息,其中,所述天线信息更新信息用于告知所述基站天线信息发生变化。
所述发送模块125,还用于向所述终端设备发送的天线信息查询信息。
所述接收模块121,具体用于接收所述终端设备发送的变化后的天线信息。
若所述变化后的天线信息包含了发生变化的天线数量,则所述接收模块121接收终端设备发送的变化后的天线信息的方式包括:
接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;
接收终端设备发送的随机接入序列,并根据预设的随机接入序列与天线数量之间的对应关系,确定接收到的所述终端设备的变化后的天线数量;
接收终端设备发送的PUSCH,其中,所述PUSCH中携带了发生变化的天线数量。
需要说明的是,基站与终端设备可以通过协商的方式预先建立随机接入序列与天线数量之间的对应关系。
即终端设备变化后的天线数量为A,那么终端设备向基站设备发起随机接入请求,所述随机接入请求中包括天线数量A对应的随机接入序列,基站在接收到终端设备发送的随机接入序列后,即可根据所述随机接入序列确定出终端变化后的天线数量。
通过本发明实施例一所述的系统,终端设备获取自身的第一天线信息,并将该第一天线信息发送给基站,其中,所述第一天线信息中至少包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的一种或者多种,基站在接收到天线信息时,根据该天线信息,确定与终端设备之间进行通信的信道资源,并利用确定的信道资源与基站进行通信,这样,终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
实施例二:
如图2所示,为本发明实施例二提供的一种天线信息的发送方法的流程示意图。所述方法可以如下所述。
步骤201:终端设备接收基站发送的能力查询消息。
其中,所述能力查询消息用于请求终端设备上报终端的天线信息和传输信息。
所述天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个。
所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
在步骤201中,所述传输信息至少包含了以下信息中的一种或者多种:
下行峰值速率(英文:Downlink Peak Rate);
上行峰值速率(英文:Uplink Peak Rate);
下行最大调制阶数(英文:Maximum Downlink Modulation);
上行最大调制阶数(英文:Maximum Uplink Modulation);
最大下行复用层数(英文:Maximum number of Layers for downlink spatial multiplexing)。
步骤202:终端设备获取第一天线信息。
其中,所述第一天线信息用于表征当前所述终端设备使用天线的信息。
所述第一天线信息中至少包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的一种或者多种。
所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
在步骤202中,终端设备从终端设备内部的天线模块中获取自身支持的最大上行流数(英文:Maximum number of Layers for uplink spatial multiplexing),对于不同的终端设备,支持的最大上行流数不同,例如:终端设备支持的最大上行流数可以为1、2、4、8、16等。
终端设备从终端设备内部的天线模块中获取自身支持的天线数量(英文:antenna number),对于不同的终端设备,支持的天线数量不同,例如:终端设备支持的天线数量可以为小于8根天线、大于等于8根天线但小于16根天线、大于等于16根天线等。
终端设备从终端设备内部的天线模块中获取自身是否支持开关天线信息(英文:Smart Switch on/off of UE’s antenna ports),对于不同的终端设备,有的终端设备支持开关天线信息,有的不支持开关天线信息,那么终端设备在确定是否支持开关天线信息时,可以通过标识信息确定是否支持开关天线信息,例如:1表示支持开关天线信息,0表示不支持开关天线信息。
需要说明的是,终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线可以是在终端设备初始化阶段存储至终端设备的天线模块中的。
具体地,所述第一天线信息至少包含了当前开启天线数量、处于开启状态的天线支持的频段、驻波比、处于开启状态的不同天线之间的隔离度中的一种或者多种。
终端设备从终端设备内部的天线模块中获取天线信息包括但不限于以下的一种或者多种:
确定自身是否具备开启或者关闭天线的能力;
确定当前开启天线数量;
确定处于开启状态的天线支持的频段;
确定处于开启状态的天线在各个频段的驻波比;
确定处于开启状态的不同天线之间的隔离度。
其中,驻波比(英文:Standing Wave Ratio;缩写:SWR)表示天馈线与基站匹配程度的指标。
如表1所示,假设终端设备处于开启状态的天线由6根,终端设备确定的这6根天线的驻波比为:
Figure PCTCN2014085642-appb-000001
Figure PCTCN2014085642-appb-000002
表1
需要说明的是,步骤201与步骤202的执行顺序不限于本发明实施例二所述的顺序,还可以先执行步骤202后执行步骤201,或者同时执行步骤201和步骤202。
可选地,步骤201还可以在步骤203之后实施。
步骤203:终端设备将所述第一天线信息发送给基站。
在步骤203中,终端设备将所述第一天线信息发送给基站的方式包括但不限于以下方式:
方式一:所述终端设备向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
方式二:所述终端设备通过物理上行共享信道PUSCH向所述基站发送所述第一天线信息。
方式三:所述终端设备通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
步骤204:终端设备在所述第一天线信息发生变化时,获取第二天线信息。
步骤205:终端设备向所述基站发送所述第二天线信息。
在步骤205中,当所述终端设备的所述第一天线信息发生变化时,所述终端设备向所述基站发送更新消息。
其中,所述更新消息用于向基站告知所述终端设备的天线信息发生变化。
其次,终端设备接收所述基站发送的能力查询消息。
最后,终端设备向所述基站发送所述第二天线信息。
使得基站在接收到第二天线信息时,更新本地终端能力管理模块中存储的该终端设备的天线信息。
可选地,所述第二天线信息包含了变化后的天线数量,此时终端设备将第二天线信息发送给基站的方式包括但不限于:
方式一:所述终端设备向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量。
方式二:所述终端设备向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的。
需要说明的是,终端设备与基站通过协商或者基站根据需要为终端设备配置随机接入序列与开启天线数值之间的对应关系,当终端设备确定天线数量发生变化时,利用发生变化后的天线数量确定随机接入序列,并利用该随机接入序列向基站发起随机接入,这样基站根据接收到的随机接入序列即可确定终端设备发生变化后的天线数量。
方式三:按照设定方式将所述变化后的天线数量通过物理上行共享信道PUSCH发送给所述基站。
具体地,第一步,终端设备将上行传输的数据和循环冗余校验码(英文:Cyclic Redundancy Check;缩写:CRC)进行信道编码,并将信道变化后的数据通过打孔或者填充等方式进行速率匹配,得到与物理信道相匹配的比特数。
需要说明的是,信道编码的方式包括但不限于:采用卷积码方式、采用低密度奇偶校验码(英文:Low Density Parity Check;缩写:LDPC)方式等等。
第二步,终端设备将变化后的天线数量转换成为二进制数,并对该二进制数进行信道编码,得到变化后的天线数量对应的比特。
需要说明的是,对该二进制数进行信道编码的方式包括但不限于:采用卷积码方式、采用线性编码方式等等。
例如:典型地终端设备天线开启数量包含1、2、4、8、12、16等,若采用5位的二进制数表示:00001表示开启1根天线;00010表示开启2根天线;00100表示开启4根天线;01000表示开启8根天线;01100表示开启12根天线;10000表示开启16根天线。
第三步,终端设备将上行数据速率匹配后得到的比特与变化后的天线数量对应的比特复用,并将复用后的比特进行信道交织。
第四步,终端设备将信道交织结果通过PUSCH发送给基站。
通过本发明实施例二的方案,获取终端设备的第一天线信息,其中,所述第一天线信息中至少包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的一种或者多种;并将所述第一天线信息发送给基站,这样,终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
实施例三:
如图3所示,为本发明实施例三提供的一种天线信息的接收方法的流程示意图。所述方法可以如下所述。
步骤301:基站向终端设备发送能力查询消息。
其中,所述能力查询消息用于请求终端设备上报包含第一天线信息和传输信息的能力信息。
可选地,所述传输信息用于表征所述终端设备具备的用于传输数据的信息,所述信息中至少包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的一种或者多种。
具体地,所述传输信息至少包含了以下信息中的一种或者多种:
下行峰值速率(英文:Downlink Peak Rate);
上行峰值速率(英文:Uplink Peak Rate);
下行最大调制阶数(英文:Maximum Downlink Modulation);
上行最大调制阶数(英文:Maximum Uplink Modulation);
最大下行复用层数(英文:Maximum number of Layers for downlink spatial multiplexing)。
步骤302:基站接收终端设备发送的第一天线信息。
其中,所述天线信息用于表征当前所述终端设备使用天线的信息。
所述天线信息中包括了终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线信息中的至少一个。
具体地,所述天线信息包括了当前开启天线数量、处于开启状态的天线支持的频段以及驻波比、处于开启状态的不同天线之间的隔离度中的至少一个。
在步骤302中,基站接收终端设备发送的天线信息的方式包括但不限于:
方式一:接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
方式二:通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
方式三:接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
可选地,所述方法还包括:
接收终端设备发送的第二天线信息。
其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
具体地,接收终端设备发送的更新信息。
其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化。
基站向所述终端设备发送的能力查询消息;并接收所述终端设备发送的第二天线信息。
若所述第二天线信息包含了变化后的天线数量,那么基站接收终端设备发送的第二天线信息的方式包括但不限于:
方式一:接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;
方式二:接收终端设备发送的随机接入序列,并根据预设的随机接入序列与天线数量之间的对应关系,确定接收到的所述随机序列对应的终端设备变化后的天线数量;
方式三:通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
可选地,基站接收终端设备发送的所述终端设备的传输信息。
步骤303:基站根据所述第一天线信息,确定与所述终端设备之间进行通信的传输资源。
步骤304:基站利用所述传输资源与所述终端设备之间进行通信。
实施例四:
如图4所示,为本发明实施例四提供的一种天线信息的发送设备的结构示意图。所述设备包括:获取模块41和发送模块42,其中:
获取模块41,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
发送模块42,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
可选地,所述发送设备还包括:接收模块43,其中:
接收模块43,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
可选地,所述能力信息中还包括传输信息;
所述获取模块41,还用于终端设备获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
所述发送模块42,还用于向基站发送所述传输信息。
具体地,所述发送模块42,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
所述发送模块42,具体用于通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
所述发送模块42,具体用于通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
可选地,所述获取模块41,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
所述发送模块42,还用于向所述基站发送所述第二天线信息。
可选地,所述发送设备还包括:更新消息发送模块44,其中:
更新消息发送模块44,用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
具体地,所述第二天线信息包括变化后的天线数量;
所述发送模块42,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
需要说明的是,本发明实施例四所述的发送设备可以为终端设备。
终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
实施例五:
如图5所示,为本发明实施例五提供的一种天线信息的接收设备的结构 示意图。所述接收设备包括:接收模块51、确定模块52和通信模块53,其中:
接收模块51,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
确定模块52,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;
通信模块53,用于利用所述传输资源与所述终端设备进行通信。
可选地,所述接收设备还包括:发送模块54,其中:
发送模块54,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
可选地,所述能力信息还包含了所述终端设备的传输信息;
所述接收模块51,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
具体地,所述接收模块51,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
所述接收模块51,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
所述接收模块51,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
可选地,所述接收模块51,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
所述接收模块51,具体用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
所述发送模块,还用于向所述终端设备发送的能力查询消息。
具体地,所述第二天线信息包含了变化后的天线数量;
所述接收模块51,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
需要说明的是,本发明实施例四所述的发送设备可以为基站设备。
实施例六:
如图6所示,为本发明实施例六提供的一种天线信息的发送设备的结构示意图。所述发送设备具备执行本发明实施例一至本发明实施例三的功能,所述发送设备可以采用通用计算机系统结构,计算机系统可具体是基于处理器的计算机。所述发送设备实体包括信号发射器61、信号接收器62和至少一个处理器63,信号发射器61、信号接收器62和至少一个处理器63之间通过总线64连接。
处理器63可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
处理器63,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
信号发射器61,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
信号接收器62,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
可选地,所述能力信息中还包括传输信息;
所述处理器63,还用于获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
所述信号发射器61,还用于向基站发送所述传输信息。
所述信号发射器61,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
所述信号发射器61,具体用于通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
所述信号发射器61,具体用于通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
所述处理器63,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
所述信号发射器61,还用于向所述基站发送所述第二天线信息。
所述信号发射器61,还用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
可选地,所述第二天线信息包括变化后的天线数量;
所述信号发射器61,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
需要说明的是,本发明实施例六所述的发送设备可以为终端设备。
实施例七:
如图7所示,为本发明实施例七提供的一种天线信息的接收设备的结构示意图,所述接收设备具备执行本发明实施例一至本发明实施例三的功能,所述接收设备可以采用通用计算机系统结构,计算机系统可具体是基于处理器的计算机。所述接收设备实体包括信号发射器71、信号接收器72和至少一个处理器73,信号发射器71、信号接收器72和至少一个处理器73之间通过 总线74连接。
处理器73可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
信号接收器72,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
处理器73,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;利用所述传输资源与所述终端设备进行通信。
可选地,所述接收设备还包括:信号发送模块71,其中:
所述信号发送模块71,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
可选地,所述能力信息还包含了所述终端设备的传输信息;
所述信号接收器72,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
所述信号接收器72,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
所述信号接收器72,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
所述信号接收器72,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
所述信号接收器72,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
所述信号接收器72,还用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
向所述终端设备发送的能力查询消息。
可选地,所述第二天线信息包含了变化后的天线数量;
所述信号接收器72,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
需要说明的是,本发明实施例六所述的发送设备可以为基站设备。
终端设备可以根据自身业务需要对自身部署的天线进行控制,并及时将自身的天线信息上报给基站,一方面,终端设备自适应的调整天线的使用数量,有效改善了因为天线数量的增加导致的终端设备耗电量大以及电磁辐射强问题,另一方面,使得基站能够及时获取终端设备的天线信息,并根据终端设备的天线信息,确定基站与终端设备之间的信道质量,合理为终端设备发起的通信业务调度信道资源,提升了终端设备与基站之间的通信能力。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (56)

  1. 一种天线信息的发送设备,其特征在于,包括:
    获取模块,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    发送模块,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
  2. 如权利要求1所述的发送设备,其特征在于,所述发送设备还包括:
    接收模块,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
  3. 如权利要求2所述的发送设备,其特征在于,所述能力信息中还包括传输信息;
    所述获取模块,还用于终端设备获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
    所述发送模块,还用于向基站发送所述传输信息。
  4. 如权利要求1至3任一所述的发送设备,其特征在于,
    所述发送模块,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  5. 如权利要求1至3任一所述的发送设备,其特征在于,
    所述发送模块,具体用于通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
  6. 如权利要求1至3任一所述的发送设备,其特征在于,
    所述发送模块,具体用于通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
  7. 如权利要求1至6任一所述的发送设备,其特征在于,
    所述获取模块,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
    所述发送模块,还用于向所述基站发送所述第二天线信息。
  8. 如权利要求7所述的发送设备,其特征在于,所述发送设备还包括:
    更新消息发送模块,用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
  9. 如权利要求7至8任一所述的发送设备,其特征在于,所述第二天线信息包括变化后的天线数量;
    所述发送模块,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
    向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
  10. 如权利要求1至9任一所述的发送设备,其特征在于,所述发送设备为终端设备。
  11. 一种天线信息的接收设备,其特征在于,包括:
    接收模块,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    确定模块,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;
    通信模块,用于利用所述传输资源与所述终端设备进行通信。
  12. 如权利要求11所述的接收设备,其特征在于,所述接收设备还包括:
    发送模块,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
  13. 如权利要求12所述的接收设备,其特征在于,所述能力信息还包含了所述终端设备的传输信息;
    所述接收模块,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
  14. 如权利要求11至13任一所述的接收设备,其特征在于,
    所述接收模块,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  15. 如权利要求11至13任一所述的接收设备,其特征在于,
    所述接收模块,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
  16. 如权利要求11至13任一所述的接收设备,其特征在于,
    所述接收模块,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
  17. 如权利要求11至16任一所述的接收设备,其特征在于,
    所述接收模块,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
  18. 如权利要求17所述的接收设备,其特征在于,
    所述接收模块,具体用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
    所述发送模块,还用于向所述终端设备发送的能力查询消息。
  19. 如权利要求17至18任一所述的接收设备,其特征在于,所述第二天线信息包含了变化后的天线数量;
    所述接收模块,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
    接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
  20. 一种天线信息的发送设备,其特征在于,包括:
    处理器,用于获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    信号发射器,用于向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
  21. 如权利要求20所述的发送设备,其特征在于,所述发送设备还包括:
    信号接收器,用于接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
  22. 如权利要求21所述的发送设备,其特征在于,所述能力信息中还包括传输信息;
    所述处理器,还用于获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
    所述信号发射器,还用于向基站发送所述传输信息。
  23. 如权利要求20至22任一所述的发送设备,其特征在于,
    所述信号发射器,具体用于向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  24. 如权利要求20至22任一所述的发送设备,其特征在于,
    所述信号发射器,具体用于通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
  25. 如权利要求20至22任一所述的发送设备,其特征在于,
    所述信号发射器,具体用于通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
  26. 如权利要求20至25任一所述的发送设备,其特征在于,
    所述处理器,还用于当所述第一天线信息发生变化时,获取变化后的第二天线信息;
    所述信号发射器,还用于向所述基站发送所述第二天线信息。
  27. 如权利要求26所述的发送设备,其特征在于,
    所述信号发射器,还用于在向所述基站发送所述第二天线信息之前,当所述第一天线信息发生变化时,向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
  28. 如权利要求26至27任一所述的发送设备,其特征在于,所述第二天线信息包括变化后的天线数量;
    所述信号发射器,具体用于向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
    向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
  29. 如权利要求20至28任一所述的发送设备,其特征在于,所述发送设备为终端设备。
  30. 一种天线信息的接收设备,其特征在于,包括:
    信号接收器,用于接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    处理器,用于根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;利用所述传输资源与所述终端设备进行通信。
  31. 如权利要求30所述的接收设备,其特征在于,所述接收设备还包括:信号发送模块,其中:
    所述信号发送模块,用于向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
  32. 如权利要求31所述的接收设备,其特征在于,所述能力信息还包含了所述终端设备的传输信息;
    所述信号接收器,还用于接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
  33. 如权利要求30至32任一所述的接收设备,其特征在于,
    所述信号接收器,具体用于接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  34. 如权利要求30至32任一所述的接收设备,其特征在于,
    所述信号接收器,具体用于通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
  35. 如权利要求30至32任一所述的接收设备,其特征在于,
    所述信号接收器,具体用于接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
  36. 如权利要求30至35任一所述的接收设备,其特征在于,
    所述信号接收器,还用于接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
  37. 如权利要求36所述的接收设备,其特征在于,
    所述信号接收器,还用于接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
    向所述终端设备发送的能力查询消息。
  38. 如权利要求36至37任一所述的接收设备,其特征在于,所述第二天线信息包含了变化后的天线数量;
    所述信号接收器,具体用于接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
    接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
  39. 一种天线信息的发送方法,其特征在于,包括:
    终端设备获取第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    所述终端设备向基站发送所述第一天线信息,所述第一天线信息用于使所述基站确定与所述终端设备之间进行通信所使用的传输资源。
  40. 如权利要求39所述的发送方法,其特征在于,所述方法还包括:
    所述终端设备接收所述基站发送的能力查询消息,其中,所述能力查询消息用于请求所述终端设备上报包括第一天线信息的能力信息。
  41. 如权利要求40所述的发送方法,其特征在于,所述能力信息中还包括传输信息;
    所述方法还包括:
    终端设备获取传输信息,其中,所述传输信息包括上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个;
    所述终端设备向基站发送所述传输信息。
  42. 如权利要求39至41任一所述的发送方法,其特征在于,所述终端设备向基站发送所述第一天线信息,包括:
    所述终端设备向基站发送无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  43. 如权利要求39至41任一所述的发送方法,其特征在于,所述终端设备向基站发送所述第一天线信息,包括:
    所述终端设备通过物理上行共享信道PUSCH向所述基站发送所述所述第一天线信息。
  44. 如权利要求39至41任一所述的发送方法,其特征在于,所述终端设备向基站发送所述第一天线信息,包括:
    所述终端设备通过物理随机接入信道PRACH向所述基站发送所述第一天线信息。
  45. 如权利要求39至41任一所述的发送方法,其特征在于,所述方法还包括:
    当所述终端设备的所述第一天线信息发生变化时,所述终端设备获取变化后的第二天线信息;并
    向所述基站发送所述第二天线信息。
  46. 如权利要求45所述的发送方法,其特征在于,在向所述基站发送所述第二天线信息之前,所述方法还包括:
    当所述终端设备的所述第一天线信息发生变化时,所述终端设备向所述基站发送更新消息,其中,所述更新消息用于向所述基站告知所述终端设备的天线信息发生变化。
  47. 如权利要求45至46任一所述的发送方法,其特征在于,所述第二天线信息包括变化后的天线数量;
    所述终端设备向所述基站发送所述第二天线信息,包括:
    所述终端设备向所述基站发送随机接入请求,其中,所述随机接入请求携带所述变化后的天线数量;或
    所述终端设备向所述基站发送随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    按照设定方式通过物理上行共享信道PUSCH将所述变化后的天线数量发送给所述基站。
  48. 一种天线信息的接收方法,其特征在于,包括:
    接收终端设备发送的第一天线信息,其中,所述第一天线信息包括所述终端设备支持的最大上行流数、终端设备支持的天线数量以及终端设备是否支持开关天线中的至少一个;
    根据接收的所述第一天线信息,确定与所述终端设备之间进行通信所使用的传输资源;
    利用所述传输资源与所述终端设备进行通信。
  49. 如权利要求48所述的接收方法,其特征在于,所述方法还包括:
    向终端设备发送能力查询消息,其中,所述能力查询消息用于请求终端设备上报包含第一天线信息的能力信息。
  50. 如权利要求49所述的接收方法,其特征在于,所述能力信息还包含了所述终端设备的传输信息;
    所述方法还包括:
    接收终端设备发送的传输信息,其中,所述传输信息中包括了上下行峰值速率、上下行最大调制阶数以及最大下行复用层数中的至少一个。
  51. 如权利要求48至50任一所述的接收方法,其特征在于,所述基站接收终端设备发送的第一天线信息,包括:
    接收终端设备发送的无线资源控制RRC信令,其中,所述RRC信令携带所述第一天线信息。
  52. 如权利要求48至50任一所述的获取方法,其特征在于,所述基站接收终端设备发送的第一天线信息,包括:
    通过物理上行共享信道PUSCH接收终端设备发送的第一天线信息。
  53. 如权利要求48至50任一所述的获取方法,其特征在于,所述基站接收终端设备发送的第一天线信息,包括:
    接收终端设备发送的随机接入请求,通过物理随机接入信道PRACH获取终端设备发送的第一天线信息。
  54. 如权利要求48至53任一所述的获取方法,其特征在于,所述方法还包括:
    接收终端设备发送的第二天线信息,其中,所述第二天线信息是由终端设备的所述第一天线信息发生变化时发送的。
  55. 如权利要求54所述的获取方法,其特征在于,所述接收终端设备发送的第二天线信息,包括:
    接收终端设备发送的更新信息,其中,所述更新信息用于向所述基站告知所述终端设备的天线信息发生变化;
    向所述终端设备发送的能力查询消息。
  56. 如权利要求54至55任一所述的获取方法,其特征在于,所述第二天线信息包含了变化后的天线数量;
    所述接收终端设备发送的第二天线信息,包括:
    接收终端设备发送的随机接入请求,其中,所述随机接入请求中携带了变化后的天线数量;或
    接收终端设备发送的随机接入,其中,所述随机接入包括随机接入序列,所述随机接入序列是根据变化后的天线数量确定的;或
    通过物理上行共享信道PUSCH接收终端设备发送的变化后的天线数量。
PCT/CN2014/085642 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备 WO2016029485A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480050863.8A CN105580466B (zh) 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备
EP14901006.8A EP3179796B1 (en) 2014-08-30 2014-08-30 Antenna information transmission and reception method and device
CN201911152302.XA CN110890906B (zh) 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备
PCT/CN2014/085642 WO2016029485A1 (zh) 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备
US15/445,575 US10299111B2 (en) 2014-08-30 2017-02-28 Antenna information sending method and device, and antenna information receiving method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085642 WO2016029485A1 (zh) 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/445,575 Continuation US10299111B2 (en) 2014-08-30 2017-02-28 Antenna information sending method and device, and antenna information receiving method and device

Publications (1)

Publication Number Publication Date
WO2016029485A1 true WO2016029485A1 (zh) 2016-03-03

Family

ID=55398690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085642 WO2016029485A1 (zh) 2014-08-30 2014-08-30 一种天线信息的发送、接收方法和设备

Country Status (4)

Country Link
US (1) US10299111B2 (zh)
EP (1) EP3179796B1 (zh)
CN (2) CN110890906B (zh)
WO (1) WO2016029485A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155663A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 调整天线模组的方法、装置及存储介质
CN109217881A (zh) * 2017-06-30 2019-01-15 维沃移动通信有限公司 一种发射天线切换方法、基站和终端
CN109286967A (zh) * 2017-07-21 2019-01-29 华为技术有限公司 无线传输方法、装置及设备
WO2020001452A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种能力上报的方法及装置
CN110650473A (zh) * 2018-06-27 2020-01-03 华为技术有限公司 一种能力上报的方法及装置
WO2020048438A1 (zh) * 2018-09-06 2020-03-12 华为技术有限公司 一种射频参数的上报方法及装置
WO2020052691A1 (zh) * 2018-09-10 2020-03-19 华为技术有限公司 调整天线半功率角的方法和装置
CN111615104A (zh) * 2019-02-22 2020-09-01 三星电子株式会社 发送和接收用户设备管理信息的方法及执行其的电子装置
WO2021097638A1 (zh) * 2019-11-19 2021-05-27 华为技术有限公司 阵列天线控制装置和方法
CN113873061A (zh) * 2021-08-23 2021-12-31 北京讯通安添通讯科技有限公司 一种终端电致变色后盖滑动切换的方法、装置、终端

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108135031B (zh) * 2016-12-01 2022-11-29 中兴通讯股份有限公司 资源调度方法、装置及系统
CN108322287B (zh) * 2017-01-18 2021-04-30 上海诺基亚贝尔股份有限公司 一种重调时pusch数据传输的方法和装置
CN110650472B (zh) * 2018-06-27 2021-11-19 华为技术有限公司 一种通信方法及装置
US10972972B2 (en) * 2018-07-17 2021-04-06 FG Innovation Company Limited Methods and apparatuses for operating multiple antenna panels
US11522274B2 (en) * 2018-09-28 2022-12-06 Nokia Technologies Oy Facilitating user equipment beamforming control
CN111867127B (zh) * 2019-04-30 2023-06-20 华为技术有限公司 天线面板信息的配置方法及装置
US11088741B1 (en) * 2020-05-13 2021-08-10 Charter Communicatons Operating, LLC Apparatus and methods for uplink MIMO enhancement in wireless systems
WO2022027684A1 (zh) * 2020-08-07 2022-02-10 Oppo广东移动通信有限公司 信息上报方法、信息处理方法、终端设备和网络设备
US20230077568A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Dynamic antenna radiation pattern notification
WO2024065512A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 频段信息的确定方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034089A1 (en) * 2007-09-10 2009-03-19 Telefonaktiebolaget L M Ericsson (Publ) Power-aware link adaptation in a wideband cdma system
CN102348289A (zh) * 2010-07-27 2012-02-08 株式会社Ntt都科摩 无线通信装置以及无线通信方法
CN102415180A (zh) * 2009-04-27 2012-04-11 株式会社Ntt都科摩 移动终端装置以及无线通信方法
CN102860061A (zh) * 2010-04-30 2013-01-02 株式会社Ntt都科摩 数据发送方法、基站装置以及移动台装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996082B2 (en) * 2001-05-14 2006-02-07 Interdigital Technology Corporation Method and apparatus for minimizing the amount of data necessary to signal code and timeslot assignments
WO2008123680A1 (en) * 2007-04-06 2008-10-16 Samsung Electronics Co., Ltd. Wireless network system and method of configuring the same
EP2293618A4 (en) * 2008-06-23 2012-10-10 Panasonic Corp POWER RESERVE LOGGING AND MOBILE STATION EQUIPMENT
KR101253204B1 (ko) * 2009-03-22 2013-04-10 엘지전자 주식회사 복수 안테나를 이용한 채널 사운딩 방법 및 이를 위한 장치
JP5023170B2 (ja) * 2009-04-27 2012-09-12 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP5124597B2 (ja) * 2010-01-08 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるユーザ装置、基地局及び方法
US9211523B2 (en) * 2010-07-01 2015-12-15 Chevron Phillips Chemical Company Lp Polyolefin manufacturing system including a membrane fractionation system for diluent recovery
JP5356339B2 (ja) * 2010-09-03 2013-12-04 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
CN102386954B (zh) * 2010-09-03 2014-05-07 华为技术有限公司 数据传输方法、接入点设备及终端
WO2012099404A2 (en) * 2011-01-18 2012-07-26 Samsung Electronics Co., Ltd. Ue capability report method and apparatus in mobile communication system
CN103620980A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 选择上行多天线发送以增强覆盖
US20130010620A1 (en) * 2011-07-10 2013-01-10 Esmael Dinan Connection Reconfiguration in a Multicarrier OFDM Network
WO2013013376A1 (en) * 2011-07-25 2013-01-31 Renesas Mobile Corporation Method and apparatus for switching antenna port configurations
US8395985B2 (en) * 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
US8744006B2 (en) * 2011-10-03 2014-06-03 Telefonaktiebolaget L M Ericsson (Publ) Transmit diversity for pre-coded radio control signals
KR20150046122A (ko) * 2012-08-14 2015-04-29 삼성전자주식회사 저비용 머신 타입 통신 장치들을 사용하는 통신 방법 및 시스템
US9544880B2 (en) * 2012-09-28 2017-01-10 Blackberry Limited Methods and apparatus for enabling further L1 enhancements in LTE heterogeneous networks
CN103974446B (zh) * 2013-01-30 2018-07-31 华为技术有限公司 一种随机接入方法及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034089A1 (en) * 2007-09-10 2009-03-19 Telefonaktiebolaget L M Ericsson (Publ) Power-aware link adaptation in a wideband cdma system
CN102415180A (zh) * 2009-04-27 2012-04-11 株式会社Ntt都科摩 移动终端装置以及无线通信方法
CN102860061A (zh) * 2010-04-30 2013-01-02 株式会社Ntt都科摩 数据发送方法、基站装置以及移动台装置
CN102348289A (zh) * 2010-07-27 2012-02-08 株式会社Ntt都科摩 无线通信装置以及无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179796A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217881A (zh) * 2017-06-30 2019-01-15 维沃移动通信有限公司 一种发射天线切换方法、基站和终端
CN109286967A (zh) * 2017-07-21 2019-01-29 华为技术有限公司 无线传输方法、装置及设备
CN109286967B (zh) * 2017-07-21 2022-03-25 华为技术有限公司 无线传输方法、装置及设备
CN113938876A (zh) * 2018-06-27 2022-01-14 华为技术有限公司 一种能力上报的方法及装置
WO2020001452A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种能力上报的方法及装置
CN110650473A (zh) * 2018-06-27 2020-01-03 华为技术有限公司 一种能力上报的方法及装置
CN113938876B (zh) * 2018-06-27 2023-02-24 华为技术有限公司 一种能力上报的方法及装置
CN109155663B (zh) * 2018-08-10 2022-06-03 北京小米移动软件有限公司 调整天线模组的方法、装置及存储介质
CN109155663A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 调整天线模组的方法、装置及存储介质
US11956054B2 (en) 2018-08-10 2024-04-09 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for adjusting antenna module, and storage medium
WO2020048438A1 (zh) * 2018-09-06 2020-03-12 华为技术有限公司 一种射频参数的上报方法及装置
WO2020052691A1 (zh) * 2018-09-10 2020-03-19 华为技术有限公司 调整天线半功率角的方法和装置
US11509377B2 (en) 2018-09-10 2022-11-22 Huawei Technologies Co., Ltd. Method and apparatus for adjusting half-power angle of antenna
US11855733B2 (en) 2018-09-10 2023-12-26 Huawei Technologies Co., Ltd. Method and apparatus for adjusting half-power angle of antenna
CN111615104A (zh) * 2019-02-22 2020-09-01 三星电子株式会社 发送和接收用户设备管理信息的方法及执行其的电子装置
CN111615104B (zh) * 2019-02-22 2024-04-26 三星电子株式会社 发送和接收用户设备管理信息的方法及执行其的电子装置
WO2021097638A1 (zh) * 2019-11-19 2021-05-27 华为技术有限公司 阵列天线控制装置和方法
CN113873061A (zh) * 2021-08-23 2021-12-31 北京讯通安添通讯科技有限公司 一种终端电致变色后盖滑动切换的方法、装置、终端
CN113873061B (zh) * 2021-08-23 2023-12-19 北京讯通安添通讯科技有限公司 一种终端电致变色后盖滑动切换的方法、装置、终端

Also Published As

Publication number Publication date
US10299111B2 (en) 2019-05-21
CN110890906B (zh) 2022-08-26
CN110890906A (zh) 2020-03-17
EP3179796A1 (en) 2017-06-14
EP3179796A4 (en) 2017-08-30
CN105580466B (zh) 2019-12-06
CN105580466A (zh) 2016-05-11
US20170171740A1 (en) 2017-06-15
EP3179796B1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2016029485A1 (zh) 一种天线信息的发送、接收方法和设备
US10116364B2 (en) Method for determining rank indication RI bit number, base station, and terminal
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
CN110999193B (zh) 用于在无线通信系统中适配终端的带宽的方法和装置
CN113875198A (zh) 多链路聚合链路管理
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
CN112005595A (zh) 下一代无线通信系统中有效提供接入控制配置信息的方法和装置
JP2018506231A (ja) グループブロック肯定応答送信のためのシステムおよび方法
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
TW201832599A (zh) 針對使用擴展頻寬的窄頻通訊的資源分配
US20120082126A1 (en) Resource allocation bitmap configuration method in a group resource allocation method
TW202123760A (zh) 用於無線通信系統中的實體上行鏈路共享信道排程的技術
CN113316905A (zh) 针对高容量的分组内速率适配
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
US20120093116A1 (en) Method for allocating harq feedback channel in group resource allocation
WO2016029486A1 (zh) 一种天线信息的发送、接收方法和设备
WO2020029297A1 (zh) 下行控制信息的发送方法、接收方法、装置和通信系统
CN109495968B (zh) 用于进行数据传输的方法和装置
CA3229353A1 (en) Method for sending physical layer protocol data unit and communication apparatus
CN111436108B (zh) 一种功率控制的方法以及功率控制的装置
CN114303344A (zh) 网络编码设计
CN113243133B (zh) 通信方法和装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2023103790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027637A1 (zh) 资源确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050863.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901006

Country of ref document: EP