WO2018143092A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2018143092A1
WO2018143092A1 PCT/JP2018/002510 JP2018002510W WO2018143092A1 WO 2018143092 A1 WO2018143092 A1 WO 2018143092A1 JP 2018002510 W JP2018002510 W JP 2018002510W WO 2018143092 A1 WO2018143092 A1 WO 2018143092A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
irradiated
period
projection light
mirror
Prior art date
Application number
PCT/JP2018/002510
Other languages
French (fr)
Japanese (ja)
Inventor
祥夫 棚橋
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018143092A1 publication Critical patent/WO2018143092A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a measuring device using electromagnetic waves.
  • Patent Document 1 discloses a scanning measurement device capable of measuring a distance of 360 degrees in the horizontal direction by scanning pulsed measurement light toward a measurement target space.
  • An object of this invention is to provide the measuring device which can improve a measurement precision suitably.
  • the invention according to claim 1 is a measuring device, and an irradiation unit that irradiates an electromagnetic wave while changing an irradiation direction, and an object that is irradiated with the electromagnetic wave irradiated from the irradiation unit in a first period within one cycle.
  • the second period so that at least a part of the first area on the object and the second area that is the area on the object irradiated with the electromagnetic wave irradiated from the irradiation unit in the second period overlap.
  • a reflection part for reflecting the electromagnetic wave irradiated by the irradiation part.
  • Invention of Claim 7 is a measuring device, Comprising: The irradiation part which irradiates the electromagnetic waves radiate
  • FIG. 1 It is a block diagram which shows schematic structure of the measuring device which concerns on an Example. It is the figure which showed the cross section of the optical member typically. An example of the three-dimensional structure of the concave mirror and convex mirror which comprise an optical member is shown. It is the top view which observed the optical member from the upper part. It is the figure which showed typically a mode that projection light was irradiated with respect to the measurement object which exists far away. It is the figure which showed the optical path of the projection light at the time of changing the elevation angle of a MEMS mirror only by the predetermined angle. It is a figure showing an example of the three-dimensional structure of the concave mirror and convex mirror in a modification. The structural example of the optical member which concerns on a modification is shown.
  • the structural example of the optical member which concerns on a modification is shown. It is the top view which observed the optical member concerning a modification from the upper part. It is the figure which showed typically a mode that projection light was irradiated with respect to the measurement object which exists in predetermined distance from a measuring device.
  • the schematic structure of the measuring apparatus which concerns on 2nd Example is shown. It is the figure which showed typically the cross-sectional structure of the optical member in which direction was adjusted so that the front of a vehicle might be set as the scanning range of a projection light. It is the figure which showed typically the cross-section of the optical member in which direction was adjusted so that the back of a vehicle might be set as the scanning range of a projection light. It is the figure which showed typically the cross-section of the optical member at the time of rotating an optical member based on 3rd control.
  • the measurement device is configured to irradiate an electromagnetic wave while changing the irradiation direction, and on an object irradiated with the electromagnetic wave irradiated from the irradiation unit in a first period within one cycle.
  • the second period at least part of the first area overlaps with the second area that is an area on the object irradiated with the electromagnetic wave emitted from the irradiation unit in the second period.
  • a reflection part that reflects the electromagnetic wave irradiated by the irradiation part.
  • the measurement apparatus includes an irradiation unit and a reflection unit.
  • An irradiation part irradiates electromagnetic waves, changing an irradiation direction.
  • the reflection unit includes a first region on the object irradiated with the electromagnetic wave irradiated from the irradiation unit in the first period within one cycle, and an object irradiated with the electromagnetic wave irradiated from the irradiation unit in the second period.
  • the electromagnetic wave irradiated by the irradiation unit in the second period is reflected so that at least a part of the second region that is the first region overlaps the second region.
  • the measuring device can preferably improve the measurement accuracy.
  • the measurement apparatus further includes a receiving unit capable of receiving the electromagnetic wave reflected by the object included in the scanning surface by the electromagnetic wave irradiated by the irradiation unit, wherein the “scanning surface” It refers to the irradiation range (that is, the detectable range) of electromagnetic waves when the measurement apparatus is looked down on.
  • the reflection unit includes a first reflection unit and a second reflection unit, and the irradiation unit irradiates the first reflection unit with the electromagnetic wave in the first period, In the second period, the second reflecting portion has a movable reflecting portion that irradiates the electromagnetic wave.
  • the measurement apparatus reflects the electromagnetic waves irradiated by the irradiation unit in the first period and the second period by the first reflection unit and the second reflection unit, respectively, and at least part of the first region and the second region is reflected. It can overlap suitably.
  • the electromagnetic wave irradiated in the first period and the electromagnetic wave irradiated in the second period are irradiated at an elevation angle such that at least a part of the first region and the second region overlap.
  • the measuring device can suitably overlap at least a part of the first region and the second region.
  • the electromagnetic wave reflected by the second reflecting unit has the same elevation angle as that of the electromagnetic wave reflected by the first reflecting unit when the object is more than a predetermined distance away. It is injected.
  • the measurement device can suitably overlap at least a part of the first region and the second region of the target existing at a position separated by a predetermined distance or more.
  • the second reflection unit includes a first reflection surface and a second reflection surface, and the first reflection surface is irradiated by the irradiation unit in the second period.
  • the electromagnetic wave is reflected on the second reflecting surface, and the second reflecting surface reflects the electromagnetic wave reflected from the first reflecting surface so that at least a part of the first region and the second region overlap each other.
  • the measurement apparatus can suitably improve the measurement accuracy by overlapping the first region and the second region even when the second reflection unit is configured by a plurality of reflection surfaces.
  • the measuring apparatus includes a first optical member having the first reflecting portion and a first refracting surface, and a second optical member having the second reflecting portion and a second refracting surface.
  • the electromagnetic wave passes through the first refracting surface before and after being reflected by the first reflecting portion
  • the electromagnetic wave is the second The light passes through the second refracting surface before and after being reflected by the reflecting portion.
  • the measurement apparatus can preferably improve the measurement accuracy by overlapping the first region and the second region.
  • the measurement apparatus further includes an adjustment mechanism that moves the reflection unit so as to change the first period and the second period in the one cycle.
  • the measuring apparatus can suitably adjust the irradiation range in which the electromagnetic wave is irradiated outside by the adjusting mechanism.
  • the measurement apparatus further includes a determination unit that determines an irradiation range in which the first electromagnetic wave and the second electromagnetic wave are irradiated to the outside, and the adjustment mechanism includes the irradiation range determined by the determination unit.
  • the reflection unit is moved so that the first electromagnetic wave and the second electromagnetic wave are irradiated to the first electromagnetic wave.
  • the measuring apparatus can adjust suitably the irradiation range with which electromagnetic waves are irradiated outside.
  • the determination unit determines the irradiation range based on an external input, or behavior information of a moving body on which the measurement apparatus is mounted or a ground related to a feature around the moving body.
  • the irradiation range is determined based on the object information.
  • the measuring device can suitably determine the irradiation range of the electromagnetic wave according to the situation.
  • the reflection unit is rotatable about an axis extending from the irradiation unit in the predetermined direction as a rotation axis, and the adjustment mechanism is configured to reflect the reflection according to a change in the irradiation direction. Rotate the part.
  • the measuring apparatus can suitably expand the irradiation range of the electromagnetic wave in the horizontal direction.
  • an irradiation unit that irradiates an electromagnetic wave emitted from a light source, a first reflection unit that reflects the electromagnetic wave irradiated in a first period, and the irradiation that occurs in a second period
  • a second reflecting portion that reflects electromagnetic waves, wherein the second reflecting portion is at least one of a range in which the first reflecting portion reflects the electromagnetic waves and a range in which the second reflecting portion reflects the electromagnetic waves.
  • the electromagnetic waves are reflected so that the portions overlap.
  • the measurement apparatus can preferably improve the measurement accuracy by suitably overlapping the ranges in which the electromagnetic waves are scanned in the first period and the second period.
  • FIG. 1 shows a schematic configuration of a measuring apparatus 100 according to the first embodiment.
  • the measurement apparatus 100 projects infrared light (for example, wavelength 905 nm) of projection light “L1” that is an electromagnetic wave onto the measurement object 10, receives the return light “L2”, and determines the distance to the measurement object 10. measure.
  • the measuring device 100 is a rider that is mounted on a vehicle, for example, and has a specific direction such as the front, side, or rear of the vehicle as a measurement range.
  • the measuring apparatus 100 limits the scanning range of the projection light L1 in the horizontal direction to about 180 degrees, thereby improving the number of times of measurement per unit time (so-called frame rate) in the limited scanning range.
  • the measuring device 100 includes a light source unit 1, a control unit 2, a light receiving unit 3, a MEMS mirror 4, and an optical member 5.
  • the light source unit 1 emits infrared projection light L1 toward the MEMS mirror 4.
  • the MEMS mirror 4 reflects the projection light L ⁇ b> 1 and emits it outside the measuring apparatus 100.
  • the light receiving unit 3 is, for example, an avalanche photodiode (Avalanche PhotoDiode), and generates a detection signal corresponding to the light amount of the received return light L2 and sends it to the control unit 2.
  • avalanche photodiode Avalanche PhotoDiode
  • emission both indicate that light is output.
  • “irradiation” is mainly used in the description based on the presence of a target that is exposed to light such as a reflecting portion or an object. In the description that does not particularly presume (not conscious of) the presence of a target that is exposed to light, “emission” is used for convenience.
  • the MEMS mirror 4 reflects the projection light L1 incident from the light source unit 1 toward the optical member 5.
  • the MEMS mirror 4 reflects the return light L2 incident from the optical member 5 toward the light receiving unit 3.
  • the MEMS mirror 4 is, for example, an electrostatic drive type mirror, and the tilt (that is, the angle of optical scanning) changes within a predetermined range under the control of the control unit 2.
  • the MEMS mirror 4 reflects the projection light L1 within a range of 360 degrees at least in the horizontal direction.
  • the light source unit 1 and the MEMS mirror 4 are examples of the “irradiation unit” in the present invention.
  • the optical member 5 reflects the projection light L1 incident from the MEMS mirror 4 toward the outside of the measuring apparatus 100, and reflects the return light L2 reflected from the measurement object 10 toward the MEMS mirror 4.
  • the optical member 5 has a structure that reflects the projection light L1 emitted from the MEMS mirror 4 in a range of 360 degrees in all directions so as to be scanned twice in a direction corresponding to 180 degrees as a measurement target. .
  • a configuration example of the optical member 5 will be described later.
  • the control unit 2 controls the emission of the projection light L1 from the light source unit 1 and processes the detection signal supplied from the light receiving unit 3 to calculate the distance to the measurement object 10. In addition, the control unit 2 transmits a control signal related to the tilt of the MEMS mirror 4 to the MEMS mirror 4, thereby changing the irradiation direction of the projection light L ⁇ b> 1 by the MEMS mirror 4.
  • [Configuration of optical member] 2A and 2B are diagrams schematically showing a cross-sectional structure of the optical member 5 that reflects the projection light L1 and the return light L2.
  • the two-dimensional coordinate axes defining the horizontal direction are the X and Y axes
  • the vertical coordinate axis perpendicular to the horizontal direction is the Z axis
  • the positive direction of each axis is shown in FIG. Shall be defined as follows.
  • the azimuth of 180 degrees centered on the X-axis positive direction in the XY plane is the measurement range of the measuring apparatus 100
  • the X-axis positive direction side is “front side”
  • the X-axis negative direction side is “back side”.
  • an angle around the Z axis ie, yaw angle
  • an angle around the Y axis ie, pitch angle
  • the optical member 5 includes a convex mirror 6A and a concave mirror 6B.
  • the convex mirror 6A exists on the X axis positive direction side with respect to the MEMS mirror 4 and the concave mirror 6B
  • the concave mirror 6B exists on the X axis negative direction side with respect to the MEMS mirror 4 and the convex mirror 6A.
  • the concave mirror 6B is further away from the MEMS mirror 4 on the positive side in the Z-axis direction than the convex mirror 6A.
  • the reflective surface of the concave mirror 6B with respect to the projection light L1 and the return light L2 is the reflective surface of the convex mirror 6A. Bigger than.
  • the projection light L1 emitted from the light source unit 1 (not shown) is incident on the MEMS mirror 4 from the Z-axis positive direction toward the Z-axis negative direction. Then, the MEMS mirror 4 rotates around the Z axis based on the control of the control unit 2 to gradually change the direction in which the projection light L1 is emitted from the MEMS mirror 4 within the 360-degree direction.
  • the convex mirror 6A reflects the incident projection light L1 toward the positive X-axis direction.
  • the projection light L1 is emitted horizontally after reflection by the convex mirror 6A. That is, the elevation angle of the projection light L1 after reflection by the convex mirror 6A is 0 degree.
  • the direction (that is, the azimuth angle) of the projection light L1 on the XY plane does not change before and after the reflection by the convex mirror 6A.
  • the region of the measurement object 10 irradiated with the projection light L1 reflected by the convex mirror 6A is an example of the “first region” in the present invention.
  • the return light L2 reflected by the measurement object 10 after being reflected by the convex mirror 6A and emitted from the measuring device 100 is incident on the convex mirror 6A.
  • the return light L2 is reflected toward the MEMS mirror 4 by the convex mirror 6A, and further reflected by the MEMS mirror 4 in the positive Z-axis direction.
  • the return light L2 is guided to the light receiving unit 3 (not shown).
  • the concave mirror 6B reflects the incident projection light L1 toward the positive X-axis direction, which is an azimuth that is approximately 180 degrees different from the incident direction on the XY plane. Further, the projection light L1 reflected by the concave mirror 6B is emitted horizontally. That is, the projection light L1 reflected by the concave mirror 6B is emitted from the concave mirror 6B in parallel with the projection light L1 reflected by the convex mirror 6A shown in FIG. 2A (that is, with the same elevation angle).
  • the region of the measurement object 10 irradiated with the projection light L1 reflected by the concave mirror 6B is an example of the “second region” in the present invention.
  • the return light L2 reflected by the measurement object 10 after being reflected by the concave mirror 6B and emitted from the measuring device 100 is incident on the concave mirror 6B.
  • the return light L2 is reflected by the concave mirror 6B to the MEMS mirror 4, and further reflected by the MEMS mirror 4 in the Z-axis positive direction.
  • the return light L2 is guided to the light receiving unit 3 (not shown).
  • the direction in which the projection light L1 is emitted is in a range of azimuth angles of 180 degrees with the X axis positive direction as the center.
  • the projection is performed.
  • the light L1 is emitted from the measuring device 100 with the same elevation angle.
  • the convex mirror 6A is an example of the “reflecting part” and the “first reflecting part” in the present invention, and the period in which the reflecting surface faces the front side in the rotation period of the MEMS mirror 4 is the “first period” in the present invention.
  • the concave mirror 6B is an example of the “reflecting portion” and the “second reflecting portion” in the present invention, and the period in which the reflecting surface faces the back side in the rotation period of the MEMS mirror 4 is the “second period” in the present invention. Is an example.
  • 3A and 3B are diagrams illustrating an example of a three-dimensional structure of the convex mirror 6A and the concave mirror 6B.
  • a semispherical convex mirror 6A and a concave mirror 6B having different sizes are arranged.
  • the convex mirror 6A uses the spherical outer surface as a reflection surface, and emits the projection light L1 incident from the MEMS mirror 4 to the outside of the measuring device 100.
  • the convex mirror 6A receives all the projection light L1 reflected from the MEMS mirror 4 when the reflection surface of the MEMS mirror 4 faces the front side, and determines the azimuth angle of the projection light L1 after reflection.
  • the arrangement, the size of the reflection surface, and the like are designed in advance so that the elevation angle becomes a predetermined angle (here, 0 degrees) without being changed.
  • the convex mirror 6 ⁇ / b> A reflects the return light L ⁇ b> 2 incident from outside the measuring apparatus 100 to the MEMS mirror 4.
  • the concave mirror 6B uses the spherical inner surface as a reflection surface, and emits the projection light L1 incident from the MEMS mirror 4 to the outside of the measuring device 100.
  • the concave mirror 6B receives all the projection light L1 reflected from the MEMS mirror 4, and the orientation of the projection light L1 before and after the reflection is
  • the arrangement, the size of the reflecting surface, and the like are designed in advance so that the angle of elevation of the projected light L1 after reflection is a predetermined angle (here, 0 degrees).
  • the concave mirror 6 ⁇ / b> B reflects the return light L ⁇ b> 2 incident from the outside of the measuring apparatus 100 to the MEMS mirror 4.
  • FIG. 4 is a plan view of the optical member 5 of FIG. 3 observed from the positive direction of the Z axis.
  • the convex mirror 6A and the concave mirror 6B are semicircles having different radii in the XY plan view, and are close to each other with the sides forming the diameter facing each other. Then, in the XY plan view, near the center point of each semicircle of the convex mirror 6A and the concave mirror 6B, the projection light L1 traveling from the light source unit 1 to the MEMS mirror 4 and the return light L2 traveling from the MEMS mirror 4 to the light receiving unit 3 A hole 11 is formed for the passage of.
  • a broken line arrow 8A indicates a region where the optical member 5 reflects the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the front side (see FIG. 2A).
  • the broken line arrow 8B indicates a region where the optical member 5 reflects the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the back side (see FIG. 2B).
  • a solid arrow 8C indicates a range in which light (that is, the projection light L1 and the return light L2) is transmitted and received by the measurement apparatus 100.
  • the traveling direction of the light is changed by 180 degrees, so that the projection light L1 and the return light L2 are transmitted and received.
  • the range is an azimuth range of about 180 degrees where the convex mirror 6A is formed. That is, in this case, the range of transmission / reception of the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the front side, and the projection light L1 when the reflection surface of the MEMS mirror 4 faces the back side and The range of transmission / reception of the return light L2 overlaps. And when the reflective surface of the MEMS mirror 4 is facing the front side and when the reflective surface of the MEMS mirror 4 is facing the back side, the projection light L1 is measured with the same elevation angle from different heights. Injected from 100.
  • FIG. 5 is a diagram schematically illustrating a state in which the projection light L ⁇ b> 1 is irradiated onto the measurement target 10 existing in the distance.
  • the projection light L1 is reflected by either the concave mirror 6B or the convex mirror 6A and then diverges with a predetermined spread angle. Further, the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B are emitted from the measuring apparatus 100 at the same elevation angle from a position separated by a predetermined distance in the Z-axis direction. Therefore, the irradiation range in the Z-axis direction of the projection light L1 overlaps the measurement target 10 existing in the distance. Therefore, in this case, the measuring apparatus 100 scans the same direction substantially twice by the operation of one cycle of the MEMS mirror 4.
  • the measuring apparatus 100 can double the frame rate when the projection light L1 is irradiated onto the measurement object 10 that is sufficiently far away. Then, by doubling the frame rate, measurement errors (so-called subject blur) that occur when the measuring device 100 is mounted on a vehicle during high-speed traveling or when the measurement object 10 moves fast are reduced. And the detection probability of the measurement object 10 can be improved.
  • the measurement apparatus 100 includes the MEMS mirror 4 that irradiates the projection light L1 while changing the irradiation direction, and the measurement target included in the scanning surface by the projection light L1 that is irradiated by the MEMS mirror 4. It has the light-receiving part 3 which receives the return light L2 reflected by the thing 10, and the optical member 5 which reflects the projection light L1 and the return light L2.
  • the optical member 5 includes a region (first region) of the measurement object 10 that is irradiated with the projection light L1 in the first period within one cycle, and a projection light L1 that is irradiated by the MEMS mirror 4 in the second period.
  • the projection light L1 irradiated by the MEMS mirror 4 in the second period is reflected so that at least a part of the region (second region) of the measurement target object 10 irradiated with is overlapped.
  • the measuring device 100 can substantially improve the frame rate at the time of irradiating the projection light L1 to the measurement object 10 existing sufficiently far away.
  • Modification 1 In addition to scanning the projection light L1 at all azimuth angles by rotating around the Z axis, the MEMS mirror 4 changes the inclination so as to scan the projection light L1 in the height direction for a predetermined angle. You may rotate.
  • FIGS. 6A and 6B are diagrams showing the optical path of the projection light L1 in each case when the MEMS mirror 4 is tilted to have different elevation angles.
  • the MEMS mirror 4 at the solid line position and the broken line position indicates the MEMS mirror 4 when the inclination with respect to the horizontal plane is minimum and maximum, respectively. Since the return light L2 has the same optical path as the projection light L1, the display in FIGS. 6A and 6B is omitted.
  • the measurement apparatus 100 scans the MEMS mirror 4 while changing the elevation angle at the same azimuth, thereby scanning the projection light L1 reflected by the convex mirror 6A and the concave mirror 6B in the height direction.
  • the projection light L1 reflected by the convex mirror 6A and the concave mirror 6B is irradiated by the MEMS mirror 4 in the range of angles ⁇ Av and ⁇ Bv in the height direction around the horizontal direction.
  • the MEMS mirror 4 may scan a plurality of layers by changing the elevation angle of the MEMS mirror 4 each time scanning of the azimuth angle of 360 degrees, and the azimuth angle and elevation angle of the MEMS mirror 4 are continuously set. Therefore, the spiral scanning may be performed so that the transition locus of the light emitted from the measuring apparatus 100 is spiral.
  • the arrangement of the convex mirror 6A and the concave mirror 6B is not limited to the arrangement in which the concave mirror 6B exists on the Z axis positive direction side with respect to the convex mirror 6A, as shown in FIG. Instead of this, the convex mirror 6A may be arranged on the Z axis positive direction side with respect to the concave mirror 6B.
  • FIGS. 7A and 7B are diagrams illustrating an example of a three-dimensional structure of the convex mirror 6Ax and the concave mirror 6Bx in the present modification.
  • the convex mirror 6Ax is arranged on the positive side in the Z-axis direction with respect to the concave mirror 6Bx, and the area of the reflecting surface is larger than that of the concave mirror 6Bx.
  • the projection light L1 reflected by the MEMS mirror 4 injects into the convex-surface mirror 6Ax, and becomes an X-axis positive direction. Reflected by the convex mirror 6Ax.
  • the azimuth angle at which the projection light L1 is emitted from the convex mirror 6Ax does not change before and after the reflection by the convex mirror 6Ax.
  • the reflection surface of the MEMS mirror 4 (not shown) is directed to the back side, as shown in FIG.
  • the projection light L1 reflected by the MEMS mirror 4 is incident on the concave mirror 6Bx, and the positive direction of the X axis Is reflected by the concave mirror 6Bx.
  • the azimuth angle at which the projection light L1 is emitted from the concave mirror 6Bx is approximately 180 degrees different from that before reflection by the concave mirror 6Bx.
  • the range in which the projection light L1 and the return light L2 reflected by the convex mirror 6Ax are transmitted and received is the range in which the projection light L1 and the return light L2 reflected by the concave mirror 6Bx are transmitted and received. It preferably overlaps the range.
  • the projection light L1 reflected by the convex mirror 6Ax is emitted from different heights with the same elevation angle as the projection light L1 reflected by the concave mirror 6Bx.
  • the optical member 5 may have a refracting surface through which the projection light L1 and the return light L2 pass in addition to the convex mirror 6A and the concave mirror 6B.
  • FIG. 8 shows a configuration example of the optical member 5 according to this modification.
  • the optical member 5 includes a first optical member 51 and a second optical member 52.
  • the first optical member 51 includes a convex mirror 6A whose reflective surface is in contact with the internal member of the first optical member 51, and refractive surfaces 6E and 6F provided on the reflective surface side of the convex mirror 6A.
  • the second optical member 52 has a concave mirror 6B whose reflective surface is in contact with the internal member of the second optical member 52, and refractive surfaces 6C and 6D provided on the reflective surface side of the concave mirror 6B.
  • the MEMS mirror 4 in a state where the reflecting surface is directed to the front side is indicated by a solid line
  • the MEMS mirror 4 in a state where the reflecting surface is directed to the back side is indicated by a broken line.
  • the projection light L1 and the return light L2 are refracted by a predetermined refractive index before and after passing through the refracting surfaces 6C to 6F.
  • the projection light L1 passes through the refractive surface 6E of the first optical member 51 after being reflected by the MEMS mirror 4. Then, the light enters the convex mirror 6A. Then, the projection light L1 reflected by the convex mirror 6A passes through the refractive surface 6F and is emitted out of the measuring device 100.
  • the return light L2 which is the return light of the projection light L1 reflected by the convex mirror 6A, passes through the refractive surface F and enters the convex mirror 6A, and again passes through the refractive surface 6E and reaches the MEMS mirror 4. To do.
  • the projection light L1 is reflected by the MEMS mirror 4 and then the refractive surface 6C of the second optical member 52. And enters the concave mirror 6B. Then, the projection light L1 reflected by the concave mirror 6B passes through the refractive surface 6D and is emitted out of the measuring device 100.
  • the return light L2 which is the return light of the projection light L1 reflected by the concave mirror 6B, passes through the refractive surface 6D and enters the concave mirror 6B, and again passes through the refractive surface 6C and reaches the MEMS mirror 4. To do.
  • the measuring apparatus 100 emits the projection light L1 reflected by the concave mirror 6B horizontally in the X-axis positive direction in the same manner as the projection light L1 reflected by the convex mirror 6A.
  • the refractive surfaces 6E and 6F are examples of the “first refractive surface” in the present invention
  • the refractive surfaces 6C and 6D are examples of the “second refractive surface” in the present invention.
  • the optical member 5 may further have a reflective surface other than the convex mirror 6A and the concave mirror 6B.
  • FIG. 9 shows a configuration example of the optical member 5 according to this modification.
  • the optical member 5 includes a convex mirror 6G in addition to the convex mirror 6A and the concave mirror 6B.
  • the convex mirror 6G is present on the X axis positive direction side with respect to the concave mirror 6B, and changes the elevation angle of the projection light L1 reflected by the concave mirror 6B.
  • the MEMS mirror 4 with the reflecting surface facing the front side is indicated by a solid line
  • the MEMS mirror 4 with the reflecting surface facing the back side is indicated by a broken line. .
  • the projection light L1 is reflected by the MEMS mirror 4 toward the concave mirror 6B, and then is directed to the convex mirror 6G by the concave mirror 6B. Reflected towards. Then, the projection light L1 is changed so that the elevation angle becomes 0 degrees by reflection on the convex mirror 6G.
  • the projection light L1 is reflected by the MEMS mirror 4 toward the convex mirror 6A, and the azimuth angle remains unchanged by the reflection at the convex mirror 6A. The elevation angle is changed to 0 degrees.
  • the measuring apparatus 100 makes the elevation angle of the projection light L1 reflected by the concave mirror 6B the same as the elevation angle of the projection light L1 reflected by the convex mirror 6A. Further, it can be suitably adjusted by the convex mirror 6G.
  • the concave mirror 6B is an example of the “first reflective surface” in the present invention
  • the convex mirror 6G is an example of the “second reflective surface” in the present invention.
  • the convex mirror 6A and the concave mirror 6B are arranged so that the horizontal scanning range of the MEMS mirror 4 is divided into two.
  • the optical member 5 may be configured to divide the horizontal scanning range of the MEMS mirror 4 by a division number of 3 or more.
  • FIG. 10 is a plan view of the optical member 5 in the modified example observed from the positive direction of the Z axis.
  • the optical member 5 includes a convex mirror 6Aa, a convex mirror 6Ab, a concave mirror 6Ba, and a concave mirror 6Bb.
  • the convex mirror 6Aa, the convex mirror 6Ab, the concave mirror 6Ba, and the concave mirror 6Bb are fan-shaped for 90 degrees of different sizes in the XY plan view, and the center point of these fan-shaped is the projection light L1. And it adjoins mutually so that it may overlap with the hole 11 through which return light L2 passes.
  • the convex mirror 6Aa, the concave mirror 6Bb, the convex mirror 6Ab, and the concave mirror 6Ba are arranged in the order of increasing the Z-axis coordinate (that is, the position away from the MEMS mirror 4), and the size of the reflecting surface is increased.
  • the convex mirror 6Aa is irradiated with the projection light L1 reflected by the MEMS mirror 4 and the return light L2 as its return light toward the range of the azimuth angle indicated by the broken line arrow 8Aa, and the convex mirror 6Ab is irradiated with the broken line.
  • the projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light are irradiated toward the range of the azimuth angle indicated by the arrow 8Ab.
  • the concave mirror 6Ba is irradiated with the projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light toward the range of the azimuth angle indicated by the broken arrow 8Ba, and the broken mirror 6Bb is irradiated with the broken arrow 8Bb.
  • the projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light are irradiated toward the range of the azimuth angle indicated by.
  • solid arrows 8Ca and 8Cb indicate ranges in which the light (that is, the projection light L1 and the return light L2) is transmitted and received by the measurement device 100.
  • the projection light L1 irradiated to the concave mirror 6Ba is reflected by the concave mirror 6Ba, so that the azimuth angle changes by 180 degrees.
  • the projection light L1 irradiated to the concave mirror 6Ba is emitted in the range of the azimuth angle indicated by the solid line arrow 8Ca having the same azimuth as the projection light L1 irradiated to the convex mirror 6Aa.
  • the projection light L1 irradiated to the concave mirror 6Bb is reflected by the concave mirror 6Bb, whereby the azimuth angle changes by 180 degrees.
  • the projection light L1 irradiated on the concave mirror 6Bb is emitted in the range of the azimuth angle indicated by the solid line arrow 8Cb having the same azimuth as the projection light L1 irradiated on the convex mirror 6Ab.
  • the projection light L1 reflected by the convex mirror 6Aa and the concave mirror 6Ba is emitted from the measuring device 100 from different heights with the same elevation angle.
  • the projection light L1 reflected by the convex mirror 6Ab and the concave mirror 6Bb is also emitted from the measurement apparatus 100 from different heights with the same elevation angle. Each elevation angle may be the same or different.
  • the measuring apparatus 100 uses the projection light L1 reflected by the concave mirror 6Ba and the concave mirror 6Bb, similarly to the projection light L1 reflected by the convex mirror 6Aa and the convex mirror 6Ab.
  • the frame rate can be suitably improved by injecting the light to the front side.
  • the projection light L1 reflected by the concave mirror 6B is emitted from the concave mirror 6B in parallel with the projection light L1 reflected by the convex mirror 6A (that is, by the same elevation angle).
  • the projection light L1 reflected by the concave mirror 6B and the projection light L1 reflected by the convex mirror 6A are predetermined. It may be ejected at different elevation angles so that they overlap at a distance.
  • FIG. 11 is a diagram schematically illustrating a state in which the projection light L1 is irradiated to the measurement target 10 existing at a predetermined distance (for example, 5 m) from the measurement apparatus 100.
  • a solid line shows the central ray of the projection light L1.
  • the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B are emitted from the measuring device 100 at different elevation angles from positions separated by a predetermined distance in the Z-axis direction. Is done.
  • the overlap between the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B is maximized.
  • the central light beam of the projection light L1 reflected by the convex mirror 6A and the central light beam of the projection light L1 reflected by the convex mirror 6A overlap.
  • the convex mirror 6A and the concave mirror 6B measure the central ray of the projection light L1 reflected by the convex mirror 6A and the central ray of the projection light L1 reflected by the convex mirror 6A.
  • the projection light L1 is reflected by the elevation angle that overlaps in the vicinity of the object 10. Also by this, the measuring device 100 can substantially improve the frame rate when irradiating the measurement target 10 with the projection light L1.
  • the optical member 5 is configured to be rotatable about an axis (Z axis) extending in a predetermined direction, and the control unit 2 extends the optical member 5 in a predetermined direction according to the traveling state of the vehicle ( By rotating around the Z axis), the scanning range by the projection light L1 (that is, the irradiation range in which the projection light L1 is irradiated to the outside) is changed.
  • FIG. 12 shows a schematic configuration of a measuring apparatus 100A according to the second embodiment.
  • the measuring device 100A includes a motor 11, a motor control unit 12, a user interface 13, and a current position.
  • the acquisition part 14, the map information acquisition part 15, and the vehicle behavior acquisition part 16 are provided.
  • symbol is attached
  • the motor 11 rotates the optical member 5 about the Z axis as a rotation axis based on the applied voltage supplied from the motor control unit 12.
  • the motor 11 is an example of the “adjustment mechanism” in the present invention.
  • the motor control unit 12 performs drive control of the motor 11 based on the control signal supplied from the control unit 2.
  • the user interface 13 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, accepts various inputs (external inputs), and supplies input information to the control unit 2.
  • the current position acquisition unit 14 acquires position information indicating the current position of the vehicle.
  • the current position acquisition unit 14 may generate position information based on an output of a self-supporting positioning device such as a gyro sensor (not shown) or / and a GPS receiver or the like, and may receive vehicle position information estimated by other devices. Also good. Further, the position information acquired by the current position acquisition unit 14 may be position information estimated with high accuracy based on information such as the distance to the measurement target 10 calculated by the control unit 2.
  • the map information acquisition unit 15 acquires map information around the current position of the vehicle from map information stored in a storage unit (not shown).
  • the map information acquired by the map information acquisition unit 15 includes, for example, feature information and road information around the current position of the vehicle.
  • the vehicle behavior acquisition unit 16 acquires behavior information that is information related to vehicle behavior. For example, the vehicle behavior acquisition unit 16 acquires vehicle speed information, blinker information, transmission (gear) information, and the like as behavior information from a vehicle or the like using a communication protocol such as CAN (Controller Area Network).
  • CAN Controller Area Network
  • the control unit 2, the motor control unit 12, the current position acquisition unit 14, the map information acquisition unit 15, and the vehicle behavior acquisition unit 16 may be configured by a CPU or the like.
  • the current position acquisition unit 14, the map information acquisition unit 15, and the vehicle behavior acquisition unit 16 may be configured by a communication module that receives information from an external device.
  • control unit 2 rotates the optical member 5 by driving the motor 11 based on the input information supplied from the user interface 13.
  • the control part 2 adjusts the scanning range by the projection light L1 based on a user's manual operation.
  • FIGS. 13A and 13B are diagrams schematically showing a cross-sectional structure of the optical member 5 whose direction is adjusted so that the front of the vehicle is within the scanning range of the projection light L1.
  • the projection light L1 is forwarded by the convex mirror 6A or the concave mirror 6B to the front of the vehicle (here, the X-axis positive direction) regardless of which direction the MEMS mirror 4 is directed.
  • the direction of the optical member 5 is adjusted so as to be emitted to 14A and 14B are diagrams schematically showing a cross-sectional structure of the optical member 5 whose direction is adjusted so that the rear of the vehicle is within the scanning range of the projection light L1.
  • the projection light L1 is projected to the rear of the vehicle (here, the X-axis negative direction) by the convex mirror 6A or the concave mirror 6B regardless of which direction the MEMS mirror 4 is directed.
  • the direction of the optical member 5 is adjusted so as to be emitted to
  • the user performs an input operation with the optical member 5 in the direction shown in FIGS.
  • an input operation is performed in which the optical member 5 is oriented as shown in FIGS. 14 (A) and 14 (B).
  • the user interface 13 is a switch or button for selecting either the orientation shown in FIGS. 13 (A) and (B) or the orientation shown in FIGS. 14 (A) and (B).
  • Etc When the control unit 2 determines that the optical member 5 needs to be directed in a direction different from the current direction based on the input information supplied from the user interface 13, the control unit 2 controls the motor 11 to rotate the optical member 5 by 180 degrees. Drive.
  • control unit 2 can substantially improve the frame rate and determine the scanning range based on the user operation, and can suitably improve the detection accuracy for the object to be detected. it can.
  • control unit 2 uses the map information acquired from the map information acquisition unit 15 and / or the behavior information supplied from the vehicle behavior acquisition unit 16 or the like in a direction that relatively requires scanning with the projection light L1. And the direction of the optical member 5 is automatically controlled so that the projection light L1 is emitted in this direction.
  • the control unit 2 acquires the current position information from the current position acquisition unit 14 and acquires the feature information related to the positions of the features around the current position from the map information acquisition unit 15.
  • the control unit 2 detects a direction in which no feature is clearly present with respect to the current position, the control unit 2 adjusts the direction of the optical member 5 so that the direction is not included in the scanning range of the projection light L1.
  • the control unit 2 recognizes the direction in which the vehicle is traveling (that is, whether it is forward or backward) based on the behavior information, and the recognized direction of the traveling vehicle is included in the scanning range by the projection light L1.
  • the orientation of the optical member 5 is adjusted.
  • the control unit 2 predicts that the vehicle will change lanes when the winker information is acquired as the behavior information, and changes the direction of the optical member 5 so that the rear of the vehicle is included in the scanning range by the projection light L1. adjust.
  • the control unit 2 improves the detection accuracy and the like for the object to be detected by appropriately determining the scanning range according to the situation by substantially improving the frame rate. Can be made.
  • the control unit 2 is an example of the “determination unit” in the present invention.
  • control unit 2 emits the projection light L1 in all directions by rotating the optical member 5 according to the angle of the MEMS mirror 4 (that is, continuously changing the direction).
  • FIGS. 15A and 15B are diagrams schematically showing a cross-sectional structure of the optical member 5 when the optical member 5 is rotated based on the third control.
  • the optical member 5 is rotated in accordance with the change in the direction of the MEMS mirror 4 so that the MEMS mirror 4 is directed in the positive direction of the X axis (that is, the normal vector).
  • the convex mirror is used in any of the cases where the X coordinate is a positive value (see FIG. 15A) and the MEMS mirror 4 is facing the negative X-axis direction (see FIG. 15B).
  • the projection light L1 is reflected by 6A. In this case, the scanning range by the projection light L1 is not limited to the X-axis positive direction but also includes the X-axis negative direction.
  • the rotation period of the optical member 5 is preferably within twice the scanning period of the MEMS mirror 4.
  • the scanning speed by the MEMS mirror 4 is preferably within twice the rotational speed of the optical member 5.
  • the convex mirror 6A and the concave mirror 6B each have a semicircle (that is, a fan shape with a central angle of 180 degrees) in the XY plan view. Therefore, in this case, while the MEMS mirror 4 scans the projection light L1 in all directions of 360 degrees, either the convex mirror 6A or the concave mirror 6B is always irradiated with the projection light L1.
  • the period from when the projection light L1 is applied to one of the convex mirror 6A or the concave mirror 6B to when the projection light L1 is applied to the other of the convex mirror 6A or the concave mirror 6B is 1 by the MEMS mirror 4. Since this is longer than the scanning cycle, the projection light L1 is preferably emitted in all directions of 360 degrees during this period. On the other hand, when the rotation cycle of the optical member 5 is longer than twice the scanning cycle by the MEMS mirror 4, the projection light L1 is irradiated to one of the convex mirror 6A or the concave mirror 6B, and then the MEMS mirror 4 is 360 degrees.
  • the other of the convex mirror 6A or the concave mirror 6B is irradiated with the projection light L1 (that is, the optical surface of the optical member 5 irradiated with the projection light L1 changes), and the projection light The injection direction of L1 changes by 180 degrees. Therefore, in this case, the projection light L1 cannot be scanned in all directions of 360 degrees.
  • control unit 2 may switch the execution of the third control for emitting the projection light L1 in all directions according to the vehicle or the situation around the vehicle.
  • control unit 2 executes the third control in a situation where omnidirectional information is required, and executes the third control in a situation where omnidirectional information is not necessary (scanning only in a predetermined direction is sufficient). do not do.
  • the situation where information on all directions is necessary is, for example, when there are other vehicles in the vicinity, when multiple features are scattered at positions that cannot be scanned in the 180-degree scanning range, or near intersections. This applies when the vehicle is running.
  • the situation where information on all directions is not necessary is, for example, when there is no other vehicle in the vicinity, and there is no feature only in a predetermined direction (that is, a feature or the like at a position that can be scanned in a 180-degree scanning range). Or the case where the vehicle is traveling normally during which only the traveling direction needs to be scanned.
  • the control unit 2 for example, the current position information of the vehicle output by the current position acquisition unit 14 and the map information output by the map information acquisition unit 15 (here, the feature information regarding the positions of the features around the vehicle). Based on the above, it is determined whether or not the information of all directions is necessary.
  • the control part 2 detects the presence or absence of other vehicles around the vehicle from, for example, sensors such as inter-vehicle communication and a camera.
  • the control unit 2 determines that the omnidirectional information is necessary, the control unit 2 executes the third control for emitting the projection light L1 in all the directions, and determines that the omnidirectional information is not necessary. In such a case, the third control is not executed.
  • control unit 2 suitably acquires omnidirectional information in a situation where omnidirectional information is required, and in a situation where omnidirectional information is not required, the control unit 2 substantially sets the frame rate in the specific azimuth to be measured. Can be improved.
  • Modifications 1 to 5 of the first embodiment are also preferably applied to the second embodiment.

Abstract

A measurement device 100 has a MEMS mirror 4 for radiating projection light L1 while changing the radiating direction thereof, a light-receiving part 3 for receiving return light L2 reflected by a measurement object 10 included on a surface scanned by the projection light L1 radiated by the MEMS mirror 4, and an optical member 5 for reflecting the projection light L1 and the return light L2. Here, the optical member 5 reflects the projection light L1 radiated by the MEMS mirror 4 in a second period so that a region (first region) of the measurement object 10 irradiated by the projection light L1 in a first period within a first cycle and a region (second region) of the measurement object 10 irradiated by the projection light L1 radiated by the MEMS mirror 4 in a second period at least partially overlap.

Description

計測装置Measuring device
 本発明は、電磁波を用いた計測装置に関する。 The present invention relates to a measuring device using electromagnetic waves.
 従来から、電磁波であるレーザ光を用いたライダ(LIDAR:Laser Illuminated Detection and Ranging、Laser Imaging Detection and Ranging または LiDAR:Light Detection and Ranging)などの計測装置が知られている。例えば、特許文献1には、パルス状の測定光を測定対象空間に向けて走査することで、水平方向における周囲360度の距離測定を行うことが可能な走査式計測装置が開示されている。 Conventionally, measurement devices such as lidar (LIDAR: Laser Illuminated Detection and Ranging, Laser Imaging Detection and Ranging or LIDAR: Light Detection and Ranging) using laser light that is electromagnetic waves are known. For example, Patent Document 1 discloses a scanning measurement device capable of measuring a distance of 360 degrees in the horizontal direction by scanning pulsed measurement light toward a measurement target space.
特開2008-111855号公報JP 2008-111855 A
 特許文献1に記載の走査式計測装置によれば、全方位360度を対象として対象物の測距が可能となる。一方、車両での障害物検知などの応用では、設置場所等によっては、全方位360度の走査範囲を必要とせずに、特定の方位のみを計測対象とする場合がある。この場合、計測対象となる特定の方位において計測精度を向上させることが重要となる。 According to the scanning measurement apparatus described in Patent Document 1, it is possible to measure an object for 360 degrees in all directions. On the other hand, in an application such as obstacle detection in a vehicle, depending on the installation location or the like, there is a case where only a specific direction is a measurement target without requiring a 360-degree scanning range. In this case, it is important to improve measurement accuracy in a specific direction to be measured.
 本発明の解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、計測精度を好適に向上させることが可能な計測装置を提供することを目的とする。 The above is one example of problems to be solved by the present invention. An object of this invention is to provide the measuring device which can improve a measurement precision suitably.
 請求項1に記載の発明は、計測装置であって、照射方向を変えながら電磁波を照射する照射部と、1周期内における第1期間に前記照射部から照射された前記電磁波が照射される対象物上の第1領域と、第2期間に前記照射部から照射された前記電磁波が照射される前記対象物上の領域である第2領域との少なくとも一部が重なるように、前記第2期間に前記照射部によって照射された電磁波を反射する反射部と、を有することを特徴とする。 The invention according to claim 1 is a measuring device, and an irradiation unit that irradiates an electromagnetic wave while changing an irradiation direction, and an object that is irradiated with the electromagnetic wave irradiated from the irradiation unit in a first period within one cycle. The second period so that at least a part of the first area on the object and the second area that is the area on the object irradiated with the electromagnetic wave irradiated from the irradiation unit in the second period overlap. And a reflection part for reflecting the electromagnetic wave irradiated by the irradiation part.
 請求項7に記載の発明は、計測装置であって、光源から出射された電磁波を照射する照射部と、第1期間に照射された前記電磁波を反射する第1反射部と、第2期間に照射された前記電磁波を反射する第2反射部と、を有し、前記第2反射部は、前記第1反射部が前記電磁波を反射する範囲と前記第2反射部が前記電磁波を反射する範囲との少なくとも一部が重なるように前記電磁波を反射することを特徴とする。 Invention of Claim 7 is a measuring device, Comprising: The irradiation part which irradiates the electromagnetic waves radiate | emitted from the light source, The 1st reflection part which reflects the said electromagnetic waves irradiated in the 1st period, In the 2nd period A second reflecting portion that reflects the irradiated electromagnetic wave, and the second reflecting portion includes a range in which the first reflecting portion reflects the electromagnetic wave and a range in which the second reflecting portion reflects the electromagnetic wave. The electromagnetic waves are reflected such that at least a part of the electromagnetic waves overlap.
実施例に係る計測装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the measuring device which concerns on an Example. 光学部材の断面を模式的に示した図である。It is the figure which showed the cross section of the optical member typically. 光学部材を構成する凹面ミラー及び凸面ミラーの立体的構造の一例を示す。An example of the three-dimensional structure of the concave mirror and convex mirror which comprise an optical member is shown. 光学部材を上方から観察した平面図である。It is the top view which observed the optical member from the upper part. 遠方に存在する計測対象物に対して投射光が照射される様子を模式的に示した図である。It is the figure which showed typically a mode that projection light was irradiated with respect to the measurement object which exists far away. 所定角度だけMEMSミラーの仰俯角を変えた場合の投射光の光路を示した図である。It is the figure which showed the optical path of the projection light at the time of changing the elevation angle of a MEMS mirror only by the predetermined angle. 変形例における凹面ミラー及び凸面ミラーの立体的構造の一例を表す図である。It is a figure showing an example of the three-dimensional structure of the concave mirror and convex mirror in a modification. 変形例に係る光学部材の構成例を示す。The structural example of the optical member which concerns on a modification is shown. 変形例に係る光学部材の構成例を示す。The structural example of the optical member which concerns on a modification is shown. 変形例に係る光学部材を上方から観察した平面図である。It is the top view which observed the optical member concerning a modification from the upper part. 計測装置から所定距離に存在する計測対象物に対して投射光が照射される様子を模式的に示した図である。It is the figure which showed typically a mode that projection light was irradiated with respect to the measurement object which exists in predetermined distance from a measuring device. 第2実施例に係る計測装置の概略構成を示す。The schematic structure of the measuring apparatus which concerns on 2nd Example is shown. 車両の前方を投射光の走査範囲とするように向きが調整された光学部材の断面構造を模式的に示した図である。It is the figure which showed typically the cross-sectional structure of the optical member in which direction was adjusted so that the front of a vehicle might be set as the scanning range of a projection light. 車両の後方を投射光の走査範囲とするように向きが調整された光学部材の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the optical member in which direction was adjusted so that the back of a vehicle might be set as the scanning range of a projection light. 第3制御に基づき光学部材を回転させた場合の光学部材の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the optical member at the time of rotating an optical member based on 3rd control.
 本発明の好適な実施形態では、計測装置は、照射方向を変えながら電磁波を照射する照射部と、1周期内における第1期間に前記照射部から照射された前記電磁波が照射される対象物上の第1領域と、第2期間に前記照射部から照射された前記電磁波が照射される前記対象物上の領域である第2領域との少なくとも一部が重なるように、前記第2期間に前記照射部によって照射された電磁波を反射する反射部と、を有する。 In a preferred embodiment of the present invention, the measurement device is configured to irradiate an electromagnetic wave while changing the irradiation direction, and on an object irradiated with the electromagnetic wave irradiated from the irradiation unit in a first period within one cycle. In the second period, at least part of the first area overlaps with the second area that is an area on the object irradiated with the electromagnetic wave emitted from the irradiation unit in the second period. And a reflection part that reflects the electromagnetic wave irradiated by the irradiation part.
 上記計測装置は、照射部と、反射部とを備える。照射部は、照射方向を変えながら電磁波を照射する。反射部は、1周期内における第1期間に照射部から照射された電磁波が照射される対象物上の第1領域と、第2期間に照射部から照射された電磁波が照射される対象物上の領域である第2領域との少なくとも一部が重なるように、第2期間に照射部によって照射された電磁波を反射する。この態様によれば、計測装置は、計測精度を好適に向上させることができる。 The measurement apparatus includes an irradiation unit and a reflection unit. An irradiation part irradiates electromagnetic waves, changing an irradiation direction. The reflection unit includes a first region on the object irradiated with the electromagnetic wave irradiated from the irradiation unit in the first period within one cycle, and an object irradiated with the electromagnetic wave irradiated from the irradiation unit in the second period. The electromagnetic wave irradiated by the irradiation unit in the second period is reflected so that at least a part of the second region that is the first region overlaps the second region. According to this aspect, the measuring device can preferably improve the measurement accuracy.
 上記計測装置の一態様では、前記照射部によって照射された電磁波による走査面に含まれる対象物によって反射された前記電磁波を受信可能な受信部を更に有する、ここで、「走査面」とは、計測装置を俯瞰したときの電磁波の照射範囲(即ち検出可能範囲)を指す。 In one aspect of the measurement apparatus, the measurement apparatus further includes a receiving unit capable of receiving the electromagnetic wave reflected by the object included in the scanning surface by the electromagnetic wave irradiated by the irradiation unit, wherein the “scanning surface” It refers to the irradiation range (that is, the detectable range) of electromagnetic waves when the measurement apparatus is looked down on.
 上記計測装置の他の一態様では、前記反射部は、第1反射部及び第2反射部を有し、前記照射部は、前記第1期間では前記第1反射部に前記電磁波を照射し、前記第2期間では前記2反射部に前記電磁波を照射する可動反射部を有する。この態様により、計測装置は、第1期間及び第2期間に照射部によって照射された電磁波をそれぞれ第1反射部及び第2反射部によって反射させ、第1領域及び第2領域の少なくとも一部を好適に重ねることができる。 In another aspect of the measurement apparatus, the reflection unit includes a first reflection unit and a second reflection unit, and the irradiation unit irradiates the first reflection unit with the electromagnetic wave in the first period, In the second period, the second reflecting portion has a movable reflecting portion that irradiates the electromagnetic wave. According to this aspect, the measurement apparatus reflects the electromagnetic waves irradiated by the irradiation unit in the first period and the second period by the first reflection unit and the second reflection unit, respectively, and at least part of the first region and the second region is reflected. It can overlap suitably.
 上記計測装置の一態様では、前記第1期間に照射される電磁波及び前記第2期間に照射される電磁波は前記第1領域及び前記第2領域の少なくとも一部が重なるような仰俯角で照射される。この態様であっても、計測装置は、第1領域及び第2領域の少なくとも一部を好適に重ねることができる。 In one aspect of the measurement apparatus, the electromagnetic wave irradiated in the first period and the electromagnetic wave irradiated in the second period are irradiated at an elevation angle such that at least a part of the first region and the second region overlap. The Even in this aspect, the measuring device can suitably overlap at least a part of the first region and the second region.
 上記計測装置の他の一態様では、前記第2反射部により反射された電磁波は、前記対象物が所定距離以上はなれている場合、前記第1反射部により反射された電磁波と同一の仰俯角により射出される。この態様により、計測装置は、所定距離以上離れた位置に存在する対象物の第1領域及び第2領域の少なくとも一部を好適に重ねることができる。 In another aspect of the measuring apparatus, the electromagnetic wave reflected by the second reflecting unit has the same elevation angle as that of the electromagnetic wave reflected by the first reflecting unit when the object is more than a predetermined distance away. It is injected. According to this aspect, the measurement device can suitably overlap at least a part of the first region and the second region of the target existing at a position separated by a predetermined distance or more.
 上記計測装置の他の一態様では、前記第2反射部は、第1反射面と第2反射面とを有し、前記第1反射面は、前記第2期間において前記照射部により照射された電磁波を前記第2反射面に反射し、前記第2反射面は、前記第1反射面から反射された前記電磁波を、前記第1領域及び前記第2領域の少なくとも一部が重なるように反射する。このように、計測装置は、第2反射部を複数の反射面により構成した場合であっても、第1領域と第2領域とを重ねて計測精度を好適に向上させることができる。 In another aspect of the measurement apparatus, the second reflection unit includes a first reflection surface and a second reflection surface, and the first reflection surface is irradiated by the irradiation unit in the second period. The electromagnetic wave is reflected on the second reflecting surface, and the second reflecting surface reflects the electromagnetic wave reflected from the first reflecting surface so that at least a part of the first region and the second region overlap each other. . As described above, the measurement apparatus can suitably improve the measurement accuracy by overlapping the first region and the second region even when the second reflection unit is configured by a plurality of reflection surfaces.
 上記計測装置の他の一態様では、計測装置は、前記第1反射部と第1屈折面とを有する第1光学部材と、前記第2反射部と第2屈折面とを有する第2光学部材と、をさらに有し、前記第1期間では、前記電磁波は、前記第1反射部に反射される前後において前記第1屈折面を通過し、前記第2期間では、前記電磁波は、前記第2反射部に反射される前後において前記第2屈折面を通過する。この態様によっても、計測装置は、第1領域と第2領域とを重ねて計測精度を好適に向上させることができる。 In another aspect of the measuring apparatus, the measuring apparatus includes a first optical member having the first reflecting portion and a first refracting surface, and a second optical member having the second reflecting portion and a second refracting surface. In the first period, the electromagnetic wave passes through the first refracting surface before and after being reflected by the first reflecting portion, and in the second period, the electromagnetic wave is the second The light passes through the second refracting surface before and after being reflected by the reflecting portion. Also according to this aspect, the measurement apparatus can preferably improve the measurement accuracy by overlapping the first region and the second region.
 上記計測装置の他の一態様では、計測装置は、前記1周期内における第1期間及び第2期間を変更するように、前記反射部を動かす調整機構をさらに備える。これにより、計測装置は、電磁波が外部において照射される照射範囲を調整機構により好適に調整することが可能となる。 In another aspect of the measurement apparatus, the measurement apparatus further includes an adjustment mechanism that moves the reflection unit so as to change the first period and the second period in the one cycle. As a result, the measuring apparatus can suitably adjust the irradiation range in which the electromagnetic wave is irradiated outside by the adjusting mechanism.
 上記計測装置の他の一態様では、前記第1電磁波及び前記第2電磁波が外部に照射される照射範囲を決定する決定部をさらに備え、前記調整機構は、前記決定部が決定した前記照射範囲に前記第1電磁波及び前記第2電磁波が照射されるように、前記反射部を動かす。これにより、計測装置は、電磁波が外部に照射される照射範囲を好適に調整することが可能となる。 In another aspect of the measurement apparatus, the measurement apparatus further includes a determination unit that determines an irradiation range in which the first electromagnetic wave and the second electromagnetic wave are irradiated to the outside, and the adjustment mechanism includes the irradiation range determined by the determination unit. The reflection unit is moved so that the first electromagnetic wave and the second electromagnetic wave are irradiated to the first electromagnetic wave. Thereby, the measuring apparatus can adjust suitably the irradiation range with which electromagnetic waves are irradiated outside.
 上記計測装置の他の一態様では、前記決定部は、外部入力に基づき前記照射範囲を決定する、又は、前記計測装置が搭載された移動体の挙動情報若しくは前記移動体周辺の地物に関する地物情報に基づき前記照射範囲を決定する。この態様により、計測装置は、電磁波の外部への照射範囲を状況に応じて好適に定めることができる。 In another aspect of the measurement apparatus, the determination unit determines the irradiation range based on an external input, or behavior information of a moving body on which the measurement apparatus is mounted or a ground related to a feature around the moving body. The irradiation range is determined based on the object information. According to this aspect, the measuring device can suitably determine the irradiation range of the electromagnetic wave according to the situation.
 上記計測装置の他の一態様では、前記反射部は、前記照射部から前記所定方向に延びる軸を回転軸として回転自在であり、前記調整機構は、前記照射方向の変化に応じて、前記反射部を回転させる。この態様により、計測装置は、水平方向における電磁波の外部への照射範囲を好適に拡大することができる。 In another aspect of the measurement apparatus, the reflection unit is rotatable about an axis extending from the irradiation unit in the predetermined direction as a rotation axis, and the adjustment mechanism is configured to reflect the reflection according to a change in the irradiation direction. Rotate the part. According to this aspect, the measuring apparatus can suitably expand the irradiation range of the electromagnetic wave in the horizontal direction.
 本発明の他の好適な実施形態では、光源から出射された電磁波を照射する照射部と、第1期間に照射された前記電磁波を反射する第1反射部と、第2期間に照射された前記電磁波を反射する第2反射部と、を有し、前記第2反射部は、前記第1反射部が前記電磁波を反射する範囲と前記第2反射部が前記電磁波を反射する範囲との少なくとも一部が重なるように前記電磁波を反射する。この態様によれば、計測装置は、第1期間及び第2期間において電磁波を走査する範囲を好適に重ねて計測精度を好適に向上させることができる。 In another preferred embodiment of the present invention, an irradiation unit that irradiates an electromagnetic wave emitted from a light source, a first reflection unit that reflects the electromagnetic wave irradiated in a first period, and the irradiation that occurs in a second period A second reflecting portion that reflects electromagnetic waves, wherein the second reflecting portion is at least one of a range in which the first reflecting portion reflects the electromagnetic waves and a range in which the second reflecting portion reflects the electromagnetic waves. The electromagnetic waves are reflected so that the portions overlap. According to this aspect, the measurement apparatus can preferably improve the measurement accuracy by suitably overlapping the ranges in which the electromagnetic waves are scanned in the first period and the second period.
 以下、図面を参照して本発明の好適な第1及び第2実施例について説明する。 Hereinafter, preferred first and second embodiments of the present invention will be described with reference to the drawings.
 <第1実施例>
 [装置構成]
 図1は、第1実施例に係る計測装置100の概略構成を示す。計測装置100は、計測対象物10に対して電磁波である赤外線(例えば、波長905nm)の投射光「L1」を投射し、その戻り光「L2」を受光して計測対象物10までの距離を計測する。計測装置100は、例えば車両に搭載され、車両の前方、側方又は後方などの特定の方位を計測範囲とするライダである。本実施例では、計測装置100は、水平方向での投射光L1の走査範囲を約180度に制限することで、制限した走査範囲における単位時間あたりの計測回数(所謂フレームレート)を向上させる。図示のように、計測装置100は、光源部1と、制御部2と、受光部3と、MEMSミラー4と、光学部材5とを備える。
<First embodiment>
[Device configuration]
FIG. 1 shows a schematic configuration of a measuring apparatus 100 according to the first embodiment. The measurement apparatus 100 projects infrared light (for example, wavelength 905 nm) of projection light “L1” that is an electromagnetic wave onto the measurement object 10, receives the return light “L2”, and determines the distance to the measurement object 10. measure. The measuring device 100 is a rider that is mounted on a vehicle, for example, and has a specific direction such as the front, side, or rear of the vehicle as a measurement range. In the present embodiment, the measuring apparatus 100 limits the scanning range of the projection light L1 in the horizontal direction to about 180 degrees, thereby improving the number of times of measurement per unit time (so-called frame rate) in the limited scanning range. As illustrated, the measuring device 100 includes a light source unit 1, a control unit 2, a light receiving unit 3, a MEMS mirror 4, and an optical member 5.
 光源部1は、赤外線の投射光L1をMEMSミラー4へ向けて出射する。MEMSミラー4は、投射光L1を反射し、計測装置100の外部へ射出する。受光部3は、例えばアバランシェフォトダイオード(Avalanche PhotoDiode)であり、受光した戻り光L2の光量に対応する検出信号を生成して制御部2へ送る。なお、「照射」及び「射出」は、共に、光が出力されることを指し、以後では、主に、反射部や対象物などの光が当たる対象の存在を前提とした説明では「照射」、光が当たる対象の存在を特に前提としない(意識しない)説明では「射出」を便宜上用いるものとする。 The light source unit 1 emits infrared projection light L1 toward the MEMS mirror 4. The MEMS mirror 4 reflects the projection light L <b> 1 and emits it outside the measuring apparatus 100. The light receiving unit 3 is, for example, an avalanche photodiode (Avalanche PhotoDiode), and generates a detection signal corresponding to the light amount of the received return light L2 and sends it to the control unit 2. Note that “irradiation” and “emission” both indicate that light is output. In the following description, “irradiation” is mainly used in the description based on the presence of a target that is exposed to light such as a reflecting portion or an object. In the description that does not particularly presume (not conscious of) the presence of a target that is exposed to light, “emission” is used for convenience.
 MEMSミラー4は、光源部1から入射する投射光L1を光学部材5に向けて反射する。また、MEMSミラー4は、光学部材5から入射する戻り光L2を、受光部3へ向けて反射する。MEMSミラー4は、例えば静電駆動方式のミラーであり、制御部2の制御により傾き(即ち光走査の角度)が所定の範囲内で変化する。本実施例では、MEMSミラー4は、少なくとも水平方向において360度の範囲で投射光L1を反射させる。光源部1及びMEMSミラー4は、本発明における「照射部」の一例である。 The MEMS mirror 4 reflects the projection light L1 incident from the light source unit 1 toward the optical member 5. The MEMS mirror 4 reflects the return light L2 incident from the optical member 5 toward the light receiving unit 3. The MEMS mirror 4 is, for example, an electrostatic drive type mirror, and the tilt (that is, the angle of optical scanning) changes within a predetermined range under the control of the control unit 2. In the present embodiment, the MEMS mirror 4 reflects the projection light L1 within a range of 360 degrees at least in the horizontal direction. The light source unit 1 and the MEMS mirror 4 are examples of the “irradiation unit” in the present invention.
 光学部材5は、MEMSミラー4から入射する投射光L1を計測装置100の外へ向けて反射すると共に、計測対象物10において反射された戻り光L2を、MEMSミラー4へ向けて反射する。後述するように、光学部材5は、MEMSミラー4から全方位360度の範囲で射出された投射光L1を、計測対象となる180度分の方位において2回走査するように反射する構造を有する。光学部材5の構成例については、後述する。 The optical member 5 reflects the projection light L1 incident from the MEMS mirror 4 toward the outside of the measuring apparatus 100, and reflects the return light L2 reflected from the measurement object 10 toward the MEMS mirror 4. As will be described later, the optical member 5 has a structure that reflects the projection light L1 emitted from the MEMS mirror 4 in a range of 360 degrees in all directions so as to be scanned twice in a direction corresponding to 180 degrees as a measurement target. . A configuration example of the optical member 5 will be described later.
 制御部2は、光源部1からの投射光L1の出射を制御するとともに、受光部3から供給された検出信号を処理して計測対象物10までの距離を算出する。また、制御部2は、MEMSミラー4の傾きに関する制御信号をMEMSミラー4に送信することで、投射光L1の照射方向をMEMSミラー4により除変させる。 The control unit 2 controls the emission of the projection light L1 from the light source unit 1 and processes the detection signal supplied from the light receiving unit 3 to calculate the distance to the measurement object 10. In addition, the control unit 2 transmits a control signal related to the tilt of the MEMS mirror 4 to the MEMS mirror 4, thereby changing the irradiation direction of the projection light L <b> 1 by the MEMS mirror 4.
 [光学部材の構成]
 図2(A)、(B)は、投射光L1及び戻り光L2を反射する光学部材5の断面構造を模式的に示した図である。以後において、水平方向を規定する2次元座標軸をX軸及びY軸、水平方向と垂直な鉛直方向の座標軸をZ軸とし、計測装置100の位置を原点として各軸の正方向を図2に示すように定めるものとする。ここでは、XY平面においてX軸正方向を中心とした180度の方位が計測装置100の計測範囲であるものとし、X軸正方向側を「表側」、X軸負方向側を「裏側」とも呼ぶ。また、Z軸回りの角度(即ちヨー角)を「方位角」、Y軸回りの角度(即ちピッチ角)を「仰俯角」とも呼ぶ。
[Configuration of optical member]
2A and 2B are diagrams schematically showing a cross-sectional structure of the optical member 5 that reflects the projection light L1 and the return light L2. Hereinafter, the two-dimensional coordinate axes defining the horizontal direction are the X and Y axes, the vertical coordinate axis perpendicular to the horizontal direction is the Z axis, and the positive direction of each axis is shown in FIG. Shall be defined as follows. Here, it is assumed that the azimuth of 180 degrees centered on the X-axis positive direction in the XY plane is the measurement range of the measuring apparatus 100, the X-axis positive direction side is “front side”, and the X-axis negative direction side is “back side”. Call. In addition, an angle around the Z axis (ie, yaw angle) is also called an “azimuth angle”, and an angle around the Y axis (ie, pitch angle) is also called an “elevation angle”.
 図2(A)、(B)に示すように、光学部材5は、凸面ミラー6Aと、凹面ミラー6Bとを有する。ここで、凸面ミラー6Aは、MEMSミラー4及び凹面ミラー6BよりもX軸正方向側に存在し、凹面ミラー6Bは、MEMSミラー4及び凸面ミラー6AよりもX軸負方向側に存在する。また、凹面ミラー6Bは、MEMSミラー4に対して凸面ミラー6AよりもZ軸正方向側に離れており、投射光L1及び戻り光L2に対する凹面ミラー6Bの反射面は、凸面ミラー6Aの反射面よりも大きい。 As shown in FIGS. 2A and 2B, the optical member 5 includes a convex mirror 6A and a concave mirror 6B. Here, the convex mirror 6A exists on the X axis positive direction side with respect to the MEMS mirror 4 and the concave mirror 6B, and the concave mirror 6B exists on the X axis negative direction side with respect to the MEMS mirror 4 and the convex mirror 6A. The concave mirror 6B is further away from the MEMS mirror 4 on the positive side in the Z-axis direction than the convex mirror 6A. The reflective surface of the concave mirror 6B with respect to the projection light L1 and the return light L2 is the reflective surface of the convex mirror 6A. Bigger than.
 図2(A)、(B)では、図示しない光源部1から射出された投射光L1がZ軸正方向からZ軸負方向に向けてMEMSミラー4へ入射している。そして、MEMSミラー4は、制御部2の制御に基づきZ軸回りに回転することで、360度の方位内でMEMSミラー4から投射光L1を射出する方位を徐変させる。 2A and 2B, the projection light L1 emitted from the light source unit 1 (not shown) is incident on the MEMS mirror 4 from the Z-axis positive direction toward the Z-axis negative direction. Then, the MEMS mirror 4 rotates around the Z axis based on the control of the control unit 2 to gradually change the direction in which the projection light L1 is emitted from the MEMS mirror 4 within the 360-degree direction.
 そして、図2(A)に示すように、MEMSミラー4の反射面が表側を向いている場合、MEMSミラー4から反射された投射光L1は凸面ミラー6Aに入射する。この場合、凸面ミラー6Aは、入射した投射光L1をX軸正方向に向けて反射する。この場合、投射光L1は、凸面ミラー6Aの反射後に水平に射出される。即ち、凸面ミラー6Aの反射後の投射光L1の仰俯角は0度となる。一方、投射光L1のXY平面上における方向(即ち方位角)は、凸面ミラー6Aの反射前後において変化しない。凸面ミラー6Aにより反射された投射光L1が照射される計測対象物10の領域は、本発明における「第1領域」の一例である。 As shown in FIG. 2A, when the reflecting surface of the MEMS mirror 4 faces the front side, the projection light L1 reflected from the MEMS mirror 4 enters the convex mirror 6A. In this case, the convex mirror 6A reflects the incident projection light L1 toward the positive X-axis direction. In this case, the projection light L1 is emitted horizontally after reflection by the convex mirror 6A. That is, the elevation angle of the projection light L1 after reflection by the convex mirror 6A is 0 degree. On the other hand, the direction (that is, the azimuth angle) of the projection light L1 on the XY plane does not change before and after the reflection by the convex mirror 6A. The region of the measurement object 10 irradiated with the projection light L1 reflected by the convex mirror 6A is an example of the “first region” in the present invention.
 また、凸面ミラー6Aにより反射されて計測装置100から射出された投射光L1が計測対象物10により反射された戻り光L2は、凸面ミラー6Aに入射する。この場合、戻り光L2は、凸面ミラー6AによりMEMSミラー4へ向けて反射され、さらにMEMSミラー4によってZ軸正方向に反射される。これにより、戻り光L2は、図示しない受光部3へ導かれる。 Further, the return light L2 reflected by the measurement object 10 after being reflected by the convex mirror 6A and emitted from the measuring device 100 is incident on the convex mirror 6A. In this case, the return light L2 is reflected toward the MEMS mirror 4 by the convex mirror 6A, and further reflected by the MEMS mirror 4 in the positive Z-axis direction. Thus, the return light L2 is guided to the light receiving unit 3 (not shown).
 一方、図2(B)に示すように、MEMSミラー4の反射面が裏側に向いている場合、MEMSミラー4から反射された投射光L1は凹面ミラー6Bに入射する。この場合、凹面ミラー6Bは、入射した投射光L1を、XY平面において入射方向と約180度異なる方位であるX軸正方向に向けて反射する。また、凹面ミラー6Bにより反射された投射光L1は、水平に射出される。即ち、凹面ミラー6Bにより反射された投射光L1は、図2(A)に示す凸面ミラー6Aで反射される投射光L1と平行に(即ち同一の仰俯角により)凹面ミラー6Bから射出される。凹面ミラー6Bにより反射された投射光L1が照射される計測対象物10の領域は、本発明における「第2領域」の一例である。 On the other hand, as shown in FIG. 2B, when the reflection surface of the MEMS mirror 4 is directed to the back side, the projection light L1 reflected from the MEMS mirror 4 enters the concave mirror 6B. In this case, the concave mirror 6B reflects the incident projection light L1 toward the positive X-axis direction, which is an azimuth that is approximately 180 degrees different from the incident direction on the XY plane. Further, the projection light L1 reflected by the concave mirror 6B is emitted horizontally. That is, the projection light L1 reflected by the concave mirror 6B is emitted from the concave mirror 6B in parallel with the projection light L1 reflected by the convex mirror 6A shown in FIG. 2A (that is, with the same elevation angle). The region of the measurement object 10 irradiated with the projection light L1 reflected by the concave mirror 6B is an example of the “second region” in the present invention.
 また、凹面ミラー6Bにより反射されて計測装置100から射出された投射光L1が計測対象物10により反射された戻り光L2は、凹面ミラー6Bに入射する。この場合、戻り光L2は、凹面ミラー6BによりMEMSミラー4へ反射され、さらにMEMSミラー4によってZ軸正方向に反射される。これにより、戻り光L2は、図示しない受光部3へ導かれる。 Further, the return light L2 reflected by the measurement object 10 after being reflected by the concave mirror 6B and emitted from the measuring device 100 is incident on the concave mirror 6B. In this case, the return light L2 is reflected by the concave mirror 6B to the MEMS mirror 4, and further reflected by the MEMS mirror 4 in the Z-axis positive direction. Thus, the return light L2 is guided to the light receiving unit 3 (not shown).
 このように、投射光L1が射出される方向は、X軸正方向を中心とした180度分の方位角の範囲となっている。そして、MEMSミラー4の反射面が表側を向いているとき(図2(A)参照)と、MEMSミラー4の反射面が裏側を向いているとき(図2(B)参照)とでは、投射光L1は、同一の仰俯角により計測装置100から射出される。 As described above, the direction in which the projection light L1 is emitted is in a range of azimuth angles of 180 degrees with the X axis positive direction as the center. When the reflective surface of the MEMS mirror 4 faces the front side (see FIG. 2A) and when the reflective surface of the MEMS mirror 4 faces the back side (see FIG. 2B), the projection is performed. The light L1 is emitted from the measuring device 100 with the same elevation angle.
 なお、凸面ミラー6Aは、本発明における「反射部」及び「第1反射部」の一例であり、MEMSミラー4の回転周期のうち反射面が表側を向く期間は、本発明における「第1期間」の一例である。また、凹面ミラー6Bは、本発明における「反射部」及び「第2反射部」の一例であり、MEMSミラー4の回転周期のうち反射面が裏側を向く期間は、本発明における「第2期間」の一例である。 The convex mirror 6A is an example of the “reflecting part” and the “first reflecting part” in the present invention, and the period in which the reflecting surface faces the front side in the rotation period of the MEMS mirror 4 is the “first period” in the present invention. Is an example. The concave mirror 6B is an example of the “reflecting portion” and the “second reflecting portion” in the present invention, and the period in which the reflecting surface faces the back side in the rotation period of the MEMS mirror 4 is the “second period” in the present invention. Is an example.
 図3(A)、(B)は、凸面ミラー6A及び凹面ミラー6Bの立体的構造の一例を表す図である。 3A and 3B are diagrams illustrating an example of a three-dimensional structure of the convex mirror 6A and the concave mirror 6B.
 図3(A)、(B)の例では、大きさの異なる四半球面状の凸面ミラー6A及び凹面ミラー6Bが配置されている。そして、図3(A)に示すように、凸面ミラー6Aは、球面形状の外側表面を反射面とし、MEMSミラー4から入射する投射光L1を計測装置100の外へ射出させる。この場合、凸面ミラー6Aは、MEMSミラー4の反射面が表側を向いているときにMEMSミラー4から反射される全ての投射光L1が入射し、かつ、反射後の投射光L1の方位角を変えることなく仰俯角が所定角度(ここでは0度)となるように、配置及び反射面の大きさ等が予め設計される。さらに、凸面ミラー6Aは、計測装置100外から入射する戻り光L2を、MEMSミラー4へ反射する。 3A and 3B, a semispherical convex mirror 6A and a concave mirror 6B having different sizes are arranged. Then, as shown in FIG. 3A, the convex mirror 6A uses the spherical outer surface as a reflection surface, and emits the projection light L1 incident from the MEMS mirror 4 to the outside of the measuring device 100. In this case, the convex mirror 6A receives all the projection light L1 reflected from the MEMS mirror 4 when the reflection surface of the MEMS mirror 4 faces the front side, and determines the azimuth angle of the projection light L1 after reflection. The arrangement, the size of the reflection surface, and the like are designed in advance so that the elevation angle becomes a predetermined angle (here, 0 degrees) without being changed. Further, the convex mirror 6 </ b> A reflects the return light L <b> 2 incident from outside the measuring apparatus 100 to the MEMS mirror 4.
 また、図3(B)に示すように、凹面ミラー6Bは、球面形状の内側表面を反射面とし、MEMSミラー4から入射する投射光L1を計測装置100の外へ射出させる。この場合、凹面ミラー6Bは、例えば、MEMSミラー4の反射面が裏側を向いているときにMEMSミラー4から反射される全ての投射光L1が入射し、反射前後での投射光L1の方位が180度変化し、かつ、反射後の投射光L1の仰俯角が所定角度(ここでは0度)となるように、配置及び反射面の大きさ等が予め設計される。さらに、凹面ミラー6Bは、計測装置100外から入射する戻り光L2を、MEMSミラー4へ反射する。 Further, as shown in FIG. 3B, the concave mirror 6B uses the spherical inner surface as a reflection surface, and emits the projection light L1 incident from the MEMS mirror 4 to the outside of the measuring device 100. In this case, for example, when the reflecting surface of the MEMS mirror 4 faces the back side, the concave mirror 6B receives all the projection light L1 reflected from the MEMS mirror 4, and the orientation of the projection light L1 before and after the reflection is The arrangement, the size of the reflecting surface, and the like are designed in advance so that the angle of elevation of the projected light L1 after reflection is a predetermined angle (here, 0 degrees). Further, the concave mirror 6 </ b> B reflects the return light L <b> 2 incident from the outside of the measuring apparatus 100 to the MEMS mirror 4.
 図4は、図3の光学部材5をZ軸正方向から観察した平面図である。 FIG. 4 is a plan view of the optical member 5 of FIG. 3 observed from the positive direction of the Z axis.
 図4に示すように、凸面ミラー6A及び凹面ミラー6Bは、XY平面視において、それぞれ異なる半径の半円となり、直径をなす辺が互いに向かい合った状態で近接している。そして、XY平面視において、凸面ミラー6A及び凹面ミラー6Bの各半円の中心点付近には、光源部1からMEMSミラー4へ向かう投射光L1及びMEMSミラー4から受光部3へ向かう戻り光L2が通過するための孔11が形成されている。 As shown in FIG. 4, the convex mirror 6A and the concave mirror 6B are semicircles having different radii in the XY plan view, and are close to each other with the sides forming the diameter facing each other. Then, in the XY plan view, near the center point of each semicircle of the convex mirror 6A and the concave mirror 6B, the projection light L1 traveling from the light source unit 1 to the MEMS mirror 4 and the return light L2 traveling from the MEMS mirror 4 to the light receiving unit 3 A hole 11 is formed for the passage of.
 また、図4において、破線矢印8Aは、MEMSミラー4の反射面が表側を向いているとき(図2(A)参照)に光学部材5が投射光L1及び戻り光L2を反射する領域を示し、破線矢印8Bは、MEMSミラー4の反射面が裏側を向いているとき(図2(B)参照)に光学部材5が投射光L1及び戻り光L2を反射する領域を示す。また、実線矢印8Cは、光線(即ち投射光L1及び戻り光L2)が計測装置100により送受信される範囲を示す。 Further, in FIG. 4, a broken line arrow 8A indicates a region where the optical member 5 reflects the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the front side (see FIG. 2A). The broken line arrow 8B indicates a region where the optical member 5 reflects the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the back side (see FIG. 2B). A solid arrow 8C indicates a range in which light (that is, the projection light L1 and the return light L2) is transmitted and received by the measurement apparatus 100.
 図4に示すように、凹面ミラー6Bで投射光L1及び戻り光L2が反射された場合に当該光の進行する方位が180度変更されることから、投射光L1及び戻り光L2が送受信される範囲は、凸面ミラー6Aが形成される約180度分の方位角の範囲となる。即ち、この場合、MEMSミラー4の反射面が表側を向いているときの投射光L1及び戻り光L2の送受信の範囲と、MEMSミラー4の反射面が裏側を向いているときの投射光L1及び戻り光L2の送受信の範囲とが重なっている。そして、MEMSミラー4の反射面が表側を向いているときと、MEMSミラー4の反射面が裏側を向いているときとでは、投射光L1は、異なる高さから、同一の仰俯角により計測装置100から射出される。 As shown in FIG. 4, when the projection light L1 and the return light L2 are reflected by the concave mirror 6B, the traveling direction of the light is changed by 180 degrees, so that the projection light L1 and the return light L2 are transmitted and received. The range is an azimuth range of about 180 degrees where the convex mirror 6A is formed. That is, in this case, the range of transmission / reception of the projection light L1 and the return light L2 when the reflection surface of the MEMS mirror 4 faces the front side, and the projection light L1 when the reflection surface of the MEMS mirror 4 faces the back side and The range of transmission / reception of the return light L2 overlaps. And when the reflective surface of the MEMS mirror 4 is facing the front side and when the reflective surface of the MEMS mirror 4 is facing the back side, the projection light L1 is measured with the same elevation angle from different heights. Injected from 100.
 次に、本実施例の効果について補足説明する。図5は、遠方に存在する計測対象物10に対して投射光L1が照射される様子を模式的に示した図である。 Next, a supplementary explanation will be given of the effects of this embodiment. FIG. 5 is a diagram schematically illustrating a state in which the projection light L <b> 1 is irradiated onto the measurement target 10 existing in the distance.
 図5に示すように、投射光L1は、凹面ミラー6B又は凸面ミラー6Aのいずれかで反射された後、所定の広がり角により発散する。また、凸面ミラー6Aで反射された投射光L1と凹面ミラー6Bで反射された投射光L1とは、Z軸方向において所定距離だけ離れた位置から同一の仰俯角により計測装置100から射出される。よって、遠方に存在する計測対象物10に対しては、これらの投射光L1のZ軸方向における照射範囲が重なる。よって、この場合には、計測装置100は、MEMSミラー4の一周期分の動作により実質的に2回同じ方向を走査することになる。即ち、この場合、計測装置100は、十分遠方に存在する計測対象物10に対して投射光L1を照射する際のフレームレートを2倍にすることができる。そして、フレームレートを2倍にすることにより、計測装置100が車両に搭載された際の高速走行時や計測対象物10の動きが速いときなどに生じる計測誤差(所謂被写体ブレ)を低減することができると共に、計測対象物10の検出確率を向上することが可能となる。 As shown in FIG. 5, the projection light L1 is reflected by either the concave mirror 6B or the convex mirror 6A and then diverges with a predetermined spread angle. Further, the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B are emitted from the measuring apparatus 100 at the same elevation angle from a position separated by a predetermined distance in the Z-axis direction. Therefore, the irradiation range in the Z-axis direction of the projection light L1 overlaps the measurement target 10 existing in the distance. Therefore, in this case, the measuring apparatus 100 scans the same direction substantially twice by the operation of one cycle of the MEMS mirror 4. That is, in this case, the measuring apparatus 100 can double the frame rate when the projection light L1 is irradiated onto the measurement object 10 that is sufficiently far away. Then, by doubling the frame rate, measurement errors (so-called subject blur) that occur when the measuring device 100 is mounted on a vehicle during high-speed traveling or when the measurement object 10 moves fast are reduced. And the detection probability of the measurement object 10 can be improved.
 以上説明したように、本実施例に係る計測装置100は、照射方向を変えながら投射光L1を照射するMEMSミラー4と、MEMSミラー4によって照射された投射光L1による走査面に含まれる計測対象物10によって反射された戻り光L2を受光する受光部3と、投射光L1及び戻り光L2を反射する光学部材5とを有する。ここで、光学部材5は、1周期内における第1期間に投射光L1が照射される計測対象物10の領域(第1領域)と、第2期間にMEMSミラー4によって照射された投射光L1が照射される計測対象物10の領域(第2領域)との少なくとも一部が重なるように、第2期間にMEMSミラー4によって照射された投射光L1を反射する。これにより、計測装置100は、十分遠方に存在する計測対象物10に対して投射光L1を照射する際のフレームレートを実質的に向上させることができる。 As described above, the measurement apparatus 100 according to the present embodiment includes the MEMS mirror 4 that irradiates the projection light L1 while changing the irradiation direction, and the measurement target included in the scanning surface by the projection light L1 that is irradiated by the MEMS mirror 4. It has the light-receiving part 3 which receives the return light L2 reflected by the thing 10, and the optical member 5 which reflects the projection light L1 and the return light L2. Here, the optical member 5 includes a region (first region) of the measurement object 10 that is irradiated with the projection light L1 in the first period within one cycle, and a projection light L1 that is irradiated by the MEMS mirror 4 in the second period. The projection light L1 irradiated by the MEMS mirror 4 in the second period is reflected so that at least a part of the region (second region) of the measurement target object 10 irradiated with is overlapped. Thereby, the measuring device 100 can substantially improve the frame rate at the time of irradiating the projection light L1 to the measurement object 10 existing sufficiently far away.
 [変形例]
 以下、第1実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて第1実施例に適用してもよい。
[Modification]
Hereinafter, modified examples suitable for the first embodiment will be described. The following modifications may be applied to the first embodiment in any combination.
 (変形例1)
 MEMSミラー4は、Z軸回りを回転することで全方位角における投射光L1の走査を行うのに加えて、所定角度分の高さ方向において投射光L1の走査を行うように傾きを変えながら回転してもよい。
(Modification 1)
In addition to scanning the projection light L1 at all azimuth angles by rotating around the Z axis, the MEMS mirror 4 changes the inclination so as to scan the projection light L1 in the height direction for a predetermined angle. You may rotate.
 図6(A)、(B)は、MEMSミラー4を異なる仰俯角となるように傾けたときのそれぞれの場合での投射光L1の光路を示した図である。ここで、図6(A)、(B)では、実線位置及び破線位置のMEMSミラー4は、それぞれ、水平面に対する傾きが最小及び最大となるときのMEMSミラー4を示す。なお、戻り光L2については、投射光L1と同様の光路となるため、図6(A)、(B)での表示を省略している。 6A and 6B are diagrams showing the optical path of the projection light L1 in each case when the MEMS mirror 4 is tilted to have different elevation angles. Here, in FIGS. 6A and 6B, the MEMS mirror 4 at the solid line position and the broken line position indicates the MEMS mirror 4 when the inclination with respect to the horizontal plane is minimum and maximum, respectively. Since the return light L2 has the same optical path as the projection light L1, the display in FIGS. 6A and 6B is omitted.
 投射光L1が凸面ミラー6Aに入射する場合、図6(A)に示すように、水平面に対するMEMSミラー4の傾きが異なると、MEMSミラー4で反射された投射光L1が入射する凸面ミラー6Aの位置が異なると共に、凸面ミラー6Aに反射された後の投射光L1の仰俯角が「θAv」だけ異なる。同様に、投射光L1が凹面ミラー6Bに入射する場合、図6(B)に示すように、水平面に対するMEMSミラー4の傾きが異なると、MEMSミラー4で反射された投射光L1が入射する凹面ミラー6Bの位置が異なると共に、凹面ミラー6Bに反射された後の投射光L1の仰俯角がθBvだけ異なる。 When the projection light L1 is incident on the convex mirror 6A, as shown in FIG. 6A, if the inclination of the MEMS mirror 4 with respect to the horizontal plane is different, the projection light L1 reflected by the MEMS mirror 4 is incident on the convex mirror 6A. The position is different, and the elevation angle of the projection light L1 after being reflected by the convex mirror 6A is different by “θAv”. Similarly, when the projection light L1 is incident on the concave mirror 6B, as shown in FIG. 6B, if the inclination of the MEMS mirror 4 with respect to the horizontal plane is different, the concave surface on which the projection light L1 reflected by the MEMS mirror 4 is incident. The position of the mirror 6B is different, and the elevation angle of the projection light L1 after being reflected by the concave mirror 6B is different by θBv.
 このように、計測装置100は、同一の方位角においてMEMSミラー4の仰俯角を変えて走査することで、凸面ミラー6A、凹面ミラー6Bでそれぞれ反射させた投射光L1の高さ方向における走査範囲を好適に拡大することができる。図6の例では、凸面ミラー6A及び凹面ミラー6Bのそれぞれに反射された投射光L1は、MEMSミラー4により、水平方向を中心として高さ方向にそれぞれ角度θAv、θBvの範囲で照射される。なお、MEMSミラー4は、360度分の方位角の走査を行う度にMEMSミラー4の仰俯角を変えることで複数層の走査を行ってもよく、MEMSミラー4の方位角及び仰俯角を連続的に変化させることにより、計測装置100から射出される光の遷移軌跡が螺旋状となるように螺旋走査を行ってもよい。 As described above, the measurement apparatus 100 scans the MEMS mirror 4 while changing the elevation angle at the same azimuth, thereby scanning the projection light L1 reflected by the convex mirror 6A and the concave mirror 6B in the height direction. Can be suitably enlarged. In the example of FIG. 6, the projection light L1 reflected by the convex mirror 6A and the concave mirror 6B is irradiated by the MEMS mirror 4 in the range of angles θAv and θBv in the height direction around the horizontal direction. The MEMS mirror 4 may scan a plurality of layers by changing the elevation angle of the MEMS mirror 4 each time scanning of the azimuth angle of 360 degrees, and the azimuth angle and elevation angle of the MEMS mirror 4 are continuously set. Therefore, the spiral scanning may be performed so that the transition locus of the light emitted from the measuring apparatus 100 is spiral.
 (変形例2)
 凸面ミラー6A及び凹面ミラー6Bの配置は、図3等に示すように、凹面ミラー6Bが凸面ミラー6Aに対してZ軸正方向側に存在する配置に限定されない。これに代えて、凸面ミラー6Aは、凹面ミラー6Bに対してZ軸正方向側に配置されていてもよい。
(Modification 2)
The arrangement of the convex mirror 6A and the concave mirror 6B is not limited to the arrangement in which the concave mirror 6B exists on the Z axis positive direction side with respect to the convex mirror 6A, as shown in FIG. Instead of this, the convex mirror 6A may be arranged on the Z axis positive direction side with respect to the concave mirror 6B.
 図7(A)、(B)は、本変形例における凸面ミラー6Ax及び凹面ミラー6Bxの立体的構造の一例を表す図である。図7(A)、(B)では、凸面ミラー6Axは、凹面ミラー6Bxに対してZ軸正方向側に配置され、かつ、凹面ミラー6Bxよりも反射面の面積が大きくなっている。 FIGS. 7A and 7B are diagrams illustrating an example of a three-dimensional structure of the convex mirror 6Ax and the concave mirror 6Bx in the present modification. 7A and 7B, the convex mirror 6Ax is arranged on the positive side in the Z-axis direction with respect to the concave mirror 6Bx, and the area of the reflecting surface is larger than that of the concave mirror 6Bx.
 そして、MEMSミラー4の反射面が表側に向けられている場合、図7(A)に示すように、MEMSミラー4で反射した投射光L1は、凸面ミラー6Axに入射し、X軸正方向に向けて凸面ミラー6Axにより反射される。この場合、好適には、投射光L1が凸面ミラー6Axから射出される方位角は、凸面ミラー6Axの反射前後において変化しない。一方、図示しないMEMSミラー4の反射面が裏側に向けられている場合、図7(B)に示すように、MEMSミラー4で反射した投射光L1は凹面ミラー6Bxに入射し、X軸正方向に向けて凹面ミラー6Bxにより反射される。この場合、投射光L1が凹面ミラー6Bxから射出される方位角は、凹面ミラー6Bxでの反射前と約180度異なる。これにより、図4での説明と同様、凸面ミラー6Axで反射される投射光L1及び戻り光L2が送受信される範囲は、凹面ミラー6Bxで反射される投射光L1及び戻り光L2が送受信される範囲と好適に重なる。また、凸面ミラー6Axで反射される投射光L1は、凹面ミラー6Bxで反射される投射光L1と同一の仰俯角により異なる高さから射出される。 And when the reflective surface of the MEMS mirror 4 is orient | assigned to the front side, as shown to FIG. 7 (A), the projection light L1 reflected by the MEMS mirror 4 injects into the convex-surface mirror 6Ax, and becomes an X-axis positive direction. Reflected by the convex mirror 6Ax. In this case, preferably, the azimuth angle at which the projection light L1 is emitted from the convex mirror 6Ax does not change before and after the reflection by the convex mirror 6Ax. On the other hand, when the reflection surface of the MEMS mirror 4 (not shown) is directed to the back side, as shown in FIG. 7B, the projection light L1 reflected by the MEMS mirror 4 is incident on the concave mirror 6Bx, and the positive direction of the X axis Is reflected by the concave mirror 6Bx. In this case, the azimuth angle at which the projection light L1 is emitted from the concave mirror 6Bx is approximately 180 degrees different from that before reflection by the concave mirror 6Bx. Accordingly, as in the description of FIG. 4, the range in which the projection light L1 and the return light L2 reflected by the convex mirror 6Ax are transmitted and received is the range in which the projection light L1 and the return light L2 reflected by the concave mirror 6Bx are transmitted and received. It preferably overlaps the range. Further, the projection light L1 reflected by the convex mirror 6Ax is emitted from different heights with the same elevation angle as the projection light L1 reflected by the concave mirror 6Bx.
 (変形例3)
 光学部材5は、凸面ミラー6A及び凹面ミラー6Bに加えて、投射光L1及び戻り光L2が通過する屈折面を有してもよい。
(Modification 3)
The optical member 5 may have a refracting surface through which the projection light L1 and the return light L2 pass in addition to the convex mirror 6A and the concave mirror 6B.
 図8は、本変形例に係る光学部材5の構成例を示す。図8の例では、光学部材5は、第1光学部材51と、第2光学部材52とを有する。第1光学部材51は、第1光学部材51の内部部材に反射面が接する凸面ミラー6Aと、凸面ミラー6Aの反射面側に設けられた屈折面6E、6Fを有する。第2光学部材52は、第2光学部材52の内部部材に反射面が接する凹面ミラー6Bと、凹面ミラー6Bの反射面側に設けられた屈折面6C、6Dを有する。なお、図8では、反射面が表側に向けられている状態のMEMSミラー4を実線、反射面が裏側に向けられている状態のMEMSミラー4を破線によりそれぞれ示している。また、屈折面6C~6Fの通過前後において投射光L1及び戻り光L2は所定の屈折率により屈折しているものとする。 FIG. 8 shows a configuration example of the optical member 5 according to this modification. In the example of FIG. 8, the optical member 5 includes a first optical member 51 and a second optical member 52. The first optical member 51 includes a convex mirror 6A whose reflective surface is in contact with the internal member of the first optical member 51, and refractive surfaces 6E and 6F provided on the reflective surface side of the convex mirror 6A. The second optical member 52 has a concave mirror 6B whose reflective surface is in contact with the internal member of the second optical member 52, and refractive surfaces 6C and 6D provided on the reflective surface side of the concave mirror 6B. In FIG. 8, the MEMS mirror 4 in a state where the reflecting surface is directed to the front side is indicated by a solid line, and the MEMS mirror 4 in a state where the reflecting surface is directed to the back side is indicated by a broken line. Further, it is assumed that the projection light L1 and the return light L2 are refracted by a predetermined refractive index before and after passing through the refracting surfaces 6C to 6F.
 MEMSミラー4が実線に示す状態、即ちMEMSミラー4の反射面が表側に向けられている状態では、投射光L1は、MEMSミラー4での反射後、第1光学部材51の屈折面6Eを通過し、凸面ミラー6Aに入射する。そして、凸面ミラー6Aで反射した投射光L1は、屈折面6Fを通過して計測装置100の外に射出される。凸面ミラー6Aで反射された投射光L1の戻り光である戻り光L2についても同様に、屈折面Fを通過して凸面ミラー6Aに入射し、再び屈折面6Eを通過してMEMSミラー4へ到達する。 In a state where the MEMS mirror 4 is shown by a solid line, that is, in a state where the reflection surface of the MEMS mirror 4 is directed to the front side, the projection light L1 passes through the refractive surface 6E of the first optical member 51 after being reflected by the MEMS mirror 4. Then, the light enters the convex mirror 6A. Then, the projection light L1 reflected by the convex mirror 6A passes through the refractive surface 6F and is emitted out of the measuring device 100. Similarly, the return light L2, which is the return light of the projection light L1 reflected by the convex mirror 6A, passes through the refractive surface F and enters the convex mirror 6A, and again passes through the refractive surface 6E and reaches the MEMS mirror 4. To do.
 一方、MEMSミラー4が破線に示す状態、即ちMEMSミラー4の反射面が裏側に向けられている状態では、投射光L1は、MEMSミラー4での反射後、第2光学部材52の屈折面6Cを通過し、凹面ミラー6Bに入射する。そして、凹面ミラー6Bで反射した投射光L1は、屈折面6Dを通過して計測装置100の外へ射出される。凹面ミラー6Bで反射された投射光L1の戻り光である戻り光L2についても同様に、屈折面6Dを通過して凹面ミラー6Bに入射し、再び屈折面6Cを通過してMEMSミラー4へ到達する。 On the other hand, in a state where the MEMS mirror 4 is indicated by a broken line, that is, in a state where the reflective surface of the MEMS mirror 4 is directed to the back side, the projection light L1 is reflected by the MEMS mirror 4 and then the refractive surface 6C of the second optical member 52. And enters the concave mirror 6B. Then, the projection light L1 reflected by the concave mirror 6B passes through the refractive surface 6D and is emitted out of the measuring device 100. Similarly, the return light L2, which is the return light of the projection light L1 reflected by the concave mirror 6B, passes through the refractive surface 6D and enters the concave mirror 6B, and again passes through the refractive surface 6C and reaches the MEMS mirror 4. To do.
 このように、本変形例の構成によっても、計測装置100は、凹面ミラー6Bで反射された投射光L1を、凸面ミラー6Aで反射された投射光L1と同様にX軸正方向に水平に射出させることができる。なお、本変形例において、屈折面6E、6Fは、本発明における「第1屈折面」の一例であり、屈折面6C、6Dは、本発明における「第2屈折面」の一例である。 As described above, even with the configuration of this modification, the measuring apparatus 100 emits the projection light L1 reflected by the concave mirror 6B horizontally in the X-axis positive direction in the same manner as the projection light L1 reflected by the convex mirror 6A. Can be made. In this modification, the refractive surfaces 6E and 6F are examples of the “first refractive surface” in the present invention, and the refractive surfaces 6C and 6D are examples of the “second refractive surface” in the present invention.
 (変形例4)
 光学部材5は、凸面ミラー6A及び凹面ミラー6B以外の反射面をさらに有してもよい。
(Modification 4)
The optical member 5 may further have a reflective surface other than the convex mirror 6A and the concave mirror 6B.
 図9は、本変形例に係る光学部材5の構成例を示す。図9の例では、光学部材5は、凸面ミラー6A及び凹面ミラー6Bに加えて、凸面ミラー6Gを有する。凸面ミラー6Gは、凹面ミラー6BよりもX軸正方向側に存在し、凹面ミラー6Bが反射する投射光L1の仰俯角を変化させる。なお、図9では、図8と同様に、反射面が表側に向けられている状態のMEMSミラー4を実線、反射面が裏側に向けられている状態のMEMSミラー4を破線によりそれぞれ示している。 FIG. 9 shows a configuration example of the optical member 5 according to this modification. In the example of FIG. 9, the optical member 5 includes a convex mirror 6G in addition to the convex mirror 6A and the concave mirror 6B. The convex mirror 6G is present on the X axis positive direction side with respect to the concave mirror 6B, and changes the elevation angle of the projection light L1 reflected by the concave mirror 6B. In FIG. 9, as in FIG. 8, the MEMS mirror 4 with the reflecting surface facing the front side is indicated by a solid line, and the MEMS mirror 4 with the reflecting surface facing the back side is indicated by a broken line. .
 図9の例では、MEMSミラー4の反射面が裏側に向けられている状態では、投射光L1は、凹面ミラー6Bに向けてMEMSミラー4によって反射された後、凹面ミラー6Bによって凸面ミラー6Gへ向けて反射される。そして、投射光L1は、凸面ミラー6Gでの反射により、仰俯角が0度となるように変更される。一方、MEMSミラー4の反射面が表側に向けられている状態では、投射光L1は、凸面ミラー6Aに向けてMEMSミラー4によって反射され、凸面ミラー6Aでの反射により、方位角が不変のまま仰俯角が0度となるように変更される。 In the example of FIG. 9, in a state where the reflective surface of the MEMS mirror 4 is directed to the back side, the projection light L1 is reflected by the MEMS mirror 4 toward the concave mirror 6B, and then is directed to the convex mirror 6G by the concave mirror 6B. Reflected towards. Then, the projection light L1 is changed so that the elevation angle becomes 0 degrees by reflection on the convex mirror 6G. On the other hand, in a state where the reflective surface of the MEMS mirror 4 is directed to the front side, the projection light L1 is reflected by the MEMS mirror 4 toward the convex mirror 6A, and the azimuth angle remains unchanged by the reflection at the convex mirror 6A. The elevation angle is changed to 0 degrees.
 このように、図9の構成によれば、計測装置100は、凹面ミラー6Bによって反射された投射光L1の仰俯角を、凸面ミラー6Aによって反射される投射光L1の仰俯角と同一となるように、凸面ミラー6Gにより好適に調整することができる。なお、本変形例では、凹面ミラー6Bは、本発明における「第1反射面」の一例であり、凸面ミラー6Gは、本発明における「第2反射面」の一例である。 As described above, according to the configuration of FIG. 9, the measuring apparatus 100 makes the elevation angle of the projection light L1 reflected by the concave mirror 6B the same as the elevation angle of the projection light L1 reflected by the convex mirror 6A. Further, it can be suitably adjusted by the convex mirror 6G. In this modification, the concave mirror 6B is an example of the “first reflective surface” in the present invention, and the convex mirror 6G is an example of the “second reflective surface” in the present invention.
 (変形例5)
 図2等の構成では、MEMSミラー4の水平方向の走査範囲を2分割するように、凸面ミラー6A及び凹面ミラー6Bが配置されていた。これに代えて、MEMSミラー4の水平方向の走査範囲を3以上の分割数により分割するように、光学部材5が構成されていてもよい。
(Modification 5)
In the configuration of FIG. 2 and the like, the convex mirror 6A and the concave mirror 6B are arranged so that the horizontal scanning range of the MEMS mirror 4 is divided into two. Instead of this, the optical member 5 may be configured to divide the horizontal scanning range of the MEMS mirror 4 by a division number of 3 or more.
 図10は、変形例における光学部材5をZ軸正方向から観察した平面図である。図10の構成例では、光学部材5は、凸面ミラー6Aaと、凸面ミラー6Abと、凹面ミラー6Baと、凹面ミラー6Bbとを備える。凸面ミラー6Aaと、凸面ミラー6Abと、凹面ミラー6Baと、凹面ミラー6Bbとは、XY平面視において、異なる大きさの90度分の扇形となっており、これらの扇形の中心点が投射光L1及び戻り光L2が通過する孔11と重なるように互いに隣接している。また、凸面ミラー6Aa、凹面ミラー6Bb、凸面ミラー6Ab、凹面ミラー6Baの順にZ軸座標が大きくなる位置(即ちMEMSミラー4から離れた位置)に配置され、かつ、反射面のサイズが大きくなる。 FIG. 10 is a plan view of the optical member 5 in the modified example observed from the positive direction of the Z axis. In the configuration example of FIG. 10, the optical member 5 includes a convex mirror 6Aa, a convex mirror 6Ab, a concave mirror 6Ba, and a concave mirror 6Bb. The convex mirror 6Aa, the convex mirror 6Ab, the concave mirror 6Ba, and the concave mirror 6Bb are fan-shaped for 90 degrees of different sizes in the XY plan view, and the center point of these fan-shaped is the projection light L1. And it adjoins mutually so that it may overlap with the hole 11 through which return light L2 passes. Further, the convex mirror 6Aa, the concave mirror 6Bb, the convex mirror 6Ab, and the concave mirror 6Ba are arranged in the order of increasing the Z-axis coordinate (that is, the position away from the MEMS mirror 4), and the size of the reflecting surface is increased.
 そして、凸面ミラー6Aaには、破線矢印8Aaが示す方位角の範囲に向けてMEMSミラー4により反射された投射光L1及びその戻り光である戻り光L2が照射され、凸面ミラー6Abには、破線矢印8Abが示す方位角の範囲に向けてMEMSミラー4により反射された投射光L1及びその戻り光である戻り光L2が照射される。凹面ミラー6Baには、破線矢印8Baが示す方位角の範囲に向けてMEMSミラー4により反射された投射光L1及びその戻り光である戻り光L2が照射され、凹面ミラー6Bbには、破線矢印8Bbが示す方位角の範囲に向けてMEMSミラー4により反射された投射光L1及びその戻り光である戻り光L2が照射される。 The convex mirror 6Aa is irradiated with the projection light L1 reflected by the MEMS mirror 4 and the return light L2 as its return light toward the range of the azimuth angle indicated by the broken line arrow 8Aa, and the convex mirror 6Ab is irradiated with the broken line. The projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light are irradiated toward the range of the azimuth angle indicated by the arrow 8Ab. The concave mirror 6Ba is irradiated with the projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light toward the range of the azimuth angle indicated by the broken arrow 8Ba, and the broken mirror 6Bb is irradiated with the broken arrow 8Bb. The projection light L1 reflected by the MEMS mirror 4 and the return light L2 that is the return light are irradiated toward the range of the azimuth angle indicated by.
 また、実線矢印8Ca、8Cbは、光線(即ち投射光L1及び戻り光L2)が計測装置100により送受信される範囲を示す。ここで、凹面ミラー6Baに照射された投射光L1は、凹面ミラー6Baにより反射されることにより、方位角が180度変化する。その結果、凹面ミラー6Baに照射される投射光L1は、凸面ミラー6Aaに照射される投射光L1と同一方位である実線矢印8Caが示す方位角の範囲に射出される。また、凹面ミラー6Bbに照射される投射光L1は、凹面ミラー6Bbにより反射されることにより、方位角が180度変化する。その結果、凹面ミラー6Bbに照射される投射光L1は、凸面ミラー6Abに照射した投射光L1と同一方位である実線矢印8Cbが示す方位角の範囲に射出される。また、凸面ミラー6Aaと凹面ミラー6Baとでそれぞれ反射された投射光L1は異なる高さから同一の仰俯角により計測装置100から射出される。また、凸面ミラー6Abと凹面ミラー6Bbとでそれぞれ反射された投射光L1についても、異なる高さから同一の仰俯角により計測装置100から射出される。なお、それぞれの仰俯角は同じでも良いし、異なっていても良い。 Also, solid arrows 8Ca and 8Cb indicate ranges in which the light (that is, the projection light L1 and the return light L2) is transmitted and received by the measurement device 100. Here, the projection light L1 irradiated to the concave mirror 6Ba is reflected by the concave mirror 6Ba, so that the azimuth angle changes by 180 degrees. As a result, the projection light L1 irradiated to the concave mirror 6Ba is emitted in the range of the azimuth angle indicated by the solid line arrow 8Ca having the same azimuth as the projection light L1 irradiated to the convex mirror 6Aa. Further, the projection light L1 irradiated to the concave mirror 6Bb is reflected by the concave mirror 6Bb, whereby the azimuth angle changes by 180 degrees. As a result, the projection light L1 irradiated on the concave mirror 6Bb is emitted in the range of the azimuth angle indicated by the solid line arrow 8Cb having the same azimuth as the projection light L1 irradiated on the convex mirror 6Ab. Further, the projection light L1 reflected by the convex mirror 6Aa and the concave mirror 6Ba is emitted from the measuring device 100 from different heights with the same elevation angle. Further, the projection light L1 reflected by the convex mirror 6Ab and the concave mirror 6Bb is also emitted from the measurement apparatus 100 from different heights with the same elevation angle. Each elevation angle may be the same or different.
 このように、本変形例の構成によっても、計測装置100は、凹面ミラー6Ba、凹面ミラー6Bbでそれぞれ反射された投射光L1を、凸面ミラー6Aa、凸面ミラー6Abで反射された投射光L1と同様に表側に射出させ、フレームレートを好適に向上させることができる。 As described above, even with the configuration of the present modification, the measuring apparatus 100 uses the projection light L1 reflected by the concave mirror 6Ba and the concave mirror 6Bb, similarly to the projection light L1 reflected by the convex mirror 6Aa and the convex mirror 6Ab. The frame rate can be suitably improved by injecting the light to the front side.
 (変形例6)
 図2等の例では、凹面ミラー6Bにより反射された投射光L1は、凸面ミラー6Aで反射される投射光L1と平行に(即ち同一の仰俯角により)凹面ミラー6Bから射出された。これに代えて、例えば、計測対象物10との距離が予め既知である場合などにおいては、凹面ミラー6Bにより反射された投射光L1と、凸面ミラー6Aで反射される投射光L1とが所定の距離において重なるように、異なる仰俯角により射出されてもよい。
(Modification 6)
In the example of FIG. 2 and the like, the projection light L1 reflected by the concave mirror 6B is emitted from the concave mirror 6B in parallel with the projection light L1 reflected by the convex mirror 6A (that is, by the same elevation angle). Instead, for example, when the distance to the measurement object 10 is known in advance, the projection light L1 reflected by the concave mirror 6B and the projection light L1 reflected by the convex mirror 6A are predetermined. It may be ejected at different elevation angles so that they overlap at a distance.
 図11は、計測装置100から所定距離(例えば5m)に存在する計測対象物10に対して投射光L1が照射される様子を模式的に示した図である。図11において、実線は、投射光L1の中心光線を示す。図11の例では、凸面ミラー6Aで反射された投射光L1と凹面ミラー6Bで反射された投射光L1とは、Z軸方向において所定距離だけ離れた位置から異なる仰俯角により計測装置100から射出される。そして、計測対象物10の付近において、凸面ミラー6Aで反射された投射光L1と凹面ミラー6Bで反射された投射光L1との重なりが最大となる。言い換えると、計測対象物10の付近において、凸面ミラー6Aで反射された投射光L1の中心光線と凸面ミラー6Aで反射された投射光L1の中心光線とが重なる。 FIG. 11 is a diagram schematically illustrating a state in which the projection light L1 is irradiated to the measurement target 10 existing at a predetermined distance (for example, 5 m) from the measurement apparatus 100. In FIG. 11, a solid line shows the central ray of the projection light L1. In the example of FIG. 11, the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B are emitted from the measuring device 100 at different elevation angles from positions separated by a predetermined distance in the Z-axis direction. Is done. Then, in the vicinity of the measurement object 10, the overlap between the projection light L1 reflected by the convex mirror 6A and the projection light L1 reflected by the concave mirror 6B is maximized. In other words, in the vicinity of the measurement object 10, the central light beam of the projection light L1 reflected by the convex mirror 6A and the central light beam of the projection light L1 reflected by the convex mirror 6A overlap.
 このように、図11の例では、凸面ミラー6A及び凹面ミラー6Bは、凸面ミラー6Aで反射された投射光L1の中心光線と凸面ミラー6Aで反射された投射光L1の中心光線とが計測対象物10付近で重なるような仰俯角により、投射光L1をそれぞれ反射させている。これによっても、計測装置100は、計測対象物10に対して投射光L1を照射する際のフレームレートを実質的に向上させることができる。 As described above, in the example of FIG. 11, the convex mirror 6A and the concave mirror 6B measure the central ray of the projection light L1 reflected by the convex mirror 6A and the central ray of the projection light L1 reflected by the convex mirror 6A. The projection light L1 is reflected by the elevation angle that overlaps in the vicinity of the object 10. Also by this, the measuring device 100 can substantially improve the frame rate when irradiating the measurement target 10 with the projection light L1.
 <第2実施例>
 第2実施例では、光学部材5は所定方向に延びる軸(Z軸)回りに回転自在に構成され、制御部2は、車両の走行状況等に応じて光学部材5を所定方向に延びる軸(Z軸)回りに回転させることで、投射光L1による走査範囲(即ち投射光L1を外部に照射させる照射範囲)を変化させる。
<Second embodiment>
In the second embodiment, the optical member 5 is configured to be rotatable about an axis (Z axis) extending in a predetermined direction, and the control unit 2 extends the optical member 5 in a predetermined direction according to the traveling state of the vehicle ( By rotating around the Z axis), the scanning range by the projection light L1 (that is, the irradiation range in which the projection light L1 is irradiated to the outside) is changed.
 図12は、第2実施例に係る計測装置100Aの概略構成を示す。計測装置100Aは、第1実施例で説明した光源部1、制御部2、受光部3、MEMSミラー4、及び光学部材5に加えて、モータ11、モータ制御部12、ユーザインタフェース13、現在位置取得部14、地図情報取得部15、及び車両挙動取得部16を備える。以後では、第2実施例の計測装置100と同様の構成要素については適宜同一符号を付し、その説明を省略する。 FIG. 12 shows a schematic configuration of a measuring apparatus 100A according to the second embodiment. In addition to the light source unit 1, the control unit 2, the light receiving unit 3, the MEMS mirror 4, and the optical member 5 described in the first embodiment, the measuring device 100A includes a motor 11, a motor control unit 12, a user interface 13, and a current position. The acquisition part 14, the map information acquisition part 15, and the vehicle behavior acquisition part 16 are provided. Henceforth, the same code | symbol is attached | subjected suitably about the component similar to the measuring apparatus 100 of 2nd Example, and the description is abbreviate | omitted.
 モータ11は、モータ制御部12から供給される印加電圧に基づき、Z軸を回転軸として光学部材5を回転させる。モータ11は、本発明における「調整機構」の一例である。モータ制御部12は、制御部2から供給される制御信号に基づき、モータ11の駆動制御を行う。ユーザインタフェース13は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、種々の入力(外部入力)を受け付け、入力情報を制御部2に供給する。 The motor 11 rotates the optical member 5 about the Z axis as a rotation axis based on the applied voltage supplied from the motor control unit 12. The motor 11 is an example of the “adjustment mechanism” in the present invention. The motor control unit 12 performs drive control of the motor 11 based on the control signal supplied from the control unit 2. The user interface 13 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, accepts various inputs (external inputs), and supplies input information to the control unit 2.
 現在位置取得部14は、車両の現在位置を示す位置情報を取得する。現在位置取得部14は、図示しないジャイロセンサなどの自立測位装置又は/及びGPS受信機等の出力に基づき位置情報を生成してもよく、他の装置が推定した車両の位置情報を受信してもよい。また、現在位置取得部14が取得する位置情報は、制御部2が算出した計測対象物10までの距離等の情報に基づき高精度に推定された位置情報であってもよい。 The current position acquisition unit 14 acquires position information indicating the current position of the vehicle. The current position acquisition unit 14 may generate position information based on an output of a self-supporting positioning device such as a gyro sensor (not shown) or / and a GPS receiver or the like, and may receive vehicle position information estimated by other devices. Also good. Further, the position information acquired by the current position acquisition unit 14 may be position information estimated with high accuracy based on information such as the distance to the measurement target 10 calculated by the control unit 2.
 地図情報取得部15は、図示しない記憶部に記憶された地図情報から車両の現在位置周辺の地図情報を取得する。地図情報取得部15が取得する地図情報には、例えば、車両の現在位置周辺の地物情報や道路情報などが含まれている。 The map information acquisition unit 15 acquires map information around the current position of the vehicle from map information stored in a storage unit (not shown). The map information acquired by the map information acquisition unit 15 includes, for example, feature information and road information around the current position of the vehicle.
 車両挙動取得部16は、車両の挙動に関する情報である挙動情報を取得する。例えば、車両挙動取得部16は、挙動情報として、車速情報、ウィンカ情報、トランスミッション(ギア)の情報などをCAN(Controller Area Network)などの通信プロトコルにより車両等から取得する。 The vehicle behavior acquisition unit 16 acquires behavior information that is information related to vehicle behavior. For example, the vehicle behavior acquisition unit 16 acquires vehicle speed information, blinker information, transmission (gear) information, and the like as behavior information from a vehicle or the like using a communication protocol such as CAN (Controller Area Network).
 なお、制御部2、モータ制御部12、現在位置取得部14、地図情報取得部15、及び車両挙動取得部16は、CPU等により構成されてもよい。また、現在位置取得部14、地図情報取得部15、及び車両挙動取得部16は、外部装置から情報を受信する通信モジュール等により構成されてもよい。 The control unit 2, the motor control unit 12, the current position acquisition unit 14, the map information acquisition unit 15, and the vehicle behavior acquisition unit 16 may be configured by a CPU or the like. The current position acquisition unit 14, the map information acquisition unit 15, and the vehicle behavior acquisition unit 16 may be configured by a communication module that receives information from an external device.
 次に、制御部2による光学部材5の回転制御の具体例(第1~第3制御例)について順に説明する。 Next, specific examples (first to third control examples) of rotation control of the optical member 5 by the control unit 2 will be described in order.
 第1制御例では、制御部2は、ユーザインタフェース13から供給される入力情報に基づき、モータ11を駆動させることで光学部材5を回転させる。この場合、制御部2は、ユーザのマニュアル操作に基づき、投射光L1による走査範囲を調整する。 In the first control example, the control unit 2 rotates the optical member 5 by driving the motor 11 based on the input information supplied from the user interface 13. In this case, the control part 2 adjusts the scanning range by the projection light L1 based on a user's manual operation.
 図13(A)、(B)は、車両の前方を投射光L1の走査範囲とするように向きが調整された光学部材5の断面構造を模式的に示した図である。図13(A)、(B)では、MEMSミラー4がいずれの方向に向けられた場合であっても凸面ミラー6A又は凹面ミラー6Bにより投射光L1を車両の前方(ここではX軸正方向)へ射出するように光学部材5の向きが調整されている。図14(A)、(B)は、車両の後方を投射光L1の走査範囲とするように向きが調整された光学部材5の断面構造を模式的に示した図である。図14(A)、(B)では、MEMSミラー4がいずれの方向に向けられた場合であっても凸面ミラー6A又は凹面ミラー6Bにより投射光L1を車両の後方(ここではX軸負方向)へ射出するように光学部材5の向きが調整されている。 FIGS. 13A and 13B are diagrams schematically showing a cross-sectional structure of the optical member 5 whose direction is adjusted so that the front of the vehicle is within the scanning range of the projection light L1. In FIGS. 13A and 13B, the projection light L1 is forwarded by the convex mirror 6A or the concave mirror 6B to the front of the vehicle (here, the X-axis positive direction) regardless of which direction the MEMS mirror 4 is directed. The direction of the optical member 5 is adjusted so as to be emitted to 14A and 14B are diagrams schematically showing a cross-sectional structure of the optical member 5 whose direction is adjusted so that the rear of the vehicle is within the scanning range of the projection light L1. In FIGS. 14A and 14B, the projection light L1 is projected to the rear of the vehicle (here, the X-axis negative direction) by the convex mirror 6A or the concave mirror 6B regardless of which direction the MEMS mirror 4 is directed. The direction of the optical member 5 is adjusted so as to be emitted to
 そして、ユーザは、例えば、車両前方の情報が他の方向よりも重要な状況下では、光学部材5を図13(A)、(B)に示される向きとする入力操作を行い、車両後方の情報が他の方向よりも重要な状況下では、光学部材5を図14(A)、(B)に示される向きとする入力操作を行う。この場合、ユーザインタフェース13は、光学部材5を図13(A)、(B)に示される向き又は図14(A)、(B)に示される向きのいずれかを選択するためのスイッチ、ボタン等であってもよい。そして、制御部2は、ユーザインタフェース13から供給される入力情報に基づき、現在と異なる向きに光学部材5を向ける必要があると判断した場合、光学部材5を180度回転させるようにモータ11を駆動させる。 Then, for example, in a situation where the information on the front side of the vehicle is more important than the other direction, the user performs an input operation with the optical member 5 in the direction shown in FIGS. Under a situation in which information is more important than other directions, an input operation is performed in which the optical member 5 is oriented as shown in FIGS. 14 (A) and 14 (B). In this case, the user interface 13 is a switch or button for selecting either the orientation shown in FIGS. 13 (A) and (B) or the orientation shown in FIGS. 14 (A) and (B). Etc. When the control unit 2 determines that the optical member 5 needs to be directed in a direction different from the current direction based on the input information supplied from the user interface 13, the control unit 2 controls the motor 11 to rotate the optical member 5 by 180 degrees. Drive.
 このように、第1制御によれば、制御部2は、フレームレートを実質的に向上させて走査を行う範囲をユーザ操作に基づき定め、検出すべき物体に対する検出精度を好適に向上させることができる。 As described above, according to the first control, the control unit 2 can substantially improve the frame rate and determine the scanning range based on the user operation, and can suitably improve the detection accuracy for the object to be detected. it can.
 第2制御では、制御部2は、地図情報取得部15から取得する地図情報又は/及び車両挙動取得部16から供給される挙動情報等に基づき、投射光L1による走査が相対的に必要な方向を認識し、当該方向に投射光L1が射出されるように光学部材5の向きを自動制御する。 In the second control, the control unit 2 uses the map information acquired from the map information acquisition unit 15 and / or the behavior information supplied from the vehicle behavior acquisition unit 16 or the like in a direction that relatively requires scanning with the projection light L1. And the direction of the optical member 5 is automatically controlled so that the projection light L1 is emitted in this direction.
 例えば、制御部2は、現在位置取得部14から現在位置情報を取得し、現在位置周辺の地物の位置等に関する地物情報を地図情報取得部15から取得する。そして、制御部2は、現在位置に対して地物が明らかに存在しない方向を検知した場合には、当該方向が投射光L1による走査範囲に含まれないように光学部材5の向きを調整する。他の例では、制御部2は、挙動情報に基づき、車両が進行中の方向(即ち前方か後方か)を認識し、認識した車両の進行中の方向が投射光L1による走査範囲に含まれるように光学部材5の向きを調整する。さらに別の例では、制御部2は、挙動情報としてウィンカ情報を取得した場合、車両が車線変更すると予測し、車両の後方が投射光L1による走査範囲に含まれるように光学部材5の向きを調整する。 For example, the control unit 2 acquires the current position information from the current position acquisition unit 14 and acquires the feature information related to the positions of the features around the current position from the map information acquisition unit 15. When the control unit 2 detects a direction in which no feature is clearly present with respect to the current position, the control unit 2 adjusts the direction of the optical member 5 so that the direction is not included in the scanning range of the projection light L1. . In another example, the control unit 2 recognizes the direction in which the vehicle is traveling (that is, whether it is forward or backward) based on the behavior information, and the recognized direction of the traveling vehicle is included in the scanning range by the projection light L1. Thus, the orientation of the optical member 5 is adjusted. In yet another example, the control unit 2 predicts that the vehicle will change lanes when the winker information is acquired as the behavior information, and changes the direction of the optical member 5 so that the rear of the vehicle is included in the scanning range by the projection light L1. adjust.
 このように、第2制御によれば、制御部2は、フレームレートを実質的に向上させて走査を行う範囲を状況に応じて適切に定めることで、検出すべき物体に対する検出精度等を向上させることができる。なお、第1及び第2制御において、制御部2は、本発明における「決定部」の一例である。 Thus, according to the second control, the control unit 2 improves the detection accuracy and the like for the object to be detected by appropriately determining the scanning range according to the situation by substantially improving the frame rate. Can be made. In the first and second controls, the control unit 2 is an example of the “determination unit” in the present invention.
 第3制御では、制御部2は、MEMSミラー4の角度に応じて光学部材5を回転(即ち連続的に向きを変化)させることで、投射光L1を全方位に射出させる。 In the third control, the control unit 2 emits the projection light L1 in all directions by rotating the optical member 5 according to the angle of the MEMS mirror 4 (that is, continuously changing the direction).
 図15(A)、(B)は、第3制御に基づき光学部材5を回転させた場合の光学部材5の断面構造を模式的に示した図である。図15(A)、(B)の例では、MEMSミラー4の向きの変化に応じて光学部材5を回転させることで、MEMSミラー4がX軸正方向を向いている(即ち法線ベクトルのX座標が正値である)場合(図15(A)参照)及びMEMSミラー4がX軸負方向を向いている場合(図15(B)参照)のいずれの場合であっても、凸面ミラー6Aにより投射光L1が反射されている。この場合、投射光L1による走査範囲はX軸正方向に限らずX軸負方向も含むことになる。 FIGS. 15A and 15B are diagrams schematically showing a cross-sectional structure of the optical member 5 when the optical member 5 is rotated based on the third control. In the example of FIGS. 15A and 15B, the optical member 5 is rotated in accordance with the change in the direction of the MEMS mirror 4 so that the MEMS mirror 4 is directed in the positive direction of the X axis (that is, the normal vector). The convex mirror is used in any of the cases where the X coordinate is a positive value (see FIG. 15A) and the MEMS mirror 4 is facing the negative X-axis direction (see FIG. 15B). The projection light L1 is reflected by 6A. In this case, the scanning range by the projection light L1 is not limited to the X-axis positive direction but also includes the X-axis negative direction.
 なお、光学部材5の回転周期は、MEMSミラー4による走査周期の2倍以内であることが好ましい。言い換えると、MEMSミラー4による走査速度は、光学部材5の回転速度の2倍以内であることが好ましい。ここで、凸面ミラー6A及び凹面ミラー6Bは、図4に示すように、XY平面視においてそれぞれ半円(即ち中心角180度の扇形)となっている。よって、この場合、MEMSミラー4が360度の全方位に投射光L1を走査する間に凸面ミラー6A又は凹面ミラー6Bのいずれかに常に投射光L1が照射される。言い換えると、この場合、投射光L1が凸面ミラー6A又は凹面ミラー6Bの一方に照射されてから凸面ミラー6A又は凹面ミラー6Bの他方に投射光L1が照射されるまでの期間がMEMSミラー4による1回の走査周期よりも長くなるため、この期間に360度の全方位に投射光L1が好適に射出されることになる。一方、光学部材5の回転周期がMEMSミラー4による走査周期の2倍より長い場合には、投射光L1が凸面ミラー6A又は凹面ミラー6Bの一方に照射されてから、MEMSミラー4が360度の全方位に投射光L1を走査し終える前に、凸面ミラー6A又は凹面ミラー6Bの他方に投射光L1が照射され(即ち投射光L1が照射される光学部材5の光学面が変わり)、投射光L1の射出方向が180度変化する。よって、この場合、360度の全方位に投射光L1を走査することができない。 Note that the rotation period of the optical member 5 is preferably within twice the scanning period of the MEMS mirror 4. In other words, the scanning speed by the MEMS mirror 4 is preferably within twice the rotational speed of the optical member 5. Here, as shown in FIG. 4, the convex mirror 6A and the concave mirror 6B each have a semicircle (that is, a fan shape with a central angle of 180 degrees) in the XY plan view. Therefore, in this case, while the MEMS mirror 4 scans the projection light L1 in all directions of 360 degrees, either the convex mirror 6A or the concave mirror 6B is always irradiated with the projection light L1. In other words, in this case, the period from when the projection light L1 is applied to one of the convex mirror 6A or the concave mirror 6B to when the projection light L1 is applied to the other of the convex mirror 6A or the concave mirror 6B is 1 by the MEMS mirror 4. Since this is longer than the scanning cycle, the projection light L1 is preferably emitted in all directions of 360 degrees during this period. On the other hand, when the rotation cycle of the optical member 5 is longer than twice the scanning cycle by the MEMS mirror 4, the projection light L1 is irradiated to one of the convex mirror 6A or the concave mirror 6B, and then the MEMS mirror 4 is 360 degrees. Before the projection light L1 is scanned in all directions, the other of the convex mirror 6A or the concave mirror 6B is irradiated with the projection light L1 (that is, the optical surface of the optical member 5 irradiated with the projection light L1 changes), and the projection light The injection direction of L1 changes by 180 degrees. Therefore, in this case, the projection light L1 cannot be scanned in all directions of 360 degrees.
 好適には、制御部2は、車両又は車両周辺の状況に応じて、投射光L1を全方位に射出させる第3制御の実行の有無を切り替えるとよい。言い換えると、制御部2は、全方位の情報が必要な状況では第3制御を実行し、全方位の情報が必要でない(所定の方向だけ走査すれば十分である)状況では第3制御を実行しない。 Preferably, the control unit 2 may switch the execution of the third control for emitting the projection light L1 in all directions according to the vehicle or the situation around the vehicle. In other words, the control unit 2 executes the third control in a situation where omnidirectional information is required, and executes the third control in a situation where omnidirectional information is not necessary (scanning only in a predetermined direction is sufficient). do not do.
 ここで、全方位の情報が必要な状況とは、例えば、周辺に他車両が存在する場合、複数の地物等が180度の走査範囲では走査できない位置に点在する場合、又は交差点付近を車両が走行中の場合などが該当する。また、全方位の情報が必要ない状況とは、例えば、周辺に他車両が存在しない場合、所定の方向にしか地物等が存在しない(即ち180度の走査範囲で走査できる位置に地物等が存在する)場合、又は進行方向だけ走査すればよい通常走行時である場合などが該当する。 Here, the situation where information on all directions is necessary is, for example, when there are other vehicles in the vicinity, when multiple features are scattered at positions that cannot be scanned in the 180-degree scanning range, or near intersections. This applies when the vehicle is running. The situation where information on all directions is not necessary is, for example, when there is no other vehicle in the vicinity, and there is no feature only in a predetermined direction (that is, a feature or the like at a position that can be scanned in a 180-degree scanning range). Or the case where the vehicle is traveling normally during which only the traveling direction needs to be scanned.
 そして、制御部2は、例えば、現在位置取得部14が出力する車両の現在位置情報と、地図情報取得部15が出力する地図情報(ここでは車両周辺の地物の位置等に関する地物情報)とに基づいて、全方位の情報が必要な状況であるか否かを判定する。なお、制御部2は、車両周辺の他車両の存在の有無を、例えば、車車間通信やカメラなどのセンサなどから検出する。そして、制御部2は、全方位の情報が必要な状況であると判断した場合に、投射光L1を全方位に射出させる第3制御を実行し、全方位の情報が必要な状況でないと判断した場合には、第3制御を実行しない。これにより、制御部2は、全方位の情報が必要な状況では全方位の情報を好適に取得し、全方位の情報が必要でない状況では、計測対象とする特定方位においてフレームレートを実質的に向上させることができる。 Then, the control unit 2, for example, the current position information of the vehicle output by the current position acquisition unit 14 and the map information output by the map information acquisition unit 15 (here, the feature information regarding the positions of the features around the vehicle). Based on the above, it is determined whether or not the information of all directions is necessary. In addition, the control part 2 detects the presence or absence of other vehicles around the vehicle from, for example, sensors such as inter-vehicle communication and a camera. When the control unit 2 determines that the omnidirectional information is necessary, the control unit 2 executes the third control for emitting the projection light L1 in all the directions, and determines that the omnidirectional information is not necessary. In such a case, the third control is not executed. As a result, the control unit 2 suitably acquires omnidirectional information in a situation where omnidirectional information is required, and in a situation where omnidirectional information is not required, the control unit 2 substantially sets the frame rate in the specific azimuth to be measured. Can be improved.
 なお、第1実施例の変形例1~変形例5は、第2実施例に対しても好適に適用される。 Note that Modifications 1 to 5 of the first embodiment are also preferably applied to the second embodiment.
 1 光源部
 2 制御部
 3 受光部
 4 MEMSミラー
 5 光学部材
 10 計測対象物
 11 モータ
 12 モータ制御部
 13 ユーザインタフェース
 14 現在位置取得部
 15 地図情報取得部
 16 車両挙動取得部
 100、100A 計測装置
DESCRIPTION OF SYMBOLS 1 Light source part 2 Control part 3 Light-receiving part 4 MEMS mirror 5 Optical member 10 Measurement object 11 Motor 12 Motor control part 13 User interface 14 Current position acquisition part 15 Map information acquisition part 16 Vehicle behavior acquisition part 100, 100A Measuring device

Claims (12)

  1.  照射方向を変えながら電磁波を照射する照射部と、
     1周期内における第1期間に前記照射部から照射された前記電磁波が照射される対象物上の第1領域と、第2期間に前記照射部から照射された前記電磁波が照射される前記対象物上の領域である第2領域との少なくとも一部が重なるように、前記第2期間に前記照射部によって照射された電磁波を反射する反射部と、
     を有する計測装置。
    An irradiator that irradiates electromagnetic waves while changing the irradiation direction;
    A first region on an object irradiated with the electromagnetic wave irradiated from the irradiation unit in a first period within one cycle, and the object irradiated with the electromagnetic wave irradiated from the irradiation unit in a second period. A reflection part that reflects the electromagnetic wave irradiated by the irradiation part in the second period so that at least a part of the second area that is the upper area overlaps;
    Measuring device.
  2.  前記照射部によって照射された電磁波による走査面に含まれる対象物によって反射された前記電磁波を受信可能な受信部を更に有する、請求項1に記載の計測装置。 The measuring device according to claim 1, further comprising a receiving unit capable of receiving the electromagnetic wave reflected by an object included in a scanning surface by the electromagnetic wave irradiated by the irradiation unit.
  3.  前記反射部は、第1反射部及び第2反射部を有し、
     前記照射部は、前記第1期間では前記第1反射部に前記電磁波を照射し、前記第2期間では前記2反射部に前記電磁波を照射する可動反射部を有する、請求項1または2に記載の計測装置。
    The reflection part has a first reflection part and a second reflection part,
    The said irradiation part has a movable reflection part which irradiates the said electromagnetic wave to the said 1st reflection part in the said 1st period, and irradiates the said electromagnetic wave to the said 2 reflection part in the said 2nd period. Measuring device.
  4.  前記第1期間に照射される電磁波及び前記第2期間に照射される電磁波は前記第1領域及び前記第2領域の少なくとも一部が重なるような仰俯角で照射される、請求項1~3のいずれか一項に記載の計測装置。 The electromagnetic wave irradiated in the first period and the electromagnetic wave irradiated in the second period are irradiated at an elevation angle such that at least a part of the first region and the second region overlap. The measuring device according to any one of the above.
  5.  前記第2反射部により反射された電磁波は、前記対象物が所定距離以上はなれている場合、前記第1反射部により反射された電磁波と同一の仰俯角により射出される、請求項1~4のいずれか一項に記載の計測装置。 The electromagnetic wave reflected by the second reflecting part is emitted at the same elevation angle as the electromagnetic wave reflected by the first reflecting part when the object is separated by a predetermined distance or more. The measuring device according to any one of the above.
  6.  前記第2反射部は、第1反射面と第2反射面とを有し、
     前記第1反射面は、前記第2期間において前記照射部により照射された電磁波を前記第2反射面に反射し、
     前記第2反射面は、前記第1反射面から反射された前記電磁波を、前記第1領域及び前記第2領域の少なくとも一部が重なるように反射する、請求項3~5のいずれか一項に記載の計測装置。
    The second reflecting portion has a first reflecting surface and a second reflecting surface,
    The first reflection surface reflects the electromagnetic wave irradiated by the irradiation unit in the second period to the second reflection surface,
    6. The second reflecting surface according to claim 3, wherein the second reflecting surface reflects the electromagnetic wave reflected from the first reflecting surface so that at least a part of the first region and the second region overlap each other. The measuring device described in 1.
  7.  前記第1反射部と第1屈折面とを有する第1光学部材と、
     前記第2反射部と第2屈折面とを有する第2光学部材と、をさらに有し、
     前記第1期間では、前記電磁波は、前記第1反射面に反射される前後において前記第1屈折面を通過し、前記第2期間では、前記電磁波は、前記第2反射面に反射される前後において前記第2屈折面を通過する、請求項3~6のいずれか一項に記載の計測装置。
    A first optical member having the first reflecting portion and a first refractive surface;
    A second optical member having the second reflecting portion and a second refracting surface;
    In the first period, the electromagnetic wave passes through the first refracting surface before and after being reflected by the first reflecting surface, and in the second period, the electromagnetic wave is reflected by the second reflecting surface. 7. The measuring device according to claim 3, wherein the measuring device passes through the second refracting surface.
  8.  前記1周期内における第1期間及び第2期間を変更するように、前記反射部を動かす調整機構をさらに備える、請求項1~7のいずれか一項に記載の計測装置。 The measuring apparatus according to any one of claims 1 to 7, further comprising an adjustment mechanism that moves the reflecting section so as to change the first period and the second period in the one cycle.
  9.  前記第1電磁波及び前記第2電磁波が外部に照射される照射範囲を決定する決定部をさらに備え、
     前記調整機構は、前記決定部が決定した前記照射範囲に前記第1電磁波及び前記第2電磁波が照射されるように、前記反射部を動かす、請求項8に記載の計測装置。
    A determination unit for determining an irradiation range in which the first electromagnetic wave and the second electromagnetic wave are irradiated to the outside;
    The measurement device according to claim 8, wherein the adjustment mechanism moves the reflection unit so that the first electromagnetic wave and the second electromagnetic wave are irradiated to the irradiation range determined by the determination unit.
  10.  前記決定部は、外部入力に基づき前記照射範囲を決定する、又は、前記計測装置が搭載された移動体の挙動情報若しくは前記移動体周辺の地物に関する地物情報に基づき前記照射範囲を決定する、請求項9に記載の計測装置。 The determining unit determines the irradiation range based on an external input, or determines the irradiation range based on behavior information of a moving body on which the measurement device is mounted or on feature information about a feature around the moving body. The measuring device according to claim 9.
  11.  前記反射部は、前記照射部から前記所定方向に延びる軸を回転軸として回転自在であり、
     前記調整機構は、前記照射方向の変化に応じて、前記反射部を回転させる、請求項8に記載の計測装置。
    The reflection part is rotatable about an axis extending from the irradiation part in the predetermined direction as a rotation axis,
    The measurement apparatus according to claim 8, wherein the adjustment mechanism rotates the reflection unit according to a change in the irradiation direction.
  12.  光源から出射された電磁波を照射する照射部と、
     第1期間に照射された前記電磁波を反射する第1反射部と、
     第2期間に照射された前記電磁波を反射する第2反射部と、
    を有し、
     前記第2反射部は、前記第1反射部が前記電磁波を反射する範囲と前記第2反射部が前記電磁波を反射する範囲との少なくとも一部が重なるように前記電磁波を反射する、計測装置。
    An irradiation unit for irradiating electromagnetic waves emitted from the light source;
    A first reflecting part for reflecting the electromagnetic wave irradiated in the first period;
    A second reflecting portion for reflecting the electromagnetic wave irradiated in the second period;
    Have
    The measuring device, wherein the second reflection unit reflects the electromagnetic wave so that at least a part of a range in which the first reflection unit reflects the electromagnetic wave and a range in which the second reflection unit reflects the electromagnetic wave overlap.
PCT/JP2018/002510 2017-01-31 2018-01-26 Measurement device WO2018143092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015081 2017-01-31
JP2017-015081 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143092A1 true WO2018143092A1 (en) 2018-08-09

Family

ID=63040699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002510 WO2018143092A1 (en) 2017-01-31 2018-01-26 Measurement device

Country Status (1)

Country Link
WO (1) WO2018143092A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082634A (en) * 1996-02-28 1998-03-31 Mazda Motor Corp Distance-measuring apparatus
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
US20150260843A1 (en) * 2014-03-13 2015-09-17 Pulsedlight, Inc. Lidar optical scanner system
JP2016139306A (en) * 2015-01-28 2016-08-04 株式会社東芝 Axle detection device and axle detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082634A (en) * 1996-02-28 1998-03-31 Mazda Motor Corp Distance-measuring apparatus
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
US20150260843A1 (en) * 2014-03-13 2015-09-17 Pulsedlight, Inc. Lidar optical scanner system
JP2016139306A (en) * 2015-01-28 2016-08-04 株式会社東芝 Axle detection device and axle detection method

Similar Documents

Publication Publication Date Title
US8744741B2 (en) Lidars
EP2940489B1 (en) Object detection device and sensing apparatus
JP2015111090A (en) Object detection device
US11194020B2 (en) Lidar-integrated lamp device for vehicle
US11879998B2 (en) Mirror assembly
JP2005291787A (en) Distance detection device
KR102020037B1 (en) Hybrid LiDAR scanner
EP2762914A1 (en) Object detector
JP2008286565A (en) Body detector
JP6899402B2 (en) Measuring device
JP2005121638A (en) Optoelectronic detection apparatus
JP6246690B2 (en) Moving object, measuring apparatus and measuring method
WO2022110210A1 (en) Laser radar and mobile platform
JP2020177012A (en) Optical apparatus, on-board system, and movement apparatus
WO2018143092A1 (en) Measurement device
EP2113790A1 (en) Improvements in LIDARs
US11561288B2 (en) Optical apparatus, on-board system, and movement apparatus
JP6676974B2 (en) Object detection device
WO2018173589A1 (en) Distance measurement device and movement device
JP7427487B2 (en) Optical devices, in-vehicle systems, and mobile devices
CN217425670U (en) Laser radar device
CN219831378U (en) Laser radar and carrier
JP6870456B2 (en) Laser scanning device
JP6812776B2 (en) Distance measurement sensor
JP2022103971A (en) Optical scanning device and rangefinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP