WO2018143211A1 - Molded body and method for producing same - Google Patents

Molded body and method for producing same Download PDF

Info

Publication number
WO2018143211A1
WO2018143211A1 PCT/JP2018/003012 JP2018003012W WO2018143211A1 WO 2018143211 A1 WO2018143211 A1 WO 2018143211A1 JP 2018003012 W JP2018003012 W JP 2018003012W WO 2018143211 A1 WO2018143211 A1 WO 2018143211A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
resin
layer
acrylic
acrylic block
Prior art date
Application number
PCT/JP2018/003012
Other languages
French (fr)
Japanese (ja)
Inventor
真 赤井
啓志 大島
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2018143211A1 publication Critical patent/WO2018143211A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type

Definitions

  • the present invention relates to a molded article having a layer made of a resin containing a specific acrylic block copolymer and a layer made of a polar resin, and a method for producing the same.
  • Composite products of hard plastic and soft material are widely used in automobiles, building materials, electrical products, daily necessities, and all other fields.
  • a protective member case, cover, etc.
  • polycarbonate or the like is used for the hard type
  • polyvinyl chloride, polystyrene elastomer, polyurethane for the soft type.
  • System elastomers and the like are used, and some hard and soft types are also integrated.
  • Soft type materials have been proposed by companies as shock absorbing materials.
  • Patent Document 1 a styrene-based thermoplastic elastomer composition suitable for uses such as a vibration isolating material, an impact absorbing material, a cover material, and a cushioning material is studied.
  • Patent Document 2 it has excellent melt adhesiveness with a polar base resin, and is provided with elasticity, vibration proofing, anti-destructive functions, etc. with a soft touch by covering or joining the surface of the base resin layer.
  • Thermoplastic resin formulations are being investigated.
  • Patent Document 3 an impact absorbing material made of an elastomer composition for protecting various electronic devices and the like from impacts and vibrations is studied.
  • Patent Document 4 an acrylic block copolymer that is excellent in flexibility, transparency, and adhesion to a base material and has excellent vibration damping properties compared to a comparable styrene-based elastomer is studied.
  • Patent Documents 1 to 3 do not describe the transparency of the composition, and are inappropriate for applications requiring transparency.
  • Patent Document 4 describes a wide range of uses using an acrylic block copolymer, but it is not specific, and there is no description about adhesiveness with a polar resin. Therefore, a composition having transparency, impact absorption and adhesion with a polar resin could not be obtained, and there was room for improvement.
  • the problem to be solved by the present invention is to provide a molded body having a resin layer having transparency, impact absorption, adhesion to a polar resin, and flexibility.
  • the present inventors have found that when a specific acrylic block copolymer is used, transparency, impact absorption, adhesion to a polar resin, and flexibility are improved.
  • the present inventors have found that a molded body having a combined resin layer can be obtained, and further studied based on the knowledge to complete the present invention.
  • the present invention [1] A molded body having a layer (I) made of a resin containing an acrylic block copolymer and a layer (II) made of a polar resin,
  • the acrylic block copolymer has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate ester unit in the molecule.
  • the resin containing the acrylic block copolymer has a total light transmittance of 3% thickness of 90% or more, an adhesive strength with the polar resin of 50 N / 40 mm or more at a peeling rate of 100 mm / min, and a tensile dynamic A molded product having a tan ⁇ measured by viscoelasticity measurement at 23 ° C.
  • a molded body having a resin layer having transparency, shock absorption, adhesion to a polar resin, and flexibility is provided by adopting the above configuration.
  • the molded product of the present invention has a layer (I) made of a resin containing an acrylic block copolymer and a layer (II) made of a polar resin.
  • the acrylic block copolymer has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate unit. At least one of them, the weight average molecular weight is 10,000 to 200,000, and the content of the polymer block (a2) is 10 to 65 mass% or less.
  • the resin containing the acrylic block copolymer has a total light transmittance of 3% thickness of 90% or more, an adhesive strength with the polar resin of 50 N / 40 mm or more at a peeling rate of 100 mm / min, Tan ⁇ measured at 23 ° C. and a frequency of 11 Hz in the dynamic viscoelasticity measurement is 0.20 or more.
  • the acrylic block copolymer in the present invention has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate ester unit, that is, , (A2)-(a1)-(a2) (in the structure, “-” indicates a chemical bond) in the molecule.
  • the content of the acrylate ester unit in the polymer block (a1) is usually 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • the acrylate ester as the acrylate ester unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, and acrylic.
  • Tert-butyl acid amyl acrylate, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, acrylic Examples include phenoxyethyl acid, 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate, and the like.
  • acrylic esters from the viewpoint of improving flexibility, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, phenoxyethyl acrylate, acrylic Acrylic acid alkyl esters such as 2-methoxyethyl acid are preferred, and n-butyl acrylate and 2-ethylhexyl acrylate are more preferred.
  • the polymer block (a1) may be composed of one kind of these acrylate esters or may be composed of two or more kinds.
  • the polymer block (a1) is a unit derived from an acrylate ester having a reactive group such as glycidyl acrylate or allyl acrylate; or the following methacrylate ester, as long as the object and effect of the present invention are not hindered.
  • Units derived from other polymerizable monomers other than acrylic acid esters such as methacrylic acid, acrylic acid, aromatic vinyl compounds, acrylonitrile, methacrylonitrile, olefins, and the like may be included as a copolymerization component.
  • the unit derived from the acrylate ester having a reactive group or the unit derived from another polymerizable monomer is preferably a small amount from the viewpoint of expressing the effect of the present invention, and both of the units in the polymer block (a1) are used.
  • the total content is preferably 10% by mass or less, more preferably 2% by mass or less.
  • the content of the methacrylic acid ester unit in the polymer block (a2) is usually 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • the methacrylic acid ester as the methacrylic acid ester unit include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, methacrylic acid.
  • Tert-butyl acid amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacryl Examples include phenoxyethyl acid, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, and the like.
  • methacrylate esters from the viewpoint of improving transparency and heat resistance, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate And alkyl methacrylates such as methyl methacrylate are more preferred.
  • the polymer block (a2) may be composed of one of these methacrylic acid esters or may be composed of two or more.
  • the polymer block (a2) is a unit derived from a methacrylic acid ester having a reactive group such as glycidyl methacrylate or allyl methacrylate; or the acrylate ester as long as the object and effect of the present invention are not hindered.
  • Units derived from other polymerizable monomers other than methacrylic acid esters such as methacrylic acid, acrylic acid, aromatic vinyl compounds, acrylonitrile, methacrylonitrile, olefins, etc. may be included as a copolymerization component.
  • the unit derived from the methacrylic acid ester having a reactive group or the unit derived from another polymerizable monomer is a small amount, and the total content of both in the polymer block (a2) is preferably 10 It is at most 2% by mass, more preferably at most 2% by mass.
  • the molecular chain form of the acrylic block copolymer is not particularly limited as long as it has at least one structure in which the polymer block (a2) is bonded to both ends of the polymer block (a1) in the molecule.
  • any of linear, branched, radial and the like may be used, but among these, a triblock body represented by (a2)-(a1)-(a2) is preferable.
  • the molecular weight and composition of (a2) at both ends of (a1) may be the same or different from each other.
  • the resin containing the acrylic block copolymer constituting the layer (I) is represented by (a2)-(a1) together with the acrylic block copolymer. It may further contain an acrylic diblock copolymer.
  • the acrylic block copolymer is a polymer block different from these polymer blocks (a1) and (a2), other than acrylic ester and methacrylic ester. It may have a polymer block (c) derived from the monomer.
  • the form of the bond between the polymer block (c) and the polymer block (a1) and the polymer block (a2) is not particularly limited. For example, (a2)-((a1)-(a2)) n- ( c), and structures such as (c)-(a2)-((a1)-(a2)) n- (c) (n is an integer of 1 to 20).
  • Examples of the monomer constituting the polymer block (c) include olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated dienes such as 1,3-butadiene, isoprene and myrcene; styrene, Aromatic vinyl such as ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene; vinyl acetate, vinylpyridine, acrylonitrile, methacrylonitrile, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride, acrylamide, methacrylamide, ⁇ -Caprolactone, valerolactone and the like.
  • olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene
  • conjugated dienes such as 1,3-butadiene, isoprene and myrcene
  • the acrylic block copolymer used in the present invention may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in the molecular chain or at the molecular chain end as necessary.
  • the weight average molecular weight of the acrylic block copolymer is 10,000 to 200,000 from the viewpoint of the transparency of the resulting layer (I), impact absorption, and adhesiveness to polar resins. From the above viewpoint, the weight average molecular weight of the acrylic block copolymer is preferably 30,000 to 180,000, and more preferably 50,000 to 160,000. When the weight average molecular weight of the acrylic block copolymer is 10,000 or more, sufficient melt tension can be maintained in injection molding or extrusion molding, and a good molded body can be obtained. Moreover, the mechanical properties such as the breaking strength of the obtained molded article are excellent.
  • the acrylic block copolymer has a weight average molecular weight of 200,000 or less, the surface of the molded body obtained by injection molding or extrusion molding has fine grainy irregularities and unmelted material (high molecular weight body). Produced products are less likely to occur, and a molded article having an excellent appearance is easily obtained.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the acrylic block copolymer is in the range of 1.01 or more and less than 1.50. It is preferable that it is in the range of 1.01 or more and 1.35 or less. By taking such a range, it is possible to make the content of the unmelted material that causes the generation of scum in the layer (I) extremely small.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) in this specification are those in terms of polystyrene measured by gel permeation chromatography, and should be measured by the method described later in the examples. Can do.
  • the content of the polymer block (a2) in the acrylic block copolymer is from 10 to 65% by mass, and from 12% by mass or more, from the viewpoints of transparency, impact absorption, and adhesion to polar resins. It is preferably 13% by mass or more, more preferably 14% by mass or more, particularly preferably 15% by mass or more, and preferably 60% by mass or less, 55% by mass. % Or less, more preferably 45% by weight or less, and particularly preferably 40% by weight or less.
  • the content of the polymer block (a2) in the acrylic block copolymer is smaller than the above range, the sticking feeling of the resin containing the acrylic block copolymer constituting the layer (I) increases, and the molding material Tend to be unsuitable.
  • the content of the polymer block (a2) in the acrylic block copolymer is larger than the above range, the resin containing the acrylic block copolymer constituting the layer (I) becomes hard and the impact is reduced. Absorptivity is lost, and there is a tendency for adhesion to polar resins to decrease.
  • the method for producing the acrylic block copolymer is not particularly limited, and a method according to a known method can be employed.
  • a method of living polymerizing monomers constituting each block is generally used.
  • a technique for such living polymerization for example, a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of a mineral salt such as an alkali metal or alkaline earth metal salt (Japanese Patent Publication No. 7-25859).
  • a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound see JP-A-11-335432
  • a method of polymerizing using an organic rare earth metal complex as a polymerization initiator JP-A-6-6.
  • JP-A-6-6 -93060
  • a method of radical polymerization using an ⁇ -halogenated ester compound as an initiator in the presence of a copper compound (Macromol. Chem. Phys.) 201, 1108-1114 (2000) ))).
  • the acrylic acid ester used when producing the polymer block (a1) mainly composed of the acrylic acid ester unit may be a mixed monomer in which two or more kinds are mixed in advance, such as an acrylic acid alkyl ester and an acrylic acid aromatic ester. It is preferable to use a mixed monomer. In this case, a mixed monomer of 50 to 90% by mass of acrylic acid alkyl ester and 50 to 10% by mass of acrylic acid aromatic ester is preferable, and 60 to 80% by mass of acrylic acid alkyl ester and 40 to 20% of acrylic acid aromatic ester are preferable. More preferably, it is a mixed monomer of mass%.
  • the layer (I) in the present invention is made of a resin containing an acrylic block copolymer.
  • the resin constituting the layer (I) may be composed of only an acrylic block copolymer, or may be a resin composition containing an acrylic block copolymer and other components. .
  • the kind of components other than the acrylic block copolymer in the resin composition is not particularly limited, and examples thereof include various polymers, additives, fillers and the like as described later.
  • the content of the acrylic block copolymer in the resin containing the acrylic block copolymer constituting the layer (I) is preferably 55% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. 100 mass%.
  • an acrylic polymer mainly composed of a methacrylic acid ester unit is preferable.
  • the acrylic polymer preferably contains 80% by mass or more of methacrylic acid ester units, and preferably contains 90% by mass or more.
  • the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, and methacrylic acid.
  • Amyl isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, methacryl Examples include 2-ethoxyethyl acid, glycidyl methacrylate, allyl methacrylate, cyclohexyl methacrylate, norbornenyl methacrylate, and isobonyl methacrylate. Of these, methyl methacrylate is particularly preferred.
  • the acrylic polymer may contain other monomer units other than methacrylic acid ester units.
  • examples of such other monomer units include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, and sec-butyl acrylate.
  • Tert-butyl acrylate amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate
  • Acrylic acid esters such as 2-hydroxyethyl acrylate, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate, cyclohexyl acrylate, norbornenyl acrylate, and isobornyl acrylate; acrylic acid, methacrylic acid, anhydrous Unsaturated carboxylic acids such as oleic acid, maleic acid and itaconic acid; olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated dienes such as butadiene, is
  • the method for producing the acrylic polymer is not particularly limited. Moreover, you may use a commercial item as an acrylic polymer. Examples of such commercially available products include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)), “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N)), “ “Parapet EH” (MFR: 1.3 g / 10 min (230 ° C., 37.3 N)), “Parapet HRL” (MFR: 2.0 g / 10 min (230 ° C., 37.3 N)), “Parapet HRS” ( MFR: 2.4 g / 10 min (230 ° C., 37.3 N)) and “Parapet G” (MFR: 8.0 g / 10 min (230 ° C., 37.3 N)) [all trade names, manufactured by Kuraray Co., Ltd. ] Etc. are mentioned.
  • the content thereof is preferably 1 to 45% by mass, more preferably 3 to 30% by mass, and further preferably 5 to 15% by mass. It is.
  • the above resin composition may contain other polymer as required in addition to the acrylic block copolymer and the acrylic polymer.
  • Other polymers include, for example, olefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers, high Styrene resins such as impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid; nylon 6 Polyamide resins such as nylon 66 and polyamide elastomers; ester polyurethane elastomers, ether polyurethane elastomers, non-yellowing ester polyurethane elastomers, non-y
  • the resin composition described above may be used in various known additives (for example, rubbers, lubricants, antioxidants, light stabilizers, colorants, antistatic agents, flame retardants, etc.) as long as the effects of the present invention are not impaired. ), Fillers (for example, fiber reinforcing agents such as glass fibers, inorganic fillers, etc.) and the like.
  • Fillers for example, fiber reinforcing agents such as glass fibers, inorganic fillers, etc.
  • rubbers that can be included as additives include acrylic rubbers; silicone rubbers; styrene thermoplastic elastomers such as SEPS, SEBS, and SIS; and olefin rubbers such as IR, EPR, and EPDM.
  • SEPS styrene thermoplastic elastomers
  • SEBS styrene thermoplastic elastomers
  • olefin rubbers such as IR, EPR, and EPDM.
  • One or more can be used.
  • additives and fillers examples include mineral oil softeners such as paraffinic oils and naphthenic oils for improving fluidity during molding; the purpose is to improve heat resistance, weather resistance, etc.
  • Inorganic fillers such as calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, magnesium carbonate; inorganic fiber or organic fiber such as glass fiber and carbon fiber for reinforcement; heat stabilizer; Light stabilizers; adhesives; tackifiers; plasticizers; antistatic agents; foaming agents; colorants;
  • a heat stabilizer, an antioxidant and the like in order to further improve heat resistance and weather resistance.
  • the transparency of the resin containing the acrylic block copolymer constituting the layer (I) is such that the total light transmittance of 3 mm thickness is 90% or more, preferably 91% or more, more preferably 92% or more. is there. If the total light transmittance with a thickness of 3 mm is 90% or more, the molded product having the layer (I) and the layer (II) produced by injection molding or extrusion molding has good transparency and excellent design.
  • the total light transmittance of 3 mm thickness can be measured with a haze meter using a molded product having a thickness of 3 mm obtained by injection molding a resin containing an acrylic block copolymer constituting the layer (I). Specifically, it can be measured by the method described later in the examples.
  • the resin containing the acrylic block copolymer constituting the layer (I) has an adhesive force with the polar resin constituting the layer (II) of 50 N / 40 mm or more at a peeling rate of 100 mm / min, preferably 60 N / 40 mm. It is above, More preferably, it is 70 N / 40mm or more.
  • the adhesive strength with the polar resin is 50 N / 40 mm or more at a peeling rate of 100 mm / min, the adhesion between the layer (I) and the layer (II) made of the polar resin will be good, and the molded product will have sufficient strength Can be obtained.
  • the upper limit is not particularly limited and is preferably as high as possible, but is usually 800 N / 40 mm or less.
  • the adhesive strength with the polar resin is about 100 mm ⁇ 40 mm in which a layer made of a resin containing an acrylic block copolymer is laminated by insert molding on a layer having a thickness of 1 mm made of a polar resin and a total thickness of 2 mm. , And can be measured according to ISO 11339, specifically, by the method described later in the examples.
  • the rubbery component formed by (a1) forms a matrix. It becomes easy to do. Therefore, the peak of tan ⁇ derived from the block (a1) tends to be large, and the value of tan ⁇ at 23 ° C. tends to be high.
  • the resin containing the acrylic block copolymer constituting the layer (I) has a tan ⁇ measured by tensile dynamic viscoelasticity measurement at 23 ° C. and a frequency of 11 Hz of 0.20 or more, preferably 0.21 or more. More preferably, it is 0.22 or more.
  • the layer (I) has excellent shock absorption, and the resulting molded article of the present invention has excellent shock absorption, for example, protects electronic equipment from shock. Therefore, it can be suitably used as a protective member (case, cover, etc.). Although it does not specifically limit about an upper limit, Usually, it is 3.0 or less.
  • the tan ⁇ can be measured by a viscoelasticity measuring device, and specifically can be measured by a method described later in the examples.
  • the resin containing the acrylic block copolymer constituting the layer (I) has an A hardness at 23 ° C. of preferably 20 to 75, more preferably 22 to 73, and further preferably 24 to 71. If the A hardness at 23 ° C. is 20 to 75, the flexibility of the layer (I) is improved and the flexibility of the resulting molded article is also improved.
  • the method for preparing the resin composition is not particularly limited, but the dispersibility of each component In order to increase the viscosity, a method of mixing by melt kneading is recommended.
  • the acrylic block copolymer and the acrylic polymer may be melt-kneaded.
  • these components are mixed simultaneously with the melt-kneading of the acrylic block copolymer and the acrylic polymer.
  • the acrylic block copolymer may be mixed with these components and then mixed with the acrylic polymer.
  • the mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer.
  • a twin screw extruder from the viewpoint of improving kneadability and compatibility between the acrylic block copolymer and the acrylic polymer.
  • the temperature at the time of mixing and kneading may be appropriately adjusted according to the melting temperature of the acrylic block copolymer and acrylic polymer to be used, and is usually mixed at a temperature within the range of 110 to 300 ° C.
  • the resin composition containing an acrylic block copolymer can be obtained in any form such as pellets or powder.
  • the resin composition thus obtained can be molded by the method described later to obtain layer (I).
  • a resin containing a polar polymer can be used as the polar resin constituting the layer (II).
  • the polar resin may be composed of only a polar polymer, or may be a polar resin composition containing a polar polymer and other components.
  • the kind of components other than the polar resin in the polar resin composition is not particularly limited, and examples thereof include various polymers, additives, fillers and the like mentioned in the resin constituting the layer (I).
  • the content of the polar polymer in the polar resin constituting the layer (II) is preferably 55% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and may be 100% by mass.
  • thermoplastic hard polar resin can be used as the polar resin constituting the layer (II).
  • a thermoplastic hard polar resin can be used.
  • ethylene ionomer polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, Styrenic resins such as AES resin, AAS resin, ACS resin, MBS resin; acrylic resin such as polymethyl methacrylate; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid; nylon 6 Polyamide resins such as nylon 66; polyurethane resins such as ester polyurethane, ether polyurethane, non-yellowing ester polyurethane, non-yellowing carbonate polyurethane; polycarbonate, polyvinyl chloride, polyvinyl chloride , Polyvinyl alcohol, ethylene - vinyl alcohol copoly
  • the polar resin preferably has a solubility parameter in the range of 8 to 13 (cal / cm 3 ) 1/2 , and more preferably in the range of 8 to 11 (cal / cm 3 ) 1/2 . If the solubility parameter is within the above range, the difference from the solubility parameter of the layer (I) tends to be small, so that the wettability is increased at the resin interface and the adhesiveness is also improved.
  • a solubility parameter shall be defined by the method as described in an Example.
  • the polar resin preferably has a flexural modulus of 2,000 to 3,500 MPa at 23 ° C., more preferably 2,200 to 3,300 MPa, and still more preferably 2,300 to 3,000 MPa. If the bending elastic modulus at 23 ° C. is 2,000 MPa or more, sufficient rigidity can be secured even if the layer (II) made of the polar resin is thin, and if it is 3,500 MPa or less, it will be described later. The moldability of the molded body is also improved.
  • the polar resin preferably has a 3 mm-thick total light transmittance of 88% or more, more preferably 89% or more, and still more preferably 90% or more. If the total light transmittance with a thickness of 3 mm is 88% or more, the transparency of the layer (II) made of the polar resin will be good, and the resulting molded article will have good transparency and excellent design.
  • the total light transmittance with a thickness of 3 mm can be measured with a haze meter using a molded product with a thickness of 3 mm obtained by injection molding the polar resin constituting the layer (II). Specifically, in the examples It can measure by the method mentioned later.
  • the molded article of the present invention has a layer (I) made of a resin containing the above acrylic block copolymer and a layer (II) made of a polar resin.
  • a layer (I) made of a resin containing the above acrylic block copolymer
  • a layer (II) made of a polar resin.
  • other layers may be included, but the layer (I) and the layer (II) are preferably adjacent to each other.
  • the molded product of the present invention has a layer (I) that is excellent in transparency, flexibility, and impact absorption.
  • the layer (II) can impart transparency and rigidity to the molded article of the present invention. For this reason, the molded article of the present invention is excellent in transparency and has the characteristics that the layer (II) has rigidity and the layer (I) has excellent flexibility and impact absorption.
  • the thickness of the layer (I) and the layer (II) constituting the molded body of the present invention is not particularly limited, but the thickness of the layer (I) is 0.1 from the viewpoint that the molded body is excellent in flexibility and impact absorption.
  • Is preferably 10 to 10 mm, more preferably 0.3 to 5 mm, still more preferably 0.5 to 3 mm, and may be 0.7 to 2 mm, and more preferably 1 to 1.5 mm.
  • the thickness of the layer (II) is preferably from 0.3 to 10 mm, more preferably from 0.5 to 5 mm, still more preferably from 1 to 3 mm.
  • the molded article of the present invention can be molded using a generally used molding method or molding apparatus.
  • at least one of the layer (I) and the layer (II) is formed by a molding method such as extrusion molding, extrusion lamination, injection molding, compression molding, blow molding, calender molding, vacuum molding, or the like, a solution casting method, or the like.
  • the molded article of the present invention can be produced.
  • the molded article of the present invention is produced by injection molding or extrusion molding, at least one of the layer (I) and the layer (II) may be injection molded or extrusion molded.
  • the layer ( When forming I) the resin composition may be used for injection molding or extrusion molding.
  • a method for producing the molded article of the present invention for example, a method in which the layer (I) and the layer (II) are separately molded in advance and then laminated (method 1); A method of forming layer (I) by arranging a resin (acrylic block copolymer or resin composition containing the same) containing a molten acrylic block copolymer in the layer (II) that has been left (Method 2) ); A method of forming a layer (II) by arranging a molten polar resin in the layer (I) prepared in advance (Method 3); a resin containing an acrylic block copolymer in a molten state (acrylic) A block copolymer or a resin composition containing the block copolymer) and a molten polar resin are arranged on each other by a method such as coextrusion to form the layer (I) and the layer (II) (Method 4).
  • the methods 2 to 4 are preferable because the adhesive force between the layer (I) and the layer (II) is improved, and the method 2 is more preferable because the desired molded article can be easily obtained.
  • the resin containing the acrylic block copolymer is excellent in melt fluidity, it is preferable to form the layer (I) by injection molding.
  • the pre-molded layer (II) is placed in the mold.
  • insert molding in which a resin containing an acrylic block copolymer in a molten state (an acrylic block copolymer or a resin composition containing the same) is injected.
  • the use of the molded product of the present invention is not particularly limited, but it is used in various applications such as the optical field, food field, medical field, consumer field, automobile field, electric / electronic field, and architectural field because of the above characteristics. Can do.
  • a protective member for electronic devices such as smartphone terminals (cases, covers, etc.)
  • it is excellent in shock absorption, so that it is possible to protect smartphone terminals from damage due to impact or collision due to falling, and transparent Design and design can be imparted because of its excellent properties and flexibility, and it can be easily detached.
  • liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, light control panels, OA equipment displays, AV equipment displays, electroluminescence display elements, touch panels, etc.
  • liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, light control panels, OA equipment displays, AV equipment displays, electroluminescence display elements, touch panels, etc.
  • polar resin adhesion for example, architectural interior / exterior materials, curtain walls, roof materials, roofing materials, window materials, gutters, exteriors, wall materials, flooring materials. It can also be used for multilayer products such as construction materials, road construction members, retroreflective films and sheets, agricultural films and sheets, lighting covers, signboards, and translucent sound insulation walls.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the acrylic block copolymer were determined by gel permeation chromatography (hereinafter abbreviated as GPC) in terms of polystyrene equivalent molecular weight. Details are as follows. ⁇ Equipment: GPC equipment “HLC-8020” manufactured by Tosoh Corporation Separation column: “TSKgel GMHXL”, “G4000HXL” and “G5000HXL” manufactured by Tosoh Corporation are connected in series. Eluent: Tetrahydrofuran Eluent flow rate: 1.0 ml / min Column temperature: 40 ° C. ⁇ Detection method: Differential refractive index (RI)
  • composition ratio of each polymer block The composition ratio of each polymer block and the composition ratio of each polymer block in the acrylic block copolymer were determined by 1 H-NMR ( 1 H-nuclear magnetic resonance) measurement. . Details are as follows. ⁇ Device: JEM Nuclear Magnetic Resonance Device “JNM-LA400” ⁇ Deuterated solvent: Deuterated chloroform
  • Solubility parameter of the polar resin was converted to a unit by referring to the numerical value [(MPa) 1/2 ] described in “Polymer Handbook 4th Edition” (edited by Willy Interscience) [( cal / cm 3 ) 1/2 ] was used.
  • the solubility parameters of resins not described in the “Polymer Handbook” are derived from molecular structures reported in literatures such as “KL Hoy, Journal of Paint Technology, 42 (541), 76 (1970)”.
  • the numerical value [(MPa) 1/2 ] was calculated by the Hoy calculation method to be estimated, and the same unit conversion [(cal / cm 3 ) 1/2 ] as described above was used.
  • the bending elastic modulus of polar resin at 23 ° C. is determined by the injection temperature (cylinder temperature) of each polar resin described in (4) using an injection molding machine (“UH1000-80” manufactured by Nissei Plastic Industry Co., Ltd.). And a mold temperature), a molded body having a size of 80 mm ⁇ 10 mm and a thickness of 4 mm was produced. About the obtained molded object, based on ISO 178, the bending elastic modulus was measured.
  • Table 1 shows each physical property value of the polar resin used in the following Examples and Comparative Examples.
  • PC Polycarbonate
  • PS Polystyrene
  • PS SX100 (PS Japan Corporation)
  • PMMA Parapet HR-L (Kuraray Co., Ltd.)
  • the compound was dried and purified by a conventional method and degassed with nitrogen. Moreover, the transfer and supply of the compounds were performed under a nitrogen atmosphere.
  • Synthesis Example 1 [Preparation of organoaluminum compound: isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum] After drying with sodium, 25 ml of dry toluene obtained by distillation under an argon atmosphere and 11 g of 2,6-di-t-butyl-4-methylphenol were placed in a 200 ml flask whose internal atmosphere was replaced with argon. Added and dissolved with stirring at room temperature. By adding 6.8 ml of triisobutylaluminum to the obtained solution and stirring at 80 ° C.
  • organoaluminum compound [isobutylbis (2,6-di-t-butyl-4-methylphenoxy)] was obtained.
  • the structure of the resulting acrylic block copolymer (A1) is a triblock of methyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA).
  • the copolymer had a PMMA content (content of polymer block (a2)) of 23.5% by mass, a weight average molecular weight of 70,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.20.
  • PMMA acid methyl polymer block
  • PMMA content content of polymer block (a2) 16.0% by mass
  • weight average molecular weight 150,000 weight average molecular weight 150,000
  • molecular weight distribution weight average molecular weight / Number average molecular weight 1.20.
  • Examples 1 to 8 As the resin constituting the layer (I), the acrylic block copolymers (A1) to (A6) obtained in Synthesis Examples 2 to 7, or the acrylic block copolymer and the acrylic polymer (“Parapet”) are used. GF “(manufactured by Kuraray Co., Ltd.) was used, and the resin obtained by extruding and cutting after melt kneading at 230 ° C with a twin screw extruder at the blending ratio shown in Table 2 below was used. . As the resin constituting this and the layer (II), the polar resin described in Table 1 is used and an injection molding machine (Nissei Resin Industry Co., Ltd.
  • “UH1000-80”) is used to insert 100 mm ⁇ 40 mm and a total thickness of 2 mm.
  • An adhesive molded body was produced.
  • a layer (II) having a size of 100 mm ⁇ 40 mm and a thickness of 1 mm was used with the injection molding machine under the injection temperature (cylinder temperature and mold temperature) conditions of each polar resin described in (4).
  • a plurality of molded bodies were prepared in advance, and the molded body of the obtained layer (II) was set in an injection mold having a size of 100 mm ⁇ 40 mm and a thickness of 2 mm, and the cylinder temperature was 210 ° C. and the mold temperature was 50 ° C.
  • a resin constituting the layer (I) was injected into the gap to produce an insert bonded molded body.
  • the adhesive force between layer (I) and layer (II) was measured according to said (3).
  • the physical properties of the resin constituting the layer (I) were evaluated according to the above (4) to (6). The obtained results are shown in Table 2.
  • Comparative Examples 1 to 4 Except having changed resin which comprises layer (I) as described in Table 3, the molded object was manufactured by the method similar to an Example, and the physical property was evaluated. The obtained results are shown in Table 3.
  • the resins used in Comparative Examples 2 to 4 are as follows. Thermoplastic elastomer: “HIBLER 7125 (Kuraray Co., Ltd.)” Thermoplastic polyurethane elastomer: “Elastolan 1198A (manufactured by BASF)” Thermoplastic polyurethane elastomer (no yellowing): “Milactolan XN2004 (manufactured by Tosoh Corporation)”
  • the layer (I) in the molded bodies obtained in Examples 1 to 8 of the present invention has good transparency, adhesion to PC and flexibility.
  • the adhesiveness to PS and PMMA is also good, and it is considered that the same effect can be obtained in other examples.
  • the layer (I) has excellent shock absorption, and in Example 6, it is particularly excellent. Furthermore, it has low hardness and excellent flexibility.
  • the molded articles of Examples 1 to 8 are excellent in transparency, impact absorption, and flexibility.
  • Comparative Example 1 has good transparency but poor performance.
  • Comparative Example 2 is a thermoplastic elastomer that does not contain an acrylic block copolymer and is inferior in transparency.
  • Comparative Examples 3 and 4 are thermoplastic polyurethane elastomers that do not contain an acrylic block copolymer and are inferior in flexibility. Comparative Example 4 is also inferior in shock absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The purpose of the present invention is to provide a molded body having a resin layer with transparency, shock absorption, adhesiveness with a polar resin, and flexibility. Provided is a molded body comprising: a layer (I) made of a resin including an acrylic block copolymer; and a layer (II) made of a polar resin, wherein the acrylic block copolymer has, in a molecule, at least one structure in which methacrylic ester polymer blocks (a2) are respectively bonded to both ends of an acrylic ester polymer block (a1), has a weight average molecular weight of 10,000-200,000, and includes the polymer block (a2) in an amount of 10-65 mass%, and the resin including the acrylic block copolymer has a total light transmittance as a 3-mm thickness sheet of 90% or higher, an adhesiveness with the polar resin of 50 N/40 mm or higher at a peeling speed of 100 mm/min, and a tanδ measured by the tensile dynamic viscoelasticity measurement at 23°C and a frequency of 11 Hz, of 0.20 or higher.

Description

成形体およびその製造方法Molded body and method for producing the same
 本発明は、特定のアクリル系ブロック共重合体を含む樹脂からなる層と極性樹脂からなる層とを有する成形体およびその製造方法に関する。 The present invention relates to a molded article having a layer made of a resin containing a specific acrylic block copolymer and a layer made of a polar resin, and a method for producing the same.
 自動車、建築材料、電気製品、日用品、その他のあらゆる分野において硬質プラスチックと軟質材料との複合製品が広く使用されている。例えば、携帯電話などの電子機器を衝撃から保護するための保護部材(ケースやカバー等)として、ハードタイプのものではポリカーボネート等が使用され、ソフトタイプのものではポリ塩化ビニル、ポリスチレン系エラストマー、ポリウレタン系エラストマー等が使用されており、一部、ハードタイプとソフトタイプを一体化したものも使用されている。また、ソフトタイプの材料は衝撃吸収材料として各社から提案されている。 Composite products of hard plastic and soft material are widely used in automobiles, building materials, electrical products, daily necessities, and all other fields. For example, as a protective member (case, cover, etc.) for protecting electronic devices such as mobile phones from impact, polycarbonate or the like is used for the hard type, and polyvinyl chloride, polystyrene elastomer, polyurethane for the soft type. System elastomers and the like are used, and some hard and soft types are also integrated. Soft type materials have been proposed by companies as shock absorbing materials.
 例えば、特許文献1では、防振材、衝撃吸収材、カバー材、緩衝材などの用途に好適なスチレン系熱可塑性エラストマー組成物が検討されている。特許文献2では、極性基材樹脂との溶融接着性に優れ、該基材樹脂層表面に被覆あるいは接合して表面が軟質な手触りで、弾力性、防振性、破壊防止機能等が付与された熱可塑性樹脂配合物が検討されている。特許文献3では、各種電子装置などを衝撃や振動から保護するためのエラストマー組成物からなる衝撃吸収材料が検討されている。特許文献4では、柔軟性、透明性、基材との密着性に優れ、同程度のスチレン系エラストマーと比較して制振性に優れたアクリル系ブロック共重合体が検討されている。 For example, in Patent Document 1, a styrene-based thermoplastic elastomer composition suitable for uses such as a vibration isolating material, an impact absorbing material, a cover material, and a cushioning material is studied. In Patent Document 2, it has excellent melt adhesiveness with a polar base resin, and is provided with elasticity, vibration proofing, anti-destructive functions, etc. with a soft touch by covering or joining the surface of the base resin layer. Thermoplastic resin formulations are being investigated. In Patent Document 3, an impact absorbing material made of an elastomer composition for protecting various electronic devices and the like from impacts and vibrations is studied. In Patent Document 4, an acrylic block copolymer that is excellent in flexibility, transparency, and adhesion to a base material and has excellent vibration damping properties compared to a comparable styrene-based elastomer is studied.
特開2000-169666号公報JP 2000-169666 A 特開2009-91384号公報JP 2009-91384 A 特開2010-275457号公報JP 2010-275457 A 特開2009-79120号公報JP 2009-79120 A
 しかしながら、特許文献1~3には、組成物の透明性に関する記載が無く、透明性を要する用途に対しては不適当であった。また、特許文献4には、アクリル系ブロック共重合体を用いた用途が幅広く書かれているものの具体的ではなく、極性樹脂との接着性に関する記載もない。そのため透明性、衝撃吸収性及び極性樹脂との接着性を兼ね備えた組成物が得られず、改良の余地があった。 However, Patent Documents 1 to 3 do not describe the transparency of the composition, and are inappropriate for applications requiring transparency. In addition, Patent Document 4 describes a wide range of uses using an acrylic block copolymer, but it is not specific, and there is no description about adhesiveness with a polar resin. Therefore, a composition having transparency, impact absorption and adhesion with a polar resin could not be obtained, and there was room for improvement.
 上記事情に鑑み、本発明が解決しようとする課題は、透明性、衝撃吸収性、極性樹脂との接着性および柔軟性を兼ね備えた樹脂層を有する成形体を提供することである。 In view of the above circumstances, the problem to be solved by the present invention is to provide a molded body having a resin layer having transparency, impact absorption, adhesion to a polar resin, and flexibility.
 本発明者らは、上記課題を解決するために鋭意研究をした結果、特定のアクリル系ブロック共重合体を用いた場合に、透明性、衝撃吸収性、極性樹脂との接着性および柔軟性を兼ね備えた樹脂層を有する成形体が得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have found that when a specific acrylic block copolymer is used, transparency, impact absorption, adhesion to a polar resin, and flexibility are improved. The present inventors have found that a molded body having a combined resin layer can be obtained, and further studied based on the knowledge to complete the present invention.
 即ち本発明は、
[1]アクリル系ブロック共重合体を含む樹脂からなる層(I)と極性樹脂からなる層(II)とを有する成形体であって、
 前記アクリル系ブロック共重合体は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有し、重量平均分子量が10,000~200,000であり、重合体ブロック(a2)の含有量が10~65質量%であり、
 前記アクリル系ブロック共重合体を含む樹脂は、3mm厚みの全光線透過率が90%以上であり、前記極性樹脂との接着力が剥離速度100mm/分で50N/40mm以上であり、引張動的粘弾性測定で23℃、周波数11Hzで測定したtanδが0.20以上である、成形体;
[2]前記極性樹脂の溶解度パラメーターが8~13(cal/cm31/2である、[1]に記載の成形体;
[3]前記極性樹脂の23℃の曲げ弾性率が2,000~3,500MPaである、[1]または[2]に記載の成形体;
[4]前記極性樹脂の3mm厚みの全光線透過率が88%以上である、[1]~[3]のいずれかに記載の成形体;
[5]前記アクリル系ブロック共重合体を含む樹脂の23℃のA硬度が20~75である、[1]~[4]のいずれかに記載の成形体;
[6]層(I)の厚みが0.1~10mmである、[1]~[5]のいずれかに記載の成形体;
[7][1]~[6]のいずれかに記載の成形体からなる、電子機器用保護部材;
[8]スマートフォン用保護部材である、[7]に記載の電子機器用保護部材;
[9][1]~[6]のいずれかに記載の成形体、または[7]もしくは[8]に記載の電子機器用保護部材の製造方法であって、射出成形または押出成形によって製造する、製造方法;
に関する。
That is, the present invention
[1] A molded body having a layer (I) made of a resin containing an acrylic block copolymer and a layer (II) made of a polar resin,
The acrylic block copolymer has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate ester unit in the molecule. Having at least one, a weight average molecular weight of 10,000 to 200,000, a content of the polymer block (a2) of 10 to 65% by mass,
The resin containing the acrylic block copolymer has a total light transmittance of 3% thickness of 90% or more, an adhesive strength with the polar resin of 50 N / 40 mm or more at a peeling rate of 100 mm / min, and a tensile dynamic A molded product having a tan δ measured by viscoelasticity measurement at 23 ° C. and a frequency of 11 Hz of 0.20 or more;
[2] The molded product according to [1], wherein the solubility parameter of the polar resin is 8 to 13 (cal / cm 3 ) 1/2 ;
[3] The molded article according to [1] or [2], wherein the polar resin has a flexural modulus at 23 ° C. of 2,000 to 3,500 MPa;
[4] The molded product according to any one of [1] to [3], wherein the polar resin has a total light transmittance of 3% thickness of 88% or more;
[5] The molded article according to any one of [1] to [4], wherein the resin containing the acrylic block copolymer has an A hardness at 23 ° C. of 20 to 75;
[6] The molded article according to any one of [1] to [5], wherein the thickness of the layer (I) is 0.1 to 10 mm;
[7] A protective member for electronic equipment, comprising the molded article according to any one of [1] to [6];
[8] The electronic device protection member according to [7], which is a smartphone protection member;
[9] A method for producing a molded article according to any one of [1] to [6] or a protective member for electronic equipment according to [7] or [8], which is produced by injection molding or extrusion molding. ,Production method;
About.
 本発明によれば、上記構成をとることにより、透明性、衝撃吸収性、極性樹脂との接着性および柔軟性を兼ね備えた樹脂層を有する成形体が提供される。 According to the present invention, a molded body having a resin layer having transparency, shock absorption, adhesion to a polar resin, and flexibility is provided by adopting the above configuration.
 以下、本発明を詳細に説明する。
 本発明の成形体は、アクリル系ブロック共重合体を含む樹脂からなる層(I)と極性樹脂からなる層(II)とを有する。ここで、アクリル系ブロック共重合体は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有し、重量平均分子量が10,000~200,000であり、重合体ブロック(a2)の含有量が10~65質量%以下である。また、アクリル系ブロック共重合体を含む樹脂は、3mm厚みの全光線透過率が90%以上であり、前記極性樹脂との接着力が剥離速度100mm/分で50N/40mm以上であり、引張動的粘弾性測定で23℃、周波数11Hzで測定したtanδが0.20以上である。
Hereinafter, the present invention will be described in detail.
The molded product of the present invention has a layer (I) made of a resin containing an acrylic block copolymer and a layer (II) made of a polar resin. Here, the acrylic block copolymer has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate unit. At least one of them, the weight average molecular weight is 10,000 to 200,000, and the content of the polymer block (a2) is 10 to 65 mass% or less. In addition, the resin containing the acrylic block copolymer has a total light transmittance of 3% thickness of 90% or more, an adhesive strength with the polar resin of 50 N / 40 mm or more at a peeling rate of 100 mm / min, Tan δ measured at 23 ° C. and a frequency of 11 Hz in the dynamic viscoelasticity measurement is 0.20 or more.
[アクリル系ブロック共重合体]
 本発明におけるアクリル系ブロック共重合体は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造、すなわち、(a2)-(a1)-(a2)の構造(構造中「-」は、化学結合を示す)を分子内に少なくとも1つ有する。
[Acrylic block copolymer]
The acrylic block copolymer in the present invention has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate ester unit, that is, , (A2)-(a1)-(a2) (in the structure, “-” indicates a chemical bond) in the molecule.
 重合体ブロック(a1)におけるアクリル酸エステル単位の含有量は、通常60質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であってもよい。当該アクリル酸エステル単位となるアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸イソボルニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチルなどを挙げることができる。これらのアクリル酸エステルの中でも、柔軟性を向上させる観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸フェノキシエチル、アクリル酸2-メトキシエチルなどのアクリル酸アルキルエステルが好ましく、アクリル酸n-ブチル、アクリル酸2-エチルヘキシルがより好ましい。重合体ブロック(a1)は、これらのアクリル酸エステルの1種から構成されていても、2種以上から構成されていてもよい。 The content of the acrylate ester unit in the polymer block (a1) is usually 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass. Examples of the acrylate ester as the acrylate ester unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, and acrylic. Tert-butyl acid, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, acrylic Examples include phenoxyethyl acid, 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate, and the like. Among these acrylic esters, from the viewpoint of improving flexibility, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, phenoxyethyl acrylate, acrylic Acrylic acid alkyl esters such as 2-methoxyethyl acid are preferred, and n-butyl acrylate and 2-ethylhexyl acrylate are more preferred. The polymer block (a1) may be composed of one kind of these acrylate esters or may be composed of two or more kinds.
 また、本発明の目的および効果の妨げにならない限りにおいて、重合体ブロック(a1)は、アクリル酸グリシジル、アクリル酸アリル等の反応基を有するアクリル酸エステルに由来する単位;または、下記メタクリル酸エステル、メタクリル酸、アクリル酸、芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル、オレフィン等のアクリル酸エステル以外の他の重合性単量体に由来する単位;などを共重合成分として含んでいてもよい。これら反応基を有するアクリル酸エステルに由来する単位または他の重合性単量体に由来する単位は本発明の効果を発現させる観点から少量であることが好ましく、重合体ブロック(a1)における両者の合計の含有量は好ましくは10質量%以下、より好ましくは2質量%以下である。 In addition, the polymer block (a1) is a unit derived from an acrylate ester having a reactive group such as glycidyl acrylate or allyl acrylate; or the following methacrylate ester, as long as the object and effect of the present invention are not hindered. , Units derived from other polymerizable monomers other than acrylic acid esters such as methacrylic acid, acrylic acid, aromatic vinyl compounds, acrylonitrile, methacrylonitrile, olefins, and the like may be included as a copolymerization component. The unit derived from the acrylate ester having a reactive group or the unit derived from another polymerizable monomer is preferably a small amount from the viewpoint of expressing the effect of the present invention, and both of the units in the polymer block (a1) are used. The total content is preferably 10% by mass or less, more preferably 2% by mass or less.
 重合体ブロック(a2)におけるメタクリル酸エステル単位の含有量は、通常60質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であってもよい。当該メタクリル酸エステル単位となるメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチルなどを挙げることができる。これらのメタクリル酸エステルの中でも、透明性、耐熱性を向上させる観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸tert-ブチル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニルなどのメタクリル酸アルキルエステルが好ましく、メタクリル酸メチルがより好ましい。重合体ブロック(a2)は、これらのメタクリル酸エステルの1種から構成されていても、2種以上から構成されていてもよい。 The content of the methacrylic acid ester unit in the polymer block (a2) is usually 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass. Examples of the methacrylic acid ester as the methacrylic acid ester unit include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, methacrylic acid. Tert-butyl acid, amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacryl Examples include phenoxyethyl acid, 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, and the like. Among these methacrylate esters, from the viewpoint of improving transparency and heat resistance, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate And alkyl methacrylates such as methyl methacrylate are more preferred. The polymer block (a2) may be composed of one of these methacrylic acid esters or may be composed of two or more.
 また、本発明の目的および効果の妨げにならない限りにおいて、重合体ブロック(a2)は、メタクリル酸グリシジル、メタクリル酸アリル等の反応基を有するメタクリル酸エステルに由来する単位;または、前記アクリル酸エステル、メタクリル酸、アクリル酸、芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル、オレフィン等のメタクリル酸エステル以外の他の重合性単量体に由来する単位;などを共重合成分として含んでいてもよい。これら反応基を有するメタアクリル酸エステルに由来する単位または他の重合性単量体に由来する単位は少量であることが好ましく、重合体ブロック(a2)における両者の合計の含有量は好ましくは10質量%以下、より好ましくは2質量%以下である。 In addition, the polymer block (a2) is a unit derived from a methacrylic acid ester having a reactive group such as glycidyl methacrylate or allyl methacrylate; or the acrylate ester as long as the object and effect of the present invention are not hindered. , Units derived from other polymerizable monomers other than methacrylic acid esters such as methacrylic acid, acrylic acid, aromatic vinyl compounds, acrylonitrile, methacrylonitrile, olefins, etc. may be included as a copolymerization component. It is preferable that the unit derived from the methacrylic acid ester having a reactive group or the unit derived from another polymerizable monomer is a small amount, and the total content of both in the polymer block (a2) is preferably 10 It is at most 2% by mass, more preferably at most 2% by mass.
 アクリル系ブロック共重合体の分子鎖形態は、重合体ブロック(a1)の両末端にそれぞれ重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有する限り、特に限定されることはなく、例えば、線状、分枝状、放射状などのいずれでもよいが、中でも(a2)-(a1)-(a2)で表されるトリブロック体が好ましい。ここで、(a1)の両端の(a2)の分子量、組成などは同じであってもよいし、相互に異なっていてもよい。なお、本発明の目的および効果の妨げにならない限りにおいて、層(I)を構成するアクリル系ブロック共重合体を含む樹脂は前記アクリル系ブロック共重合体と共に、(a2)-(a1)で表されるアクリル系ジブロック共重合体をさらに含んでいてもよい。 The molecular chain form of the acrylic block copolymer is not particularly limited as long as it has at least one structure in which the polymer block (a2) is bonded to both ends of the polymer block (a1) in the molecule. For example, any of linear, branched, radial and the like may be used, but among these, a triblock body represented by (a2)-(a1)-(a2) is preferable. Here, the molecular weight and composition of (a2) at both ends of (a1) may be the same or different from each other. As long as the objects and effects of the present invention are not hindered, the resin containing the acrylic block copolymer constituting the layer (I) is represented by (a2)-(a1) together with the acrylic block copolymer. It may further contain an acrylic diblock copolymer.
 本発明の目的および効果の妨げにならない限りにおいて、アクリル系ブロック共重合体は、これらの重合体ブロック(a1)および(a2)とは別の重合体ブロックとして、アクリル酸エステルおよびメタクリル酸エステル以外の単量体から誘導される重合体ブロック(c)を有してもよい。重合体ブロック(c)と上記重合体ブロック(a1)および重合体ブロック(a2)との結合の形態は特に限定されないが、例えば、(a2)-((a1)-(a2))-(c)や、(c)-(a2)-((a1)-(a2))-(c)などの構造(nは1~20の整数である)が挙げられる。 As long as the purpose and effect of the present invention are not hindered, the acrylic block copolymer is a polymer block different from these polymer blocks (a1) and (a2), other than acrylic ester and methacrylic ester. It may have a polymer block (c) derived from the monomer. The form of the bond between the polymer block (c) and the polymer block (a1) and the polymer block (a2) is not particularly limited. For example, (a2)-((a1)-(a2)) n- ( c), and structures such as (c)-(a2)-((a1)-(a2)) n- (c) (n is an integer of 1 to 20).
 上記重合体ブロック(c)を構成する単量体としては、例えばエチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;1,3-ブタジエン、イソプレン、ミルセンなどの共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどの芳香族ビニル;酢酸ビニル、ビニルピリジン、アクリロニトリル、メタクリロニトリル、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン、アクリルアミド、メタクリルアミド、ε-カプロラクトン、バレロラクトンなどを挙げることができる。 Examples of the monomer constituting the polymer block (c) include olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated dienes such as 1,3-butadiene, isoprene and myrcene; styrene, Aromatic vinyl such as α-methylstyrene, p-methylstyrene, m-methylstyrene; vinyl acetate, vinylpyridine, acrylonitrile, methacrylonitrile, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride, acrylamide, methacrylamide, ε -Caprolactone, valerolactone and the like.
 本発明に用いるアクリル系ブロック共重合体は、必要に応じて、分子鎖中または分子鎖末端に水酸基、カルボキシル基、酸無水物、アミノ基などの官能基を有していてもよい。 The acrylic block copolymer used in the present invention may have a functional group such as a hydroxyl group, a carboxyl group, an acid anhydride, or an amino group in the molecular chain or at the molecular chain end as necessary.
 アクリル系ブロック共重合体の重量平均分子量は、得られる層(I)の透明性、衝撃吸収性、極性樹脂との接着性の観点から、10,000~200,000である。上記観点からアクリル系ブロック共重合体の重量平均分子量は、30,000~180,000であるのが好ましく、50,000~160,000であるのがより好ましい。アクリル系ブロック共重合体の重量平均分子量が10,000以上であると、射出成形または押出成形において十分な溶融張力を保持でき、良好な成形体が得られる。また、得られる成形体の破断強度などの力学物性が優れたものとなる。一方、アクリル系ブロック共重合体の重量平均分子量が200,000以下であると、射出成形または押出成形で得られる成形体の表面に微細なシボ調の凹凸や未溶融物(高分子量体)に起因するブツが発生しにくく、外観に優れる成形体が得られやすい。 The weight average molecular weight of the acrylic block copolymer is 10,000 to 200,000 from the viewpoint of the transparency of the resulting layer (I), impact absorption, and adhesiveness to polar resins. From the above viewpoint, the weight average molecular weight of the acrylic block copolymer is preferably 30,000 to 180,000, and more preferably 50,000 to 160,000. When the weight average molecular weight of the acrylic block copolymer is 10,000 or more, sufficient melt tension can be maintained in injection molding or extrusion molding, and a good molded body can be obtained. Moreover, the mechanical properties such as the breaking strength of the obtained molded article are excellent. On the other hand, if the acrylic block copolymer has a weight average molecular weight of 200,000 or less, the surface of the molded body obtained by injection molding or extrusion molding has fine grainy irregularities and unmelted material (high molecular weight body). Produced products are less likely to occur, and a molded article having an excellent appearance is easily obtained.
 また、アクリル系ブロック共重合体の数平均分子量(Mn)と重量平均分子量(Mw)の比(Mw/Mn)で表される分子量分布は、1.01以上1.50未満の範囲内にあるのがよく、1.01以上1.35以下の範囲内にあるのがより好ましい。このような範囲を取ることにより、層(I)におけるブツ発生の原因となる未溶融物の含有量を極めて少量とすることができる。
 なお、本明細書における重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル・パーミエイション・クロマトグラフィーにより測定されるポリスチレン換算のものであり、実施例において後述する方法により測定することができる。
The molecular weight distribution represented by the ratio (Mw / Mn) of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the acrylic block copolymer is in the range of 1.01 or more and less than 1.50. It is preferable that it is in the range of 1.01 or more and 1.35 or less. By taking such a range, it is possible to make the content of the unmelted material that causes the generation of scum in the layer (I) extremely small.
In addition, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in this specification are those in terms of polystyrene measured by gel permeation chromatography, and should be measured by the method described later in the examples. Can do.
 アクリル系ブロック共重合体における重合体ブロック(a2)の含有量は、透明性、衝撃吸収性、極性樹脂との接着性の観点から、10~65質量%であり、12質量%以上であることが好ましく、13質量%以上であることがより好ましく、14質量%以上であることが更に好ましく、15質量%以上であることが特に好ましく、また、60質量%以下であることが好ましく、55質量%以下であることがより好ましく、45質量%以下であることが更に好ましく、40質量%以下であることが特に好ましい。アクリル系ブロック共重合体における重合体ブロック(a2)の含有量が上記範囲より小さい場合には、層(I)を構成するアクリル系ブロック共重合体を含む樹脂の膠着感が増加し、成形材料として適さなくなる傾向がある。一方、アクリル系ブロック共重合体における重合体ブロック(a2)の含有量が上記範囲より大きい場合には、層(I)を構成するアクリル系ブロック共重合体を含む樹脂が硬くなり、また、衝撃吸収性が失われ、更に極性樹脂との接着性が低下する傾向がある。 The content of the polymer block (a2) in the acrylic block copolymer is from 10 to 65% by mass, and from 12% by mass or more, from the viewpoints of transparency, impact absorption, and adhesion to polar resins. It is preferably 13% by mass or more, more preferably 14% by mass or more, particularly preferably 15% by mass or more, and preferably 60% by mass or less, 55% by mass. % Or less, more preferably 45% by weight or less, and particularly preferably 40% by weight or less. When the content of the polymer block (a2) in the acrylic block copolymer is smaller than the above range, the sticking feeling of the resin containing the acrylic block copolymer constituting the layer (I) increases, and the molding material Tend to be unsuitable. On the other hand, when the content of the polymer block (a2) in the acrylic block copolymer is larger than the above range, the resin containing the acrylic block copolymer constituting the layer (I) becomes hard and the impact is reduced. Absorptivity is lost, and there is a tendency for adhesion to polar resins to decrease.
 アクリル系ブロック共重合体の製造方法としては、特に限定されず、公知の手法に準じた方法を採用することができる。例えば、各ブロックを構成する単量体をリビング重合する方法が一般に使用される。このようなリビング重合の手法としては、例えば、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属塩などの鉱酸塩の存在下でアニオン重合する方法(特公平7-25859号公報参照)、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11-335432号公報参照)、有機希土類金属錯体を重合開始剤として重合する方法(特開平6-93060号公報参照)、α-ハロゲン化エステル化合物を開始剤として銅化合物の存在下ラジカル重合する方法(マクロモレキュラケミカルフィジックス(Macromol. Chem. Phys.)201巻,1108~1114頁(2000年)参照)などが挙げられる。また、多価ラジカル重合開始剤や多価ラジカル連鎖移動剤を用いて、各ブロックを構成するモノマーを重合させ、アクリル系ブロック共重合体を含有する混合物として製造する方法なども挙げられる。これらの方法中、特に、アクリル系ブロック共重合体が高純度で得られ、また分子量や組成比の制御が容易であり、かつ経済的であることから、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法が推奨される。 The method for producing the acrylic block copolymer is not particularly limited, and a method according to a known method can be employed. For example, a method of living polymerizing monomers constituting each block is generally used. As a technique for such living polymerization, for example, a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of a mineral salt such as an alkali metal or alkaline earth metal salt (Japanese Patent Publication No. 7-25859). A method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound (see JP-A-11-335432), and a method of polymerizing using an organic rare earth metal complex as a polymerization initiator (JP-A-6-6). -93060), a method of radical polymerization using an α-halogenated ester compound as an initiator in the presence of a copper compound (Macromol. Chem. Phys.) 201, 1108-1114 (2000) ))). Moreover, the method etc. which polymerize the monomer which comprises each block using a polyvalent radical polymerization initiator and a polyvalent radical chain transfer agent, and manufacture as a mixture containing an acryl-type block copolymer, etc. are mentioned. Among these methods, an acrylic block copolymer is obtained with high purity, and the molecular weight and composition ratio can be easily controlled and economical. A method of anionic polymerization in the presence of an aluminum compound is recommended.
 上記アクリル酸エステル単位を主体とする重合体ブロック(a1)を製造する際に用いるアクリル酸エステルは、予め2種以上を混合した混合モノマーとしてもよく、アクリル酸アルキルエステル及びアクリル酸芳香族エステルの混合モノマーとすることが好ましい。この場合、アクリル酸アルキルエステル50~90質量%とアクリル酸芳香族エステル50~10質量%の混合モノマーであることが好ましく、アクリル酸アルキルエステル60~80質量%とアクリル酸芳香族エステル40~20質量%の混合モノマーであることがより好ましい。 The acrylic acid ester used when producing the polymer block (a1) mainly composed of the acrylic acid ester unit may be a mixed monomer in which two or more kinds are mixed in advance, such as an acrylic acid alkyl ester and an acrylic acid aromatic ester. It is preferable to use a mixed monomer. In this case, a mixed monomer of 50 to 90% by mass of acrylic acid alkyl ester and 50 to 10% by mass of acrylic acid aromatic ester is preferable, and 60 to 80% by mass of acrylic acid alkyl ester and 40 to 20% of acrylic acid aromatic ester are preferable. More preferably, it is a mixed monomer of mass%.
[アクリル系ブロック共重合体を含む樹脂]
 本発明における層(I)は、アクリル系ブロック共重合体を含む樹脂からなる。層(I)を構成する上記樹脂は、アクリル系ブロック共重合体のみからなるものであってもよいし、アクリル系ブロック共重合体とそれ以外の成分とを含む樹脂組成物であってもよい。当該樹脂組成物におけるアクリル系ブロック共重合体以外の成分の種類は特に制限されず、後述するような各種重合体、添加剤、フィラーなどが挙げられる。層(I)を構成するアクリル系ブロック共重合体を含む樹脂におけるアクリル系ブロック共重合体の含有量は、55質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、100質量%であってもよい。
[Resin containing acrylic block copolymer]
The layer (I) in the present invention is made of a resin containing an acrylic block copolymer. The resin constituting the layer (I) may be composed of only an acrylic block copolymer, or may be a resin composition containing an acrylic block copolymer and other components. . The kind of components other than the acrylic block copolymer in the resin composition is not particularly limited, and examples thereof include various polymers, additives, fillers and the like as described later. The content of the acrylic block copolymer in the resin containing the acrylic block copolymer constituting the layer (I) is preferably 55% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. 100 mass%.
 上記の樹脂組成物におけるアクリル系ブロック共重合体以外の成分としては、メタクリル酸エステル単位を主体とするアクリル系重合体が好ましい。
 上記アクリル系重合体は、メタクリル酸エステル単位を80質量%以上含有するものが好ましく、90質量%以上含有するものが好ましい。メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、メタクリル酸シクロへキシル、メタクリル酸ノルボルネニル、メタクリル酸イソボニルなどが挙げられる。中でも、メタクリル酸メチルが特に好ましい。
 上記アクリル系重合体は、メタクリル酸エステル単位以外の他の単量体単位を含有していてもよい。係る他の単量体単位となる単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸シクロへキシル、アクリル酸ノルボルネニル、アクリル酸イソボニルなどのアクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸などの不飽和カルボン酸;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;ブタジエン、イソプレン、ミルセンなどの共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。
As a component other than the acrylic block copolymer in the above resin composition, an acrylic polymer mainly composed of a methacrylic acid ester unit is preferable.
The acrylic polymer preferably contains 80% by mass or more of methacrylic acid ester units, and preferably contains 90% by mass or more. Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, and methacrylic acid. Amyl, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, methacryl Examples include 2-ethoxyethyl acid, glycidyl methacrylate, allyl methacrylate, cyclohexyl methacrylate, norbornenyl methacrylate, and isobonyl methacrylate. Of these, methyl methacrylate is particularly preferred.
The acrylic polymer may contain other monomer units other than methacrylic acid ester units. Examples of such other monomer units include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, and sec-butyl acrylate. Tert-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate Acrylic acid esters such as 2-hydroxyethyl acrylate, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate, cyclohexyl acrylate, norbornenyl acrylate, and isobornyl acrylate; acrylic acid, methacrylic acid, anhydrous Unsaturated carboxylic acids such as oleic acid, maleic acid and itaconic acid; olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated dienes such as butadiene, isoprene and myrcene; styrene, α-methylstyrene, p -Aromatic vinyl compounds such as methylstyrene and m-methylstyrene; acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl pyridine, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride and the like.
 上記アクリル系重合体の製造方法は特に限定されない。また、アクリル系重合体として市販品を用いてもよい。係る市販品としては、例えば「パラペットH1000B」(MFR:22g/10分(230℃、37.3N))、「パラペットGF」(MFR:15g/10分(230℃、37.3N))、「パラペットEH」(MFR:1.3g/10分(230℃、37.3N))、「パラペットHRL」(MFR:2.0g/10分(230℃、37.3N))、「パラペットHRS」(MFR:2.4g/10分(230℃、37.3N))及び「パラペットG」(MFR:8.0g/10分(230℃、37.3N))[いずれも商品名、株式会社クラレ製]などが挙げられる。 The method for producing the acrylic polymer is not particularly limited. Moreover, you may use a commercial item as an acrylic polymer. Examples of such commercially available products include “Parapet H1000B” (MFR: 22 g / 10 min (230 ° C., 37.3 N)), “Parapet GF” (MFR: 15 g / 10 min (230 ° C., 37.3 N)), “ “Parapet EH” (MFR: 1.3 g / 10 min (230 ° C., 37.3 N)), “Parapet HRL” (MFR: 2.0 g / 10 min (230 ° C., 37.3 N)), “Parapet HRS” ( MFR: 2.4 g / 10 min (230 ° C., 37.3 N)) and “Parapet G” (MFR: 8.0 g / 10 min (230 ° C., 37.3 N)) [all trade names, manufactured by Kuraray Co., Ltd. ] Etc. are mentioned.
 上記の樹脂組成物が上記アクリル系重合体を含有する場合、その含有量は、好ましくは1~45質量%であり、より好ましくは3~30質量%であり、さらに好ましくは5~15質量%である。 When the above resin composition contains the above acrylic polymer, the content thereof is preferably 1 to 45% by mass, more preferably 3 to 30% by mass, and further preferably 5 to 15% by mass. It is.
 上記の樹脂組成物は、アクリル系ブロック共重合体及び上記アクリル系重合体の他に、必要に応じて他の重合体を含有していてもよい。他の重合体としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネン等のオレフィン系樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂等のスチレン系樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマー等のポリアミド樹脂;エステル系ポリウレタンエラストマー、エーテル系ポリウレタンエラストマー、無黄変エステル系ポリウレタンエラストマー、無黄変カーボネート系ポリウレタンエラストマー等のポリウレタン樹脂;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーンゴム変性樹脂等が挙げられる。これらの中でも、アクリル系ブロック共重合体との相溶性の観点から、AS樹脂、ポリフッ化ビニリデンが好ましい。 The above resin composition may contain other polymer as required in addition to the acrylic block copolymer and the acrylic polymer. Other polymers include, for example, olefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers, high Styrene resins such as impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid; nylon 6 Polyamide resins such as nylon 66 and polyamide elastomers; ester polyurethane elastomers, ether polyurethane elastomers, non-yellowing ester polyurethane elastomers, non-yellowing carbonate polyurethanes Polyurethane resins such as emissions elastomer; polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene - vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, modified polyphenylene ether, polyphenylene sulfide, and silicone rubber-modified resins. Among these, AS resin and polyvinylidene fluoride are preferable from the viewpoint of compatibility with the acrylic block copolymer.
 さらに、上記の樹脂組成物は、本発明の効果を損なわない範囲内で、公知の各種添加剤(例えば、ゴム、滑剤、酸化防止剤、光安定剤、着色剤、帯電防止剤、難燃剤など)、フィラー(例えば、ガラス繊維等の繊維補強剤、無機充填剤など)等を含有してもよい。添加剤として含有させうるゴムの例としては、アクリル系ゴム;シリコーン系ゴム;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー;IR、EPR、EPDM等のオレフィン系ゴム等が挙げられ、これらを1種以上使用することができる。他の添加剤やフィラーの例としては、成形加工時の流動性を向上させるためのパラフィン系オイル、ナフテン系オイルなどの鉱物油軟化剤;耐熱性、耐候性等の向上または増量などを目的とする炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウムなどの無機充填剤;補強のためのガラス繊維、カーボン繊維などの無機繊維または有機繊維;熱安定剤;酸化防止剤;光安定剤;粘着剤;粘着付与剤;可塑剤;帯電防止剤;発泡剤;着色剤;染色剤などを挙げることができる。これらの添加剤の中でも、耐熱性、耐候性をさらに良好なものとするために、熱安定剤、酸化防止剤などを添加することが実用上好ましい。 Furthermore, the resin composition described above may be used in various known additives (for example, rubbers, lubricants, antioxidants, light stabilizers, colorants, antistatic agents, flame retardants, etc.) as long as the effects of the present invention are not impaired. ), Fillers (for example, fiber reinforcing agents such as glass fibers, inorganic fillers, etc.) and the like. Examples of rubbers that can be included as additives include acrylic rubbers; silicone rubbers; styrene thermoplastic elastomers such as SEPS, SEBS, and SIS; and olefin rubbers such as IR, EPR, and EPDM. One or more can be used. Examples of other additives and fillers include mineral oil softeners such as paraffinic oils and naphthenic oils for improving fluidity during molding; the purpose is to improve heat resistance, weather resistance, etc. Inorganic fillers such as calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, magnesium carbonate; inorganic fiber or organic fiber such as glass fiber and carbon fiber for reinforcement; heat stabilizer; Light stabilizers; adhesives; tackifiers; plasticizers; antistatic agents; foaming agents; colorants; Among these additives, in order to further improve heat resistance and weather resistance, it is practically preferable to add a heat stabilizer, an antioxidant and the like.
 層(I)を構成するアクリル系ブロック共重合体を含む樹脂の透明性は、3mm厚みの全光線透過率が90%以上であり、好ましくは91%以上であり、より好ましくは92%以上である。3mm厚みの全光線透過率が90%以上であれば、射出成形または押出成形によって製造された層(I)と層(II)とを有する成形体の透明性が良好になり意匠性が優れる。当該3mm厚みの全光線透過率は、層(I)を構成するアクリル系ブロック共重合体を含む樹脂を射出成形して得られる厚み3mmの成形品を用いてヘイズメーターにより測定することができ、具体的には実施例において後述する方法により測定することができる。 The transparency of the resin containing the acrylic block copolymer constituting the layer (I) is such that the total light transmittance of 3 mm thickness is 90% or more, preferably 91% or more, more preferably 92% or more. is there. If the total light transmittance with a thickness of 3 mm is 90% or more, the molded product having the layer (I) and the layer (II) produced by injection molding or extrusion molding has good transparency and excellent design. The total light transmittance of 3 mm thickness can be measured with a haze meter using a molded product having a thickness of 3 mm obtained by injection molding a resin containing an acrylic block copolymer constituting the layer (I). Specifically, it can be measured by the method described later in the examples.
 アクリル系ブロック共重合体におけるブロック(a1)の合計の含有量が35~90質量%、特に55~87質量%の範囲にあることで、柔軟性が向上し、且つ(a1)が形成するゴム状の成分がマトリックスを形成しやすくなり、極性樹脂との界面にも配置されやすくなり、接着力が向上しやすくなる傾向にある。層(I)を構成するアクリル系ブロック共重合体を含む樹脂は、層(II)を構成する極性樹脂との接着力が剥離速度100mm/分で50N/40mm以上であり、好ましくは60N/40mm以上であり、より好ましくは70N/40mm以上である。極性樹脂との接着力が剥離速度100mm/分で50N/40mm以上であれば、層(I)と極性樹脂からなる層(II)との接着性が良好になり、十分な強度を有する成形体を得ることができる。上限については特に限定されず高ければ高いほどよいが、通常800N/40mm以下である。当該極性樹脂との接着力は、極性樹脂からなる厚み1mmの層に対してインサート成形によりアクリル系ブロック共重合体を含む樹脂からなる層を積層させた100mm×40mm、合計厚み2mmの成形体について、ISO 11339に準拠して測定することができ、具体的には実施例において後述する方法により測定することができる。 A rubber formed by (a1) having improved flexibility when the total content of the block (a1) in the acrylic block copolymer is in the range of 35 to 90% by mass, particularly 55 to 87% by mass. It becomes easy for the shaped component to form a matrix and to be easily disposed at the interface with the polar resin, and the adhesive force tends to be improved. The resin containing the acrylic block copolymer constituting the layer (I) has an adhesive force with the polar resin constituting the layer (II) of 50 N / 40 mm or more at a peeling rate of 100 mm / min, preferably 60 N / 40 mm. It is above, More preferably, it is 70 N / 40mm or more. If the adhesive strength with the polar resin is 50 N / 40 mm or more at a peeling rate of 100 mm / min, the adhesion between the layer (I) and the layer (II) made of the polar resin will be good, and the molded product will have sufficient strength Can be obtained. The upper limit is not particularly limited and is preferably as high as possible, but is usually 800 N / 40 mm or less. The adhesive strength with the polar resin is about 100 mm × 40 mm in which a layer made of a resin containing an acrylic block copolymer is laminated by insert molding on a layer having a thickness of 1 mm made of a polar resin and a total thickness of 2 mm. , And can be measured according to ISO 11339, specifically, by the method described later in the examples.
 アクリル系ブロック共重合体におけるブロック(a1)の合計の含有量が35~90質量%、特に55~87質量%の範囲にあることで、(a1)が形成するゴム状の成分がマトリックスを形成しやすくなる。そのため、ブロック(a1)由来のtanδのピークが大きくなりやすく、23℃でのtanδの値も高くなりやすい傾向にある。層(I)を構成するアクリル系ブロック共重合体を含む樹脂は、引張動的粘弾性測定で23℃、周波数11Hzで測定したtanδが0.20以上であり、好ましくは0.21以上であり、より好ましくは0.22以上である。当該tanδが0.20以上であれば、層(I)が衝撃吸収性に優れたものとなるため、得られる本発明の成形体は衝撃吸収性に優れ、例えば、電子機器を衝撃から保護するための保護部材(ケースやカバー等)として好適に使用できる。上限については特に限定されないが、通常3.0以下である。上記tanδは粘弾性測定装置により測定することができ、具体的には実施例において後述する方法により測定することができる。 When the total content of the block (a1) in the acrylic block copolymer is in the range of 35 to 90% by mass, particularly 55 to 87% by mass, the rubbery component formed by (a1) forms a matrix. It becomes easy to do. Therefore, the peak of tan δ derived from the block (a1) tends to be large, and the value of tan δ at 23 ° C. tends to be high. The resin containing the acrylic block copolymer constituting the layer (I) has a tan δ measured by tensile dynamic viscoelasticity measurement at 23 ° C. and a frequency of 11 Hz of 0.20 or more, preferably 0.21 or more. More preferably, it is 0.22 or more. If the tan δ is 0.20 or more, the layer (I) has excellent shock absorption, and the resulting molded article of the present invention has excellent shock absorption, for example, protects electronic equipment from shock. Therefore, it can be suitably used as a protective member (case, cover, etc.). Although it does not specifically limit about an upper limit, Usually, it is 3.0 or less. The tan δ can be measured by a viscoelasticity measuring device, and specifically can be measured by a method described later in the examples.
 層(I)を構成するアクリル系ブロック共重合体を含む樹脂は、23℃のA硬度が好ましくは20~75であり、より好ましくは22~73あり、さらに好ましくは24~71である。23℃のA硬度が20~75であれば、層(I)の柔軟性が向上し、得られる成形体の柔軟性も向上する。 The resin containing the acrylic block copolymer constituting the layer (I) has an A hardness at 23 ° C. of preferably 20 to 75, more preferably 22 to 73, and further preferably 24 to 71. If the A hardness at 23 ° C. is 20 to 75, the flexibility of the layer (I) is improved and the flexibility of the resulting molded article is also improved.
 層(I)を構成する上記樹脂がアクリル系ブロック共重合体とそれ以外の成分とを含む樹脂組成物である場合、当該樹脂組成物を調製する方法は特に制限されないが、各成分の分散性を高めるため、溶融混練して混合する方法が推奨される。例えば、アクリル系ブロック共重合体と上記アクリル系重合体とを含む樹脂組成物を調製する場合、アクリル系ブロック共重合体とアクリル系重合体とを溶融混練すればよい。ここで、当該樹脂組成物に上記した他の重合体、添加剤、フィラー等を配合する場合には、アクリル系ブロック共重合体とアクリル系重合体との溶融混練と同時にこれらの成分を混合してもよいし、アクリル系ブロック共重合体を、これらの成分とともに混合後、上記アクリル系重合体と混合してもよい。
 混合操作は、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合または混練装置を使用して行うことができる。特に、アクリル系ブロック共重合体とアクリル系重合体との混練性、相溶性を向上させる観点から、二軸押出機を使用することが好ましい。混合・混練時の温度は、使用するアクリル系ブロック共重合体およびアクリル系重合体の溶融温度などに応じて適宜調節するのがよく、通常110~300℃の範囲内の温度で混合するとよい。このようにして、アクリル系ブロック共重合体を含む樹脂組成物を、ペレット、粉末などの任意の形態で得ることができる。このようにして得られた樹脂組成物を後述の方法で成形して層(I)を得ることができる。
When the resin constituting the layer (I) is a resin composition containing an acrylic block copolymer and other components, the method for preparing the resin composition is not particularly limited, but the dispersibility of each component In order to increase the viscosity, a method of mixing by melt kneading is recommended. For example, when preparing a resin composition containing an acrylic block copolymer and the acrylic polymer, the acrylic block copolymer and the acrylic polymer may be melt-kneaded. Here, when the above-mentioned other polymers, additives, fillers, etc. are blended in the resin composition, these components are mixed simultaneously with the melt-kneading of the acrylic block copolymer and the acrylic polymer. Alternatively, the acrylic block copolymer may be mixed with these components and then mixed with the acrylic polymer.
The mixing operation can be performed using a known mixing or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. In particular, it is preferable to use a twin screw extruder from the viewpoint of improving kneadability and compatibility between the acrylic block copolymer and the acrylic polymer. The temperature at the time of mixing and kneading may be appropriately adjusted according to the melting temperature of the acrylic block copolymer and acrylic polymer to be used, and is usually mixed at a temperature within the range of 110 to 300 ° C. Thus, the resin composition containing an acrylic block copolymer can be obtained in any form such as pellets or powder. The resin composition thus obtained can be molded by the method described later to obtain layer (I).
[極性樹脂]
 層(II)を構成する極性樹脂としては、極性重合体を含む樹脂を用いることができる。当該極性樹脂は極性重合体のみからなるものであってもよいし、極性重合体とそれ以外の成分とを含む極性樹脂組成物であってもよい。当該極性樹脂組成物における極性樹脂以外の成分の種類は特に制限されず、層(I)を構成する樹脂において言及したような各種重合体、添加剤、フィラーなどが挙げられる。層(II)を構成する極性樹脂における極性重合体の含有量は、55質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、100質量%であってもよい。
[Polar resin]
As the polar resin constituting the layer (II), a resin containing a polar polymer can be used. The polar resin may be composed of only a polar polymer, or may be a polar resin composition containing a polar polymer and other components. The kind of components other than the polar resin in the polar resin composition is not particularly limited, and examples thereof include various polymers, additives, fillers and the like mentioned in the resin constituting the layer (I). The content of the polar polymer in the polar resin constituting the layer (II) is preferably 55% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and may be 100% by mass.
 層(II)を構成する極性樹脂としては熱可塑性の硬質極性樹脂を用いることができ、例えば、エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂等のスチレン系樹脂;ポリメタクリル酸メチル等のアクリル樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル樹脂;ナイロン6、ナイロン66等のポリアミド樹脂;エステル系ポリウレタン、エーテル系ポリウレタン、無黄変エステル系ポリウレタン、無黄変カーボネート系ポリウレタン等のポリウレタン樹脂;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド等が挙げられる。これらの中でも、層(I)との接着性の観点から、ポリカーボネート、ポリスチレン及び硬質アクリル樹脂が好ましい。 As the polar resin constituting the layer (II), a thermoplastic hard polar resin can be used. For example, ethylene ionomer; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, Styrenic resins such as AES resin, AAS resin, ACS resin, MBS resin; acrylic resin such as polymethyl methacrylate; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid; nylon 6 Polyamide resins such as nylon 66; polyurethane resins such as ester polyurethane, ether polyurethane, non-yellowing ester polyurethane, non-yellowing carbonate polyurethane; polycarbonate, polyvinyl chloride, polyvinyl chloride , Polyvinyl alcohol, ethylene - vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, modified polyphenylene ether, polyphenylene sulfide, and the like. Among these, polycarbonate, polystyrene, and hard acrylic resin are preferable from the viewpoint of adhesiveness with the layer (I).
 極性樹脂は、溶解度パラメーターが8~13(cal/cm1/2の範囲にあるものが好ましく、8~11(cal/cm1/2の範囲にあるものが更に好ましい。溶解度パラメーターが上記範囲内であれば、層(I)の溶解度パラメーターとの差が小さくなりやすいため、樹脂界面で濡れ性も高まり、接着性も良好になる。なお、本明細書において、溶解度パラメーターは実施例に記載の方法で定めるものとする。 The polar resin preferably has a solubility parameter in the range of 8 to 13 (cal / cm 3 ) 1/2 , and more preferably in the range of 8 to 11 (cal / cm 3 ) 1/2 . If the solubility parameter is within the above range, the difference from the solubility parameter of the layer (I) tends to be small, so that the wettability is increased at the resin interface and the adhesiveness is also improved. In addition, in this specification, a solubility parameter shall be defined by the method as described in an Example.
 極性樹脂は、23℃の曲げ弾性率が2,000~3,500MPaであるものが好ましく、より好ましくは2,200~3,300MPaであり、さらに好ましくは2,300~3,000MPaである。23℃の曲げ弾性率が2,000MPa以上であれば、極性樹脂からなる層(II)が成形できる範囲で薄肉であっても剛性を十分に確保でき、3,500MPa以下であれば、後述の成形体の成形性も良好となる。 The polar resin preferably has a flexural modulus of 2,000 to 3,500 MPa at 23 ° C., more preferably 2,200 to 3,300 MPa, and still more preferably 2,300 to 3,000 MPa. If the bending elastic modulus at 23 ° C. is 2,000 MPa or more, sufficient rigidity can be secured even if the layer (II) made of the polar resin is thin, and if it is 3,500 MPa or less, it will be described later. The moldability of the molded body is also improved.
 極性樹脂は、3mm厚みの全光線透過率が88%以上であるものが好ましく、より好ましくは89%以上であり、さらに好ましくは90%以上である。3mm厚みの全光線透過率が88%以上であれば、極性樹脂からなる層(II)の透明性が良好なものとなり、得られる成形体の透明性も良好なものとなり意匠性に優れる。当該3mm厚みの全光線透過率は、層(II)を構成する極性樹脂を射出成形して得られる厚み3mmの成形品を用いてヘイズメーターにより測定することができ、具体的には実施例において後述する方法により測定することができる。 The polar resin preferably has a 3 mm-thick total light transmittance of 88% or more, more preferably 89% or more, and still more preferably 90% or more. If the total light transmittance with a thickness of 3 mm is 88% or more, the transparency of the layer (II) made of the polar resin will be good, and the resulting molded article will have good transparency and excellent design. The total light transmittance with a thickness of 3 mm can be measured with a haze meter using a molded product with a thickness of 3 mm obtained by injection molding the polar resin constituting the layer (II). Specifically, in the examples It can measure by the method mentioned later.
[成形体]
 本発明の成形体は、上記したアクリル系ブロック共重合体を含む樹脂からなる層(I)と極性樹脂からなる層(II)とを有するものである。本発明においては、層(I)及び層(II)以外に他の層を有していてもよいが、層(I)と層(II)は隣接していることが好ましい。
 本発明の成形体は、透明性、柔軟性、衝撃吸収性に優れる層(I)を有している。一方、層(II)により本発明の成形体に透明性、剛性を付与させることができる。そのため、本発明の成形体は、透明性に優れるとともに、層(II)により剛性を有しつつも、層(I)により柔軟性、衝撃吸収性にも優れるという特性を併せ持つことができる。
[Molded body]
The molded article of the present invention has a layer (I) made of a resin containing the above acrylic block copolymer and a layer (II) made of a polar resin. In the present invention, in addition to the layer (I) and the layer (II), other layers may be included, but the layer (I) and the layer (II) are preferably adjacent to each other.
The molded product of the present invention has a layer (I) that is excellent in transparency, flexibility, and impact absorption. On the other hand, the layer (II) can impart transparency and rigidity to the molded article of the present invention. For this reason, the molded article of the present invention is excellent in transparency and has the characteristics that the layer (II) has rigidity and the layer (I) has excellent flexibility and impact absorption.
 本発明の成形体を構成する層(I)及び層(II)の厚みは特に限定されないが、成形体が柔軟性、衝撃吸収性に優れる観点から、層(I)の厚みは、0.1~10mmが好ましく、0.3~5mmがより好ましく、0.5~3mmがさらに好ましく、0.7~2mm、さらには1~1.5mmであってもよい。また層(II)の厚みは、0.3~10mmが好ましく、0.5~5mmがより好ましく、1~3mmがさらに好ましい。 The thickness of the layer (I) and the layer (II) constituting the molded body of the present invention is not particularly limited, but the thickness of the layer (I) is 0.1 from the viewpoint that the molded body is excellent in flexibility and impact absorption. Is preferably 10 to 10 mm, more preferably 0.3 to 5 mm, still more preferably 0.5 to 3 mm, and may be 0.7 to 2 mm, and more preferably 1 to 1.5 mm. The thickness of the layer (II) is preferably from 0.3 to 10 mm, more preferably from 0.5 to 5 mm, still more preferably from 1 to 3 mm.
 本発明の成形体は、一般に用いられている成形加工方法や成形加工装置を用いて成形加工することができる。例えば、押出成形、押出しラミネート、射出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形などの加熱溶融を経る成形加工法、溶液キャスト方法などによって層(I)および層(II)の少なくとも一方を形成することにより本発明の成形体を製造することができる。これらの中でも、本発明の成形体は、射出成形または押出成形によって製造することが好ましい。ここで本発明の成形体を射出成形または押出成形によって製造する場合、層(I)および層(II)の少なくとも一方を射出成形または押出成形すればよく、例えば上記樹脂組成物を用いて層(I)を形成する場合には、当該樹脂組成物を用いて射出成形または押出成形すればよい。 The molded article of the present invention can be molded using a generally used molding method or molding apparatus. For example, at least one of the layer (I) and the layer (II) is formed by a molding method such as extrusion molding, extrusion lamination, injection molding, compression molding, blow molding, calender molding, vacuum molding, or the like, a solution casting method, or the like. By forming, the molded article of the present invention can be produced. Among these, it is preferable to manufacture the molded object of this invention by injection molding or extrusion molding. Here, when the molded article of the present invention is produced by injection molding or extrusion molding, at least one of the layer (I) and the layer (II) may be injection molded or extrusion molded. For example, the layer ( When forming I), the resin composition may be used for injection molding or extrusion molding.
 本発明の成形体を製造するための具体的な方法としては、例えば、層(I)および層(II)を予め別個に成形しておき、これらを積層させる方法(方法1);予め製造しておいた層(II)に溶融状態のアクリル系ブロック共重合体を含む樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物)を配して層(I)を形成する方法(方法2);予め製造しておいた層(I)に溶融状態の極性樹脂を配して層(II)を形成する方法(方法3);溶融状態のアクリル系ブロック共重合体を含む樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物)と溶融状態の極性樹脂とを共押出等の手法により互いに配して層(I)および層(II)を形成する方法(方法4)などが挙げられる。これらの中でも層(I)と層(II)との間の接着力が向上することなどから、方法2~4が好ましく、目的とする成形体が容易に得られることなどから方法2がより好ましい。また、アクリル系ブロック共重合体を含む樹脂は溶融流動性に優れるため、射出成形により層(I)を形成することが好ましく、特に、予め成形しておいた層(II)を金型に配置した上で溶融状態のアクリル系ブロック共重合体を含む樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物)を射出するインサート成形を採用することがより好ましい。 As a specific method for producing the molded article of the present invention, for example, a method in which the layer (I) and the layer (II) are separately molded in advance and then laminated (method 1); A method of forming layer (I) by arranging a resin (acrylic block copolymer or resin composition containing the same) containing a molten acrylic block copolymer in the layer (II) that has been left (Method 2) ); A method of forming a layer (II) by arranging a molten polar resin in the layer (I) prepared in advance (Method 3); a resin containing an acrylic block copolymer in a molten state (acrylic) A block copolymer or a resin composition containing the block copolymer) and a molten polar resin are arranged on each other by a method such as coextrusion to form the layer (I) and the layer (II) (Method 4). It is done. Among these, the methods 2 to 4 are preferable because the adhesive force between the layer (I) and the layer (II) is improved, and the method 2 is more preferable because the desired molded article can be easily obtained. . In addition, since the resin containing the acrylic block copolymer is excellent in melt fluidity, it is preferable to form the layer (I) by injection molding. In particular, the pre-molded layer (II) is placed in the mold. In addition, it is more preferable to employ insert molding in which a resin containing an acrylic block copolymer in a molten state (an acrylic block copolymer or a resin composition containing the same) is injected.
[用途]
 本発明の成形体の用途は特に限定されないが、上記特性を有する点から光学分野、食品分野、医療分野、民生分野、自動車分野、電気・電子分野、建築分野などの多岐の用途で利用することができる。例えば、スマートフォン端末等の電子機器用保護部材(ケースやカバー等)として、衝撃吸収性に優れるため、落下による衝撃や衝突に伴う破損からスマートフォン端末等を保護することが可能であり、また、透明性、柔軟性に優れるためデザインや意匠性の付与が可能であり、脱着も容易である。他の用途としては、各種ケース・カバー、各種端子板、プリント配線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計、VTR、プロジェクションTV等のファインダー、フィルター、プリズム、フレネルレンズ、各種光ディスク(VD、CD、DVD、MD、LD等)基板保護フィルム、光スイッチ、光コネクター、液晶ディスプレイ、液晶ディスプレイ用導光フィルム・シート、フラットパネルディスプレイ、フラットパネルディスプレイ用導光フィルム・シート、プラズマディスプレイ、プラズマディスプレイ用導光フィルム・シート、位相差フィルム・シート、偏光フィルム・シート、偏光板保護フィルム・シート、波長板、光拡散フィルム・シート、プリズムフィルム・シート、反射フィルム・シート、反射防止フィルム・シート、視野角拡大フィルム・シート、防眩フィルム・シート、輝度向上フィルム・シート、液晶やエレクトロルミネッセンス用途の表示素子基板、タッチパネル、タッチパネル用導光フィルム・シート、各種前面板と各種モジュール間のスペーサーなどに好適に適用可能である。さらには携帯電話、デジタル情報端末、ポケットベル、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイ等の各種液晶表示素子やエレクトロルミネッセンス表示素子あるいはタッチパネルなどにも用いることができる。また、衝撃吸収性や極性樹脂接着に優れている点から、例えば建築用内・外装用部材、カーテンウォール、屋根用部材、屋根材、窓用部材、雨どい、エクステリア類、壁材、床材、造作材、道路建設用部材、再帰反射フィルム・シート、農業用フィルム・シート、照明カバー、看板、透光性遮音壁などの複層品にも使用することができる。
[Usage]
The use of the molded product of the present invention is not particularly limited, but it is used in various applications such as the optical field, food field, medical field, consumer field, automobile field, electric / electronic field, and architectural field because of the above characteristics. Can do. For example, as a protective member for electronic devices such as smartphone terminals (cases, covers, etc.), it is excellent in shock absorption, so that it is possible to protect smartphone terminals from damage due to impact or collision due to falling, and transparent Design and design can be imparted because of its excellent properties and flexibility, and it can be easily detached. Other applications include various cases and covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches, VTRs, projection TVs, etc., filters, prisms, Fresnel lenses, various optical disks (VD, CD) , DVD, MD, LD, etc.) substrate protective film, optical switch, optical connector, liquid crystal display, light guide film / sheet for liquid crystal display, flat panel display, light guide film / sheet for flat panel display, plasma display, plasma display Light guide film / sheet, retardation film / sheet, polarizing film / sheet, polarizing plate protective film / sheet, wavelength plate, light diffusion film / sheet, prism film / sheet, reflective film / sheet, antireflection film / sheet Wide viewing angle film / sheet, anti-glare film / sheet, brightness enhancement film / sheet, display element substrate for liquid crystal and electroluminescence, touch panel, light guide film / sheet for touch panel, spacer between various front plates and various modules It can be suitably applied. Furthermore, for various liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, light control panels, OA equipment displays, AV equipment displays, electroluminescence display elements, touch panels, etc. Can also be used. Also, because of its excellent impact absorption and polar resin adhesion, for example, architectural interior / exterior materials, curtain walls, roof materials, roofing materials, window materials, gutters, exteriors, wall materials, flooring materials. It can also be used for multilayer products such as construction materials, road construction members, retroreflective films and sheets, agricultural films and sheets, lighting covers, signboards, and translucent sound insulation walls.
 以下に、実施例により本発明を具体的に説明するが、本発明はそれらにより何ら限定されない。なお、実施例および比較例中の各種物性は以下の方法により測定または評価した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Various physical properties in Examples and Comparative Examples were measured or evaluated by the following methods.
(1)重量平均分子量(Mw)および数平均分子量(Mn)
 アクリル系ブロック共重合体の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル・パーミエイション・クロマトグラフィー(以下GPCと略記する)によりポリスチレン換算分子量で求めた。詳細は以下のとおりである。
・装置:東ソー株式会社製GPC装置「HLC-8020」
・分離カラム:東ソー株式会社製の「TSKgel GMHXL」、「G4000HXL」および「G5000HXL」を直列に連結
・溶離剤:テトラヒドロフラン
・溶離剤流量:1.0ml/分
・カラム温度:40℃
・検出方法:示差屈折率(RI)
(1) Weight average molecular weight (Mw) and number average molecular weight (Mn)
The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the acrylic block copolymer were determined by gel permeation chromatography (hereinafter abbreviated as GPC) in terms of polystyrene equivalent molecular weight. Details are as follows.
・ Equipment: GPC equipment “HLC-8020” manufactured by Tosoh Corporation
Separation column: “TSKgel GMHXL”, “G4000HXL” and “G5000HXL” manufactured by Tosoh Corporation are connected in series. Eluent: Tetrahydrofuran Eluent flow rate: 1.0 ml / min Column temperature: 40 ° C.
・ Detection method: Differential refractive index (RI)
(2)各重合体ブロックの構成割合
 アクリル系ブロック共重合体における各重合体ブロックの構成割合および各重合体ブロックの組成比は、1H-NMR(1H-核磁気共鳴)測定によって求めた。詳細は以下のとおりである。
・装置:日本電子株式会社製 核磁気共鳴装置「JNM-LA400」
・重溶媒:重水素化クロロホルム
(2) Composition ratio of each polymer block The composition ratio of each polymer block and the composition ratio of each polymer block in the acrylic block copolymer were determined by 1 H-NMR ( 1 H-nuclear magnetic resonance) measurement. . Details are as follows.
・ Device: JEM Nuclear Magnetic Resonance Device “JNM-LA400”
・ Deuterated solvent: Deuterated chloroform
(3)層(I)を構成する樹脂の極性樹脂との接着性
 実施例及び比較例で得られた成形体(極性樹脂からなる厚み1mmの層に対してインサート成形により層(I)を構成する樹脂からなる層を積層させた100mm×40mm、合計厚み2mmの成形体)について、引張り試験機(インストロン製)により、ISO 11339に準拠して、層(I)と層(II)との間の接着力を剥離速度100mm/分で測定し、これを層(I)を構成する樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物など)の極性樹脂との接着力とした。
(3) Adhesiveness of resin constituting layer (I) with polar resin Molded bodies obtained in Examples and Comparative Examples (Structure of layer (I) by insert molding on layer of 1 mm thickness made of polar resin) 100 mm × 40 mm in which a layer made of a resin to be laminated is a molded body having a total thickness of 2 mm), a tensile tester (manufactured by Instron), in accordance with ISO 11339, the layer (I) and the layer (II) The adhesive strength between them was measured at a peeling rate of 100 mm / min, and this was taken as the adhesive strength of the resin (acrylic block copolymer or resin composition containing the same) constituting the layer (I) with the polar resin.
(4)透明性
 以下の実施例または比較例において、層(I)を構成する樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物など)および極性樹脂のそれぞれについて、射出成形機(住友重機械工業株式会社製「SE18DU」)により、下記のシリンダー温度および金型温度で、50mm×50mm、厚み3mmの成形体を作製し、直読へイズメーター(日本電色製)により、ISO 13468-1に準拠して全光線透過率を測定し、これを透明性の指標とした。
・シリンダー温度:210℃(実施例または比較例において層(I)を構成する樹脂)、230℃(ポリスチレン、PMMA)、290℃(ポリカーボネート)
・金型温度:50℃(実施例または比較例において層(I)を構成する樹脂)、60℃(ポリスチレン、PMMA)、90℃(ポリカーボネート)
(4) Transparency In each of the following examples or comparative examples, an injection molding machine (Sumitomo) is used for each of the resin (acrylic block copolymer or resin composition containing the same) and the polar resin constituting the layer (I). 50 mm × 50 mm, 3 mm thick molded body was produced by “SE18DU” manufactured by Heavy Machinery Industries Co., Ltd. at the following cylinder temperature and mold temperature, and ISO 13468- by a direct reading haze meter (manufactured by Nippon Denshoku). The total light transmittance was measured according to No. 1 and used as an index of transparency.
Cylinder temperature: 210 ° C. (resin constituting layer (I) in Examples or Comparative Examples), 230 ° C. (polystyrene, PMMA), 290 ° C. (polycarbonate)
Mold temperature: 50 ° C. (resin constituting layer (I) in Examples or Comparative Examples), 60 ° C. (polystyrene, PMMA), 90 ° C. (polycarbonate)
(5)動的粘弾性(衝撃吸収性)
 以下の実施例または比較例において、層(I)を構成する樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物など)を用いて、下記のプレス成形温度で、縦20mm、横5mm、厚み1mmのシートを作製した。得られたシートについて、粘弾性スペクトロメーター「Rheogel-E4000」(株式会社ユービーエム製)を用い、周波数11Hz、測定温度-100~250℃の測定条件にて動的粘弾性測定を行い、23℃の損失正接(tanδ)を測定した。
・プレス成形温度:210℃
(5) Dynamic viscoelasticity (impact absorption)
In the following examples or comparative examples, using the resin constituting the layer (I) (acrylic block copolymer or resin composition containing the same) at the following press molding temperature, the length is 20 mm, the width is 5 mm, A sheet having a thickness of 1 mm was produced. The obtained sheet was subjected to dynamic viscoelasticity measurement at a frequency of 11 Hz and measurement temperature of −100 to 250 ° C. using a viscoelastic spectrometer “Rheogel-E4000” (manufactured by UBM Co., Ltd.). Loss tangent (tan δ) was measured.
・ Press molding temperature: 210 ℃
(6)A硬度
 以下の実施例または比較例において、層(I)を構成する樹脂(アクリル系ブロック共重合体ないしそれを含む樹脂組成物など)を用いて、射出成形機(住友重機械工業株式会社製「SE18DU」)により、下記のシリンダー温度および金型温度で、50mm×50mm、厚み3mmの成形体を作製した。得られた成形体を3枚重ね合わせ、ISO 7619-1に準拠して15秒後のA硬度を測定した。
・シリンダー温度:210℃
・金型温度:50℃
(6) A hardness In the following examples or comparative examples, an injection molding machine (Sumitomo Heavy Industries, Ltd.) using a resin (acrylic block copolymer or a resin composition containing the same) constituting the layer (I). A molded product of 50 mm × 50 mm and a thickness of 3 mm was produced at the following cylinder temperature and mold temperature by “SE18DU” manufactured by Co., Ltd. Three sheets of the obtained molded bodies were overlapped, and the A hardness after 15 seconds was measured according to ISO 7619-1.
・ Cylinder temperature: 210 ℃
・ Mold temperature: 50 ℃
(7)溶解度パラメーター
 極性樹脂の溶解度パラメーターは、「ポリマーハンドブック 第4版」(ウィリーインターサイエンス社編)に記載の数値[(MPa)1/2]を参考にして、その数値を単位換算[(cal/cm31/2]したものを使用した。また、「ポリマーハンドブック」に記載されていない樹脂の溶解度パラメーターは、「K.L.Hoy,Journal of Paint Technology,42(541),76(1970)」等の文献で報告されている分子構造から推算するHoyの計算方法により数値[(MPa)1/2]を算出し、上記同様の単位換算[(cal/cm31/2]したものを使用した。
(7) Solubility parameter The solubility parameter of the polar resin was converted to a unit by referring to the numerical value [(MPa) 1/2 ] described in “Polymer Handbook 4th Edition” (edited by Willy Interscience) [( cal / cm 3 ) 1/2 ] was used. In addition, the solubility parameters of resins not described in the “Polymer Handbook” are derived from molecular structures reported in literatures such as “KL Hoy, Journal of Paint Technology, 42 (541), 76 (1970)”. The numerical value [(MPa) 1/2 ] was calculated by the Hoy calculation method to be estimated, and the same unit conversion [(cal / cm 3 ) 1/2 ] as described above was used.
(8)曲げ弾性率
 極性樹脂の23℃の曲げ弾性率は、射出成形機(日精樹脂工業株式会社製「UH1000-80」)により、(4)に記載の各極性樹脂の射出温度(シリンダー温度および金型温度)条件で、80mm×10mm、厚み4mmの成形体を作製した。得られた成形体について、ISO 178に準拠し、曲げ弾性率を測定した。
(8) Bending elastic modulus The bending elastic modulus of polar resin at 23 ° C. is determined by the injection temperature (cylinder temperature) of each polar resin described in (4) using an injection molding machine (“UH1000-80” manufactured by Nissei Plastic Industry Co., Ltd.). And a mold temperature), a molded body having a size of 80 mm × 10 mm and a thickness of 4 mm was produced. About the obtained molded object, based on ISO 178, the bending elastic modulus was measured.
 以下の実施例および比較例で用いた極性樹脂の各物性値を表1に示す。 Table 1 shows each physical property value of the polar resin used in the following Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ポリカーボネート(PC):ユーピロンS2000(三菱エンジニアリングプラスチックス株式会社)
 ポリスチレン(PS):SX100(PSジャパン株式会社)
 PMMA:パラペットHR-L(株式会社クラレ)
Polycarbonate (PC): Iupilon S2000 (Mitsubishi Engineering Plastics)
Polystyrene (PS): SX100 (PS Japan Corporation)
PMMA: Parapet HR-L (Kuraray Co., Ltd.)
 以下に示す合成例においては、化合物は常法により乾燥精製し、窒素にて脱気したものを使用した。また、化合物の移送および供給は窒素雰囲気下で行った。 In the synthesis examples shown below, the compound was dried and purified by a conventional method and degassed with nitrogen. Moreover, the transfer and supply of the compounds were performed under a nitrogen atmosphere.
[合成例1][有機アルミニウム化合物:イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムの調製]
 ナトリウムで乾燥後、アルゴン雰囲気下に蒸留して得た乾燥トルエン25mlと、2,6-ジ-t-ブチル-4-メチルフェノール11gを、内部雰囲気をアルゴンで置換した内容積200mlのフラスコ内に添加し、室温で攪拌しながら溶解した。得られた溶液にトリイソブチルアルミニウム6.8mlを添加し、80℃で約18時間攪拌することによって、対応する有機アルミニウム化合物[イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム]を0.6mol/lの濃度で含有するトルエン溶液を調製した。
Synthesis Example 1 [Preparation of organoaluminum compound: isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum]
After drying with sodium, 25 ml of dry toluene obtained by distillation under an argon atmosphere and 11 g of 2,6-di-t-butyl-4-methylphenol were placed in a 200 ml flask whose internal atmosphere was replaced with argon. Added and dissolved with stirring at room temperature. By adding 6.8 ml of triisobutylaluminum to the obtained solution and stirring at 80 ° C. for about 18 hours, the corresponding organoaluminum compound [isobutylbis (2,6-di-t-butyl-4-methylphenoxy)] was obtained. A toluene solution containing [aluminum] at a concentration of 0.6 mol / l was prepared.
[合成例2][アクリル系ブロック共重合体(A1)の合成]
 合成例1で得たイソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウムの存在下、sec-ブチルリチウムを重合開始剤として用い、トルエン中で各ブロックに相当するモノマー(メタクリル酸メチル、アクリル酸n-ブチル、メタクリル酸メチル)を逐次添加してリビングアニオン重合し、用いたアルミニウム分、リチウム分を除去後、脱揮二軸押出機によりアクリル系ブロック共重合体(A1)のペレットを得た。
 得られたアクリル系ブロック共重合体(A1)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル重合体ブロック(PnBA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)23.5質量%、重量平均分子量70,000、分子量分布(重量平均分子量/数平均分子量)1.20であった。
[Synthesis Example 2] [Synthesis of acrylic block copolymer (A1)]
In the presence of isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum obtained in Synthesis Example 1, sec-butyllithium was used as a polymerization initiator, and monomers corresponding to each block in toluene ( Sequential addition of methyl methacrylate, n-butyl acrylate, methyl methacrylate), living anionic polymerization, removal of aluminum and lithium used, acrylic block copolymer (A1) by devolatilizing twin screw extruder ) Was obtained.
The structure of the resulting acrylic block copolymer (A1) is a triblock of methyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA). The copolymer had a PMMA content (content of polymer block (a2)) of 23.5% by mass, a weight average molecular weight of 70,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.20.
[合成例3][アクリル系ブロック共重合体(A2)の合成]
 合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A2)のペレットを得た。
 すなわち得られたアクリル系ブロック共重合体(A2)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル重合体ブロック(PnBA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)30.5質量%、重量平均分子量60,000、分子量分布(重量平均分子量/数平均分子量)1.15であった。
[Synthesis Example 3] [Synthesis of acrylic block copolymer (A2)]
Living anionic polymerization was carried out in the same manner as in Synthesis Example 2 to obtain the following acrylic block copolymer (A2) pellets.
That is, the structure of the obtained acrylic block copolymer (A2) is a trimethyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA). It was a block copolymer and had a PMMA content (content of polymer block (a2)) of 30.5% by mass, a weight average molecular weight of 60,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.15. .
[合成例4][アクリル系ブロック共重合体(A3)の合成]
 合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A3)のペレットを得た。
 すなわち得られたアクリル系ブロック共重合体(A3)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル重合体ブロック(PnBA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)38.5質量%、重量平均分子量65,000、分子量分布(重量平均分子量/数平均分子量)1.10であった。
[Synthesis Example 4] [Synthesis of acrylic block copolymer (A3)]
Living anion polymerization was carried out in the same manner as in Synthesis Example 2 to obtain the following acrylic block copolymer (A3) pellets.
That is, the structure of the obtained acrylic block copolymer (A3) is a trimethyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA). It was a block copolymer and had a PMMA content (content of polymer block (a2)) of 38.5% by mass, a weight average molecular weight of 65,000 and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.10. .
[合成例5][アクリル系ブロック共重合体(A4)の合成]
 合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A4)のペレットを得た。
 すなわち得られたアクリル系ブロック共重合体(A4)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル重合体ブロック(PnBA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)16.0質量%、重量平均分子量140,000、分子量分布(重量平均分子量/数平均分子量)1.10であった。
[Synthesis Example 5] [Synthesis of acrylic block copolymer (A4)]
Living anionic polymerization was carried out in the same manner as in Synthesis Example 2 to obtain the following acrylic block copolymer (A4) pellets.
That is, the structure of the acrylic block copolymer (A4) obtained was a trimethyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA). It was a block copolymer and had a PMMA content (content of polymer block (a2)) of 16.0% by mass, a weight average molecular weight of 140,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.10. .
[合成例6][アクリル系ブロック共重合体(A5)の合成]
 用いるモノマーの種類を変えたこと以外は合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A5)のペレットを得た。
 すなわち得られたアクリル系ブロック共重合体(A5)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸2-エチルヘキシル重合体ブロック(P2EHA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)22.8質量%、重量平均分子量76,000、分子量分布(重量平均分子量/数平均分子量)1.13であった。
[Synthesis Example 6] [Synthesis of acrylic block copolymer (A5)]
Living anionic polymerization was performed in the same manner as in Synthesis Example 2 except that the type of monomer used was changed, and the following acrylic block copolymer (A5) pellets were obtained.
That is, the structure of the acrylic block copolymer (A5) obtained was a trimethyl methacrylate polymer block (PMMA) -acrylic acid 2-ethylhexyl polymer block (P2EHA) -methyl methacrylate polymer block (PMMA). It was a block copolymer and had a PMMA content (content of polymer block (a2)) of 22.8% by mass, a weight average molecular weight of 76,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.13. .
[合成例7][アクリル系ブロック共重合体(A6)の合成]
 用いるモノマーの比率を変えたこと以外は合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A6)のペレットを得た。
 すなわち得られたアクリル系ブロック共重合体(A6)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル/アクリル酸メチル共重合体ブロック(P(nBA/MA))-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)16.0質量%、重量平均分子量150,000、分子量分布(重量平均分子量/数平均分子量)1.20であった。
[Synthesis Example 7] [Synthesis of acrylic block copolymer (A6)]
Living anionic polymerization was carried out in the same manner as in Synthesis Example 2 except that the ratio of the monomers used was changed to obtain pellets of the following acrylic block copolymer (A6).
That is, the structure of the obtained acrylic block copolymer (A6) was methyl methacrylate polymer block (PMMA) -n-butyl acrylate / methyl acrylate copolymer block (P (nBA / MA))-methacryl. It is a triblock copolymer of acid methyl polymer block (PMMA), PMMA content (content of polymer block (a2)) 16.0% by mass, weight average molecular weight 150,000, molecular weight distribution (weight average molecular weight / Number average molecular weight) 1.20.
[合成例8][アクリル系ブロック共重合体(A7)の合成]
 合成例2と同様にしてリビングアニオン重合を行い、以下のアクリル系ブロック共重合体(A7)を得た。
 すなわち得られたアクリル系ブロック共重合体(A7)の構造は、メタクリル酸メチル重合体ブロック(PMMA)-アクリル酸n-ブチル重合体ブロック(PnBA)-メタクリル酸メチル重合体ブロック(PMMA)のトリブロック共重合体であり、PMMA含量(重合体ブロック(a2)の含有量)50.0質量%、重量平均分子量62,000、分子量分布(重量平均分子量/数平均分子量)1.12であった。
[Synthesis Example 8] [Synthesis of acrylic block copolymer (A7)]
Living anionic polymerization was carried out in the same manner as in Synthesis Example 2 to obtain the following acrylic block copolymer (A7).
That is, the structure of the obtained acrylic block copolymer (A7) is a trimethyl methacrylate polymer block (PMMA) -n-butyl acrylate polymer block (PnBA) -methyl methacrylate polymer block (PMMA). It was a block copolymer and had a PMMA content (content of polymer block (a2)) of 50.0% by mass, a weight average molecular weight of 62,000, and a molecular weight distribution (weight average molecular weight / number average molecular weight) of 1.12. .
[実施例1~8]
 層(I)を構成する樹脂として、合成例2~7で得られたアクリル系ブロック共重合体(A1)~(A6)、または、前記アクリル系ブロック共重合体とアクリル系重合体(「パラペットGF」(株式会社クラレ製))を用いて、下記の表2に示す配合割合で、二軸押出機により230℃で溶融混錬した後、押出し、切断することによって得られた樹脂を用いた。これと層(II)を構成する樹脂として、表1に記載する極性樹脂を用い、射出成形機(日精樹脂工業株式会社「UH1000-80」)を用いて、100mm×40mm、合計厚み2mmのインサート接着成形体を作製した。インサート接着成形体の作製方法としては、前記射出成形機により、(4)に記載の各極性樹脂の射出温度(シリンダー温度および金型温度)条件で、100mm×40mm、厚み1mmの層(II)の成形体を予め複数枚作製し、得られた層(II)の成形体を、100mm×40mm、厚み2mmの射出成形金型にセットし、シリンダー温度:210℃、金型温度:50℃でその隙間に層(I)を構成する樹脂を射出して、インサート接着成形体を作製した。
 得られた成形体について、上記(3)に従って、層(I)と層(II)との間の接着力を測定した。また、上記(4)~(6)に従って、層(I)を構成する樹脂の物性を評価した。得られた結果を表2に示す。
[Examples 1 to 8]
As the resin constituting the layer (I), the acrylic block copolymers (A1) to (A6) obtained in Synthesis Examples 2 to 7, or the acrylic block copolymer and the acrylic polymer (“Parapet”) are used. GF "(manufactured by Kuraray Co., Ltd.) was used, and the resin obtained by extruding and cutting after melt kneading at 230 ° C with a twin screw extruder at the blending ratio shown in Table 2 below was used. . As the resin constituting this and the layer (II), the polar resin described in Table 1 is used and an injection molding machine (Nissei Resin Industry Co., Ltd. “UH1000-80”) is used to insert 100 mm × 40 mm and a total thickness of 2 mm. An adhesive molded body was produced. As a method for producing an insert-adhesive molded body, a layer (II) having a size of 100 mm × 40 mm and a thickness of 1 mm was used with the injection molding machine under the injection temperature (cylinder temperature and mold temperature) conditions of each polar resin described in (4). A plurality of molded bodies were prepared in advance, and the molded body of the obtained layer (II) was set in an injection mold having a size of 100 mm × 40 mm and a thickness of 2 mm, and the cylinder temperature was 210 ° C. and the mold temperature was 50 ° C. A resin constituting the layer (I) was injected into the gap to produce an insert bonded molded body.
About the obtained molded object, the adhesive force between layer (I) and layer (II) was measured according to said (3). Further, the physical properties of the resin constituting the layer (I) were evaluated according to the above (4) to (6). The obtained results are shown in Table 2.
[比較例1~4]
 層(I)を構成する樹脂を表3に記載の通りに変更した以外は実施例と同様の方法で成形体を製造し、その物性を評価した。得られた結果を表3に示す。なお、比較例2~4で用いた樹脂は以下の通りである。
 熱可塑性エラストマー:「ハイブラー7125(株式会社クラレ製)」
 熱可塑性ポリウレタンエラストマー:「エラストラン1198A(BASF社製)」
 熱可塑性ポリウレタンエラストマー(無黄変):「ミラクトランXN2004(東ソー株式会社製)」
[Comparative Examples 1 to 4]
Except having changed resin which comprises layer (I) as described in Table 3, the molded object was manufactured by the method similar to an Example, and the physical property was evaluated. The obtained results are shown in Table 3. The resins used in Comparative Examples 2 to 4 are as follows.
Thermoplastic elastomer: “HIBLER 7125 (Kuraray Co., Ltd.)”
Thermoplastic polyurethane elastomer: “Elastolan 1198A (manufactured by BASF)”
Thermoplastic polyurethane elastomer (no yellowing): “Milactolan XN2004 (manufactured by Tosoh Corporation)”
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表2および3の結果から、本発明の実施例1~8で得られた成形体における層(I)は、透明性、PCに対する接着性および柔軟性が良好であることが分かる。実施例2においては、PS、PMMAへの接着性も良好であり、その他の実施例についても同様の効果が得られると考えられる。また、実施例1~8では層(I)の衝撃吸収性が優れており、特に実施例6では顕著に優れている。さらに、硬度も低く、柔軟性にも優れている。以上より、実施例1~8の成形体は透明性、衝撃吸収性、柔軟性に優れるものである。
 これに対して比較例1は、透明性は良好であるがその他の性能が劣る。比較例2は、アクリル系ブロック共重合体を含有していない熱可塑性エラストマーであり、透明性が劣る。比較例3及び4は、アクリル系ブロック共重合体を含有していない熱可塑性ポリウレタンエラストマーであり、柔軟性が劣る。比較例4については、衝撃吸収性にも劣る。
From the results in Tables 2 and 3, it can be seen that the layer (I) in the molded bodies obtained in Examples 1 to 8 of the present invention has good transparency, adhesion to PC and flexibility. In Example 2, the adhesiveness to PS and PMMA is also good, and it is considered that the same effect can be obtained in other examples. In Examples 1 to 8, the layer (I) has excellent shock absorption, and in Example 6, it is particularly excellent. Furthermore, it has low hardness and excellent flexibility. From the above, the molded articles of Examples 1 to 8 are excellent in transparency, impact absorption, and flexibility.
On the other hand, Comparative Example 1 has good transparency but poor performance. Comparative Example 2 is a thermoplastic elastomer that does not contain an acrylic block copolymer and is inferior in transparency. Comparative Examples 3 and 4 are thermoplastic polyurethane elastomers that do not contain an acrylic block copolymer and are inferior in flexibility. Comparative Example 4 is also inferior in shock absorption.
 本発明によれば、透明性、衝撃吸収性、極性樹脂との接着性および柔軟性を兼ね備えた樹脂層を有する成形体を提供でき、光学分野、食品分野、医療分野、民生分野、自動車分野、電気・電子分野、建築分野などの多岐の用途で利用することができる。 According to the present invention, it is possible to provide a molded body having a resin layer having transparency, impact absorption, adhesion with a polar resin and flexibility, and in the optical field, food field, medical field, consumer field, automobile field, It can be used in various applications such as the electric / electronic field and the architectural field.

Claims (9)

  1.  アクリル系ブロック共重合体を含む樹脂からなる層(I)と極性樹脂からなる層(II)とを有する成形体であって、
     前記アクリル系ブロック共重合体は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有し、重量平均分子量が10,000~200,000であり、重合体ブロック(a2)の含有量が10~65質量%であり、
     前記アクリル系ブロック共重合体を含む樹脂は、3mm厚みの全光線透過率が90%以上であり、前記極性樹脂との接着力が剥離速度100mm/分で50N/40mm以上であり、引張動的粘弾性測定で23℃、周波数11Hzで測定したtanδが0.20以上である、成形体。
    A molded body having a layer (I) made of a resin containing an acrylic block copolymer and a layer (II) made of a polar resin,
    The acrylic block copolymer has a structure in which a polymer block (a2) mainly composed of a methacrylic acid ester unit is bonded to both ends of a polymer block (a1) mainly composed of an acrylate ester unit in the molecule. Having at least one, a weight average molecular weight of 10,000 to 200,000, a content of the polymer block (a2) of 10 to 65% by mass,
    The resin containing the acrylic block copolymer has a total light transmittance of 3% thickness of 90% or more, an adhesive strength with the polar resin of 50 N / 40 mm or more at a peeling rate of 100 mm / min, and a tensile dynamic A molded article having a tan δ measured by viscoelasticity measurement at 23 ° C. and a frequency of 11 Hz is 0.20 or more.
  2.  前記極性樹脂の溶解度パラメーターが8~13(cal/cm31/2である、請求項1に記載の成形体。 The molded article according to claim 1, wherein the solubility parameter of the polar resin is 8 to 13 (cal / cm 3 ) 1/2 .
  3.  前記極性樹脂の23℃の曲げ弾性率が2,000~3,500MPaである、請求項1または2に記載の成形体。 The molded article according to claim 1 or 2, wherein the polar resin has a flexural modulus at 23 ° C of 2,000 to 3,500 MPa.
  4.  前記極性樹脂の3mm厚みの全光線透過率が88%以上である、請求項1~3のいずれかに記載の成形体。 The molded body according to any one of claims 1 to 3, wherein the polar resin has a total light transmittance of 88% or more at a thickness of 3 mm.
  5.  前記アクリル系ブロック共重合体を含む樹脂の23℃のA硬度が20~75である、請求項1~4のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 4, wherein the resin containing the acrylic block copolymer has an A hardness at 23 ° C of 20 to 75.
  6.  層(I)の厚みが0.1~10mmである、請求項1~5のいずれかに記載の成形体。 The molded body according to any one of claims 1 to 5, wherein the layer (I) has a thickness of 0.1 to 10 mm.
  7.  請求項1~6のいずれかに記載の成形体からなる、電子機器用保護部材。 A protective member for electronic equipment, comprising the molded body according to any one of claims 1 to 6.
  8.  スマートフォン用保護部材である、請求項7に記載の電子機器用保護部材。 The protective member for electronic devices according to claim 7, which is a protective member for smartphones.
  9.  請求項1~6のいずれかに記載の成形体、または請求項7もしくは8に記載の電子機器用保護部材の製造方法であって、射出成形または押出成形によって製造する、製造方法。 A method for producing the molded body according to any one of claims 1 to 6, or the protective member for electronic equipment according to claim 7 or 8, wherein the production method is produced by injection molding or extrusion molding.
PCT/JP2018/003012 2017-02-03 2018-01-30 Molded body and method for producing same WO2018143211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-018149 2017-02-03
JP2017018149A JP2020055107A (en) 2017-02-03 2017-02-03 Molded body and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018143211A1 true WO2018143211A1 (en) 2018-08-09

Family

ID=63039726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003012 WO2018143211A1 (en) 2017-02-03 2018-01-30 Molded body and method for producing same

Country Status (3)

Country Link
JP (1) JP2020055107A (en)
TW (1) TW201840407A (en)
WO (1) WO2018143211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215500A1 (en) * 2021-04-07 2022-10-13 株式会社クラレ Resin composition containing acrylic block copolymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070344B2 (en) * 2018-11-01 2022-05-18 三菱エンジニアリングプラスチックス株式会社 Panel laminate and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241568A (en) * 2001-02-19 2002-08-28 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition and film or sheet
JP3150674U (en) * 2009-03-09 2009-05-28 株式会社クラレ grip
JP2014514389A (en) * 2011-03-24 2014-06-19 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant tape
JP2014515049A (en) * 2011-03-24 2014-06-26 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant adhesive
JP2014164052A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Retardation film with adhesive layer and optical member using the film
WO2016167292A1 (en) * 2015-04-17 2016-10-20 株式会社クラレ Methacrylic resin composition
WO2017002904A1 (en) * 2015-06-30 2017-01-05 三菱樹脂株式会社 Multilayer optical film and polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241568A (en) * 2001-02-19 2002-08-28 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin composition and film or sheet
JP3150674U (en) * 2009-03-09 2009-05-28 株式会社クラレ grip
JP2014514389A (en) * 2011-03-24 2014-06-19 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant tape
JP2014515049A (en) * 2011-03-24 2014-06-26 スリーエム イノベイティブ プロパティズ カンパニー Flame retardant adhesive
JP2014164052A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Retardation film with adhesive layer and optical member using the film
WO2016167292A1 (en) * 2015-04-17 2016-10-20 株式会社クラレ Methacrylic resin composition
WO2017002904A1 (en) * 2015-06-30 2017-01-05 三菱樹脂株式会社 Multilayer optical film and polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215500A1 (en) * 2021-04-07 2022-10-13 株式会社クラレ Resin composition containing acrylic block copolymer

Also Published As

Publication number Publication date
TW201840407A (en) 2018-11-16
JP2020055107A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5649974B2 (en) Thermoplastic polymer composition and sheet-like molded article comprising the same
JP5980381B2 (en) Methacrylic resin composition, resin modifier and molded article
TWI703166B (en) Resin composition, molded body and optical member composed of acrylic block copolymer
WO2014073216A1 (en) Methacrylic resin composition
WO2018143211A1 (en) Molded body and method for producing same
JP6757588B2 (en) A method for producing a molded product containing an acrylic block copolymer and a powdery additive.
TW201807052A (en) Molded article made from acrylic resin composition
WO2020075655A1 (en) Pellets containing block copolymer and molded article obtained from said pellets
JP6796969B2 (en) Thermoplastic polymer composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18748841

Country of ref document: EP

Kind code of ref document: A1