WO2017002904A1 - Multilayer optical film and polarizing plate - Google Patents

Multilayer optical film and polarizing plate Download PDF

Info

Publication number
WO2017002904A1
WO2017002904A1 PCT/JP2016/069415 JP2016069415W WO2017002904A1 WO 2017002904 A1 WO2017002904 A1 WO 2017002904A1 JP 2016069415 W JP2016069415 W JP 2016069415W WO 2017002904 A1 WO2017002904 A1 WO 2017002904A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
resin
laminated optical
optical film
Prior art date
Application number
PCT/JP2016/069415
Other languages
French (fr)
Japanese (ja)
Inventor
亜希子 織茂
谷口 浩一郎
潤 西岡
陽 宮下
勝司 池田
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015242289A external-priority patent/JP6828236B2/en
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2017002904A1 publication Critical patent/WO2017002904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a laminated optical film, and more particularly to a laminated optical film that can be suitably used as a protective film for protecting a polarizing film used in a liquid crystal display.
  • the present invention also relates to a polarizing plate using the film and a liquid crystal display device having the polarizing plate.
  • liquid crystal displays have been widely used as display devices for televisions, personal computers, digital cameras, mobile phones and the like.
  • the liquid crystal display has a configuration of front side polarizing plate / liquid crystal / rear side polarizing plate, where the display side is the front side and the opposite side (backlight side) is the rear side.
  • the polarizing plate is usually formed by laminating a protective film or the like on a polarizing film made of a dyed uniaxially stretched polyvinyl alcohol film, for example, a laminated film of protective film / polarizing film / protective film.
  • the protective films disposed on the front and rear surfaces of the polarizing film constituting the front polarizing plate are designated as protective film A and protective film B, respectively, and the protective films disposed on the front and rear surfaces of the polarizing film constituting the rear polarizing plate.
  • the film is a protective film C and a protective film D, respectively
  • the overall configuration is protective film A / front side polarizing film / protective film B / liquid crystal / protective film C / rear side polarizing film / protective film D from the front side. It becomes.
  • the protective film for this polarizing plate is required to have small optical anisotropy, high transparency, excellent moisture resistance, heat resistance, mechanical strength, and low adhesion of foreign matter.
  • a triacetyl cellulose film (hereinafter sometimes abbreviated as a TAC film) produced by a solution casting method is often used because it has high transparency and optical isotropy.
  • the TAC film produced by the solution casting method has small optical anisotropy, but is inferior in productivity, the solvent remaining in the film volatilizes, and adversely affects the electronic circuit and other parts in the liquid crystal display device. There was a problem such as giving.
  • the TAC film is inferior in dimensional stability and heat-and-moisture resistance, it causes problems such as generation of stress accompanying shrinkage and deterioration of the function of the polarizer, affecting the image quality of the liquid crystal display device using this polarizing plate. It was.
  • a film by a melt extrusion method of a thermoplastic resin such as an acrylic resin, a cyclic olefin resin, a styrene resin, or a polycarbonate resin has been studied.
  • a thermoplastic resin such as an acrylic resin, a cyclic olefin resin, a styrene resin, or a polycarbonate resin.
  • the optical film which can be used for a polarizing plate protective film etc. is manufactured using acrylic resin as a thermoplastic resin.
  • the polarizing plate is bonded to the liquid crystal cell through an adhesive layer or the like, but if a defect is confirmed after bonding, the polarizing plate may be peeled off from the liquid crystal cell.
  • the polarizing plate protective film is easily torn, the peeling operation becomes difficult, and thus the polarizing film protective film is required to have high tear strength.
  • the acrylic film, cyclic olefin film, and styrene film described above are excellent in optical properties and heat-and-moisture resistance, but the film does not have sufficient mechanical strength, and in order to satisfy the required mechanical strength, the film
  • the polarizing plate using these films as a protective film has a problem that it is difficult to reduce the thickness.
  • a protective film using a polycarbonate-based resin that is generally excellent in impact resistance is excellent in mechanical strength and has high tear strength, it can be easily thinned.
  • polycarbonate resins generally have high intrinsic birefringence
  • films using polycarbonate resins tend to have large optical anisotropy, making it difficult to produce a polarizing plate protective film with small optical anisotropy. Met.
  • the film using a polycarbonate-type resin has a large photoelastic coefficient, there existed a problem that a phase difference was easy to change with external stress and it was difficult to handle it.
  • Patent Document 2 discloses laminating a film having a positive intrinsic birefringence and a negative film as a technique for controlling the optical anisotropy.
  • optical anisotropy can be controlled by laminating an acrylic resin or a styrene resin having a negative intrinsic birefringence on a polycarbonate resin having a positive intrinsic birefringence.
  • the optical anisotropy of the layer having negative intrinsic birefringence is also increased in order to offset the large optical anisotropy of the polycarbonate resin layer.
  • a film made of polycarbonate resin and a film having negative intrinsic birefringence are individually produced, and the film having negative intrinsic birefringence is produced.
  • this method has a problem that the number of production steps increases and productivity is inferior.
  • An object of the present invention is to provide an optical film having small optical anisotropy, high mechanical strength, and excellent productivity in view of the above-described problems of the prior art, and produced using the optical film.
  • the object is to provide a polarizing plate or a liquid crystal display device.
  • the present invention is a laminated optical film having one or more layers each having a polycarbonate resin as a main component and an acrylic resin as a main component,
  • the polycarbonate resin is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following formula (1):
  • a laminated optical film is proposed in which the total thickness of the laminated optical film is 50 ⁇ m or less and the tear strength measured in accordance with JIS K7128-2 is 4.0 kg / cm or more.
  • the polycarbonate resin further contains a structural unit derived from tricyclodecane dimethanol represented by the following formula (2).
  • the laminated optical film proposed by the present invention has at least three layers of an intermediate layer and a front and back layer, the intermediate layer is a layer mainly composed of the polycarbonate resin, and the front and back layer is the acrylic resin. It can be set as the layer which has as a main component.
  • the laminated optical film proposed by the present invention has at least three layers of an intermediate layer and a front and back layer, the intermediate layer is a layer containing the acrylic resin as a main component, and the front and back layer is the polycarbonate.
  • a layer containing a resin as a main component can also be used.
  • the laminated optical film proposed by the present invention preferably has a total thickness of 20 ⁇ m or less, and a tear strength measured according to JIS K7128-2 of 5.0 kg / cm or more.
  • the ratio of the total thickness of the layer mainly composed of the polycarbonate resin to the total thickness of the laminated optical film proposed by the present invention is preferably 20% or more and 95% or less, and more than 50% and more than 80%. It is preferable that:
  • the layer containing the acrylic resin as a main component preferably contains a flexibility modifier.
  • a flexibility modifier at least one monomer unit derived from a methacrylic acid ester and an acrylic acid ester and a hard segment (HS) having a glass transition temperature of 100 ° C. or higher, and at least a methacrylic acid ester And an acrylic block copolymer having a soft segment (SS) containing one kind of monomer units derived from an acrylate ester and having a glass transition temperature of 20 ° C. or lower.
  • the laminated optical film provided with the coat layer which consists of a water-system urethane type resin composition containing a urethane type resin and a melamine resin type crosslinking agent on the at least single side
  • the melamine resin-based crosslinking agent include those containing an imino group type and / or a methylol group type melamine resin.
  • the present invention proposes a polarizing plate having a structure in which a polarizing film is bonded to the coat layer of the laminated optical film via an adhesive layer.
  • examples of the adhesive layer include an aqueous adhesive.
  • the present invention proposes a liquid crystal display device having the polarizing plate.
  • an optical film having small optical anisotropy, high mechanical strength, and excellent productivity can be provided, and its industrial value is high.
  • the laminated optical film according to an example of the embodiment of the present invention includes a layer mainly composed of a polycarbonate resin (hereinafter sometimes referred to as “A layer”) and a resin whose intrinsic birefringence is negative.
  • a laminated optical film having at least one layer (hereinafter sometimes referred to as “B layer”), wherein the polycarbonate resin contains a structural unit derived from a dihydroxy compound represented by the following formula (1)
  • a laminated optical film (referred to as “the present laminated optical film 1”), which is a polycarbonate resin.
  • Layer mainly composed of polycarbonate resin (A layer)> At least one layer of the laminated film of the present laminated optical film 1 is a layer mainly composed of a polycarbonate resin (hereinafter sometimes referred to as “polycarbonate resin of the present laminated optical film 1”).
  • the main component means that the component in the film is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • 1 type may be used for the polycarbonate resin of this laminated optical film 1, and it may use it in combination of 2 or more types.
  • Polycarbonate resin Polycarbonate resin is excellent in dimensional stability and moisture and heat resistance, and it is possible to enhance mechanical strength and optical characteristics by designing the raw materials. A laminated film can be obtained.
  • Typical examples of the polycarbonate resin include aromatic polycarbonates having a structural unit of 2,2′-bis (4-hydroxyphenyl) -propane (commonly referred to as bisphenol-A). , 1-bis (4-hydroxyphenyl) -alkylcycloalkane, 1,1-bis (3-substituted-4-hydroxyphenyl) -alkylcycloalkane, 1,1-bis (3,5-substituted-4-hydroxy 1,1-bis (4-hydroxyphenyl) -alkylcycloalkanes such as phenyl) -alkylcycloalkanes; at least one 2 selected from the group consisting of 9,9-bis (4-hydroxyphenyl) fluorenes Homo- or copolymerized polycarbonate containing a monohydric phenol as a monomer component, the above dihydric phenol and bis Mixture of phenol A polycarbonate which a monomer component, such as a copolycarbonate of the above dihydric
  • the polycarbonate resin of the present laminated optical film 1 is a dihydroxy compound having a part represented by the following formula (1) in a part of the structure from the viewpoint of high transparency, high strength, high heat resistance and high weather resistance. Polycarbonate resins containing structural units derived from them are preferred.
  • examples of the dihydroxy compound represented by the above formula (1) include isosorbide, isomannide and isoidet which have a stereoisomeric relationship.
  • the dihydroxy compound represented by the formula (1) is an ether diol that can be produced from a saccharide using a biogenic material as a raw material.
  • isosorbide can be produced at low cost by hydrogenating and dehydrating D-glucose obtained from starch, and can be obtained in abundant resources. Under these circumstances, isosorbide is most preferable as the dihydroxy compound represented by the above formula (1).
  • the polycarbonate resin of the present laminated optical film 1 may further contain a structural unit other than the structural unit derived from the dihydroxy compound having the site represented by the formula (1).
  • a structural unit other than the structural unit derived from the dihydroxy compound having the site represented by the formula (1) it is possible to improve the optical properties, processability and impact resistance.
  • a structural unit derived from a dihydroxy compound having the site represented by the formula (1) a structural unit derived from a dihydroxy compound having no aromatic ring is preferably used.
  • the structural units derived from the aliphatic dihydroxy compound at least one selected from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. It preferably contains a structural unit derived from a dihydroxy compound.
  • the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the heat resistance of the obtained polycarbonate resin can be increased.
  • the number of carbon atoms contained in the alicyclic dihydroxy compound is usually preferably 70 or less, more preferably 50 or less, and further preferably 30 or less.
  • Examples of the alicyclic dihydroxy compound containing the 5-membered ring structure or the 6-membered ring structure include those described in the above-mentioned International Publication No. 2007/148604.
  • cyclohexane dimethanol, tricyclodecane dimethanol, adamantanediol, and pentacyclopentadecane dimethanol can be preferably exemplified.
  • cyclohexane dimethanol or tricyclodecane dimethanol is more preferable from the viewpoint of low raw material costs and improved heat resistance.
  • the optical anisotropy is small, and when the laminated optical film described later is used, the optical anisotropy is extremely low. Can be made into a small film.
  • these other structural units may contain only 1 type in polycarbonate resin, and may contain 2 or more types.
  • the content ratio of the structural unit derived from the dihydroxy compound having the site represented by the formula (1) in a part of the structure of the polycarbonate resin is based on the structural unit derived from all the dihydroxy compounds in the polycarbonate resin. It is preferably 30 mol% or more, more preferably 40 mol% or more, particularly preferably 50 mol% or more, and preferably 90 mol% or less, more preferably 80 mol% or less.
  • the heat resistance is improved by maintaining the glass transition temperature.
  • a film satisfying the high tear strength described later can be obtained, which is preferable.
  • coloring derived from a carbonate structure coloring derived from impurities contained in a trace amount because a biogenic substance is used as a raw material, etc. can be suppressed, and transparency usually required for a polycarbonate film There is a possibility not to impair the sex.
  • the polycarbonate resin includes a structural unit derived from a dihydroxy compound having a site represented by the formula (1) in a part of the structure, and a structural unit derived from an aliphatic dihydroxy compound and / or an alicyclic dihydroxy compound. Although it is preferable to consist of derived structural units, structural units derived from other dihydroxy compounds may be further included within the range not impairing the purpose of the present laminated optical film 1.
  • the polycarbonate resin can be produced by a generally used polymerization method.
  • the polycarbonate resin may be produced by either a phosgene method or a transesterification method in which it is reacted with a carbonic acid diester.
  • a dihydroxy compound having a site represented by the above formula (1) in a part of the structure, an aliphatic and / or alicyclic dihydroxy compound, and other used as necessary is preferred.
  • the transesterification method includes one or more dihydroxy compounds having a site represented by the formula (1) in a part of the structure and one or more aliphatic and / or alicyclic dihydroxy compounds.
  • one or two or more other dihydroxy compounds used as necessary and a carbonic acid diester are added with a basic catalyst, and further, an acidic substance that neutralizes the basic catalyst is added to carry out a transesterification reaction. It is a manufacturing method to be performed.
  • carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Is mentioned. These may be used alone or in combination of two or more. Of these, diphenyl carbonate is particularly preferably used.
  • the reduced viscosity which is an index of the molecular weight of the polycarbonate resin, is measured at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.60 g / dl, and is usually 0. 20 dl / g or more and 1.0 dl / g or less, preferably 0.30 dl / g or more and 0.80 dl / g or less.
  • MFR which is an index of melt viscosity, is measured at a temperature of 230 ° C.
  • a load of 37.27 N in accordance with JIS-K7210 is usually 1.0 g / 10 min to 50 g / 10 min, preferably 3 g / 10 min to 30 g. / 10 min or less, more preferably 5 g / 10 min or more and 20 g / 10 min or less.
  • the polycarbonate resin used in the laminated optical film 1 has a positive intrinsic birefringence.
  • the resin having positive intrinsic birefringence refers to a resin having a higher refractive index in the stretched direction when a film made of the resin is stretched.
  • the intrinsic birefringence is preferably 0.1 or less, more preferably 0.08 or less, and particularly preferably 0.05 or less. The closer the intrinsic birefringence is to zero, the smaller the optical anisotropy of the film, which is preferable. However, since the laminated optical film 1 takes the form of a laminated optical film described later, the intrinsic birefringence of the polycarbonate resin is zero.
  • the general birefringence of conventional general-purpose polycarbonate resins is about 0.1 to 0.2.
  • the method for measuring the intrinsic birefringence of the polycarbonate resin is as described in the section of Examples below.
  • the photoelastic coefficient of the polycarbonate resin used in the laminated optical film 1 is preferably 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 20 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and 15 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. Is more preferable.
  • the photoelastic coefficient is larger than 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 , a change in retardation due to external stress becomes large when a laminated optical film described later is used, which is not suitable as a polarizer protective film. By including the structural formula described above, such optical characteristics can be achieved.
  • the photoelastic coefficient of conventional polycarbonate resins is about 80 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the measuring method of the photoelastic coefficient of the polycarbonate resin is as described in the section of Examples described later.
  • the glass transition temperature of the polycarbonate resin used in the present laminated optical film 1 measured at a heating rate of 10 ° C./min according to JIS K7122 is not particularly limited, but is 100 from the viewpoint of the heat resistance of the laminated film described later. ° C or higher is preferable, 110 ° C or higher is more preferable, and 120 ° C or higher is more preferable.
  • the main component means that the component in the film is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • one type of resin having a negative intrinsic birefringence, which is the main component of the B layer may be used, or two or more types may be used in combination.
  • Resin having a negative intrinsic birefringence A resin having a negative intrinsic birefringence means that when a film made of the resin is stretched, the refractive index in the direction perpendicular to the stretched direction increases. .
  • the intrinsic birefringence is not particularly limited as long as it is negative, but is preferably -0.0001 or less, more preferably -0.001 or less.
  • the measuring method of intrinsic birefringence is as described in the section of Examples described later.
  • the photoelastic coefficient of the resin having negative intrinsic birefringence is preferably 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 20 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and particularly preferably 15 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. preferable.
  • the photoelastic coefficient is larger than 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 , a change in retardation due to stress becomes large when a laminated optical film described later is used, which is not suitable as a polarizer protective film.
  • Examples of the resin having a negative intrinsic birefringence in the laminated optical film 1 include acrylic resins and styrene resins. Although not particularly limited, it is desirable to use an acrylic resin because the refractive index is close to that of the polycarbonate resin of the present laminated optical film 1, the photoelastic coefficient is small, and the hardness is high.
  • an acrylic resin as a thermoplastic resin is used as the acrylic resin used in the laminated optical film 1.
  • the following compounds are mentioned as a monomer used for acrylic resin.
  • the molecular weight of the acrylic resin is not particularly limited, but if the weight average molecular weight is in the range of 30,000 to 300,000, there is no appearance defect such as flow unevenness when molding, A laminate having excellent characteristics and heat resistance can be provided.
  • the glass transition temperature of the resin having a negative intrinsic birefringence used in the present laminated optical film 1 measured at a heating rate of 10 ° C./min according to JIS K7122 is not particularly limited, but the heat resistance of the laminated film is not limited. From a viewpoint, 80 degreeC or more is preferable, 90 degreeC or more is more preferable, and 100 degreeC or more is further more preferable.
  • the upper limit of the glass transition temperature is not particularly defined, but is usually 140 ° C. Here, if it is less than 120 degreeC, since a general purpose resin can be used, it is preferable from a viewpoint that the selection range of a raw material spreads.
  • the glass transition temperature of the resin having a negative intrinsic birefringence used in the laminated optical film 1 is preferably 120 ° C. or higher.
  • the MFR which is an index of melt viscosity, of the resin having a negative intrinsic birefringence used in the laminated optical film 1 is measured at a temperature of 230 ° C. and a load of 37.27 N in accordance with JIS-K7210. It is 1.0 g / 10 min or more and 50 g / 10 min or less, preferably 5 g / 10 min or more and 30 g / 10 min or less, more preferably 8 g / 10 min or more and 20 g / 10 min or less.
  • the resin having a negative intrinsic birefringence used in the present laminated optical film 1 may contain a flexibility modifier for improving flexibility and toughness.
  • the flexibility modifier is not particularly defined, and examples thereof include rubber elastic fine particles and soft resins. From the viewpoint of transparency and optical properties, it is preferable to select a soft resin as the flexibility modifier.
  • the soft resin is not particularly defined, but a polymer block having a glass transition temperature of 100 ° C. or higher (hereinafter referred to as block (i)) and a polymer block having a glass transition temperature of 30 ° C. or lower (hereinafter referred to as block (ii)). ) Is preferable from the viewpoint of achieving both flexibility and heat resistance.
  • the main monomer component constituting the block (i) is not particularly limited, but it is necessary to set the glass transition temperature to 100 ° C. or higher. It is preferable to mainly use an ester of acrylic acid or methacrylic acid and an alcohol having 3 or less carbon atoms, such as methyl acid, methyl methacrylate, ethyl acrylate, ethyl methacrylate, isobutyl acrylate, and isopropyl methacrylate.
  • the syndiotacticity of the block (i) is preferably 70% or more from the viewpoint of heat resistance.
  • the main monomer component constituting the block (ii) of the soft resin is not particularly limited. However, since it is necessary to set the glass transition temperature to 30 ° C. or lower, n-butyl acrylate, n-methacrylic acid n- It is preferable to mainly use an ester of acrylic acid or methacrylic acid and an alcohol having 4 or more carbon atoms, such as butyl, n-hexyl acrylate, or n-hexyl methacrylate.
  • the main chain of the soft resin is not particularly limited, but preferably contains a block (i) -block (ii) -block (i) structure from the viewpoint of heat resistance. Further, from the viewpoint of achieving both flexibility and heat resistance, the total weight ratio (block (i) / block (ii)) of block (i) and block (ii) contained in the soft resin is 5/95 to 80 It is preferably within the range of / 20, and more preferably within the range of 10/90 to 75/25.
  • soft resin as described above examples include trade name Clarity manufactured by Kuraray Co., Ltd. and trade name NANOSTRENGTH manufactured by Arkema Co., Ltd.
  • the flexibility modifier is preferably contained in an amount of 1% by mass or more, more preferably 5% by mass or more, and more preferably 10% by mass or more based on the entire resin constituting the B layer. More preferably.
  • the upper limit of content is not prescribed
  • this laminated optical film 1 takes the laminated structure mentioned later, the softness
  • the A layer, the B layer, or both layers of the film of the present laminated optical film 1 may contain an ultraviolet absorber.
  • the ultraviolet absorber When the ultraviolet absorber is contained, the weather resistance of the film can be improved, and ultraviolet deterioration of the liquid crystal and the polarizing film can be prevented.
  • an ultraviolet absorber used for this laminated optical film 1 a well-known thing, for example, various commercially available things, can be especially used without a restriction
  • UV absorber examples include 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzo Triazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2,2′- Methylenebis (4-cumyl-6-benzotriazolephenyl) and 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]
  • Benzotriazole ultraviolet absorbers such as 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- ( Hexyloxy) -triazine UV absorbers such as phenol, benzoxazine UV absorbers such as 2,
  • other resins and additives other than resins can be blended with the resin constituting the laminated optical film 1 to obtain a resin composition.
  • examples thereof include resins such as polyester resins, polyethers, and polyamides.
  • the blending amount of other resins or additives is 1% by mass or more and 30% by mass with respect to the entire resin constituting each layer of the laminated optical film 1 as long as the effect of the laminated optical film 1 is not impaired. It is preferable to mix
  • the laminated film (referred to as “the present laminated optical film 2”) according to an example of the second embodiment of the present invention is a layer (mainly composed of a resin having a negative intrinsic birefringence index in the present laminated optical film 1).
  • B layer is a laminated film characterized in that it contains, in particular, an acrylic block copolymer (A) as a flexibility modifier.
  • the layer (B layer) containing a resin having a negative intrinsic birefringence as a main component contains the acrylic block copolymer (A), for example, if the B layer is a surface layer, adhesiveness, surface hardness, etc. The surface characteristics can be expressed more.
  • the acrylic block copolymer (A) includes at least one monomer unit derived from a methacrylic acid ester and an acrylic acid ester, a hard segment (HS) having a glass transition temperature of 100 ° C. or higher, and at least a methacrylic acid ester. And a soft segment (SS) having a glass transition temperature of 20 ° C. or lower including one kind of monomer units derived from an acrylate ester.
  • HS hard segment
  • SS soft segment having a glass transition temperature of 20 ° C. or lower including one kind of monomer units derived from an acrylate ester.
  • the hard segment may be simply abbreviated as “HS”
  • the soft segment may be simply abbreviated as “SS”.
  • the glass transition temperature of HS is more preferably 105 ° C. or higher, and further preferably 110 ° C. or higher.
  • the upper limit of the glass transition temperature of HS is usually 125 ° C.
  • the glass transition temperature of SS is more preferably 0 ° C. or less, and further preferably ⁇ 20 ° C. or less from the viewpoint of improving flexibility and low temperature characteristics.
  • the lower limit of the glass transition temperature of SS is usually ⁇ 60 ° C.
  • HS hard segment
  • Methacrylic esters such as cyclohexyl, isobornyl methacrylate, phenyl methacrylate and 2-hydroxyethyl methacrylate; methyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, phenyl acrylate and 2-hydroxyethyl acrylate And acrylic acid esters.
  • methyl methacrylate, ethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, phenyl methacrylate, 2-Hydroxyethyl methacrylate, methyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, phenyl acrylate and 2-hydroxyethyl acrylate are particularly preferred, and transparency and industrial availability.
  • methyl methacrylate is more preferable.
  • the hard segment (HS) can be used alone or in combination of two or more of these methacrylic acid esters and acrylic acid esters. Moreover, when the acrylic block copolymer (A) contains two or more hard segments (HS), these hard segments (HS) may be the same or different.
  • the laminated optical film 2 is preferably the same from the viewpoint of transparency, ease of polymerization, industrial availability, and the like.
  • Examples of monomer units contained in the soft segment (SS) include n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, methacrylic acid.
  • Methacrylic acid esters such as 2-ethylhexyl acid, pentadecyl methacrylate, dodecyl methacrylate, phenoxyethyl methacrylate and 2-methoxyethyl methacrylate; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, acrylic acid n-butyl, isobutyl acrylate, sec-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, acrylic acid Decyl, benzyl acrylate, acrylic acid esters such as 2-methoxyethyl acrylate phenoxyethyl and acrylic acid.
  • Acrylic esters such as dodecyl, phenoxyethyl acrylate and 2-methoxyethyl acrylate are preferred.
  • the soft segment (SS) can be used alone or in combination of two or more of these methacrylic acid esters and acrylic acid esters.
  • the acrylic block copolymer (A) contains two or more soft segments (SS)
  • the soft segments (SS) may be the same or different.
  • the laminated optical film 2 is preferably the same from the viewpoint of transparency, ease of polymerization, industrial availability, and the like.
  • reaction is further carried out.
  • Methacrylic acid ester and acrylic acid ester having a group can be used. Use of a methacrylic acid ester or acrylic acid ester having a reactive group for the polymerization is preferable because the adhesiveness of the resulting acrylic block copolymer (A) may be improved.
  • examples of the methacrylic acid ester and acrylic acid ester having a reactive group include glycidyl methacrylate, allyl methacrylate, glycidyl acrylate, and allyl acrylate. These monomer units are usually used in a small amount, but the amount is preferably 40% by mass or less, more preferably 20% by mass or less, based on the total mass of the monomer units contained in each segment.
  • Examples of these other monomer units include methacrylic acid, acrylic acid, styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, isobutene, 1,3 -Butadiene, isoprene, octene, vinyl acetate, maleic anhydride, vinyl chloride and vinylidene chloride.
  • These monomer units are usually used in a small amount, but are preferably 40% by mass or less, more preferably 20% by mass or less, based on the total mass of monomers used for polymerization of each segment. .
  • the acrylic block copolymer (A) used in the present laminated optical film 2 can have other polymer blocks as necessary in addition to the hard segment (HS) and the soft segment (SS).
  • examples of other polymer blocks include methacrylic acid, acrylic acid, styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, isobutene, and 1,3-butadiene.
  • the polymer block also includes a hydrogenated product of a polymer block polymerized from a monomer unit containing a diene monomer such as 1,3-butadiene and isoprene.
  • each segment and polymer block included in the acrylic block copolymer (A) of the laminated optical film 2 is not particularly limited.
  • hard segments (HS) are bonded to both ends of at least one soft segment (SS) from the viewpoints of heat resistance, mechanical properties, and blocking resistance of raw material pellets (preventing sticking between raw material pellets). It is preferable to have the form.
  • a tetrablock of (HS) -b- (SS) -b- (HS) -b- (SS) examples thereof include a block copolymer.
  • a triblock copolymer of (HS) -b- (SS) -b- (HS) is more preferable from the viewpoint of blocking resistance of the raw material pellets, production cost, and the like.
  • the glass transition temperature of each segment of the acrylic block copolymer (A) used for the present laminated optical film 2 can be measured with a differential operation calorimeter (DSC).
  • DSC differential operation calorimeter
  • the monomer composition and stereoregularity of each segment can be qualitatively and quantitatively analyzed by a known analysis method such as 1 H-NMR or 13 C-NMR.
  • the stereoregularity of HS is not particularly limited, but a syndiotactic structure is preferable because the glass transition temperature is increased and heat resistance is improved.
  • triad fraction mm identified by nuclear magnetic resonance measurement of the hard segment of the acrylic block copolymer (A) (1 H-NMR ), of mr and rr, the molar ratio of rr structure Higher than the molar ratio of mm and mr can be suitably used.
  • the molecular weight of the acrylic block copolymer (A) is not particularly limited, but is determined by gel permeation chromatography (GPC) measurement from the viewpoint of mechanical properties and moldability of the laminated optical film 2.
  • the weight average molecular weight in terms of polystyrene is preferably 10,000 to 500,000, more preferably 20,000 to 300,000.
  • composition ratio (total hard segment (HS) / total soft segment (SS)) of the hard segment (HS) and the soft segment (SS) of the acrylic block copolymer (A) is 30/70 by mass ratio. ⁇ 90/10 is preferable, and 40/60 to 70/30 is more preferable.
  • the composition ratio is in the above range, a balance of transparency, heat resistance and flexibility is obtained, which is preferable.
  • the acrylic block copolymer (A) used for the present laminated optical film 2 can be polymerized by known anionic polymerization or radical polymerization, but a commercially available product may be used.
  • a commercially available product may be used.
  • Clarity manufactured by Kuraray Co., Ltd. and the product name NANOSTRENGTH manufactured by Arkema Co., Ltd. can be mentioned.
  • an acrylic block copolymer (A) polymerized by anionic polymerization can be suitably used.
  • B layer of this laminated optical film 2 is a layer which consists of a composition which contains an acryl-type block copolymer (A) as an essential component.
  • the content of the acrylic block copolymer (A) in the composition may be appropriately determined in consideration of the composition ratio of each segment of the acrylic block copolymer (A) to be used and desired characteristics. Specifically, it is preferably 5 to 100% by mass, more preferably 10 to 80% by mass, and particularly preferably 15 to 50% by mass.
  • the content of the soft segment (SS) in the B layer in the present laminated optical film 2 is 5 to 25% by mass, preferably 8 to 20% by mass. Just decide. For example, if the HS / SS mass ratio of the acrylic block copolymer (A) used is 50/50 mass%, the acrylic block copolymer (A) is contained in the B layer in an amount of 10 to 50 mass%. What is necessary is just to adjust suitably between. Further, if the HS / SS mass ratio of the acrylic block copolymer (A) used is 90/10% by mass, the acrylic block copolymer (A) is contained in 50 to 100% by mass in the B layer. What is necessary is just to adjust suitably between.
  • additives such as an agent, an antistatic agent, a flame retardant, a filler and a nanofiller can be contained. These other polymers and additives can be used alone or in combination of two or more.
  • acrylic block copolymer (A) used in the present laminated optical film 2 other polymers include acrylic polymers, methyl methacrylate-styrene copolymers, styrene-anhydrous maleic acid.
  • examples include acid copolymers, styrene-methyl methacrylate-maleic anhydride copolymers, AS resins, polylactic acid, and polyvinylidene fluoride.
  • an acrylic polymer (B) described in detail below can be preferably used from the viewpoints of mechanical strength, transparency, heat resistance, economy, and the like.
  • the acrylic polymer (B) is an acrylic polymer other than the acrylic block copolymer (A), and is an acrylic polymer mainly composed of a (meth) acrylic acid ester monomer. .
  • the (meth) acrylic acid ester monomer unit means an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit.
  • the main component here is a component having the highest molar ratio when all the monomer units constituting the acrylic polymer (B) are 100 mol%, preferably 70 mol% or more, 90 mol% or more is more preferable, 95 mol% or more is further more preferable, and 98 mol% or more is especially preferable.
  • the upper limit is 100 mol%.
  • the constituent monomer units include methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth).
  • One type of unit is preferably the same as one type of monomer unit of the acrylic block copolymer (A).
  • a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate is preferably used because it is easily available industrially. Can do.
  • the stereoregularity is not particularly limited, but the stereostructure of the (meth) acrylic acid ester monomer unit is preferably a syndiotactic structure because the glass transition temperature becomes higher and the heat resistance is improved. .
  • the stereostructure of the (meth) acrylic acid ester monomer unit is preferably a syndiotactic structure because the glass transition temperature becomes higher and the heat resistance is improved.
  • those having a molar ratio of the rr structure higher than that of mm and mr can be suitably used.
  • triad fraction using nuclear magnetic resonance measurement apparatus (1 H-NMR), can be determined by known methods.
  • the molecular weight of the acrylic polymer (B) used in the present laminated optical film 2 is not particularly limited, but is usually 30,000 or more and 300,000 or less in terms of weight average molecular weight, 50,000 or more, A range of 150,000 or less is preferable because appearance defects such as flow unevenness hardly occur during molding.
  • the glass transition temperature is not particularly limited, but is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, further preferably 100 ° C. or higher, and particularly preferably 105 ° C. or higher, from the viewpoint of heat resistance of the laminated film. preferable.
  • the upper limit of the glass transition temperature is not particularly specified, but is usually 150 ° C.
  • the glass transition temperature is preferably set to 120 ° C. or higher by adjusting the copolymer component of the acrylic polymer (B) or mixing with other polymers.
  • the acrylic polymer (B) used for the laminated optical film 2 may be a commercially available product. Specific examples include trade names “Acrypet” manufactured by Mitsubishi Rayon Co., Ltd., Sumitomo Chemical Co., Ltd. ) Product name “SUMIPEX” and Kuraray Co., Ltd. product name “PARAPET”.
  • the film according to an example of the third embodiment of the present invention is the above-mentioned present laminated optical film 1 or the present laminated optical film 2 (these are referred to as “base film”). It is a film provided with a configuration in which a coat layer made of a water-based urethane resin composition containing a urethane resin and a melamine resin-based crosslinking agent is formed on at least one surface.
  • the crosslinking agent contained in the composition used for forming the easy-adhesion layer was a crosslinking agent having an epoxy group, a carbodiimide group or an oxazoline group.
  • a melamine resin crosslinking agent is used for the urethane resin.
  • a general cross-linking agent has the disadvantage that the affinity for the base material and the adhesive is lost with the progress of the cross-linking reaction, and the adhesiveness between the easy-adhesion layer and the base material tends to be lowered.
  • the present laminated optical film 3 has an effect that the reduction of the adhesiveness with the base material and the adhesive is suppressed by the progress of the crosslinking reaction.
  • the melamine resin-based cross-linking agent controls its cross-linking reactivity by selecting various structures involved in the cross-linking reaction such as methyl ether type, imino group type, methylol group type, and methylol / imino group type. Therefore, there is an advantage that the pot life and reactivity can be easily controlled.
  • urethane coating composition containing a urethane resin and a melamine resin crosslinking agent in the laminated optical film 3 (hereinafter sometimes referred to as “urethane coating composition”).
  • urethane coating composition a coat layer containing a urethane resin and a melamine resin crosslinking agent in the laminated optical film 3
  • urethane coating composition May be referred to as “urethane coat layer”.
  • urethane coating composition a coat layer (hereinafter referred to as “urethane coating composition”) containing a urethane resin and a melamine resin crosslinking agent in the laminated optical film 3 (hereinafter sometimes referred to as “urethane coating composition”).
  • urethane coating composition May be referred to as “urethane coat layer”.
  • the urethane coat layer functions as an easy-adhesion layer.
  • the adhesive between the base film and the other member by the adhesive is used. Reinforce and bond more firmly. That is, the urethane coat layer functions as a primer layer for reinforcing the function of the adhesive.
  • the urethane coat layer is directly provided on the surface of the base film without any other layer such as an adhesive layer.
  • the urethane coat layer may be provided on one surface of the base film or on both surfaces.
  • urethane resin examples of the urethane-based resin used in the present laminated optical film 3 include (3-1) a component containing two or more active hydrogens in average in one molecule (hereinafter referred to as “component (3-1)”). )) And (3-2) a urethane resin obtained by reacting a polyisocyanate component (hereinafter sometimes referred to as “component (3-2)”); or the above components (3-1) and The component (3-2) is urethanated in an organic solvent that is inert to the reaction and has a high affinity for water under an excess of isocyanate groups to obtain an isocyanate group-containing prepolymer. And a urethane-based resin produced by adding water and adding a dispersion to form a dispersion. These urethane resins may contain an acid structure (acid residue).
  • the chain extension method of the isocyanate group-containing prepolymer a known method can be adopted.
  • water, a water-soluble polyamine, glycols or the like is used as the chain extender, and the isocyanate group-containing prepolymer and the chain extender are used. May be reacted in the presence of a catalyst, if necessary.
  • the component (3-1) is not particularly limited, but preferably has a hydroxylic active hydrogen. Specific examples of such compounds include those exemplified in the following (3-1-1) to (3-1-5).
  • polyol compound examples include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 1,8-octanediol, dipropylene glycol, 2,2,4-trimethyl-1 , 3-pentanediol, tricyclodecane dimethanol, 1,4-cyclohexane dimethanol, 2,2-dimethylpropanediol, and the like.
  • polyether polyol for example, an alkylene oxide adduct of the polyol compound of (3-1-1) above; ring-opening (co-polymerization) of an alkylene oxide and a cyclic ether (eg, tetrahydrofuran) ) Polymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol, polyethylene glycol, polypropylene glycol, and ethylene glycol-propylene glycol;
  • polyester polyol examples include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, and phthalic acid, and anhydrides thereof (3-1) -1) and polyol compounds such as ethylene glycol, propylene glycol, 1,4-butylene glycol, 1,6-hexanediol, 1,8-octanediol, and neopentyl glycol, under the conditions of excess hydroxyl group Examples thereof include those obtained by polycondensation.
  • dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, and phthalic acid
  • anhydrides thereof 3-1) -1
  • polyol compounds such as ethylene glycol, propylene glycol, 1,4-butylene glycol, 1,6-hexanediol, 1,8-octanediol
  • ethylene glycol-adipic acid condensate butanediol-adipine condensate, hexamethylene glycol-adipic acid condensate, ethylene glycol-propylene glycol-adipic acid condensate, or lactone with glycol as an initiator.
  • polylactone diol obtained by ring-opening polymerization.
  • polyether ester polyol for example, an ether group-containing polyol (for example, the polyether polyol or diethylene glycol of (3-1-2) above) or this and other glycols And a mixture obtained by reacting an alkylene oxide with the dicarboxylic acid or anhydride thereof as exemplified in the above (3-1-3). More specifically, examples include polytetramethylene glycol-adipic acid condensate.
  • Polycarbonate carbonate polyol includes, for example, the general formula HO—R— (O—C (O) —O—R) n —OH (wherein R represents a carbon number of 1 to 5). 12 represents a saturated fatty acid polyol residue, and n represents the number of repeating units of the molecule, and is usually an integer of 5 to 50).
  • transesterification method in which a saturated aliphatic polyol and a substituted carbonate (for example, diethyl carbonate, diphenyl carbonate, etc.) are reacted under the condition that the hydroxyl group is excessive; the saturated aliphatic polyol and phosgene are reacted, or If necessary, it can be obtained by a method of further reacting a saturated aliphatic polyol thereafter.
  • a saturated aliphatic polyol and a substituted carbonate for example, diethyl carbonate, diphenyl carbonate, etc.
  • the compounds as exemplified in the above (3-1-1) to (3-1-5) may be used alone, or two or more kinds may be used in combination at any ratio.
  • Examples of the component (3-2) to be reacted with the component (3-1) include an aliphatic, alicyclic or aromatic compound containing an average of two or more isocyanate groups in one molecule.
  • the aliphatic diisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, and examples thereof include hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI).
  • the alicyclic diisocyanate compound is preferably an alicyclic diisocyanate compound having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate (HMDI). Etc.
  • aromatic diisocyanate compound examples include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • urethane-based resin a urethane coat layer having excellent heat resistance and water resistance can be formed. Therefore, those having an aliphatic polycarbonate skeleton, specifically, (3-1 A urethane resin obtained by reacting the polycarbonate polyol of ⁇ 5) with an aliphatic diisocyanate compound is preferred.
  • the urethane resin preferably has an acid structure.
  • Urethane resin having an acid structure can be dispersed in water without using a surfactant or even if the amount of the surfactant is small, so that the water resistance of the urethane coat layer is improved. There is expected.
  • This is called a self-emulsifying type, which means that the urethane-based resin can be dispersed and stabilized in water only by molecular ionicity without using a surfactant.
  • a urethane coat layer using such a urethane-based resin is preferable because it has excellent adhesion to the base film and can maintain high transparency. Further, it is preferable to perform crosslinking using this acid structure as a starting point, since the hydrophobicity, heat resistance, and wet heat properties can be further improved.
  • the acid structure examples include acid groups such as a carboxyl group (—COOH) and a sulfonic acid group (—SO 3 H).
  • the acid structure may exist in the side chain of a urethane-type resin, and may exist in the terminal.
  • 1 type may be used for an acid structure and it may use it combining 2 or more types by arbitrary ratios.
  • the content of the acid structure is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, preferably 250 mgKOH / g or less, more preferably 150 mgKOH / g or less as the acid value of the urethane resin. If the acid value is less than 5 mgKOH / g, the water dispersibility tends to be insufficient. On the other hand, if the acid value is more than 250 mgKOH / g, the water resistance of the urethane coat layer tends to be inferior.
  • a conventionally used method can be used without any particular limitation.
  • Preferable examples include polyether polyol and polyester polyol in advance by replacing dimethylolalkanoic acid with a part or all of the glycol component described in (3-1-2) to (3-1-4).
  • Examples of the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid.
  • dimethylol alkanoic acid may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the number average molecular weight of the urethane-based resin is preferably 1,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, and more preferably 200,000 or less.
  • the urethane-based coating composition used in the present laminated optical film 3 is preferably prepared using a water-based urethane resin.
  • a water-based urethane resin is an aqueous dispersion of a urethane-based resin.
  • a urethane-based resin, water, and other components contained as necessary are dissolved or dispersed in water.
  • the concentration of the component (urethane resin) is usually about 10 to 50% by weight.
  • a commercially available water-based urethane resin may be used.
  • Examples of commercially available water-based urethane resins include the “Adeka Bon titer” series manufactured by Asahi Denka Kogyo, the “Olestar” series manufactured by Mitsui Toatsu Chemicals, and the “Bondic” manufactured by Dainippon Ink & Chemicals, Inc.
  • the urethane-based coating composition may include only one type of urethane-based resin, or may include two or more types in any ratio.
  • melamine resin crosslinking agent examples include methylol melamine such as dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine and hexamethylol melamine; alkyl etherified product of methylol melamine and alcohol; condensation of methylol melamine; An etherified product of alcohol with the product.
  • examples of the alcohol include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, and 2-ethylhexyl alcohol.
  • melamine resin crosslinking agent Commercial products can be used as the melamine resin crosslinking agent.
  • examples of commercially available products include “Symel 303”, “Symel 323”, “Symel 325”, “Symel 327”, “Symel 350”, “Symel 370”, and “Symel 380” manufactured by Ornex Japan.
  • a resin having a melamine skeleton such as a melamine resin or a benzoguanamine resin can be used, and a methylol group of a partially or completely methylolated melamine resin is partially or partially with methyl alcohol and / or butyl alcohol.
  • Fully etherified methyl etherified melamine resins, butyl etherified melamine resins, and methyl-butyl mixed etherified melamine resins can be used.
  • methyl etherified melamine resin is used from the viewpoint of moisture resistance, flexibility, stability in water and pot life, and imino group type (partially methylolated) from the viewpoint of condensation, reactivity, and hardness reactivity.
  • methylol group-type (partially etherified) -containing melamine resins can be suitably used.
  • an imino group and / or methylol group type-containing melamine resin that can be crosslinked in a short time, particularly in the drying step of the film, and has good tackiness at room temperature as the hardness increases. Is preferably used.
  • melamine resin-based crosslinking agents may be used alone or in combination of two or more.
  • the content of the melamine resin-based crosslinking agent in the urethane-based coating composition is a urethane-based resin (where the urethane-based resin is an aqueous urethane-based resin when a water-based urethane resin is used to prepare the urethane-based coating composition).
  • This is the ratio of the pure urethane resin as a solid that does not contain water in the resin.
  • It is formed by sufficiently cross-linking the urethane resin to 100 parts by weight or more. From the viewpoint of sufficiently increasing the mechanical strength of the urethane coat layer to be formed.
  • the melamine resin crosslinking agent is less than 40 parts by weight with respect to 100 parts by weight of the urethane resin. It is preferable.
  • the melamine resin-based crosslinking agent in the urethane-based coating composition is particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the urethane-based resin.
  • the amount of the melamine resin crosslinking agent is preferably 0.2 on the weight basis with respect to the amount of the melamine resin crosslinking agent equivalent to the acid structure of the urethane resin. Times or more, more preferably 0.4 times or more, particularly preferably 0.6 times or more, preferably 3.0 times or less, more preferably 2.5 times or less, particularly preferably 2.0 times or less.
  • the amount of the melamine resin-based crosslinking agent equivalent to the acid structure of the urethane-based resin refers to the theoretical amount of the melamine resin-based crosslinking agent that can react with the total amount of the acid structure of the urethane-based resin without excess or deficiency.
  • the acid structure can react with the melamine structure containing an alkyl ether group, a methylol group, or an imino group of the melamine resin crosslinking agent.
  • the reaction between the acid structure and the melamine resin-based crosslinking agent proceeds to an appropriate level, and the mechanical strength of the formed urethane coat layer is increased. It can be improved effectively.
  • the urethane coating composition for forming the urethane coating layer contains other components in addition to the above water-based urethane resin and melamine resin-based cross-linking agent as required, as long as the purpose of the laminated optical film 3 is not impaired. It may be.
  • the urethane-based coating composition may contain a curing catalyst, and by including the curing catalyst, the curability of the resulting urethane coat layer can be increased.
  • a curing catalyst sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and dinonylnaphthalenesulfonic acid; neutralized salts of the sulfonic acid and amine; neutralization of phosphate ester compound and amine 1 type, or 2 or more types, such as a salt, can be used.
  • the curing catalyst is preferably contained in an amount of 0.01 to 10% by weight, particularly 0.1 to 5% by weight, based on the melamine resin-based crosslinking agent.
  • the urethane-based coating composition may contain a basic substance.
  • the urethane-based resin in the urethane-based coating composition includes an acid structure, part or all of the acid structure is preferably neutralized with a basic substance.
  • 20% or more of the acid structure of the acid structure-containing urethane resin is more preferably neutralized with a basic substance, and 50% or more is particularly preferably neutralized with a basic substance. 20% or more of the acid structure is neutralized with a basic substance, so that the heat history of the film of the present laminated optical film 3 obtained by forming a urethane coat layer on the base film is exposed to a high temperature.
  • the remaining acid structure of the acid structure-containing urethane resin may not be neutralized, or may be neutralized with a basic substance. Further, either a non-volatile base or a volatile base may be used as the basic substance.
  • Nonvolatile bases include inorganic bases and organics that are substantially non-volatile when left standing at 80 ° C. for 1 hour, for example, under the treatment conditions when the urethane-based coating composition is applied to the surface of the substrate film and then dried.
  • a base can be mentioned.
  • the substantially non-volatile inorganic base and organic base include those whose decrease in non-volatile base is 80% or less after the treatment.
  • non-volatile base those which are soluble in water or can be emulsified by being dispersed in water are preferable. Thereby, the applicability of the water-based urethane resin can be improved, and the urethane coat layer can be easily formed.
  • non-volatile base examples include the following.
  • Inorganic bases such as sodium hydroxide and potassium hydroxide; 2-amino-2-methyl-1-propanol (AMP), monoethanolamine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3- Propane potassium hydroxide, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethyl Dimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-aminopropyl-tris (2-methoxy-ethoxy-ethoxy) silane, cyclohexylamine, hexamethylenediamine, ethylenediamine,
  • Secondary amines such as diethanolamine, morpholine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, N-phenyl- ⁇ -aminopropyltrimethoxysilane; N-methyl-3-aminopropyltrimethoxycarboxylic acid dihydrazide, carbodihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide Hydrazide compounds such as glycolic acid dihydrazide and polyacrylic acid dihydrazide; Triethanolamine, triisopropanolamine, tri [(2-hydroxy) -1-propyl] amine, N, N-diethylmethanolamine, N, N-dimethyl
  • Imidazole, 2-methylimidazole, 1- (2-aminoethyl) -2-methylimidazole, 1- (2-aminoethyl) -2-ethylimidazole, 2-aminoimidazole sulfate, and 2- (2-aminoethyl) ) -Imidazole compounds such as benzimidazole;
  • Imidazoline compounds such as imidazoline and 2-methyl-2-imidazoline;
  • a compound having a hydrazino group such as a hydrazide compound
  • a compound having a hydrazino group has high reactivity, and therefore can appropriately improve the mechanical strength of the urethane coat layer, and has a relatively high boiling point and a urethane coat layer. Since the heat resistance of can be made high, it is especially preferable.
  • non-volatile bases may be used alone or in combination of two or more at any ratio.
  • the content of the urethane-based coating composition is a urethane-based resin (where the urethane-based resin is water-based when a water-based urethane-based resin is used to prepare the urethane-based coating composition).
  • a urethane-based resin is water-based when a water-based urethane-based resin is used to prepare the urethane-based coating composition.
  • This is the ratio of the pure urethane resin as a solid that does not contain water in the urethane resin.
  • the mechanical strength of the urethane coat layer can be appropriately improved, and by making it the upper limit or less, the residual unreacted non-volatile base can be reduced. Also, the mechanical strength of the urethane coat layer can be improved appropriately.
  • Volatile base examples of the volatile base include ammonia and volatile primary to tertiary amines.
  • a volatile tertiary alkylamine is preferable, and a volatile tertiary trialkylamine is more preferable.
  • trimethylamine or triethylamine is preferable, and triethylamine is more preferable.
  • Stability is improved when the urethane-based coating composition contains a volatile base. This is considered because the acid structure and volatile base of the urethane resin contribute to the improvement of dispersion stability in the urethane coating composition.
  • the volatile base is present in the form of a conjugate acid in the emulsion of the water-based urethane resin.
  • the volatile base can be contained in the urethane-based coating composition without any particular limitation, but the urethane-based resin (wherein the urethane-based resin refers to a water-based urethane-based resin for the preparation of the urethane-based coating composition). When used, it is the ratio of the pure urethane resin as a solid content that does not contain water in the aqueous urethane resin.) With respect to 1 mol of the acid structure, a volatile base such as a tertiary alkylamine is present. The content is preferably 0.1 to 6 mol, and more preferably 0.5 to 4.0 mol. Within this range, the stability of the urethane-based coating composition is further improved.
  • the volatile base when the urethane coating composition is cured, only a trace amount remains in the urethane coat layer and impairs the adhesion between the urethane coat layer and the adhesive layer according to the present laminated optical film 3. However, it is preferable because it does not bleed out under conditions where the influence of moisture is large, such as a high temperature and high humidity condition which is a concern for nonvolatile bases, and hardly affects the polarizing plate.
  • the urethane-based coating composition may contain polyvinyl alcohol, and by including polyvinyl alcohol, functions such as an improvement in tackiness of the urethane coat layer surface at room temperature and an increase in adhesion with a water-based adhesive can be expected.
  • the content of polyvinyl alcohol is 0.1% by weight or more, more preferably 1% by weight or more, preferably 20% by weight or less, based on the solid content. Preferably it is 10 weight% or less.
  • the tackiness of the urethane coat layer surface and the adhesiveness with the water-based adhesive can be improved by setting the content of polyvinyl alcohol to the above lower limit value or more, and the base film and the urethane coat can be made to be the upper limit value or less. Adhesion with the layer can be maintained.
  • the total solid content in the urethane-based coating composition corresponds to the total of components other than the solvent in the urethane-based coating composition.
  • the urethane-based coating composition may contain an acetylene glycol in which a hydroxyl group and a methyl group are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof. Good. By including such a nonionic surfactant, wetting can be improved while suppressing foaming of the uncured urethane-based coating composition, thus preventing the occurrence of repelling unevenness when applied to a substrate film. it can.
  • R 3 and R 4 each independently represents a hydrogen atom or an alkyl group which may have a substituent, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. Group, pentyl group, hexyl group and the like, and isopropyl group is preferable.) As such a nonionic surfactant, for example, Surfynol 104 series, Surfynol 400 series manufactured by Nissin Chemical Industry Co., Ltd. can be used.
  • the content of the nonionic surfactant is preferably 10 ppm on a weight basis with respect to the total amount of all solids in the urethane-based coating composition. As mentioned above, More preferably, it is 100 ppm or more, Preferably it is 10,000 ppm or less, More preferably, it is 1,000 ppm or less.
  • the urethane-based coating composition may contain fine particles, and by containing fine particles, irregularities are formed on the surface of the urethane coat layer to be formed, whereby the urethane coat layer becomes another layer during winding.
  • the area in contact with the surface of the urethane coating layer is reduced, and the surface slipperiness of the urethane coating layer is improved accordingly, and the generation of wrinkles when the film of the laminated optical film 3 is wound can be suppressed.
  • the average particle diameter of the fine particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 400 nm or less, more preferably 300 nm or less.
  • a particle size distribution is measured by the laser diffraction method, and the particle size from which the cumulative volume calculated from the small diameter side in the measured particle size distribution becomes 50% (50% volume cumulative diameter D50) Is adopted.
  • inorganic fine particles either inorganic fine particles or organic fine particles may be used, but water-dispersible fine particles are preferably used.
  • inorganic fine particle materials include inorganic oxides such as silica, titania, alumina, and zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, And calcium phosphate etc. are mentioned.
  • organic fine particle material include silicone resin, fluororesin, and acrylic resin.
  • an aqueous urethane type Silica fine particles are preferred because of their good dispersibility and dispersion stability in the resin, and among the silica fine particles, amorphous colloidal silica particles are particularly preferred.
  • fine particles may be used alone or in combination of two or more at an arbitrary ratio.
  • the content of the fine particles is the urethane-based resin (where the urethane-based resin is a case where a water-based urethane-based resin is used to prepare the urethane-based coating composition).
  • the ratio of the pure content of the urethane-based resin as a solid content not containing water in the water-based urethane-based resin. Usually 0.5 parts by weight or more, preferably 1 part by weight or more, relative to 100 parts by weight.
  • the amount is preferably 2 parts by weight or more, usually 30 parts by weight or less, preferably 25 parts by weight or less, more preferably 20 parts by weight or less.
  • the content of the fine particles By setting the content of the fine particles to be equal to or higher than the lower limit of the above range, generation of wrinkles can be suppressed when the film of the present laminated optical film 3 is wound. Moreover, the external appearance without the cloudiness of the film of this laminated optical film 3 is maintainable by making content of microparticles into the upper limit of the said range or less.
  • the urethane-based coating composition is, for example, a surfactant other than the nonionic surfactant described above, a heat-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, and a slip agent, as long as the effect of the present laminated optical film 3 is not significantly impaired.
  • a surfactant other than the nonionic surfactant described above a heat-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, and a slip agent, as long as the effect of the present laminated optical film 3 is not significantly impaired.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the urethane-based coating composition is usually prepared as a dispersion containing the urethane-based resin and the melamine resin-based crosslinking agent as essential components and the above-described optional components used as necessary.
  • the solvent (dispersion medium) used for preparing the urethane-based coating composition include water and / or a water-soluble solvent, preferably water, and particularly preferably ion-exchanged water.
  • water-soluble solvent examples include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, t-butanol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, and ethylene glycol.
  • water-soluble solvent examples include monobutyl ether. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the solvent is preferably set so that the viscosity of the urethane-based coating composition is in a range suitable for coating, and the urethane coating composition preferably has a solid content concentration from the viewpoint of coating properties and film formability. It is prepared to be 5 to 40% by weight, particularly preferably about 10 to 30% by weight.
  • the urethane coating composition dissolves or disperses the aforementioned urethane resin, preferably water-based urethane resin, and melamine resin-based crosslinking agent, and other components used as necessary, using water, preferably ion-exchanged water. It is prepared by.
  • the urethane coating composition components such as urethane resin are usually dispersed as particles.
  • the particle diameter of the particles is preferably 0.01 to 0.4 ⁇ m.
  • the particle size may be measured by a dynamic light scattering method, for example, a light scattering photometer DLS-8000 series manufactured by Otsuka Electronics Co., Ltd.
  • the viscosity of the urethane-based coating composition is preferably 100 mPa ⁇ s or less, and particularly preferably 50 mPa ⁇ s or less.
  • the viscosity of the urethane-based coating composition is within the above range, the urethane-based coating composition can be uniformly applied to the surface of the base film.
  • the viscosity of the urethane-based coating composition is a value measured with a rotational viscometer at a rotational speed of 60 rpm under the condition of 25 ° C.
  • the viscosity of the urethane-based coating composition can be adjusted by, for example, the ratio of the solvent contained in the urethane-based coating composition and the particle size of the particles contained in the urethane-based coating composition.
  • the urethane coat layer is formed by applying the above urethane coating composition on at least one surface of the base film and drying and solidifying (curing) the formed coating film.
  • the application method of the urethane coating composition is not particularly limited, and a known application method can be employed.
  • Specific coating methods include, for example, a wire bar coating method, a dip method, a spray method, a spin coating method, a roll coating method, a gravure coating method, an air knife coating method, a curtain coating method, a slide coating method, and an extrusion coating method. Etc.
  • the solvent in the urethane coating composition is dried and removed.
  • the drying method is arbitrary, and for example, the drying may be performed by any method such as reduced pressure drying or heat drying. Especially, it is preferable to make it harden
  • the heating temperature is appropriately set within a range in which the solvent of the urethane coating composition can be dried to cure the coating film.
  • the heating temperature may be set to a temperature at which no orientation relaxation occurs in the base film.
  • the upper limit temperature is (Tg ⁇ 10) ° C. or lower, preferably (Tg ⁇ 20) ° C. or lower, where Tg is the glass transition temperature of the material forming the base film.
  • Tg is the glass transition temperature of the material forming the base film.
  • it is (Tg-30) ° C. or lower.
  • the lower limit temperature is (Bp-50) ° C. or higher, preferably (Bp-40) ° C. or higher, more preferably (Bp-30) ° C. or higher, when the boiling point of the solvent is Bp.
  • the specific heating and drying conditions are not particularly limited, but the drying is usually performed at 50 to 150 ° C. for 5 to 200 seconds, preferably at 60 to 130 ° C. for 10 to 100 seconds.
  • a stretching treatment may be performed after the coating film is cured, but from the viewpoint of preventing the removal of fine particles from the urethane coat layer, the stretching treatment is performed before or simultaneously with curing the coating film. It is preferable. Furthermore, from the viewpoint of forming a uniform urethane coat layer, it is more preferable to perform a stretching treatment simultaneously with curing the coating film.
  • the urethane coat layer formed on the surface is also stretched.
  • the thickness of the urethane coat layer is usually sufficiently smaller than the thickness of the base film, a large retardation is not exhibited in the stretched urethane coat layer.
  • the surface of the urethane coat layer formed in this way may be subjected to a hydrophilic surface treatment.
  • the surface of the urethane coat layer is usually a bonding surface when the laminated optical film 3 is bonded to another member. Therefore, by further improving the hydrophilicity of this surface, the laminated optical film 3 and other layers Adhesiveness with a member can be remarkably improved.
  • hydrophilic surface treatment for the urethane coat layer examples include corona discharge treatment, plasma treatment, saponification treatment, and ultraviolet irradiation treatment. Of these, corona discharge treatment and plasma treatment are preferable from the viewpoint of processing efficiency, and corona discharge treatment is particularly preferable. As the plasma treatment, atmospheric pressure plasma treatment is preferable.
  • the wetness index of the surface of the urethane coat layer is preferably 40 mN / m or more, more preferably 50 mN / m or more, particularly preferably 60 mN / m or more, and usually 40 mN / m or more. It is desirable to make it.
  • the laminated optical film 3 can be firmly bonded to other members such as a polarizer.
  • the film thickness of the urethane coating layer is from the viewpoint of the effect on the retardation of the present laminated optical film 3 and the prevention of distortion (curing shrinkage) of the base film and the retardation of the laminated optical film 3 using this laminated optical film. 10 ⁇ m or less is preferable, 5 ⁇ m or less is more preferable, and 3 ⁇ m or less is more preferable. Moreover, from a viewpoint of adhesive strength, 0.1 micrometer or more is preferable, 0.2 micrometer or more is more preferable, and 0.3 micrometer or more is further more preferable. If it is the said range, favorable adhesiveness can be obtained with respect to both a base material layer and the below-mentioned aqueous adhesive.
  • the ratio (t1 / t2) of the film thickness (t1) of the base film to the film thickness (t2) of the urethane coat layer is preferably 1 to 1000, more preferably 3 to 500, and still more preferably. Is from 5 to 200. If t1 / t2 is in the above-mentioned range, it is preferable that the strength of the base film is not reduced, wrinkles are generated, and retardation is not easily increased even when the urethane coating composition is heated and dried.
  • the urethane coat layer is formed on at least one side of the base film, and the urethane coat layer may be formed on both sides of the base film.
  • the film thickness of the urethane coat layer is a value of the film thickness of the urethane coat layer per one side of the base film.
  • the film thickness of the urethane coat layer per one side is preferably equal to or more than the above lower limit, and the total film thickness of the both sides urethane coat layer is the above upper limit.
  • the film thickness of a urethane coat layer of both surfaces is equal from the surface of prevention of the curvature etc. of a film.
  • Polarizing plate> Although there is no restriction
  • the polarizing film 3 is bonded to the urethane coat layer side through an adhesive for adhering the polarizing film.
  • the adhesive conventionally known ones can be used, for example, water-based adhesives such as polyvinyl alcohol and urethane compounds, active energy ray-curable adhesives such as acrylic compounds, epoxy compounds, and oxazoline compounds. Can be mentioned. Among these, water-based adhesives such as polyvinyl alcohol are preferable from the viewpoints of adhesiveness with polyvinyl alcohol (PVA), which is a polarizing film, and environmental safety in wastes.
  • PVA polyvinyl alcohol
  • an adhesive such as a water-based adhesive on the urethane coating layer of the laminated optical film 3 to form an adhesive layer, for example, a uniaxially stretched polyvinyl alcohol film dyed with iodine, etc.
  • a polarizing film is attached.
  • a protective film, a retardation film, or the like can be bonded to the opposite side of the polarizing film to form a polarizing plate. That is, the polarizing plate using the present laminated optical film 3 has a layer configuration of first protective film / adhesive layer / polarizing film / adhesive layer / second protective film. Of these, it is used as at least one protective film.
  • Liquid crystal display> Since the present laminated optical film 3 is excellent in transparency, dimensional stability, and moist heat resistance and can be adhered to the polarizing film with good adhesion, a polarizing plate using such a laminated optical film 3 is In addition, the polarizing film is excellent in protective effect and function maintenance, and a high-quality display screen can be realized as a polarizing plate of a liquid crystal display device such as a television, a personal computer, a digital camera, or a mobile phone.
  • a liquid crystal display device such as a television, a personal computer, a digital camera, or a mobile phone.
  • the liquid crystal display has the configuration of the front side polarizing plate / liquid crystal / rear side polarizing plate
  • the polarizing plate has the configuration of protective film / polarizing film / protective film, and thus constitutes the front side polarizing plate.
  • the protective films arranged on the front side and the rear side of the polarizing film are designated as protective film A and protective film B, respectively, and the protective films arranged on the front side and the rear side of the polarizing film constituting the rear side polarizing plate are respectively protective film C, If it is set as the protective film D, the whole structure will be protective film A / front side polarizing film / protective film B / liquid crystal / protective film C / rear side polarizing film / protective film D from the front side.
  • the laminated optical film 3 is a double-sided adhesive type having a urethane coat layer on both sides of the base material layer, a polarizing film is adhered to one urethane coat layer side through the adhesive layer, and the other urethane coat is provided.
  • Other functional films and transparent substrates can be bonded to the layer side via the above-mentioned adhesive layer.
  • Other functional film is not particularly limited, for example, high refractive index film, low refractive index film, antireflection film laminated with these, optical correction film such as color correction film, hard coat film, antifouling film, Examples thereof include an electromagnetic wave shielding film, an infrared ray absorbing film, and an ultraviolet ray absorbing film.
  • the glass as a support substrate and various transparent films are mentioned.
  • Each of the laminated optical films 1, 2, and 3 has a layer (A layer) containing the above-described polycarbonate resin as a main component and a layer (B layer) containing a resin having a negative intrinsic birefringence as a main component. It is essential to have more than one layer.
  • a layer containing the above-described polycarbonate resin as a main component
  • B layer containing a resin having a negative intrinsic birefringence
  • Laminate configuration The number of each layer of the present laminated optical films 1, 2, and 3 is not particularly limited, but from the viewpoint of ease of production and versatility of equipment, (B layer) / (A layer) Or a three-layer structure such as (B layer) / (A layer) / (B layer), (A layer) / (B layer) / (A layer).
  • a three-layer configuration of (B layer) / (A layer) / (B layer), (A layer) / (B layer) / (A layer) is more preferable.
  • a three-layer configuration of (B layer) / (A layer) / (B layer) is preferable.
  • a three-layer structure of (A layer) / (B layer) / (A layer) is preferable.
  • the difference in refractive index between the A layer and the B layer is not particularly defined, but is preferably 0.1 or less, more preferably 0.05 or less, and 0.03 or less in order to suppress light reflection at the interface of the layers. Is more preferable.
  • the lower limit of the refractive index difference is not particularly defined, but in order to measure the film thickness of each layer non-destructively by reflectance spectroscopy, it is preferably 0.001 or more, and preferably 0.005 or more. More preferred.
  • the laminated optical films 1, 2, and 3 have a glass transition measured at a heating rate of 10 ° C./min in accordance with JIS K7122 of a resin constituting at least one of the A layer and the B layer from the viewpoint of heat resistance.
  • the temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher. From the viewpoint of improving the heat resistance, it is preferable that the glass transition temperature of the resin constituting the thicker layer of the A layer or the B layer is in the above range.
  • the glass transition temperature of the A layer is preferably 100 ° C or higher, more preferably 110 ° C or higher, and 120 ° C or higher. Is more preferable.
  • the film thickness of the laminated optical films 1, 2, and 3 is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less, from the viewpoint of thinning a polarizing plate using the laminated optical film. preferable. Since the mechanical strength described later is high, a thin film can be formed in this way. On the other hand, from the viewpoint of handling properties and strength, it is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the ratio of the thickness of the layer (A layer) containing the polycarbonate resin as a main component to the total thickness of the laminated optical film is 20% or more and 95% or less. More preferably, it is 30% or more and 90% or less, and particularly preferably more than 50% and 80% or less.
  • the thickness ratio of the A layer is 20% or more, the mechanical strength, flexibility, toughness, and heat resistance of the laminated optical films 1, 2, and 3 are good.
  • the thickness of A layer is 95% or less, the optical distortion of this laminated optical film 1, 2, 3 can be made sufficiently small.
  • it means the total thickness of each layer.
  • the in-plane retardation (R O ) and thickness retardation (R th ) of the laminated optical films 1, 2, 3 are preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 3 nm or less.
  • the optical anisotropy is small, which is suitable as an optical film.
  • the lower limits of the in-plane retardation (R O ) and the thickness retardation (R th ) are not particularly defined, but are preferably ⁇ 10 nm or more, more preferably ⁇ 5 nm or more, and particularly preferably ⁇ 3 nm or more.
  • the measuring method of the in-plane retardation (R O ) and the thickness retardation (R th ) is as described in the section of Examples described later.
  • Photoelastic coefficient of photoelastic coefficient present laminated optical film 1, 2 and 3 is preferably 10 ⁇ 10 -12 Pa -1 or less, more preferably 8 ⁇ 10 -12 Pa -1 or less, 5 ⁇ 10 - 12 Pa ⁇ 1 or less is particularly preferable.
  • the photoelastic coefficient is larger than 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 , the change in phase difference due to stress becomes large, which is not suitable as a polarizer protective film.
  • the present laminated optical films 1, 2, 3 cancel the phase difference generated in the (A) layer when stress is applied, so that the phase difference generated in the (B) layer cancels out the light of the (A) layer single layer.
  • the photoelastic coefficient of the laminated optical films 1, 2, and 3 can be made smaller than the elastic coefficient.
  • the total light transmittance of the laminated optical films 1, 2, 3 is preferably 85% or more, more preferably 90% or more, and further preferably 92% or more.
  • the haze is preferably 1% or less, more preferably 0.5% or less, and further preferably 0.3% or less.
  • Tear strength of the laminated optical films 1, 2, and 3 measured according to JIS K7128-2 is 4.0 kg / cm or more. More preferably, it is 4.5 kg / cm or more, and further preferably 5.0 kg / cm or more.
  • the method for measuring the tear strength is as described in the Examples section below.
  • the tensile elongation of the laminated optical films 1, 2, and 3 measured by the method of JIS K7161 is preferably 20% or more, more preferably 40% or more, still more preferably 60% or more, and particularly preferably. 100% or more.
  • the handleability is deteriorated because the film is easily broken.
  • it is 200% or less.
  • the laminated optical films 1, 2, and 3 preferably have a heat shrinkage rate at 100 ° C of 100 hours of 0.5% or less, and 0.4% or less. More preferably, it is more preferably 0.3% or less.
  • a film having such a high heat resistance can be obtained.
  • the method for measuring the heat shrinkage rate is as described in the section of Examples described later.
  • the production method of the present laminated optical films 1, 2, and 3 is not particularly limited, and a layer (A layer) mainly composed of a polycarbonate resin and a layer (B) mainly composed of a resin having a negative intrinsic birefringence index.
  • the melting temperature of the T die is 180 ° C. to 260 ° C.
  • the difference in die temperature between the two resins in the T die it is preferable to adjust the difference in die temperature between the two resins in the T die to 30 ° C. or less, preferably 20 ° C. or less, more preferably 10 ° C. or less.
  • Polarizing plate> Although there is no restriction
  • the polarizing film is bonded through an adhesive for adhering the polarizing film.
  • the adhesive conventionally known ones can be used, for example, water-based adhesives such as polyvinyl alcohol and urethane compounds, active energy ray-curable adhesives such as acrylic compounds, epoxy compounds, and oxazoline compounds. Can be mentioned.
  • the outermost layer of the present laminated optical films 1, 2, and 3 is optical regardless of whether a layer mainly composed of polycarbonate resin or a layer mainly composed of resin having a negative intrinsic birefringence is selected. Since a film having small anisotropy can be produced, the outermost layer may be selected depending on the type of adhesive used, and as a result, many types of adhesives can be used.
  • Liquid crystal display> The laminated optical films 1, 2, and 3 are excellent in optical properties and mechanical strength such as tear strength, can be adhered to the polarizing film with good adhesion, and handleability when peeling the polarizing plate from the liquid crystal Therefore, the polarizing plate of the present invention using such laminated optical films 1, 2, and 3 is excellent in the protective effect and functional maintenance of the polarizing film, and is used in TVs, personal computers, digital cameras, mobile phones and the like.
  • a high-quality display screen can be realized as a polarizing plate of a liquid crystal display device, and the workability at the time of manufacturing the liquid crystal display device is excellent.
  • “Sheet” generally refers to a product that is thin by definition in JIS and has a thickness that is small and flat for the length and width.
  • “film” is thicker than the length and width.
  • JISK6900 Japanese Industrial Standard
  • the term “sheet” is included and the term “sheet” is used.
  • “film” is included.
  • the expression “panel” such as an image display panel and a protection panel includes a plate, a sheet and a film, or a laminate thereof.
  • X to Y (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified. The meaning of “smaller than Y” is also included. Further, when “X or more or X ⁇ ” (X is an arbitrary number) is included, it means “preferably larger than X” unless otherwise specified, and “Y or less or Y ⁇ ” (Y is an arbitrary number) Unless otherwise specified, it means “preferably smaller than Y”.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited by these examples and comparative examples.
  • MD flow direction
  • TD perpendicular direction thereof
  • Viscoelasticity of a device combining a birefringence measuring device comprising a He-Ne laser, a polarizer, a compensation plate, an analyzer and a photodetector and a vibration type viscoelasticity measuring device ("Rheogel E-4000" manufactured by UBM).
  • the cut sample was fixed to the measuring device, and measurement was performed under several conditions so that a synthetic curve could be created from room temperature to near the glass transition temperature using a time-temperature conversion rule.
  • the storage elastic modulus E ′ ( ⁇ ) and the loss elastic modulus E ′′ ( ⁇ ) were measured from the viscoelasticity measuring device while changing the measurement frequency from 1 Hz to 133 Hz.
  • the emitted laser light was measured with a polarizer, a sample, and a compensation plate.
  • Pass through the analyzer pick up with a photodetector (photodiode), find the phase difference with respect to the amplitude and distortion of the waveform of the angular frequency ⁇ or 2 ⁇ through the lock-in amplifier, and from this, birefringence ⁇ n * ( ⁇ )
  • the directions of the polarizer and the analyzer were orthogonal to each other, and each was adjusted so as to form an angle of ⁇ / 4 with respect to the extending direction of the sample.
  • Birefringence ⁇ n * ( ⁇ ) ⁇ n 0 ⁇ cos ( ⁇ t + ⁇ B )
  • strain optical ratio O * ( ⁇ ) was defined and obtained for the birefringence ⁇ n * ( ⁇ ) as shown in the following equation.
  • Strain optical ratio O * ( ⁇ ) ⁇ n * ( ⁇ ) / ⁇ * ( ⁇ )
  • birefringence and stress are each composed of two component functions, and each can be expressed by the following equation, assuming that the corrected stress optical law is established.
  • Total light transmittance and haze For the films obtained in Examples and Comparative Examples, total light transmittance and haze were measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH-5000) according to JIS K7105. .
  • the film thickness of each layer was measured nondestructively using the film thickness measuring apparatus (Firmmetrics company make, brand name: F20) by reflectance spectroscopy.
  • the photoelastic coefficient was calculated by the following equation from the slope when gf / width 15 mm) was plotted on the x-axis and phase difference (nm) was plotted on the y-axis.
  • Photoelastic coefficient (Pa ⁇ 1 ) slope ⁇ 1.5 ⁇ 10 ⁇ 8 ⁇ 9.8
  • Tear strength For the films obtained in Examples and Comparative Examples, the tear strength of MD of the sample for evaluation was measured according to JIS K7128-2 and evaluated according to the following criteria. A: Tear strength is 4.5 kg / cm or more B: Tear strength is 4.0 kg / cm or more and less than 4.5 kg / cm X: Tear strength is less than 4.0 kg / cm
  • Clarity modifier Clarity LA4285 (methyl methacrylate-butyl acrylate-methyl methacrylate triblock copolymer, copolymerization ratio 50/50 in terms of weight) manufactured by Kuraray Co., Ltd. was used.
  • This modifier had a glass transition temperature (Tg) (block (i)) of 115 ° C. and an average refractive index of 1.478.
  • Example 1-1 The polycarbonate resin as the material for the layer (A) (PC-1), the acrylic resin as the material for the layer (B) (PMMA), respectively, were charged ⁇ 65mm single screw extruder, a [phi] 40 mm 2 screw extruder These were melt-kneaded at barrel set temperatures of 220 to 240 ° C. and 180 ° C. to 240 ° C., respectively, and coextruded from a multi-die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.), and then to 20 ° C.
  • the film was wound up with a temperature-controlled cast roll to prepare a laminated optical film having a structure of (B) layer / (A) layer / (B) layer.
  • the film thickness of each layer was 3.5 ⁇ m / 8 ⁇ m / 3.5 ⁇ m.
  • Examples 1-2 to 1-3> A laminated optical film was produced in the same manner as in Example 1-1 except that the thickness of each layer was changed as shown in Table 1.
  • Example 1-4 The polycarbonate resin (PC-1) as the material for the layer and the acrylic resin (PMMA) as the material for the (B) layer were put into a ⁇ 40 mm twin screw extruder and a ⁇ 65 mm single screw extruder, respectively. They are melt-kneaded at barrel set temperatures of 220 to 240 ° C. and 180 ° C. to 240 ° C., respectively, and coextruded from a multi-die (set temperature 240 ° C.) having a width of 1350 mm and a lip gap of 0.7 mm, and then heated to 20 ° C.
  • PC-1 polycarbonate resin
  • PMMA acrylic resin
  • Example 1-5 As a material for the layer, except that a dry blend product of 80 parts by mass of the acrylic resin (PMMA) / 20 parts by mass of the flexibility modifier was used, the same method as in Example 1-1, A laminated optical film was produced.
  • PMMA acrylic resin
  • Example 1-2 A laminated optical film was produced in the same manner as in Example 1-1 except that the polycarbonate resin (PC-1) was used as the material for the (B) layer.
  • PC-1 polycarbonate resin
  • Examples 1-1 to 1-5 are films having excellent mechanical strength and optical isotropy due to the constitution of the present invention.
  • Examples 1-1 and 1-4 are films in which the phase difference and the mechanical strength are balanced because the lamination ratio is more preferable.
  • Example 5 is a film with further excellent mechanical strength.
  • Comparative Example 1-1 has a low mechanical strength because it is a single-layer film.
  • Comparative Example 1-2 since a general-purpose polycarbonate resin is used, even a laminated film is a film having a large optical anisotropy.
  • Tg Glass transition temperature
  • a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name “Pyris1 DSC”, according to JIS K7121 about 10 mg of the sample was heated from ⁇ 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min. After holding at 200 ° C. for 1 minute, the temperature was lowered to ⁇ 40 ° C. at a cooling rate of 10 ° C./min, and again from the thermogram measured when the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, the glass transition temperature (Tg ) (° C). In addition, the value of Tg was rounded off to the first decimal place.
  • Total light transmittance is 92% or more ⁇ : Total light transmittance is 90% or more and less than 92% ⁇ : Total light transmittance is 85% or more and less than 90% ⁇ : Total light transmittance is less than 85%
  • Haze Haze is 0.3% or less ⁇ : Haze exceeds 0.3%, 1.0% or less ⁇ : Haze exceeds 1.0%
  • R O In-plane retardation
  • R th thickness retardation
  • A Absolute values of R O and R th are both 3 nm or less.
  • Absolute values of R O and R th are more than 3 nm and 10 nm or less.
  • X Both absolute values of R O and R th are larger than 10 nm.
  • Acrylic block copolymer (A)) (A-1); acrylic block copolymer (manufactured by Kuraray Co., Ltd., trade name: Clarity LA4285, density: 1.11 g / cm 3 , methyl methacrylate polymer block-butyl acrylate polymer block-methacrylic acid)
  • Triblock copolymer composed of methyl polymer block, methyl methacrylate / butyl acrylate 50/50 mass%, stereoregularity (triad fraction): mm (3 mol%), mr (29 mol%), rr (68 mol%), Tg: 115 ° C. (HS), ⁇ 40 ° C.
  • the resulting laminated film had good appearance and excellent flatness.
  • the photoelastic coefficient was 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 , 100 ° C., and the heat shrinkage (MD) at 100 hours was 0.5% or less.
  • the average refractive indexes of the surface layer (I) and the intermediate layer (II) were 1.4890 and 1.5102, respectively.
  • the results of evaluation using the laminated film are shown in Table 2.
  • the resulting laminated film had good appearance and excellent flatness.
  • the glass transition temperature of the intermediate layer (II) to which the ultraviolet absorber was added was 121 ° C.
  • the laminated film had a light transmittance of 4.2% at a wavelength of 380 nm.
  • the dimensional change rate (MD) before and after being exposed to a temperature of 60 ° C. and a humidity of 90% RH for 500 hours was measured. It was less than 0.1%.
  • Example 2-4 A masking film (manufactured by Toray Film Processing Co., Ltd., trade name: Tretec 7332, thickness: 30 ⁇ m) having self-adhesiveness in the take-off process is placed on one side of the laminated film obtained in Example 2-1. It was slightly adhered with a nip roll, and was wound into a roll using a 6-inch ABS core to obtain a wound layer body with a width of 1000 mm and a winding length of 1000 m.
  • a masking film manufactured by Toray Film Processing Co., Ltd., trade name: Tretec 7332, thickness: 30 ⁇ m
  • the laminated film of the present invention is a film having excellent transparency (total light transmittance, haze), small optical anisotropy, and high mechanical strength (tear strength, tensile elongation) ( Examples 2-1 and 2-2).
  • those not containing the acrylic block copolymer defined in the present invention have transparency (total light transmittance, haze), optical anisotropy, and mechanical strength (tear strength, tensile elongation). It can be confirmed that any one or more characteristics are insufficient (Comparative Examples 2-1 and 2-2).
  • Example 2-3 it can be confirmed that if a UV absorber is appropriately added, the spectral spectrum can be adjusted, and the light transmittance at a wavelength of 380 nm can be controlled. Further, in Example 2-4, it can be confirmed that the laminated film of the present invention can be formed into a roll-shaped wound layer body by being overwrapped with a masking film.
  • Aqueous adhesive obtained by mixing 0.3 part by weight of a crosslinking agent (Nihon Gosei Co., Ltd., SPM-02) to 100 g of an aqueous solution of 10% by weight of PVA resin (Nihon Gosei Co., Ltd., Gohsenx Z-200) was made.
  • a water-based adhesive was applied to the urethane coating layer with a # 24 bar coater, and a biaxially stretched PVA film (Nippon Gosei Co., Ltd., trade name: Boblon, thickness) : 40 ⁇ m) was laminated, and the sample for evaluation was produced by heating and drying at 100 ° C. for 300 seconds. After this sample was cut at a width of 20 mm, T-type peeling was performed at a test speed of 50 mm / min using a universal tensile tester (manufactured by Intesco, model: 200X). The maximum peel strength (N / 20 mm width) at that time was measured.
  • the maximum peel strength in terms of coating thickness obtained by dividing the maximum peel strength (N / 20 mm width) by the coating thickness ( ⁇ m) of the coat layer was evaluated based on the following criteria. ⁇ : Maximum peel strength in terms of coating thickness is 2 N / 20 mm width or more ⁇ : Maximum peel strength in terms of coating thickness is less than 2 N / 20 mm width
  • acrylic resin PMMA resin “SUMIPEX MGSS” manufactured by Sumitomo Chemical Co., Ltd. was used.
  • Substrate A The acrylic resin is put into a ⁇ 65 mm single screw extruder, melt-kneaded at a barrel set temperature of 220 to 240 ° C., and extruded from a die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.).
  • a film having a thickness of 60 ⁇ m was produced by winding with a cast roll whose temperature was adjusted to ° C.
  • This film is corona-treated with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm ⁇ 200 mm with the MD direction as the longitudinal direction, whereby acrylic resin films (hereinafter abbreviated as “base material A”) are obtained.
  • base material A acrylic resin films
  • composition mixed at a ratio of 20 parts by mass the respectively, 65 mm single screw extruder, then charged into a [phi] 40 mm 2 screw extruder, respectively 220 ⁇ 240 ° C., and It is melt-kneaded at a barrel set temperature of 180 ° C to 240 ° C, coextruded from a multi-die (set temperature 240 ° C) with a width of 1350 mm and a lip gap of 0.7 mm, and then wound with a cast roll adjusted to 20 ° C.
  • a film having a constitution of polycarbonate layer / acrylic layer / polycarbonate layer was produced.
  • the film thickness of each layer was 3.5 ⁇ m / 8 ⁇ m / 3.5 ⁇ m.
  • the film was subjected to corona treatment with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm ⁇ 200 mm with the MD direction as the longitudinal direction to produce a laminated film (abbreviated as base material B).
  • Base material C The polycarbonate resin as the material of the intermediate layer, the acrylic resin (PMMA) as the material for the front and back layers, respectively, 65 mm single screw extruder, then charged into a [phi] 40 mm 2 screw extruder, respectively 220 ⁇ 240 ° C., and 180 After melt-kneading at a barrel set temperature of °C to 240 °C, co-extrusion from a multi-die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.), it is wound on a cast roll adjusted to 20 ° C. Thus, a film having a configuration of polycarbonate layer / acrylic layer / polycarbonate layer was produced.
  • PMMA acrylic resin
  • each layer was 3.5 ⁇ m / 8 ⁇ m / 3.5 ⁇ m.
  • This film was subjected to corona treatment with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm ⁇ 200 mm with the MD direction as the longitudinal direction, thereby producing a laminated film (abbreviated as substrate C).
  • a urethane coating composition was prepared by blending so as to be 3% by weight in terms of a fraction, mixing using ion-exchanged water as a diluent solvent so that the solid content was 20% by weight, and mixing. After coating this coating composition onto the substrate A using a bar coater # 8, the urethane coating layer having the thickness shown in Table 1 was formed on the substrate A by drying at 100 ° C. for 1 minute. A coating film of the present invention was produced. Various evaluation was implemented about this coating film.
  • Reference Example 3-2 the water-based urethane resin was changed to a water-based polyurethane resin “Yukot UA-368” (manufactured by Sanyo Chemical Co., Ltd., solid content (urethane resin) 50 wt%), and a melamine resin cross-linking agent A coating film was prepared in the same manner except that the amount of was changed to 20 parts by weight. Various evaluation was implemented about this coating film.
  • Example 3-1 A coating film was prepared in the same manner as in Example 3-2 except that the base material B was used instead of the base material A. Various evaluation was implemented about this coating film.
  • Example 3-2 A coating film was produced in the same manner as in Example 3-4 except that the substrate C was used instead of the substrate A. Various evaluation was implemented about this coating film.
  • Table 3 shows the evaluation results of the coating films and the thicknesses of the formed coating layers in Reference Examples 3-1 to 3-2, Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-2. .
  • the numerical value in parentheses in the column “number of parts of crosslinking agent” indicates the weight part of the crosslinking agent with respect to 100 parts by weight of the water-based urethane resin.
  • Comparative Example 3-1 in which an oxazoline-based cross-linking agent was used with respect to the acrylic base material, the adhesion and cross-linking properties were inferior.
  • Comparative Example 3-2 in which the amount of the crosslinking agent was increased, the crosslinkability was improved, but no improvement in adhesion was observed. Therefore, it can be seen that when an oxazoline-based crosslinking agent is used, it is difficult to achieve both adhesion and crosslinking properties.
  • Reference Examples 3-1 and 3-2 using a melamine resin-based cross-linking agent exhibited excellent properties in adhesion and cross-linking. The effects are also exhibited in Examples 3-1 and 3-2 using a laminated film as a base material.

Abstract

For the purpose of providing a film which has small optical anisotropy, high mechanical strength and excellent productivity and is suitable for use as a protective film for a polarizing film, the present invention proposes a multilayer optical film that comprises one or more layers mainly composed of a specific polycarbonate resin and one or more layers mainly composed of a resin which has a negative intrinsic birefringence. The present invention also proposes a polarizing plate which is obtained by bonding a polarizing film to this film.

Description

積層光学フィルム、及び偏光板Laminated optical film and polarizing plate
 本発明は、積層光学フィルムに関するものであり、特に、液晶ディスプレイに使用される偏光膜を保護する保護フィルムとして好適に用いることのできる積層光学フィルムに関するものである。本発明はまた、このフィルムを用いた偏光板とこの偏光板を有する液晶表示装置に関する。 The present invention relates to a laminated optical film, and more particularly to a laminated optical film that can be suitably used as a protective film for protecting a polarizing film used in a liquid crystal display. The present invention also relates to a polarizing plate using the film and a liquid crystal display device having the polarizing plate.
 近年、液晶ディスプレイが、テレビ、パソコン、デジタルカメラ、携帯電話等の表示装置として広く用いられている。液晶ディスプレイは、表示側を前面側、その反対側(バックライト側)を後面側とするとき、前面側偏光板/液晶/後面側偏光板の構成を有する。偏光板は通常、染色一軸延伸されたポリビニルアルコール膜よりなる偏光膜に、保護フィルム等を貼り合わせて構成され、例えば保護フィルム/偏光膜/保護フィルムの積層フィルムとなっている。前面側偏光板を構成する偏光膜の前面側及び後面側に配置する保護フィルムをそれぞれ保護フィルムA、保護フィルムBとし、後面側偏光板を構成する偏光膜の前面側及び後面側に配置する保護フィルムをそれぞれ保護フィルムC、保護フィルムDとすると、全体的な構成は、前面側から、保護フィルムA/前面側偏光膜/保護フィルムB/液晶/保護フィルムC/後面側偏光膜/保護フィルムDとなる。 In recent years, liquid crystal displays have been widely used as display devices for televisions, personal computers, digital cameras, mobile phones and the like. The liquid crystal display has a configuration of front side polarizing plate / liquid crystal / rear side polarizing plate, where the display side is the front side and the opposite side (backlight side) is the rear side. The polarizing plate is usually formed by laminating a protective film or the like on a polarizing film made of a dyed uniaxially stretched polyvinyl alcohol film, for example, a laminated film of protective film / polarizing film / protective film. The protective films disposed on the front and rear surfaces of the polarizing film constituting the front polarizing plate are designated as protective film A and protective film B, respectively, and the protective films disposed on the front and rear surfaces of the polarizing film constituting the rear polarizing plate. Assuming that the film is a protective film C and a protective film D, respectively, the overall configuration is protective film A / front side polarizing film / protective film B / liquid crystal / protective film C / rear side polarizing film / protective film D from the front side. It becomes.
 この偏光板の保護フィルムは、光学異方性が小さいこと、透明性が高いこと、防湿性や耐熱性、機械的強度に優れていること、異物の付着が少ないこと等が要求される。保護フィルムとしては、高い透明性や光学等方性を有することから、溶液流延法で作製されたトリアセチルセルロースフィルム(以下、TACフィルムと略記することがある)が多く使用されている。
 しかし、溶液流延法で作製されたTACフィルムは、光学異方性は小さいが、生産性に劣る、フィルム内に残留する溶剤が揮発し、液晶表示装置内の電子回路や他の部品に悪影響を与えるなどの問題があった。また、TACフィルムは寸法安定性、耐湿熱性に劣るために、収縮に伴う応力の発生、偏光子の機能劣化を及ぼし、この偏光板を用いた液晶表示装置の画質に影響を与えることが問題となっていた。
The protective film for this polarizing plate is required to have small optical anisotropy, high transparency, excellent moisture resistance, heat resistance, mechanical strength, and low adhesion of foreign matter. As the protective film, a triacetyl cellulose film (hereinafter sometimes abbreviated as a TAC film) produced by a solution casting method is often used because it has high transparency and optical isotropy.
However, the TAC film produced by the solution casting method has small optical anisotropy, but is inferior in productivity, the solvent remaining in the film volatilizes, and adversely affects the electronic circuit and other parts in the liquid crystal display device. There was a problem such as giving. In addition, since the TAC film is inferior in dimensional stability and heat-and-moisture resistance, it causes problems such as generation of stress accompanying shrinkage and deterioration of the function of the polarizer, affecting the image quality of the liquid crystal display device using this polarizing plate. It was.
 そこで、偏光板保護フィルムとして、溶液流延法によるフィルムに代えて、アクリル系樹脂、環状オレフィン系樹脂、スチレン系樹脂、ポリカーボネート系樹脂などの熱可塑性樹脂の溶融押出法によるフィルムが検討されている。例えば、特許文献1では、熱可塑性樹脂としてアクリル系樹脂を用いて、偏光板保護フィルム等に使用可能な光学フィルムを製造している。 Therefore, as a polarizing plate protective film, instead of a film by a solution casting method, a film by a melt extrusion method of a thermoplastic resin such as an acrylic resin, a cyclic olefin resin, a styrene resin, or a polycarbonate resin has been studied. . For example, in patent document 1, the optical film which can be used for a polarizing plate protective film etc. is manufactured using acrylic resin as a thermoplastic resin.
 ところで、偏光板は、粘着層等を介して液晶セルと貼り合されるが、貼り合せ後に不良が確認された場合、偏光板を液晶セルから剥がしとることがある。この際、偏光板保護フィルムが裂けやすいと、剥がし作業が困難になるため、偏光膜保護フィルムには高い引裂強度が求められる。しかし、上記のアクリル系フィルムや環状オレフィン系フィルムおよびスチレン系フィルムは、光学特性や耐湿熱性には優れるが、フィルムの機械的強度が十分でなく、要求される機械的強度を満たすためには膜厚を厚くせざるを得ず、これらのフィルムを保護フィルムとして用いた偏光板は、薄膜化が難しいという課題があった。 By the way, the polarizing plate is bonded to the liquid crystal cell through an adhesive layer or the like, but if a defect is confirmed after bonding, the polarizing plate may be peeled off from the liquid crystal cell. At this time, if the polarizing plate protective film is easily torn, the peeling operation becomes difficult, and thus the polarizing film protective film is required to have high tear strength. However, the acrylic film, cyclic olefin film, and styrene film described above are excellent in optical properties and heat-and-moisture resistance, but the film does not have sufficient mechanical strength, and in order to satisfy the required mechanical strength, the film The polarizing plate using these films as a protective film has a problem that it is difficult to reduce the thickness.
 一方で、一般的に耐衝撃性に優れるポリカーボネート系樹脂を用いた保護フィルムは、機械強度に優れ、高い引裂強度を有するため、薄膜化が容易である。
 しかし、一般的にポリカーボネート系樹脂は、固有複屈折が高いため、ポリカーボネート系樹脂を用いたフィルムは光学異方性が大きくなりやすく、光学異方性の小さい偏光板保護フィルムを作製することは困難であった。また、ポリカーボネート系樹脂を用いたフィルムは、光弾性係数が大きいため、外部応力により位相差が変化しやすく取り扱いにくいという問題があった。
On the other hand, since a protective film using a polycarbonate-based resin that is generally excellent in impact resistance is excellent in mechanical strength and has high tear strength, it can be easily thinned.
However, since polycarbonate resins generally have high intrinsic birefringence, films using polycarbonate resins tend to have large optical anisotropy, making it difficult to produce a polarizing plate protective film with small optical anisotropy. Met. Moreover, since the film using a polycarbonate-type resin has a large photoelastic coefficient, there existed a problem that a phase difference was easy to change with external stress and it was difficult to handle it.
 ここで、特許文献2には、光学異方性を制御する手法として、固有複屈折が正のフィルムと負のフィルムとを積層することが開示されている。 Here, Patent Document 2 discloses laminating a film having a positive intrinsic birefringence and a negative film as a technique for controlling the optical anisotropy.
特開2014-98133号公報JP 2014-98133 A 特開2008-268913号公報JP 2008-268913 A
 特許文献2の方法では、正の固有複屈折をもつポリカーボネート系樹脂に、負の固有複屈折を持つアクリル系樹脂やスチレン系樹脂を積層することで、光学異方性を制御することが可能であるが、光学異方性の小さい積層フィルムを作製するためには、ポリカーボネート系樹脂層の大きな光学異方性を相殺するために、負の固有複屈折を持つ層の光学異方性も大きくする必要があった。そのため、光学異方性の小さい積層フィルムを作製するためには、例えば、ポリカーボネート系樹脂からなるフィルムと、負の固有複屈折を持つフィルムを個別に作製し、負の固有複屈折を持つフィルムに、延伸等により高い光学異方性を付与してから貼り合せることが必要になるが、この手法では製造工程数が多くなり、生産性に劣るという課題があった。 In the method of Patent Document 2, optical anisotropy can be controlled by laminating an acrylic resin or a styrene resin having a negative intrinsic birefringence on a polycarbonate resin having a positive intrinsic birefringence. However, in order to produce a laminated film with small optical anisotropy, the optical anisotropy of the layer having negative intrinsic birefringence is also increased in order to offset the large optical anisotropy of the polycarbonate resin layer. There was a need. Therefore, in order to produce a laminated film with small optical anisotropy, for example, a film made of polycarbonate resin and a film having negative intrinsic birefringence are individually produced, and the film having negative intrinsic birefringence is produced. However, it is necessary to attach them after imparting high optical anisotropy by stretching or the like. However, this method has a problem that the number of production steps increases and productivity is inferior.
 一方で、ポリカーボネート系樹脂と、負の固有複屈折を持つ樹脂とを同時に溶融させて積層する共押出法をもちいれば、生産性よく積層フィルムを製造することが可能であるが、光学異方性の小さい積層フィルムを作製するためには、ポリカーボネート系樹脂層の大きな異方性を相殺するために、負の固有複屈折を持つ樹脂層の厚みを相対的に厚くする必要がある。しかし、負の固有複屈折を持つアクリル系樹脂やスチレン系樹脂は、一般的に脆く、機械強度に劣るため、積層フィルムの機械強度が低くなるという課題があった。 On the other hand, if a co-extrusion method in which a polycarbonate resin and a resin having negative intrinsic birefringence are simultaneously melted and laminated is used, it is possible to produce a laminated film with high productivity. In order to produce a laminated film with low properties, it is necessary to relatively increase the thickness of the resin layer having negative intrinsic birefringence in order to offset the large anisotropy of the polycarbonate resin layer. However, acrylic resins and styrene resins having negative intrinsic birefringence are generally brittle and inferior in mechanical strength, resulting in a problem that the mechanical strength of the laminated film is lowered.
 そこで、光学異方性が小さく、機械強度が高く、生産性に優れた光学フィルムが求められていた。 Therefore, an optical film having small optical anisotropy, high mechanical strength, and excellent productivity has been demanded.
 本発明の課題は、上記した従来技術の問題点に鑑み、光学異方性が小さく、機械強度が高く、生産性に優れた光学フィルムを提供すること、およびその光学フィルムを用いて作製された偏光板、又は、液晶表示装置を提供することにある。 An object of the present invention is to provide an optical film having small optical anisotropy, high mechanical strength, and excellent productivity in view of the above-described problems of the prior art, and produced using the optical film. The object is to provide a polarizing plate or a liquid crystal display device.
 かかる課題を解決するため、本発明は、ポリカーボネート樹脂を主成分とする層、および、アクリル系樹脂を主成分とする層を、それぞれ1層以上有する積層光学フィルムであって、
 該ポリカーボネート樹脂が、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂であり、
 積層光学フィルムの総厚みが50μm以下であり、かつ、JIS K7128-2に準拠して測定した引裂強度が4.0kg/cm以上であることを特徴とする積層光学フィルムを提案する。
In order to solve such problems, the present invention is a laminated optical film having one or more layers each having a polycarbonate resin as a main component and an acrylic resin as a main component,
The polycarbonate resin is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following formula (1):
A laminated optical film is proposed in which the total thickness of the laminated optical film is 50 μm or less and the tear strength measured in accordance with JIS K7128-2 is 4.0 kg / cm or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記ポリカーボネート樹脂は、さらに、下記式(2)で表されるトリシクロデカンジメタノールに由来する構造単位を含有するものであるのが好ましい。 It is preferable that the polycarbonate resin further contains a structural unit derived from tricyclodecane dimethanol represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本発明が提案する上記積層光学フィルムは、中間層と表裏層の少なくとも3層を有し、前記中間層は、前記ポリカーボネート樹脂を主成分とする層であり、前記表裏層は、前記アクリル系樹脂を主成分とする層とすることができる。
 また、本発明が提案する積層光学フィルムは、中間層と表裏層の少なくとも3層を有し、前記中間層は、前記アクリル系樹脂を主成分とする層であり、前記表裏層は、前記ポリカーボネート樹脂を主成分とする層とすることもできる。
The laminated optical film proposed by the present invention has at least three layers of an intermediate layer and a front and back layer, the intermediate layer is a layer mainly composed of the polycarbonate resin, and the front and back layer is the acrylic resin. It can be set as the layer which has as a main component.
In addition, the laminated optical film proposed by the present invention has at least three layers of an intermediate layer and a front and back layer, the intermediate layer is a layer containing the acrylic resin as a main component, and the front and back layer is the polycarbonate. A layer containing a resin as a main component can also be used.
 本発明が提案する上記積層光学フィルムは、その総厚みが20μm以下であり、かつ、JIS K7128-2に準拠して測定した引裂強度が5.0kg/cm以上であるのが好ましい。 The laminated optical film proposed by the present invention preferably has a total thickness of 20 μm or less, and a tear strength measured according to JIS K7128-2 of 5.0 kg / cm or more.
 本発明が提案する上記積層光学フィルムの総厚みに対する、前記ポリカーボネート樹脂を主成分とする層の総厚みの割合が、20%以上95%以下であるのが好ましく、中でも、50%を超え80%以下であるのが好ましい。 The ratio of the total thickness of the layer mainly composed of the polycarbonate resin to the total thickness of the laminated optical film proposed by the present invention is preferably 20% or more and 95% or less, and more than 50% and more than 80%. It is preferable that:
 本発明が提案する上記積層光学フィルムにおいて、前記アクリル系樹脂を主成分とする層は、柔軟性改質剤を含有するのが好ましい。
 この柔軟性改質剤の好ましい例として、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が100℃以上のハードセグメント(HS)と、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が20℃以下のソフトセグメント(SS)と、を有するアクリル系ブロック共重合体を挙げることができる。
In the laminated optical film proposed by the present invention, the layer containing the acrylic resin as a main component preferably contains a flexibility modifier.
As a preferable example of the flexibility modifier, at least one monomer unit derived from a methacrylic acid ester and an acrylic acid ester and a hard segment (HS) having a glass transition temperature of 100 ° C. or higher, and at least a methacrylic acid ester And an acrylic block copolymer having a soft segment (SS) containing one kind of monomer units derived from an acrylate ester and having a glass transition temperature of 20 ° C. or lower.
 本発明が提案する上記積層光学フィルムの少なくとも片面に、ウレタン系樹脂とメラミン樹脂系架橋剤を含有する水系ウレタン系樹脂組成物よりなるコート層を備えた積層光学フィルムとすることができる。
 この際、上記メラミン樹脂系架橋剤としては、イミノ基型及び/またはメチロール基型のメラミン系樹脂を含有するものを挙げることができる。
It can be set as the laminated optical film provided with the coat layer which consists of a water-system urethane type resin composition containing a urethane type resin and a melamine resin type crosslinking agent on the at least single side | surface of the said laminated optical film which this invention proposes.
In this case, examples of the melamine resin-based crosslinking agent include those containing an imino group type and / or a methylol group type melamine resin.
 さらに本発明は、上記積層光学フィルムの上記コート層に、接着剤層を介して偏光膜を接着してなる構成を備えた偏光板を提案する。
 この際、前記接着剤層は、例えば水系接着剤からなるものを挙げることができる。
 さらに本発明は、上記偏光板を有する液晶表示装置を提案する。
Furthermore, the present invention proposes a polarizing plate having a structure in which a polarizing film is bonded to the coat layer of the laminated optical film via an adhesive layer.
At this time, examples of the adhesive layer include an aqueous adhesive.
Furthermore, the present invention proposes a liquid crystal display device having the polarizing plate.
 本発明の積層光学フィルムによれば、光学異方性が小さく、機械強度が高く、さらには生産性に優れた光学フィルムを提供することができ、その工業的価値は高い。 According to the laminated optical film of the present invention, an optical film having small optical anisotropy, high mechanical strength, and excellent productivity can be provided, and its industrial value is high.
耐熱性評価時のサンプルフィルムを示した図である。It is the figure which showed the sample film at the time of heat resistance evaluation.
 以下、本発明の実施形態の一例について詳細に説明する。 Hereinafter, an example of an embodiment of the present invention will be described in detail.
[本積層光学フィルム1]
 本発明の実施形態の一例に係る積層光学フィルムは、ポリカーボネート樹脂を主成分とする層(以下「A層」と称することがある)、および、固有複屈折率が負の樹脂を主成分とする層(以下「B層」と称することがある)を、それぞれ1層以上有する積層光学フィルムであって、該ポリカーボネート樹脂が、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂であることを特徴とする積層光学フィルム(「本積層光学フィルム1」と称する)である。
[This laminated optical film 1]
The laminated optical film according to an example of the embodiment of the present invention includes a layer mainly composed of a polycarbonate resin (hereinafter sometimes referred to as “A layer”) and a resin whose intrinsic birefringence is negative. A laminated optical film having at least one layer (hereinafter sometimes referred to as “B layer”), wherein the polycarbonate resin contains a structural unit derived from a dihydroxy compound represented by the following formula (1) A laminated optical film (referred to as “the present laminated optical film 1”), which is a polycarbonate resin.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
<1-1.ポリカーボネート樹脂を主成分とする層(A層)>
 本積層光学フィルム1の積層フィルムのうち少なくとも1層は、ポリカーボネート樹脂(以下、「本積層光学フィルム1のポリカーボネート樹脂」と称す場合がある。)を主成分とする層である。ここで主成分とは、フィルム中の成分として、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上含むことをいう。また、本積層光学フィルム1のポリカーボネート樹脂は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。
<1-1. Layer mainly composed of polycarbonate resin (A layer)>
At least one layer of the laminated film of the present laminated optical film 1 is a layer mainly composed of a polycarbonate resin (hereinafter sometimes referred to as “polycarbonate resin of the present laminated optical film 1”). Here, the main component means that the component in the film is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. Moreover, 1 type may be used for the polycarbonate resin of this laminated optical film 1, and it may use it in combination of 2 or more types.
(1)ポリカーボネート樹脂
 ポリカーボネート樹脂は、寸法安定性、耐湿熱性に優れ、また、原料設計により、機械的強度や光学特性を高めることも可能であり、ポリカーボネート樹脂を主成分とすることにより、高性能な積層フィルムを得ることができる。
(1) Polycarbonate resin Polycarbonate resin is excellent in dimensional stability and moisture and heat resistance, and it is possible to enhance mechanical strength and optical characteristics by designing the raw materials. A laminated film can be obtained.
 ポリカーボネート樹脂としては、代表的なものとして、2,2’-ビス(4-ヒドロキシフェニル)-プロパン(通称ビスフェノール-A)を構造単位とする芳香族ポリカーボネートが挙げられるが、その他にも、例えば1,1-ビス(4-ヒドロキシフェニル)-アルキルシクロアルカン、1,1-ビス(3-置換-4-ヒドロキシフェニル)-アルキルシクロアルカン、1,1-ビス(3,5-置換-4-ヒドロキシフェニル)-アルキルシクロアルカン等の1,1-ビス(4-ヒドロキシフェニル)-アルキルシクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン類からなる群から選択される少なくとも1種の2価フェノールをモノマー成分とするホモまたは共重合ポリカーボネート、上記2価フェノールとビスフェノールAをモノマー成分とするポリカーボネートとの混合物、上記2価フェノールとビスフェノールAとをモノマー成分とする共重合ポリカーボネートなどが挙げられる。 Typical examples of the polycarbonate resin include aromatic polycarbonates having a structural unit of 2,2′-bis (4-hydroxyphenyl) -propane (commonly referred to as bisphenol-A). , 1-bis (4-hydroxyphenyl) -alkylcycloalkane, 1,1-bis (3-substituted-4-hydroxyphenyl) -alkylcycloalkane, 1,1-bis (3,5-substituted-4-hydroxy 1,1-bis (4-hydroxyphenyl) -alkylcycloalkanes such as phenyl) -alkylcycloalkanes; at least one 2 selected from the group consisting of 9,9-bis (4-hydroxyphenyl) fluorenes Homo- or copolymerized polycarbonate containing a monohydric phenol as a monomer component, the above dihydric phenol and bis Mixture of phenol A polycarbonate which a monomer component, such as a copolycarbonate of the above dihydric phenol and the bisphenol A monomers components.
 本積層光学フィルム1のポリカーボネート樹脂としては、高透明性、高強度、高耐熱性及び高耐候性等の点より、構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂が好ましい。 The polycarbonate resin of the present laminated optical film 1 is a dihydroxy compound having a part represented by the following formula (1) in a part of the structure from the viewpoint of high transparency, high strength, high heat resistance and high weather resistance. Polycarbonate resins containing structural units derived from them are preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 より具体的には、上記式(1)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド、イソマンニド及びイソイデットが挙げられる。 More specifically, examples of the dihydroxy compound represented by the above formula (1) include isosorbide, isomannide and isoidet which have a stereoisomeric relationship.
 前記式(1)で表されるジヒドロキシ化合物は、生物起源物質を原料として糖質から製造可能なエーテルジオールである。とりわけ、イソソルビドは、澱粉から得られるD-グルコースを水添してから脱水することにより安価に製造可能であって、資源として豊富に入手することが可能である。これらの事情により、上記式(1)で表されるジヒドロキシ化合物としては、イソソルビドが最も好ましい。 The dihydroxy compound represented by the formula (1) is an ether diol that can be produced from a saccharide using a biogenic material as a raw material. In particular, isosorbide can be produced at low cost by hydrogenating and dehydrating D-glucose obtained from starch, and can be obtained in abundant resources. Under these circumstances, isosorbide is most preferable as the dihydroxy compound represented by the above formula (1).
 本積層光学フィルム1のポリカーボネート樹脂は、前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位以外の構造単位を、さらに含んでいてもよい。前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位以外の構造単位をさらに含むことで、光学特性や、加工容易性及び耐衝撃性を改良することが可能となる。 The polycarbonate resin of the present laminated optical film 1 may further contain a structural unit other than the structural unit derived from the dihydroxy compound having the site represented by the formula (1). By further including a structural unit other than the structural unit derived from the dihydroxy compound having the site represented by the formula (1), it is possible to improve the optical properties, processability and impact resistance.
 前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位以外の構造単位のなかでも、芳香族環を有さないジヒドロキシ化合物に由来する構造単位が好ましく用いられる。 Among the structural units other than the structural unit derived from the dihydroxy compound having the site represented by the formula (1), a structural unit derived from a dihydroxy compound having no aromatic ring is preferably used.
 より具体的に例えば、国際公開第2004/111106号に記載の脂肪族ジヒドロキシ化合物に由来する構造単位及び国際公開第2007/148604号に記載の脂環式ジヒドロキシ化合物に由来する構造単位を挙げることができる。 More specifically, for example, structural units derived from aliphatic dihydroxy compounds described in International Publication No. 2004/111106 and structural units derived from alicyclic dihydroxy compounds described in International Publication No. 2007/148604. it can.
 前記脂肪族ジヒドロキシ化合物に由来する構造単位の中でも、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール及び1,6-ヘキサンジオールから選ばれる少なくとも1種のジヒドロキシ化合物に由来する構造単位を含むことが好ましい。 Among the structural units derived from the aliphatic dihydroxy compound, at least one selected from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. It preferably contains a structural unit derived from a dihydroxy compound.
 前記脂環式ジヒドロキシ化合物に由来する構造単位の中でも、5員環構造又は6員環構造を含むものであることが好ましい。6員環構造は共有結合によって椅子形又は舟形に固定されていてもよい。 Among the structural units derived from the alicyclic dihydroxy compound, those containing a 5-membered ring structure or a 6-membered ring structure are preferable. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
 5員環構造又は6員環構造である脂環式ジヒドロキシ化合物に由来する構造単位を含むことにより、得られるポリカーボネート樹脂の耐熱性を高くすることができる。 By including a structural unit derived from an alicyclic dihydroxy compound having a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate resin can be increased.
 脂環式ジヒドロキシ化合物に含まれる炭素原子数は通常70以下であることが好ましく、50以下であることがより好ましく、30以下であることがさらに好ましい。 The number of carbon atoms contained in the alicyclic dihydroxy compound is usually preferably 70 or less, more preferably 50 or less, and further preferably 30 or less.
 前記5員環構造又は6員環構造を含む脂環式ジヒドロキシ化合物としては、上述の国際公開第2007/148604号に記載のものを挙げることができる。中でも、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール及びペンタシクロペンタデカンジメタノールを好適に例示することができる。これらの中でも、シクロヘキサンジメタノール又はトリシクロデカンジメタノールが、原料コストの安価である点、及び、耐熱性の向上の点などから、より好ましい。特に、下記式(2)で表されるトリシクロデカンジメタノールに由来する構造単位を含有することで、光学異方性が小さく、後述する積層光学フィルムにしたときに、光学異方性の非常に小さなフィルムにすることができる。
 なお、これらの他の構造単位は、ポリカーボネート樹脂中に1種のみが含まれていてもよく2種以上が含まれていてもよい。
Examples of the alicyclic dihydroxy compound containing the 5-membered ring structure or the 6-membered ring structure include those described in the above-mentioned International Publication No. 2007/148604. Among these, cyclohexane dimethanol, tricyclodecane dimethanol, adamantanediol, and pentacyclopentadecane dimethanol can be preferably exemplified. Among these, cyclohexane dimethanol or tricyclodecane dimethanol is more preferable from the viewpoint of low raw material costs and improved heat resistance. In particular, by containing a structural unit derived from tricyclodecane dimethanol represented by the following formula (2), the optical anisotropy is small, and when the laminated optical film described later is used, the optical anisotropy is extremely low. Can be made into a small film.
In addition, these other structural units may contain only 1 type in polycarbonate resin, and may contain 2 or more types.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記ポリカーボネート樹脂の、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位の含有割合は、ポリカーボネート樹脂中の全ジヒドロキシ化合物に由来する構造単位に対して、好ましくは30モル%以上、より好ましくは40モル%以上、特に好ましくは50モル%以上であって、また、好ましくは90モル%下、より好ましくは80モル%以下である。 The content ratio of the structural unit derived from the dihydroxy compound having the site represented by the formula (1) in a part of the structure of the polycarbonate resin is based on the structural unit derived from all the dihydroxy compounds in the polycarbonate resin. It is preferably 30 mol% or more, more preferably 40 mol% or more, particularly preferably 50 mol% or more, and preferably 90 mol% or less, more preferably 80 mol% or less.
 前記ポリカーボネート樹脂の、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位の含有割合が上記下限以上であれば、ガラス転移温度の維持による耐熱性の向上が可能となり、また、後述の高い引裂強度を満たすフィルムを得ることができるため好ましい。一方、上記上限以下であることにより、カーボネート構造に由来する着色、生物起源物質を原料に用いる故に微量に含有する不純物に由来する着色等を抑制することができ、通常ポリカーボネートフィルムに要求される透明性を損なわない可能性がある。また、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位のみで構成されるポリカーボネート樹脂等では達成が困難な、適当な成形加工性、機械的強度及び耐熱性等を向上させることができる。 If the content ratio of the structural unit derived from the dihydroxy compound having the site represented by the formula (1) in a part of the structure of the polycarbonate resin is equal to or higher than the lower limit, the heat resistance is improved by maintaining the glass transition temperature. In addition, a film satisfying the high tear strength described later can be obtained, which is preferable. On the other hand, by being below the above upper limit, coloring derived from a carbonate structure, coloring derived from impurities contained in a trace amount because a biogenic substance is used as a raw material, etc. can be suppressed, and transparency usually required for a polycarbonate film There is a possibility not to impair the sex. Moreover, it is difficult to achieve with a polycarbonate resin or the like composed only of a structural unit derived from a dihydroxy compound having a site represented by the above formula (1) in a part of the structure. Heat resistance and the like can be improved.
 前記ポリカーボネート樹脂は、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位と、さらに脂肪族ジヒドロキシ化合物に由来する構造単位及び/又は脂環式ジヒドロキシ化合物に由来する構造単位とからなることが好ましいが、本積層光学フィルム1の目的を損なわない範囲で、さらにそれら以外のジヒドロキシ化合物に由来する構造単位が含まれていてもよい。 The polycarbonate resin includes a structural unit derived from a dihydroxy compound having a site represented by the formula (1) in a part of the structure, and a structural unit derived from an aliphatic dihydroxy compound and / or an alicyclic dihydroxy compound. Although it is preferable to consist of derived structural units, structural units derived from other dihydroxy compounds may be further included within the range not impairing the purpose of the present laminated optical film 1.
 前記ポリカーボネート樹脂は、一般に用いられる重合方法で製造することができる。前記ポリカーボネート樹脂の製造方法は、ホスゲン法または炭酸ジエステルと反応させるエステル交換法のいずれでもよい。なかでも、重合触媒の存在下に、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物と、脂肪族及び/又は脂環式ジヒドロキシ化合物と、必要に応じて用いられるその他のジヒドロキシ化合物と、炭酸ジエステルとを反応させるエステル交換法が好ましい。 The polycarbonate resin can be produced by a generally used polymerization method. The polycarbonate resin may be produced by either a phosgene method or a transesterification method in which it is reacted with a carbonic acid diester. Among them, in the presence of a polymerization catalyst, a dihydroxy compound having a site represented by the above formula (1) in a part of the structure, an aliphatic and / or alicyclic dihydroxy compound, and other used as necessary A transesterification method in which the dihydroxy compound is reacted with a carbonic acid diester is preferred.
 エステル交換法は、構造の一部に前記式(1)で表される部位を有するジヒドロキシ化合物の1種又は2種以上と、脂肪族及び/又は脂環式ジヒドロキシ化合物の1種又は2種以上と、必要に応じて用いられるその他のジヒドロキシ化合物の1種又は2種以上と、炭酸ジエステルとに、塩基性触媒、さらにはこの塩基性触媒を中和する酸性物質を添加してエステル交換反応を行う製造方法である。 The transesterification method includes one or more dihydroxy compounds having a site represented by the formula (1) in a part of the structure and one or more aliphatic and / or alicyclic dihydroxy compounds. In addition, one or two or more other dihydroxy compounds used as necessary and a carbonic acid diester are added with a basic catalyst, and further, an acidic substance that neutralizes the basic catalyst is added to carry out a transesterification reaction. It is a manufacturing method to be performed.
 炭酸ジエステルの代表例としては、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネート、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート及びジシクロヘキシルカーボネートなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのうち、特にジフェニルカーボネートが好ましく用いられる。 Representative examples of carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Is mentioned. These may be used alone or in combination of two or more. Of these, diphenyl carbonate is particularly preferably used.
 ポリカーボネート樹脂の分子量の指標である還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.60g/dlに精密に調整し、温度20.0℃±0.1℃ で測定され、通常、0.20dl/g以上、1.0dl/g以下で、好ましくは0.30dl/g以上、0.80dl/g以下の範囲内である。また、溶融粘度の指標であるMFRは、JIS-K7210に準拠し、温度230℃、荷重37.27Nで測定され、通常1.0g/10min以上50g/10min以下で、好ましくは3g/10min以上30g/10min以下、さらに好ましくは5g/10min以上20g/10min以下である。 The reduced viscosity, which is an index of the molecular weight of the polycarbonate resin, is measured at a temperature of 20.0 ° C. ± 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.60 g / dl, and is usually 0. 20 dl / g or more and 1.0 dl / g or less, preferably 0.30 dl / g or more and 0.80 dl / g or less. MFR, which is an index of melt viscosity, is measured at a temperature of 230 ° C. and a load of 37.27 N in accordance with JIS-K7210, and is usually 1.0 g / 10 min to 50 g / 10 min, preferably 3 g / 10 min to 30 g. / 10 min or less, more preferably 5 g / 10 min or more and 20 g / 10 min or less.
 ポリカーボネート樹脂の還元粘度が過度に低い、あるいは溶融粘度が過度に低い(MFRが過度に高い)と、成形した際の機械的強度が低下する傾向がある。また、ポリカーボネート樹脂の還元粘度が過度に高い、あるいは溶融粘度が過度に高い(MFRが過度に低い)と、成形する際の流動性が低下し、生産性が低下するだけでなく、流れムラ等の外観不良を生じやすい易い傾向がある。 If the reduced viscosity of the polycarbonate resin is excessively low or the melt viscosity is excessively low (MFR is excessively high), the mechanical strength at the time of molding tends to decrease. In addition, when the reduced viscosity of the polycarbonate resin is excessively high or the melt viscosity is excessively high (MFR is excessively low), not only the fluidity at the time of molding is lowered and productivity is decreased, but also flow unevenness, etc. There is a tendency to easily cause a poor appearance.
 本積層光学フィルム1で使用されるポリカーボネート樹脂は、正の固有複屈折率を有する。ここで、正の固有複屈折をもつ樹脂とは、該樹脂からなるフィルムを延伸させたときに、延伸した方向の屈折率が高くなるもののことをいう。
 固有複屈折は、0.1以下が好ましく、0.08以下がより好ましく、0.05以下が特に好ましい。固有複屈折率はゼロに近いほど、フィルムの光学異方性は小さくなるため好ましいが、本積層光学フィルム1では、後述する積層光学フィルムの形態をとるため、ポリカーボネート樹脂の固有複屈折率がゼロより大きくても、光学異方性の非常に小さな積層光学フィルムを製造することができる。
 前述した構造式を含有することで、このような光学特性を達成できる。なお、これまでの汎用のポリカーボネート樹脂の固有複屈折率は0.1~0.2程度である。
 ポリカーボネート樹脂の固有複屈折の測定方法は、後述の実施例の項に記載されるとおりである。
The polycarbonate resin used in the laminated optical film 1 has a positive intrinsic birefringence. Here, the resin having positive intrinsic birefringence refers to a resin having a higher refractive index in the stretched direction when a film made of the resin is stretched.
The intrinsic birefringence is preferably 0.1 or less, more preferably 0.08 or less, and particularly preferably 0.05 or less. The closer the intrinsic birefringence is to zero, the smaller the optical anisotropy of the film, which is preferable. However, since the laminated optical film 1 takes the form of a laminated optical film described later, the intrinsic birefringence of the polycarbonate resin is zero. Even if it is larger, a laminated optical film having a very small optical anisotropy can be produced.
By including the structural formula described above, such optical characteristics can be achieved. The general birefringence of conventional general-purpose polycarbonate resins is about 0.1 to 0.2.
The method for measuring the intrinsic birefringence of the polycarbonate resin is as described in the section of Examples below.
 本積層光学フィルム1で使用されるポリカーボネート樹脂の光弾性係数は、50×10-12Pa-1以下が好ましく、20×10-12Pa-1以下が好ましく、15×10-12Pa-1以下がさらに好ましい。光弾性係数が50×10-12Pa-1よりも大きいと、後述する積層光学フィルムにしたときに、外部応力による位相差の変化が大きくなり、偏光子保護フィルムとして適さない。
 前述した構造式を含有することで、このような光学特性を達成できる。なお、これまでの汎用ポリカーボネート樹脂の光弾性係数は、80×10-12Pa-1程度である。
 ポリカーボネート樹脂の光弾性係数の測定方法は、後述の実施例の項に記載されるとおりである。
The photoelastic coefficient of the polycarbonate resin used in the laminated optical film 1 is preferably 50 × 10 −12 Pa −1 or less, more preferably 20 × 10 −12 Pa −1 or less, and 15 × 10 −12 Pa −1 or less. Is more preferable. When the photoelastic coefficient is larger than 50 × 10 −12 Pa −1 , a change in retardation due to external stress becomes large when a laminated optical film described later is used, which is not suitable as a polarizer protective film.
By including the structural formula described above, such optical characteristics can be achieved. Note that the photoelastic coefficient of conventional polycarbonate resins is about 80 × 10 −12 Pa −1 .
The measuring method of the photoelastic coefficient of the polycarbonate resin is as described in the section of Examples described later.
 本積層光学フィルム1で使用されるポリカーボネート樹脂の、JIS K7122に準じて加熱速度10℃/分で測定したガラス転移温度は、特に限定はされないが、後述する積層フィルムの耐熱性の観点から、100℃以上が好ましく、110℃以上がより好ましく、120℃以上がさらに好ましい。 The glass transition temperature of the polycarbonate resin used in the present laminated optical film 1 measured at a heating rate of 10 ° C./min according to JIS K7122 is not particularly limited, but is 100 from the viewpoint of the heat resistance of the laminated film described later. ° C or higher is preferable, 110 ° C or higher is more preferable, and 120 ° C or higher is more preferable.
<1-2.固有複屈折率が負の樹脂を主成分とする層(B層)> 
 本積層光学フィルム1のうち少なくとも1層は、固有複屈折率が負の樹脂を主成分とする層である。ここで主成分とは、フィルム中の成分として、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上含むことをいう。また、B層の主成分である固有複屈折率が負の樹脂は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。
<1-2. Layer whose main component is a resin having a negative intrinsic birefringence (B layer)>
At least one layer of the laminated optical film 1 is a layer mainly composed of a resin having a negative intrinsic birefringence. Here, the main component means that the component in the film is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. Moreover, one type of resin having a negative intrinsic birefringence, which is the main component of the B layer, may be used, or two or more types may be used in combination.
(1)固有複屈折率が負の樹脂
 負の固有複屈折をもつ樹脂とは、該樹脂からなるフィルムを延伸させたときに、延伸した方向と垂直方向の屈折率が高くなるもののことをいう。固有複屈折は、負であれば特に限定されないが、-0.0001以下が好ましく、-0.001以下がより好ましい。固有複屈折の測定方法は、後述の実施例の項に記載されるとおりである。
(1) Resin having a negative intrinsic birefringence A resin having a negative intrinsic birefringence means that when a film made of the resin is stretched, the refractive index in the direction perpendicular to the stretched direction increases. . The intrinsic birefringence is not particularly limited as long as it is negative, but is preferably -0.0001 or less, more preferably -0.001 or less. The measuring method of intrinsic birefringence is as described in the section of Examples described later.
 負の固有複屈折を持つ樹脂の光弾性係数は、50×10-12Pa-1以下が好ましく、20×10-12Pa-1以下がより好ましく、15×10-12Pa-1以下が特に好ましい。光弾性係数が50×10-12Pa-1より大きいと、後述する積層光学フィルムにしたときに、応力による位相差の変化が大きくなり、偏光子保護フィルムとして適さない。 The photoelastic coefficient of the resin having negative intrinsic birefringence is preferably 50 × 10 −12 Pa −1 or less, more preferably 20 × 10 −12 Pa −1 or less, and particularly preferably 15 × 10 −12 Pa −1 or less. preferable. When the photoelastic coefficient is larger than 50 × 10 −12 Pa −1 , a change in retardation due to stress becomes large when a laminated optical film described later is used, which is not suitable as a polarizer protective film.
 本積層光学フィルム1における、固有複屈折率が負の樹脂としては、アクリル系樹脂、スチレン系樹脂が挙げられる。特に限定はされないが、本積層光学フィルム1のポリカーボネート樹脂と屈折率が近いこと、光弾性係数が小さいこと、及び、硬度が高いことなどから、アクリル系樹脂を用いることが望ましい。 Examples of the resin having a negative intrinsic birefringence in the laminated optical film 1 include acrylic resins and styrene resins. Although not particularly limited, it is desirable to use an acrylic resin because the refractive index is close to that of the polycarbonate resin of the present laminated optical film 1, the photoelastic coefficient is small, and the hardness is high.
 本積層光学フィルム1に用いるアクリル系樹脂としては、熱可塑性樹脂としてのアクリル系樹脂が使用される。アクリル系樹脂に使用される単量体として以下の化合物が挙げられる。例えば、メタクリル酸メチル、メタクリル酸、アクリル酸、ベンジル(メタ) アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ) アクリレート、2-エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ) アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、コハク酸-2-(メタ)アクロイルオキシエチル、マレイン酸-2-(メタ)アクロイルオキシエチル、フタル酸-2-(メタ)アクロイルオキシエチル、ヘキサヒドロフタル酸-2-(メタ)アクリオイルオキシエチル、ペンタメチルピペリジル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が例示される。これらは、単独で重合して使用してもよく、2種類以上を重合して使用してもよい。また、これらのアクリル系単量体と重合され得る他の単量体、例えばポリオレフィン系単量体、ビニル系単量体等を併用してもよい。 As the acrylic resin used in the laminated optical film 1, an acrylic resin as a thermoplastic resin is used. The following compounds are mentioned as a monomer used for acrylic resin. For example, methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, cyclohexyl (Meth) acrylate, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopent Nyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acrylic (meth) acrylate, 2-hydroxyethyl (meth) acrylate, succinic acid-2- (meth) acryloyloxyethyl, maleic acid-2- ( (Meth) acryloyloxyethyl, phthalic acid-2- (meth) acryloyloxyethyl, hexahydrophthalic acid-2- (meth) acryloyloxyethyl, pentamethylpiperidyl (meth) acrylate, tetramethylpiperidyl (meth) acrylate , Dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate and the like. These may be used by polymerizing alone or in combination of two or more. Further, other monomers that can be polymerized with these acrylic monomers, for example, polyolefin monomers, vinyl monomers, and the like may be used in combination.
 前記アクリル系樹脂の分子量は特に限定されるものではないが、質量平均分子量で3万以上、30万以下の範囲であれば、成形する際に流れムラ等の外観不良を生じることがなく、機械特性、耐熱性に優れた積層体を提供することができる。 The molecular weight of the acrylic resin is not particularly limited, but if the weight average molecular weight is in the range of 30,000 to 300,000, there is no appearance defect such as flow unevenness when molding, A laminate having excellent characteristics and heat resistance can be provided.
 本積層光学フィルム1で使用される固有複屈折率が負の樹脂の、JIS K7122に準じて加熱速度10℃/分で測定したガラス転移温度は、特に限定はされないが、積層フィルムの耐熱性の観点から、80℃以上が好ましく、90℃以上がより好ましく、100℃以上がさらに好ましい。なお、ガラス転移温度の上限は特に規定されないが、通常140℃である。ここで、120℃未満であれば、汎用の樹脂が使用できるため原料の選択範囲が広がるという観点から好ましい。
 一方で、より高い耐熱性が必要な場合は、本積層光学フィルム1で使用される固有複屈折率が負の樹脂のガラス転移温度が120℃以上とすることが好ましい。
The glass transition temperature of the resin having a negative intrinsic birefringence used in the present laminated optical film 1 measured at a heating rate of 10 ° C./min according to JIS K7122 is not particularly limited, but the heat resistance of the laminated film is not limited. From a viewpoint, 80 degreeC or more is preferable, 90 degreeC or more is more preferable, and 100 degreeC or more is further more preferable. The upper limit of the glass transition temperature is not particularly defined, but is usually 140 ° C. Here, if it is less than 120 degreeC, since a general purpose resin can be used, it is preferable from a viewpoint that the selection range of a raw material spreads.
On the other hand, when higher heat resistance is required, the glass transition temperature of the resin having a negative intrinsic birefringence used in the laminated optical film 1 is preferably 120 ° C. or higher.
 また、本積層光学フィルム1で使用される固有複屈折率が負の樹脂の、溶融粘度の指標であるMFRは、JIS-K7210に準拠し、温度230℃、荷重37.27Nで測定され、通常1.0g/10min以上50g/10min以下で、好ましくは5g/10min以上30g/10min以下、さらに好ましくは8g/10min以上20g/10min以下である。ここで、後述する積層構成において、A層が最外層になる場合は、「A層の主成分であるポリカーボネート樹脂のMFR≧B層の主成分である固有複屈折率が負の樹脂のMFR」であることが好ましく、後述する積層構成において、B層が最外層になる場合は、「A層の主成分であるポリカーボネート樹脂のMFR≦B層の主成分である固有複屈折率が負の樹脂のMFR」であることが、製膜性や各層の膜厚分布を均一にする観点から、好ましい。 The MFR, which is an index of melt viscosity, of the resin having a negative intrinsic birefringence used in the laminated optical film 1 is measured at a temperature of 230 ° C. and a load of 37.27 N in accordance with JIS-K7210. It is 1.0 g / 10 min or more and 50 g / 10 min or less, preferably 5 g / 10 min or more and 30 g / 10 min or less, more preferably 8 g / 10 min or more and 20 g / 10 min or less. Here, in the laminated structure described later, when the A layer is the outermost layer, “MFR of the polycarbonate resin that is the main component of the A layer ≧ MFR of the resin having a negative intrinsic birefringence that is the main component of the B layer” In the laminated structure described later, when the B layer is the outermost layer, the “MFR of the polycarbonate resin that is the main component of the A layer ≦ the resin having a negative intrinsic birefringence index that is the main component of the B layer” MFR ”is preferable from the viewpoint of making the film formability and the film thickness distribution of each layer uniform.
 また、本積層光学フィルム1で使用される固有複屈折率が負の樹脂には、柔軟性や靱性を改良するための柔軟性改質剤が含有されていてもよい。柔軟性改質剤としては、特に規定はされないが、ゴム弾性微粒子や、軟質樹脂などが挙げられる。透明性や光学特性の観点から、軟質樹脂を柔軟性改質剤として選択することが好ましい。
 軟質樹脂としては、特に規定されないが、ガラス転移温度が100℃以上の重合体ブロック(以下、ブロック(i))と、ガラス転移温度が30℃以下である重合体ブロック(以下、ブロック(ii))との共重合体であることが、柔軟性と耐熱性を両立する観点から好ましい。
In addition, the resin having a negative intrinsic birefringence used in the present laminated optical film 1 may contain a flexibility modifier for improving flexibility and toughness. The flexibility modifier is not particularly defined, and examples thereof include rubber elastic fine particles and soft resins. From the viewpoint of transparency and optical properties, it is preferable to select a soft resin as the flexibility modifier.
The soft resin is not particularly defined, but a polymer block having a glass transition temperature of 100 ° C. or higher (hereinafter referred to as block (i)) and a polymer block having a glass transition temperature of 30 ° C. or lower (hereinafter referred to as block (ii)). ) Is preferable from the viewpoint of achieving both flexibility and heat resistance.
 固有複屈折率が負の樹脂としてアクリル系樹脂を使用する場合、ブロック(i)を構成する主たるモノマー成分としては、特に限定はされないが、ガラス転移温度を100℃以上とする必要性から、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸イソブチル、メタクリル酸イソプロピルなどの、アクリル酸あるいはメタクリル酸と、炭素数3以下のアルコールとのエステルを主体とすることが好ましい。また、ブロック(i)のシンジオタクチシチーは、耐熱性の観点から、70%以上であることが好ましい。また、上記の軟質樹脂の、ブロック(ii)を構成する主たるモノマー成分としては、特に限定はされないが、ガラス転移温度を30℃以下とする必要性から、アクリル酸n‐ブチル、メタクリル酸n‐ブチル、アクリル酸n‐ヘキシル、メタクリル酸n‐ヘキシルなど、アクリル酸あるいはメタクリル酸と、炭素数4以上のアルコールとのエステルを主体とすることが好ましい。 When an acrylic resin is used as a resin having a negative intrinsic birefringence, the main monomer component constituting the block (i) is not particularly limited, but it is necessary to set the glass transition temperature to 100 ° C. or higher. It is preferable to mainly use an ester of acrylic acid or methacrylic acid and an alcohol having 3 or less carbon atoms, such as methyl acid, methyl methacrylate, ethyl acrylate, ethyl methacrylate, isobutyl acrylate, and isopropyl methacrylate. The syndiotacticity of the block (i) is preferably 70% or more from the viewpoint of heat resistance. In addition, the main monomer component constituting the block (ii) of the soft resin is not particularly limited. However, since it is necessary to set the glass transition temperature to 30 ° C. or lower, n-butyl acrylate, n-methacrylic acid n- It is preferable to mainly use an ester of acrylic acid or methacrylic acid and an alcohol having 4 or more carbon atoms, such as butyl, n-hexyl acrylate, or n-hexyl methacrylate.
 上記軟質樹脂の主鎖は、特に限定されないが、耐熱性の観点から、ブロック(i)-ブロック(ii)-ブロック(i)構造を含有することが好ましい。また、柔軟性と耐熱性を両立する観点から、軟質樹脂中に含まれるブロック(i)とブロック(ii)の総重量比(ブロック(i)/ブロック(ii))は、5/95~80/20の範囲内であるのが好ましく、10/90~75/25の範囲内であるのがより好ましい。 The main chain of the soft resin is not particularly limited, but preferably contains a block (i) -block (ii) -block (i) structure from the viewpoint of heat resistance. Further, from the viewpoint of achieving both flexibility and heat resistance, the total weight ratio (block (i) / block (ii)) of block (i) and block (ii) contained in the soft resin is 5/95 to 80 It is preferably within the range of / 20, and more preferably within the range of 10/90 to 75/25.
 上記のような軟質樹脂としては、たとえば株式会社クラレ製の商品名クラリティやアルケマ株式会社製の商品名NANOSTRENGTHなどが挙げられる。 Examples of the soft resin as described above include trade name Clarity manufactured by Kuraray Co., Ltd. and trade name NANOSTRENGTH manufactured by Arkema Co., Ltd.
 柔軟性改質剤は、柔軟性の観点から、B層を構成する樹脂全体に対して、1質量%以上含有することが好ましく、5質量%以上含有することがより好ましく、10質量%以上含有することがさらに好ましい。また、含有量の上限は特に規定されないが、通常50質量%以下である。なお、30質量%以下の含有量であっても、本積層光学フィルム1は、後述する積層構成をとるため、積層光学フィルムとしての柔軟性や靱性は良好なものとなる。 From the viewpoint of flexibility, the flexibility modifier is preferably contained in an amount of 1% by mass or more, more preferably 5% by mass or more, and more preferably 10% by mass or more based on the entire resin constituting the B layer. More preferably. Moreover, although the upper limit of content is not prescribed | regulated in particular, it is 50 mass% or less normally. In addition, even if it is content of 30 mass% or less, since this laminated optical film 1 takes the laminated structure mentioned later, the softness | flexibility and toughness as a laminated optical film will become favorable.
<1-3.その他の成分>
 本積層光学フィルム1のフィルムのA層、B層あるいは両方の層には、紫外線吸収剤が含まれていてもよい。紫外線吸収剤が含まれていると、フィルムの耐候性を向上でき、また液晶や偏光膜の紫外線劣化を防ぐことができる。本積層光学フィルム1に用いる紫外線吸収剤としては、公知のもの、例えば各種市販のものを特に制限なく使用できる。
<1-3. Other ingredients>
The A layer, the B layer, or both layers of the film of the present laminated optical film 1 may contain an ultraviolet absorber. When the ultraviolet absorber is contained, the weather resistance of the film can be improved, and ultraviolet deterioration of the liquid crystal and the polarizing film can be prevented. As an ultraviolet absorber used for this laminated optical film 1, a well-known thing, for example, various commercially available things, can be especially used without a restriction | limiting.
 紫外線吸収剤としては、例えば、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)及び2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等のベンゾトリアゾール系紫外線吸収剤、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)-フェノール等のトリアジン系紫外線吸収剤、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)等のベンゾオキサジン系紫外線吸収剤;2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシ-フェノール等のヒドロキシフェニルトリアジン系紫外線吸収剤などを挙げることができる。 Examples of the ultraviolet absorber include 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzo Triazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2,2′- Methylenebis (4-cumyl-6-benzotriazolephenyl) and 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] Benzotriazole ultraviolet absorbers such as 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- ( Hexyloxy) -triazine UV absorbers such as phenol, benzoxazine UV absorbers such as 2,2′-p-phenylenebis (1,3-benzoxazin-4-one); 2- (4,6- And hydroxyphenyltriazine-based UV absorbers such as diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxy-phenol.
 成形加工性や諸物性のさらなる向上・調整を目的として、本積層光学フィルム1を構成する樹脂に対して、その他の樹脂や、樹脂以外の添加剤を配合し、樹脂組成物とすることも出来る。例えば、ポリエステル系樹脂、ポリエーテル、ポリアミド等の樹脂が挙げられる。その他の樹脂、あるいは添加剤の配合量としては、本積層光学フィルム1の効果を損なわない範囲で、本積層光学フィルム1の各層を構成する樹脂全体に対して、1質量%以上、30質量%以下の割合で配合することが好ましく、3質量%以上、20質量%以下の割合で配合することがより好ましく、5質量%以上、10質量%以下の割合で配合することがさらに好ましい。 For the purpose of further improving and adjusting molding processability and various physical properties, other resins and additives other than resins can be blended with the resin constituting the laminated optical film 1 to obtain a resin composition. . Examples thereof include resins such as polyester resins, polyethers, and polyamides. The blending amount of other resins or additives is 1% by mass or more and 30% by mass with respect to the entire resin constituting each layer of the laminated optical film 1 as long as the effect of the laminated optical film 1 is not impaired. It is preferable to mix | blend in the following ratios, It is more preferable to mix | blend in the ratio of 3 mass% or more and 20 mass% or less, It is further more preferable to mix | blend in the ratio of 5 mass% or more and 10 mass% or less.
[本積層光学フィルム2]
 本発明の第2の実施形態の一例に係る積層フィルム(「本積層光学フィルム2」と称する)は、上記本積層光学フィルム1における、固有複屈折率が負の樹脂を主成分とする層(B層)が、柔軟性改質剤として、特にアクリル系ブロック共重合体(A)を含有することを特徴とする積層フィルムである。
[Laminated optical film 2]
The laminated film (referred to as “the present laminated optical film 2”) according to an example of the second embodiment of the present invention is a layer (mainly composed of a resin having a negative intrinsic birefringence index in the present laminated optical film 1). B layer) is a laminated film characterized in that it contains, in particular, an acrylic block copolymer (A) as a flexibility modifier.
 固有複屈折率が負の樹脂を主成分とする層(B層)が、アクリル系ブロック共重合体(A)を含有することにより、例えばB層が表層であれば、接着性や表面硬度などの表面特性をより発現させることができる。 When the layer (B layer) containing a resin having a negative intrinsic birefringence as a main component contains the acrylic block copolymer (A), for example, if the B layer is a surface layer, adhesiveness, surface hardness, etc. The surface characteristics can be expressed more.
<2-1.アクリル系ブロック共重合体(A)>
 アクリル系ブロック共重合体(A)は、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が100℃以上のハードセグメント(HS)と、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が20℃以下のソフトセグメント(SS)と、を有する共重合体である。以下、ハードセグメントを単に「HS」、ソフトセグメントを単に「SS」と略記することがある。
<2-1. Acrylic block copolymer (A)>
The acrylic block copolymer (A) includes at least one monomer unit derived from a methacrylic acid ester and an acrylic acid ester, a hard segment (HS) having a glass transition temperature of 100 ° C. or higher, and at least a methacrylic acid ester. And a soft segment (SS) having a glass transition temperature of 20 ° C. or lower including one kind of monomer units derived from an acrylate ester. Hereinafter, the hard segment may be simply abbreviated as “HS”, and the soft segment may be simply abbreviated as “SS”.
 ここで、耐熱性と柔軟性のバランスの観点からは、HSのガラス転移温度は、105℃以上がより好ましく、110℃以上がさらに好ましい。HSのガラス転移温度の上限は、通常、125℃である。また、SSのガラス転移温度は、柔軟性や低温特性などを向上させる観点からは、0℃以下がより好ましく、-20℃以下がさらに好ましい。SSのガラス転移温度の下限は、通常、-60℃である。 Here, from the viewpoint of a balance between heat resistance and flexibility, the glass transition temperature of HS is more preferably 105 ° C. or higher, and further preferably 110 ° C. or higher. The upper limit of the glass transition temperature of HS is usually 125 ° C. Further, the glass transition temperature of SS is more preferably 0 ° C. or less, and further preferably −20 ° C. or less from the viewpoint of improving flexibility and low temperature characteristics. The lower limit of the glass transition temperature of SS is usually −60 ° C.
 ここで、ハードセグメント(HS)に含まれる単量体単位としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニル、メタクリル酸フェニル及びメタクリル酸2-ヒドロキシエチルなどのメタクリル酸エステル;アクリル酸メチル、アクリル酸tert-ブチル、アクリル酸シクロヘキシル、アクリル酸イソボルニル、アクリル酸フェニル及びアクリル酸2-ヒドロキシエチルなどのアクリル酸エステルを挙げることができる。 Here, as the monomer unit contained in the hard segment (HS), for example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, methacrylic acid Methacrylic esters such as cyclohexyl, isobornyl methacrylate, phenyl methacrylate and 2-hydroxyethyl methacrylate; methyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, phenyl acrylate and 2-hydroxyethyl acrylate And acrylic acid esters.
 本積層光学フィルム2においては、得られるフィルムの透明性、耐熱性などを向上させる観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸tert-ブチル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸2-ヒドロキシエチル、アクリル酸メチル、アクリル酸tert-ブチル、アクリル酸シクロヘキシル、アクリル酸イソボルニル、アクリル酸フェニル及びアクリル酸2-ヒドロキシエチルが好ましく、特に透明性や工業的な入手のし易さの観点からメタクリル酸メチルがより好ましい。ハードセグメント(HS)は、これらメタクリル酸エステル及びアクリル酸エステルの1種のみを単独で又は2種以上を組み合わせることができる。また、上記アクリル系ブロック共重合体(A)にハードセグメント(HS)が2つ以上含まれる場合には、それらハードセグメント(HS)は、同一であっても異なっていてもよい。本積層光学フィルム2においては、透明性や重合のし易さおよび工業的な入手のし易さなどの点から同一である方が好ましい。 In the present laminated optical film 2, from the viewpoint of improving the transparency and heat resistance of the resulting film, methyl methacrylate, ethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, phenyl methacrylate, 2-Hydroxyethyl methacrylate, methyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, phenyl acrylate and 2-hydroxyethyl acrylate are particularly preferred, and transparency and industrial availability. In view of the above, methyl methacrylate is more preferable. The hard segment (HS) can be used alone or in combination of two or more of these methacrylic acid esters and acrylic acid esters. Moreover, when the acrylic block copolymer (A) contains two or more hard segments (HS), these hard segments (HS) may be the same or different. The laminated optical film 2 is preferably the same from the viewpoint of transparency, ease of polymerization, industrial availability, and the like.
 また、ソフトセグメント(SS)に含まれる単量体単位としては、例えば、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸フェノキシエチル及びメタクリル酸2-メトキシエチルなどのメタクリル酸エステル;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸ベンジル、アクリル酸フェノキシエチル及びアクリル酸2-メトキシエチルなどのアクリル酸エステルを挙げることができる。 Examples of monomer units contained in the soft segment (SS) include n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, methacrylic acid. Methacrylic acid esters such as 2-ethylhexyl acid, pentadecyl methacrylate, dodecyl methacrylate, phenoxyethyl methacrylate and 2-methoxyethyl methacrylate; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, acrylic acid n-butyl, isobutyl acrylate, sec-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, acrylic acid Decyl, benzyl acrylate, acrylic acid esters such as 2-methoxyethyl acrylate phenoxyethyl and acrylic acid.
 本積層光学フィルム2においては、得られるフィルムの柔軟性や低温特性などを向上させる観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸フェノキシエチル及びアクリル酸2-メトキシエチルなどのアクリル酸エステルが好ましい。ソフトセグメント(SS)は、これらのメタクリル酸エステル及びアクリル酸エステルの1種のみを単独で又は2種以上を組み合わせることができる。また、上記アクリル系ブロック共重合体(A)に、ソフトセグメント(SS)が2つ以上含まれる場合には、それらソフトセグメント(SS)は、同一であっても異なっていてもよい。本積層光学フィルム2においては、透明性や重合のし易さおよび工業的な入手のし易さなどの点から同一である方が好ましい。 In the present laminated optical film 2, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, acrylic acid from the viewpoint of improving the flexibility and low temperature characteristics of the obtained film. Acrylic esters such as dodecyl, phenoxyethyl acrylate and 2-methoxyethyl acrylate are preferred. The soft segment (SS) can be used alone or in combination of two or more of these methacrylic acid esters and acrylic acid esters. Moreover, when the acrylic block copolymer (A) contains two or more soft segments (SS), the soft segments (SS) may be the same or different. The laminated optical film 2 is preferably the same from the viewpoint of transparency, ease of polymerization, industrial availability, and the like.
 また、本積層光学フィルム2においては、アクリル系ブロック共重合体(A)の特性を損なわない範囲で、上記ハードセグメント(HS)及びソフトセグメント(SS)に用いる単量体単位として、さらに、反応基を有するメタクリル酸エステル、アクリル酸エステルを用いることができる。反応基を有するメタクリル酸エステル、アクリル酸エステルを重合に用いると、得られるアクリル系ブロック共重合体(A)の接着性が向上できる場合があり好ましい。ここで、反応基を有するメタクリル酸エステル、アクリル酸エステルとしては、例えば、メタクリル酸グリシジル、メタクリル酸アリル、アクリル酸グリシジル及びアクリル酸アリルなどを挙げることができる。これら単量体単位は、通常少量で使用されるが、各セグメントに含まれる単量体単位の全質量に対して、好ましくは40質量%以下、より好ましくは20質量%以下の量である。 Moreover, in this laminated optical film 2, as a monomer unit used for the said hard segment (HS) and soft segment (SS) in the range which does not impair the characteristic of an acryl-type block copolymer (A), reaction is further carried out. Methacrylic acid ester and acrylic acid ester having a group can be used. Use of a methacrylic acid ester or acrylic acid ester having a reactive group for the polymerization is preferable because the adhesiveness of the resulting acrylic block copolymer (A) may be improved. Here, examples of the methacrylic acid ester and acrylic acid ester having a reactive group include glycidyl methacrylate, allyl methacrylate, glycidyl acrylate, and allyl acrylate. These monomer units are usually used in a small amount, but the amount is preferably 40% by mass or less, more preferably 20% by mass or less, based on the total mass of the monomer units contained in each segment.
 また、本積層光学フィルム2に用いるアクリル系ブロック共重合体(A)の特性を損なわない範囲で、上記ハードセグメント(HS)及びソフトセグメント(SS)に用いる単量体単位として、必要に応じて他の単量体単位を併用できる。 Moreover, as a monomer unit used for the said hard segment (HS) and soft segment (SS) in the range which does not impair the characteristic of the acryl-type block copolymer (A) used for this laminated optical film 2, as needed. Other monomer units can be used in combination.
 これら他の単量体単位としては、例えば、メタクリル酸、アクリル酸、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、イソブテン、1,3-ブタジエン、イソプレン、オクテン、酢酸ビニル、無水マレイン酸、塩化ビニル及び塩化ビニリデンなどを挙げることができる。これら単量体単位は、通常少量で使用されるが、各セグメントの重合に使用する単量体の全質量に対して、好ましくは40質量%以下、より好ましくは20質量%以下の量である。 Examples of these other monomer units include methacrylic acid, acrylic acid, styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, isobutene, 1,3 -Butadiene, isoprene, octene, vinyl acetate, maleic anhydride, vinyl chloride and vinylidene chloride. These monomer units are usually used in a small amount, but are preferably 40% by mass or less, more preferably 20% by mass or less, based on the total mass of monomers used for polymerization of each segment. .
 本積層光学フィルム2で用いるアクリル系ブロック共重合体(A)は、上記ハードセグメント(HS)及びソフトセグメント(SS)の他に、必要に応じ、他の重合体ブロックを有することができる。
 他の重合体ブロックとしては、例えば、メタクリル酸、アクリル酸、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、イソブテン、1,3-ブタジエン、イソプレン、オクテン、酢酸ビニル、無水マレイン酸、塩化ビニル、塩化ビニリデンなどの単量体単位から重合される重合体ブロック及び共重合体ブロック;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリウレタン、ポリジメチルシロキサンからなる重合体ブロックなどを挙げることができる。また、上記重合体ブロックには、1,3-ブタジエン、イソプレンなどのジエン系単量体を含む単量体単位から重合された重合体ブロックの水素添加物も含まれる。
The acrylic block copolymer (A) used in the present laminated optical film 2 can have other polymer blocks as necessary in addition to the hard segment (HS) and the soft segment (SS).
Examples of other polymer blocks include methacrylic acid, acrylic acid, styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, isobutene, and 1,3-butadiene. , Isoprene, octene, vinyl acetate, maleic anhydride, vinyl chloride, vinylidene chloride and other polymer blocks and copolymer blocks; polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polyurethane, polydimethyl Examples thereof include a polymer block composed of siloxane. The polymer block also includes a hydrogenated product of a polymer block polymerized from a monomer unit containing a diene monomer such as 1,3-butadiene and isoprene.
 本積層光学フィルム2のアクリル系ブロック共重合体(A)に含まれる各セグメントや重合体ブロックの結合形態は特に限定されない。本積層光学フィルム2においては、耐熱性や力学特性および原料ペレットの耐ブロッキング性(原料ペレット同士のくっつき防止)などの観点から少なくとも1つのソフトセグメント(SS)の両端にハードセグメント(HS)が結合した形態を有することが好ましい。具体的には、(HS)-b-(SS)-b-(HS)のトリブロック共重合体、(HS)-b-(SS)-b-(HS)-b-(SS)のテトラブロック共重合体などを挙げることができる。本積層光学フィルム2においては、原料ペレットの耐ブロッキング性や製造コストなどの観点から、(HS)-b-(SS)-b-(HS)のトリブロック共重合体がより好ましい。 The bonding form of each segment and polymer block included in the acrylic block copolymer (A) of the laminated optical film 2 is not particularly limited. In this laminated optical film 2, hard segments (HS) are bonded to both ends of at least one soft segment (SS) from the viewpoints of heat resistance, mechanical properties, and blocking resistance of raw material pellets (preventing sticking between raw material pellets). It is preferable to have the form. Specifically, a triblock copolymer of (HS) -b- (SS) -b- (HS), a tetrablock of (HS) -b- (SS) -b- (HS) -b- (SS) Examples thereof include a block copolymer. In the laminated optical film 2, a triblock copolymer of (HS) -b- (SS) -b- (HS) is more preferable from the viewpoint of blocking resistance of the raw material pellets, production cost, and the like.
 本積層光学フィルム2に用いるアクリル系ブロック共重合体(A)の各セグメントのガラス転移温度は、示差操作熱量計(DSC)で測定することができる。また、各セグメントの単量体組成や立体規則性は、H-NMRや13C-NMRなど公知の分析手法で定性定量分析することができる。
 HSの立体規則性については、特に制限されるものではないが、シンジオタクチック構造であるほどガラス転移温度が高くなり耐熱性が向上するため好ましい。具体的には、アクリル系ブロック共重合体(A)のハードセグメントの核磁気共鳴測定(H-NMR)により同定されるトリアッド分率のmm、mr及びrrのうち、rr構造のモル比率がmm、mrのモル比率と比べて高いものが好適に用いることができる。
The glass transition temperature of each segment of the acrylic block copolymer (A) used for the present laminated optical film 2 can be measured with a differential operation calorimeter (DSC). In addition, the monomer composition and stereoregularity of each segment can be qualitatively and quantitatively analyzed by a known analysis method such as 1 H-NMR or 13 C-NMR.
The stereoregularity of HS is not particularly limited, but a syndiotactic structure is preferable because the glass transition temperature is increased and heat resistance is improved. Specifically, triad fraction mm identified by nuclear magnetic resonance measurement of the hard segment of the acrylic block copolymer (A) (1 H-NMR ), of mr and rr, the molar ratio of rr structure Higher than the molar ratio of mm and mr can be suitably used.
 上記アクリル系ブロック共重合体(A)の分子量は特に制限されるものではないが、本積層光学フィルム2の力学特性や成形性の観点から、ゲル・パーミエーション・クロマトグラフィー(GPC)測定により求めたポリスチレン換算の重量平均分子量が、10,000~500,000が好ましく、20,000~300,000がより好ましい。 The molecular weight of the acrylic block copolymer (A) is not particularly limited, but is determined by gel permeation chromatography (GPC) measurement from the viewpoint of mechanical properties and moldability of the laminated optical film 2. The weight average molecular weight in terms of polystyrene is preferably 10,000 to 500,000, more preferably 20,000 to 300,000.
 アクリル系ブロック共重合体(A)のハードセグメント(HS)とソフトセグメント(SS)との組成比(ハードセグメント(HS)の合計/ソフトセグメント(SS)の合計)は、質量比で30/70~90/10が好ましく、40/60~70/30がより好ましい。ここで、組成比が上記範囲であれば、透明性、耐熱性および柔軟性のバランスが得られるため好ましい。 The composition ratio (total hard segment (HS) / total soft segment (SS)) of the hard segment (HS) and the soft segment (SS) of the acrylic block copolymer (A) is 30/70 by mass ratio. ~ 90/10 is preferable, and 40/60 to 70/30 is more preferable. Here, if the composition ratio is in the above range, a balance of transparency, heat resistance and flexibility is obtained, which is preferable.
 本積層光学フィルム2に用いるアクリル系ブロック共重合体(A)は、公知のアニオン重合やラジカル重合などにより重合可能であるが、市販品を用いても良い。例えば、株式会社クラレ製の商品名クラリティ(KURARITY)やアルケマ株式会社製の商品名NANOSTRENGTHなどを挙げることができる。
 本積層光学フィルム2においては、分子量分布を狭くできることからアニオン重合で重合されたアクリル系ブロック共重合体(A)を好適に用いることができる。
The acrylic block copolymer (A) used for the present laminated optical film 2 can be polymerized by known anionic polymerization or radical polymerization, but a commercially available product may be used. For example, the product name Clarity manufactured by Kuraray Co., Ltd. and the product name NANOSTRENGTH manufactured by Arkema Co., Ltd. can be mentioned.
In the present laminated optical film 2, since the molecular weight distribution can be narrowed, an acrylic block copolymer (A) polymerized by anionic polymerization can be suitably used.
 本積層光学フィルム2のうちB層は、アクリル系ブロック共重合体(A)を必須成分として含有する組成物からなる層である。
 上記組成物中の該アクリル系ブロック共重合体(A)の含有量は、用いるアクリル系ブロック共重合体(A)の各セグメントの組成比と所望の特性を考慮して適宜決定すればよい。具体的には、5~100質量%が好ましく、10~80質量%がより好ましく、15~50質量%が特に好ましい。
B layer of this laminated optical film 2 is a layer which consists of a composition which contains an acryl-type block copolymer (A) as an essential component.
The content of the acrylic block copolymer (A) in the composition may be appropriately determined in consideration of the composition ratio of each segment of the acrylic block copolymer (A) to be used and desired characteristics. Specifically, it is preferably 5 to 100% by mass, more preferably 10 to 80% by mass, and particularly preferably 15 to 50% by mass.
 力学特性や透明性などの観点からは、本積層光学フィルム2におけるB層中のソフトセグメント(SS)の含有量が質量比で5~25質量%、好ましくは8~20質量%になるように決定すればよい。例えば、用いるアクリル系ブロック共重合体(A)のHS/SS質量比が50/50質量%であれば、該B層中に該アクリル系ブロック共重合体(A)を10~50質量%の間で適宜調整すればよい。また、用いるアクリル系ブロック共重合体(A)のHS/SS質量比が90/10質量%であれば、該B層中に該アクリル系ブロック共重合体(A)を50~100質量%の間で適宜調整すればよい。 From the viewpoint of mechanical properties and transparency, the content of the soft segment (SS) in the B layer in the present laminated optical film 2 is 5 to 25% by mass, preferably 8 to 20% by mass. Just decide. For example, if the HS / SS mass ratio of the acrylic block copolymer (A) used is 50/50 mass%, the acrylic block copolymer (A) is contained in the B layer in an amount of 10 to 50 mass%. What is necessary is just to adjust suitably between. Further, if the HS / SS mass ratio of the acrylic block copolymer (A) used is 90/10% by mass, the acrylic block copolymer (A) is contained in 50 to 100% by mass in the B layer. What is necessary is just to adjust suitably between.
 本積層光学フィルム2のB層には、本積層光学フィルム2の効果を損なわない範囲で、他の重合体、さらに、滑剤、可塑剤、粘着付与剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、フィラーおよびナノフィラーなどの添加剤を含有させることができる。これら他の重合体及び添加剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。 In the layer B of the present laminated optical film 2, other polymers, further lubricants, plasticizers, tackifiers, antioxidants, ultraviolet absorbers, light stabilizers, as long as the effects of the present laminated optical film 2 are not impaired. Additives such as an agent, an antistatic agent, a flame retardant, a filler and a nanofiller can be contained. These other polymers and additives can be used alone or in combination of two or more.
 ここで、他の重合体としては、本積層光学フィルム2で用いるアクリル系ブロック共重合体(A)との相溶性の観点からアクリル系重合体、メチルメタクリレート-スチレン共重合体、スチレン-無水マレイン酸共重合体、スチレン-メチルメタクリレート-無水マレイン酸共重合体、AS樹脂、ポリ乳酸およびポリフッ化ビニリデンなどを挙げることができる。本積層光学フィルム2においては、力学強度、透明性や耐熱性および経済性などの観点から以下に詳述するアクリル系重合体(B)を好ましく用いることができる。 Here, from the viewpoint of compatibility with the acrylic block copolymer (A) used in the present laminated optical film 2, other polymers include acrylic polymers, methyl methacrylate-styrene copolymers, styrene-anhydrous maleic acid. Examples include acid copolymers, styrene-methyl methacrylate-maleic anhydride copolymers, AS resins, polylactic acid, and polyvinylidene fluoride. In the present laminated optical film 2, an acrylic polymer (B) described in detail below can be preferably used from the viewpoints of mechanical strength, transparency, heat resistance, economy, and the like.
<2-2.アクリル系重合体(B)>
 本積層光学フィルム2のうちB層はさらに、以下に記載するアクリル系重合体(B)を有することが、力学強度、透明性や耐熱性および経済性の観点から好ましい。
 該アクリル系重合体(B)は、前記アクリル系ブロック共重合体(A)以外のアクリル系重合体であって、(メタ)アクリル酸エステル単量体を主成分とするアクリル系重合体である。
<2-2. Acrylic polymer (B)>
It is preferable from the viewpoint of mechanical strength, transparency, heat resistance, and economy that the layer B of the laminated optical film 2 further has an acrylic polymer (B) described below.
The acrylic polymer (B) is an acrylic polymer other than the acrylic block copolymer (A), and is an acrylic polymer mainly composed of a (meth) acrylic acid ester monomer. .
 尚、ここでは、(メタ)アクリル酸エステル単量体単位は、アクリル酸エステル単量体単位又はメタクリル酸エステル単量体単位を意味する。また、ここで主成分とは、アクリル系重合体(B)を構成する全ての単量体単位を100モル%とした場合に、最もモル比率が高い成分であり、70モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、98モル%以上が特に好ましい。上限は100モル%である。 Here, the (meth) acrylic acid ester monomer unit means an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit. In addition, the main component here is a component having the highest molar ratio when all the monomer units constituting the acrylic polymer (B) are 100 mol%, preferably 70 mol% or more, 90 mol% or more is more preferable, 95 mol% or more is further more preferable, and 98 mol% or more is especially preferable. The upper limit is 100 mol%.
 ここで、構成する単量体単位としては、メタクリル酸メチル、メタクリル酸、アクリル酸、ベンジル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、コハク酸2-(メタ)アクロイルオキシエチル、マレイン酸2-(メタ)アクロイルオキシエチル、フタル酸2-(メタ)アクロイルオキシエチル、ヘキサヒドロフタル酸2-(メタ)アクリオイルオキシエチル、ペンタメチルピペリジル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート及びジエチルアミノエチル(メタ)アクリレートなどを挙げることができる。これらは、1種のみを単独で又は2種以上を組み合わせて用いることができる。また、これらの単量体単位と重合され得る他の単量体単位としては、例えばオレフィン系単量体単位、ビニル系単量体単位等を挙げることができる。 Here, the constituent monomer units include methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth). Acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-Ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) Chlorate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acrylic (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, maleic acid 2 -(Meth) acryloyloxyethyl, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, pentamethylpiperidyl (meth) acrylate, tetramethylpiperidyl (meth) acrylate And dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate. These can be used alone or in combination of two or more. Examples of other monomer units that can be polymerized with these monomer units include olefin monomer units and vinyl monomer units.
 ここで、本積層光学フィルム2においては、アクリル系ブロック共重合体(A)との相溶のし易さの観点から、少なくともアクリル系重合体(B)の(メタ)アクリル酸エステル単量体単位の一種が、アクリル系ブロック共重合体(A)の単量体単位の一種と同一であることが好ましい。 Here, in this laminated optical film 2, from the viewpoint of easy compatibility with the acrylic block copolymer (A), at least a (meth) acrylic acid ester monomer of the acrylic polymer (B). One type of unit is preferably the same as one type of monomer unit of the acrylic block copolymer (A).
 さらに、本積層光学フィルム2においては、工業的に入手し易いことなどからメタクリル酸メチルの単独重合体、又は、メタクリル酸メチルとアクリル酸メチル若しくはアクリル酸エチルとの共重合体を好適に用いることができる。 Furthermore, in this laminated optical film 2, a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate is preferably used because it is easily available industrially. Can do.
 また、立体規則性についても特に制限されるものではないが、(メタ)アクリル酸エステル単量体単位の立体構造はシンジオタクチック構造であるほどガラス転移温度が高くなり耐熱性が向上するため好ましい。具体的には、トリアッド分率のmm、mr、及びrrのうち、rr構造のモル比率がmm、mrのモル比率と比べて高いものを好適に用いることができる。なお、トリアッド分率は、核磁気共鳴測定装置(H-NMR)を用い、公知の方法で測定することができる。 Further, the stereoregularity is not particularly limited, but the stereostructure of the (meth) acrylic acid ester monomer unit is preferably a syndiotactic structure because the glass transition temperature becomes higher and the heat resistance is improved. . Specifically, among the triad fractions of mm, mr, and rr, those having a molar ratio of the rr structure higher than that of mm and mr can be suitably used. Incidentally, triad fraction, using nuclear magnetic resonance measurement apparatus (1 H-NMR), can be determined by known methods.
 本積層光学フィルム2に用いるアクリル系重合体(B)の分子量は、特に制限されるものではないが、重量平均分子量で通常、30,000以上、300,000以下であり、50,000以上、150,000以下の範囲であれば、成形する際に流れムラ等の外観不良を生じにくいため好ましい。 The molecular weight of the acrylic polymer (B) used in the present laminated optical film 2 is not particularly limited, but is usually 30,000 or more and 300,000 or less in terms of weight average molecular weight, 50,000 or more, A range of 150,000 or less is preferable because appearance defects such as flow unevenness hardly occur during molding.
 また、ガラス転移温度は、特に限定されるものではないが、積層フィルムの耐熱性の観点から、80℃以上が好ましく、90℃以上がより好ましく、100℃以上がさらに好ましく、105℃以上が特に好ましい。なお、ガラス転移温度の上限は特に規定されないが、通常150℃である。ここで、120℃未満であれば、力学強度に優れる点や、汎用の樹脂が使用できるため原料の選択範囲が広がるという観点から好ましい。一方で、より高い耐熱性が必要な場合は、アクリル系重合体(B)の共重合成分の調整や他の重合体との混合などによりガラス転移温度を120℃以上とすることが好ましい。 The glass transition temperature is not particularly limited, but is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, further preferably 100 ° C. or higher, and particularly preferably 105 ° C. or higher, from the viewpoint of heat resistance of the laminated film. preferable. The upper limit of the glass transition temperature is not particularly specified, but is usually 150 ° C. Here, if it is less than 120 degreeC, since the point which is excellent in mechanical strength and a general purpose resin can be used, it is preferable from a viewpoint that the selection range of a raw material spreads. On the other hand, when higher heat resistance is required, the glass transition temperature is preferably set to 120 ° C. or higher by adjusting the copolymer component of the acrylic polymer (B) or mixing with other polymers.
 本積層光学フィルム2に用いるアクリル系重合体(B)は市販品を用いることも可能であり、具体例としては三菱レイヨン(株)製の商品名「アクリペット(Acrypet)」、住友化学(株)製の商品名「スミペックス(SUMIPEX)」、及び、(株)クラレ製の商品名「パラペット(PARAPET)」などを挙げることができる。 The acrylic polymer (B) used for the laminated optical film 2 may be a commercially available product. Specific examples include trade names “Acrypet” manufactured by Mitsubishi Rayon Co., Ltd., Sumitomo Chemical Co., Ltd. ) Product name “SUMIPEX” and Kuraray Co., Ltd. product name “PARAPET”.
[本積層光学フィルム3]
 本発明の第3の実施形態の一例に係るフィルム(「本積層光学フィルム3」と称する)は、上記本積層光学フィルム1又は本積層光学フィルム2(これらを「基材フィルム」と称する)の少なくとも片面に、ウレタン系樹脂とメラミン樹脂系架橋剤を含有する水系ウレタン系樹脂組成物よりなるコート層を形成してなる構成を備えたフィルムである。
[This laminated optical film 3]
The film according to an example of the third embodiment of the present invention (referred to as “the present laminated optical film 3”) is the above-mentioned present laminated optical film 1 or the present laminated optical film 2 (these are referred to as “base film”). It is a film provided with a configuration in which a coat layer made of a water-based urethane resin composition containing a urethane resin and a melamine resin-based crosslinking agent is formed on at least one surface.
 なお、特開2015-24511号公報では、易接着層の形成に用いる組成物に含まれる架橋剤が、エポキシ基、カルボジイミド基又はオキサゾリン基を有する架橋剤であった。これに対し、本積層光学フィルム3では、ウレタン系樹脂に対してメラミン樹脂系架橋剤を用いている。一般的な架橋剤では、その架橋反応の進行とともに基材や接着剤への親和性が失われ、易接着層と基材との接着性が低下しやすいという欠点を有する。しかし、本積層光学フィルム3においては、架橋反応の進行によっても基材や接着剤との接着性の低減が抑制されるという効果を有する。これは、メラミン系架橋剤中のアミノ基やヒドロキシル基由来の構造が、架橋反応の進行によっても基材や接着剤への親和性を失わない方向へ寄与しているからと考えられる。
 また、メラミン樹脂系架橋剤は、メチルエーテル化型、イミノ基型、メチロール基型、及び、メチロール/イミノ基型など架橋反応に関与する構造を種々選択することによって、その架橋反応性を制御することが容易であるので、ポットライフと反応性を制御しやすいという利点もある。
In JP-A-2015-24511, the crosslinking agent contained in the composition used for forming the easy-adhesion layer was a crosslinking agent having an epoxy group, a carbodiimide group or an oxazoline group. On the other hand, in this laminated optical film 3, a melamine resin crosslinking agent is used for the urethane resin. A general cross-linking agent has the disadvantage that the affinity for the base material and the adhesive is lost with the progress of the cross-linking reaction, and the adhesiveness between the easy-adhesion layer and the base material tends to be lowered. However, the present laminated optical film 3 has an effect that the reduction of the adhesiveness with the base material and the adhesive is suppressed by the progress of the crosslinking reaction. This is presumably because the structure derived from the amino group or hydroxyl group in the melamine-based crosslinking agent contributes to the direction in which the affinity for the base material and the adhesive is not lost even by the progress of the crosslinking reaction.
The melamine resin-based cross-linking agent controls its cross-linking reactivity by selecting various structures involved in the cross-linking reaction such as methyl ether type, imino group type, methylol group type, and methylol / imino group type. Therefore, there is an advantage that the pot life and reactivity can be easily controlled.
<3-1.ウレタンコート層>
 次に、本積層光学フィルム3におけるウレタン系樹脂とメラミン樹脂系架橋剤を含有する水系ウレタン系樹脂組成物(以下、「ウレタン系コーティング組成物」と称す場合がある。)よりなるコート層(以下、「ウレタンコート層」と称す場合がある。)について説明する。
 本積層光学フィルム3においては、前述の基材フィルムの少なくとも片面に、ウレタン系樹脂とメラミン樹脂系架橋剤を含有する水系のウレタン系コーティング組成物を用いてウレタンコート層を形成することを必須の要件とする。
<3-1. Urethane coat layer>
Next, a coat layer (hereinafter referred to as “urethane coating composition”) containing a urethane resin and a melamine resin crosslinking agent in the laminated optical film 3 (hereinafter sometimes referred to as “urethane coating composition”). , May be referred to as “urethane coat layer”).
In this laminated optical film 3, it is essential to form a urethane coat layer on at least one surface of the above-described base film using a water-based urethane coating composition containing a urethane resin and a melamine resin crosslinking agent. Requirement.
 ウレタンコート層は易接着層として機能し、接着剤を介して基材フィルムを他の部材(例えば、偏光子等)と貼り合わせる際に、接着剤による基材フィルムと他の部材との接着を補強して、より強固に接着させる。すなわち、ウレタンコート層は、接着剤の機能を補強するためのプライマー層として機能する。 The urethane coat layer functions as an easy-adhesion layer. When the base film is bonded to another member (for example, a polarizer, etc.) via an adhesive, the adhesive between the base film and the other member by the adhesive is used. Reinforce and bond more firmly. That is, the urethane coat layer functions as a primer layer for reinforcing the function of the adhesive.
 通常、ウレタンコート層は、基材フィルムの表面に、接着剤の層等の他の層を介することなく、直接に設けられる。
 ウレタンコート層は、基材フィルムの一方の表面に設けてもよいし、両面に設けてもよい。基材フィルムの両面にウレタンコート層を設けることにより、基材フィルムの取り扱い性を効果的に改善できる。
Usually, the urethane coat layer is directly provided on the surface of the base film without any other layer such as an adhesive layer.
The urethane coat layer may be provided on one surface of the base film or on both surfaces. By providing the urethane coat layer on both surfaces of the base film, the handleability of the base film can be effectively improved.
(ウレタン系樹脂)
 本積層光学フィルム3で用いるウレタン系樹脂としては、例えば、(3-1)1分子中に平均2個以上の活性水素を含有する成分(以下「成分(3-1)」と称す場合がある。)と(3-2)多価イソシアネート成分(以下「成分(3-2)」と称す場合がある。)とを反応させて得られるウレタン系樹脂;又は、上記成分(3-1)及び成分(3-2)をイソシアネート基過剰の条件下で、反応に不活性で水との親和性の大きい有機溶媒中でウレタン化反応させてイソシアネート基含有プレポリマーとし、次いで、該プレポリマーを中和し、鎖延長剤を用いて鎖延長し、水を加えて分散体とすることによって製造されるウレタン系樹脂;などが挙げられる。これらのウレタン系樹脂には酸構造(酸残基)を含有させてもよい。
(Urethane resin)
Examples of the urethane-based resin used in the present laminated optical film 3 include (3-1) a component containing two or more active hydrogens in average in one molecule (hereinafter referred to as “component (3-1)”). )) And (3-2) a urethane resin obtained by reacting a polyisocyanate component (hereinafter sometimes referred to as “component (3-2)”); or the above components (3-1) and The component (3-2) is urethanated in an organic solvent that is inert to the reaction and has a high affinity for water under an excess of isocyanate groups to obtain an isocyanate group-containing prepolymer. And a urethane-based resin produced by adding water and adding a dispersion to form a dispersion. These urethane resins may contain an acid structure (acid residue).
 イソシアネート基含有プレポリマーの鎖伸長方法は公知の方法を採用することができ、例えば、鎖伸長剤として、水、水溶性ポリアミン、グリコール類などを使用し、イソシアネート基含有プレポリマーと鎖伸長剤とを、必要に応じて触媒の存在下で反応させてもよい。 As the chain extension method of the isocyanate group-containing prepolymer, a known method can be adopted. For example, water, a water-soluble polyamine, glycols or the like is used as the chain extender, and the isocyanate group-containing prepolymer and the chain extender are used. May be reacted in the presence of a catalyst, if necessary.
 前記成分(3-1)としては、特に限定されるものではないが、水酸基性の活性水素を有するものが好ましい。このような化合物の具体例としては、次の(3-1-1)~(3-1-5)に例示するものが挙げられる。 The component (3-1) is not particularly limited, but preferably has a hydroxylic active hydrogen. Specific examples of such compounds include those exemplified in the following (3-1-1) to (3-1-5).
(3-1-1)ポリオール化合物
 ポリオール化合物として、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,8-オクタンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、トリシクロデカンジメタノール、1,4-シクロヘキサンジメタノール、及び、2,2-ジメチルプロパンジオールなどが挙げられる。
(3-1-1) Polyol compound Examples of the polyol compound include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2,5-hexanediol, 1,8-octanediol, dipropylene glycol, 2,2,4-trimethyl-1 , 3-pentanediol, tricyclodecane dimethanol, 1,4-cyclohexane dimethanol, 2,2-dimethylpropanediol, and the like.
(3-1-2)ポリエーテルポリオール
 ポリエーテルポリオールとして、例えば、上記(3-1-1)のポリオール化合物のアルキレンオキシド付加物;アルキレンオキシドと環状エーテル(例えばテトラヒドロフランなど)との開環(共)重合体;グリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、ポリオクタメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、及び、エチレングリコール-プロピレングリコールなどのグリコール類;などが挙げられる。
(3-1-2) Polyether polyol As the polyether polyol, for example, an alkylene oxide adduct of the polyol compound of (3-1-1) above; ring-opening (co-polymerization) of an alkylene oxide and a cyclic ether (eg, tetrahydrofuran) ) Polymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol, polyethylene glycol, polypropylene glycol, and ethylene glycol-propylene glycol;
(3-1-3)ポリエステルポリオール
 ポリエステルポリオールとして、例えば、アジピン酸、コハク酸、セバシン酸、グルタル酸、マレイン酸、フマル酸、フタル酸等のジカルボン酸又はその無水物と、上記(3-1-1)で挙げたエチレングリコール、プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、及び、ネオペンチルグリコールなどのポリオール化合物とを、水酸基過剰の条件で重縮合させて得られたものなどが挙げられる。より具体的には、例えば、エチレングリコール-アジピン酸縮合物、ブタンジオール-アジピン縮合物、ヘキサメチレングリコール-アジピン酸縮合物、エチレングリコール-プロピレングリコール-アジピン酸縮合物、或いはグリコールを開始剤としてラクトンを開環重合させたポリラクトンジオールなどが挙げられる。
(3-1-3) Polyester polyol Examples of the polyester polyol include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, and phthalic acid, and anhydrides thereof (3-1) -1) and polyol compounds such as ethylene glycol, propylene glycol, 1,4-butylene glycol, 1,6-hexanediol, 1,8-octanediol, and neopentyl glycol, under the conditions of excess hydroxyl group Examples thereof include those obtained by polycondensation. More specifically, for example, ethylene glycol-adipic acid condensate, butanediol-adipine condensate, hexamethylene glycol-adipic acid condensate, ethylene glycol-propylene glycol-adipic acid condensate, or lactone with glycol as an initiator. And polylactone diol obtained by ring-opening polymerization.
(3-1-4)ポリエーテルエステルポリオール
 ポリエーテルエステルポリオールとして、例えば、エーテル基含有ポリオール(例えば、前記(3-1-2)のポリエーテルポリオールやジエチレングリコール等)又は、これと他のグリコールとの混合物を上記(3-1-3)で例示したようなジカルボン酸又はその無水物に加えてアルキレンオキシドを反応させてなるものなどが挙げられる。より具体的には、例えば、ポリテトラメチレングリコール-アジピン酸縮合物などが挙げられる。
(3-1-4) Polyether Ester Polyol As the polyether ester polyol, for example, an ether group-containing polyol (for example, the polyether polyol or diethylene glycol of (3-1-2) above) or this and other glycols And a mixture obtained by reacting an alkylene oxide with the dicarboxylic acid or anhydride thereof as exemplified in the above (3-1-3). More specifically, examples include polytetramethylene glycol-adipic acid condensate.
(3-1-5)ポリカーボネートポリオール
 ポリカーカーボネートポリオールとしては、例えば、一般式HO-R-(O-C(O)-O-R)-OH(ただし、式中、Rは炭素数1~12の飽和脂肪酸ポリオール残基を示す。また、nは分子の繰り返し単位の数を示し、通常5~50の整数である。)で示される化合物などが挙げられる。これらは、飽和脂肪族ポリオールと置換カーボネート(例えば、炭酸ジエチル、ジフェニルカーボネートなど)とを、水酸基が過剰となる条件で反応させるエステル交換法;前記飽和脂肪族ポリオールとホスゲンとを反応させるか、又は必要に応じて、その後さらに飽和脂肪族ポリオールを反応させる方法;などにより得ることができる。
(3-1-5) Polycarbonate polyol Polycarbonate carbonate polyol includes, for example, the general formula HO—R— (O—C (O) —O—R) n —OH (wherein R represents a carbon number of 1 to 5). 12 represents a saturated fatty acid polyol residue, and n represents the number of repeating units of the molecule, and is usually an integer of 5 to 50). These are a transesterification method in which a saturated aliphatic polyol and a substituted carbonate (for example, diethyl carbonate, diphenyl carbonate, etc.) are reacted under the condition that the hydroxyl group is excessive; the saturated aliphatic polyol and phosgene are reacted, or If necessary, it can be obtained by a method of further reacting a saturated aliphatic polyol thereafter.
 上記の(3-1-1)~(3-1-5)に例示したような化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The compounds as exemplified in the above (3-1-1) to (3-1-5) may be used alone, or two or more kinds may be used in combination at any ratio.
 前記成分(3-1)と反応させる成分(3-2)としては、例えば、1分子中に平均2個以上のイソシアネート基を含有する脂肪族、脂環族又は芳香族の化合物が挙げられる。 Examples of the component (3-2) to be reacted with the component (3-1) include an aliphatic, alicyclic or aromatic compound containing an average of two or more isocyanate groups in one molecule.
 脂肪族ジイソシアネート化合物としては、炭素数1~12の脂肪族ジイソシアネートが好ましく、例えばヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、ヘキサンジイソシアネート(HDI)などが挙げられる。脂環式ジイソシアネート化合物としては、炭素数4~18の脂環式ジイソシアネート化合物が好ましく、例えば、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート(IPDI)、及び、ジシクロヘキシルメタンジイソシアネート(HMDI)などが挙げられる。芳香族ジイソシアネート化合物としては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及び、キシリレンジイソシアネートなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The aliphatic diisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, and examples thereof include hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI). The alicyclic diisocyanate compound is preferably an alicyclic diisocyanate compound having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate (HMDI). Etc. Examples of the aromatic diisocyanate compound include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 本積層光学フィルム3において、ウレタン系樹脂としては、耐熱性や耐水性に優れたウレタンコート層を形成することができることから、脂肪族ポリカーボネート骨格を有するもの、具体的には、前記(3-1-5)のポリカーボネートポリオールと、脂肪族ジイソシアネート化合物との反応で得られるウレタン系樹脂が好ましい。 In the present laminated optical film 3, as the urethane-based resin, a urethane coat layer having excellent heat resistance and water resistance can be formed. Therefore, those having an aliphatic polycarbonate skeleton, specifically, (3-1 A urethane resin obtained by reacting the polycarbonate polyol of −5) with an aliphatic diisocyanate compound is preferred.
 また、ウレタン系樹脂は、酸構造を有することが好ましい。酸構造を有するウレタン系樹脂は、界面活性剤を使用せずに、若しくは界面活性剤の量が少なくても、水中に分散させることが可能となるので、ウレタンコート層の耐水性が良くなることが期待される。これを自己乳化型といい、界面活性剤を使用することなく分子イオン性のみで、水中にウレタン系樹脂が分散安定化しうることを意味する。このようなウレタン系樹脂を用いたウレタンコート層は、基材フィルムとの接着性に優れ、かつ高い透明性を維持できるため、好ましい。また、この酸構造を起点として架橋することにより、疎水性、耐熱性、湿熱性をさらに向上させることが出来るため、好ましい。 Also, the urethane resin preferably has an acid structure. Urethane resin having an acid structure can be dispersed in water without using a surfactant or even if the amount of the surfactant is small, so that the water resistance of the urethane coat layer is improved. There is expected. This is called a self-emulsifying type, which means that the urethane-based resin can be dispersed and stabilized in water only by molecular ionicity without using a surfactant. A urethane coat layer using such a urethane-based resin is preferable because it has excellent adhesion to the base film and can maintain high transparency. Further, it is preferable to perform crosslinking using this acid structure as a starting point, since the hydrophobicity, heat resistance, and wet heat properties can be further improved.
 酸構造としては、例えば、カルボキシル基(-COOH)、スルホン酸基(-SOH)等の酸基などを挙げることができる。また、酸構造は、ウレタン系樹脂の側鎖に存在していてもよく、末端に存在していてもよい。なお、酸構造は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the acid structure include acid groups such as a carboxyl group (—COOH) and a sulfonic acid group (—SO 3 H). Moreover, the acid structure may exist in the side chain of a urethane-type resin, and may exist in the terminal. In addition, 1 type may be used for an acid structure and it may use it combining 2 or more types by arbitrary ratios.
 酸構造の含有量としては、ウレタン系樹脂の酸価として、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上であり、好ましくは250mgKOH/g以下、より好ましくは150mgKOH/g以下である。酸価が5mgKOH/g未満では水分散性が不十分となりやすく、一方、酸価が250mgKOH/gより大きいとウレタンコート層の耐水性が劣る傾向となる。 The content of the acid structure is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, preferably 250 mgKOH / g or less, more preferably 150 mgKOH / g or less as the acid value of the urethane resin. If the acid value is less than 5 mgKOH / g, the water dispersibility tends to be insufficient. On the other hand, if the acid value is more than 250 mgKOH / g, the water resistance of the urethane coat layer tends to be inferior.
 ウレタン系樹脂に酸構造を導入する方法は、従来から用いられている方法が特に制限なく使用できる。好ましい例を挙げると、ジメチロールアルカン酸を、前記(3-1-2)から(3-1-4)に記載したグリコール成分の一部もしくは全部と置き換えることによって、予めポリエーテルポリオール、ポリエステルポリオール、及び、ポリエーテルエステルポリオール等にカルボキシル基を導入する方法が挙げられる。ここで用いられるジメチロールアルカン酸としては、例えば、ジメチロール酢酸、ジメチロールプロピオン酸、及び、ジメチロール酪酸などが挙げられる。なお、ジメチロールアルカン酸は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a method for introducing an acid structure into a urethane-based resin, a conventionally used method can be used without any particular limitation. Preferable examples include polyether polyol and polyester polyol in advance by replacing dimethylolalkanoic acid with a part or all of the glycol component described in (3-1-2) to (3-1-4). And a method of introducing a carboxyl group into a polyether ester polyol or the like. Examples of the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid. In addition, dimethylol alkanoic acid may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ウレタン系樹脂の数平均分子量は、1,000以上が好ましく、より好ましくは20,000以上であり、1,000,000以下が好ましく、より好ましくは200,000以下である。 The number average molecular weight of the urethane-based resin is preferably 1,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, and more preferably 200,000 or less.
 本積層光学フィルム3で用いるウレタン系コーティング組成物は、好ましくは水系ウレタン系樹脂を用いて調製される。水系ウレタン系樹脂は、ウレタン系樹脂の水分散体であり、通常、ウレタン系樹脂と水と、必要に応じて含まれる他の成分が水に溶解ないし水散しているものであり、その固形分(ウレタン系樹脂)濃度は通常10~50重量%程度である。 The urethane-based coating composition used in the present laminated optical film 3 is preferably prepared using a water-based urethane resin. A water-based urethane resin is an aqueous dispersion of a urethane-based resin. Usually, a urethane-based resin, water, and other components contained as necessary are dissolved or dispersed in water. The concentration of the component (urethane resin) is usually about 10 to 50% by weight.
 水系ウレタン系樹脂は市販されているものを用いてもよい。水系ウレタン系樹脂の市販品としては、例えば、旭電化工業社製の「アデカボンタイター」シリーズ、三井東圧化学社製の「オレスター」シリーズ、大日本インキ化学工業社製の「ボンディック」シリーズ、「ハイドラン」シリーズ、バイエル社製の「インプラニール」シリーズ、日本ソフラン社製の「ソフラネート」シリーズ、花王社製の「ポイズ」シリーズ、三洋化成工業社製の「サンプレン」、「ユーコート」、「ユーポリン」シリーズ、大日精化工業社製の「レザミン」シリーズ、保土谷化学工業社製の「アイゼラックス」シリーズ、第一工業製薬社製の「スーパーフレックス」シリーズ、ゼネカ社製の「ネオレッツ」シリーズ、ルブリゾール社性の「Sancure」シリーズ、及び、スタールジャパン社製の「RU」シリーズ、などを用いることができる。特に、三洋化成工業社製の「ユーコート UA-368」、スタールジャパン(株)製の「RU-40-350」や「EX-RU-92-605」、及び、大日精化工業社製の「レザミンD-6031」などは、脂肪族ポリカーボネート骨格を有し、後述の揮発性塩基により水分散化されているため、本積層光学フィルム3に好適である。 A commercially available water-based urethane resin may be used. Examples of commercially available water-based urethane resins include the “Adeka Bon titer” series manufactured by Asahi Denka Kogyo, the “Olestar” series manufactured by Mitsui Toatsu Chemicals, and the “Bondic” manufactured by Dainippon Ink & Chemicals, Inc. Series, `` Hydran '' series, `` Imprunil '' series manufactured by Bayer, `` Sofranate '' series manufactured by Sofran Japan, `` Poise '' series manufactured by Kao Corporation, `` Samprene '', `` Ucote '' manufactured by Sanyo Chemical Industries, "Euporin" series, "Rezamin" series by Dainichi Seika Kogyo Co., Ltd., "Izelux" series by Hodogaya Chemical Co., Ltd., "Superflex" series by Daiichi Kogyo Seiyaku Co., Ltd. Series, “Sancure” series of Lubrizol, and “RU” series made by Stahl Japan, Etc. can be used. In particular, “Yukot UA-368” manufactured by Sanyo Chemical Industries, “RU-40-350” and “EX-RU-92-605” manufactured by Stahl Japan Co., Ltd., “ “Rezamin D-6031” has an aliphatic polycarbonate skeleton and is dispersed in water with a volatile base, which will be described later, and thus is suitable for the present laminated optical film 3.
 なお、ウレタン系コーティング組成物は、ウレタン系樹脂の1種類のみを含むものであってもよく、2種類以上を任意の比率で含むものであってもよい。 Note that the urethane-based coating composition may include only one type of urethane-based resin, or may include two or more types in any ratio.
(メラミン樹脂系架橋剤)
 メラミン樹脂系架橋剤としては、例えば、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、及び、ヘキサメチロールメラミン等のメチロールメラミン;メチロールメラミンとアルコールとのアルキルエーテル化物;メチロールメラミンの縮合物とのアルコールのエーテル化物等を挙げることができる。ここで、アルコールとしては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、及び、2-エチルヘキシルアルコール等が挙げられる。
(Melamine resin crosslinking agent)
Examples of the melamine resin-based crosslinking agent include methylol melamine such as dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine and hexamethylol melamine; alkyl etherified product of methylol melamine and alcohol; condensation of methylol melamine; An etherified product of alcohol with the product. Here, examples of the alcohol include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, and 2-ethylhexyl alcohol.
 メラミン樹脂系架橋剤としては、市販品を使用することができる。市販品の商品名としては、例えば、オルネクスジャパン社製の「サイメル303」、「サイメル323」、「サイメル325」、「サイメル327」、「サイメル350」、「サイメル370」、「サイメル380」、「サイメル385」、「サイメル701」、「サイメル212」、「サイメル253」、「サイメル254」、モンサント社製の「レジミン735」、「レジミン740」、「レジミン741」、「レジミン745」、「レジミン746」、「レジミン747」、住友化学社製の「スミマールM55」、「スミマールM30W」、「スミマールM50W」、三井化学社製の「ユーバン20SE」、及び、「ユーバン28SE」(三井化学社製)などを挙げることができる。 Commercial products can be used as the melamine resin crosslinking agent. Examples of commercially available products include “Symel 303”, “Symel 323”, “Symel 325”, “Symel 327”, “Symel 350”, “Symel 370”, and “Symel 380” manufactured by Ornex Japan. , “Cymel 385”, “Cymel 701”, “Cymel 212”, “Cymel 253”, “Cymel 254”, “Resimin 735”, “Resimin 740”, “Resimin 741”, “Resimin 745” manufactured by Monsanto, “RESIMIN 746”, “RESIMIN 747”, “SUMIMAL M55”, “SUMIMAL M30W”, “SUMIMAL M50W” manufactured by Sumitomo Chemical Co., Ltd. “Uban 20SE” and “Uban 28SE” manufactured by Mitsui Chemicals (Mitsui Chemicals) Manufactured).
 メラミン樹脂系架橋剤としては、メラミン樹脂やベンゾグアナミン樹脂などのメラミン系骨格を有する樹脂が使用可能であり、部分もしくは完全メチロール化メラミン樹脂のメチロール基をメチルアルコール及び/又はブチルアルコールで部分的にもしくは完全にエーテル化したメチルエーテル化メラミン樹脂、ブチルエーテル化メラミン樹脂、及び、メチル-ブチル混合エーテル化メラミン樹脂を使用することができる。 As the melamine resin-based crosslinking agent, a resin having a melamine skeleton such as a melamine resin or a benzoguanamine resin can be used, and a methylol group of a partially or completely methylolated melamine resin is partially or partially with methyl alcohol and / or butyl alcohol. Fully etherified methyl etherified melamine resins, butyl etherified melamine resins, and methyl-butyl mixed etherified melamine resins can be used.
 これらのうち、耐湿性や可撓性、水中の安定性やポットライフの観点から、メチルエーテル化メラミン樹脂を、縮合性や反応性、硬度反応性やの観点から、イミノ基型(部分メチロール化)や、メチロール基型(部分エーテル化)含有メラミン樹脂を好適に使用することができる。本積層光学フィルム3においては、特にフィルムの乾燥工程において、短時間で架橋させることができ、硬度の増加に伴い室温でのタック性も良好となるイミノ基型及び/又はメチロール基型含有メラミン樹脂を用いることが好ましい。 Of these, methyl etherified melamine resin is used from the viewpoint of moisture resistance, flexibility, stability in water and pot life, and imino group type (partially methylolated) from the viewpoint of condensation, reactivity, and hardness reactivity. ) And methylol group-type (partially etherified) -containing melamine resins can be suitably used. In this laminated optical film 3, an imino group and / or methylol group type-containing melamine resin that can be crosslinked in a short time, particularly in the drying step of the film, and has good tackiness at room temperature as the hardness increases. Is preferably used.
 これらのメラミン樹脂系架橋剤は1種を単独で用いてもよく、2種以上を混合して用いてもよい。 These melamine resin-based crosslinking agents may be used alone or in combination of two or more.
 ウレタン系コーティング組成物中のメラミン樹脂系架橋剤の含有量は、ウレタン系樹脂(ここで、ウレタン系樹脂とは、ウレタン系コーティング組成物の調製に水系ウレタン系樹脂を用いる場合は、水系ウレタン系樹脂中の水を含まない固形分としてのウレタン系樹脂の純分の割合である。)100重量部に対して0.1重量部以上であることが、ウレタン系樹脂を十分に架橋させて形成されるウレタンコート層の機械的強度を十分に高める観点から好ましい。一方、未反応のメラミン樹脂系架橋剤の残留を少なくして、ウレタンコート層の機械的強度を高める観点から、メラミン樹脂系架橋剤はウレタン系樹脂100重量部に対して40重量部未満であることが好ましい。ウレタン系コーティング組成物中のメラミン樹脂系架橋剤は、ウレタン系樹脂100重量部に対して特に1~30重量部であることが好ましい。 The content of the melamine resin-based crosslinking agent in the urethane-based coating composition is a urethane-based resin (where the urethane-based resin is an aqueous urethane-based resin when a water-based urethane resin is used to prepare the urethane-based coating composition). This is the ratio of the pure urethane resin as a solid that does not contain water in the resin.) It is formed by sufficiently cross-linking the urethane resin to 100 parts by weight or more. From the viewpoint of sufficiently increasing the mechanical strength of the urethane coat layer to be formed. On the other hand, from the viewpoint of increasing the mechanical strength of the urethane coating layer by reducing the residual unreacted melamine resin crosslinking agent, the melamine resin crosslinking agent is less than 40 parts by weight with respect to 100 parts by weight of the urethane resin. It is preferable. The melamine resin-based crosslinking agent in the urethane-based coating composition is particularly preferably 1 to 30 parts by weight with respect to 100 parts by weight of the urethane-based resin.
 また、ウレタン系樹脂が酸構造を有する場合、ウレタン系樹脂の酸構造と当量になるメラミン樹脂系架橋剤の量に対し、メラミン樹脂系架橋剤の量は、重量基準で、好ましくは0.2倍以上、より好ましくは0.4倍以上、特に好ましくは0.6倍以上であり、好ましくは3.0倍以下、より好ましくは2.5倍以下、特に好ましくは2.0倍以下である。ここで、ウレタン系樹脂の酸構造と当量になるメラミン樹脂系架橋剤の量とは、ウレタン系樹脂の酸構造の全量と過不足無く反応できるメラミン樹脂系架橋剤の理論量をいう。ウレタン系樹脂が酸構造を有すると、その酸構造はメラミン樹脂系架橋剤のアルキルエーテル基、メチロール基、イミノ基を含有するメラミン構造と反応しうる。この際、メラミン樹脂系架橋剤の量を前記の範囲に収めることにより、酸構造とメラミン樹脂系架橋剤との反応を適切な程度に進行させて、形成されるウレタンコート層の機械的強度を効果的に向上させることができる。 When the urethane resin has an acid structure, the amount of the melamine resin crosslinking agent is preferably 0.2 on the weight basis with respect to the amount of the melamine resin crosslinking agent equivalent to the acid structure of the urethane resin. Times or more, more preferably 0.4 times or more, particularly preferably 0.6 times or more, preferably 3.0 times or less, more preferably 2.5 times or less, particularly preferably 2.0 times or less. . Here, the amount of the melamine resin-based crosslinking agent equivalent to the acid structure of the urethane-based resin refers to the theoretical amount of the melamine resin-based crosslinking agent that can react with the total amount of the acid structure of the urethane-based resin without excess or deficiency. When the urethane resin has an acid structure, the acid structure can react with the melamine structure containing an alkyl ether group, a methylol group, or an imino group of the melamine resin crosslinking agent. At this time, by keeping the amount of the melamine resin-based crosslinking agent in the above range, the reaction between the acid structure and the melamine resin-based crosslinking agent proceeds to an appropriate level, and the mechanical strength of the formed urethane coat layer is increased. It can be improved effectively.
(その他の成分)
 ウレタンコート層を形成するウレタンコーティング組成物は、上記の水系ウレタン系樹脂及びメラミン樹脂系架橋剤以外に、必要に応じて、本積層光学フィルム3の目的を損なわない範囲で他の成分を含有していてもよい。
(Other ingredients)
The urethane coating composition for forming the urethane coating layer contains other components in addition to the above water-based urethane resin and melamine resin-based cross-linking agent as required, as long as the purpose of the laminated optical film 3 is not impaired. It may be.
(硬化触媒)
 ウレタン系コーティング組成物は、硬化触媒を含有していてもよく、硬化触媒を含むことにより、得られるウレタンコート層の硬化性を高めることができる。 
 また、硬化触媒としては、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、及び、ジノニルナフタレンスルホン酸などのスルホン酸;該スルホン酸とアミンとの中和塩;リン酸エステル化合物とアミンとの中和塩等の1種又は2種以上を使用することができる。
(Curing catalyst)
The urethane-based coating composition may contain a curing catalyst, and by including the curing catalyst, the curability of the resulting urethane coat layer can be increased.
Moreover, as a curing catalyst, sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and dinonylnaphthalenesulfonic acid; neutralized salts of the sulfonic acid and amine; neutralization of phosphate ester compound and amine 1 type, or 2 or more types, such as a salt, can be used.
 ウレタン系コーティング組成物が硬化触媒を含有する場合、硬化触媒は、メラミン樹脂系架橋剤に対して0.01~10重量%、特に0.1~5重量%含有されることが好ましい。 When the urethane-based coating composition contains a curing catalyst, the curing catalyst is preferably contained in an amount of 0.01 to 10% by weight, particularly 0.1 to 5% by weight, based on the melamine resin-based crosslinking agent.
(塩基性物質)
 ウレタン系コーティング組成物は、塩基性物質を含有していてもよい。ウレタン系コーティング組成物中のウレタン系樹脂が酸構造を含む場合、酸構造の一部又は全部は、塩基性物質により中和されていることが好ましい。特に酸構造含有ウレタン系樹脂の酸構造のうちの20%以上が塩基性物質により中和されていることがより好ましく、50%以上が塩基性物質により中和されているのが特に好ましい。酸構造のうちの20%以上が塩基性物質により中和されることにより、基材フィルムにウレタンコート層を形成して得られる本積層光学フィルム3のフィルムが高温下に曝された熱履歴を有しても、光学材料としての特性を維持しつつ、他の光学フィルム、特に偏光子に積層して使用されるときに、積層されたフィルムとの密着性をより一層確実に維持することができる。なお、酸構造含有ウレタン系樹脂の残りの酸構造は中和されていなくてもよく、又は塩基性物質により中和されていてもよい。また、塩基性物質として不揮発性塩基と揮発性塩基のどちらを使用してもかまわない。
(Basic substance)
The urethane-based coating composition may contain a basic substance. When the urethane-based resin in the urethane-based coating composition includes an acid structure, part or all of the acid structure is preferably neutralized with a basic substance. In particular, 20% or more of the acid structure of the acid structure-containing urethane resin is more preferably neutralized with a basic substance, and 50% or more is particularly preferably neutralized with a basic substance. 20% or more of the acid structure is neutralized with a basic substance, so that the heat history of the film of the present laminated optical film 3 obtained by forming a urethane coat layer on the base film is exposed to a high temperature. Even if it has, it can maintain the adhesiveness with the laminated film even more surely when it is used by being laminated on other optical films, particularly polarizers, while maintaining the properties as an optical material. it can. The remaining acid structure of the acid structure-containing urethane resin may not be neutralized, or may be neutralized with a basic substance. Further, either a non-volatile base or a volatile base may be used as the basic substance.
(不揮発性塩基)
 不揮発性塩基としては、ウレタン系コーティング組成物を基材フィルムの表面に塗布した後に乾燥させる際の処理条件下、例えば80℃で1時間放置した場合において実質的に不揮発性である無機塩基及び有機塩基を挙げることができる。実質的に不揮発性である無機塩基及び有機塩基としては、前記処理後に不揮発性塩基の減少分が80%以下であるものを挙げることができる。
(Nonvolatile base)
Nonvolatile bases include inorganic bases and organics that are substantially non-volatile when left standing at 80 ° C. for 1 hour, for example, under the treatment conditions when the urethane-based coating composition is applied to the surface of the substrate film and then dried. A base can be mentioned. Examples of the substantially non-volatile inorganic base and organic base include those whose decrease in non-volatile base is 80% or less after the treatment.
 不揮発性塩基としては、水に溶解性があるか、又は水に分散してエマルジョン化しうるものが好ましい。これにより、水系ウレタン系樹脂の塗布性を良好にして、ウレタンコート層の形成を容易に行うことが可能となる。 As the non-volatile base, those which are soluble in water or can be emulsified by being dispersed in water are preferable. Thereby, the applicability of the water-based urethane resin can be improved, and the urethane coat layer can be easily formed.
 前記不揮発性塩基としては、次のようなものが挙げられる。
 水酸化ナトリウムや水酸化カリウムなどの無機塩基;
 2-アミノ-2-メチル-1-プロパノール(AMP)、モノエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール(AMPD)、2-アミノ-2-ヒドロキシメチル-1,3-プロパン水酸化カリウム、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、3-ウレイドプロピルトリメトシキシシラン、3-アミノプロピル-トリス(2-メトキシ-エトキシ-エトキシ)シラン、シクロヘキシルアミン、ヘキサメチレンジアミン、エチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンペンタミン、アミノエチルエタノールアミン、1,2-プロパンジアミン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-ジシクロヘキシルメタンジアミン、1,2-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、アミノエチルエタノールアミン、アミノプロピルエタノールアミン、アミノヘキシルエタノールアミン、アミノエチルプロパノールアミン、アミノプロピルプロパノールアミン、アミノヘキシルプロパノールアミン、5-アミノピラゾール、1-メチル-5-アミノピラゾール、1-イソプロピル-5-アミノピラゾール、1-ベンジル-5-アミノピラゾール、1,3-ジメチル-5-アミノピラゾール、1-イソプロピル-3-メチル-5-アミノピラゾール、1-ベンジル-3-メチル-5-アミノピラゾール、1-メチル-4-クロロ-5-アミノピラゾール、1-メチル-4-アシノ-5-アミノピラゾール、1-イソプロピル-4-クロロ-5-アミノピラゾール、3-メチル-4-クロロ-5-アミノピラゾール、及び、1-ベンジル-4-クロロ-5-アミノピラゾールなどの一級アミン;
Examples of the non-volatile base include the following.
Inorganic bases such as sodium hydroxide and potassium hydroxide;
2-amino-2-methyl-1-propanol (AMP), monoethanolamine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3- Propane potassium hydroxide, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethyl Dimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-aminopropyl-tris (2-methoxy-ethoxy-ethoxy) silane, cyclohexylamine, hexamethylenediamine, ethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenepentamine, Amino Eth Ethanolamine, 1,2-propanediamine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-dicyclohexylmethanediamine, 1,2-cyclohexanediamine, 1,4-cyclohexanediamine, aminoethylethanol Amine, aminopropylethanolamine, aminohexylethanolamine, aminoethylpropanolamine, aminopropylpropanolamine, aminohexylpropanolamine, 5-aminopyrazole, 1-methyl-5-aminopyrazole, 1-isopropyl-5-aminopyrazole, 1-benzyl-5-aminopyrazole, 1,3-dimethyl-5-aminopyrazole, 1-isopropyl-3-methyl-5-aminopyrazole, 1-benzyl-3-methyl-5 -Aminopyrazole, 1-methyl-4-chloro-5-aminopyrazole, 1-methyl-4-acino-5-aminopyrazole, 1-isopropyl-4-chloro-5-aminopyrazole, 3-methyl-4-chloro Primary amines such as -5-aminopyrazole and 1-benzyl-4-chloro-5-aminopyrazole;
 ジエタノールアミン、モルホリン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、N-フェニル-γ-アミノプロピルトリメトキシシランなどの二級アミン;
 N-メチル-3-アミノプロピルトリメトキシカルボン酸ジヒドラジド、カルボジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、グリコリック酸ジヒドラジド、ポリアクリル酸ジヒドラジド等のヒドラジド化合物;
 トリエタノールアミン、トリイソプロパノールアミン、トリ[(2-ヒドロキシ)-1-プロピル]アミン、N,N-ジエチルメタノールアミン、N,N-ジメチルエタノールアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルベンジルアミン、ジエチルアミノプロピルアミン、N-(2-アミノエチル)ピペラジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、及び、N,N-ビス(トリメチルシリル)ウレアなどの三級アミン;
Secondary amines such as diethanolamine, morpholine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, N-phenyl-γ-aminopropyltrimethoxysilane;
N-methyl-3-aminopropyltrimethoxycarboxylic acid dihydrazide, carbodihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide Hydrazide compounds such as glycolic acid dihydrazide and polyacrylic acid dihydrazide;
Triethanolamine, triisopropanolamine, tri [(2-hydroxy) -1-propyl] amine, N, N-diethylmethanolamine, N, N-dimethylethanolamine, N, N, N ′, N′-tetramethyl Ethylenediamine, N, N-dimethylbenzylamine, diethylaminopropylamine, N- (2-aminoethyl) piperazine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-bis (trimethylsilyl) urea, etc. Tertiary amines of
 イミダゾール、2-メチルイミダゾール、1-(2-アミノエチル)-2-メチルイミダゾール、1-(2-アミノエチル)-2-エチルイミダゾール、2-アミノイミダゾールサルフェート、及び、2-(2-アミノエチル)-ベンゾイミダゾール等イミダゾール化合物;
 イミダゾリン、2-メチル-2-イミダゾリン等のイミダゾリン化合物;
Imidazole, 2-methylimidazole, 1- (2-aminoethyl) -2-methylimidazole, 1- (2-aminoethyl) -2-ethylimidazole, 2-aminoimidazole sulfate, and 2- (2-aminoethyl) ) -Imidazole compounds such as benzimidazole;
Imidazoline compounds such as imidazoline and 2-methyl-2-imidazoline;
 中でも、ヒドラジド化合物のようにヒドラジノ基(-NHNH基)を有する化合物は、反応性が高いのでウレタンコート層の機械的強度を適切に向上させることができ、また比較的沸点が高くウレタンコート層の耐熱性を高くできるので、特に好ましい。 Among them, a compound having a hydrazino group (—NHNH 2 group), such as a hydrazide compound, has high reactivity, and therefore can appropriately improve the mechanical strength of the urethane coat layer, and has a relatively high boiling point and a urethane coat layer. Since the heat resistance of can be made high, it is especially preferable.
 これらの不揮発性塩基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 These non-volatile bases may be used alone or in combination of two or more at any ratio.
 ウレタン系コーティング組成物が不揮発性塩基を含有する場合、その含有量は、ウレタン系樹脂(ここで、ウレタン系樹脂とは、ウレタン系コーティング組成物の調製に水系ウレタン系樹脂を用いる場合は、水系ウレタン系樹脂中の水を含まない固形分としてのウレタン系樹脂の純分の割合である。)100重量部に対し、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常40重量部以下、好ましくは30重量部以下、より好ましくは20重量部以下である。不揮発性塩基の量を上記範囲の下限値以上とすることによりウレタンコート層の機械的強度を適切に向上させることができ、上限値以下とすることにより未反応の不揮発性塩基の残留を少なくでき、やはりウレタンコート層の機械的強度を適切に向上させることができる。 When the urethane-based coating composition contains a non-volatile base, the content of the urethane-based coating composition is a urethane-based resin (where the urethane-based resin is water-based when a water-based urethane-based resin is used to prepare the urethane-based coating composition). This is the ratio of the pure urethane resin as a solid that does not contain water in the urethane resin.) Usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts per 100 parts by weight. It is at least 40 parts by weight, preferably at most 30 parts by weight, more preferably at most 20 parts by weight. By making the amount of the non-volatile base more than the lower limit of the above range, the mechanical strength of the urethane coat layer can be appropriately improved, and by making it the upper limit or less, the residual unreacted non-volatile base can be reduced. Also, the mechanical strength of the urethane coat layer can be improved appropriately.
(揮発性塩基)
 揮発性塩基としては、例えば、アンモニア、揮発性第一級~第三級アミン等を挙げることができる。
(Volatile base)
Examples of the volatile base include ammonia and volatile primary to tertiary amines.
 揮発性塩基としては、揮発性第三級アルキルアミンが好ましく、揮発性第三級トリアルキルアミンがより好ましい。 As the volatile base, a volatile tertiary alkylamine is preferable, and a volatile tertiary trialkylamine is more preferable.
 揮発性第三級アルキルアミンとしては、トリメチルアミンまたはトリエチルアミンが好ましく、トリエチルアミンがより好ましい。 As the volatile tertiary alkylamine, trimethylamine or triethylamine is preferable, and triethylamine is more preferable.
 ウレタン系コーティング組成物が、揮発性塩基を含有すると安定性が向上する。これは、ウレタン系樹脂の酸構造と揮発性塩基とが、ウレタン系コーティング組成物中で分散安定性の向上に寄与するためであると考えられる。 Stability is improved when the urethane-based coating composition contains a volatile base. This is considered because the acid structure and volatile base of the urethane resin contribute to the improvement of dispersion stability in the urethane coating composition.
 また、揮発性塩基は、水系ウレタン系樹脂のエマルジョン中では、少なくともその一部が共役酸の形で存在していると考えられる。 Further, it is considered that at least a part of the volatile base is present in the form of a conjugate acid in the emulsion of the water-based urethane resin.
 揮発性塩基は、ウレタン系コーティング組成物中に、特に制限されず含有することができるが、ウレタン系樹脂(ここで、ウレタン系樹脂とは、ウレタン系コーティング組成物の調製に水系ウレタン系樹脂を用いる場合は、水系ウレタン系樹脂中の水を含まない固形分としてのウレタン系樹脂の純分の割合である。)の酸構造1モルに対して、第三級アルキルアミン等の揮発性塩基が0.1~6モルとなるように含有することが好ましく、0.5~4.0モルとなるように含有することがより好ましい。この範囲であると、ウレタン系コーティング組成物の安定性がより向上する。 The volatile base can be contained in the urethane-based coating composition without any particular limitation, but the urethane-based resin (wherein the urethane-based resin refers to a water-based urethane-based resin for the preparation of the urethane-based coating composition). When used, it is the ratio of the pure urethane resin as a solid content that does not contain water in the aqueous urethane resin.) With respect to 1 mol of the acid structure, a volatile base such as a tertiary alkylamine is present. The content is preferably 0.1 to 6 mol, and more preferably 0.5 to 4.0 mol. Within this range, the stability of the urethane-based coating composition is further improved.
 揮発性塩基は、ウレタン系コーティング組成物を硬化させたときに、ウレタンコート層中に痕跡量しか残留せず、本積層光学フィルム3に係るウレタンコート層と接着剤層との接着性を損なうことはなく、不揮発性塩基などにおいて懸念される高温高湿条件など水分の影響が大きい条件下においてもブリードアウトせず、偏光板などへの影響をほとんど生じないため好ましい。 The volatile base, when the urethane coating composition is cured, only a trace amount remains in the urethane coat layer and impairs the adhesion between the urethane coat layer and the adhesive layer according to the present laminated optical film 3. However, it is preferable because it does not bleed out under conditions where the influence of moisture is large, such as a high temperature and high humidity condition which is a concern for nonvolatile bases, and hardly affects the polarizing plate.
(ポリビニルアルコール)
 ウレタン系コーティング組成物は、ポリビニルアルコールを含有していてもよく、ポリビニルアルコールを含むことで室温におけるウレタンコート層表面のタック性改良や、水系接着剤との密着性増加などの機能が期待できる。
(Polyvinyl alcohol)
The urethane-based coating composition may contain polyvinyl alcohol, and by including polyvinyl alcohol, functions such as an improvement in tackiness of the urethane coat layer surface at room temperature and an increase in adhesion with a water-based adhesive can be expected.
 ウレタン系コーティング組成物がポリビニルアルコールを含有する場合、ポリビニルアルコールの含有量は、固形分量に対し、0.1重量%以上、より好ましくは1重量%以上であり、好ましくは20重量%以下、より好ましくは10重量%以下である。ポリビニルアルコールの含有量を上記下限値以上とすることでウレタンコート層表面のタック性と水系接着剤との接着性を向上することができ、上記上限値以下とすることで基材フィルムとウレタンコート層との密着性を維持することができる。
 なお、ここでウレタン系コーティング組成物中の全固形分とは、ウレタン系コーティング組成物中の溶剤以外の成分の合計に該当する。
When the urethane-based coating composition contains polyvinyl alcohol, the content of polyvinyl alcohol is 0.1% by weight or more, more preferably 1% by weight or more, preferably 20% by weight or less, based on the solid content. Preferably it is 10 weight% or less. The tackiness of the urethane coat layer surface and the adhesiveness with the water-based adhesive can be improved by setting the content of polyvinyl alcohol to the above lower limit value or more, and the base film and the urethane coat can be made to be the upper limit value or less. Adhesion with the layer can be maintained.
Here, the total solid content in the urethane-based coating composition corresponds to the total of components other than the solvent in the urethane-based coating composition.
(非イオン系界面活性剤)
 ウレタン系コーティング組成物は、三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有していてもよい。このような非イオン系界面活性剤を含むことにより、未硬化状態のウレタン系コーティング組成物の発泡を抑制しつつ濡れ性を改善できるので、基材フィルムに塗布した際のはじきムラの発生を防止できる。
(Nonionic surfactant)
The urethane-based coating composition may contain an acetylene glycol in which a hydroxyl group and a methyl group are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof. Good. By including such a nonionic surfactant, wetting can be improved while suppressing foaming of the uncured urethane-based coating composition, thus preventing the occurrence of repelling unevenness when applied to a substrate film. it can.
 この非イオン系界面活性剤としては、下記式(i)で表されるものが挙げられる。
  R-C(CH)(OR)-C≡C-C(CH)(OR)-R …(i)(式中、R及びRはそれぞれ独立して、-(CH-Hを表す。mは0以上の整数を表し、0~400が好ましく、0又は20~100であることがより好ましく、40~70であることが特に好ましい。R及びRはそれぞれ独立して、水素原子又は置換基を有していてもよいアルキル基を表す。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、及び、ヘキシル基などが挙げられ、イソプロピル基が好ましい。)
 かかる非イオン系界面活性剤としては、例えば、日信化学工業社製のサーフィノール104シリーズ、サーフィノール400シリーズなどを用いることができる。
As this nonionic surfactant, what is represented by following formula (i) is mentioned.
R 3 —C (CH 3 ) (OR 1 ) —C≡C—C (CH 3 ) (OR 2 ) —R 4 (I) (wherein R 1 and R 2 are each independently-( CH 2 ) m —H, m represents an integer of 0 or more, preferably 0 to 400, more preferably 0 or 20 to 100, and particularly preferably 40 to 70. R 3 and R 4 each independently represents a hydrogen atom or an alkyl group which may have a substituent, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. Group, pentyl group, hexyl group and the like, and isopropyl group is preferable.)
As such a nonionic surfactant, for example, Surfynol 104 series, Surfynol 400 series manufactured by Nissin Chemical Industry Co., Ltd. can be used.
 ウレタン系コーティング組成物が非イオン系界面活性剤を含有する場合、非イオン系界面活性剤の含有量は、ウレタン系コーティング組成物中の全固形分の総量に対し、重量基準で、好ましくは10ppm以上、より好ましくは100ppm以上であり、好ましくは10,000ppm以下、より好ましくは1,000ppm以下である。非イオン系界面活性剤の含有量を上記下限値以上とすることではじきムラの発生を抑制でき、上記上限値以下とすることで発泡を抑制し泡起因による不良を防止できる。 When the urethane-based coating composition contains a nonionic surfactant, the content of the nonionic surfactant is preferably 10 ppm on a weight basis with respect to the total amount of all solids in the urethane-based coating composition. As mentioned above, More preferably, it is 100 ppm or more, Preferably it is 10,000 ppm or less, More preferably, it is 1,000 ppm or less. By making the content of the nonionic surfactant equal to or higher than the above lower limit value, occurrence of repelling unevenness can be suppressed, and when the content is equal to or lower than the upper limit value, foaming can be suppressed and defects due to bubbles can be prevented.
(微粒子)
 ウレタン系コーティング組成物は、微粒子を含んでいてもよく、微粒子を含むことにより、形成されるウレタンコート層の表面に凹凸を形成し、これにより、巻回の際にウレタンコート層が他の層と接触する面積が小さくなり、その分だけウレタンコート層の表面の滑り性を向上させて、本積層光学フィルム3のフィルムを巻回する際のシワの発生を抑制できる。
(Fine particles)
The urethane-based coating composition may contain fine particles, and by containing fine particles, irregularities are formed on the surface of the urethane coat layer to be formed, whereby the urethane coat layer becomes another layer during winding. The area in contact with the surface of the urethane coating layer is reduced, and the surface slipperiness of the urethane coating layer is improved accordingly, and the generation of wrinkles when the film of the laminated optical film 3 is wound can be suppressed.
 微粒子の平均粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上であり、通常500nm以下、好ましくは400nm以下、より好ましくは300nm以下である。平均粒子径を上記範囲の下限値以上にすることにより、形成されるウレタンコート層の滑り性を効果的に高めることができ、上記範囲の上限値以下にすることにより、得られるフィルムをロール状に巻回する際の巻きズレの発生を防止できる。なお、微粒子の平均粒子径としては、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径(50%体積累積径D50)を採用する。 The average particle diameter of the fine particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 400 nm or less, more preferably 300 nm or less. By making the average particle diameter equal to or higher than the lower limit value of the above range, the slipping property of the urethane coat layer to be formed can be effectively increased. It is possible to prevent the occurrence of winding misalignment when wound around. In addition, as an average particle diameter of microparticles | fine-particles, a particle size distribution is measured by the laser diffraction method, and the particle size from which the cumulative volume calculated from the small diameter side in the measured particle size distribution becomes 50% (50% volume cumulative diameter D50) Is adopted.
 微粒子としては、無機微粒子、有機微粒子のいずれを用いてもよいが、水分散性の微粒子を用いることが好ましい。無機微粒子の材料を挙げると、例えば、シリカ、チタニア、アルミナ、及び、ジルコニア等の無機酸化物;炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、及び、燐酸カルシウム等が挙げられる。また、有機微粒子の材料を挙げると、例えば、シリコーン樹脂、フッ素樹脂、及び、アクリル樹脂等が挙げられる。これらの中でも、シワの発生を抑制する能力及び透明性に優れ、ヘイズを生じ難く、着色が無いため、本積層光学フィルム3のフィルムの光学特性に与える影響がより小さいこと、また、水系ウレタン系樹脂への分散性及び分散安定性が良好であることから、シリカ微粒子が好ましく、シリカ微粒子の中でも、非晶質コロイダルシリカ粒子が特に好ましい。 As the fine particles, either inorganic fine particles or organic fine particles may be used, but water-dispersible fine particles are preferably used. Examples of inorganic fine particle materials include inorganic oxides such as silica, titania, alumina, and zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, And calcium phosphate etc. are mentioned. Examples of the organic fine particle material include silicone resin, fluororesin, and acrylic resin. Among these, since it is excellent in the ability to suppress the generation of wrinkles and transparency, hardly causes haze, and has no coloration, the influence on the optical characteristics of the film of the present laminated optical film 3 is small, and an aqueous urethane type Silica fine particles are preferred because of their good dispersibility and dispersion stability in the resin, and among the silica fine particles, amorphous colloidal silica particles are particularly preferred.
 なお、微粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In addition, fine particles may be used alone or in combination of two or more at an arbitrary ratio.
 ウレタン系コーティング組成物が上記のような微粒子を含有する場合、微粒子の含有量は、ウレタン系樹脂(ここで、ウレタン系樹脂とは、ウレタン系コーティング組成物の調製に水系ウレタン系樹脂を用いる場合は、水系ウレタン系樹脂中の水を含まない固形分としてのウレタン系樹脂の純分の割合である。)100重量部に対し、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常30重量部以下、好ましくは25重量部以下、より好ましくは20重量部以下である。微粒子の含有量を上記範囲の下限値以上とすることにより、本積層光学フィルム3のフィルムを巻回した場合にシワの発生を抑制できる。また、微粒子の含有量を上記範囲の上限値以下とすることにより、本積層光学フィルム3のフィルムの白濁の無い外観を維持できる。 When the urethane-based coating composition contains the fine particles as described above, the content of the fine particles is the urethane-based resin (where the urethane-based resin is a case where a water-based urethane-based resin is used to prepare the urethane-based coating composition). Is the ratio of the pure content of the urethane-based resin as a solid content not containing water in the water-based urethane-based resin.) Usually 0.5 parts by weight or more, preferably 1 part by weight or more, relative to 100 parts by weight. The amount is preferably 2 parts by weight or more, usually 30 parts by weight or less, preferably 25 parts by weight or less, more preferably 20 parts by weight or less. By setting the content of the fine particles to be equal to or higher than the lower limit of the above range, generation of wrinkles can be suppressed when the film of the present laminated optical film 3 is wound. Moreover, the external appearance without the cloudiness of the film of this laminated optical film 3 is maintainable by making content of microparticles into the upper limit of the said range or less.
(その他の成分)
 ウレタン系コーティング組成物は、本積層光学フィルム3の効果を著しく損なわない限り、例えば、上記の非イオン系界面活性剤以外の界面活性剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、アンチブロッキング剤、分散安定剤、揺変剤、酸化防止剤、消泡剤、増粘剤、分散剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックスなどを含有していてもよい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(Other ingredients)
The urethane-based coating composition is, for example, a surfactant other than the nonionic surfactant described above, a heat-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, and a slip agent, as long as the effect of the present laminated optical film 3 is not significantly impaired. Contains anti-blocking agents, dispersion stabilizers, thixotropic agents, antioxidants, antifoaming agents, thickeners, dispersants, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, etc. May be. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
(溶剤)
 ウレタン系コーティング組成物は、通常、ウレタン系樹脂とメラミン樹脂系架橋剤を必須成分とし、必要に応じて用いられる上記の任意成分を含む分散液として調製される。
 ウレタン系コーティング組成物の調製に用いる溶剤(分散媒)としては、水及び/又は水溶性の溶剤、好ましくは水、特に好ましくはイオン交換水が挙げられる。
(solvent)
The urethane-based coating composition is usually prepared as a dispersion containing the urethane-based resin and the melamine resin-based crosslinking agent as essential components and the above-described optional components used as necessary.
Examples of the solvent (dispersion medium) used for preparing the urethane-based coating composition include water and / or a water-soluble solvent, preferably water, and particularly preferably ion-exchanged water.
 水溶性の溶剤としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、t-ブタノール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、及び、エチレングリコールモノブチルエーテルなどが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the water-soluble solvent include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, t-butanol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, and ethylene glycol. Examples include monobutyl ether. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 溶剤は、ウレタン系コーティング組成物の粘度が、塗布に適した範囲になるように設定することが好ましく、ウレタンコーティング組成物は、塗工性、成膜性の観点から、その固形分濃度が好ましく5~40重量%、特に好ましくは10~30重量%程度となるように調製される。 The solvent is preferably set so that the viscosity of the urethane-based coating composition is in a range suitable for coating, and the urethane coating composition preferably has a solid content concentration from the viewpoint of coating properties and film formability. It is prepared to be 5 to 40% by weight, particularly preferably about 10 to 30% by weight.
(ウレタンコーティング組成物の調製)
 ウレタンコーティング組成物は、水、好ましくはイオン交換水を用いて前述のウレタン系樹脂、好ましくは水系ウレタン系樹脂、及びメラミン樹脂系架橋剤、必要に応じて用いられるその他の成分を溶解ないし分散させることにより調製される。
(Preparation of urethane coating composition)
The urethane coating composition dissolves or disperses the aforementioned urethane resin, preferably water-based urethane resin, and melamine resin-based crosslinking agent, and other components used as necessary, using water, preferably ion-exchanged water. It is prepared by.
 ウレタン系コーティング組成物においては、通常、ウレタン系樹脂等の成分が粒子となって分散している。この粒子の粒径は、本積層光学フィルム3のフィルムの光学特性の観点から、0.01~0.4μmであることが好ましい。前記の粒径は、動的光散乱法により測定してもよく、例えば、大塚電子社製の光散乱光度計DLS-8000シリーズにより測定してもよい。 In the urethane coating composition, components such as urethane resin are usually dispersed as particles. From the viewpoint of the optical characteristics of the film of the present laminated optical film 3, the particle diameter of the particles is preferably 0.01 to 0.4 μm. The particle size may be measured by a dynamic light scattering method, for example, a light scattering photometer DLS-8000 series manufactured by Otsuka Electronics Co., Ltd.
 ウレタン系コーティング組成物の粘度は、100mPa・s以下であることが好ましく、50mPa・s以下であるのが特に好ましい。ウレタン系コーティング組成物の粘度が上記範囲内にあると、基材フィルムの表面にウレタン系コーティング組成物を均一に塗布することができる。ここで、ウレタン系コーティング組成物の粘度は、回転粘度計により25℃の条件下で60rpmの回転数において測定した値である。ウレタン系コーティング組成物の粘度は、例えば、ウレタン系コーティング組成物が含む溶剤の割合及びウレタン系コーティング組成物中に含まれる粒子の粒径などによって調整することができる。 The viscosity of the urethane-based coating composition is preferably 100 mPa · s or less, and particularly preferably 50 mPa · s or less. When the viscosity of the urethane-based coating composition is within the above range, the urethane-based coating composition can be uniformly applied to the surface of the base film. Here, the viscosity of the urethane-based coating composition is a value measured with a rotational viscometer at a rotational speed of 60 rpm under the condition of 25 ° C. The viscosity of the urethane-based coating composition can be adjusted by, for example, the ratio of the solvent contained in the urethane-based coating composition and the particle size of the particles contained in the urethane-based coating composition.
(ウレタンコート層の形成方法)
 ウレタンコート層は、基材フィルムの少なくとも片面に、上述のウレタン系コーティング組成物を塗布し、形成された塗膜を乾燥固化(硬化)させることにより形成される。
(Method for forming urethane coat layer)
The urethane coat layer is formed by applying the above urethane coating composition on at least one surface of the base film and drying and solidifying (curing) the formed coating film.
 ウレタン系コーティング組成物の塗布方法は特に限定されず、公知の塗布法を採用することができる。具体的な塗布法としては、例えば、ワイヤーバーコート法、ディップ法、スプレー法、スピンコート法、ロールコート法、グラビアコート法、エアーナイフコート法、カーテンコート法、スライドコート法、エクストルージョンコート法などが挙げられる。 The application method of the urethane coating composition is not particularly limited, and a known application method can be employed. Specific coating methods include, for example, a wire bar coating method, a dip method, a spray method, a spin coating method, a roll coating method, a gravure coating method, an air knife coating method, a curtain coating method, a slide coating method, and an extrusion coating method. Etc.
 形成された塗膜を硬化させる際には、ウレタン系コーティング組成物中の溶剤を乾燥させて除去する。乾燥方法は任意であり、例えば、減圧乾燥、加熱乾燥など任意の方法で行ってもよい。中でも、ウレタン系コーティング組成物中において架橋反応等の反応を速やかに進行させる観点から、加熱乾燥によって硬化させることが好ましい。 When curing the formed coating film, the solvent in the urethane coating composition is dried and removed. The drying method is arbitrary, and for example, the drying may be performed by any method such as reduced pressure drying or heat drying. Especially, it is preferable to make it harden | cure by heat drying from a viewpoint of making reaction, such as a crosslinking reaction, rapidly advance in a urethane type coating composition.
 加熱により塗膜を硬化させる場合、加熱温度は、ウレタン系コーティング組成物の溶剤を乾燥させて塗膜を硬化させることができる範囲で適切に設定する。ただし、基材フィルムとして延伸フィルムを用い、且つ、当該基材フィルムに発現した位相差を変化させたくない場合には、加熱温度は、基材フィルムにおいて配向緩和が生じない温度に設定することが好ましい。具体的には、上限温度としては基材フィルムを形成する材料のガラス転移温度をTgとしたときに、(Tg-10)℃以下であり、好ましくは(Tg-20)℃以下であり、より好ましくは(Tg-30)℃以下である。下限温度としては溶剤の沸点をBpとしたときに、(Bp-50)℃以上であり、好ましくは(Bp-40)℃以上であり、より好ましくは(Bp-30)℃以上である。 When the coating film is cured by heating, the heating temperature is appropriately set within a range in which the solvent of the urethane coating composition can be dried to cure the coating film. However, when a stretched film is used as the base film and it is not desired to change the retardation developed in the base film, the heating temperature may be set to a temperature at which no orientation relaxation occurs in the base film. preferable. Specifically, the upper limit temperature is (Tg−10) ° C. or lower, preferably (Tg−20) ° C. or lower, where Tg is the glass transition temperature of the material forming the base film. Preferably, it is (Tg-30) ° C. or lower. The lower limit temperature is (Bp-50) ° C. or higher, preferably (Bp-40) ° C. or higher, more preferably (Bp-30) ° C. or higher, when the boiling point of the solvent is Bp.
 具体的な加熱乾燥条件に関しては特に限定されるわけではないが、通常、50~150℃で5~200秒間、好ましくは60~130℃で10~100秒間を目安として乾燥を行うのが良い。 The specific heating and drying conditions are not particularly limited, but the drying is usually performed at 50 to 150 ° C. for 5 to 200 seconds, preferably at 60 to 130 ° C. for 10 to 100 seconds.
 さらに、ウレタン系コーティング組成物を基材フィルムの表面に形成した後で、延伸処理を行ってもよい。延伸処理は、塗膜を硬化させた後で行ってもよいが、ウレタンコート層からの微粒子などの脱落を防ぐ観点からは、塗膜を硬化させる前、又は硬化させるのと同時に延伸処理を行うことが好ましい。さらに、均一なウレタンコート層を形成する観点からは、塗膜を硬化させるのと同時に延伸処理を行うことがより好ましい。 Furthermore, after the urethane-based coating composition is formed on the surface of the base film, a stretching treatment may be performed. The stretching treatment may be performed after the coating film is cured, but from the viewpoint of preventing the removal of fine particles from the urethane coat layer, the stretching treatment is performed before or simultaneously with curing the coating film. It is preferable. Furthermore, from the viewpoint of forming a uniform urethane coat layer, it is more preferable to perform a stretching treatment simultaneously with curing the coating film.
 基材フィルムを延伸すると、表面に形成されたウレタンコート層も延伸されることになる。しかし、通常はウレタンコート層の厚みは基材フィルムの厚みに比べ十分に小さいので、延伸されたウレタンコート層には大きな位相差は発現しない。 When the base film is stretched, the urethane coat layer formed on the surface is also stretched. However, since the thickness of the urethane coat layer is usually sufficiently smaller than the thickness of the base film, a large retardation is not exhibited in the stretched urethane coat layer.
 このようにして形成されたウレタンコート層の表面には、親水化表面処理を施してもよい。ウレタンコート層の表面は、通常、本積層光学フィルム3を他の部材と貼り合わせる際の貼り合せ面となるので、この面の親水性を更に向上させることにより、本積層光学フィルム3と他の部材との接着性を顕著に向上させることができる。 The surface of the urethane coat layer formed in this way may be subjected to a hydrophilic surface treatment. The surface of the urethane coat layer is usually a bonding surface when the laminated optical film 3 is bonded to another member. Therefore, by further improving the hydrophilicity of this surface, the laminated optical film 3 and other layers Adhesiveness with a member can be remarkably improved.
 ウレタンコート層に対する親水化表面処理としては、例えば、コロナ放電処理、プラズマ処理、ケン化処理、及び、紫外線照射処理などが挙げられる。中でも、処理効率の点などからコロナ放電処理及びプラズマ処理が好ましく、コロナ放電処理が特に好ましい。プラズマ処理としては、大気圧プラズマ処理が好ましい。 Examples of the hydrophilic surface treatment for the urethane coat layer include corona discharge treatment, plasma treatment, saponification treatment, and ultraviolet irradiation treatment. Of these, corona discharge treatment and plasma treatment are preferable from the viewpoint of processing efficiency, and corona discharge treatment is particularly preferable. As the plasma treatment, atmospheric pressure plasma treatment is preferable.
 親水化表面処理により、ウレタンコート層の表面の濡れ指数を、好ましくは40mN/m以上であり、より好ましくは50mN/m以上であり、特に好ましくは60mN/m以上であり、通常40mN/m以上にすることが望ましい。ウレタンコート層の表面をこのような濡れ指数となるように表面改質処理することにより、本積層光学フィルム3を偏光子等の他の部材と強固に接着できるようになる。 By the hydrophilization surface treatment, the wetness index of the surface of the urethane coat layer is preferably 40 mN / m or more, more preferably 50 mN / m or more, particularly preferably 60 mN / m or more, and usually 40 mN / m or more. It is desirable to make it. By subjecting the surface of the urethane coating layer to such a wetness index, the laminated optical film 3 can be firmly bonded to other members such as a polarizer.
(膜厚)
 ウレタンコート層の膜厚は、本積層光学フィルム3及びこれを用いた本積層光学フィルム3の偏光板の薄膜化と基材フィルムの歪み(硬化収縮)防止や位相差への影響の観点から、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。また、接着強度の観点から、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。上記範囲であれば、基材層と後述の水系接着剤の双方に対して良好な接着性を得ることができる。
(Film thickness)
The film thickness of the urethane coating layer is from the viewpoint of the effect on the retardation of the present laminated optical film 3 and the prevention of distortion (curing shrinkage) of the base film and the retardation of the laminated optical film 3 using this laminated optical film. 10 μm or less is preferable, 5 μm or less is more preferable, and 3 μm or less is more preferable. Moreover, from a viewpoint of adhesive strength, 0.1 micrometer or more is preferable, 0.2 micrometer or more is more preferable, and 0.3 micrometer or more is further more preferable. If it is the said range, favorable adhesiveness can be obtained with respect to both a base material layer and the below-mentioned aqueous adhesive.
 また、基材フィルムの膜厚(t1)とウレタンコート層の膜厚(t2)の膜厚の比(t1/t2)は、好ましくは1~1000であり、より好ましくは3~500、さらに好ましくは5~200である。t1/t2が上記の範囲であればウレタン系コーティング組成物の加熱乾燥時においても基材フィルムの強度低下や皺の発生、及び、位相差の増加が生じにくいため好ましい。 Further, the ratio (t1 / t2) of the film thickness (t1) of the base film to the film thickness (t2) of the urethane coat layer is preferably 1 to 1000, more preferably 3 to 500, and still more preferably. Is from 5 to 200. If t1 / t2 is in the above-mentioned range, it is preferable that the strength of the base film is not reduced, wrinkles are generated, and retardation is not easily increased even when the urethane coating composition is heated and dried.
 なお、本積層光学フィルム3において、ウレタンコート層は基材フィルムの少なくとも片面に形成されるものであり、ウレタンコート層は、基材フィルムの両面に形成されていてもよい。上記のウレタンコート層の膜厚は、基材フィルムの片面あたりのウレタンコート層の膜厚の値である。基材フィルムの両面にウレタンコート層が形成されている場合、片面あたりのウレタンコート層の膜厚は上記の下限以上であることが好ましく、両面のウレタンコート層の合計の膜厚は上記の上限以下であることが好ましい。また、フィルムの反り等の防止の面から、両面のウレタンコート層の膜厚は等しいことが好ましい。 In the laminated optical film 3, the urethane coat layer is formed on at least one side of the base film, and the urethane coat layer may be formed on both sides of the base film. The film thickness of the urethane coat layer is a value of the film thickness of the urethane coat layer per one side of the base film. When the urethane coat layer is formed on both surfaces of the base film, the film thickness of the urethane coat layer per one side is preferably equal to or more than the above lower limit, and the total film thickness of the both sides urethane coat layer is the above upper limit. The following is preferable. Moreover, it is preferable that the film thickness of a urethane coat layer of both surfaces is equal from the surface of prevention of the curvature etc. of a film.
<3-2.偏光板>
 本積層光学フィルム3の用途には特に制限はないが、透明性、寸法安定性、耐湿熱性に優れることから、特に、偏光板の偏光膜の保護フィルムとして好適に用いることができる。
<3-2. Polarizing plate>
Although there is no restriction | limiting in particular in the use of this laminated optical film 3, Since it is excellent in transparency, dimensional stability, and heat-and-moisture resistance, it can be used suitably especially as a protective film of the polarizing film of a polarizing plate.
 本積層光学フィルム3を例えば、偏光板における偏光膜の保護フィルムとして使用する場合、一般的には、ウレタンコート層側に偏光膜を接着させるための接着剤を介して偏光膜を貼り合わせる。
 接着剤としては、従来公知のものを使用することができ、例えば、ポリビニルアルコール系やウレタン化合物等の水系接着剤、アクリル系化合物やエポキシ系化合物、オキサゾリン化合物等の活性エネルギー線硬化系接着剤が挙げられる。中でも、偏光膜であるポリビニルアルコール(PVA)との接着性や、廃棄物等における環境安全性等の観点より、ポリビニルアルコール系等の水系接着剤が好ましい。
For example, when the present laminated optical film 3 is used as a protective film for a polarizing film in a polarizing plate, generally, the polarizing film is bonded to the urethane coat layer side through an adhesive for adhering the polarizing film.
As the adhesive, conventionally known ones can be used, for example, water-based adhesives such as polyvinyl alcohol and urethane compounds, active energy ray-curable adhesives such as acrylic compounds, epoxy compounds, and oxazoline compounds. Can be mentioned. Among these, water-based adhesives such as polyvinyl alcohol are preferable from the viewpoints of adhesiveness with polyvinyl alcohol (PVA), which is a polarizing film, and environmental safety in wastes.
 本積層光学フィルム3のウレタンコート層上に水系接着剤等の接着剤を塗布して接着剤層を形成した後、この上に、例えば一軸延伸され、ヨウ素等で染色されたポリビニルアルコール膜などの偏光膜を貼り合わせる。この偏光膜の反対側にも保護フィルムや位相差フィルム等を貼り合わせて偏光板とすることができる。
 すなわち、本積層光学フィルム3を用いた偏光板は、第1の保護フィルム/接着剤層/偏光膜/接着剤層/第2の保護フィルムの層構成となり、本積層光学フィルム3は、これらのうち少なくとも一方の保護フィルムとして用いられる。
After applying an adhesive such as a water-based adhesive on the urethane coating layer of the laminated optical film 3 to form an adhesive layer, for example, a uniaxially stretched polyvinyl alcohol film dyed with iodine, etc. A polarizing film is attached. A protective film, a retardation film, or the like can be bonded to the opposite side of the polarizing film to form a polarizing plate.
That is, the polarizing plate using the present laminated optical film 3 has a layer configuration of first protective film / adhesive layer / polarizing film / adhesive layer / second protective film. Of these, it is used as at least one protective film.
<3-3.液晶表示装置>
 本積層光学フィルム3は、透明性、寸法安定性、及び、耐湿熱性に優れ、偏光膜に対して密着性よく接着させることができることから、このような本積層光学フィルム3を用いた偏光板は、偏光膜の保護効果、機能維持性に優れ、テレビ、パソコン、デジタルカメラ、携帯電話等の液晶表示装置の偏光板として高品質な表示画面を実現することができる。
<3-3. Liquid crystal display>
Since the present laminated optical film 3 is excellent in transparency, dimensional stability, and moist heat resistance and can be adhered to the polarizing film with good adhesion, a polarizing plate using such a laminated optical film 3 is In addition, the polarizing film is excellent in protective effect and function maintenance, and a high-quality display screen can be realized as a polarizing plate of a liquid crystal display device such as a television, a personal computer, a digital camera, or a mobile phone.
 前述の通り、液晶ディスプレイは、前面側偏光板/液晶/後面側偏光板の構成を有し、偏光板は保護フィルム/偏光膜/保護フィルムの構成を有することから、前面側偏光板を構成する偏光膜の前面側及び後面側に配置する保護フィルムをそれぞれ保護フィルムA、保護フィルムBとし、後面側偏光板を構成する偏光膜の前面側及び後面側に配置する保護フィルムをそれぞれ保護フィルムC、保護フィルムDとすると、全体的な構成は、前面側から、保護フィルムA/前面側偏光膜/保護フィルムB/液晶/保護フィルムC/後面側偏光膜/保護フィルムDとなる。 As described above, the liquid crystal display has the configuration of the front side polarizing plate / liquid crystal / rear side polarizing plate, and the polarizing plate has the configuration of protective film / polarizing film / protective film, and thus constitutes the front side polarizing plate. The protective films arranged on the front side and the rear side of the polarizing film are designated as protective film A and protective film B, respectively, and the protective films arranged on the front side and the rear side of the polarizing film constituting the rear side polarizing plate are respectively protective film C, If it is set as the protective film D, the whole structure will be protective film A / front side polarizing film / protective film B / liquid crystal / protective film C / rear side polarizing film / protective film D from the front side.
 本積層光学フィルム3が、基材層の両面にウレタンコート層を有する両面接着タイプの場合、一方のウレタンコート層側には前述の接着剤層を介して偏光膜を接着し、他方のウレタンコート層側には前述の接着剤層を介して他の機能性フィルムや透明基材を接着することができる。他の機能性フィルムとしては、特に制限はないが、例えば、高屈折率フィルム、低屈折率フィルム、これらを積層した反射防止フィルム、色補正フィルムなどの光学フィルム、ハードコートフィルム、防汚フィルム、電磁波シールドフィルム、赤外線吸収フィルム、紫外線吸収フィルムなどが挙げられる。また、透明基材としては、支持基板としてのガラスや各種透明フィルムが挙げられる。 When the laminated optical film 3 is a double-sided adhesive type having a urethane coat layer on both sides of the base material layer, a polarizing film is adhered to one urethane coat layer side through the adhesive layer, and the other urethane coat is provided. Other functional films and transparent substrates can be bonded to the layer side via the above-mentioned adhesive layer. Other functional film is not particularly limited, for example, high refractive index film, low refractive index film, antireflection film laminated with these, optical correction film such as color correction film, hard coat film, antifouling film, Examples thereof include an electromagnetic wave shielding film, an infrared ray absorbing film, and an ultraviolet ray absorbing film. Moreover, as a transparent base material, the glass as a support substrate and various transparent films are mentioned.
<4.積層光学フィルム>
 本積層光学フィルム1,2,3は、上述したポリカーボネート樹脂を主成分とする層(A層)、および、固有複屈折率が負の樹脂を主成分とする層(B層)を、それぞれ1層以上有することを必須とする。
 以下、本積層光学フィルム1,2,3の物性等について具体的に説明する。
<4. Laminated optical film>
Each of the laminated optical films 1, 2, and 3 has a layer (A layer) containing the above-described polycarbonate resin as a main component and a layer (B layer) containing a resin having a negative intrinsic birefringence as a main component. It is essential to have more than one layer.
Hereinafter, the physical properties of the laminated optical films 1, 2, and 3 will be specifically described.
(1)積層構成
 本積層光学フィルム1,2,3のそれぞれの層の数については特に限定されないが、製造の容易さや設備の汎用性の観点から、(B層)/(A層)のような2層構成や、(B層)/(A層)/(B層)、(A層)/(B層)/(A層)といった3層構成が好ましい。ここで、カール抑制の観点から、(B層)/(A層)/(B層),(A層)/(B層)/(A層)といった3層構成がより好ましい。
 偏光子との接着性を良好にすることに重点をおくのであれば、(B層)/(A層)/(B層)の3層構成が好ましい。一方、フィルムの機械強度を良好にするためには、(A層)/(B層)/(A層)の3層構成が好ましい。
(1) Laminate configuration The number of each layer of the present laminated optical films 1, 2, and 3 is not particularly limited, but from the viewpoint of ease of production and versatility of equipment, (B layer) / (A layer) Or a three-layer structure such as (B layer) / (A layer) / (B layer), (A layer) / (B layer) / (A layer). Here, from the viewpoint of curling suppression, a three-layer configuration of (B layer) / (A layer) / (B layer), (A layer) / (B layer) / (A layer) is more preferable.
If the emphasis is on improving the adhesion to the polarizer, a three-layer configuration of (B layer) / (A layer) / (B layer) is preferable. On the other hand, in order to improve the mechanical strength of the film, a three-layer structure of (A layer) / (B layer) / (A layer) is preferable.
 A層とB層の屈折率の差は、特に規定されないが、層の界面での光の反射を抑制するために、0.1以下が好ましく、0.05以下がより好ましく、0.03以下が更に好ましい。また、屈折率差の下限は特に規定されないが、反射率分光法により、非破壊で各層の膜厚を測定するために、0.001以上であることが好ましく、0.005以上であることがより好ましい。 The difference in refractive index between the A layer and the B layer is not particularly defined, but is preferably 0.1 or less, more preferably 0.05 or less, and 0.03 or less in order to suppress light reflection at the interface of the layers. Is more preferable. Further, the lower limit of the refractive index difference is not particularly defined, but in order to measure the film thickness of each layer non-destructively by reflectance spectroscopy, it is preferably 0.001 or more, and preferably 0.005 or more. More preferred.
 本積層光学フィルム1,2,3は、耐熱性の観点から、少なくとも、A層あるいはB層のどちらか一方を構成する樹脂の、JIS K7122に準じて加熱速度10℃/分で測定したガラス転移温度が100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。耐熱性をよりよくする観点から、A層あるいはB層のうち、総膜厚が厚い方の層を構成する樹脂のガラス転移温度を上記の範囲にすることが好ましい。本積層光学フィルム1,2,3においては、機械強度の観点から、A層のガラス転移温度が100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。 The laminated optical films 1, 2, and 3 have a glass transition measured at a heating rate of 10 ° C./min in accordance with JIS K7122 of a resin constituting at least one of the A layer and the B layer from the viewpoint of heat resistance. The temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher. From the viewpoint of improving the heat resistance, it is preferable that the glass transition temperature of the resin constituting the thicker layer of the A layer or the B layer is in the above range. In the present laminated optical films 1, 2, and 3, from the viewpoint of mechanical strength, the glass transition temperature of the A layer is preferably 100 ° C or higher, more preferably 110 ° C or higher, and 120 ° C or higher. Is more preferable.
(2)膜厚
 本積層光学フィルム1,2,3の膜厚は、この積層光学フィルムを用いた偏光板の薄膜化の観点から、50μm以下が好ましく、30μm以下がより好ましく、20μm以下が特に好ましい。後述する機械強度が高いため、このように薄膜のフィルムにすることができる。一方、ハンドリング性や強度の観点から、3μm以上が好ましく、5μm以上がより好ましい。
(2) Film thickness The film thickness of the laminated optical films 1, 2, and 3 is preferably 50 μm or less, more preferably 30 μm or less, and particularly preferably 20 μm or less, from the viewpoint of thinning a polarizing plate using the laminated optical film. preferable. Since the mechanical strength described later is high, a thin film can be formed in this way. On the other hand, from the viewpoint of handling properties and strength, it is preferably 3 μm or more, and more preferably 5 μm or more.
(3)積層比
 本積層光学フィルム1,2,3において、積層光学フィルムの総厚みに対する前記ポリカーボネート樹脂を主成分とする層(A層)の厚みの割合は、20%以上95%以下であることが好ましく、より好ましくは30%以上90%以下、特に好ましくは50%を超え80%以下である。
 ここで、A層の厚み割合が20%以上であれば、本積層光学フィルム1,2,3の機械強度や柔軟性、靱性、耐熱性が良好なものとなる。また、A層の厚みが95%以下であれば、本積層光学フィルム1,2,3の光学歪みを、十分小さくすることができる。なお、A層が複数配される場合は、各層の合計厚みの意味である。
(3) Lamination ratio In this laminated optical film 1, 2, 3, the ratio of the thickness of the layer (A layer) containing the polycarbonate resin as a main component to the total thickness of the laminated optical film is 20% or more and 95% or less. More preferably, it is 30% or more and 90% or less, and particularly preferably more than 50% and 80% or less.
Here, if the thickness ratio of the A layer is 20% or more, the mechanical strength, flexibility, toughness, and heat resistance of the laminated optical films 1, 2, and 3 are good. Moreover, if the thickness of A layer is 95% or less, the optical distortion of this laminated optical film 1, 2, 3 can be made sufficiently small. In addition, when multiple A layers are arranged, it means the total thickness of each layer.
(4)位相差
 本積層光学フィルム1,2,3の面内位相差(R)及び厚み位相差(Rth)は、10nm以下が好ましく、5nm以下がより好ましく、3nm以下が特に好ましい。面内位相差(R)及び厚み位相差(Rth)が10nm以下である場合、光学異方性が小さいため光学フィルムとして適する。本積層光学フィルム1,2,3の構成にすることで、このような光学異方性の非常に小さなフィルムを達成できる。
 なお、面内位相差(R)及び厚み位相差(Rth)の下限については特に定めないが、好ましくは-10nm以上、さらに好ましくは-5nm以上、特に好ましくは-3nm以上である。
 面内位相差(R)及び厚み位相差(Rth)の測定方法は、後述の実施例の項に記載されるとおりである。
(4) Retardation The in-plane retardation (R O ) and thickness retardation (R th ) of the laminated optical films 1, 2, 3 are preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 3 nm or less. When the in-plane retardation (R O ) and thickness retardation (R th ) are 10 nm or less, the optical anisotropy is small, which is suitable as an optical film. By adopting the configuration of the present laminated optical films 1, 2, 3, a film having such a very small optical anisotropy can be achieved.
The lower limits of the in-plane retardation (R O ) and the thickness retardation (R th ) are not particularly defined, but are preferably −10 nm or more, more preferably −5 nm or more, and particularly preferably −3 nm or more.
The measuring method of the in-plane retardation (R O ) and the thickness retardation (R th ) is as described in the section of Examples described later.
(5)光弾性係数
 本積層光学フィルム1,2,3の光弾性係数は、10×10-12Pa-1以下が好ましく、8×10-12Pa-1以下がより好ましく、5×10-12Pa-1以下が特に好ましい。光弾性係数が10×10-12Pa-1より大きいと、応力による位相差の変化が大きくなり、偏光子保護フィルムとして適さない。
 なお、本積層光学フィルム1,2,3は、応力がかかったときに(A)層で発生する位相差を(B)層で発生する位相差が打ち消すため、(A)層単層の光弾性係数より、本積層光学フィルム1,2,3の光弾性係数を小さくすることができる。
(5) Photoelastic coefficient of photoelastic coefficient present laminated optical film 1, 2 and 3 is preferably 10 × 10 -12 Pa -1 or less, more preferably 8 × 10 -12 Pa -1 or less, 5 × 10 - 12 Pa −1 or less is particularly preferable. When the photoelastic coefficient is larger than 10 × 10 −12 Pa −1 , the change in phase difference due to stress becomes large, which is not suitable as a polarizer protective film.
In addition, the present laminated optical films 1, 2, 3 cancel the phase difference generated in the (A) layer when stress is applied, so that the phase difference generated in the (B) layer cancels out the light of the (A) layer single layer. The photoelastic coefficient of the laminated optical films 1, 2, and 3 can be made smaller than the elastic coefficient.
(6)透明性
 本積層光学フィルム1,2,3の全光線透過率は、85%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましい。また、ヘイズは1%以下が好ましく、0.5%以下がより好ましく、0.3%以下がさらに好ましい。
(6) Transparency The total light transmittance of the laminated optical films 1, 2, 3 is preferably 85% or more, more preferably 90% or more, and further preferably 92% or more. The haze is preferably 1% or less, more preferably 0.5% or less, and further preferably 0.3% or less.
(7)引裂き強度
 本積層光学フィルム1,2,3のJIS K7128-2に準拠して測定した引裂き強度が4.0kg/cm以上である。4.5kg/cm以上であることがより好ましく、5.0kg/cm以上であることがさらに好ましい。本積層光学フィルム1,2,3の積層構成にすることで、このような機械強度に優れたフィルムにすることができる。
 引裂き強度の測定方法は、後述の実施例の項に記載されるとおりである。
(7) Tear strength The tear strength of the laminated optical films 1, 2, and 3 measured according to JIS K7128-2 is 4.0 kg / cm or more. More preferably, it is 4.5 kg / cm or more, and further preferably 5.0 kg / cm or more. By making the laminated structure of the present laminated optical films 1, 2 and 3, it is possible to obtain a film having excellent mechanical strength.
The method for measuring the tear strength is as described in the Examples section below.
(8)引張伸び
 本積層光学フィルム1,2,3のJIS K7161の方法により測定される引張伸びは、好ましくは20%以上、より好ましくは40%以上、更に好ましくは60%以上、特に好ましくは100%以上である。引張伸びが20%未満である場合、フィルムが破断しやすいためハンドリング性が悪くなる。引張伸びの上限値については特に制限がないが、通常200%以下である。本積層光学フィルム1,2,3の積層構成にすることで、このような柔軟性や靱性に優れたフィルムにすることができる。
 引張伸びの測定方法は、後述の実施例の項に記載されるとおりである。
(8) Tensile elongation The tensile elongation of the laminated optical films 1, 2, and 3 measured by the method of JIS K7161 is preferably 20% or more, more preferably 40% or more, still more preferably 60% or more, and particularly preferably. 100% or more. When the tensile elongation is less than 20%, the handleability is deteriorated because the film is easily broken. Although there is no restriction | limiting in particular about the upper limit of tensile elongation, Usually, it is 200% or less. By making the laminated structure of the present laminated optical films 1, 2, and 3, a film excellent in such flexibility and toughness can be obtained.
The method for measuring the tensile elongation is as described in the section of Examples described later.
(9)耐熱性
 本積層光学フィルム1,2,3は、耐熱性の観点から、100℃100時間での加熱収縮率が、0.5%以下であることが好ましく、0.4%以下であることがより好ましく、0.3%以下であることがさらに好ましい。本積層光学フィルム1,2,3の積層構成にすることで、このような耐熱性の高いフィルムにすることができる。加熱収縮率の測定方法は、後述の実施例の項に記載されるとおりである。
(9) Heat resistance From the viewpoint of heat resistance, the laminated optical films 1, 2, and 3 preferably have a heat shrinkage rate at 100 ° C of 100 hours of 0.5% or less, and 0.4% or less. More preferably, it is more preferably 0.3% or less. By making the laminated structure of the present laminated optical films 1, 2, and 3, a film having such a high heat resistance can be obtained. The method for measuring the heat shrinkage rate is as described in the section of Examples described later.
<5.積層光学フィルムの製造方法> 
 本積層光学フィルム1,2,3の製造方法は、特に限定されず、ポリカーボネート樹脂を主成分とする層(A層)、および、固有複屈折率が負の樹脂を主成分とする層(B層)を接着剤を用いて貼り合せる方法や、一方の層のフィルムに溶融状態の他方の層を押出により積層する押出ラミネート法、同時に溶融させて積層する共押出法が挙げられる。生産性の観点から、共押出法が最も好ましい。
 ポリカーボネート樹脂とアクリル樹脂を共押出する場合、Tダイの溶融温度は180℃~260℃である。この際、Tダイ中の両樹脂の口金温度の差を30℃以下、好ましくは20℃以下、更に好ましくは10℃以下に調整することが好ましい。口金温度の差を30℃以下にすることにより、共押出時の溶融粘度は同程度となり、積層フィルムの厚みぶれの影響が少なくなる。
<5. Manufacturing method of laminated optical film>
The production method of the present laminated optical films 1, 2, and 3 is not particularly limited, and a layer (A layer) mainly composed of a polycarbonate resin and a layer (B) mainly composed of a resin having a negative intrinsic birefringence index. Layer) using an adhesive, an extrusion laminating method in which the other layer in a molten state is laminated on the film of one layer by extrusion, and a coextrusion method in which the layers are melted and laminated at the same time. From the viewpoint of productivity, the coextrusion method is most preferable.
When the polycarbonate resin and the acrylic resin are coextruded, the melting temperature of the T die is 180 ° C. to 260 ° C. At this time, it is preferable to adjust the difference in die temperature between the two resins in the T die to 30 ° C. or less, preferably 20 ° C. or less, more preferably 10 ° C. or less. By setting the difference in die temperature to 30 ° C. or less, the melt viscosity at the time of co-extrusion becomes approximately the same, and the influence of thickness fluctuation of the laminated film is reduced.
<6.偏光板>
 本積層光学フィルム1,2,3の用途には特に制限はないが、光学異方性が非常に小さく、また引裂強度等の機械的強度にも優れることから、特に、偏光板の偏光膜の保護フィルムとして好適に用いることができる。
<6. Polarizing plate>
Although there is no restriction | limiting in particular in the use of this laminated optical film 1,2,3, Since optical anisotropy is very small and it is excellent also in mechanical strengths, such as tearing strength, especially of the polarizing film of a polarizing plate. It can be suitably used as a protective film.
 本積層光学フィルム1,2,3を例えば、偏光板における偏光膜の保護フィルムとして使用する場合、一般的には、偏光膜を接着させるための接着剤を介して偏光膜を貼り合わせる。
 接着剤としては、従来公知のものを使用することができ、例えば、ポリビニルアルコール系やウレタン化合物等の水系接着剤、アクリル系化合物やエポキシ系化合物、オキサゾリン化合物等の活性エネルギー線硬化系接着剤が挙げられる。
When the present laminated optical films 1, 2, and 3 are used as, for example, a protective film for a polarizing film in a polarizing plate, generally, the polarizing film is bonded through an adhesive for adhering the polarizing film.
As the adhesive, conventionally known ones can be used, for example, water-based adhesives such as polyvinyl alcohol and urethane compounds, active energy ray-curable adhesives such as acrylic compounds, epoxy compounds, and oxazoline compounds. Can be mentioned.
 なお、本積層光学フィルム1,2,3の最外層となる層は、ポリカーボネート樹脂を主成分とする層あるいは固有複屈折率が負の樹脂を主成分とする層のどちらを選択しても光学異方性の小さいフィルムを作製することができるため、用いる接着剤の種類によって最外層となる層を選択すればよく、結果、多くの種類の接着剤を用いることができる。 The outermost layer of the present laminated optical films 1, 2, and 3 is optical regardless of whether a layer mainly composed of polycarbonate resin or a layer mainly composed of resin having a negative intrinsic birefringence is selected. Since a film having small anisotropy can be produced, the outermost layer may be selected depending on the type of adhesive used, and as a result, many types of adhesives can be used.
<7.液晶表示装置>
 本積層光学フィルム1,2,3は、光学特性や、引裂強度等の機械的強度に優れ、偏光膜に対して密着性よく接着させることができ、偏光板を液晶から剥す際のハンドリング性にも優れることから、このような本積層光学フィルム1,2,3を用いた本発明の偏光板は、偏光膜の保護効果、機能維持性に優れ、テレビ、パソコン、デジタルカメラ、携帯電話等の液晶表示装置の偏光板として高品質な表示画面を実現することができ、また、液晶表示装置製造時の作業性にも優れる。
<7. Liquid crystal display>
The laminated optical films 1, 2, and 3 are excellent in optical properties and mechanical strength such as tear strength, can be adhered to the polarizing film with good adhesion, and handleability when peeling the polarizing plate from the liquid crystal Therefore, the polarizing plate of the present invention using such laminated optical films 1, 2, and 3 is excellent in the protective effect and functional maintenance of the polarizing film, and is used in TVs, personal computers, digital cameras, mobile phones and the like. A high-quality display screen can be realized as a polarizing plate of a liquid crystal display device, and the workability at the time of manufacturing the liquid crystal display device is excellent.
<語句の説明>
 一般的に「シート」とは、JISにおける定義上、薄く、その厚さが長さと幅のわりには小さく平らな製品をいい、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(日本工業規格JISK6900)。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
 また、画像表示パネル、保護パネル等のように「パネル」と表現する場合、板体、シートおよびフィルム、又はこれらの積層体を包含するものである。
<Explanation of words>
“Sheet” generally refers to a product that is thin by definition in JIS and has a thickness that is small and flat for the length and width. In general, “film” is thicker than the length and width. A thin flat product with an extremely small thickness and an arbitrarily limited maximum thickness, usually supplied in the form of a roll (Japanese Industrial Standard JISK6900). However, since the boundary between the sheet and the film is not clear and it is not necessary to distinguish the two in terms of the present invention, in the present invention, even when the term “film” is used, the term “sheet” is included and the term “sheet” is used. In some cases, “film” is included.
In addition, the expression “panel” such as an image display panel and a protection panel includes a plate, a sheet and a film, or a laminate thereof.
 本明細書において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
 また、「X以上又はX≦」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下又はY≧」(Yは任意の数字)と記載した場場合、特にことわらない限り「好ましくはYより小さい」の意を包含する。
In the present specification, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified. The meaning of “smaller than Y” is also included.
Further, when “X or more or X ≦” (X is an arbitrary number) is included, it means “preferably larger than X” unless otherwise specified, and “Y or less or Y ≧” (Y is an arbitrary number) Unless otherwise specified, it means “preferably smaller than Y”.
 以下に、本発明を実施例により更に詳細に説明する。これらの実施例及び比較例により本発明は制限を受けるものではない。なお、以下において単層フィルム又は積層光学フィルムの製造時の流れ方向(引取方向)をMD、その直角方向をTDと記載する。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by these examples and comparative examples. In the following, the flow direction (take-off direction) at the time of manufacturing a single layer film or a laminated optical film is described as MD, and the perpendicular direction thereof is described as TD.
[実施例1-1~1-5及び比較例1-1~1-2]
 実施例1-1~1-5及び比較例1-1~1-2について説明する。
[Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-2]
Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-2 will be described.
<評価方法>
 以下において、実施例1-1~1-5及び比較例1-1~1-2に対して、種々の物性等の測定及び評価を次のようにして行った。
<Evaluation method>
In the following, various physical properties were measured and evaluated for Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-2 as follows.
(固有複屈折)
 樹脂約8gを、幅11cm、長さ11cm、厚さ0.5mmのスペーサーを用いて、熱プレスにて熱プレス温度200℃で、予熱1分~3分、圧力20MPaの条件で1分間加圧後、スペーサーごと取り出し、水管冷却式プレスにて圧力20MPaで3分間加圧冷却してシートを作製した。このシートから幅5mm、長さ20mmにサンプルを切り出した。
(Intrinsic birefringence)
About 8 g of resin was pressed for 1 minute under the conditions of preheating 1 to 3 minutes and pressure 20 MPa at a hot pressing temperature of 200 ° C. using a spacer with a width of 11 cm, a length of 11 cm and a thickness of 0.5 mm. Thereafter, the entire spacer was taken out and pressure-cooled with a water tube cooling press at a pressure of 20 MPa for 3 minutes to prepare a sheet. A sample was cut out from this sheet to a width of 5 mm and a length of 20 mm.
 He-Neレーザー、偏光子、補償板、検光子、及び光検出器からなる複屈折測定装置と振動型粘弾性測定装置(ユービーエム社製「Rheogel E-4000」)を組み合わせた装置の粘弾性測定装置に、切り出したサンプルを固定し、室温からガラス転移温度近傍まで時間温度換算則を用いて合成曲線が作成できるように数条件で測定した。粘弾性測定装置より貯蔵弾性率E’(ω)及び損失弾性率E”(ω)を測定周波数1Hzから133Hzまで変化させながら測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、これより複屈折Δn(ω)を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。
 複屈折Δn(ω)=Δn×cos(ωt+δ
Viscoelasticity of a device combining a birefringence measuring device comprising a He-Ne laser, a polarizer, a compensation plate, an analyzer and a photodetector and a vibration type viscoelasticity measuring device ("Rheogel E-4000" manufactured by UBM). The cut sample was fixed to the measuring device, and measurement was performed under several conditions so that a synthetic curve could be created from room temperature to near the glass transition temperature using a time-temperature conversion rule. The storage elastic modulus E ′ (ω) and the loss elastic modulus E ″ (ω) were measured from the viscoelasticity measuring device while changing the measurement frequency from 1 Hz to 133 Hz. At the same time, the emitted laser light was measured with a polarizer, a sample, and a compensation plate. , Pass through the analyzer, pick up with a photodetector (photodiode), find the phase difference with respect to the amplitude and distortion of the waveform of the angular frequency ω or 2ω through the lock-in amplifier, and from this, birefringence Δn * (ω) At this time, the directions of the polarizer and the analyzer were orthogonal to each other, and each was adjusted so as to form an angle of π / 4 with respect to the extending direction of the sample.
Birefringence Δn * (ω) = Δn 0 × cos (ωt + δ B )
 次に、複屈折Δn(ω)に対して、下式のようにひずみ光学比O(ω)を定義し、求めた。
 ひずみ光学比O(ω)=Δn(ω)/ε(ω)
Next, the strain optical ratio O * (ω) was defined and obtained for the birefringence Δn * (ω) as shown in the following equation.
Strain optical ratio O * (ω) = Δn * (ω) / ε * (ω)
 ここで、複屈折と応力はそれぞれ二つの成分関数からなり、修正応力光学則が成立するものとして、それぞれを下式で表すことができる。
  E’(ω)=E’(ω)+E’(ω)
  O’(ω)=C×E’(ω)+C×E’(ω)
  E”(ω)=E”(ω)=E”(ω)+E”(ω)
  O”(ω)=C×E”(ω)+C×E”(ω)
Here, birefringence and stress are each composed of two component functions, and each can be expressed by the following equation, assuming that the corrected stress optical law is established.
E ′ (ω) = E ′ R (ω) + E ′ G (ω)
O ′ (ω) = C R × E ′ R (ω) + C G × E ′ G (ω)
E ″ (ω) = E ″ (ω) = E ″ R (ω) + E ″ G (ω)
O ″ (ω) = C R × E ″ R (ω) + C G × E ″ G (ω)
 測定により得られたE’(ω)、E”(ω)及びO(ω)を用いて、上記4式を解くことができる。
 これより、固有複屈折(Δn)を、
  Δn=5/3×O’(ω=∞)=5/3×C×E’(ω=∞)
として、求めた。
(測定の原理、測定方法については、高分子論文集Vol.53,No.10,p602-613(1996)を参照。)
Using the E ′ (ω), E ″ (ω), and O * (ω) obtained by the measurement, the above four equations can be solved.
From this, the intrinsic birefringence (Δn 0 ) is
Δn 0 = 5/3 × O ′ (ω = ∞) = 5/3 × C R × E ′ R (ω = ∞)
As asked.
(For the principle of measurement and the measurement method, see Polymer Papers Vol. 53, No. 10, p602-613 (1996).)
(平均屈折率)
 前述した固有複屈折測定用のサンプルを用いて、JIS K7142に準じて、ナトリウムD線(589nm)を光源として、(株)アタゴ製アッベ屈折計を用いて測定した。
(Average refractive index)
Using the sample for intrinsic birefringence measurement described above, measurement was performed using an Abbe refractometer manufactured by Atago Co., Ltd., using sodium D line (589 nm) as a light source, in accordance with JIS K7142.
(全光線透過率およびヘイズ)
 実施例および比較例で得られたフィルムについて、JIS K7105に準じてヘーズメーター(日本電色工業(株)社製、商品名:NDH-5000)を用いて、全光線透過率およびヘイズを測定した。
(Total light transmittance and haze)
For the films obtained in Examples and Comparative Examples, total light transmittance and haze were measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH-5000) according to JIS K7105. .
(各層の膜厚)
 実施例および比較例で得られたフィルムについて、反射率分光法による膜厚測定装置(フィルメトリクス社製、商品名:F20)を用いて、非破壊で各層の膜厚を測定した。
(Film thickness of each layer)
About the film obtained by the Example and the comparative example, the film thickness of each layer was measured nondestructively using the film thickness measuring apparatus (Firmmetrics company make, brand name: F20) by reflectance spectroscopy.
(耐熱性)
 実施例および比較例で得られたフィルムを12cm×12cmに切り出し、図1のように格子線(10cm×10cm)を記入した。このフィルムを、100℃のオーブン内に吊るして、100時間放置した。オーブンに入れる前のMD方向の格子長さ(a)と、オーブンから出したあとのMD方向の格子長さ(b)より、下記の式を用いて収縮率を計算した。
  収縮率(%)=100×((a)-(b))÷(a)
(Heat-resistant)
The films obtained in Examples and Comparative Examples were cut into 12 cm × 12 cm, and lattice lines (10 cm × 10 cm) were entered as shown in FIG. This film was hung in an oven at 100 ° C. and left for 100 hours. The shrinkage was calculated from the lattice length (a) in the MD direction before entering the oven and the lattice length (b) in the MD direction after taking out of the oven, using the following formula.
Shrinkage rate (%) = 100 × ((a) − (b)) ÷ (a)
 この収縮率の値から、下記のように耐熱性を評価した。
  ○:収縮率が0.5%以下
  ×:収縮率が0.5%より大きい
From the shrinkage value, the heat resistance was evaluated as follows.
○: Shrinkage rate is 0.5% or less ×: Shrinkage rate is greater than 0.5%
(面内位相差(R)及び厚み位相差(Rth))
 実施例および比較例で得られたフィルムについて、位相差測定装置(王子計測社製、商品名:KOBRA-WR)を用いて測定した。なお、Rthは、入射角度0°のときと、40°のときの位相差より算出した。測定結果から、以下のように評価した。
  ◎:R、Rthの絶対値が3nm以下
  ○:R、Rthの絶対値が3nmより大きく10nm以下
  ×:R、Rthの絶対値が10nmより大きい
(In-plane retardation (R O ) and thickness retardation (R th ))
The films obtained in Examples and Comparative Examples were measured using a phase difference measuring device (trade name: KOBRA-WR, manufactured by Oji Scientific Co., Ltd.). Rth was calculated from the phase difference between the incident angle of 0 ° and 40 °. From the measurement results, evaluation was performed as follows.
A: Absolute values of R O and R th are 3 nm or less ○: Absolute values of R O and R th are larger than 3 nm and 10 nm or less X: Absolute values of R O and R th are larger than 10 nm
(光弾性係数)
 実施例および比較例で得られたフィルムおよび、前述した固有複屈折測定用のサンプルについて、遅相軸方向を位相差測定装置(王子計測社製、商品名:KOBRA-WR)にて確認し、遅相軸方向を長辺として、15mm×60mmの試験片を切り出した。このサンプルに、0~400gfの荷重をかけながら、各荷重における面内位相差(RO)を、位相差測定装置(王子計測社製、商品名:KOBRA-WR)を用いて測定し、荷重(gf/幅15mm)をx軸、位相差(nm)をy軸にプロットしたときの傾きから、以下の式により光弾性係数を計算した。
  光弾性係数(Pa-1)=傾き×1.5×10-8÷9.8
(Photoelastic coefficient)
For the films obtained in Examples and Comparative Examples and the above-mentioned samples for measuring intrinsic birefringence, the slow axis direction was confirmed with a phase difference measuring device (trade name: KOBRA-WR, manufactured by Oji Scientific Co., Ltd.) A test piece of 15 mm × 60 mm was cut out with the slow axis direction as the long side. While applying a load of 0 to 400 gf to this sample, the in-plane phase difference (RO) at each load was measured using a phase difference measuring device (trade name: KOBRA-WR, manufactured by Oji Scientific Co., Ltd.). The photoelastic coefficient was calculated by the following equation from the slope when gf / width 15 mm) was plotted on the x-axis and phase difference (nm) was plotted on the y-axis.
Photoelastic coefficient (Pa −1 ) = slope × 1.5 × 10 −8 ÷ 9.8
(引張伸び)
 実施例および比較例で得られたフィルムからMDに幅6mmで切り出し、評価用サンプルとした。JIS K7161に準じて、評価用サンプルを試験速度200mm/分で引張試験を行い、その時の引張伸びを測定した。
  ◎:伸びが60%以上
  ○:伸びが20%以上60%未満
  ×:伸びが20%未満  
(Tensile elongation)
From the films obtained in Examples and Comparative Examples, MD was cut out in a width of 6 mm to obtain a sample for evaluation. In accordance with JIS K7161, a sample for evaluation was subjected to a tensile test at a test speed of 200 mm / min, and the tensile elongation at that time was measured.
◎: Elongation is 60% or more ○: Elongation is 20% or more and less than 60% ×: Elongation is less than 20%
(引裂強度) 
 実施例および比較例で得られたフィルムについて、JIS K7128-2に準じて、評価用サンプルのMDの引裂強度を測定し、以下の基準で評価した。
  ◎:引裂強度が4.5kg/cm以上
  ○:引裂強度が4.0kg/cm以上4.5kg/cm未満
  ×:引裂強度が4.0kg/cm未満 
(Tear strength)
For the films obtained in Examples and Comparative Examples, the tear strength of MD of the sample for evaluation was measured according to JIS K7128-2 and evaluated according to the following criteria.
A: Tear strength is 4.5 kg / cm or more B: Tear strength is 4.0 kg / cm or more and less than 4.5 kg / cm X: Tear strength is less than 4.0 kg / cm
<構成材料> 
 以下に、実施例1-1~1-5及び比較例1-1~1-2で用いた構成材料を示す。
<Constituent materials>
The constituent materials used in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-2 are shown below.
(ポリカーボネート樹脂(PC-1))
 特開2008-024919号公報に準じた方法により得られた、ジヒドロキシ化合物であるイソソルビドに由来する構造単位とトリシクロデカンジメタノールに由来する構造単位の重量比率がイソソルビド/トリシクロデカンジメタノール=66/34で、ガラス転移温度(Tg)が130℃であるポリカーボネート共重合体を使用した。この共重合体の固有複屈折は0.03、平均屈折率は1.51、光弾性係数は10×10-12Pa-1であった。
(Polycarbonate resin (PC-1))
The weight ratio of the structural unit derived from isosorbide, which is a dihydroxy compound, and the structural unit derived from tricyclodecane dimethanol, obtained by a method according to JP 2008-024919 A, is isosorbide / tricyclodecane dimethanol = 66. / 34, a polycarbonate copolymer having a glass transition temperature (Tg) of 130 ° C. was used. The intrinsic birefringence of this copolymer was 0.03, the average refractive index was 1.51, and the photoelastic coefficient was 10 × 10 −12 Pa −1 .
(芳香族ポリカーボネート樹脂(PC-2))
 住化スタイロンポリカーボネート株式会社製カリバー301-15を使用した。この樹脂のガラス転移温度(Tg)は148℃、固有複屈折は0.106、平均屈折率は1.585、光弾性係数は80×10-12Pa-1であった。
(Aromatic polycarbonate resin (PC-2))
Caliber 301-15 manufactured by Sumika Stylon Polycarbonate Co., Ltd. was used. This resin had a glass transition temperature (Tg) of 148 ° C., an intrinsic birefringence of 0.106, an average refractive index of 1.585, and a photoelastic coefficient of 80 × 10 −12 Pa −1 .
(アクリル系樹脂(PMMA))
 住友化学株式会社製、スミペックスMGSSを使用した。この樹脂のガラス転移温度(Tg)は108℃、固有複屈折は-0.004、平均屈折率は1.492、光弾性係数は2×10-12Pa-1であった。
(Acrylic resin (PMMA))
Sumipex MGSS manufactured by Sumitomo Chemical Co., Ltd. was used. This resin had a glass transition temperature (Tg) of 108 ° C., an intrinsic birefringence of −0.004, an average refractive index of 1.492, and a photoelastic coefficient of 2 × 10 −12 Pa −1 .
(柔軟性改質剤)
 株式会社クラレ製、クラリティLA4285(メタクリル酸メチル-アクリル酸ブチル-メタクリル酸メチルトリブロック共重合体、共重合比は、重量換算で50/50)を使用した。この改質剤のガラス転移温度(Tg)(ブロック(i))は115℃、平均屈折率は1.478であった。
(Flexibility modifier)
Clarity LA4285 (methyl methacrylate-butyl acrylate-methyl methacrylate triblock copolymer, copolymerization ratio 50/50 in terms of weight) manufactured by Kuraray Co., Ltd. was used. This modifier had a glass transition temperature (Tg) (block (i)) of 115 ° C. and an average refractive index of 1.478.
<実施例1-1>
 (A)層用の材料として上記ポリカーボネート樹脂(PC-1)、(B)層用の材料として上記アクリル系樹脂(PMMA)を、それぞれ、φ65mm単軸押出機、φ40mm軸押出機に投入し、それぞれ220~240℃、および、180℃~240℃のバレル設定温度にて溶融混練し、幅1350mm、リップギャップ0.7mmのマルチ口金(設定温度240℃)から共押出したのち、20℃に温調されたキャストロールにて巻き取り、(B)層/(A)層/(B)層の構成の積層光学フィルムを作製した。各層の膜厚は、3.5μm/8μm/3.5μmであった。
<Example 1-1>
The polycarbonate resin as the material for the layer (A) (PC-1), the acrylic resin as the material for the layer (B) (PMMA), respectively, were charged φ65mm single screw extruder, a [phi] 40 mm 2 screw extruder These were melt-kneaded at barrel set temperatures of 220 to 240 ° C. and 180 ° C. to 240 ° C., respectively, and coextruded from a multi-die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.), and then to 20 ° C. The film was wound up with a temperature-controlled cast roll to prepare a laminated optical film having a structure of (B) layer / (A) layer / (B) layer. The film thickness of each layer was 3.5 μm / 8 μm / 3.5 μm.
<実施例1-2~1-3>
 各層の膜厚を表1のように変更した以外は、実施例1-1と同様の方法で、積層光学フィルムを作製した。
<Examples 1-2 to 1-3>
A laminated optical film was produced in the same manner as in Example 1-1 except that the thickness of each layer was changed as shown in Table 1.
<実施例1-4>
 (A)層用の材料として上記ポリカーボネート樹脂(PC-1)、(B)層用の材料として上記アクリル系樹脂(PMMA)を、それぞれ、φ40mm2軸押出機、φ65mm単軸押出機に投入し、それぞれ220~240℃、および、180℃~240℃のバレル設定温度にて溶融混練し、幅1350mm、リップギャップ0.7mmのマルチ口金(設定温度240℃)から共押出したのち、20℃に温調されたキャストロールにて巻き取り、(A)層/(B)層/(A)層の構成の積層光学フィルムを作製した。各層の膜厚は、4μm/7μm/4μmであった。
<Example 1-4>
(A) The polycarbonate resin (PC-1) as the material for the layer and the acrylic resin (PMMA) as the material for the (B) layer were put into a φ40 mm twin screw extruder and a φ65 mm single screw extruder, respectively. They are melt-kneaded at barrel set temperatures of 220 to 240 ° C. and 180 ° C. to 240 ° C., respectively, and coextruded from a multi-die (set temperature 240 ° C.) having a width of 1350 mm and a lip gap of 0.7 mm, and then heated to 20 ° C. It was wound up with a prepared cast roll to produce a laminated optical film having a structure of (A) layer / (B) layer / (A) layer. The film thickness of each layer was 4 μm / 7 μm / 4 μm.
<実施例1-5>
 (B)層用の材料として、上記アクリル系樹脂(PMMA)80質量部/上記柔軟性改質剤20質量部のドライブレンド品を用いた以外は、実施例1-1と同様の方法で、積層光学フィルムを作製した。
<Example 1-5>
(B) As a material for the layer, except that a dry blend product of 80 parts by mass of the acrylic resin (PMMA) / 20 parts by mass of the flexibility modifier was used, the same method as in Example 1-1, A laminated optical film was produced.
<比較例1-1>
 (A)層用の材料として、上記アクリル系樹脂(PMMA)をφ65mm単軸押出機に投入し、180℃~240℃のバレル設定温度にて溶融混練し、幅1350mm、リップギャップ0.7mmの単層口金から押出したのち、20℃に温調されたキャストロールにて巻き取り、(B)層からなる、膜厚15μmの単層光学フィルムを作製した。
<Comparative Example 1-1>
(A) As a material for the layer, the above acrylic resin (PMMA) is put into a φ65 mm single screw extruder, melt kneaded at a barrel set temperature of 180 ° C. to 240 ° C., and has a width of 1350 mm and a lip gap of 0.7 mm. After extruding from the single layer die, it was wound up with a cast roll whose temperature was adjusted to 20 ° C. to produce a single layer optical film having a film thickness of 15 μm consisting of layer (B).
<比較例1-2>
 (B)層用の材料として、上記ポリカーボネート樹脂(PC-1)を用いた以外は、実施例1-1と同様の方法で、積層光学フィルムを作製した。
<Comparative Example 1-2>
A laminated optical film was produced in the same manner as in Example 1-1 except that the polycarbonate resin (PC-1) was used as the material for the (B) layer.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1-1~1-5は、本発明の構成のため、機械強度および光学等方性に優れたフィルムとなっている。特に、実施例1-1及び1-4は、積層比がより好ましい範囲のため、位相差と機械強度のバランスのとれたフィルムとなっている。また、実施例5は、(B)層に柔軟改質剤が添加されているため、更に機械強度が優れたフィルムとなっている。
 一方、比較例1-1は、単層フィルムのため、機械強度が低くなっている。また、比較例1-2は、汎用のポリカーボネート樹脂を使用しているため、積層フィルムにしても光学異方性の大きなフィルムとなっている。
Examples 1-1 to 1-5 are films having excellent mechanical strength and optical isotropy due to the constitution of the present invention. In particular, Examples 1-1 and 1-4 are films in which the phase difference and the mechanical strength are balanced because the lamination ratio is more preferable. Moreover, since the softening modifier is added to the (B) layer, Example 5 is a film with further excellent mechanical strength.
On the other hand, Comparative Example 1-1 has a low mechanical strength because it is a single-layer film. In Comparative Example 1-2, since a general-purpose polycarbonate resin is used, even a laminated film is a film having a large optical anisotropy.
[実施例2-1~2-4及び比較例2-1~2-2]
 次に、実施例2-1~2-4及び比較例2-1~2-2について説明する。
[Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2]
Next, Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 will be described.
<評価方法>
 実施例2-1~2-4及び比較例2-1~2-2に対して、種々の物性等の測定及び評価を次のようにして行った。
<Evaluation method>
For Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2, various physical properties were measured and evaluated as follows.
(1)ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で-40℃から200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムからガラス転移温度(Tg)(℃)を求めた。なお、Tgの値は、少数第一位を四捨五入して記載した。
(1) Glass transition temperature (Tg)
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name “Pyris1 DSC”, according to JIS K7121, about 10 mg of the sample was heated from −40 ° C. to 200 ° C. at a heating rate of 10 ° C./min. After holding at 200 ° C. for 1 minute, the temperature was lowered to −40 ° C. at a cooling rate of 10 ° C./min, and again from the thermogram measured when the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, the glass transition temperature (Tg ) (° C). In addition, the value of Tg was rounded off to the first decimal place.
(2)全光線透過率およびヘイズ
 実施例および比較例で得られたフィルムについて、JIS K7105に準じてヘーズメーター(日本電色工業(株)社製、商品名:NDH-5000)を用いて、全光線透過率およびヘイズを測定した。また、下記の基準で判定した結果も記載した。
(2) Total light transmittance and haze For the films obtained in Examples and Comparative Examples, using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH-5000) according to JIS K7105, Total light transmittance and haze were measured. In addition, the results determined by the following criteria are also shown.
(全光線透過率)
 ◎:全光線透過率が92%以上
 ○:全光線透過率が90%以上、92%未満
 △:全光線透過率が85%以上、90%未満
 ×:全光線透過率が85%未満
(Total light transmittance)
◎: Total light transmittance is 92% or more ○: Total light transmittance is 90% or more and less than 92% Δ: Total light transmittance is 85% or more and less than 90% ×: Total light transmittance is less than 85%
(ヘイズ)
 ◎:ヘイズが0.3%以下
 ○:ヘイズが0.3%を超え、1.0%以下
 ×:ヘイズが1.0%を超える
(Haze)
◎: Haze is 0.3% or less ○: Haze exceeds 0.3%, 1.0% or less ×: Haze exceeds 1.0%
(3)引張伸び
 実施例および比較例で得られたフィルムからMDおよびTDに幅6mmで切り出し、評価用サンプルとした。JIS K7161に準じて、評価用サンプルを試験速度200mm/分で引張試験を行い、その時の引張伸びを測定した。また、下記の基準で判定した結果も記載した。
 ◎:伸びがMD、TDともに60%以上
 ○:伸びがMD、TDともに20%以上、60%未満
 ×:伸びがMD、TDのいずれかが20%未満
(3) Tensile elongation From the films obtained in the examples and comparative examples, MD and TD were cut out with a width of 6 mm to obtain evaluation samples. In accordance with JIS K7161, a sample for evaluation was subjected to a tensile test at a test speed of 200 mm / min, and the tensile elongation at that time was measured. In addition, the results determined by the following criteria are also shown.
◎: Elongation is 60% or more for both MD and TD ○: Elongation is 20% or more and less than 60% for both MD and TD ×: Either MD or TD is less than 20%
(4)引裂強度
 実施例および比較例で得られたフィルムについて、JIS K7128-2に準じて、評価用サンプルのMDおよびTDの引裂強度を測定した。また、下記の基準で判定した結果も記載した。
 ◎:引裂強度がMD、TDともに6.0kg/cm以上
 ○:引裂強度がMD、TDのいずれかが6.0kg/cm以上
 ×:引裂強度がMD、TDともに6.0kg/cm未満
(4) Tear Strength For the films obtained in Examples and Comparative Examples, the tear strength of MD and TD of the sample for evaluation was measured according to JIS K7128-2. In addition, the results determined by the following criteria are also shown.
A: Tear strength is 6.0 kg / cm or more for both MD and TD B: Tear strength is 6.0 kg / cm or more for either MD or TD X: Tear strength is less than 6.0 kg / cm for both MD and TD
(5)面内位相差(R)、厚み位相差(Rth
 実施例および比較例で得られたフィルムについて、位相差測定装置(王子計測機器(株)製、商品名:KOBRA-WR)を用いて測定した。また、下記の基準で判定した結果も記載した。なお、Rthは、入射角度0°の時と、40°のときの位相差より算出した。
 ◎:R、Rthの絶対値がともに3nm以下
 ○:R、Rthの絶対値がいずれか3nmを超え、10nm以下
 ×:R、Rthの絶対値がともに10nmより大きい
(5) In-plane retardation (R O ), thickness retardation (R th )
About the film obtained by the Example and the comparative example, it measured using the phase difference measuring apparatus (The Oji Scientific Instruments Co., Ltd. make, brand name: KOBRA-WR). In addition, the results determined by the following criteria are also shown. Rth was calculated from the phase difference when the incident angle was 0 ° and 40 °.
A: Absolute values of R O and R th are both 3 nm or less. ○: Absolute values of R O and R th are more than 3 nm and 10 nm or less. X: Both absolute values of R O and R th are larger than 10 nm.
(6)総合判定
 上記(1)~(5)の各評価判定で全ての項目が○以上で優れるものを○、1つ以上の項目で×があり劣るものを×とした。
(6) Comprehensive Judgment In the evaluation judgments (1) to (5) above, all the items were excellent when it was ◯ or better, and one or more items were evaluated as x, and those that were inferior were rated as x.
<構成材料>
 実施例2-1~2-4及び比較例2-1~2-2で用いた主な原料を下記する。
<Constituent materials>
The main raw materials used in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 are described below.
(アクリル系ブロック共重合体(A))
 (A-1);アクリル系ブロック共重合体((株)クラレ製、商品名:クラリティLA4285、密度:1.11g/cm、メタクリル酸メチル重合体ブロック-アクリル酸ブチル重合体ブロック-メタクリル酸メチル重合体ブロックからなるトリブロック共重合体、メタクリル酸メチル/アクリル酸ブチル=50/50質量%、立体規則性(トリアッド分率):mm(3モル%)、mr(29モル%)、rr(68モル%)、Tg:115℃(HS)、-40℃(SS)、MFR(温度:230℃、荷重:21.2N):31g/10min、分子量(Mw):8×10、Mw/Mn=1.14、平均屈折率:1.4783)
(Acrylic block copolymer (A))
(A-1); acrylic block copolymer (manufactured by Kuraray Co., Ltd., trade name: Clarity LA4285, density: 1.11 g / cm 3 , methyl methacrylate polymer block-butyl acrylate polymer block-methacrylic acid) Triblock copolymer composed of methyl polymer block, methyl methacrylate / butyl acrylate = 50/50 mass%, stereoregularity (triad fraction): mm (3 mol%), mr (29 mol%), rr (68 mol%), Tg: 115 ° C. (HS), −40 ° C. (SS), MFR (temperature: 230 ° C., load: 21.2 N): 31 g / 10 min, molecular weight (Mw): 8 × 10 4 , Mw /Mn=1.14, average refractive index: 1.4783)
(アクリル系重合体(B))
 (B-1);アクリル系重合体(住友化学(株)製、商品名:スミペックス MGSS、密度:1.19g/cm、メタクリル酸メチル=100質量%、立体規則性(トリアッド分率):mm(11モル%)、mr(40モル%)、rr(49モル%)、Tg:108℃、MFR(温度:230℃、荷重:37.3N):10g/10min、平均屈折率:1.4913)
(Acrylic polymer (B))
(B-1); acrylic polymer (Sumitomo Chemical Co., Ltd., trade name: SUMIPEX MGSS, density: 1.19 g / cm 3, methyl methacrylate = 100 wt%, stereoregularity (triad fraction): mm (11 mol%), mr (40 mol%), rr (49 mol%), Tg: 108 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 10 g / 10 min, average refractive index: 1. 4913)
(ポリカーボネート系樹脂(C))
 (C-1);特開2008-024919号公報に準じた方法により得られた、ジヒドロキシ化合物であるイソソルビドに由来する単量体単位とトリシクロデカンジメタノールに由来する単量体単位のモル比率がイソソルビド/トリシクロデカンジメタノール=70/30モル%であるポリカーボネート共重合体。密度:1.36g/cm、Tg:130℃、MFR(温度:230℃、荷重:37.3N):9.6g/10min、平均屈折率:1.5102、光弾性係数:12×10-12Pa-1
(Polycarbonate resin (C))
(C-1): The molar ratio of the monomer unit derived from isosorbide, which is a dihydroxy compound, and the monomer unit derived from tricyclodecane dimethanol, obtained by a method according to Japanese Patent Application Laid-Open No. 2008-024919. Is a polycarbonate copolymer of which isosorbide / tricyclodecanedimethanol = 70/30 mol%. Density: 1.36 g / cm 3 , Tg: 130 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 9.6 g / 10 min, average refractive index: 1.5102, photoelastic coefficient: 12 × 10 − 12 Pa -1
(添加剤)
 (O-1);ホスファイト系酸化防止剤((株)ADEKA製、商品名:アデカスタブPEP-36)
(Additive)
(O-1); Phosphite antioxidant (manufactured by ADEKA Corporation, trade name: ADK STAB PEP-36)
<実施例2-1>
 表2に示すように、両表面層(I)用として、アクリル系ブロック共重合体(A-1)20質量部とアクリル系重合体(B-1)80質量部および添加剤として酸化防止剤(O-1)0.15質量部の割合で混合した組成物、また、中間層(II)用として、ポリカーボネート系樹脂(C-1)100質量部をそれぞれベント機能とフィルター機能を有する別々の同方向二軸押出機に供給し、樹脂温度220~255℃で溶融混練し、層(I)/層(II)/層(I)の積層構成となるように、255℃の3層マルチマニホールドダイにて共押出成形した後、エッジピンニング装置を有する50℃の鏡面ロールでキャスト冷却し、総厚みが15.0μm、各層厚みが層(I)/層(II)/層(I)=2.5μm/10.0μm/2.5μmである積層フィルムを得た。
 得られた積層フィルムは外観が良好であり、また平面性にも優れていた。光弾性係数は、5×10-12Pa-1、100℃、100時間での加熱収縮率(MD)は、0.5%以下であった。また、表面層(I)および中間層(II)の平均屈折率は、各々、1.4890と1.5102であった。該積層フィルムを用いて評価した結果を表2に示す。
<Example 2-1>
As shown in Table 2, for both surface layers (I), 20 parts by mass of acrylic block copolymer (A-1) and 80 parts by mass of acrylic polymer (B-1) and an antioxidant as an additive (O-1) A composition mixed at a ratio of 0.15 parts by mass, and for the intermediate layer (II), 100 parts by mass of a polycarbonate resin (C-1) are separately provided with a vent function and a filter function. A three-layer multi-manifold of 255 ° C. is supplied to the same-direction twin-screw extruder and melt-kneaded at a resin temperature of 220 to 255 ° C. to form a layered structure of layer (I) / layer (II) / layer (I). After co-extrusion with a die, cast cooling is performed with a mirror roll at 50 ° C. having an edge pinning device, the total thickness is 15.0 μm, and each layer thickness is Layer (I) / Layer (II) / Layer (I) = 2 .5μm / 10.0μm / 2.5μm That to obtain a laminated film.
The resulting laminated film had good appearance and excellent flatness. The photoelastic coefficient was 5 × 10 −12 Pa −1 , 100 ° C., and the heat shrinkage (MD) at 100 hours was 0.5% or less. The average refractive indexes of the surface layer (I) and the intermediate layer (II) were 1.4890 and 1.5102, respectively. The results of evaluation using the laminated film are shown in Table 2.
<実施例2-2>
 表2に示すように、実施例2-1において両表面層(I)用として、アクリル系ブロック共重合体(A-1)30質量部とアクリル系重合体(B-1)70質量部に変更した以外は同様にして総厚みが15.0μm、各層厚みが層(I)/層(II)/層(I)=2.5μm/10.0μm/2.5μmである積層フィルムを得た。
 得られた積層フィルムは外観が良好であり、また平面性にも優れていた。光弾性係数は、5×10-12Pa-1、100℃、100時間での加熱収縮率(MD)は、0.5%以下であった。該積層フィルムを用いて評価した結果を表2に示す。
<Example 2-2>
As shown in Table 2, in Example 2-1, for both surface layers (I), 30 parts by mass of acrylic block copolymer (A-1) and 70 parts by mass of acrylic polymer (B-1) were used. A laminated film having a total thickness of 15.0 μm and a thickness of each layer (layer (I) / layer (II) / layer (I) = 2.5 μm / 10.0 μm / 2.5 μm) was obtained in the same manner except for the change. .
The resulting laminated film had good appearance and excellent flatness. The photoelastic coefficient was 5 × 10 −12 Pa −1 , 100 ° C., and the heat shrinkage (MD) at 100 hours was 0.5% or less. The results of evaluation using the laminated film are shown in Table 2.
<比較例2-1>
 表2に示すように、実施例2-1において両表面層(I)用として、三菱レイヨン(株)製、商品名メタブレンW-377(粒子状のゴムの外部にグラフト層を持ったコアシェルタイプの衝撃強度改質剤、以下、P-1と略記することがある)20質量部とアクリル系樹脂(B-1)80質量部に変更した以外は同様にして総厚みが15.0μm、各層厚みが層(I)/層(II)/層(I)=2.5μm/10.0μm/2.5μmである積層フィルムを得た。
 得られた積層フィルムは、ヘーズが高いものであった。該積層フィルムを用いて評価した結果を表2に示す。
<Comparative Example 2-1>
As shown in Table 2, for both surface layers (I) in Example 2-1, the product name Metabrene W-377 manufactured by Mitsubishi Rayon Co., Ltd. (core-shell type having a graft layer outside the particulate rubber) In the same manner, the total thickness is 15.0 μm, except that the impact strength modifier is changed to 20 parts by mass and 80 parts by mass of the acrylic resin (B-1). A laminated film having a thickness of layer (I) / layer (II) / layer (I) = 2.5 μm / 10.0 μm / 2.5 μm was obtained.
The obtained laminated film had a high haze. The results of evaluation using the laminated film are shown in Table 2.
<比較例2-2>
 表2に示すように、実施例2-1において両表面層(I)用として、アクリル系重合体(B-1)100質量部に変更した以外は同様にして総厚みが15.0μm、各層厚みが層(I)/層(II)/層(I)=2.5μm/10.0μm/2.5μmである積層フィルムを得た。
 得られた積層フィルムは、透明性に優れているものの、脆いものであった。該積層フィルムを用いて評価した結果を表2に示す。
<Comparative Example 2-2>
As shown in Table 2, the total thickness was 15.0 μm in the same manner as in Example 2-1, except that the acrylic polymer (B-1) was changed to 100 parts by mass for both surface layers (I). A laminated film having a thickness of layer (I) / layer (II) / layer (I) = 2.5 μm / 10.0 μm / 2.5 μm was obtained.
Although the obtained laminated film was excellent in transparency, it was brittle. The results of evaluation using the laminated film are shown in Table 2.
<実施例2-3>
 実施例2-1において中間層(II)用として、ポリカーボネート系樹脂(C-1)100質量部および添加剤として紫外線吸収剤((株)ADEKA製、商品名:アデカスタブLA-31)1.4質量部と紫外線吸収剤(BASFジャパン(株)製、商品名:チヌビン1577ED)7.7質量部の割合で混合した組成物に変更した以外は同様にして総厚みが15.0μm、各層厚みが層(I)/層(II)/層(I)=2.5μm/10.0μm/2.5μmである積層フィルムを得た。
<Example 2-3>
In Example 2-1, for the intermediate layer (II), 100 parts by mass of the polycarbonate resin (C-1) and an ultraviolet absorber (trade name: ADK STAB LA-31 manufactured by ADEKA) as an additive 1.4 The total thickness is 15.0 μm and the thickness of each layer is the same except that the composition is mixed at a ratio of 7.7 parts by mass with a part by mass and an ultraviolet absorber (trade name: Tinuvin 1577ED manufactured by BASF Japan Ltd.). A laminated film in which layer (I) / layer (II) / layer (I) = 2.5 μm / 10.0 μm / 2.5 μm was obtained.
 得られた積層フィルムは外観が良好であり、また平面性にも優れていた。また、紫外線吸収剤を添加した中間層(II)のガラス転移温度は、121℃であった。
 該積層フィルムの波長380nmの光線透過率は4.2%であった。さらに、該積層フィルムから100mm角の試験片(n=3)を切り出し、温度60℃、湿度90%RH環境下に500時間曝露した後の光線透過率を測定した。分光スペクトルは、曝露前後でほとんど変化が無く、波長380nmの光線透過率は4.3%であった。
 また、温度60℃、湿度90%RH環境下に500時間曝露した前後の寸法変化率(MD)を測定した。0.1%未満であった。
The resulting laminated film had good appearance and excellent flatness. The glass transition temperature of the intermediate layer (II) to which the ultraviolet absorber was added was 121 ° C.
The laminated film had a light transmittance of 4.2% at a wavelength of 380 nm. Furthermore, a 100 mm square test piece (n = 3) was cut out from the laminated film, and the light transmittance after exposure to a temperature of 60 ° C. and a humidity of 90% RH for 500 hours was measured. The spectrum was almost unchanged before and after exposure, and the light transmittance at a wavelength of 380 nm was 4.3%.
Moreover, the dimensional change rate (MD) before and after being exposed to a temperature of 60 ° C. and a humidity of 90% RH for 500 hours was measured. It was less than 0.1%.
<実施例2-4>
 実施例2-1において得られた積層フィルムの片面に引取工程内で自己粘着性を有するマスキングフィルム(東レフィルム加工(株)製、商品名:トレテック7332、厚み:30μm)を外側になるようにニップロールで微粘着させ、6インチABS製コアを用い、ロール状に巻回し、幅1000mm、1000m巻きの巻層体を得た。
<Example 2-4>
A masking film (manufactured by Toray Film Processing Co., Ltd., trade name: Tretec 7332, thickness: 30 μm) having self-adhesiveness in the take-off process is placed on one side of the laminated film obtained in Example 2-1. It was slightly adhered with a nip roll, and was wound into a roll using a 6-inch ABS core to obtain a wound layer body with a width of 1000 mm and a winding length of 1000 m.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2より、本発明の積層フィルムは、透明性(全光線透過率、ヘイズ)に優れ、光学異方性が小さく、力学強度(引裂強度、引張伸び)が高いフィルムであることが確認できる(実施例2-1~2-2)。これに対して、本発明で規定するアクリル系ブロック共重合体を含有していないものは、透明性(全光線透過率、ヘイズ)、光学異方性、力学強度(引裂強度、引張伸び)のいずれか1つ以上の特性が不十分であることが確認できる(比較例2-1~2-2)。具体的には、アクリル系ブロック共重合体の代わりに粒子状のゴムの外部にグラフト層を持ったコアシェルタイプの衝撃強度改質剤を用いた場合には、力学強度の向上効果が不十分であり、ヘイズが大幅に悪化することが確認できる(比較例2-1)、アクリル系ブロック共重合体を含有していないものは、透明性(全光線透過率、ヘイズ)に優れ、光学異方性が小さいものの、力学強度(引裂強度、引張伸び)が不十分であることが確認できる(比較例2-2)。 From Table 2, it can be confirmed that the laminated film of the present invention is a film having excellent transparency (total light transmittance, haze), small optical anisotropy, and high mechanical strength (tear strength, tensile elongation) ( Examples 2-1 and 2-2). On the other hand, those not containing the acrylic block copolymer defined in the present invention have transparency (total light transmittance, haze), optical anisotropy, and mechanical strength (tear strength, tensile elongation). It can be confirmed that any one or more characteristics are insufficient (Comparative Examples 2-1 and 2-2). Specifically, when a core-shell type impact strength modifier having a graft layer outside the particulate rubber is used instead of the acrylic block copolymer, the effect of improving the mechanical strength is insufficient. Yes, it can be confirmed that the haze is greatly deteriorated (Comparative Example 2-1). Those containing no acrylic block copolymer are excellent in transparency (total light transmittance, haze) and optically anisotropic. Although the properties are small, it can be confirmed that the mechanical strength (tear strength, tensile elongation) is insufficient (Comparative Example 2-2).
 実施例2-3では、紫外線吸収剤を適宜添加すれば、分光スペクトルの調整が可能であり、波長380nmの光線透過率を制御できることが確認できる。また、実施例2-4では、本発明の積層フィルムは、マスキングフィルムと重ね巻きすることによりロール状の巻層体にすることができることが確認できる。 In Example 2-3, it can be confirmed that if a UV absorber is appropriately added, the spectral spectrum can be adjusted, and the light transmittance at a wavelength of 380 nm can be controlled. Further, in Example 2-4, it can be confirmed that the laminated film of the present invention can be formed into a roll-shaped wound layer body by being overwrapped with a masking film.
[参考例3-1~3-2、実施例3-1~3-2及び比較例3-1~3-2]
 次に、参考例3-1~3-2、実施例3-1~3-2及び比較例3-1~3-2について説明する。
[Reference Examples 3-1 to 3-2, Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-2]
Next, Reference Examples 3-1 and 3-2, Examples 3-1 and 3-2, and Comparative Examples 3-1 and 3-2 will be described.
<評価方法>
 参考例3-1~3-2、実施例3-1~3-2及び比較例3-1~3-2においては、種々の物性等の測定及び評価は次のようにして行った。
<Evaluation method>
In Reference Examples 3-1 to 3-2, Examples 3-1 to 3-2, and Comparative Examples 3-1 to 3-2, various physical properties and the like were measured and evaluated as follows.
<PVAフィルムとの初期接着性の評価>
 PVA樹脂(日本合成(株)製、ゴーセネックスZ-200)10重量%の水溶液100gに対し、架橋剤(日本合成(株)製、SPM-02)0.3重量部を混合して水系接着剤を作製した。作製したコーティングフィルムのウレタンコート層を接着面側として、ウレタンコート層に水系接着剤を#24のバーコーターにより塗布し、二軸延伸PVAフィルム(日本合成(株)製、商品名:ボブロン、厚み:40μm)を貼り合わせて100℃、300秒で加熱、乾燥することにより評価用サンプルを作製した。このサンプルを幅20mmで切断した後、万能引張試験器(インテスコ社製、型式:200X)を用いて、テストスピード50mm/分によりT型剥離を実施した。その時の最大剥離強度(N/20mm幅)を測定した。また、最大剥離強度(N/20mm幅)をコート層の塗布厚み(μm)で除算することにより求めた塗布厚み換算の最大剥離強度を下記基準に基づき評価した。
  ○:塗布厚み換算の最大剥離強度が2N/20mm幅以上
  ×:塗布厚み換算の最大剥離強度が2N/20mm幅未満
<Evaluation of initial adhesiveness with PVA film>
Aqueous adhesive obtained by mixing 0.3 part by weight of a crosslinking agent (Nihon Gosei Co., Ltd., SPM-02) to 100 g of an aqueous solution of 10% by weight of PVA resin (Nihon Gosei Co., Ltd., Gohsenx Z-200) Was made. With the urethane coating layer of the prepared coating film as the adhesive surface side, a water-based adhesive was applied to the urethane coating layer with a # 24 bar coater, and a biaxially stretched PVA film (Nippon Gosei Co., Ltd., trade name: Boblon, thickness) : 40 μm) was laminated, and the sample for evaluation was produced by heating and drying at 100 ° C. for 300 seconds. After this sample was cut at a width of 20 mm, T-type peeling was performed at a test speed of 50 mm / min using a universal tensile tester (manufactured by Intesco, model: 200X). The maximum peel strength (N / 20 mm width) at that time was measured. Further, the maximum peel strength in terms of coating thickness obtained by dividing the maximum peel strength (N / 20 mm width) by the coating thickness (μm) of the coat layer was evaluated based on the following criteria.
○: Maximum peel strength in terms of coating thickness is 2 N / 20 mm width or more ×: Maximum peel strength in terms of coating thickness is less than 2 N / 20 mm width
<タック性の評価>
 作製したコーティングフィルムのコート面を指触し、下記基準で評価した。
  ○:タックが無い
  ×:タックがある
<Evaluation of tackiness>
The coated surface of the produced coating film was touched with fingers and evaluated according to the following criteria.
○: No tack ×: There is tack
<架橋性の評価>
 作製したコーティング組成物をテフロン(登録商標)シートに塗布し、100℃で60秒乾燥させることにより評価サンプルを作製した。このサンプルを動的粘弾性測定装置「DVE-V4」(レオロジー社製)を用いることにより動的粘弾性測定を実施し、周波数10Hz、昇温速度3℃/分で引張法により測定した150℃での弾性率から、下記基準により判定した。
  ○:150℃における弾性率が1.0MPa以上
  ×:150℃における弾性率が1.0MPa未満
<Evaluation of crosslinkability>
The prepared coating composition was applied to a Teflon (registered trademark) sheet and dried at 100 ° C. for 60 seconds to prepare an evaluation sample. This sample was subjected to dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device “DVE-V4” (manufactured by Rheology), and was measured at 150 ° C. by a tensile method at a frequency of 10 Hz and a temperature rising rate of 3 ° C./min. From the elastic modulus at, the following criteria were used.
○: Elastic modulus at 150 ° C. is 1.0 MPa or more ×: Elastic modulus at 150 ° C. is less than 1.0 MPa
[基材フィルムに用いた重合体]
<アクリル樹脂>
 アクリル樹脂としては、住友化学株式会社製のPMMA樹脂「スミペックスMGSS」を用いた。
[Polymer used for base film]
<Acrylic resin>
As the acrylic resin, PMMA resin “SUMIPEX MGSS” manufactured by Sumitomo Chemical Co., Ltd. was used.
<脂環式構造含有樹脂>
 特開2008-024919号公報に準じた方法で製造した、ジヒドロキシ化合物であるイソソルビドに由来する構造単位とトリシクロデカンジメタノールに由来する構造単位のモル比率がイソソルビド/トリシクロデカンジメタノール=6/4で、ガラス転移温度が126℃である脂環式構造含有樹脂(ポリカーボネート樹脂)を用いた。
<Alicyclic structure-containing resin>
The molar ratio of the structural unit derived from isosorbide, which is a dihydroxy compound, and the structural unit derived from tricyclodecane dimethanol, produced by a method according to Japanese Patent Application Laid-Open No. 2008-024919 is isosorbide / tricyclodecanedimethanol = 6 / 4, an alicyclic structure-containing resin (polycarbonate resin) having a glass transition temperature of 126 ° C. was used.
[基材フィルムの作製]
(1)基材A
 上記のアクリル樹脂をφ65mm単軸押出機に投入し、220~240℃のバレル設定温度にて溶融混練し、幅1350mmでリップギャップ0.7mmの口金(設定温度240℃)から押出した後、65℃に温調されたキャストロールにて巻き取ることにより、厚み60μmのフィルムを作製した。このフィルムを、コロナ処理装置を用いて積算照射量1000W/mでコロナ処理した後にMD方向を長手として100mm×200mmに切断することにより、それぞれ、アクリル樹脂フィルム(以下、基材Aと略記)を作製した。
[Preparation of base film]
(1) Substrate A
The acrylic resin is put into a φ65 mm single screw extruder, melt-kneaded at a barrel set temperature of 220 to 240 ° C., and extruded from a die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.). A film having a thickness of 60 μm was produced by winding with a cast roll whose temperature was adjusted to ° C. This film is corona-treated with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm × 200 mm with the MD direction as the longitudinal direction, whereby acrylic resin films (hereinafter abbreviated as “base material A”) are obtained. Was made.
(2)基材B
 中間層の材料として上記ポリカーボネート樹脂100質量部、表裏層用の材料として上記アクリル系樹脂(PMMA)80質量部とアクリル系ブロック共重合体(クラリティLA4285、メタクリル酸メチル重合体ブロック-アクリル酸ブチル重合体ブロック-メタクリル酸メチル重合体ブロックからなるトリブロック共重合体、メタクリル酸メチル/アクリル酸ブチル=50/50質量%、Tg:115℃(HS)、-40℃(SS)、MFR(温度:230℃、荷重:21.2N):31g/10min、分子量(Mw):8×10、Mw/Mn=1.14、平均屈折率:1.4783)20質量部の割合で混合した組成物を、それぞれ、φ65mm単軸押出機、φ40mm軸押出機に投入し、それぞれ220~240℃、および、180℃~240℃のバレル設定温度にて溶融混練し、幅1350mmでリップギャップ0.7mmのマルチ口金(設定温度240℃)から共押出した後、20℃に温調されたキャストロールにて巻き取ることにより、ポリカーボネート層/アクリル層/ポリカーボネート層の構成のフィルムを作製した。各層の膜厚は、3.5μm/8μm/3.5μmであった。このフィルムを、コロナ処理装置を用いて積算照射量1000W/mでコロナ処理した後にMD方向を長手として100mm×200mmに切断することにより、積層フィルム(基材Bと略記)を作成した。
(2) Base material B
100 parts by weight of the polycarbonate resin as the material for the intermediate layer, 80 parts by weight of the acrylic resin (PMMA) as the material for the front and back layers, and an acrylic block copolymer (clarity LA4285, methyl methacrylate polymer block-butyl acrylate heavy) Triblock copolymer comprising polymer block-methyl methacrylate polymer block, methyl methacrylate / butyl acrylate = 50/50 mass%, Tg: 115 ° C. (HS), −40 ° C. (SS), MFR (temperature: 230 ° C., load: 21.2 N): 31 g / 10 min, molecular weight (Mw): 8 × 10 4 , Mw / Mn = 1.14, average refractive index: 1.4783) composition mixed at a ratio of 20 parts by mass the respectively, 65 mm single screw extruder, then charged into a [phi] 40 mm 2 screw extruder, respectively 220 ~ 240 ° C., and It is melt-kneaded at a barrel set temperature of 180 ° C to 240 ° C, coextruded from a multi-die (set temperature 240 ° C) with a width of 1350 mm and a lip gap of 0.7 mm, and then wound with a cast roll adjusted to 20 ° C. By taking the film, a film having a constitution of polycarbonate layer / acrylic layer / polycarbonate layer was produced. The film thickness of each layer was 3.5 μm / 8 μm / 3.5 μm. The film was subjected to corona treatment with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm × 200 mm with the MD direction as the longitudinal direction to produce a laminated film (abbreviated as base material B).
(3)基材C
 中間層の材料として上記ポリカーボネート樹脂、表裏層用の材料として上記アクリル系樹脂(PMMA)を、それぞれ、φ65mm単軸押出機、φ40mm軸押出機に投入し、それぞれ220~240℃、および、180℃~240℃のバレル設定温度にて溶融混練し、幅1350mmでリップギャップ0.7mmのマルチ口金(設定温度240℃)から共押出した後、20℃に温調されたキャストロールにて巻き取ることにより、ポリカーボネート層/アクリル層/ポリカーボネート層の構成のフィルムを作製した。各層の膜厚は、3.5μm/8μm/3.5μmであった。このフィルムを、コロナ処理装置を用いて積算照射量1000W/mでコロナ処理した後にMD方向を長手として100mm×200mmに切断することにより、積層フィルム(基材Cと略記)を作成した。
(3) Base material C
The polycarbonate resin as the material of the intermediate layer, the acrylic resin (PMMA) as the material for the front and back layers, respectively, 65 mm single screw extruder, then charged into a [phi] 40 mm 2 screw extruder, respectively 220 ~ 240 ° C., and 180 After melt-kneading at a barrel set temperature of ℃ to 240 ℃, co-extrusion from a multi-die having a width of 1350 mm and a lip gap of 0.7 mm (set temperature of 240 ° C.), it is wound on a cast roll adjusted to 20 ° C. Thus, a film having a configuration of polycarbonate layer / acrylic layer / polycarbonate layer was produced. The film thickness of each layer was 3.5 μm / 8 μm / 3.5 μm. This film was subjected to corona treatment with an integrated irradiation amount of 1000 W / m 2 using a corona treatment apparatus, and then cut into 100 mm × 200 mm with the MD direction as the longitudinal direction, thereby producing a laminated film (abbreviated as substrate C).
[参考例3-1]
 水系ポリウレタン系樹脂「レザミンD-6031」(大日精化工業(株)製、固形分(ウレタン系樹脂)30重量%)100重量部に、架橋剤としてメチロール/イミノ基型メラミンホルムアルデヒド樹脂「サイメル701」(オルネクスジャパン(株)製)を6重量部配合し、更に添加剤としてポリビニルアルコール水溶液「マルタイト150」(大成化薬工業(株)製、固形分(ポリビニルアルコール)15重量%)を固形分換算で3重量%となるように配合し、希釈溶媒としてイオン交換水を用いて固形分量20重量%となるように配合した後に混合することによりウレタンコーティング組成物を作製した。このコーティング組成物をバーコーター#8を用いて前記基材Aにコーティングした後、100℃で1分乾燥させることにより基材A上に、表1に示す膜厚のウレタンコート層を形成してなる本発明のコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Reference Example 3-1]
Water-based polyurethane resin “Rezamin D-6031” (manufactured by Dainichi Seika Kogyo Co., Ltd., solid content (urethane resin) 30 wt%) 100 parts by weight of a methylol / imino group type melamine formaldehyde resin “Cymel 701” as a crosslinking agent "(Ornex Japan Co., Ltd.) 6 parts by weight, and as an additive, polyvinyl alcohol aqueous solution" Maltite 150 "(Taiseka Pharmaceutical Co., Ltd., solid content (polyvinyl alcohol) 15 wt%) is solid. A urethane coating composition was prepared by blending so as to be 3% by weight in terms of a fraction, mixing using ion-exchanged water as a diluent solvent so that the solid content was 20% by weight, and mixing. After coating this coating composition onto the substrate A using a bar coater # 8, the urethane coating layer having the thickness shown in Table 1 was formed on the substrate A by drying at 100 ° C. for 1 minute. A coating film of the present invention was produced. Various evaluation was implemented about this coating film.
[参考例3-2]
 前記参考例3-2において、水系ウレタン系樹脂を水系ポリウレタン系樹脂「ユーコート UA-368」(三洋化成(株)製、固形分(ウレタン系樹脂)50重量%)に変更し、メラミン樹脂架橋剤の配合量を20重量部に変更した以外は同様の手法によりコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Reference Example 3-2]
In Reference Example 3-2, the water-based urethane resin was changed to a water-based polyurethane resin “Yukot UA-368” (manufactured by Sanyo Chemical Co., Ltd., solid content (urethane resin) 50 wt%), and a melamine resin cross-linking agent A coating film was prepared in the same manner except that the amount of was changed to 20 parts by weight. Various evaluation was implemented about this coating film.
[実施例3-1]
 前記実施例3-2において、基材Aの代りに基材Bを用いた以外は同様の手法によりコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Example 3-1]
A coating film was prepared in the same manner as in Example 3-2 except that the base material B was used instead of the base material A. Various evaluation was implemented about this coating film.
[実施例3-2]
 前記実施例3-4において、基材Aの代りに基材Cを用いた以外は同様の手法によりコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Example 3-2]
A coating film was produced in the same manner as in Example 3-4 except that the substrate C was used instead of the substrate A. Various evaluation was implemented about this coating film.
[比較例3-1]
 前記参考例3-2において、架橋剤をオキサゾリン系架橋剤「エポクロスWS-500」(日本触媒(株)製)20重量部に変更した以外は同様の手法によりコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Comparative Example 3-1]
A coating film was prepared in the same manner as in Reference Example 3-2 except that the crosslinking agent was changed to 20 parts by weight of the oxazoline-based crosslinking agent “Epocross WS-500” (manufactured by Nippon Shokubai Co., Ltd.). Various evaluation was implemented about this coating film.
[比較例3-2]
 前記参考例3-2において、架橋剤をオキサゾリン系架橋剤「エポクロスWS-500」(日本触媒(株)製)40重量部に変更した以外は同様の手法によりコーティングフィルムを作製した。このコーティングフィルムについて各種評価を実施した。
[Comparative Example 3-2]
A coating film was produced in the same manner as in Reference Example 3-2 except that the crosslinking agent was changed to 40 parts by weight of the oxazoline-based crosslinking agent “Epocross WS-500” (manufactured by Nippon Shokubai Co., Ltd.). Various evaluation was implemented about this coating film.
 前記参考例3-1~3-2、実施例3-1~3-2及び比較例3-1~3-2におけるコーティングフィルムの評価結果と形成したコート層の膜厚を表3に示した。 Table 3 shows the evaluation results of the coating films and the thicknesses of the formed coating layers in Reference Examples 3-1 to 3-2, Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-2. .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 なお、表3中の「架橋剤※部数」の欄のカッコ内の数値は、水系ウレタン系樹脂100重量部に対する架橋剤の重量部を示している。 In Table 3, the numerical value in parentheses in the column “number of parts of crosslinking agent” indicates the weight part of the crosslinking agent with respect to 100 parts by weight of the water-based urethane resin.
 アクリル基材に対して、オキサゾリン系の架橋剤を用いた比較例3-1では、接着性及び架橋性に劣っている。一方、架橋剤の量を増加した比較例3-2では、架橋性は改善されているが接着性の向上は見られなかった。従って、オキサゾリン系の架橋剤を用いた場合、接着性と架橋性の両立は困難であることがわかる。
 一方、メラミン樹脂系の架橋剤を用いた参考例3-1、3-2では、接着性と架橋性に優れた特性を示した。積層フィルムを基材とした実施例3-1、3-2においてもその効果が発現されている。
In Comparative Example 3-1, in which an oxazoline-based cross-linking agent was used with respect to the acrylic base material, the adhesion and cross-linking properties were inferior. On the other hand, in Comparative Example 3-2 in which the amount of the crosslinking agent was increased, the crosslinkability was improved, but no improvement in adhesion was observed. Therefore, it can be seen that when an oxazoline-based crosslinking agent is used, it is difficult to achieve both adhesion and crosslinking properties.
On the other hand, Reference Examples 3-1 and 3-2 using a melamine resin-based cross-linking agent exhibited excellent properties in adhesion and cross-linking. The effects are also exhibited in Examples 3-1 and 3-2 using a laminated film as a base material.

Claims (14)

  1.  ポリカーボネート樹脂を主成分とする層、および、アクリル系樹脂を主成分とする層を、それぞれ1層以上有する積層光学フィルムであって、
     該ポリカーボネート樹脂が、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂であり、
     積層光学フィルムの総厚みが50μm以下であり、かつ、JIS K7128-2に準拠して測定した引裂強度が4.0kg/cm以上であることを特徴とする積層光学フィルム。
    Figure JPOXMLDOC01-appb-C000001
    A laminated optical film having one or more layers each having a polycarbonate resin as a main component and an acrylic resin as a main component,
    The polycarbonate resin is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following formula (1):
    A laminated optical film, wherein the laminated optical film has a total thickness of 50 μm or less and a tear strength measured according to JIS K7128-2 of 4.0 kg / cm or more.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ポリカーボネート樹脂がさらに、下記式(2)で表されるトリシクロデカンジメタノールに由来する構造単位を含有することを特徴とする、請求項1に記載の積層光学フィルム。
    Figure JPOXMLDOC01-appb-C000002
    The laminated optical film according to claim 1, wherein the polycarbonate resin further contains a structural unit derived from tricyclodecane dimethanol represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  3.  中間層と表裏層の少なくとも3層を有し、前記中間層は、前記ポリカーボネート樹脂を主成分とする層であり、前記表裏層は、前記アクリル系樹脂を主成分とする層であることを特徴とする請求項1又は2に記載の積層光学フィルム。 It has at least three layers of an intermediate layer and front and back layers, the intermediate layer is a layer mainly composed of the polycarbonate resin, and the front and back layers are layers mainly composed of the acrylic resin. The laminated optical film according to claim 1 or 2.
  4.  中間層と表裏層の少なくとも3層を有し、前記中間層は、前記アクリル系樹脂を主成分とする層であり、前記表裏層は、前記ポリカーボネート樹脂を主成分とする層であることを特徴とする請求項1又は2に記載の積層光学フィルム。 It has at least three layers of an intermediate layer and front and back layers, the intermediate layer is a layer mainly composed of the acrylic resin, and the front and back layers are layers mainly composed of the polycarbonate resin. The laminated optical film according to claim 1 or 2.
  5.  積層光学フィルムの総厚みが20μm以下であり、かつ、JIS K7128-2に準拠して測定した引裂強度が5.0kg/cm以上であることを特徴とする請求項1~4の何れかに記載の積層光学フィルム。 5. The laminated optical film has a total thickness of 20 μm or less, and a tear strength measured in accordance with JIS K7128-2 of 5.0 kg / cm or more. Laminated optical film.
  6.  積層光学フィルムの総厚みに対する、前記ポリカーボネート樹脂を主成分とする層の総厚みの割合が、20%以上95%以下であることを特徴とする請求項1~5の何れかに記載の積層光学フィルム。 6. The laminated optical system according to claim 1, wherein the ratio of the total thickness of the layer mainly composed of the polycarbonate resin to the total thickness of the laminated optical film is 20% or more and 95% or less. the film.
  7.  積層光学フィルムの総厚みに対する、前記ポリカーボネート樹脂を主成分とする層の厚みの割合が、50%を超え80%以下であることを特徴とする請求項1~5の何れかに記載の積層光学フィルム。 6. The laminated optical system according to claim 1, wherein the ratio of the thickness of the layer mainly composed of the polycarbonate resin to the total thickness of the laminated optical film is more than 50% and 80% or less. the film.
  8.  前記アクリル系樹脂を主成分とする層は、柔軟性改質剤を含有することを特徴とする請求項1~7の何れかに記載の積層光学フィルム。 The laminated optical film according to any one of claims 1 to 7, wherein the layer mainly composed of the acrylic resin contains a flexibility modifier.
  9.  前記柔軟性改質剤が、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が100℃以上のハードセグメント(HS)と、少なくともメタクリル酸エステル及びアクリル酸エステルに由来する単量体単位のうち一種を含みガラス転移温度が20℃以下のソフトセグメント(SS)と、を有するアクリル系ブロック共重合体であることを特徴とする請求項8に記載の積層光学フィルム。 The softness modifier includes at least one monomer unit derived from methacrylic acid ester and acrylic acid ester and includes a hard segment (HS) having a glass transition temperature of 100 ° C. or higher, and at least methacrylic acid ester and acrylic acid. The laminate according to claim 8, which is an acrylic block copolymer having a soft segment (SS) containing one kind of monomer units derived from an ester and having a glass transition temperature of 20 ° C. or lower. Optical film.
  10.  前記積層光学フィルムの少なくとも片面に、ウレタン系樹脂とメラミン樹脂系架橋剤を含有する水系ウレタン系樹脂組成物よりなるコート層を備えた請求項1~9の何れかに記載の積層光学フィルム。 The laminated optical film according to any one of claims 1 to 9, further comprising a coat layer made of an aqueous urethane resin composition containing a urethane resin and a melamine resin crosslinking agent on at least one surface of the laminated optical film.
  11.  前記メラミン樹脂系架橋剤が、イミノ基型及び/またはメチロール基型のメラミン系樹脂を含有するものであることを特徴とする、請求項10に記載の積層光学フィルム。 The laminated optical film according to claim 10, wherein the melamine resin-based crosslinking agent contains an imino group-type and / or methylol group-type melamine resin.
  12.  請求項10又は11に記載の積層光学フィルムの前記コート層に、接着剤層を介して偏光膜を接着してなる構成を備えた偏光板。 A polarizing plate comprising a structure in which a polarizing film is bonded to the coating layer of the laminated optical film according to claim 10 or 11 via an adhesive layer.
  13.  前記接着剤層は、水系接着剤からなることを特徴とする請求項12に記載の偏光板。 The polarizing plate according to claim 12, wherein the adhesive layer is made of a water-based adhesive.
  14.  請求項12又は13に記載の偏光板を有する液晶表示装置。
     
    A liquid crystal display device comprising the polarizing plate according to claim 12.
PCT/JP2016/069415 2015-06-30 2016-06-30 Multilayer optical film and polarizing plate WO2017002904A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-132065 2015-06-30
JP2015132065 2015-06-30
JP2015-242289 2015-12-11
JP2015242289A JP6828236B2 (en) 2015-12-11 2015-12-11 Film and polarizing plate
JP2016048658 2016-03-11
JP2016-048658 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017002904A1 true WO2017002904A1 (en) 2017-01-05

Family

ID=57608296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069415 WO2017002904A1 (en) 2015-06-30 2016-06-30 Multilayer optical film and polarizing plate

Country Status (1)

Country Link
WO (1) WO2017002904A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143211A1 (en) * 2017-02-03 2018-08-09 株式会社クラレ Molded body and method for producing same
CN108501353A (en) * 2018-02-01 2018-09-07 深圳市能佳自动化设备有限公司 Film aligns applying method with 3D glass bidirectionals
WO2019162832A1 (en) * 2018-02-26 2019-08-29 3M Innovative Properties Company Optical film including layer of polycarbonate
CN111161634A (en) * 2018-11-08 2020-05-15 住友化学株式会社 Optical film
CN113291008A (en) * 2020-02-24 2021-08-24 荣耀终端有限公司 Cover plate, display screen and electronic equipment
JP7363427B2 (en) 2019-12-04 2023-10-18 三菱ケミカル株式会社 Polycarbonate resin compositions and molded products

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024919A (en) * 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp Polycarbonate copolymer and method for producing the same
JP2008181079A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display
WO2011049108A1 (en) * 2009-10-21 2011-04-28 三菱瓦斯化学株式会社 Functional sheet and lens using same
JP2011161871A (en) * 2010-02-12 2011-08-25 Mitsubishi Chemicals Corp Multi-layered body
JP2012514212A (en) * 2008-12-25 2012-06-21 株式会社クラレ Optical member made of acrylic block copolymer
JP2014106450A (en) * 2012-11-29 2014-06-09 Nippon Zeon Co Ltd Antireflection film and method for manufacturing the same
JP2014133408A (en) * 2012-12-10 2014-07-24 Sumitomo Chemical Co Ltd Surface-treated laminate film and polarizing plate using the same
JP2014209162A (en) * 2013-03-28 2014-11-06 富士フイルム株式会社 Polarizing plate and image display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024919A (en) * 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp Polycarbonate copolymer and method for producing the same
JP2008181079A (en) * 2006-12-27 2008-08-07 Nitto Denko Corp Polarizer protection film, polarizing plate and image display
JP2012514212A (en) * 2008-12-25 2012-06-21 株式会社クラレ Optical member made of acrylic block copolymer
WO2011049108A1 (en) * 2009-10-21 2011-04-28 三菱瓦斯化学株式会社 Functional sheet and lens using same
JP2011161871A (en) * 2010-02-12 2011-08-25 Mitsubishi Chemicals Corp Multi-layered body
JP2014106450A (en) * 2012-11-29 2014-06-09 Nippon Zeon Co Ltd Antireflection film and method for manufacturing the same
JP2014133408A (en) * 2012-12-10 2014-07-24 Sumitomo Chemical Co Ltd Surface-treated laminate film and polarizing plate using the same
JP2014209162A (en) * 2013-03-28 2014-11-06 富士フイルム株式会社 Polarizing plate and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143211A1 (en) * 2017-02-03 2018-08-09 株式会社クラレ Molded body and method for producing same
CN108501353A (en) * 2018-02-01 2018-09-07 深圳市能佳自动化设备有限公司 Film aligns applying method with 3D glass bidirectionals
WO2019162832A1 (en) * 2018-02-26 2019-08-29 3M Innovative Properties Company Optical film including layer of polycarbonate
CN111757807A (en) * 2018-02-26 2020-10-09 3M创新有限公司 Optical film including polycarbonate layer
CN111161634A (en) * 2018-11-08 2020-05-15 住友化学株式会社 Optical film
JP7363427B2 (en) 2019-12-04 2023-10-18 三菱ケミカル株式会社 Polycarbonate resin compositions and molded products
CN113291008A (en) * 2020-02-24 2021-08-24 荣耀终端有限公司 Cover plate, display screen and electronic equipment

Similar Documents

Publication Publication Date Title
JP6766472B2 (en) Laminated optical film and polarizing plate
WO2017002904A1 (en) Multilayer optical film and polarizing plate
WO2010013539A1 (en) Polarizer-protecting film, and polarizing plate and image display device each comprising polarizer-protecting film
TWI723985B (en) Layered body
CN107001853B (en) Easily adhesive composition, optical film using the same, and method for producing the same
TW201026509A (en) Cloud point-resistant adhesives and laminates
WO2007105485A1 (en) Polarizer protection film, polarizing plate and image display
WO2015068483A1 (en) Optical laminate
JP6054019B2 (en) Optical laminate
TWI661021B (en) Easy adhesive composition, optical film using the same, and manufacturing method thereof
WO2015046245A1 (en) Optical laminate
JP2006299252A (en) Pressure-sensitive adhesive composition and utilization thereof
JP5771418B2 (en) Method for producing retardation film having easy adhesion layer
JP2012032768A (en) Optical film and method for producing the same, optical member and image display device
WO2022113562A1 (en) Lamination film for liquid crystal polarizing membrane, surface protection film for liquid crystal polarizing membrane, laminate provided with liquid crystal polarizing membrane, and image display apparatus including liquid crystal polarizing membrane
TWI661934B (en) Synthetic resin laminate
JP6859092B2 (en) Composition for easy adhesive layer formation
JP2015136792A (en) Laminate
JP2015182449A (en) Method for producing optical film
JP2012073552A (en) Retardation plate and liquid crystal display device
TWI778937B (en) Cosmetic sheets, panels, articles with cosmetic sheets, and articles with panels
JP6651832B2 (en) Film and polarizing plate
JP6828236B2 (en) Film and polarizing plate
JP5845895B2 (en) Multilayer film manufacturing method
JP6965509B2 (en) Film winding layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818012

Country of ref document: EP

Kind code of ref document: A1