WO2017148023A1 - 显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法 - Google Patents

显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法 Download PDF

Info

Publication number
WO2017148023A1
WO2017148023A1 PCT/CN2016/083441 CN2016083441W WO2017148023A1 WO 2017148023 A1 WO2017148023 A1 WO 2017148023A1 CN 2016083441 W CN2016083441 W CN 2016083441W WO 2017148023 A1 WO2017148023 A1 WO 2017148023A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
pressure
electrode
display substrate
substrate
Prior art date
Application number
PCT/CN2016/083441
Other languages
English (en)
French (fr)
Inventor
刘英明
董学
薛海林
王海生
陈小川
丁小梁
杨盛际
许睿
李昌峰
刘伟
王鹏鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/526,984 priority Critical patent/US10353505B2/en
Publication of WO2017148023A1 publication Critical patent/WO2017148023A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the field of touch technologies, and in particular, to a display substrate, an in-cell touch panel, a display device, and a touch screen driving method.
  • Pressure sensing technology has been used in industrial control, medical and other fields.
  • pressure sensing is typically accomplished by adding additional mechanisms to the backlight portion or bezel portion of the display panel.
  • This design requires major changes to the outline of the display device.
  • this design is limited in accuracy due to large assembly tolerances.
  • embodiments of the present disclosure provide a display substrate on which a pressure sensing structure is integrated.
  • An in-cell touch screen, a display device, and a method of driving the in-cell touch screen are also provided.
  • a display substrate comprising a substrate body and a pressure sensing structure formed on the substrate body.
  • the pressure sensing structure includes a plurality of pressure sensitive electrodes arranged in an array and independent of one another. Each pressure sensitive electrode is used to generate a potential difference in response to a pressure caused by the pressing.
  • the pressure sensing structure also includes electrically coupled to the plurality of pressure sensitive electrodes for receiving a fixed potential input electrode during a pressure sensing phase.
  • the pressure sensing structure further includes a plurality of output electrodes each electrically coupled to a respective one of the plurality of pressure sensitive electrodes for outputting a potential indicative of the respective pressure sensitive electrode relative to the fixed potential during the pressure detection phase The signal of change.
  • the input electrode, the plurality of pressure sensitive electrodes, and the plurality of output electrodes are stacked on each other, and the plurality of pressure sensitive electrodes are disposed at the input electrode and the plurality of Between the output electrodes.
  • the display substrate further includes sub-pixels arranged in an array on the substrate body, and the plurality of pressure sensitive electrodes and the plurality of output electrodes are patterned in each of the sub-pixels Within the gap between.
  • each pressure sensitive electrode and each output electrode have a grid pattern.
  • the grid pattern of the output electrodes has a line width that is not less than a grid pattern of the pressure sensitive electrodes.
  • the input electrodes are patterned within a gap between the sub-pixels such that the input electrodes have a grid pattern.
  • the input electrode is made of the same material as the pixel electrode of the sub-pixel and is disposed in the same layer as the pixel electrode.
  • the display substrate further includes data lines and gate lines electrically connected to respective ones of the sub-pixels, and the plurality of output electrodes are made of metal and disposed with the data lines Or the same layer of gate lines.
  • the display substrate further includes a common electrode formed over each of the pixel electrodes, and the plurality of output electrodes are made of the same material as the common electrode and disposed at the common electrode The same layer.
  • the plurality of pressure sensitive electrodes are made of a piezoelectric material.
  • the display substrate is an array substrate or an opposite substrate in a liquid crystal display.
  • the display substrate is an array substrate or a protective cover in an electroluminescent display.
  • an in-cell touch panel comprising: a display substrate as described above; an opposite substrate opposite to the display substrate; disposed on the display substrate or the opposite substrate a touch electrode for supporting touch detection; and a controller connected to the display substrate and configured to apply the fixed potential to the input electrode during the pressure detecting phase and based on the plurality of output electrodes The signal determines the location of the press and the magnitude of the pressure.
  • the controller is further configured to apply a touch detection signal to the touch electrode and determine a touch based on a signal indicative of a change in capacitance of the touch electrode during a touch detection phase different from the pressure detection phase position.
  • the in-cell touch screen further includes a sub-pixel disposed on the display substrate or the opposite substrate and a gate line and a data line electrically connected to respective ones of the sub-pixels, and
  • the controller is further configured to apply the touch detection signal to the gate line and the data line during the touch detection phase and the pressure detection phase; and to the touch electrode during the pressure detection phase The touch detection signal is applied.
  • the controller is further configured to perform from the touch detection phase An operation selected from the group consisting of: no signal is applied to the input electrode to cause it to be floated, and the touch detection signal is applied to the input electrode.
  • the controller is further configured to apply a touch detection signal to the touch electrode and determine a touch location based on a signal indicative of a change in capacitance of the touch electrode during the pressure detection phase.
  • the in-cell touch screen further includes a sub-pixel disposed on the display substrate or the opposite substrate and a gate line and a data line electrically connected to respective ones of the sub-pixels, and The controller is further configured to apply the touch detection signal to the gate line and the data line during the pressure detection phase.
  • FIG. 1A is a schematic cross-sectional view of an in-cell touch screen in accordance with an embodiment of the present disclosure
  • FIG. 1B is a schematic block diagram of the in-cell touch screen of FIG. 1A;
  • FIG. 1B is a schematic block diagram of the in-cell touch screen of FIG. 1A;
  • FIG. 2 is a schematic plan view showing an arrangement of respective output electrodes in an in-cell touch panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view showing an arrangement of input electrodes in an in-cell touch panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic timing diagram showing a method of driving an in-cell touch screen according to an embodiment of the present disclosure
  • FIG. 5 is another schematic timing diagram showing a method of driving an in-cell touch screen according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/ Some should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer Thus, a first element, component, region, layer, or section, which is discussed below, may be referred to as a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • under and under can encompass both the ⁇ RTIgt; Terms such as “before” or “before” and “after” or “following” may be used, for example, to indicate the order in which light passes through the elements.
  • the device can be oriented in other ways (rotated 90 degrees or in other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as “between two layers,” it may be a single layer between the two layers, or one or more intermediate layers may be present.
  • FIG. 1A is a schematic cross-sectional view of an in-cell touch screen 10 in accordance with an embodiment of the present disclosure.
  • the in-cell touch panel 10 includes a display substrate 100, a counter substrate 200, and a spacer 300 (only one shown) that bridges the display substrate 100 and the counter substrate 200.
  • the display substrate 100 includes a substrate body 101 and a pressure sensing structure 110 formed on the substrate body 101.
  • the pressure sensing structure 110 includes a plurality of pressure sensitive electrodes 112 (only one shown) that are arranged in an array on the substrate body 101 and are independent of one another. Each of the pressure sensitive electrodes 112 is for generating a potential difference in response to a pressure caused by the pressing.
  • the pressure sensitive electrode 112 can be fabricated from a piezoelectric material such as ZnO, ZnS, AlN, or the like.
  • the pressure applied at the pressing position will be transmitted to the corresponding pressure sensitive electrode 112, for example, through the spacer 300, and the corresponding pressure sensitive electrode 112 is generated in response to the pressure. Potential difference.
  • the pressing position and the pressure magnitude may be determined based on the detection of the potential difference generated by the pressure sensitive electrode 112.
  • the pressure sensing structure 110 further includes an input electrode 116 that is electrically coupled to the plurality of pressure sensitive electrodes 112 for receiving a fixed potential during the pressure sensing phase.
  • Pressure The sensing structure 110 also includes a plurality of output electrodes 114 (only one of which is shown in FIG. 1A). Each of the output electrodes 114 is electrically coupled to a respective one of the plurality of pressure sensitive electrodes 112 for outputting a signal indicative of a change in a potential of the corresponding pressure sensitive electrode with respect to the fixed potential during the pressure detecting phase.
  • the pressing position may be determined based on which one of the plurality of output electrodes 114 the determined potential signal is determined from, and the pressure magnitude may be determined based on the amount of change in the potential.
  • FIG. 1B is a schematic block diagram of the in-cell touch screen 10 of FIG. 1A.
  • the in-cell touch panel 10 further includes a controller CTRL that is connected to the display substrate 100 shown in FIG. 1A.
  • the controller CTRL is configured to apply the fixed potential to the input electrode 116 during the pressure detection phase and determine the magnitude of the pressed position and pressure based on signals from the plurality of output electrodes 114.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • controller CTRL is implemented in any combination of the functions described herein.
  • the display substrate 100 is illustrated as an array substrate of a liquid crystal display in which sub-pixels are arranged in an array.
  • each sub-pixel includes a pixel electrode 102 and an associated thin film transistor.
  • a data line 106 connected to the source of the thin film transistor and a gate line 108 formed as a gate of the thin film transistor are shown in FIG. 1A.
  • the display substrate 100 further includes a common electrode 104 formed over the pixel electrode 102.
  • the in-cell touch panel 10 further includes a touch electrode 120 for supporting touch detection. Touch electrode 120 can be based on any technique known in the art. In the example of FIG.
  • the touch electrode 120 includes a plurality of self-capacitance electrodes disposed in the same layer and independent of each other.
  • the common electrode 104 may be divided into blocks, and each block is multiplexed into one self-capacitance electrode.
  • the touch electrode 120 may be disposed on a side of the opposite substrate 200 facing the display substrate 100.
  • the touch electrode 120 may also be based on a mutual capacitance touch sensor composed of a touch drive electrode and a touch sense electrode that cross each other.
  • the pressure sensing structure 110 may be disposed on a side of the opposite substrate 200 facing the display substrate 100.
  • the display substrate 100 itself may be an array substrate in a liquid crystal display or a substrate opposite the array substrate.
  • the display substrate 100 can also be an array substrate in an electroluminescent display or a protective cover opposite the array substrate.
  • the opposite substrate 200 includes a substrate body 201 and a black matrix 202.
  • the pressure sensing structure 110 may be formed in a region where the projection of the black matrix 202 on the display substrate 100 is located, and thus is blocked by the black matrix 202. Specifically, the pressure sensing structure 110 may be formed in a gap between the sub-pixels. Thus, the pressure sensing structure 110 does not affect the aperture ratio of the display area.
  • the input electrode 116, the pressure sensitive electrode 112, and the output electrode 114 may be stacked on each other, and the pressure sensitive electrode 112 is disposed between the input electrode 116 and the output electrode 114.
  • the pressure sensing structure 110 occupies a small area of the display substrate 100.
  • each of the output electrodes 114 is arranged in an array and is independent of each other, that is, insulated from each other.
  • each output electrode 114 has a grid pattern that includes a lateral strip and a longitudinal strip. In other embodiments, the output electrode 114 may also have only lateral strips, or it may have only longitudinal strips. Additionally, each of the output electrodes 114 can be electrically coupled to the controller CTRL via a respective trace (not shown).
  • the pressure sensitive electrode 112 is stacked with the output electrode 114 and is therefore not shown in FIG.
  • the pressure sensitive electrode 112 has the same pattern as the output electrode 114, such as a grid pattern.
  • the grid-like pattern of the output electrodes 114 has a line width that is not less than a grid-like pattern of the pressure-sensitive electrodes 112.
  • FIG. 3 is a schematic plan view showing an arrangement of input electrodes 116 in the in-cell touch panel 10 according to an embodiment of the present disclosure.
  • the input electrode 116 is also patterned within the gap between the sub-pixels such that the input electrode 116 has a grid pattern.
  • input electrode 116 may be a grid distributed throughout the display area. As such, the input electrode 116 can have a large coverage and provide a stable reference potential to all of the pressure sensitive electrodes 112.
  • the black matrix 202 may also be disposed on a side of the display substrate 100 facing the opposite substrate 200.
  • the output electrode 114 can be disposed over the pressure sensitive electrode 112 and the input electrode 116 can be disposed below the pressure sensitive electrode 112.
  • the input electrode 116 is made of the same material as the pixel electrode 102 of the sub-pixel and is disposed in the same layer as the pixel electrode 102.
  • the input electrode 116 is made of a transparent conductive oxide such as ITO.
  • each of the pixel electrode 102 and the input electrode 116 can be simultaneously fabricated using one patterning process. This way, no additional process is required.
  • each of the output electrodes 114 may be made of metal and may be disposed in the same layer as the gate line 108 or the data line 106. Specifically, each of the output electrodes 114 can be simultaneously fabricated using one patterning process while the gate lines 108 or the data lines 106 are being formed. This way, no additional process is required.
  • each of the output electrodes 114 may also be made of the same material as the common electrode 104, such as a transparent conductive oxide such as ITO, and disposed in the same layer as the common electrode 104.
  • the common electrode 104 and each of the output electrodes 114 can be simultaneously fabricated using one patterning process. This way, no additional process is required.
  • FIG. 4 is a schematic timing diagram illustrating a method of driving an in-cell touch screen 10 in accordance with an embodiment of the present disclosure. As shown, each frame period of the touch screen 10 is divided into a display phase, a touch detection phase, and a pressure detection phase.
  • gate scan signals are sequentially applied to the respective gate lines 108, gray scale signals are applied to the corresponding data lines 106, and common electrode signals are applied to the respective touch electrodes 120 multiplexed as the common electrodes 104.
  • the display function is realized.
  • the controller CTRL applies a touch detection signal to each of the touch electrodes 120, and determines a touch position based on a signal indicating a change in capacitance of the touch electrodes. Thereby, the touch function is realized.
  • the controller CTRL applies a fixed potential to the input electrode 116 and determines the magnitude of the pressed position and the pressure based on the signals from the plurality of output electrodes 114. Thereby, the pressure sensing function is realized.
  • touch detection signals may be applied to the gate lines 108 and the data lines 106 during the touch detection phase and the pressure detection phase. ,As shown in Figure 4.
  • the controller CTRL may also apply a touch detection signal to the input electrode 116 during the touch detection phase.
  • the controller CTRL may not apply any signal to the input electrode 116 to cause it to float during the touch detection phase.
  • the controller CTRL may continue to apply the touch detection signal to the touch electrode 120 during the pressure detection phase.
  • Embodiments in which display, touch detection, and pressure detection are performed in a time division manner are described above.
  • the display driver circuit and the controller CTRL can be integrated into one chip such that it can implement display driving, touch detection, and pressure detection.
  • FIG. 5 is another schematic timing diagram showing a method of driving the in-cell touch screen 10 in accordance with an embodiment of the present disclosure. As shown, each frame period of the touch screen 10 is divided into a display phase and a pressure detection phase, and pressure detection and touch detection are simultaneously performed.
  • the controller CTRL applies a fixed potential to the input electrode 116, and determines the position of the pressing and the magnitude of the pressure based on the signals from the plurality of output electrodes 114.
  • the controller CTRL also applies a touch detection signal to each of the touch electrodes 120, and determines a touch position based on a signal indicating a change in capacitance of the touch electrode 120.
  • a touch detection signal may be applied to the gate lines 108 and the data lines 106 during the pressure detection phase.
  • in-cell touch screen is illustrated and described as being based on a liquid crystal display panel in the above embodiments, it will be understood that it may also be based on an organic electroluminescent display panel or other type of display panel.
  • the in-cell touch screen described above may be formed as part of a display device.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the pressure sensing structure is integrated inside the touch screen such that no major changes to the outline structure of the display device are required. Moreover, the integrated pressure sensing structure is less subject to assembly tolerances, resulting in improved detection accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

内嵌式触摸屏(10)包括压力感应结构(110),该压力感应结构(110)包括:多个压敏电极(112),呈阵列排布且相互独立,每个压敏电极(112)用于响应于按压引起的压力而产生电位差;输入电极(116),与所述多个压敏电极(112)电连接以用于在压力检测阶段接收固定电位;以及多个输出电极(114),每个与所述多个压敏电极(112)中的相应一个电连接以用于在所述压力检测阶段输出指示该相应压敏电极(112)的电位相对于所述固定电位的变化的信号。

Description

显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法 技术领域
本公开涉及触摸技术领域,尤其涉及一种显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法。
背景技术
压力感应技术已经运用在工控,医疗等领域。目前,在显示装置的应用中,压力感应通常通过在显示面板的背光部分或者边框部分增加额外的机构来实现。这种设计需要对显示装置的外形结构做出大的改动。而且,由于装配公差较大,这种设计在准确性方面受到了限制。
因此,需要为显示面板提供改进的压力感应功能性。
发明内容
有鉴于此,本公开的实施例提供了一种显示基板,其上集成有压力感应结构。还提供了一种内嵌式触摸屏、显示装置以及驱动该内嵌式触摸屏的方法。
根据本发明的一个方面,提供了一种显示基板,其包括基板本体和形成在所述基板本体上的压力感应结构。压力感应结构包括呈阵列排布且相互独立的多个压敏电极。每个压敏电极用于响应于按压引起的压力而产生电位差。压力感应结构还包括与所述多个压敏电极电连接以用于在压力检测阶段接收固定电位输入电极。压力感应结构还包括多个输出电极,每个与所述多个压敏电极中的相应一个电连接以用于在所述压力检测阶段输出指示该相应压敏电极的电位相对于所述固定电位的变化的信号。
在一些实施例中,所述输入电极、所述多个压敏电极和所述多个输出电极堆叠在彼此之上,并且所述多个压敏电极设置在所述输入电极与所述多个输出电极之间。
在一些实施例中,所述显示基板还包括呈阵列排布在所述基板本体上的子像素,并且所述多个压敏电极和所述多个输出电极被图案化在各所述子像素之间的间隙内。
在一些实施例中,每个压敏电极和每个输出电极具有网格状图案。
在一些实施例中,所述输出电极的网格状图案具有不小于所述压敏电极的网格状图案的线宽。
在一些实施例中,所述输入电极被图案化在所述子像素之间的间隙内,使得所述输入电极具有网格状图案。
在一些实施例中,所述输入电极由与所述子像素的像素电极相同的材料制成且设置在与所述像素电极相同的层。
在一些实施例中,所述显示基板还包括电连接到所述子像素中的相应子像素的数据线和栅线,并且所述多个输出电极由金属制成且设置在与所述数据线或栅线相同的层。
在一些实施例中,所述显示基板还包括形成在各所述像素电极上方的公共电极,并且所述多个输出电极由与所述公共电极相同的材料制成且设置在与所述公共电极相同的层。
在一些实施例中,所述多个压敏电极由压电材料制成。
在一些实施例中,所述显示基板为液晶显示屏中的阵列基板或对向基板。
在一些实施例中,所述显示基板为电致发光显示屏中的阵列基板或保护盖板。
根据本公开的另一方面,提供了一种内嵌式触摸屏,其包括如上文所述的显示基板;与所述显示基板相对的对向基板;设置于所述显示基板或所述对向基板以用于支持触摸检测的触摸电极;以及控制器,连接到所述显示基板且被配置成在所述压力检测阶段向所述输入电极施加所述固定电位并且基于来自所述多个输出电极的信号确定所述按压的位置和所述压力的大小。
在一些实施例中,所述控制器还被配置成在不同于所述压力检测阶段的触摸检测阶段,向所述触摸电极施加触摸检测信号并且基于指示所述触摸电极的电容变化的信号确定触摸位置。
在一些实施例中,所述内嵌式触摸屏还包括设置于所述显示基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,并且所述控制器还被配置成:在所述触摸检测阶段和所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号;并且在所述压力检测阶段,向所述触摸电极施加所述触摸检测信号。
在一些实施例中,所述控制器还被配置成在触摸检测阶段执行从 由以下项组成的组中选择的操作:不向所述输入电极施加任何信号以使得其被浮置,以及向所述输入电极施加所述触摸检测信号。
在一些实施例中,所述控制器还被配置成在所述压力检测阶段,向所述触摸电极施加触摸检测信号并且基于指示所述触摸电极的电容变化的信号确定触摸位置。
在一些实施例中,所述内嵌式触摸屏还包括设置于所述显示基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,并且所述控制器还被配置成在所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号。
根据在下文中所描述的实施例,本发明的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1A为根据本公开实施例的内嵌式触摸屏的示意性剖面图;
图1B为图1A的内嵌式触摸屏的示意性框图;
图2为示出根据本公开实施例的内嵌式触摸屏中各个输出电极的排布的示意性平面图;
图3为示出根据本公开实施例的内嵌式触摸屏中输入电极的排布的示意性平面图;
图4为示出驱动根据本公开实施例的内嵌式触摸屏的方法的示意性时序图;并且
图5为示出驱动根据本公开实施例的内嵌式触摸屏的方法的另一示意性时序图。
具体实施方式
现在,将参照其中表示本公开的示范性实施例的附图更完整地描述本公开。然而,本公开可以按很多不同的方式体现,不应解读为局限于这里所述的实施例。相反,提供这些实施例使得本公开是详尽和完整的,并且向本领域的技术人员完全传达本公开的范围。全文中,相同的参考数字指代相同的元素。
将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“在...下面”、“在...之下”、“较下”、“在...下方”、“在...之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”和“在...下方”可以涵盖在...之上和在...之下的取向两者。诸如“在...之前”或“在...前”和“在...之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件 或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
图1A为根据本公开实施例的内嵌式触摸屏10的示意性剖面图。如图1A所示,内嵌式触摸屏10包括显示基板100、对向基板200、以及跨接显示基板100和对向基板200的隔垫物300(仅一个被示出)。
显示基板100包括基板本体101和形成在基板本体101上的压力感应结构110。压力感应结构110包括多个压敏电极112(仅一个被示出),其呈阵列排布在基板本体101上且相互独立。每个压敏电极112用于响应于按压引起的压力而产生电位差。在一些实施例中,压敏电极112可以由诸如ZnO,ZnS,AlN等压电材料制作。
在图1A的示例中,当对向基板200被按压时,施加在按压位置的压力将例如通过隔垫物300传递到对应的压敏电极112,该对应的压敏电极112响应于压力而产生电位差。
可以基于压敏电极112产生的电位差的检测来确定按压位置和压力大小。为此目的,压力感应结构110还包括输入电极116,其与所述多个压敏电极112电连接以用于在压力检测阶段接收固定电位。压力 感应结构110还包括多个输出电极114(图1A中仅一个被示出)。每个输出电极114与所述多个压敏电极112中的相应一个电连接以用于在所述压力检测阶段输出指示该相应压敏电极的电位相对于所述固定电位的变化的信号。可以基于确定被改变的电位信号来自所述多个输出电极114中的哪一个来确定按压位置,并且可以基于电位的改变量来确定压力大小。
图1B为图1A的内嵌式触摸屏10的示意性框图。如该图所示,内嵌式触摸屏10还包括控制器CTRL,其连接到图1A中所示的显示基板100。控制器CTRL被配置成在所述压力检测阶段向输入电极116施加所述固定电位并且基于来自所述多个输出电极114的信号确定按压的位置和压力的大小。
可以利用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件或被设计成执行本文中描述的功能的其任何组合来实现控制器CTRL。
返回参考图1A,显示基板100被示出为液晶显示器的阵列基板,在其中呈阵列排布子像素。如已知的,每个子像素包括像素电极102和相关联的薄膜晶体管。图1A中示出了连接到薄膜晶体管的源极的数据线106和形成为薄膜晶体管的栅极的栅线108。显示基板100还包括形成在像素电极102上方的公共电极104。为了实现触摸检测功能,内嵌式触摸屏10还包括用于支持触摸检测的触摸电极120。触摸电极120可以基于本领域任何已知的技术。在图1A的示例中,触摸电极120包括多个同层设置且相互独立的自电容电极。具体地,公共电极104可以被分割成块,每个块被复用为一个自电容电极。
虽然图1A中示出了内嵌式触摸屏10的一些细节,但是其他实施例是可能的。例如,触摸电极120可以设置于对向基板200面向显示基板100的一侧。另外,触摸电极120也可以基于互电容触摸传感器,其由彼此交叉的触摸驱动电极和触摸感应电极组成。又例如,压力感应结构110可以设置于对向基板200面向显示基板100的一侧。还将理解的是,显示基板100本身可以为液晶显示屏中的阵列基板或与阵列基板相对的基板。在一些实施例中,显示基板100也可以为电致发光显示屏中的阵列基板或与阵列基板相对的保护盖板。
下面参考图1A、1B、2和3描述内嵌式触摸屏10的更多细节。
如图1A所示,对向基板200包括基板本体201和黑矩阵202。压力感应结构110可以形成在黑矩阵202在显示基板100上的投影所在区域内,并且因此被黑矩阵202遮挡。具体地,压力感应结构110可以形成在子像素之间的间隙内。这样,压力感应结构110不会影响显示区域的开口率。
进一步地,在压力感应结构110中,输入电极116、压敏电极112和输出电极114可以堆叠在彼此之上,并且压敏电极112设置在输入电极116与输出电极114之间。这样,压力感应结构110占用显示基板100较小的面积。
图2为示出根据本公开实施例的内嵌式触摸屏10中各个输出电极114的排布的示意性平面图。图2中的虚线框表示一个输出电极114。各个输出电极114呈阵列排布且相互独立,即相互绝缘。在所示出的示例中,每个输出电极114具有网格状图案,其包括横向条(slit)和纵向条。在其他实施例中,输出电极114也可以仅具有横向条,或者其可以仅具有纵向条。此外,各个输出电极114可以通过相应的走线(未示出)电连接至控制器CTRL。
压敏电极112与输出电极114相堆叠,并且因此在图2中未示出。压敏电极112具有与输出电极114相同的图案,诸如网格状图案。在一些实施例中,输出电极114的网格状图案具有不小于压敏电极112的网格状图案的线宽。这样,有利于指示压敏电极112的电位变化的信号通过输出电极114的传输。
图3为示出根据本公开实施例的内嵌式触摸屏10中输入电极116的排布的示意性平面图。如图3所示,输入电极116也被图案化在子像素之间的间隙内,使得输入电极116具有网格状图案。具体地,输入电极116可以是分布在整个显示区域内的一个网格。这样,输入电极116可以具有大的覆盖范围并且向所有的压敏电极112提供稳定的参考电位。
虽然上面描述了内嵌式触摸屏10的一些细节,但是其他实施例是可能的。例如,黑矩阵202也可以设置在显示基板100面向对向基板200的一侧。又例如,可以将输出电极114设置于压敏电极112之上并且将输入电极116设置于压敏电极112之下。
在一些实施例中,输入电极116由与子像素的像素电极102相同的材料制成且设置在与像素电极102相同的层。在这种情况下,输入电极116由诸如ITO之类的透明导电氧化物制成。具体地,可以利用一次构图工艺同时制作各像素电极102和输入电极116。这样,不需要增加额外的工艺。另外,各输出电极114可以由金属制成,并且可以设置在与栅线108或者数据线106相同的层。具体地,可以在制作栅线108或者数据线106的同时利用一次构图工艺同时制作各输出电极114。这样,不需要增加额外的工艺。
在一些实施例中,各输出电极114也可以由与公共电极104相同的材料(诸如例如ITO之类的透明导电氧化物)制成且设置在与公共电极104相同的层。具体地,可以利用一次构图工艺同时制作公共电极104和各输出电极114。这样,不需要增加额外的工艺。
图4为示出驱动根据本公开实施例的内嵌式触摸屏10的方法的示意性时序图。如图所示,触摸屏10的每一帧周期被分成显示阶段、触摸检测阶段和压力检测阶段。
在显示阶段,栅扫描信号被依次施加到各条栅线108,灰阶信号被施加到相应的数据线106,并且公共电极信号被施加到被复用作为公共电极104的各触摸电极120。由此,实现显示功能。
在触摸检测阶段,控制器CTRL向各触摸电极120施加触摸检测信号,并且基于指示所述触摸电极的电容变化的信号确定触摸位置。由此,实现触摸功能。
在压力检测阶段,控制器CTRL向输入电极116施加固定电位,并且基于来自多个输出电极114的信号确定按压的位置和压力的大小。由此,实现压力感应功能。
在一些实施例中,为了避免栅线108和数据线106的对地电容影响触摸检测和压力检测的准确性,可以在触摸检测阶段和压力检测阶段对栅线108和数据线106施加触摸检测信号,如图4所示。
并且,为了避免输入电极116的对地电容影响触摸检测的准确性,控制器CTRL可以在触摸检测阶段向输入电极116也施加触摸检测信号。通过使栅线108、数据线106和输入电极116的电位同步变化,可以防止它们的对地电容对检测结果的影响。可替换地,控制器CTRL可以在触摸检测阶段不向输入电极116施加任何信号以使其浮置。
另外,为了避免触摸电极120的对地电容影响压力检测的准确性,控制器CTRL可以在压力检测阶段继续向触摸电极120施加触摸检测信号。
上面描述了其中显示、触摸检测和压力检测以时分方式执行的实施例。在非限制性实施例中,可以将显示驱动电路和控制器CTRL集成为一个芯片,使得其可以实现显示驱动、触摸检测和压力检测。
图5为示出驱动根据本公开实施例的内嵌式触摸屏10的方法的另一示意性时序图。如图所示,触摸屏10的每一帧周期被分成显示阶段和压力检测阶段,并且压力检测与触摸检测被同时执行。
具体地,在压力检测阶段,控制器CTRL向输入电极116施加固定电位,并且基于来自多个输出电极114的信号确定按压的位置和压力的大小。同时,控制器CTRL还向各触摸电极120施加触摸检测信号,并且基于指示所述触摸电极120的电容变化的信号确定触摸位置。
如上面的实施例描述的,为了避免栅线108和数据线106的对地电容影响触摸检测和压力检测的准确性,可以在压力检测阶段向栅线108和数据线106施加触摸检测信号。
虽然在上面的实施例中内嵌式触摸屏被图示和描述为基于液晶显示面板,但是将理解的是,其也可以基于有机电致发光显示面板或其他类型的显示面板。
上述内嵌式触摸屏可以形成为显示装置的一部分。该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
根据本公开的实施例,压力感应结构被整合于触摸屏内部,使得不需要对显示装置的外形结构进行大的改动。而且,集成的压力感应结构较少受到装配公差的限制,导致提高的检测精度。
本领域的技术人员可以对本公开进行各种修改和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于所附权利要求及其等同物的范围之内,则本公开也意图包含这些修改和变型在内。

Claims (24)

  1. 一种显示基板,包括:
    基板本体;以及
    压力感应结构,形成在所述基板本体上并且包括:
    多个压敏电极,呈阵列排布且相互独立,每个压敏电极用于响应于按压引起的压力而产生电位差;
    输入电极,与所述多个压敏电极电连接以用于在压力检测阶段接收固定电位;以及
    多个输出电极,每个与所述多个压敏电极中的相应一个电连接以用于在所述压力检测阶段输出指示该相应压敏电极的电位相对于所述固定电位的变化的信号。
  2. 如权利要求1所述的显示基板,其中所述输入电极、所述多个压敏电极和所述多个输出电极堆叠在彼此之上,所述多个压敏电极设置在所述输入电极与所述多个输出电极之间。
  3. 如权利要求2所述的显示基板,还包括呈阵列排布在所述基板本体上的子像素,其中所述多个压敏电极和所述多个输出电极被图案化在各所述子像素之间的间隙内。
  4. 如权利要求3所述的显示基板,其中每个压敏电极和每个输出电极具有网格状图案。
  5. 如权利要求4所述的显示基板,其中所述输出电极的网格状图案具有不小于所述压敏电极的网格状图案的线宽。
  6. 如权利要求3所述的显示基板,其中所述输入电极被图案化在所述子像素之间的间隙内,使得所述输入电极具有网格状图案。
  7. 如权利要求6所述的显示基板,其中所述输入电极由与所述子像素的像素电极相同的材料制成且设置在与所述像素电极相同的层。
  8. 如权利要求7所述的显示基板,还包括电连接到所述子像素中的相应子像素的数据线和栅线,其中所述多个输出电极由金属制成且设置在与所述数据线或栅线相同的层。
  9. 如权利要求7所述的显示基板,还包括形成在各所述像素电极上方的公共电极,其中所述多个输出电极由与所述公共电极相同的材料制成且设置在与所述公共电极相同的层。
  10. 如权利要求1-9中任一项所述的显示基板,其中所述多个压敏电极由压电材料制成。
  11. 如权利要求1所述的显示基板,其中所述显示基板为液晶显示屏中的阵列基板或对向基板。
  12. 如权利要求1所述的显示基板,其中所述显示基板为电致发光显示屏中的阵列基板或保护盖板。
  13. 一种内嵌式触摸屏,包括:
    如权利要求1-10中任一项所述的显示基板;
    与所述显示基板相对的对向基板;
    设置于所述显示基板或所述对向基板以用于支持触摸检测的触摸电极;以及
    控制器,与所述显示基板连接且被配置成在所述压力检测阶段向所述输入电极施加所述固定电位并且基于来自所述多个输出电极的信号确定所述按压的位置和所述压力的大小。
  14. 如权利要求13所述的内嵌式触摸屏,其中所述控制器还被配置成在不同于所述压力检测阶段的触摸检测阶段,向所述触摸电极施加触摸检测信号并且基于指示所述触摸电极的电容变化的信号确定触摸位置。
  15. 如权利要求14所述的内嵌式触摸屏,还包括设置于所述显示基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,其中所述控制器还被配置成:
    在所述触摸检测阶段和所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号;并且
    在所述压力检测阶段,向所述触摸电极施加所述触摸检测信号。
  16. 如权利要求15所述的内嵌式触摸屏,其中所述控制器还被配置成在触摸检测阶段执行从由以下项组成的组中选择的操作:不向所述输入电极施加任何信号以使得其被浮置,以及向所述输入电极施加所述触摸检测信号。
  17. 如权利要求13所述的内嵌式触摸屏,其中所述控制器还被配置成在所述压力检测阶段,向所述触摸电极施加触摸检测信号并且基于指示所述触摸电极的电容变化的信号确定触摸位置。
  18. 如权利要求17所述的内嵌式触摸屏,还包括设置于所述显示 基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,其中所述控制器还被配置成在所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号。
  19. 一种显示装置,包括如权利要求13-18中任一项所述的内嵌式触摸屏。
  20. 一种驱动如权利要求13所述的内嵌式触摸屏的方法,包括:
    在触摸检测阶段,向所述触摸电极施加触摸检测信号并且基于指示所述触摸电极的电容变化的信号确定触摸位置;以及
    在所述压力检测阶段,向所述输入电极施加所述固定电位并且基于来自所述多个输出电极的信号确定所述按压的位置和所述压力的大小。
  21. 如权利要求20所述的方法,所述内嵌式触摸屏还包括设置于所述显示基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,其中所述方法还包括:
    在所述触摸检测阶段和所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号;并且
    在所述压力检测阶段,向所述触摸电极施加所述触摸检测信号。
  22. 如权利要求21所述的方法,还包括:
    在触摸检测阶段,向所述输入电极不施加任何信号以使其浮置或施加所述触摸检测信号。
  23. 一种如权利要求20所述的方法,其中所述触摸检测阶段和所述压力检测阶段同时发生。
  24. 如权利要求23所述的方法,所述内嵌式触摸屏还包括设置于所述显示基板或所述对向基板的子像素和电连接到所述子像素中的相应子像素的栅线和数据线,其中所述方法还包括:
    在所述压力检测阶段,向所述栅线和数据线施加所述触摸检测信号。
PCT/CN2016/083441 2016-03-03 2016-05-26 显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法 WO2017148023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/526,984 US10353505B2 (en) 2016-03-03 2016-05-26 Display substrate, in-cell touch screen, display apparatus, and touch screen driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610120948.XA CN105807991A (zh) 2016-03-03 2016-03-03 一种显示基板、内嵌式触摸屏、其驱动方法及显示装置
CN201610120948.X 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017148023A1 true WO2017148023A1 (zh) 2017-09-08

Family

ID=56465981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083441 WO2017148023A1 (zh) 2016-03-03 2016-05-26 显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法

Country Status (3)

Country Link
US (1) US10353505B2 (zh)
CN (1) CN105807991A (zh)
WO (1) WO2017148023A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824475B (zh) * 2016-03-31 2019-11-26 京东方科技集团股份有限公司 一种显示面板、显示装置和显示面板的制备方法
US10444913B2 (en) * 2016-04-15 2019-10-15 Lg Display Co., Ltd. Driving circuit, touch display apparatus, and method for driving touch display apparatus
CN105975137B (zh) * 2016-07-07 2020-11-03 上海天马微电子有限公司 一种触控显示面板及触控显示装置
CN106446871A (zh) * 2016-11-04 2017-02-22 京东方科技集团股份有限公司 一种触控装置和触控方法
CN106775055B (zh) * 2016-11-23 2022-05-10 安徽精卓光显技术有限责任公司 柔性触摸屏及柔性触摸显示屏
CN107278285B (zh) * 2017-02-10 2019-04-12 深圳市汇顶科技股份有限公司 压力检测方法及其装置以及电子终端
CN107193145A (zh) * 2017-04-26 2017-09-22 武汉华星光电技术有限公司 Ltps阵列基板及其制作方法
CN107256101B (zh) * 2017-06-30 2020-05-12 上海天马微电子有限公司 一种触控显示面板及显示装置
CN107193146A (zh) * 2017-07-11 2017-09-22 上海天马微电子有限公司 显示面板及显示装置
TWI623868B (zh) * 2017-07-26 2018-05-11 友達光電股份有限公司 顯示面板
CN107452781A (zh) 2017-08-07 2017-12-08 京东方科技集团股份有限公司 显示基板、显示面板、显示装置及其控制方法
CN117453073A (zh) 2019-05-14 2024-01-26 武汉华星光电半导体显示技术有限公司 压力感测触摸屏及包含其的输入装置
CN113133328B (zh) * 2019-10-31 2023-05-02 京东方科技集团股份有限公司 有机发光二极管显示基板及其制造方法、显示装置
US11262870B2 (en) 2019-11-26 2022-03-01 Novatek Microelectronics Corp. Touch sensing device and driving method for driving touch sensing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028095A1 (en) * 2004-08-03 2006-02-09 Shigeaki Maruyama Piezoelectric composite device, method of manufacturing same, method of controlling same, input-output device, and electronic device
US20090309616A1 (en) * 2008-06-13 2009-12-17 Sony Ericsson Mobile Communications Ab Touch and force sensing for input devices
US20100156845A1 (en) * 2008-12-24 2010-06-24 Samsung Electronics Co., Ltd. Vibration touch sensor, method for vibration touch sensing and vibration touch screen display panel
CN105068695A (zh) * 2015-09-11 2015-11-18 京东方科技集团股份有限公司 具有压力检测功能的触控显示面板、显示装置及驱动方法
CN105117089A (zh) * 2015-09-17 2015-12-02 京东方科技集团股份有限公司 触控基板、触控显示面板及其驱动方法、触控显示装置
CN105353923A (zh) * 2015-12-18 2016-02-24 金龙机电(东莞)有限公司 一种压力感应触摸屏和电子触摸震动设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455202B (zh) * 2013-08-28 2015-11-25 合肥京东方光电科技有限公司 内嵌式触摸屏、其制备方法及显示装置
KR20150045288A (ko) * 2013-10-18 2015-04-28 삼성디스플레이 주식회사 터치 패널
US9098161B2 (en) * 2013-12-20 2015-08-04 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of driving the same
KR102138133B1 (ko) * 2014-01-13 2020-07-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
US9933872B2 (en) * 2014-12-01 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Touch panel
GB2533667B (en) * 2014-12-23 2017-07-19 Cambridge Touch Tech Ltd Pressure-sensitive touch panel
CN104407466B (zh) * 2014-12-25 2017-12-26 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
KR102425824B1 (ko) * 2015-04-24 2022-07-29 삼성디스플레이 주식회사 가요성 디스플레이의 햅틱 구동 방법 및 장치
CN105653098B (zh) 2015-08-14 2019-09-17 京东方科技集团股份有限公司 一种触摸屏、显示面板、显示装置和存储电能的方法
CN105094438A (zh) * 2015-08-14 2015-11-25 京东方科技集团股份有限公司 一种触摸屏、显示面板、显示装置和存储电能的方法
CN204965387U (zh) * 2015-10-15 2016-01-13 京东方科技集团股份有限公司 一种显示装置
CN204965385U (zh) * 2015-10-15 2016-01-13 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN205068355U (zh) * 2015-10-30 2016-03-02 京东方科技集团股份有限公司 一种触控基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028095A1 (en) * 2004-08-03 2006-02-09 Shigeaki Maruyama Piezoelectric composite device, method of manufacturing same, method of controlling same, input-output device, and electronic device
US20090309616A1 (en) * 2008-06-13 2009-12-17 Sony Ericsson Mobile Communications Ab Touch and force sensing for input devices
US20100156845A1 (en) * 2008-12-24 2010-06-24 Samsung Electronics Co., Ltd. Vibration touch sensor, method for vibration touch sensing and vibration touch screen display panel
CN105068695A (zh) * 2015-09-11 2015-11-18 京东方科技集团股份有限公司 具有压力检测功能的触控显示面板、显示装置及驱动方法
CN105117089A (zh) * 2015-09-17 2015-12-02 京东方科技集团股份有限公司 触控基板、触控显示面板及其驱动方法、触控显示装置
CN105353923A (zh) * 2015-12-18 2016-02-24 金龙机电(东莞)有限公司 一种压力感应触摸屏和电子触摸震动设备

Also Published As

Publication number Publication date
US10353505B2 (en) 2019-07-16
CN105807991A (zh) 2016-07-27
US20180107322A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017148023A1 (zh) 显示基板、内嵌式触摸屏、显示装置及触摸屏驱动方法
US10019105B2 (en) Display panel and touch-control force detection method
US9939938B2 (en) Display panel with touch detecting and display device
US9594451B2 (en) Capacitive in-cell touch screen panel and display device having capacitive in-cell touch screen panel
US9651815B2 (en) Self-capacitance in-cell touch screen and method of manufacturing the same, liquid crystal display
US9772723B2 (en) Capacitive in-cell touch panel and display device
US9170691B2 (en) Capacitive in cell touch panel and driving method thereof, display device
KR101736937B1 (ko) 터치스크린 일체형 표시장치
US9785276B2 (en) Capacitive in-cell touch panel and display device
US10216344B2 (en) In-cell touch panel, method for driving the same, and display device
EP3118727B1 (en) In-cell touchscreen and display device
CN107329615B (zh) 显示面板及显示装置
WO2017008450A1 (zh) 平面转换模式阵列基板及其制作方法、显示器件
US10222899B2 (en) Touch substrate, touch display panel and display device
WO2016206245A1 (zh) 内嵌式触摸屏及显示装置
US20180210586A1 (en) Touch panel, display device and driving method thereof
WO2017156872A1 (zh) 一种显示基板、触摸屏及显示装置
CN107656643B (zh) 一种显示面板和电子设备
WO2017063433A1 (zh) 显示装置及其驱动方法、电子设备
EP3316237B1 (en) Embedded touch control display screen and drive method therefor, and display device
US10401669B2 (en) Touch display panel having conductive structure and touch display device
US8378990B2 (en) Display apparatus and touch detection method for the same
US10402030B2 (en) Display panel and touch display device
US20190331951A1 (en) Array substrate, display device and driving method thereof
CN107643621B (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892211

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892211

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16892211

Country of ref document: EP

Kind code of ref document: A1