WO2018145396A1 - 触控模块、显示面板、显示装置和触摸控制方法 - Google Patents

触控模块、显示面板、显示装置和触摸控制方法 Download PDF

Info

Publication number
WO2018145396A1
WO2018145396A1 PCT/CN2017/090742 CN2017090742W WO2018145396A1 WO 2018145396 A1 WO2018145396 A1 WO 2018145396A1 CN 2017090742 W CN2017090742 W CN 2017090742W WO 2018145396 A1 WO2018145396 A1 WO 2018145396A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
touch electrode
module
row
Prior art date
Application number
PCT/CN2017/090742
Other languages
English (en)
French (fr)
Inventor
刘波
邵贤杰
王秀娟
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/781,773 priority Critical patent/US10983649B2/en
Publication of WO2018145396A1 publication Critical patent/WO2018145396A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch module, a display panel, a display device, and a touch control method.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel according to the composition structure.
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then being bonded together to become a liquid crystal display with touch function.
  • the external touch screen has higher production cost and light transmittance. Low, thicker modules and other shortcomings.
  • the in-cell touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by major panel manufacturers.
  • FIG. 1 is a schematic diagram of a scan signal wiring of a touch electrode in the prior art.
  • 2 is a schematic diagram of a scanning method of a touch electrode in the prior art.
  • the scan signal Tx is sent to the touch electrode
  • the sensing signal Rx from the touch electrode is received, thereby obtaining capacitance change information of the touch electrode.
  • the inventors have found that in the touch display using the principle of self-capacitance, the conventional driving method is to scan a fixed number of lines each time; thus, in the touch time period of a certain row, the edge of the working line is subjected to adjacent lines. The impact of the work line of the collected work is too large. As shown in FIG.
  • the touch electrodes 1, 2, and 3 near the touch point A are affected by the touch electrodes 3 and 4 in the adjacent rows.
  • the capacitance increments of 4 and 4 may be the same, thereby reducing the touch electrodes 1, 2
  • the touch electrodes 1 and 2 located in the work row may be determined to be “untouched”, which affects the touch accuracy. Therefore, it is desirable to eliminate the coupling effect between the directly adjacent touch electrode rows to achieve the overall uniformity of the capacitance, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the embodiments of the present invention provide a touch module, a display panel, a display device, and a touch control method, which eliminate the coupling effect between directly adjacent touch electrode rows and achieve overall uniformity of capacitance values. Thereby improving the accuracy of touch positioning and pressure touch.
  • an embodiment of the invention provides a touch module.
  • the touch module includes a first substrate and a touch electrode array disposed on the first surface of the first substrate. During the touch period of one touch electrode row, the same touch scan signal is simultaneously applied to the touch electrode row and at least one touch electrode row directly adjacent to the touch electrode row.
  • the same touch scan signal is simultaneously applied to the touch electrode row and directly to the touch electrode row. Adjacent at least one touch electrode row. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode rows is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the touch electrode array may include, for example, a plurality of touch electrode rows and a plurality of touch electrode columns perpendicular to the plurality of touch electrode rows.
  • rows and columns are concepts that are interchangeable. Therefore, in some embodiments, during the touch period of one touch electrode column, the same touch scan signal is simultaneously applied to the touch electrode column and at least directly adjacent to the touch electrode column. A touch electrode column. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode columns is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the touch module further includes a plurality of feedback signal switches corresponding to the touch electrodes in the touch electrode array; and the touch time period of one touch electrode row does not receive A feedback signal of at least one touch electrode row directly adjacent to the touch electrode row.
  • the touch module may further include a plurality of feedback signal switches corresponding to the touch electrodes in the touch electrode array, and in one touch The touch period of the control electrode row/column does not receive the feedback signal of at least one touch electrode row/column directly adjacent to the touch electrode row/column. Thereby, the accuracy of touch positioning is further increased.
  • the touch module is used in a self-capacitance touch mode.
  • the touch module can be used in the self-capacitance touch mode, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the touch module further includes a common electrode disposed at a predetermined distance of the touch electrode array; at least one of the first substrate and the common electrode is deformable.
  • the capacitance of the touch electrode with respect to the common electrode may be changed according to a change in distance between the two. Therefore, the change in the distance can be utilized to determine the pressure of an object (eg, a finger) on the touch module, thereby implementing pressure touch.
  • the distance between the touch electrode and the common electrode and the coupling between adjacent touch electrodes have a large influence on the amount of capacitance change sensed. Therefore, the touch module can be used in pressure touch, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the term "common electrode” means an electrode connected to the ground.
  • the common electrode may be disposed on a second substrate opposite the first substrate; and the common electrode may be a common electrode array. In order to achieve the change in the distance, the second substrate may also be deformable.
  • an embodiment of the present invention provides a display panel.
  • the display panel includes a touch module as described in the above embodiments arranged in an embedded form.
  • the spacing between the touch electrodes is relatively small.
  • the touch module is disposed in an embedded form in the liquid crystal display panel to form an in-cell liquid crystal display panel, which can advantageously eliminate adjacent ones of the in-line liquid crystal display panels.
  • the touch module of the embodiment of the present invention may be disposed in an embedded form in an OLED (organic light emitting diode) display panel.
  • an embodiment of the present invention provides a display device.
  • the display device includes the display panel as described in the above embodiments.
  • an embodiment of the present invention provides a method of performing touch control using a touch module.
  • the touch module includes a first substrate and a touch electrode array disposed on the first surface of the first substrate.
  • the method includes: simultaneously applying the same touch scan signal to the touch electrode row and at least one touch directly adjacent to the touch electrode row during a touch period of a touch electrode row On the electrode line.
  • the same touch scan signal is simultaneously applied to the touch electrode row and at least one directly adjacent to the touch electrode row. Touch the electrode on the line. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode rows is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the method further includes: receiving, during a touch period of one touch electrode row, a feedback signal of at least one touch electrode row directly adjacent to the touch electrode row.
  • the touch module may further include a plurality of feedback signal switches corresponding to the touch electrodes in the touch electrode array, and in one touch The touch period of the control electrode row/column does not receive the feedback signal of at least one touch electrode row/column directly adjacent to the touch electrode row/column. Thereby, the accuracy of touch positioning is further increased.
  • the touch module operates in a self-capacitance touch mode.
  • the touch module can be used in the self-capacitance touch mode, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the touch module further includes a common electrode disposed at a predetermined distance of the touch electrode array; at least one of the first substrate and the common electrode is deformable.
  • the method further includes determining a pressure acting on the touch electrode based on a distance between the touch electrode and the common electrode.
  • the capacitance of the touch electrode with respect to the common electrode may be changed according to a change in distance between the two. Therefore, the change in the distance can be utilized to determine the pressure of an object (eg, a finger) on the touch module, thereby implementing pressure touch.
  • an object eg, a finger
  • FIG. 1 is a schematic diagram of scanning signal wiring of a touch electrode in the prior art
  • FIG. 2 is a schematic diagram of a scanning method of a touch electrode in the prior art
  • FIG. 3 illustrates the coupling effects between adjacent touch electrode rows in the prior art
  • FIG. 4 is a schematic diagram of a scanning method of a touch module according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of a scanning method of a touch module according to another embodiment of the present invention.
  • 6a-6c are schematic structural diagrams of a touch module for pressure touch according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram of a display panel in accordance with an embodiment of the present invention.
  • an embodiment of the invention provides a touch module.
  • the touch module 100 includes a first substrate 101 and a touch electrode array 103 disposed on the first surface 102 of the first substrate 101 .
  • the touch electrode array 103 includes a plurality of touch electrodes 1031 arranged in an array.
  • the same touch scan signal Tx is simultaneously applied to the touch electrode row 104 and the touch electrode row 105 directly adjacent to the touch electrode row 104.
  • the same touch scan signal is simultaneously applied to the touch electrode row and directly to the touch electrode row. Adjacent at least one touch electrode row. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode rows is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the touch electrode array may include, for example, a plurality of touch electrode rows and a plurality of touch electrode columns perpendicular to the plurality of touch electrode rows. Therefore, in some embodiments, during the touch period of one touch electrode column, the same touch scan signal is simultaneously applied to the touch electrode column and at least directly adjacent to the touch electrode column. A touch electrode column. Thereby, under the synchronous modulation, the directly adjacent touch electrodes are eliminated The coupling effect between the columns achieves the overall uniformity of the capacitance, thereby improving the accuracy of touch positioning and pressure touch.
  • the touch module 100 further includes a plurality of feedback signal switches 107 corresponding to the touch electrodes in the touch electrode array.
  • the switching of the feedback signal switch enables selective reception of the feedback signal of the touch electrode in the touch electrode array.
  • the feedback signal switch may be formed by a circuit switching element such as a thin film transistor, which is not limited herein.
  • the touch module may further include a plurality of feedback signal switches corresponding to the touch electrodes in the touch electrode array, and in one touch The touch control period of the control electrode row/column receives only the touch feedback signal from the touch electrode row/column, and does not receive at least one touch electrode row/column directly adjacent to the touch electrode row/column. Feedback signal. Thereby, the accuracy of touch positioning is further increased.
  • the same touch scan signal Tx is simultaneously applied to the touch electrode row 104 and the touch
  • the electrode rows are directly adjacent to the at least one touch electrode row 105, 106.
  • two or more directly adjacent touch electrode rows can also be set to work simultaneously.
  • the same touch scan signal Tx is simultaneously applied to the touch electrode rows 104, 104' and Similarly, the touch electrode rows 105, 104 directly adjacent to the touch electrode rows 104, 104; similarly, the same touch scan signal Tx can be simultaneously applied to more adjacent touch electrode rows Up, thereby eliminating the coupling effect over a larger area.
  • the touch module is used in a self-capacitance touch mode.
  • the touch module can be used in the self-capacitance touch mode, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the touch module 100 further includes a common electrode 108 disposed at a predetermined distance of the touch electrode array 103; the first substrate 101 At least one of the common electrode 108 and the common electrode 108 are deformable.
  • the common electrode 108 is subjected to pressure, causing deformation. Also, compared to Figure 6b, the common electrode 108 is subjected to greater pressure in Figure 6c.
  • the self-capacitance touch mode As the pressure increases, the self-capacitance also increases. The inventors have found that the accuracy of the pressure touch will be greatly affected without eliminating the coupling effects of adjacent rows. Referring to FIG. 3, for example, when the touch range is the range indicated by A, the touch electrode 1 may generate a small capacitance increment under the pressure shown in FIG. 6c, thereby determining the pressure as shown in FIG. 6b. status.
  • the capacitance of the touch electrode with respect to the common electrode may be changed according to a change in distance between the two. Therefore, the change in the distance can be utilized to determine the pressure of an object (eg, a finger) on the touch module, thereby implementing pressure touch.
  • the distance between the touch electrode and the common electrode and the coupling between adjacent touch electrodes have a large influence on the amount of capacitance change sensed. Therefore, the touch module can be used in pressure touch, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the common electrode 108 may be disposed on the second substrate 109 opposite the first substrate 101 as shown in FIGS. 6a-6c. And, the common electrode may also be a common electrode array. In order to achieve the change in the distance, the second substrate 109 may also be deformable.
  • an embodiment of the present invention provides a display panel.
  • the display panel 200 includes a display module 201 and a touch module 100 as described in the above embodiments arranged in an embedded form.
  • the spacing between the touch electrodes is relatively small.
  • the touch module is disposed in an embedded form in the liquid crystal display panel to form an in-cell liquid crystal display panel, which can advantageously eliminate adjacent ones of the in-line liquid crystal display panels.
  • the touch module of the embodiment of the invention may be arranged in an embedded form in the OLED display panel.
  • an embodiment of the present invention provides a display device.
  • the display device includes the display panel as described in the above embodiments.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device refer to the embodiment of the above touch module, and the repeated description is omitted.
  • an embodiment of the present invention provides a method of performing touch control using a touch module.
  • the touch module 100 includes a first substrate 101 and a touch electrode array 103 disposed on the first surface 102 of the first substrate 101 .
  • the touch electrode array 103 includes a plurality of touch electrodes 1031 arranged in an array.
  • the method includes: during the touch period of one touch electrode row 104, the same touch scan signal Tx is simultaneously applied to the touch electrode row 104 and directly adjacent to the touch electrode row 104. At least one touch electrode row 105, 106.
  • the same touch scan signal is simultaneously applied to the touch electrode row and at least one directly adjacent to the touch electrode row. Touch the electrode on the line. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode rows is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the same touch scan signal is simultaneously applied to the touch electrode column and at least one touch directly adjacent to the touch electrode column.
  • the control electrode column On the control electrode column. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode columns is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.
  • the method further includes: receiving only the touch feedback signal Rx from the touch electrode row 104 during a touch period of the touch electrode row 104, and not receiving the touch The feedback signal of the touch electrode rows 105, 106 directly adjacent to the control electrode row 104.
  • the touch module may further include a plurality of feedback signal switches corresponding to the touch electrodes in the touch electrode array, and in one touch The touch control period of the control electrode row/column receives only the touch feedback signal from the touch electrode row/column, and does not receive at least one touch electrode row/column directly adjacent to the touch electrode row/column. Feedback signal. Thereby, the accuracy of touch positioning is further increased.
  • the same touch scan signal Tx is simultaneously applied to the touch electrode row 104 and the touch
  • the electrode rows are directly adjacent to the at least one touch electrode row 105, 106.
  • two or more directly adjacent touch electrode rows can also be set to work simultaneously.
  • the two adjacent touch electrode rows 104, 104' are directly adjacent.
  • the same touch scan signal Tx is simultaneously applied to the touch electrode rows 104, 104' and the touch electrode row 105 directly adjacent to the touch electrode rows 104, 104', 106; similarly, the same touch scan signal Tx can also be simultaneously applied to more adjacent touch electrode rows, thereby eliminating the coupling effect on a larger area.
  • the touch module operates in a self-capacitance touch mode.
  • the touch module can be used in the self-capacitance touch mode, thereby eliminating the influence of adjacent touch electrodes on the amount of capacitance change.
  • the touch module 100 further includes a common electrode 108 disposed at a predetermined distance of the touch electrode array 103; the first substrate 101 and the common electrode 108. At least one of them is deformable.
  • the method further includes determining a pressure acting on the touch electrode based on a distance between the touch electrode and the common electrode.
  • the common electrode 108 may be disposed on the second substrate 109 opposite to the first substrate 101. And, the common electrode may also be a common electrode array. In order to achieve the change in the distance, the second substrate 109 may also be deformable.
  • Embodiments of the present invention provide a touch module, a display panel, a display device, and a touch control method.
  • the touch module includes a first substrate and a touch electrode array disposed on the first surface of the first substrate.
  • the same touch scan signal is simultaneously applied to the touch electrode row and at least one touch electrode row directly adjacent to the touch electrode row. Therefore, under the synchronous modulation, the coupling effect between the directly adjacent touch electrode rows is eliminated, and the overall uniformity of the capacitance is achieved, thereby improving the accuracy of the touch positioning and the pressure touch.

Abstract

本发明实施例提供了一种触控模块、显示面板、显示装置和触摸控制方法。所述触控模块包括第一基板和布置在所述第一基板的第一表面上的触控电极阵列。在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。

Description

触控模块、显示面板、显示装置和触摸控制方法
相关申请
本申请要求保护在2017年2月13日提交的申请号为201710076091.0的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种触控模块、显示面板、显示装置和触摸控制方法。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel)、覆盖表面式触摸屏(On Cell Touch Panel)、以及内嵌式触摸屏(In Cell Touch Panel)。其中,外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏,外挂式触摸屏存在制作成本较高、光透过率较低、模组较厚等缺点。而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家青睐。
发明内容
图1是现有技术中触控电极的扫描信号布线示意图。图2示出了现有技术中触控电极的扫描方式示意图,其中在向触控电极发送扫描信号Tx后,接收来自触控电极的感测信号Rx,从而获得触控电极的电容变化信息。发明人发现,在利用自电容的原理进行触控显示时,传统的驱动方式是每次扫描固定的行数;这样,在某一行的触控时间段,该工作行的边缘会受到相邻行的影响,从而导致采集到的该工作行的容值偏大。如图3所示,对于工作行中的触控电极1、2来说,由于受到相邻行中的触控电极3、4的影响,在触摸点A附近的触控电极1、2、3和4的电容增量有可能是相同的,从而减小了触控电极1、2 的预期电容增量。在此情况下,位于工作行中的触控电极1、2有可能被确定为“未触摸”,影响触控精度。因此,希望消除直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进触控定位以及压力触控的精度。
有鉴于此,本发明实施例提出了一种触控模块、显示面板、显示装置和触摸控制方法,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
根据本发明的一个方面,本发明的一个实施例提供了一种触控模块。所述触控模块包括第一基板和布置在所述第一基板的第一表面上的触控电极阵列。在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。
在本发明实施例中,在一个触控电极行的触控时间段(touch control period),相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
在本发明的实施例中,触控电极阵列可以例如包含多个触控电极行和与所述多个触控电极行垂直的多个触控电极列。在本发明的上下文中,行与列是可以互换的概念。因此,在一些实施例中,在一个触控电极列的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极列和与所述触控电极列直接相邻的至少一个触控电极列上。由此,在同步的调制下,消除了直接相邻的触控电极列之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
可选地,所述触控模块进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关;并且在一个触控电极行的触控时间段,不接收与所述触控电极行直接相邻的至少一个触控电极行的反馈信号。
在一些实施例中,为了准确地获得触摸位置和触摸面积,所述触控模块可以进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关,并且在一个触控电极行/列的触控时间段,不接收与所述触控电极行/列直接相邻的至少一个触控电极行/列的反馈信号。 由此,进一步增加了触控定位的精度。
可选地,所述触控模块用于自电容触控模式。
在自电容触控模式中,需要感测触控电极相对于地的电容变化量;并且,物体(例如手指)和相邻的触控电极对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于自电容触控模式中,从而消除相邻的触控电极对于电容变化量的影响。
可选地,所述触控模块还包括设置在所述触控电极阵列的预定距离处的公共电极;所述第一基板和所述公共电极之至少之一者是可变形的。
利用设置在所述触控电极阵列的预定距离处的公共电极,触控电极相对于公共电极的电容可以根据二者之间距离的变化而改变。因此,可以利用所述距离的变化来确定物体(例如手指)对于所述触控模块的压力,从而实现压力触控。然而,在压力触控期间,触控电极与公共电极的距离以及相邻的触控电极之间的耦合对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于压力触控中,从而消除相邻的触控电极对于电容变化量的影响。在本发明的上下文中,术语“公共电极”意味着与地相连的电极。本领域技术人员能够理解,所述公共电极可以布置在与所述第一基板相对的第二基板上;并且所述公共电极可以是公共电极阵列。为了实现所述距离的变化,所述第二基板也可以是可变形的。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示面板。所述显示面板包括以嵌入式的形式布置的如以上实施例所述的触控模块。
在内嵌式(In Cell)显示面板中,触控电极之间的间距相对较小。对于例如液晶显示面板来说,将所述触控模块以嵌入式的形式布置在所述液晶显示面板中,形成内嵌式液晶显示面板,能够有利地消除内嵌式液晶显示面板中相邻的触控电极行(或,相邻的触控电极列)之间的耦合影响。类似地,也可以将本发明实施例所述的触控模块以嵌入式的形式布置在OLED(有机发光二极管,organic light emitting diode)显示面板中。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示装置。所述显示装置包括如以上实施例所述的显示面板。
根据本发明的又一个方面,本发明的一个实施例提供了一种利用触控模块执行触摸控制的方法。所述触控模块包括第一基板和布置在所述第一基板的第一表面上的触控电极阵列。所述方法包括:在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。
在本发明实施例中,在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
可选地,所述方法进一步包括:在一个触控电极行的触控时间段,不接收与所述触控电极行直接相邻的至少一个触控电极行的反馈信号。
在一些实施例中,为了准确地获得触摸位置和触摸面积,所述触控模块可以进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关,并且在一个触控电极行/列的触控时间段,不接收与所述触控电极行/列直接相邻的至少一个触控电极行/列的反馈信号。由此,进一步增加了触控定位的精度。
可选地,在所述方法中,所述触控模块工作在自电容触控模式。
在自电容触控模式中,需要感测触控电极相对于地的电容变化量;并且,物体(例如手指)和相邻的触控电极对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于自电容触控模式中,从而消除相邻的触控电极对于电容变化量的影响。
可选地,所述触控模块还包括设置在所述触控电极阵列的预定距离处的公共电极;所述第一基板和所述公共电极之至少之一者是可变形的。所述方法进一步包括根据触控电极和所述公共电极的距离来确定作用在所述触控电极处的压力。
利用设置在所述触控电极阵列的预定距离处的公共电极,触控电极相对于公共电极的电容可以根据二者之间距离的变化而改变。因此,可以利用所述距离的变化来确定物体(例如手指)对于所述触控模块的压力,从而实现压力触控。
附图说明
图1为现有技术中触控电极的扫描信号布线示意图;
图2为现有技术中触控电极的扫描方式示意图;
图3示出了现有技术中相邻的触控电极行之间的耦合影响;
图4为根据本发明实施例的触控模块的扫描方式示意图;
图5为根据本发明另一实施例的触控模块的扫描方式示意图;
图6a-6c为根据本发明实施例的用于压力触控的触控模块的结构示意图;以及
图7为根据本发明实施例的显示面板的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明专利保护的范围。
根据本发明的一个方面,本发明的一个实施例提供了一种触控模块。如图4所示,所述触控模块100包括第一基板101和布置在所述第一基板101的第一表面102上的触控电极阵列103。所述触控电极阵列103包括多个阵列布置的触控电极1031。在一个触控电极行104的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104和与所述触控电极行104直接相邻的触控电极行105、106上。
在本发明实施例中,在一个触控电极行的触控时间段(touch control period),相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
在本发明的实施例中,触控电极阵列可以例如包含多个触控电极行和与所述多个触控电极行垂直的多个触控电极列。因此,在一些实施例中,在一个触控电极列的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极列和与所述触控电极列直接相邻的至少一个触控电极列上。由此,在同步的调制下,消除了直接相邻的触控电极 列之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
可选地,如图4所示,所述触控模块100进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关107。利用所述反馈信号开关的切换,能够对所述触控电极阵列中的触控电极的反馈信号实现选择性的接收。所述反馈信号开关可以由例如薄膜晶体管等电路开关元件构成,在此不做限定。在一个触控电极行104的触控时间段,仅接收来自该触控电极行104的触控反馈信号Rx,不接收与该触控电极行104直接相邻的触控电极行105、106的反馈信号。
在一些实施例中,为了准确地获得触摸位置和触摸面积,所述触控模块可以进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关,并且在一个触控电极行/列的触控时间段,仅接收来自该触控电极行/列的触控反馈信号,不接收与所述触控电极行/列直接相邻的至少一个触控电极行/列的反馈信号。由此,进一步增加了触控定位的精度。
尽管在如图4所示的实施例中,在一个触控电极行104的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104和与所述触控电极行直接相邻的至少一个触控电极行105、106上,本领域技术人员能够理解,也可以将直接相邻的两个或更多触控电极行设置为同时工作。如图5所示,在直接相邻的两个触控电极行104、104’的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104、104’和与所述触控电极行104、104’直接相邻的触控电极行105、106上;类似地,还可以将相同的触控扫描信号Tx同时地施加到更多相邻的触控电极行上,从而在更大的面积上消除耦合效应。
可选地,所述触控模块用于自电容触控模式。
在自电容触控模式中,需要感测触控电极相对于地的电容变化量;并且,物体(例如手指)和相邻的触控电极对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于自电容触控模式中,从而消除相邻的触控电极对于电容变化量的影响。
图6a-6c为根据本发明实施例的用于压力触控的触控模块的结构示意图。可选地,如图6a-6c所示,所述触控模块100还包括设置在所述触控电极阵列103的预定距离处的公共电极108;所述第一基板101 和所述公共电极108之至少之一者是可变形的。
在图6b和图6c中,所述公共电极108受到压力,产生变形。并且,与图6b相比,所述公共电极108在图6c中受到了更大的压力。对于自电容触控模式而言,随着压力的增加,自电容也增加。发明人发现,若不消除相邻行的耦合影响,压力触控的精度也将受到很大影响。参考图3,例如,当在触摸范围为A所示的范围时,触控电极1在图6c所示的压力下可能产生较小的电容增量,从而将压力确定为如图6b所示的状态。
利用设置在所述触控电极阵列的预定距离处的公共电极,触控电极相对于公共电极的电容可以根据二者之间距离的变化而改变。因此,可以利用所述距离的变化来确定物体(例如手指)对于所述触控模块的压力,从而实现压力触控。然而,在压力触控期间,触控电极与公共电极的距离以及相邻的触控电极之间的耦合对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于压力触控中,从而消除相邻的触控电极对于电容变化量的影响。本领域技术人员能够理解,如图6a-6c所示,所述公共电极108可以布置在与所述第一基板101相对的第二基板109上。并且,所述公共电极还可以是公共电极阵列。为了实现所述距离的变化,所述第二基板109也可以是可变形的。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示面板。如图7所示,所述显示面板200包括显示模块201和以嵌入式的形式布置的如以上实施例所述的触控模块100。
在内嵌式(In Cell)显示面板中,触控电极之间的间距相对较小。对于例如液晶显示面板来说,将所述触控模块以嵌入式的形式布置在所述液晶显示面板中,形成内嵌式液晶显示面板,能够有利地消除内嵌式液晶显示面板中相邻的触控电极行(或,相邻的触控电极列)之间的耦合影响。类似地,也可以将本发明实施例所述的触控模块以嵌入式的形式布置在OLED显示面板中。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示装置。所述显示装置包括如以上实施例所述的显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述触控模块的实施例,重复之处不再赘述。
根据本发明的又一个方面,本发明的一个实施例提供了一种利用触控模块执行触摸控制的方法。如图4所示,所述触控模块100包括第一基板101和布置在所述第一基板101的第一表面102上的触控电极阵列103。所述触控电极阵列103包括多个阵列布置的触控电极1031。所述方法包括:在一个触控电极行104的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104和与所述触控电极行104直接相邻的至少一个触控电极行105、106上。
在本发明实施例中,在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
在一些实施例中,在一个触控电极列的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极列和与所述触控电极列直接相邻的至少一个触控电极列上。由此,在同步的调制下,消除了直接相邻的触控电极列之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
可选地,如图4所示,所述方法进一步包括:在一个触控电极行104的触控时间段,仅接收来自该触控电极行104的触控反馈信号Rx,不接收与该触控电极行104直接相邻的触控电极行105、106的反馈信号。
在一些实施例中,为了准确地获得触摸位置和触摸面积,所述触控模块可以进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关,并且在一个触控电极行/列的触控时间段,仅接收来自该触控电极行/列的触控反馈信号,不接收与所述触控电极行/列直接相邻的至少一个触控电极行/列的反馈信号。由此,进一步增加了触控定位的精度。
尽管在如图4所示的实施例中,在一个触控电极行104的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104和与所述触控电极行直接相邻的至少一个触控电极行105、106上,本领域技术人员能够理解,也可以将直接相邻的两个或更多触控电极行设置为同时工作。如图5所示,在直接相邻的两个触控电极行104、104’ 的触控时间段,相同的触控扫描信号Tx被同时地施加到所述触控电极行104、104’和与所述触控电极行104、104’直接相邻的触控电极行105、106上;类似地,还可以将相同的触控扫描信号Tx同时地施加到更多相邻的触控电极行上,从而在更大的面积上消除耦合效应。
可选地,在所述方法中,所述触控模块工作在自电容触控模式。
在自电容触控模式中,需要感测触控电极相对于地的电容变化量;并且,物体(例如手指)和相邻的触控电极对于感测的电容变化量都具有较大的影响。因此,可以将所述触控模块用于自电容触控模式中,从而消除相邻的触控电极对于电容变化量的影响。
可选地,如图6a-6c所示,所述触控模块100还包括设置在所述触控电极阵列103的预定距离处的公共电极108;所述第一基板101和所述公共电极108之至少之一者是可变形的。所述方法进一步包括根据触控电极和所述公共电极的距离来确定作用在所述触控电极处的压力。
如图6a-6c所示,所述公共电极108可以布置在与所述第一基板101相对的第二基板109上。并且,所述公共电极还可以是公共电极阵列。为了实现所述距离的变化,所述第二基板109也可以是可变形的。
本发明的实施例提供了一种触控模块、显示面板、显示装置和触摸控制方法。所述触控模块包括第一基板和布置在所述第一基板的第一表面上的触控电极阵列。在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。由此,在同步的调制下,消除了直接相邻的触控电极行之间的耦合影响,达到容值的整体均匀性,从而改进了触控定位以及压力触控的精度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型。

Claims (10)

  1. 一种触控模块,包括:
    第一基板和布置在所述第一基板的第一表面上的触控电极阵列;其中,在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。
  2. 如权利要求1所述的触控模块,进一步包括一一对应于所述触控电极阵列中的触控电极的多个反馈信号开关;并且在一个触控电极行的触控时间段,不接收与所述触控电极行直接相邻的至少一个触控电极行的反馈信号。
  3. 如权利要求1或2所述的触控模块,其中所述触控模块用于自电容触控模式。
  4. 如权利要求3所述的触控模块,还包括:
    设置在所述触控电极阵列的预定距离处的公共电极;所述第一基板和所述公共电极之至少之一者是可变形的。
  5. 一种显示面板,包括以嵌入式的形式布置的如权利要求1-4所述的触控模块。
  6. 一种显示装置,包括如权利要求5所述的显示面板。
  7. 一种利用触控模块执行触摸控制的方法,所述触控模块包括:第一基板和布置在所述第一基板的第一表面上的触控电极阵列;
    所述方法包括:在一个触控电极行的触控时间段,相同的触控扫描信号被同时地施加到所述触控电极行和与所述触控电极行直接相邻的至少一个触控电极行上。
  8. 如权利要求7所述的方法,进一步包括:在一个触控电极行的触控时间段,不接收与所述触控电极行直接相邻的至少一个触控电极行的反馈信号。
  9. 如权利要求7或8所述的方法,其中所述触控模块工作在自电容触控模式。
  10. 如权利要求9所述的方法,其中所述触控模块还包括设置在所述触控电极阵列的预定距离处的公共电极;所述第一基板和所述公共电极之至少之一者是可变形的;所述方法进一步包括:
    根据触控电极和所述公共电极的距离来确定作用在所述触控电极处的压力。
PCT/CN2017/090742 2017-02-13 2017-06-29 触控模块、显示面板、显示装置和触摸控制方法 WO2018145396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/781,773 US10983649B2 (en) 2017-02-13 2017-06-29 Touch control module, display panel, display device and touch control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710076091.0A CN106708328A (zh) 2017-02-13 2017-02-13 触控模块、显示面板、显示装置和触摸控制方法
CN201710076091.0 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018145396A1 true WO2018145396A1 (zh) 2018-08-16

Family

ID=58911313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090742 WO2018145396A1 (zh) 2017-02-13 2017-06-29 触控模块、显示面板、显示装置和触摸控制方法

Country Status (3)

Country Link
US (1) US10983649B2 (zh)
CN (1) CN106708328A (zh)
WO (1) WO2018145396A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550484B (zh) 2015-09-21 2020-07-07 海能达通信股份有限公司 一种直通呼叫通信方法及终端
CN106708328A (zh) 2017-02-13 2017-05-24 京东方科技集团股份有限公司 触控模块、显示面板、显示装置和触摸控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912157A (zh) * 2016-04-01 2016-08-31 上海天马微电子有限公司 一种显示面板和显示装置
CN106354339A (zh) * 2016-10-31 2017-01-25 京东方科技集团股份有限公司 Oled触控显示基板、显示面板、显示装置及控制方法
CN106708328A (zh) * 2017-02-13 2017-05-24 京东方科技集团股份有限公司 触控模块、显示面板、显示装置和触摸控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887333A (zh) * 2009-05-11 2010-11-17 智点科技(深圳)有限公司 一种数字式电容触控屏
CN103631463B (zh) * 2012-08-24 2018-10-23 敦泰电子(深圳)有限公司 一种数字式电容触控面板
KR101712346B1 (ko) * 2014-09-19 2017-03-22 주식회사 하이딥 터치 입력 장치
US9098161B2 (en) * 2013-12-20 2015-08-04 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of driving the same
KR102240828B1 (ko) * 2014-08-28 2021-04-15 엘지디스플레이 주식회사 터치 패널 및 이의 구동 장치
KR102286893B1 (ko) * 2015-01-30 2021-08-06 엘지디스플레이 주식회사 터치 디스플레이 장치
CN105786287B (zh) * 2016-05-18 2019-01-22 上海天马微电子有限公司 触控显示装置及其驱动方法
JP6682398B2 (ja) * 2016-08-02 2020-04-15 株式会社ジャパンディスプレイ 力検出装置、表示装置及び有機エレクトロルミネッセンス表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912157A (zh) * 2016-04-01 2016-08-31 上海天马微电子有限公司 一种显示面板和显示装置
CN106354339A (zh) * 2016-10-31 2017-01-25 京东方科技集团股份有限公司 Oled触控显示基板、显示面板、显示装置及控制方法
CN106708328A (zh) * 2017-02-13 2017-05-24 京东方科技集团股份有限公司 触控模块、显示面板、显示装置和触摸控制方法

Also Published As

Publication number Publication date
US10983649B2 (en) 2021-04-20
CN106708328A (zh) 2017-05-24
US20200272280A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US9594451B2 (en) Capacitive in-cell touch screen panel and display device having capacitive in-cell touch screen panel
US9939938B2 (en) Display panel with touch detecting and display device
US10185450B2 (en) In-cell touch display panel with matrix-arranged touch electrodes having multiple common electrodes, method of manufacturing, and display device
US10216344B2 (en) In-cell touch panel, method for driving the same, and display device
WO2018040717A1 (zh) 触控显示面板及其驱动方法以及触控显示装置
US10627943B2 (en) Touch panel, method of driving touch panel, and touch device
US20160011688A1 (en) In-cell touch screen and display apparatus
US20180275809A1 (en) In-cell touch screen and display device
US9785276B2 (en) Capacitive in-cell touch panel and display device
US10234973B2 (en) Touch panel, display device and driving method thereof
US10824324B2 (en) Touch panel and method for manufacturing the same
WO2017148023A1 (zh) 显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法
EP3118727B1 (en) In-cell touchscreen and display device
US20160147343A1 (en) Touch control display screen and electronic device
WO2018040233A1 (zh) 具有触控感测器的液晶显示装置及其驱动方法
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
US10496200B2 (en) Touch panel and method for manufacturing the same
US20170235400A1 (en) Display Device, Driving Method Thereof, and Electronic Device
US10613683B2 (en) Touch display device and method of driving the same
WO2017071622A1 (zh) 触控基板、显示装置及其驱动方法
US20180101268A1 (en) Touch substrate and method for driving the same, display apparatus
TW201523412A (zh) 顯示裝置及其驅動方法
US20210141478A1 (en) Touch Display Device, and Touch Driving Method Thereof
US10120502B2 (en) Array substrate, touch display panel and display apparatus containing the same, and method for driving the touch display panel
WO2018145396A1 (zh) 触控模块、显示面板、显示装置和触摸控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896166

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 060220)

122 Ep: pct application non-entry in european phase

Ref document number: 17896166

Country of ref document: EP

Kind code of ref document: A1