WO2018145169A1 - Système de support de voie ferrée, ses composants et procédé de construction - Google Patents

Système de support de voie ferrée, ses composants et procédé de construction Download PDF

Info

Publication number
WO2018145169A1
WO2018145169A1 PCT/AU2018/050111 AU2018050111W WO2018145169A1 WO 2018145169 A1 WO2018145169 A1 WO 2018145169A1 AU 2018050111 W AU2018050111 W AU 2018050111W WO 2018145169 A1 WO2018145169 A1 WO 2018145169A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway track
rail
transverse brace
railway
longitudinal
Prior art date
Application number
PCT/AU2018/050111
Other languages
English (en)
Inventor
Glynn Jones
Nigel Walrond
Ian Saul
Original Assignee
Mercury Rail Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017900457A external-priority patent/AU2017900457A0/en
Application filed by Mercury Rail Pty Ltd filed Critical Mercury Rail Pty Ltd
Priority to AU2018218192A priority Critical patent/AU2018218192A1/en
Publication of WO2018145169A1 publication Critical patent/WO2018145169A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/38Longitudinal sleepers; Longitudinal sleepers integral or combined with tie-rods; Combined longitudinal and transverse sleepers; Layers of concrete supporting both rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/40Slabs; Blocks; Pot sleepers; Fastening tie-rods to them
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/48Distance keepers or tie-rods for sleepers

Definitions

  • the present invention relates to railway Infrastructure.
  • one or more forms of the present invention relates to structure and/or components/systems used in or applicable to a railway ladder track structure.
  • Another form of the present invention relates to the construction method and applications for which it can be used.
  • the wooden or steel wedges can work their way out of the gap over time due to vibration of passing trains, heat expansion and cooling contraction of the rail relative to the chair.
  • Ladder track systems have historically had an issue with sinking, because the longitudinal beams are thin and easily wear away the surface on which they sit as vibration from the trains is passed through them.
  • ladder track systems have longitudinal bearers/supports under the rails, these
  • the spacing between the bearers/supports can vary and, detrimentally, the rails can go out of gauge.
  • One or more forms of the present invention is/are uniquely suited to suited to such applications to simplify and reduce costs on a number of aspects of a railway track infrastructure build project.
  • ballast-less railway track system which is preferably modular in construction and preferably includes one or more such design features as removable rungs or embedded services routes or high levels of vibration reduction.
  • An aspect of the present invention provides a railway track system including a plurality of spaced plinths supporting at least one beam between two such spaced plinths, the at least one beam supporting thereon at least one rail extending longitudinally along the respective beam.
  • the railway track system is a ballast-less railway track system.
  • the railway track system is arranged and configured to mount over existing railway track.
  • the railway track system may be installed above existing railway track infrastructure.
  • the plinth or each plinth may be mounted onto one or more rails of an existing railway track system.
  • the existing railway track system is a ballasted railway track system.
  • the at least one plinth may be supported by the at least one rail of the existing railway track or may be supported by the ground or on the ballast of the existing track or on a ground structure, such as a concrete track bed for the existing track.
  • the ballast-less railway track system may be mounted/installed above existing rail infrastructure with the at least one plinth mounted on the existing ground formation and located on existing rails.
  • ballast-less railway track system can add height to the railway track structure, allowing for a reduction in the requirements for more expensive elevated systems when clearance to the rail is a key design requirement.
  • ballast-less railway track system reduces requirements for preparative construction works of standard ballasted railway track systems.
  • a further aspect of the present invention provides a method of installing a railway track system, including the steps of placing a plurality of plinths at spaced intervals over an existing railway track, providing at least one beam extending between adjacent plinths, supporting at least one rail on the at least one beam to provide the railway track system over the existing railway track system.
  • the method includes the steps of supporting two said beams extending onto and between each of two spaced said beams, the two spaced said beams being laterally spaced with respect to one another, and each of the two spaced said beams supporting a rail such that the rails are spaced laterally with respect to one another.
  • the two spaced beams are connected together by at least one brace.
  • the at least one brace is removably connectable to at least one of the two beams.
  • One or more of the plinths may include ground engagement means.
  • the ground engagement means includes at least one projection to engage into the ground.
  • the method of installation may include positioning the at least one plinth onto the existing railway track.
  • the method includes positioning the at least one plinth onto the rails of an existing railway track.
  • a resilient material is positioned between the top of the existing rail(s) and a contact portion of the respective plinth.
  • the method may include positioning the at least one plinth onto the ground and spanning the rails of the existing railway track.
  • an aspect of the present invention provides a railway rail support system including at least two longitudinal railway rail bearers, each having multiple spaced recesses; each said recess arranged to receive a railway rail retention system.
  • a further aspect of the present invention provides a bracing and gauge holding system including at least one transverse brace to maintain a desired spacing between two opposed longitudinal railway rail bearers. This system can be used to maintain the spacing between the longitudinal beams and forms the lateral connections of the 'ladder'. [0043] The transverse brace or each transverse brace may be removable from connection with the two longitudinal bearers.
  • the transverse brace or each transverse brace of the bracing and gauge holding system may include a locking mechanism to hold it to the respective longitudinal bearer(s).
  • the longitudinal bearers may include a plasticized composite material utilising recycled materials.
  • An alternative form of the longitudinal bearers may utilise a concrete beam.
  • the transverse brace or each transverse brace is predominantly are of a steel, preferably of hollow section, and more preferably including a retention plate at a first end and a locking mechanism a second end opposite the first end.
  • An assembled railway rail support system embodying one or more forms of the present invention can be located on top of a concrete plinth at each end of the longitudinal bearers, providing a stable foundation not prone to differential settlement.
  • each plinth includes a locating means, such as a bracket, for locating and restraining the respective ends of the longitudinal bearers at the plinths.
  • a locating means such as a bracket
  • the locating means may be made of steel, may preferably be cast into the top of the respective plinth. [0051 ] For the concrete version of the longitudinal bearer, there a
  • rubberized/resilient pad may be provided between the locating means and the respective bearer to protect from abrasion between the surfaces. This is optional for the aforementioned plasticized version of the bearer.
  • the locking mechanism at one or both ends of the transverse brace may include a lock arrangement having multiple locking bars to the exterior that, when thrown, activate respective pressure locks that move into recesses internal to the longitudinal beam surface.
  • the lock arrangement forms part of the transverse brace, locking it to the longitudinal bearer.
  • This locking mechanism preferably remains open during installation.
  • the other end of the transverse brace preferably features a plate (such as a welded plate, preferably square), which sits in a housing on the other, opposed, longitudinal bearer.
  • a plate such as a welded plate, preferably square
  • the locking mechanism is operated at the opposite end of the transverse brace to lock the transverse brace into position.
  • a rail retention unit Preferably, on an upper side of the longitudinal bearer is a rail retention unit.
  • This rail retention unit connects the rail to the upper side of the bearer.
  • the bearer or each bearer may include concrete containing cement (such as Portland cement) or be a geo-polymer concrete, containing proportions of fly ash and slag or of a plasticized composite material, utilising recycled plastics and rubber.
  • the bearer and plinth arrangement may be formed as a cast or extruded concrete/geo-polymer concrete beam or it may be formed through an injection molding process when plasticized materials are used.
  • the longitudinal bearers may preferably include a combined services route installed on the outside of each Beam.
  • the services route can be sufficiently large enough to contain a number of utility services..
  • the services route preferably features a "J" shaped conduit route to allow for easy cable installation whilst protecting the services.
  • the services route may be covered by a High Density Polyethylene (HDPE) cover with a cover locking mechanism.
  • HDPE High Density Polyethylene
  • the services route cover can be robust enough to protect against impact damage from moderate concussive blows.
  • Another aspect of the present invention provides a railway way track support system provided as a ladder track system for assembly in situ, the ladder track system including at least two longitudinal bearers, each said bearer configured to receive a number of rail retainers along an upper surface thereof, and a number of releasably lockable transverse braces arranged to releasably connect the longitudinal bearers in spaced parallel relationship to each other.
  • Each of the transverse braces may include a lock arrangement configured to engage into a receiver on at least one of the longitudinal bearers and releasably lock the respective transverse brace thereto.
  • one or more forms of the present invention provides for enhanced track stability and safety at higher elevations than the traditional elevated track version, without the expense of a fully elevated track option.
  • the gauge bar linking together the two supports for the rails of the ladder track system can be assembled to the supports prior to transport to site, or can be applied on-site to reduce transportation costs.
  • the gauge bars may be attached to the rail supports using bolts or a releasable locking mechanism, or a combination of both.
  • a shim arrangement may be employed for final adjustment of rail height.
  • one or more shims is installed between the plinth and the rail support beam that extends in line with and under the rail and between plinths.
  • the shims are preferably of steel or include steel, but can also be cast iron or a polymer depending on individual requirements, or a combination thereof.
  • a services route may be embedded within the (longitudinal) support beam.
  • the services route may be protected by a lockable cover, preferably a hinged cover.
  • the cover may be hinged at the bottom for ease of use and safety.
  • the railway track system incorporated in one or more forms of the present invention may include at least one beam mounting bracket.
  • the beam mounting bracket may be cast into, onto or bolted to a concrete plinth.
  • a resilient pad will be fitted between the beam mounting bracket and the beam for vibration mitigation.
  • the resilient pad may be termed a vibration mitigation pad.
  • Such a pad may be formed of laminations of materials.
  • the laminated materials may include resilient materials of the same or differing density.
  • the resilient material or materials may include HDPE.
  • the laminated materials may include layers of composite materials.
  • At least one shim may be provided between the respective resilient pad and the beam to mitigate abrasive wear.
  • the at least one shim may include a metal, a hardened polymer, or combination thereof.
  • the shim or each shim may include steel.
  • the at least one shim may be or include a predominantly flat plate of one or more layers.
  • the plate may be formed of multiple layers.
  • the plate may include a mesh.
  • the plinth may include at least one projection extending from the base thereof.
  • the projection or each projection may be in the form of a peg or stub of material, such as a continuation of the material of the plinth, which may preferably be concrete.
  • the projection or each projection from the plinth may be part of the plinth casting, and may have reinforcement (e.g. rebar).
  • an installation procedure may include compressing the ground, such as to CBR 20%.
  • CBR stands for Californian Bearing Ratio, which is a standard used to determine the compressive strength of a soil.
  • the installation process then includes core-drilling holes into the ground that correspond to the spacing and depth of the projections.
  • the holes are partially filled with epoxy and the respective plinth lowered into position with the projections. This aims prevent drifting of the plinth under normal operating conditions.
  • the plinth or each plinth may be pinned to the ground when additional stability is required under operating railway operating and soil/environmental conditions.
  • Figure 1 shows an assembled view of a railway rail support system and a bracing and gauge holding system incorporating at least one embodiment of the present invention.
  • Figure 2 shows a transverse brace for a ladder track railway rail support system according to an embodiment of the present invention.
  • Figure 3 shows detail of part of a locking mechanism at one end of the transverse brace of Figure 2.
  • Figure 4 shows detail of part of a fixed mounting arrangement at an opposite end of the transverse brace of Figure 2.
  • Figure 5 shows an alternative arrangement for releasably attaching a brace between spaced rail supports according to a further embodiment of the present invention.
  • Figure 6 shows a railway track system mounted onto the rails of an existing railway track system according to an embodiment of the present invention.
  • Figure 7 shows a railway track system mounted over the rails and supported on the sleepers of an existing railway track system according to an embodiment of the present invention.
  • Figure 8 shows an example of a resilient material for damping vibration as adopted for one or more embodiments of the present invention.
  • Figure 9 shows an example of an elevated railway track system for mounting at a height above ground or above an existing railway track system, according to an embodiment of the present invention.
  • Figures 10a to 10d show views of a plinth according to an embodiment of the present invention.
  • Figure 1 1 shows an elevated railway track system according to an embodiment of the present invention.
  • Figure 12 shows a bracket for locating respective ends of support beams as utilised in a railway track system according to an embodiment of the present invention.
  • a rail 1 is attached to a rail retainer system 2.
  • the rail is made of steel, may be head hardened and can be in a variety of sizes and weights.
  • the rail retainer system attaches the rail to the longitudinal bearer 6.
  • the rail retainer can be a known type of retainer that does not form part of the present invention.
  • the rail retainer can be manufactured using a variety of materials and will attach to the longitudinal bearer with metal bolts/screws.
  • the transverse brace 4 acts as a gauge bar maintaining required spacing between the two opposed and parallel longitudinal bearers.
  • the transverse brace is preferably formed of steel and preferably has a hollow section.
  • the locking mechanism 15 end (first end) of the transverse brace includes a lock arrangement 17 and a portion that slots into a recess in the respective longitudinal bearer. [00107] After the portion a the first end is received into the recess in the bearer, the other end (second end) of the transverse brace is to be received into and locked in a housing unit on the other longitudinal bearer.
  • the transverse brace locking mechanism 15 includes metal (preferably steel) and resilient (preferably rubber based) materials that engage into
  • the locking mechanism includes two steel members 18, 20, such as arms, preferably with rubber covers, received into respective recesses 16 inside the longitudinal beam when the locking mechanism is activated.
  • the locking mechanism 15 can be released and the bearer removed from the other fixed end incorporating the plate at the longitudinal bearer, and then the locking mechanism end removed from its longitudinal bearer.
  • the locating means 5 on the plinth 7 can be provided as a bracket, preferably cast into the top of the plinth and preferably made from steel.
  • the locating means 5 can be located at the central point of the plinth for maximum strength and stability.
  • the Longitudinal bearer 6 (on which the rail retainer 2 sits supporting retaining the rail) can include concrete containing cement (such as Portland cement) or be of a geo-polymer concrete, containing for example, proportions of fly ash and slag, or of a plasticized composite material, utilising recycled plastics and rubber.
  • cement such as Portland cement
  • geo-polymer concrete containing for example, proportions of fly ash and slag, or of a plasticized composite material, utilising recycled plastics and rubber.
  • the plinth 7 can be a concrete unit with prestressed steel
  • the upper surface of the plinth is preferably angled, and the plinth can be wider at its bottom to spread the forces from the movement of trains over the infrastructure.
  • the plinth can have a cast-in locating means (e.g. a bracket) to restrain the longitudinal beams.
  • the locating means can include locating portions for the ends of two longitudinally aligned said bearers to help ensure correct continuation of support for the rail above.
  • Stabilised ground material 8 can be provided as subgrade, which can be stabilised by one of a number of methods including limestone stabilisation or RenolithTM - a chemical stabilisation product. This provides a stable base for the plinth and helps to avoid both cracking of the subgrade and sinking of the plinths.
  • the stabilised ground will preferably have the strength of a mild concrete. (The stabilising material RenolithTM, and/or its manufacturing processes, is not part of this patent specification.)
  • the transverse brace 4 has a central, cylindrical body portion 4a, which is preferably hollow.
  • a first end 4b includes a locking arrangement 10 including a locking mechanism 15 to releasably attach that first end of the transverse brace 4 to the longitudinal bearer 6a.
  • the transverse brace includes a projecting portion 17 which projects into a recess 16 within the longitudinal bearer.
  • the locking arrangement 10 at the first end of the transverse brace includes two levers 12, 14, which operate respective latches 18a, 20a that engage into respective latch recesses 19 within the longitudinal bearer. When the levers are up, the latches are released, and when down the latches extended outwards and engage into the latch recesses 19 within the bearer.
  • the opposite end 4c of the transverse brace includes a plate 22 which engages with a holder on the second longitudinal bearer 6b.
  • the first end 4b of the transverse brace is slotted into the recess in the longitudinal bearer 6a.
  • the second end of the bearer is then held into the holder on the second longitudinal bearer 6b.
  • the latch levers are then operated to lock the transverse brace into position and correctly gauge and hold the track.
  • the two latch levers 12, 14 are provided at a narrowed section at the first end 4b of the transverse brace 4.
  • the second end 4c of the transverse brace 4 is slotted into a holder 23 on the second longitudinal bearer 6b.
  • FIG. 5 an arrangement is shown for releasably attaching a transverse brace 4 between spaced rail supports 6a, 6b according to a further embodiment of the present invention.
  • the brace includes two lever lock arms 12, 14 at each end thereof.
  • Each lever lock arm has two positions. One position extends a respective expansion lock 18, 20 to engage the lever lock with a recess in a support beam 6a, 6b.
  • the second position retracts the respective expansion lock 18, 20 to release from engagement with the recess of the support beam 6b, 6a.
  • a rail 22 is supported on a rail support or chair 24 that in turn is supported on a support plate and/or elastomer pad arrangement 26 on the respective support beam 6a, 6b.
  • FIG. 6 shows a railway track system 100 mounted onto the rails 21 of an existing railway track system.
  • a plinth 36 supports the rails on elongate beams 6a, 6b directly on the tops of the rails 22 of an existing railway track system.
  • Resilient material 38 such as HDPE, is provided between the plinth 36 and the tops of the rails 21 to help reduce vibration transfer to the existing rail system.
  • a recess 33 can pass along the side edge of the plinth, and can be covered by a cover 32, such as a hinged door. Cabling, such as signal cables and/or data cables and/or power cables can pass along the recess. Alternatively clips or brackets can retain such cabling in place.
  • Figure 7 shows an alternative embodiment to that of Figure 6.
  • Figure 7 shows a railway track system 100 mounted over the existing rails 21 of an existing railway system, and supported on the sleepers 40 of an existing railway track system.
  • the plinth 39 spans the existing rails and rests directly or indirectly on the existing sleepers 40.
  • the plinth may rest on the rails of the existing railway track but the side edges of the plinth extend downward to provide further cover to exposed sides of the existing railway track.
  • a resilient material for damping vibration may be provided between the plinth and the top of the existing rail.
  • the resilient material 38 may include multiple layers and/or various density resilient material(s). For example, rubber 38b sandwiched between HDPE 38a, 38c.
  • Figure 9 shows an example of an elevated railway track system 200 for mounting at a height above ground or above an existing railway track system.
  • the elevated railway system of the present invention includes a support frame 204, such as comprising elongate beams extending between spaced plinths 202, and upright members 206 to support additional elongate beams 208, and cross members 210 connecting the uprights and elongate beams together.
  • Figures 10a to 10d show views of a plinth 202 according to an embodiment of the present invention.
  • the upper side 203 of the plinth includes sloping faces 205 for runoff purposes, such as for helping to shed dirt and rainwater.
  • the underside of the plinth 207 includes projections 212 to engage into the ground and help stabilise the plinth against movement, such as induced by vibration.
  • the plinth is preferably formed of concrete, preferably cast concrete.
  • Figure 1 1 shows an elevated railway track system according to an embodiment of the present invention incorporating a bracket 220 (shown in detail in Figure 12) for locating respective ends of support beams.
  • Each bracket locates the respective end of two of the beams 222 end on.
  • Each bracket has at least one, preferably two, receiver 224 to help to prevent lateral and longitudinal movement of the end of the respective beam.
  • a spacer channel 226 provides an end wall 228 of the respective receiver. Drainage apertures 230 aid drainage of any water from within the channel 226.
  • Each bracket can include a movement allowance to accommodate (thermal) expansion, but prevents substantial creep movement of the beam laterally and longitudinally.
  • the cross brace 4 may be combined into or with the brackets 220 such that location of the ends of the beams and lateral connection of the beams is achieved in one assembly or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Railway Tracks (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

La présente invention concerne une barre de jauge transversale (4) qui maintient l'espacement entre deux supports (6a, 6b) de rail longitudinal (1, 21) opposés et parallèles. Un agencement de verrouillage (10) a un mécanisme de verrouillage (15) avec une partie (17) qui s'étend dans un évidement (16) dans le support respectif. Des verrous ou des bras se verrouillent dans des évidements de verrouillage respectifs (19) à l'intérieur du longeron lorsque des leviers (12, 14) sont actionnés. Une voie ferrée (100) est montée sur des rails (21) d'un système de voie ferrée existant. Un socle repose sur des traverses (40) d'un système de voie ferrée existant ou est supporté sur les rails de la voie ferrée existante. Un matériau élastique (38), tel que le PEHD, se trouve entre une plinthe (36) et le sommet de chaque rail (21) pour aider à réduire le transfert de vibrations vers le système de rail existant. Une voie ferrée élevée (200) a une structure de support (204).
PCT/AU2018/050111 2017-02-13 2018-02-13 Système de support de voie ferrée, ses composants et procédé de construction WO2018145169A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018218192A AU2018218192A1 (en) 2017-02-13 2018-02-13 Railway track support system, components thereof and construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2017900457 2017-02-13
AU2017900457A AU2017900457A0 (en) 2017-02-13 Railway track support system, components thereof and construction method

Publications (1)

Publication Number Publication Date
WO2018145169A1 true WO2018145169A1 (fr) 2018-08-16

Family

ID=63106805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2018/050111 WO2018145169A1 (fr) 2017-02-13 2018-02-13 Système de support de voie ferrée, ses composants et procédé de construction

Country Status (2)

Country Link
AU (1) AU2018218192A1 (fr)
WO (1) WO2018145169A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094381A1 (fr) * 2019-03-28 2020-10-02 Systra Section de voie sans ballast pour véhicule ferroviaire
CN114717882A (zh) * 2022-05-25 2022-07-08 中国铁道科学研究院集团有限公司铁道建筑研究所 一种防列车脱轨倾覆全拼装式无砟轨道
CN114941261A (zh) * 2022-06-24 2022-08-26 北京九州一轨环境科技股份有限公司 一种用于框架式道床的减振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US681567A (en) * 1901-04-23 1901-08-27 Charles Henry Mcdermott Railroad-track.
US1063087A (en) * 1913-01-22 1913-05-27 Albert Valkelberg Rail tie and fastener.
EP0939164A1 (fr) * 1998-02-26 1999-09-01 Alstom Procédé de construction d'une voie de chemin de fer
EP3067464A1 (fr) * 2015-03-13 2016-09-14 Colas Rail Voie ferrée sur longrines longitudinales, procédé de réalisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US681567A (en) * 1901-04-23 1901-08-27 Charles Henry Mcdermott Railroad-track.
US1063087A (en) * 1913-01-22 1913-05-27 Albert Valkelberg Rail tie and fastener.
EP0939164A1 (fr) * 1998-02-26 1999-09-01 Alstom Procédé de construction d'une voie de chemin de fer
EP3067464A1 (fr) * 2015-03-13 2016-09-14 Colas Rail Voie ferrée sur longrines longitudinales, procédé de réalisation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094381A1 (fr) * 2019-03-28 2020-10-02 Systra Section de voie sans ballast pour véhicule ferroviaire
WO2020193911A3 (fr) * 2019-03-28 2020-11-19 Systra Section de voie sans ballast pour véhicule ferroviaire
AU2020245115B2 (en) * 2019-03-28 2023-03-16 Systra France Ballastless track section for a rail vehicle
CN114717882A (zh) * 2022-05-25 2022-07-08 中国铁道科学研究院集团有限公司铁道建筑研究所 一种防列车脱轨倾覆全拼装式无砟轨道
CN114941261A (zh) * 2022-06-24 2022-08-26 北京九州一轨环境科技股份有限公司 一种用于框架式道床的减振装置

Also Published As

Publication number Publication date
AU2018218192A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018145169A1 (fr) Système de support de voie ferrée, ses composants et procédé de construction
EP1700954A2 (fr) Elément modulaire préfabriqué, voie ferrée permanente pour tramways ou voie souterraine comprenant cet élément, et procédé pour leur pose
CN105133438B (zh) 一种嵌入式框架轨道板及其轨道结构
US9556565B2 (en) Train rail track structure systems
KR101260947B1 (ko) 궤도지지 장치
CN108914713B (zh) 用于减振地段的无砟轨道的湿接式装配方法
EP0983400B1 (fr) Superstructure de voies, en particulier, pour des voies ferrees de tramways, de chemins de fer et de metros
JP4540632B2 (ja) 架設桁
KR102105230B1 (ko) 기존 철도선로와 철도운행을 유지하는 철도교량 시공방법
KR20050108867A (ko) 철도교량의 상부구조물 교체 및 이를 이용한 유도상화방법.
US5163614A (en) Railway roadbeds with rail slabs, and method for preparing
US20050252985A1 (en) Rail sleeper and ballast-free track structure
DE20215204U1 (de) Neuartiges System Feste Fahrbahn für den Schienenverkehr
CA2637208A1 (fr) Procede de production d'une voie sans ballast
CN218090488U (zh) 一种山地轨板梁用桥梁橡胶支座结构
JP2604476B2 (ja) スラブ軌道の構築方法
JP4162291B2 (ja) 鉄道工事桁用受台、及び鉄道工事桁用受台の施工方法
EP0881332A1 (fr) Elément de palier d'infrastructure, comme des routes, voies ferrées, pistes d'envol et aéroports, et procédé pour sa fabrication
US20040231286A1 (en) Prefabricated unit for refurbishment or construction of platforms
KR101781045B1 (ko) 토목섬유와 강관형 궤도변위 저항장치를 구비한 아스팔트 콘크리트 궤도 및 그 시공방법
JP2016061126A (ja) 工事桁の撤去方法、及び、工事桁撤去用の土留板
KR102380587B1 (ko) 브라켓을 이용한 철도용 일탈방호시설 및 그 시공방법
JP3791719B2 (ja) 工事桁を利用した直結軌道化工法及び軌道構造
JP2023127735A (ja) 桁架け替え方法
JP2019073937A (ja) 橋梁補強構造体の施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018218192

Country of ref document: AU

Date of ref document: 20180213

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751913

Country of ref document: EP

Kind code of ref document: A1