WO2018145405A1 - 充电检测方法和充电检测装置 - Google Patents

充电检测方法和充电检测装置 Download PDF

Info

Publication number
WO2018145405A1
WO2018145405A1 PCT/CN2017/093123 CN2017093123W WO2018145405A1 WO 2018145405 A1 WO2018145405 A1 WO 2018145405A1 CN 2017093123 W CN2017093123 W CN 2017093123W WO 2018145405 A1 WO2018145405 A1 WO 2018145405A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
branch
current
relay
determined
Prior art date
Application number
PCT/CN2017/093123
Other languages
English (en)
French (fr)
Inventor
颜昱
张迪
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018145405A1 publication Critical patent/WO2018145405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a charging detection method and a charging detection device.
  • the charging system is often charged by a single relay.
  • the single-circuit relay is disconnected, the voltage of the front and rear ends of the relay can be detected to achieve the purpose of relay fault diagnosis.
  • the embodiment of the present application provides a charging detection method and a charging detection device, which are intended to solve the technical problem of the method for performing relay breaking detection on a charging system in parallel with multiple relays in the related art, and can effectively multi-channel
  • the charging system in parallel with the relay performs charging detection to improve the safety of charging.
  • an embodiment of the present application provides a charging detection method, including: acquiring, in a charging detection state, a branch current on each charging branch of a charging system; determining the branch according to a capacity integral of the branch current The on/off state of the charging branch corresponding to the road current.
  • the capacity product according to the branch current And determining, by the step of determining, the on/off state of the charging branch corresponding to the branch current, specifically: detecting whether a capacity integral of the target charging branch is less than a predetermined integration threshold; wherein, when detecting the capacity of the target charging branch When the integral is less than or equal to the predetermined integration threshold, determining whether there are other charging branches in the charging branch whose capacity integral is greater than a predetermined multiple of the predetermined integration threshold; when the determination result is yes, the target charging branch The relay is determined to be an open circuit, and the target charging branch is determined to be an open circuit; when the determination result is negative, the relay of the target charging branch is determined to be a path, and the target charging branch is determined to be a path.
  • the predetermined multiple is 5.
  • the method further includes: stopping charging when the target charging branch is determined to be an open circuit; and corresponding to each charging branch when the target charging branch is determined to be a path
  • the capacity integral of the branch current determines the charging current for each charging branch.
  • the method further includes: closing the relay in each charging branch according to the received charging request; After the relay is closed, the charging system is charged by a predetermined charging detection current, and the charging detection state is entered.
  • the predetermined charge detection current ranges from 0.1C to 0.2C.
  • an embodiment of the present application provides a charging detection apparatus, including: a branch current detecting unit, in a charging detection state, acquiring a branch current of each charging branch of the charging system; and a charging detecting unit according to the branch The capacity integral of the circuit current determines the on-off state of the charging branch corresponding to the branch current.
  • the charging detecting unit is specifically configured to: detect whether a capacity integral of the target charging branch is less than a predetermined integration threshold, and when detecting that the capacity integral of the target charging branch is less than or equal to Determining, in the predetermined integration threshold, whether there are other charging branches in the charging branch that have a capacity integral greater than a predetermined multiple of the predetermined integration threshold, wherein when the determination result is yes, the relay of the target charging branch determines In order to open the circuit, the target charging branch is judged to be an open circuit, when the judgment result is If not, the relay of the target charging branch is determined to be a path, and the target charging branch is determined to be a path.
  • the predetermined multiple is 5.
  • the method further includes: an execution unit, when the target charging branch is determined to be an open circuit, stopping charging, and when the target charging branch is determined to be a path, according to each charging branch The capacity integral of the branch current corresponding to the path determines the charging current of each charging branch.
  • the method further includes: a relay closing unit that closes according to the received charging request before the branch current detecting unit acquires the branch current of each charging branch of the charging system a relay in each charging branch; and the charging detecting unit is further configured to: after the relay is closed, charge the charging system by a predetermined charging detection current to enter the charging detection state.
  • the predetermined charge detection current ranges from 0.1C to 0.2C.
  • the current of each branch can be collected, that is, the current through the relays on each branch, and the calculation of each branch is performed.
  • the capacity of the current is integrated to determine the charging capacity of each branch, thereby further determining the on/off state of the relays of each charging branch or each branch, and when the relay of a certain branch is broken, the charging can be stopped and the warranty is guaranteed.
  • all the charging capabilities of the relays are valid, it means that all the charging branches are in the path and can be charged normally.
  • FIG. 1 shows a flow chart of a charging detection method of one embodiment of the present application
  • Figure 2 is a schematic diagram showing multi-branch current acquisition in Figure 1;
  • FIG. 3 is a flow chart showing a charging detection method of another embodiment of the present application.
  • FIG. 4 is a block diagram showing a charge detecting device of one embodiment of the present application.
  • FIG. 5 shows a block diagram of a charging system of one embodiment of the present application.
  • FIG. 1 shows a flow chart of a charge detection method of one embodiment of the present application.
  • a charging detection method includes:
  • Step 102 Obtain a branch current on each charging branch of the charging system in the charging detection state.
  • Step 104 Determine an on/off state of the charging branch corresponding to the branch current according to the capacity integral of the branch current.
  • the above technical solution collects the current of each branch, that is, the current through the relays on each branch, and calculates the capacity integral of the current of each branch to determine the charging capacity of each branch, thereby further determining each charging branch or Relay on each branch
  • the charging can be stopped and the warranty can be guaranteed.
  • all charging capabilities of the relay are valid, all charging branches are used as paths and can be charged normally.
  • the step 104 includes: detecting whether the capacity integral of the target charging branch is less than a predetermined integration threshold; and determining that the capacity integral of the target charging branch is less than or equal to a predetermined integration threshold, determining Whether there are other charging branches in the charging branch whose capacity integral is greater than a predetermined multiple of the predetermined integration threshold; wherein, when the determination result is YES, the relay of the target charging branch is judged to be an open circuit, and the target charging branch is judged to be an open circuit; When the determination result is no, the relay that determines the target charging branch is determined to be the path, and the target charging branch is determined to be the path.
  • the capacity integral of the target charging branch when it is detected that the capacity integral of the target charging branch is less than or equal to a predetermined integration threshold, it indicates that the charging capacity of the target charging branch is lower than the level that should be reached, and further, when there is a capacity integral greater than that in all charging branches
  • the other charging branches of the predetermined multiple of the integral threshold are predetermined, the charging capability of the target charging branch is greatly different from the charging capacity of the other charging branch. At this time, the relay of the target charging branch is considered to be open. That is, the target charging branch is broken and cannot be effectively charged.
  • the predetermined integration threshold is determined by multiple tests and is set in the charging system at the factory.
  • the predetermined integration threshold is 0.2Q1, that is, the predetermined multiple is 5, of course, and the predetermined multiple may be other values as needed.
  • Q1 can be taken as 600A*S, and the minimum output current of the charger is 20A, and the charging is continued for 30S.
  • the output current is limited to 20A.
  • the charging request is obtained, if the current of the battery pack request 0.1C is less than 20A, the minimum output current of the charger will be 20A.
  • Open circuit detection requires monitoring reliability and rapid detection. If the integration time is too short, the difference in DC resistance between the branches will cause a difference in the current flowing through the branch. In the case of ensuring no false detection, taking into account the requirements of rapid detection, through laboratory testing, 30S can meet the requirements.
  • the predetermined integration threshold can be expanded to a value larger than 0.2Q1.
  • the charging is stopped, and at the same time, measures such as reporting faults and warnings can be taken to prevent the charging system from being charged in a large current for a long time in the case of an open circuit of the branch, thereby improving the safety of charging.
  • the charging current of each charging branch can be determined according to the capacity integral of the branch current corresponding to each charging branch to improve the charging capability.
  • the method further includes: closing a relay in each charging branch according to the received charging request; and detecting the current as a charging system by a predetermined charging after the relay is closed Charging, enters the charge detection state.
  • the predetermined charging detection current ranges from 0.1C to 0.2C. Of course, it may be other ranges as needed, and the predetermined charging detection current is much smaller than the charging current during normal charging, if charging is performed during normal charging. The current is detected by the relay open circuit, which is easy to cause safety hazard due to excessive charging current during normal charging when the circuit is faulty. Therefore, using a smaller predetermined charging detection current can minimize the safety hazard and ensure the charging test. Safety.
  • Figure 2 shows a schematic diagram of multi-leg current acquisition in Figure 1.
  • a current collecting unit may be disposed on each branch of the charging system, and the current collecting unit may be a current sensor or the like for collecting the current passing through the relay in the branch and transmitting it to the BMS control. Device.
  • each branch of the charging system further includes a signal filtering unit, and the signal filtering
  • the unit can use analog low-pass filter or digital low-pass filter to filter out current interference and improve the anti-interference ability of the circuit.
  • a relay control unit is also included for executing a control command of the BMS controller to close and open the relay.
  • the BMS controller is used to obtain the current of each branch, and then calculate the capacity integral according to the branch current to obtain the charging capability of the relay in the branch, so as to judge the branch according to the charging ability of the relay, that is, the current state. Whether the relay is open circuit fault.
  • FIG. 3 shows a flow chart of a charge detecting method of another embodiment of the present application.
  • a charging detection method includes:
  • step 302 charging begins.
  • Step 304 closing the relays 1 to N on the charging branch.
  • the relay in each charging branch is closed; after the relay is closed, the charging system is charged by the predetermined charging detection current, and the charging detection state is entered.
  • step 306 a smaller charging current is applied.
  • the charging system After closing the relay in each charging branch, the charging system can be charged by a small charging current to enter the charging detection state, wherein the smaller charging current ranges from 0.1C to 0.2C, which is much smaller than that during normal charging.
  • Charging current if the relay current is detected by the charging current during normal charging, it is easy to cause safety hazard due to excessive charging current during normal charging when the circuit is faulty. Therefore, the charging process can be performed with a smaller charging current. The safety hazards are minimized to ensure the safety of the charging test.
  • Step 308 calculating the capacity integral of the charging current flowing through the 1 to N branches.
  • Step 310 According to the capacity integration, it is detected whether the relay of each charging branch is open. When the determination result is yes, the process proceeds to step 312. If the determination result is negative, the process proceeds to step 314.
  • the capacity integral of a charging branch When it is detected that the capacity integral of a charging branch is less than or equal to a predetermined integration threshold, it indicates that the charging capacity of the charging branch is lower than the level that should be reached, and further, when there is a capacity integral in all charging branches, the capacity integral is greater than a predetermined integration threshold.
  • the charging branch of the predetermined charging multiple When the charging branch of the predetermined charging multiple is different, the charging capability of the charging branch is greatly different from the charging capability of the other charging branch. At this time, the relay of the charging branch is considered to be open. That is, the target charging branch is broken and cannot be effectively charged.
  • step 312 the charging branch has an open circuit failure, the warranty fails and the charging is stopped.
  • FIG. 4 shows a block diagram of a charge detecting device of one embodiment of the present application.
  • the charging detection apparatus 400 of one embodiment of the present application includes: a branch current detecting unit 402 that acquires a branch current on each charging branch of the charging system in a charging detection state; and a charging detecting unit 404. Determine, according to the capacity integral of the branch current, an on/off state of the charging branch corresponding to the branch current.
  • the charging detecting unit 404 is specifically configured to: detect whether the capacity integral of the target charging branch is less than a predetermined integration threshold, and when detecting that the capacity integral of the target charging branch is less than or equal to a predetermined integral threshold And determining, in all the charging branches, whether there are other charging branches whose capacity integral is greater than a predetermined multiple of the predetermined integration threshold, wherein when the determination result is YES, the relay of the target charging branch is determined to be an open circuit, and the target charging branch is determined as When the determination result is negative, the relay that determines the target charging branch is determined to be the path, and the target charging branch is determined to be the path.
  • the predetermined multiple is 5.
  • the method further includes: an executing unit 406, when the target charging branch is determined to be an open circuit, stopping charging, and when the target charging branch is determined to be a path, according to each charging branch
  • the capacity integral of the branch current determines the charging current for each charging branch.
  • the method further includes: a relay closing unit 408, before the branch current detecting unit acquires the branch current of each charging branch of the charging system, according to the received charging request, close each The relay in the charging branch; and the charging detecting unit 404 is further configured to: after the relay is closed, charge the charging system by a predetermined charging detection current, and enter a charging detection state.
  • the predetermined charge detection current ranges from 0.1C to 0.2C.
  • FIG. 5 shows a block diagram of a charging system of one embodiment of the present application.
  • a charging system 500 in accordance with an embodiment of the present application includes FIG. 4 shows the charging detecting device 400. Therefore, the charging system 500 has the same technical effects as the charging detecting device 400 shown in FIG. 4, and details are not described herein again.
  • the charging system may be a charger, such as a charging pile of an electric vehicle, or a part of the terminal to be charged, for example, may be integrated in a charging part of the electric vehicle.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to a determination” or “in response to Detection”.
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, A server, or a network device, or the like, performs a portion of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

一种充电检测方法和一种充电检测装置(400),充电检测方法包括:在充电检测状态中,获取充电系统的每个充电支路上的支路电流(102);根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态(104)。通过该技术方案,能够精准识别出充电系统的某一支路的继电器的断路故障,并以便及时向整车和充电机发出报警并且停止充电,避免充电系统长期处于某支路开路情况下大电流充电,提升了充电的安全性。

Description

充电检测方法和充电检测装置 技术领域
本申请涉及电池技术领域,尤其涉及一种充电检测方法和一种充电检测装置。
背景技术
目前,充电系统中往往通过单路继电器充电,对单路继电器进行断路检测时,可通过检测继电器前后端的电压来达到继电器故障诊断的目的。
然而,对于需要快速充电的充电系统,为了获取更短的充电时间,需要不断提高充电电流,则需使用多路继电器并联,才能满足提高充电电流的要求。但是,由于多路继电器并联后,各路继电器的前后端电压相同,无法再通过检测继电器前后端的电压来进行继电器故障诊断。
因此,如何为多路继电器并联的充电系统进行充电检测,成为目前亟待解决的技术问题。
发明内容
本申请实施例提供了一种充电检测方法和一种充电检测装置,旨在解决相关技术中缺少有效的对多路继电器并联的充电系统进行继电器断路检测的方法的技术问题,能够有效对多路继电器并联的充电系统进行充电检测,提升充电的安全性。
第一方面,本申请实施例提供了一种充电检测方法,包括:在充电检测状态中,获取充电系统的每个充电支路上的支路电流;根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态。
在本申请上述实施例中,可选地,所述根据支路电流的容量积 分,确定所述支路电流对应的充电支路的通断状态的步骤,具体包括:检测目标充电支路的容量积分是否小于预定积分阈值;其中,当检测到所述目标充电支路的容量积分小于或等于所述预定积分阈值时,判断所有充电支路中是否存在容量积分大于所述预定积分阈值的预定倍数的其他充电支路;当判断结果为是时,所述目标充电支路的继电器判断为断路,所述目标充电支路判断为断路;当判断结果为否时,所述目标充电支路的继电器判断为通路,所述目标充电支路判断为通路。
在本申请上述实施例中,可选地,所述预定倍数为5。
在本申请上述实施例中,可选地,还包括:当所述目标充电支路判断为断路时,停止充电;当所述目标充电支路判断为通路时,按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流。
在本申请上述实施例中,可选地,在所述获取充电系统的每个充电支路上的支路电流之前,还包括:根据接收到的充电请求,闭合每个充电支路中的继电器;在闭合继电器后,通过预定充电检测电流为所述充电系统充电,进入所述充电检测状态。
在本申请上述实施例中,可选地,所述预定充电检测电流的范围为0.1C至0.2C。
第二方面,本申请实施例提供了一种充电检测装置,包括:支路电流检测单元,在充电检测状态中,获取充电系统的每个充电支路上的支路电流;充电检测单元,根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态。
在本申请上述实施例中,可选地,所述充电检测单元具体用于:检测目标充电支路的容量积分是否小于预定积分阈值,当检测到所述目标充电支路的容量积分小于或等于所述预定积分阈值时,判断所有充电支路中是否存在容量积分大于所述预定积分阈值的预定倍数的其他充电支路,其中,当判断结果为是时,所述目标充电支路的继电器判断为断路,所述目标充电支路判断为断路,当判断结果 为否时,所述目标充电支路的继电器判断为通路,所述目标充电支路判断为通路。
在本申请上述实施例中,可选地,所述预定倍数为5。
在本申请上述实施例中,可选地,还包括:执行单元,当所述目标充电支路判断为断路时,停止充电,当所述目标充电支路判断为通路时,按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流。
在本申请上述实施例中,可选地,还包括:继电器闭合单元,在所述支路电流检测单元获取充电系统的每个充电支路上的支路电流之前,根据接收到的充电请求,闭合每个充电支路中的继电器;以及所述充电检测单元还用于:在闭合继电器后,通过预定充电检测电流为所述充电系统充电,进入所述充电检测状态。
在本申请上述实施例中,可选地,所述预定充电检测电流的范围为0.1C至0.2C。
针对相关技术中的缺少有效的对多路继电器并联的充电系统进行继电器断路检测的方法的技术问题,可以采集各个支路的电流,即通过各支路上的继电器的电流,并计算各个支路的电流的容量积分,以确定各个支路的充电能力,从而进一步确定各个充电支路或者说各个支路上的继电器的通断状态,当某一支路的继电器断路时,可停止充电,并进行保修,当全部继电器的充电能力均有效时,说明所有充电支路为通路,可正常充电。
通过以上技术方案,能够精准识别出充电系统的某一支路的继电器的断路故障,并以便及时向整车和充电机发出报警并且停止充电,避免充电系统长期处于某支路开路情况下大电流充电,提升了充电的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1示出了本申请的一个实施例的充电检测方法的流程图;
图2示出了图1中进行多支路电流采集的示意图;
图3示出了本申请的另一个实施例的充电检测方法的流程图;
图4示出了本申请的一个实施例的充电检测装置的框图;
图5示出了本申请的一个实施例的充电系统的框图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
图1示出了本申请的一个实施例的充电检测方法的流程图。
如图1所示,本申请的一个实施例的充电检测方法,包括:
步骤102,在充电检测状态中,获取充电系统的每个充电支路上的支路电流。
步骤104,根据支路电流的容量积分,确定支路电流对应的充电支路的通断状态。
以上技术方案,采集各个支路的电流,即通过各支路上的继电器的电流,并计算各个支路的电流的容量积分,以确定各个支路的充电能力,从而进一步确定各个充电支路或者说各个支路上的继电 器的通断状态,当某一支路的继电器断路时,可停止充电,并进行保修,当全部继电器的充电能力均有效时,说明所有充电支路为通路,可正常充电。
通过以上技术方案,能够精准识别出充电系统的某一支路的继电器的断路故障,并以便及时向整车和充电机发出报警并且停止充电,避免充电系统长期处于某支路开路情况下大电流充电,提升了充电的安全性。
在本申请上述实施例中,可选地,步骤104具体包括:检测目标充电支路的容量积分是否小于预定积分阈值;当检测到目标充电支路的容量积分小于或等于预定积分阈值时,判断所有充电支路中是否存在容量积分大于预定积分阈值的预定倍数的其他充电支路;其中,当判断结果为是时,目标充电支路的继电器判断为断路,目标充电支路判断为断路;当判断结果为否时,确定目标充电支路的继电器判断为通路,目标充电支路判断为通路。
继电器不存在断路时,流过各个支路的电流理论上是相等的,但是由于DCR(直流电阻)的差异,实际流过的电流有差异。但是,某一支路继电器断路时,流经该支路的电流为0A左右,通过正常和异常的差异比较,就可以识别出支路断路。
因此,当检测到目标充电支路的容量积分小于或等于预定积分阈值时,说明该目标充电支路的充电能力低于其应达到的水平,进一步地,当所有充电支路中存在容量积分大于预定积分阈值的预定倍数的其他充电支路时,说明目标充电支路的充电能力与该其他充电支路的充电能力差异极大,此时,即可认为该目标充电支路的继电器断路,也就是该目标充电支路断路,无法进行有效充电。
其中,预定积分阈值由多次试验来确定,并在出厂时设定在充电系统中。优选地,预定积分阈值为0.2Q1,即预定倍数为5当然,预定倍数也可以是根据需要除此之外的其他值。
在通过试验确定预定积分阈值时,可令Q1取600A*S,利用充电机最小输出电流20A,持续充电30S,目前市场上充电机的最小 输出电流的限制,一般为20A。获取到充电请求时,电池包请求0.1C的电流若小于20A时,也会取充电机的最小输出电流20A。断路检测需要监控可靠性和快速检测性,安时积分的时间太短的话,支路之间直流电阻的差异会导致多流过的支路电流自身存在差异。在保证不误检测的情况下,兼顾快速检测的要求,通过实验室测试,30S是可以满足要求。
因此,在保证支路之间直流电阻的影响、不会产生误报警的前提下,预定积分阈值可以扩充为比0.2Q1更大的数值。
进一步地,当目标充电支路判断为断路时,停止充电,并同时可采取上报故障、示警等措施,避免充电系统长期处于某支路开路情况下大电流充电,提升了充电的安全性。
而当目标充电支路判断为通路时,则可按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流,以提升充电能力。
在本申请上述实施例中,可选地,在步骤102之前,还包括:根据接收到的充电请求,闭合每个充电支路中的继电器;在闭合继电器后,通过预定充电检测电流为充电系统充电,进入充电检测状态。
其中,预定充电检测电流的范围为0.1C至0.2C,当然,也可以为根据需要除此之外的其他范围,预定充电检测电流远小于正常充电时的充电电流,如果采用正常充电时的充电电流进行继电器断路检测,很容易在电路发生故障时因将正常充电时的充电电流过大而造成安全隐患,故采用较小的预定充电检测电流,可以将安全隐患降到最低,保证充电测试的安全。
图2示出了图1中进行多支路电流采集的示意图。
如图2所示,可以在充电系统的每个支路上设置电流采集单元,电流采集单元可以是电流传感器等装置,用来采集所在支路中的通过继电器的电流,并将其发送给BMS控制器。
同时,该充电系统的每个支路还包括信号滤波单元,信号滤波 单元可采用模拟式的低通滤波器或者数字式的低通滤波器,用于滤除电流干扰,提高电路的抗干扰能力。
另外,在每个继电器中,还包括继电器控制单元,用于执行BMS控制器的控制命令,闭合和断开继电器。
BMS控制器则用于获得各支路电流,然后根据支路电流,计算其容量积分,得到其支路中的继电器的充电能力,从而依据继电器的充电能力,也就是当前状态,判断支路中的继电器是否断路故障。
图3示出了本申请的另一个实施例的充电检测方法的流程图。
如图3所示,本申请的另一个实施例的充电检测方法,包括:
步骤302,充电开始。
步骤304,闭合充电支路上的继电器1~N。
闭合每个充电支路中的继电器;在闭合继电器后,通过预定充电检测电流为充电系统充电,进入充电检测状态。
步骤306,申请较小的充电电流。
闭合每个充电支路中的继电器后,可通过较小的充电电流为充电系统充电,进入充电检测状态,其中,较小的充电电流的范围为0.1C至0.2C,远小于正常充电时的充电电流,如果采用正常充电时的充电电流进行继电器断路检测,很容易在电路发生故障时因将正常充电时的充电电流过大而造成安全隐患,故采用较小的充电电流,可以将检测过程中的安全隐患降到最低,保证充电测试的安全。
步骤308,计算流经1~N支路的充电电流的容量积分。
步骤310,根据容量积分,检测各充电支路的继电器是否断路,当判断结果为是时,进入步骤312,当判断结果为否时,进入步骤314。
当检测到一条充电支路的容量积分小于或等于预定积分阈值时,说明该充电支路的充电能力低于其应达到的水平,进一步地,当所有充电支路中存在容量积分大于预定积分阈值的预定倍数的其他充电支路时,说明该条充电支路的充电能力与该其他充电支路的充电能力差异极大,此时,即可认为该该条充电支路的继电器断路, 也就是该目标充电支路断路,无法进行有效充电。
步骤312,该充电支路存在断路故障,保修故障并停止充电。
步骤314,开始正常充电。
图4示出了本申请的一个实施例的充电检测装置的框图。
如图4所示,本申请的一个实施例的充电检测装置400,包括:支路电流检测单元402,在充电检测状态中,获取充电系统的每个充电支路上的支路电流;充电检测单元404,根据支路电流的容量积分,确定支路电流对应的充电支路的通断状态。
在本申请上述实施例中,可选地,充电检测单元404具体用于:检测目标充电支路的容量积分是否小于预定积分阈值,当检测到目标充电支路的容量积分小于或等于预定积分阈值时,判断所有充电支路中是否存在容量积分大于预定积分阈值的预定倍数的其他充电支路,其中,当判断结果为是时,目标充电支路的继电器判断为断路,目标充电支路判断为断路,当判断结果为否时,确定目标充电支路的继电器判断为通路,目标充电支路判断为通路。
在本申请上述实施例中,可选地,预定倍数为5。
在本申请上述实施例中,可选地,还包括:执行单元406,当目标充电支路判断为断路时,停止充电,当目标充电支路判断为通路时,按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流。
在本申请上述实施例中,可选地,还包括:继电器闭合单元408,在支路电流检测单元获取充电系统的每个充电支路上的支路电流之前,根据接收到的充电请求,闭合每个充电支路中的继电器;以及充电检测单元404还用于:在闭合继电器后,通过预定充电检测电流为充电系统充电,进入充电检测状态。
在本申请上述实施例中,可选地,预定充电检测电流的范围为0.1C至0.2C。
图5示出了本申请的一个实施例的充电系统的框图。
如图5所示,根据本申请的一个实施例的充电系统500,包括 图4示出的充电检测装置400,因此,该充电系统500具有和图4示出的充电检测装置400相同的技术效果,在此不再赘述。
其中,该充电系统可以为充电器,比如,电动汽车的充电桩等,也可以为待充电终端的一部分,比如,可集成在电动汽车的充电部中。
以上结合附图详细说明了本申请的技术方案,通过本申请的技术方案,能够精准识别出充电系统的某一支路的继电器的断路故障,并以便及时向整车和充电机发出报警并且停止充电,避免充电系统长期处于某支路开路情况下大电流充电,提升了充电的安全性。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在......时”或“当......时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机, 服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种充电检测方法,其特征在于,包括:
    在充电检测状态中,获取充电系统的每个充电支路上的支路电流;
    根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态。
  2. 根据权利要求1所述的充电检测方法,其特征在于,所述根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态的步骤,具体包括:
    检测目标充电支路的容量积分是否小于预定积分阈值;
    当检测到所述目标充电支路的容量积分小于或等于所述预定积分阈值时,判断所有充电支路中是否存在容量积分大于所述预定积分阈值的预定倍数的其他充电支路;其中,
    当判断结果为是时,所述目标充电支路的继电器判断为断路,所述目标充电支路判断为断路;
    当判断结果为否时,所述目标充电支路的继电器判断为通路,所述目标充电支路判断为通路。
  3. 根据权利要求2所述的充电检测方法,其特征在于,所述预定倍数为5。
  4. 根据权利要求2所述的充电检测方法,其特征在于,还包括:
    当所述目标充电支路判断为断路时,停止充电;
    当所述目标充电支路判断为通路时,按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流。
  5. 根据权利要求1至4中任一项所述的充电检测方法,其特征在于,在所述获取充电系统的每个充电支路上的支路电流之前,还包括:
    根据接收到的充电请求,闭合每个充电支路中的继电器;
    在闭合继电器后,通过预定充电检测电流为所述充电系统充电,进入所述充电检测状态。
  6. 根据权利要求5所述的充电检测方法,其特征在于,所述预定充电检测电流的范围为0.1C至0.2C。
  7. 一种充电检测装置,其特征在于,包括:
    支路电流检测单元,在充电检测状态中,获取充电系统的每个充电支路上的支路电流;
    充电检测单元,根据支路电流的容量积分,确定所述支路电流对应的充电支路的通断状态。
  8. 根据权利要求7所述的充电检测装置,其特征在于,所述充电检测单元具体用于:
    检测目标充电支路的容量积分是否小于预定积分阈值,当检测到所述目标充电支路的容量积分小于或等于所述预定积分阈值时,判断所有充电支路中是否存在容量积分大于所述预定积分阈值的预定倍数的其他充电支路,其中,当判断结果为是时,所述目标充电支路的继电器判断为断路,所述目标充电支路判断为断路,当判断结果为否时,所述目标充电支路的继电器判断为通路,所述目标充电支路判断为通路。
  9. 根据权利要求7所述的充电检测装置,其特征在于,所述预定倍数为5。
  10. 根据权利要求7所述的充电检测装置,其特征在于,还包括:
    执行单元,当所述目标充电支路判断为断路时,停止充电,当所述目标充电支路判断为通路时,按照每个充电支路对应的支路电流的容量积分确定每个充电支路的充电电流。
  11. 根据权利要求7至10中任一项所述的充电检测装置,其特征在于,还包括:
    继电器闭合单元,在所述支路电流检测单元获取充电系统的每个充电支路上的支路电流之前,根据接收到的充电请求,闭合每个充电支路中的继电器;以及
    所述充电检测单元还用于:
    在闭合继电器后,通过预定充电检测电流为所述充电系统充电, 进入所述充电检测状态。
  12. 根据权利要求11所述的充电检测装置,其特征在于,所述预定充电检测电流的范围为0.1C至0.2C。
PCT/CN2017/093123 2017-02-08 2017-07-17 充电检测方法和充电检测装置 WO2018145405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710068851.3A CN106856347B (zh) 2017-02-08 2017-02-08 充电检测方法和充电检测装置
CN201710068851.3 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018145405A1 true WO2018145405A1 (zh) 2018-08-16

Family

ID=59125084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093123 WO2018145405A1 (zh) 2017-02-08 2017-07-17 充电检测方法和充电检测装置

Country Status (2)

Country Link
CN (1) CN106856347B (zh)
WO (1) WO2018145405A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856347B (zh) * 2017-02-08 2019-10-15 宁德时代新能源科技股份有限公司 充电检测方法和充电检测装置
CN109254201B (zh) * 2018-09-18 2021-04-09 易维德科(北京)电子科技有限公司 电学参数计量方法、装置、充电设备和存储介质
CN110696623A (zh) * 2019-10-29 2020-01-17 昆山宝创新能源科技有限公司 车辆、电池系统及其检测方法
CN112913106A (zh) * 2020-04-26 2021-06-04 深圳市大疆创新科技有限公司 充电控制方法、充电器、充电系统及存储介质
WO2024050772A1 (zh) * 2022-09-08 2024-03-14 宁德时代新能源科技股份有限公司 电池系统的控制方法和控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201160230Y (zh) * 2008-01-10 2008-12-03 周雨方 蓄电池充电装置
CN101615857A (zh) * 2008-06-27 2009-12-30 株式会社日立制作所 断线检测方法及电力转换装置
US20110257915A1 (en) * 2010-04-15 2011-10-20 Toyota Jidosha Kabushiki Kaisha Apparatus for calculating state of charge, method of calculating state of charge, and electric system
CN106856347A (zh) * 2017-02-08 2017-06-16 宁德时代新能源科技股份有限公司 充电检测方法和充电检测装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084362B4 (de) * 2011-03-30 2015-03-05 Bender Gmbh & Co. Kg Elektrische Schutz- und Überwachungseinrichtung in einem Elektrofahrzeug zum sicheren Fahrbetrieb sowie zum sicheren Lade- und Rückspeisebetrieb des Elektrofahrzeugs an einer Ladestation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201160230Y (zh) * 2008-01-10 2008-12-03 周雨方 蓄电池充电装置
CN101615857A (zh) * 2008-06-27 2009-12-30 株式会社日立制作所 断线检测方法及电力转换装置
US20110257915A1 (en) * 2010-04-15 2011-10-20 Toyota Jidosha Kabushiki Kaisha Apparatus for calculating state of charge, method of calculating state of charge, and electric system
CN106856347A (zh) * 2017-02-08 2017-06-16 宁德时代新能源科技股份有限公司 充电检测方法和充电检测装置

Also Published As

Publication number Publication date
CN106856347B (zh) 2019-10-15
CN106856347A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2018145405A1 (zh) 充电检测方法和充电检测装置
CN107031410B (zh) 一种电动汽车预充电电路及其故障诊断方法
CN112467814B (zh) 一种电池组放电管理方法和系统
US11313908B2 (en) Detection circuit, method, and apparatus
CN108037366A (zh) 一种电动汽车的绝缘电阻检测系统及其检测方法
CN111189645B (zh) 用于以减少的处理时间执行诊断过程的方法和系统
WO2021052116A1 (zh) 充电过流保护电路及方法
CN108832686B (zh) 充电回路及充电回路检测方法
CN108232347A (zh) 自动导引运输车的电池模组管理方法、装置
CN109342935A (zh) 一种直流母线充电电路继电器失效检测装置、方法及电机
CN102798803A (zh) 配电网线路故障检测方法
WO2022135554A1 (zh) 车辆高压电路检测方法、装置、车辆及存储介质
CN109950879B (zh) 用电电路的充电保护装置、方法和具有充电保护的电路
CN105823954B (zh) 蓄电池组接地点的检测装置及方法、直流电源系统
TWI629849B (zh) 電池狀態測試方法及其系統
KR20230002747A (ko) 전원과 접지 간의 절연 고장을 검출하는 방법
CN210542971U (zh) 耦合bms的新能源大巴电池自动灭火装置
CN108387800B (zh) 一种蓄电池组主回路状态多维判断方法
CN113745672A (zh) 电池自加热控制方法、电池自加热装置、系统和车辆
CN116626492A (zh) 电池故障诊断方法、装置及车辆
CN213482396U (zh) 基于正负极的继电器检测电路及检测装置
CN116231806A (zh) 一种电池管理系统的短路保护装置及短路保护方法
WO2020062239A1 (zh) 充电装置的测试系统和方法
CN113439215A (zh) 基于正负极的继电器检测电路及检测装置
CN102998536A (zh) 一种高可靠性的直流母线绝缘电阻检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895637

Country of ref document: EP

Kind code of ref document: A1