WO2018143017A1 - Liquid crystal element and production method therefor, and display device - Google Patents

Liquid crystal element and production method therefor, and display device Download PDF

Info

Publication number
WO2018143017A1
WO2018143017A1 PCT/JP2018/002007 JP2018002007W WO2018143017A1 WO 2018143017 A1 WO2018143017 A1 WO 2018143017A1 JP 2018002007 W JP2018002007 W JP 2018002007W WO 2018143017 A1 WO2018143017 A1 WO 2018143017A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
compound
polymer
aligning agent
Prior art date
Application number
PCT/JP2018/002007
Other languages
French (fr)
Japanese (ja)
Inventor
幸志 樫下
内山 克博
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2018566077A priority Critical patent/JP6766894B2/en
Priority to CN201880006576.5A priority patent/CN110168439B/en
Publication of WO2018143017A1 publication Critical patent/WO2018143017A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the present disclosure relates to a liquid crystal element, a manufacturing method thereof, and a display device.
  • a polymer-dispersed liquid crystal element in which a liquid crystal layer made of a composite material of a liquid crystal and a polymer is disposed between a pair of film bases on which transparent electrodes are formed has been known in recent years. Therefore, it has been proposed to use such a polymer dispersed liquid crystal element as a light control element (see, for example, Patent Document 1 and Patent Document 2).
  • the light control elements of Patent Document 1 and Patent Document 2 exhibit a light control function by changing the transparency by switching between voltage application and voltage non-application of the transparent electrode.
  • Known polymer-dispersed liquid crystals include PDLC (Polymer Dispersed Liquid Crystal) and PNLC (Polymer Network Liquid Cristal).
  • Patent Document 3 proposes a display device in which a liquid crystal display panel is arranged on the back of a transparent display made of organic EL elements. In this display device, it has been proposed to control the light transmittance by controlling the voltage applied to the liquid crystal display panel, thereby improving the visibility of the display on the transparent display.
  • Patent Document 4 discloses a reverse liquid crystal element in which light is transmitted and transparent when no voltage is applied between a pair of electrodes, and light is scattered and non-transparent when a voltage is applied. It is disclosed.
  • the reverse type liquid crystal element described in Patent Document 4 has a polyimide film as an alignment film for vertically aligning liquid crystals, and the alignment state of liquid crystal molecules in the liquid crystal layer is controlled by this polyimide film.
  • the dimmer element Since the dimmer element is assumed to be used for outdoor use, it is required to have excellent weather resistance. In addition, the dimmer element is assumed to be used in various environments as its usage is expanded, and therefore, it is required to have excellent high temperature and high humidity resistance.
  • the conventional reverse type liquid crystal element having an alignment film for vertically aligning the liquid crystal has insufficient weather resistance, and when exposed to a high-temperature and high-humidity environment, the alignment film is easily peeled off and has high-temperature and high-humidity resistance. not enough. Therefore, development of a liquid crystal element having good light transmission characteristics and light scattering characteristics, and also having high humidity and high temperature resistance and good weather resistance is required.
  • the present disclosure has been made in view of the above problems, and provides a liquid crystal device that has high temperature and high humidity resistance and excellent adhesion to a substrate, excellent weather resistance, and excellent light transmission characteristics and light scattering characteristics.
  • the main purpose is to do.
  • This disclosure employs the following means in order to solve the above problems.
  • a liquid crystal composition comprising a pair of opposed substrates, electrodes arranged on opposite surfaces of the pair of substrates, and a liquid crystal and a polymerizable compound arranged between the pair of substrates.
  • a liquid crystal layer formed by curing an object, and a liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of substrates, wherein the polymerizable compound is a monofunctional (meth) acrylate compound, Including at least one selected from the group consisting of a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrene compound, and the liquid crystal alignment film is formed using a liquid crystal alignment agent including a polymer component,
  • the liquid crystal aligning agent has a content ratio of a structural unit derived from a monomer having at least one structure selected from the group consisting of the following (a) to (e) in the polymer component:
  • a liquid crystal device which is 10 mol% or less based on the total amount of all structural units of the poly
  • A an alkyl group or alkoxy group having 8 to 22 carbon atoms;
  • B a C6-C18 fluoroalkyl group or fluoroalkoxy group.
  • C A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
  • a display device comprising the liquid crystal element according to the above [1] and a transparent display that is transparent in a non-display state.
  • a liquid crystal device comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of base materials arranged so that electrodes provided on the base material faces each other
  • a liquid crystal aligning agent for forming a liquid crystal alignment film wherein the polymer component is a structural unit derived from a monomer having at least one structure selected from the group consisting of (a) to (e).
  • the liquid crystal aligning agent whose content rate is 10 mol% or less with respect to the total amount of all the structural units of the said polymer component, and contains at least 1 type of compound chosen from the group which consists of a silane compound and polysiloxane.
  • a liquid crystal element comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of base materials arranged so that electrodes provided on the base material surfaces face each other.
  • a method of forming a liquid crystal alignment film by applying a liquid crystal aligning agent on at least one electrode arrangement surface of the pair of base materials, and forming the pair of base materials after forming the liquid crystal alignment film.
  • the functional compound includes at least one selected from the group consisting of a monofunctional (meth) acrylate compound, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrene compound, and the liquid crystal aligning agent is contained in the polymer component.
  • the content ratio of the structural unit derived from the monomer having at least one structure selected from the group consisting of the above (a) to (e) is 10 mol with respect to the total amount of all the structural units of the polymer component. %, And at least one compound selected from the group consisting of silane compounds and polysiloxanes.
  • a liquid crystal element having high resistance to high temperature and high humidity, excellent adhesion to a substrate, and excellent weather resistance can be obtained.
  • a liquid crystal element having excellent light transmission characteristics and light scattering characteristics can be obtained.
  • the liquid crystal element 10 of the present embodiment includes a pair of base materials including a first base material 11 and a second base material 12, and a first base material 11 and a second base material 12. And a liquid crystal layer 13 disposed.
  • the liquid crystal layer 13 is a polymer-dispersed liquid crystal layer that is a polymer / liquid crystal composite material layer having a polymer matrix and a liquid crystal.
  • a polymer-dispersed liquid crystal polymer dispersed liquid crystal in which a polymer network is formed in the layer (PDLC).
  • the liquid crystal element 10 is a dimming element that switches between a transmissive state that transmits light and a non-transmissive state that scatters light by controlling the orientation of liquid crystal molecules present in the polymer network with an electric field.
  • the first substrate 11 and the second substrate 12 are transparent substrates made of a polymer material.
  • the polymer material constituting the substrate include silicon, polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polypropylene, polyvinyl chloride, aromatic polyamide, polyamideimide, polyimide, triacetyl cellulose (TAC), Examples include materials such as polymethyl methacrylate.
  • the 1st base material 11 and the 2nd base material 12 are good also as a glass substrate, in order to achieve thickness reduction and weight reduction of a liquid crystal element, it is especially preferable that it is a plastic substrate.
  • Transparent electrodes 16 and 17 are respectively arranged on surfaces of the first base material 12 and the second base material 12 that face each other, and an electrode pair is constructed by the transparent electrodes 16 and 17.
  • the transparent electrodes 16 and 17 are transparent conductive films, for example, a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), indium oxide-tin oxide (In 2 O 3 —SnO 2 ).
  • An ITO film made of or a film made of a carbon material.
  • the transparent electrodes 16 and 17 may have a predetermined pattern such as a band shape or a comb shape.
  • the liquid crystal alignment films 14 and 15 are formed on the electrode arrangement surfaces of the first base material 11 and the second base material 12, respectively.
  • the liquid crystal alignment films 14 and 15 are organic thin films that regulate the alignment orientation of liquid crystal molecules in the liquid crystal layer 13 and are formed using a polymer composition containing a polymer and a solvent.
  • the liquid crystal alignment films 14 and 15 may be provided on at least one of the pair of substrates, but are preferably provided on both substrates from the viewpoint of alignment stability.
  • the liquid crystal layer 13 has a liquid crystal composition disposed in a space surrounded by a pair of base materials and a sealing agent (not shown) disposed so as to surround the outer edge portion of the electrode placement surface between the pair of base materials. It is formed by curing the liquid crystal composition.
  • the liquid crystal element 10 does not include a polarizing plate on the outer surfaces of the first base material 11 and the second base material 12. Therefore, it is excellent in that light absorption loss is small and light utilization efficiency is high.
  • FIG. 2A and 2B are diagrams for explaining the function of the liquid crystal element 10.
  • FIG. 2A shows a state in which no voltage is applied between the transparent electrodes 16 and 17, and
  • FIG. 2B shows a state between the transparent electrodes 16 and 17. The state where the voltage is applied is shown.
  • the liquid crystal element 10 is a reverse PDLC, and in a state where no voltage is applied between the transparent electrodes 16 and 17, incident light is transmitted from one of the pair of substrates to the other to be transparent, and the transparent electrodes 16 and 17. In a state where a voltage is applied between them, the alignment state of the liquid crystal changes, so that incident light is scattered and becomes non-transparent.
  • the liquid crystal in the liquid crystal layer 13 is twisted in the major axis direction (for example, 270 ° STN alignment or 90 ° TN alignment) when no voltage is applied between the electrodes.
  • the twist is eliminated by applying a voltage.
  • the alignment state of the liquid crystal changes, and the liquid crystal element 10 exhibits a dimming function.
  • the liquid crystal element 10 has, for example, a film shape or a plate shape.
  • the liquid crystal element 10 may change the light transmittance according to the applied voltage. Note that the alignment state of the liquid crystal when no voltage is applied is not limited to the twisted alignment but may be a homogeneous alignment.
  • the liquid crystal composition includes a liquid crystal and a polymerizable compound.
  • liquid crystal examples include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable. Further, a cholesteric liquid crystal, a chiral agent, a ferroelectric liquid crystal, or the like may be added to these liquid crystals.
  • the polymerizable compound is preferably a compound exhibiting radical polymerizability, and is at least selected from the group consisting of monofunctional (meth) acrylate compounds, polyfunctional (meth) acrylate compounds, polyfunctional thiol compounds, and styrene compounds. It is more preferable to include a kind of compound (hereinafter also referred to as “specific polymerizable compound”), and it is particularly preferable to be a polyfunctional (meth) acrylate compound.
  • “(meth) acrylate” means containing acrylate and methacrylate.
  • polymerizable liquid crystal compound a polymerizable compound exhibiting optical anisotropy
  • examples of the polymerizable liquid crystal compound include ULC-001, ULC-001-K1, ULC-008, ULC-011 (manufactured by DIC Corporation), RM257, RM8 (manufactured by Merck), and the like. It is done.
  • a liquid crystal material As a combination of a liquid crystal material and a polymerizable liquid crystal compound, MLC6080 (manufactured by Merck & Co., Inc.), a liquid crystal material, has almost the same refractive index as ULC-001-K1, which is a polymerizable liquid crystal compound, and has high light transmission when no voltage is applied This is preferable because it indicates the state.
  • the content of the polymerizable compound (the total amount when two or more are included) is preferably 1 to 95% by mass with respect to the total amount of the liquid crystal and the polymerizable compound in the liquid crystal composition. More preferably, the content is set to ⁇ 90 mass%, and more preferably 10 to 90 mass%.
  • the content ratio of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 1 to 95% by mass, more preferably 3 to 90% by mass with respect to the total amount of the polymerizable liquid crystal compound and the liquid crystal. More preferably, the content is 5 to 90% by mass.
  • the liquid crystal composition may contain other components other than the liquid crystal and the polymerizable compound.
  • a polymerization initiator is contained as another component. It is preferable to do.
  • the polymerization initiator contained in the liquid crystal composition is a compound (photopolymerization initiator) capable of initiating polymerization of a polymerizable compound upon irradiation with radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray. Is preferred.
  • the photopolymerization initiator is preferably a radical polymerization initiator capable of generating radicals by light irradiation.
  • the content ratio of the polymerization initiator in the liquid crystal composition is a component other than the solvent contained in the liquid crystal composition from the viewpoint of promptly performing a curing reaction and suppressing a decrease in curability due to addition of an excessive amount. It is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 7% by mass with respect to the total mass of (solid content).
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • a dye may be used as the other component blended in the liquid crystal composition.
  • the liquid crystal element 10 in which the dye is dispersed in the liquid crystal layer 13 can be obtained.
  • the change in light shielding property / light transmittance due to switching between application / non-application of voltage is clear, and It is preferable in that it has good durability when it is repeatedly driven.
  • a dichroic dye can be preferably used as the dye.
  • the dichroic dye to be used is not particularly limited, and known compounds can be used as appropriate, and examples thereof include polyiodine, azo compounds, anthraquinone compounds, dioxazine compounds and the like.
  • dye may be used individually by 1 type and may combine 2 or more types.
  • the blending ratio of the dye (the total amount when two or more are blended) is preferably 0.05 to 5% by mass relative to the total mass of the solid content in the liquid crystal composition. More preferably, the content is 1 to 3% by mass.
  • the liquid crystal composition is prepared by mixing a liquid crystal, a polymerizable compound, and other components added as necessary.
  • the treatment for mixing these components may be performed at room temperature or while raising the temperature. It is also possible to dissolve each component in a suitable organic solvent and then remove the solvent, for example, by distillation.
  • the liquid crystal aligning agent contains at least one compound selected from the group consisting of a silane compound and polysiloxane (hereinafter also referred to as “silicon-containing compound”). Among these, it is particularly preferable to contain polysiloxane in that the effect of improving the weather resistance of the liquid crystal element 10 is higher and the post-baking temperature can be further lowered. Moreover, it is preferable to contain a silane compound at the point which can make adhesiveness with respect to a base material higher.
  • Polysiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound.
  • hydrolyzable silane compound examples include tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; alkyl groups or aryl groups such as methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane.
  • alkoxysilane compounds Containing alkoxysilane compounds; Sulfur-containing alkoxysilane compounds such as 3-mercaptopropyltriethoxysilane and mercaptomethyltriethoxysilane; Glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Epoxy group-containing alkoxysilane compounds such as xylpropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane; Unsaturated bond-containing alkoxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane, 3- (me
  • the above hydrolysis / condensation reaction is carried out by reacting one or more of the above hydrolyzable silane compounds with water, preferably in the presence of an appropriate catalyst and an organic solvent.
  • the amount of water used is preferably 1 to 30 mol with respect to 1 mol of the hydrolyzable silane compound (total amount).
  • the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like.
  • the amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and should be set appropriately. For example, the amount is preferably 0.01 to 3 times the total amount of the silane compound.
  • the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols, and the like. Among these, it is preferable to use a water-insoluble or slightly water-soluble organic solvent.
  • the organic solvent is used in an amount of preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compounds used in the reaction.
  • the above hydrolysis / condensation reaction is preferably carried out by heating with, for example, an oil bath. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours.
  • the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain the target polysiloxane.
  • the method for synthesizing the polysiloxane is not limited to the hydrolysis / condensation reaction described above.
  • the polysiloxane may be synthesized by a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
  • the liquid crystal aligning agent may contain a polysiloxane having a functional group such as a photo-alignment group or a pretilt angle imparting group in the side chain.
  • the polysiloxane having such a functional group is obtained by, for example, synthesizing a polysiloxane having an epoxy group in a side chain by polymerization using an epoxy group-containing hydrolyzable silane compound as at least a part of the raw material, It can be obtained by reacting a polysiloxane having a functional group with a carboxylic acid having a functional group.
  • a polymerization method using a hydrolyzable silane compound having a functional group as a monomer may be employed.
  • the reaction between the epoxy group-containing polysiloxane and the carboxylic acid is preferably performed in the presence of a catalyst and an organic solvent.
  • the proportion of the carboxylic acid used is preferably 5 mol% or more, more preferably 10 to 80 mol%, based on the epoxy group of the epoxy group-containing polysiloxane.
  • a catalyst a well-known compound etc. can be used as what is called a hardening accelerator which accelerates
  • the ratio of the catalyst used is preferably 100 parts by mass or less with respect to 100 parts by mass of the epoxy group-containing polysiloxane.
  • the organic solvent to be used include 2-butanone, 2-hexanone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and butyl acetate.
  • the organic solvent is preferably used in such a ratio that the solid content concentration is 5 to 50% by mass.
  • the reaction temperature in the above reaction is preferably 0 to 200 ° C., and the reaction time is preferably 0.1 to 50 hours. After the completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain a polysiloxane having a functional group.
  • the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography is preferably 500 to 1,000,000, more preferably 1,000 to 100,000. Further, it is preferably 1,000 to 50,000.
  • polysiloxane may be used individually by 1 type and may be used in combination of 2 or more type.
  • the silane compound contained in the liquid crystal aligning agent is an organosilicon compound having a carbon-silicon bond, and specific examples thereof include hydrolyzable silane compounds exemplified as silane compounds used for the synthesis of polysiloxane.
  • the silane compound has an alkoxysilyl group (—Si (OR) r R 3-r (R is an alkyl group, and r is an integer of 1 to 3. A plurality of R may be the same or different from each other). )), An alkoxysilane compound having at least one functional group selected from the group consisting of an epoxy group, an amino group and a thiol group is more preferable, and an epoxy group-containing alkoxysilane compound is particularly preferable.
  • a silane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the silicon-containing compound in the liquid crystal aligning agent can be appropriately selected according to the compound to be used.
  • the content of the polysiloxane in the liquid crystal aligning agent is such that the polymer component in the liquid crystal aligning agent has a sufficiently high weather resistance from the viewpoint of sufficiently increasing the weather resistance of the liquid crystal element 10 to be obtained. It is preferable to set it as 1 mass% or more with respect to a total amount, It is more preferable to set it as 2 mass% or more, It is further more preferable to set it as 5 mass% or more.
  • the upper limit value of the polysiloxane content is preferably 97% by mass or less, and more preferably 90% by mass or less.
  • the blending ratio is the weight in the liquid crystal aligning agent from the viewpoint of sufficiently obtaining the effect of improving the adhesion to the substrate and the weather resistance of the liquid crystal element 10.
  • the total amount is preferably 0.5 parts by mass or more, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the combined components.
  • the liquid crystal aligning agent of the present embodiment includes at least one side chain structure (hereinafter referred to as “specific group”) selected from the group consisting of the following (a) to (e) in the polymer component contained in the liquid crystal aligning agent.
  • the content ratio of the structural unit derived from the monomer having) is 10 mol% or less with respect to the total amount of all the structural units of the polymer component.
  • B a C6-C18 fluoroalkyl group or fluoroalkoxy group.
  • (C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
  • (D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group.
  • Monovalent group a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
  • the “side chain structure” in the “monomer having a side chain structure” means that the main skeleton is the portion introduced into the main chain of the polymer in the structural formula of the monomer. In some cases, it means a partial structure bonded to the main skeleton directly or via a linking group. That is, the “side chain structure” possessed by the monomer is introduced into the side chain of the polymer obtained by the polymerization when the monomer is used for polymerization.
  • the “main chain” of the polymer refers to a “trunk” portion composed of the longest chain of atoms in the polymer. It is permissible for this “trunk” part to contain a ring structure.
  • the “side chain” of the polymer refers to a portion branched from the “trunk” of the polymer. Therefore, for example, in the case of a diamine used for the synthesis of polyamic acid or polyimide, a skeleton containing two primary amino groups is a main skeleton, and a partial structure bonded to the main skeleton directly or via a linking group is “side”. Corresponds to “chain structure”. In the side chain structure having a cyano group, the liquid crystal molecules are horizontally aligned by this side chain structure. When the liquid crystal molecules in the liquid crystal layer 13 are vertically aligned, the specific group preferably has no cyano group.
  • the content of the structural unit derived from the monomer having a specific group is 10 mol% or less with respect to the total amount of all the structural units of the polymer component” means that the liquid crystal alignment agent is a polymer of two or more types. Is included, it means the total number of mole parts obtained by multiplying the number of moles of the structural unit derived from the monomer having a specific group and the mass mixing ratio of the polymer.
  • the liquid crystal aligning agent contains two types of polymers, polymer 1 and polymer 2, at a mass ratio of 60:40, the number of structural units derived from the monomer having a specific group in polymer 1 Is 0 mol% and the number of structural units derived from the monomer having the specific group in the polymer 2 is 20 mol%, the “structure derived from the monomer having the specific group” of this liquid crystal aligning agent
  • the requirement “the content ratio of the structural unit derived from the monomer having the specific group is 10 mol% or less with respect to the total amount of all the structural units of the polymer component” is satisfied. This requirement is also satisfied when the polymer component does not have a specific group.
  • the blending ratio of the polymer 1 and the polymer 2 is a mass ratio of 20:80 with respect to the polymer component composed of the polymer 1 and the polymer 2, the “single group having a specific group” of the liquid crystal aligning agent
  • Specific examples of the specific group include (a) alkyl group and alkoxy group such as n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group.
  • a linear alkyl group such as n-heptadecyl group and n-octadecyl group and a linear alkoxy group in which these linear alkyl group and an oxygen atom are bonded;
  • the fluoroalkyl group and the fluoroalkoxy group in (b) For example, a linear fluoroalkyl group and a fluoroalkoxy group in which at least one hydrogen atom of the alkyl group and alkoxy group in the above (a) is substituted with a fluorine atom;
  • a group in (c) and a group in (d) For example, the group represented by the following formula (5); and the group (e) include, for example, a cholestanyl group, a cholesteryl group, a lanostannyl group, and the like.
  • a 1 to A 3 each independently represents a phenylene group or a cyclohexylene group, and may have a substituent in the ring portion.
  • R 21 represents a hydrogen atom or a carbon number.
  • K, m, and n are integers of 0 or more that satisfy 1 ⁇ k + m + n ⁇ 4,
  • R 21 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a cyano group having 1 to 20 carbon atoms. Contains alkyl group, 1-20 carbon atoms (In the case of a cyano group-containing alkoxy group, a fluorine atom or a cyano group, k + m + n ⁇ 2 is satisfied. “*” Indicates a bond.)
  • Specific examples of the group represented by the above formula (5) include, but are not limited to, a group represented by the following formula.
  • substituents that A 1 to A 3 may have in the ring portion include a fluorine atom, an alkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms.
  • k + m + n is preferably 2 to 4.
  • R 21 is preferably 3 or more carbon atoms, more preferably 4 or more, more preferably 7 or more. (In the formula, “*” indicates a bond.)
  • the content ratio of the structural unit derived from the monomer having a specific group is selected from the viewpoint of obtaining a liquid crystal element having higher weather resistance and high temperature and high humidity resistance. It is preferably 8 mol% or less, more preferably 5 mol or less, and even more preferably 2 mol or less, based on the total amount of all structural units.
  • the above (a) to (e) when at least a part of the partial structures (a) to (e) constitutes a part of the photoalignable group shown below, or the above (a) to (e) In the case where the partial structure is bonded to the photoalignable group, the above (a) to (e) also correspond to the specific group.
  • the polymer component contained in the liquid crystal aligning agent may be only the above-described polysiloxane, but may be a polymer different from polysiloxane (hereinafter also referred to as “other polymer”), It may be a mixture with other polymers.
  • the liquid crystal aligning agent contains the other polymer shown below as the polymer component.
  • the main skeleton of the other polymer is not particularly limited.
  • the main skeleton is mentioned.
  • it is at least one polymer selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and poly (meth) acrylate from the viewpoint of heat resistance, mechanical strength, affinity with liquid crystal, and the like. preferable.
  • only 1 type may be sufficient as another polymer, and 2 or more types may be sufficient as it.
  • (Meth) acrylate is meant to include acrylate and methacrylate.
  • the blending ratio of the other polymer is preferably 1 to 95% by mass with respect to the total amount of the polymer components in the liquid crystal aligning agent, and 5 to 95% by mass. %, More preferably 10 to 90% by mass.
  • another polymer can be used individually by 1 type or in combination of 2 or more types.
  • the liquid crystal aligning agent used for formation of the liquid crystal aligning films 14 and 15 contains the polymer which has a photo-alignment group.
  • the “photo-alignable group” means a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, a photolysis reaction, or a photofleece rearrangement reaction by light irradiation.
  • the photo-alignment group examples include an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof as a basic skeleton, or a chalcone containing a chalcone or a derivative thereof as a basic skeleton.
  • a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton a coumarin-containing group containing coumarin or a derivative thereof as a basic skeleton, and a cyclobutane-containing structure containing cyclobutane or a derivative thereof as a basic skeleton.
  • a cinnamic acid structure-containing group is preferable in terms of high sensitivity to light, and examples thereof include a group having a partial structure represented by the following formula (1).
  • R represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a fluoroalkyl group having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom.
  • a fluoroalkoxy group having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom, or a fluorine atom, a is an integer of 0 to 4.
  • a is 2 or more, a plurality of R May be the same or different. “*” Represents a bond.
  • one of the two bonds “*” is preferably bonded to a group represented by the following formula (4).
  • the light transmittance and light scattering property of the obtained liquid crystal element can be improved, which is preferable.
  • R 11 is a phenylene group, a biphenylene group, a terphenylene group, a cyclohexylene group, or a bicyclohexylene group, and an alkyl group having 1 to 20 carbon atoms or 1 to 20 carbon atoms in the ring portion.
  • Diyl group oxygen atom, sulfur atom, —CH ⁇ CH—, —NH—, —COO— or —OCO—, and when bonded to the carbonyl group in formula (1), a single bond, carbon Numbers 1-3 Kanjiiru group, an oxygen atom, a sulfur atom or -NH-. "*" Indicates a bond.)
  • the photo-alignment group may be contained in polysiloxane, but may be contained in a polymer different from polysiloxane. From the viewpoint of ensuring the reliability and weather resistance of the liquid crystal element 10, a polysiloxane having a photoalignable group can be preferably used as the polymer having a photoalignable group.
  • the method for synthesizing the polymer having a photoalignable group is not particularly limited, and may be appropriately selected according to the main skeleton of the polymer.
  • the method (2) is preferable in that the introduction efficiency into the side chain is high.
  • the content ratio of the polymer having a photo-alignable group is determined using the liquid crystal aligning agent. From the viewpoint of imparting sufficient alignment ability to the formed coating film by irradiation, it is preferably 1% by mass or more with respect to the total amount of the polymer components in the liquid crystal aligning agent, and is 5 to 99% by mass. More preferably.
  • a liquid crystal aligning agent contains the compound (henceforth a crosslinking agent) which has a crosslinkable group as another component.
  • the crosslinkable group is a group capable of forming a covalent bond between the same or different molecules by light or heat.
  • a (meth) acryloyl group a group having a vinyl group (alkenyl group, vinylphenyl group, etc.), an ethynyl group, Examples thereof include an epoxy group (oxiranyl group, oxetanyl group), a carboxyl group, and a (protected) isocyanate group.
  • the number of crosslinkable groups possessed by the crosslinking agent may be one or more. In view of sufficiently increasing the reliability of the liquid crystal element, the number is preferably 2 or more, and more preferably 2 to 6.
  • crosslinking agent examples include allyl group-containing compounds such as diallyl phthalate; Ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene glycol tri (meth) acrylate, polyether (meta ) Acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol di
  • the blending ratio of the cross-linking agent is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer component used for the preparation of the liquid crystal aligning agent, from the viewpoint of sufficiently obtaining the effect of improving the liquid crystal alignment property and electrical characteristics.
  • the amount is more preferably 1 to 40 parts by mass, still more preferably 5 to 30 parts by mass.
  • a crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid crystal aligning agent preferably contains an antioxidant (also referred to as a polymerization inhibitor) as another component.
  • the antioxidant has a function of invalidating radicals and peroxides generated by energy such as ultraviolet rays and heat, and delaying or prohibiting polymerization.
  • the inclusion of such an antioxidant in the alignment film is preferable in that the transparency of the liquid crystal element when no voltage is applied can be improved. This effect is presumed to be due to the presence of the antioxidant suppressing the polymerization reaction of the polymerizable compound in the liquid crystal composition existing in the vicinity of the alignment film surface and suppressing the decrease in the alignment of the liquid crystal. Is done.
  • the antioxidant include, for example, a compound having an amine structure (preferably a hindered amine structure), a compound having a phenol structure (preferably a hindered phenol structure), and a compound having an alkyl phosphate structure (phosphorous antioxidant). Agent), a compound having a thioether structure (sulfur-based antioxidant), and a mixture thereof (blend-based antioxidant).
  • Preferred examples of the antioxidant include compounds having an amine structure such as ADK STAB LA-52, LA-57, LA-63, LA-68, LA-72, LA-77, LA-81, LA-81, LA-82, LA-87, LA-402, LA-502 (above, manufactured by ADEKA), CHIMASSORB119, CHIMASSORB2020, CHIMASSORB944, TINUVIN622, TINUVIN123, TINUVIN144, TINUVIN765, TINUVIN770, TINUVIN111, TINUVIN79, TINUV3111, TINUV3 Etc .;
  • a compound having a phenol structure for example, ADK STAB AO-20, AO-30, AO-40, AO-50, AO-60, AO-80, AO-330 (above, manufactured by ADEKA), IRGANOX1010 IRGANOX 1035, IRGAOX 1076, IRGANOX 198, IRGANOX 1135, IRGANOX 13
  • Examples of phosphorus antioxidants include ADK STAB PEP-4C, PEP-8, PEP-36, HP-10, 2112 (above, manufactured by ADEKA), IRGAFOS168, GSY-P101 (above, manufactured by Sakai Chemical Industry), IRGAFOS168 IRGAFOS12, IRGAFOS126, IRGAFOS38, IRGAFOS P-EPQ (above, manufactured by BASF Japan) and the like;
  • Examples of sulfur-based antioxidants include ADK STAB AO-412, AO-503 (above, manufactured by ADEKA), IRGANOX PS 800, IRGANOX PS 802 (above, manufactured by BASF Japan) and the like;
  • Examples of blend antioxidants include ADK STAB A-611, A-612, A-613, AO-37, AO-15, AO-18, 328 (above, manufactured by ADEKA), TINUVIN111, TINUVIN783, TINUVIN 791 (above, manufactured by BASF Japan) and the like can
  • the content of the antioxidant in the liquid crystal aligning agent is preferably 0.01 to 15 parts by mass, more preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the polymer component used for preparing the liquid crystal aligning agent.
  • the amount is 10 parts by mass, and particularly preferably 0.1 to 10 parts by mass.
  • liquid crystal aligning agent examples include metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, and photosensitizers.
  • the blending ratio of these other components can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
  • the liquid crystal aligning agent is prepared as a liquid composition in which a polymer component and components used as necessary are dissolved in a suitable solvent.
  • suitable solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, and N, N-dimethylformamide.
  • the organic solvent used for the preparation of the liquid crystal aligning agent is one of these in order to obtain a liquid crystal aligning film that exhibits good device characteristics even when the post-bake temperature is lowered (for example, 150 ° C. or lower).
  • the compound having a boiling point at atmospheric pressure of 150 ° C. or less is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more based on the total amount of the solvent.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
  • the liquid crystal element 10 includes a step A in which a liquid crystal alignment film 14 and 15 is formed by applying a liquid crystal alignment agent on each electrode arrangement surface of the first base material 11 and the second base material 12, and the liquid crystal alignment films 14 and 15.
  • liquid crystal aligning agent is, for example, a known method such as an offset printing method, a spin coating method, a roll coater method, an ink jet printing method, or a bar coater method on each electrode arrangement surface of the first substrate 11 and the second substrate 12.
  • the coating method is used.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the pre-baking temperature is set according to the type of substrate, but is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower.
  • the lower limit of the pre-bake temperature is preferably 30 ° C or higher, and more preferably 40 ° C or higher.
  • the prebake time is preferably 0.25 to 10 minutes.
  • the firing temperature (post-bake temperature) at this time is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, particularly 110 ° C. or lower, when using a base material made of a polymer material.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 120 minutes.
  • the coating film formed using the liquid crystal aligning agent is subjected to a treatment for imparting liquid crystal alignment ability (alignment treatment).
  • a treatment for imparting liquid crystal alignment ability include a rubbing treatment in which a coating film is rubbed in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton, and a photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation.
  • Step B two base materials having a liquid crystal alignment film are prepared, and a liquid crystal composition layer containing a liquid crystal and a polymerizable compound is provided between the two base materials facing each other so that the liquid crystal alignment films face each other.
  • a liquid crystal cell is manufactured by arranging. Specifically, the peripheral portions of the first base material 11 and the second base material 12 are bonded together with a sealing agent, and the liquid crystal composition is injected and filled into the cell gap defined by the base material surface and the sealing agent, and then injected.
  • a method of sealing the holes after applying a sealing agent to the periphery of one substrate on the liquid crystal alignment film side and further dropping the liquid crystal composition at predetermined locations on the surface of the liquid crystal alignment film, the liquid crystal alignment film
  • the other base material is bonded so as to face each other, and the liquid crystal is spread over the entire surface of the base material, and then the sealing agent is cured (ODF method).
  • ODF method As the sealant, for example, an epoxy resin containing a hardener and aluminum oxide spheres as a spacer can be used.
  • step C the liquid crystal composition is cured by performing at least one treatment selected from heating and light irradiation.
  • the heating temperature for the curing reaction is appropriately selected depending on the type of the polymerizable compound and the liquid crystal to be used.
  • the heating temperature is 40 to 80 ° C.
  • the heating time is preferably 0.5 to 5 minutes.
  • non-polarized ultraviolet rays having a wavelength in the range of 200 to 500 nm can be preferably used as the irradiation light.
  • the amount of light irradiation is preferably 50 to 10,000 mJ / cm 2 , more preferably 100 to 5,000 mJ / cm 2 .
  • the liquid crystal element 10 can be applied to various uses. For example, a building window, an indoor / outdoor partition (partition), a show window, a vehicle (automobile, aircraft, ship, railway, etc.) window, and various indoor and outdoor advertisements. It can be effectively used as various light control elements such as information signs, home appliances, mobile phones, smartphones, various monitors, watches, portable games, personal computers, glasses, sunglasses, medical equipment, furniture, and the like.
  • the liquid crystal element 10 may be used as it is, depending on the thickness, hardness, shape, application, etc. of the element, or may be used by being attached to glass or a transparent resin.
  • a display device of the present disclosure includes the above-described liquid crystal element and a transparent display that is transparent in a non-display state.
  • the display device 20 has a structure in which the liquid crystal element 10 is disposed on the back surface of the transparent display 30, and the liquid crystal element 10 functions as a dimming element, thereby being transparent. The visibility of display on the display 30 changes.
  • the transparent display 30 is, for example, an organic electroluminescence element (organic EL element), and is formed between a pair of glass substrates, an anode electrode and a cathode electrode formed of a transparent electrode material, and the anode electrode and the cathode electrode. A hole transport layer and a light emitting layer.
  • the transparent display 30 is transparent in the non-display state in which no voltage is applied. When a voltage is applied, the pixels to which the voltage is applied emit light, and characters, images, and the like are displayed.
  • the entire surface of the display device 20 is transparent. Therefore, for example, when the display device 20 is applied as a front glass or a rear glass of a show window, it is possible to visually check the products displayed in the showcase and the inside of the store from the outside.
  • a voltage is applied to the transparent display 30 while the liquid crystal element 10 is not applied with a voltage, characters, images, and the like displayed on the transparent display 30 are displayed in a state of being raised on the glass. .
  • the back surface of the transparent display 30 is shielded from light when a voltage is applied to the liquid crystal element 10.
  • a voltage is applied to the liquid crystal element 10.
  • decorativeness can be improved.
  • the light control element 10 may be arranged only in a partial region of the transparent display 30. Or it is good also as a structure which can change the transmittance
  • the weight average molecular weight Mw, the number average molecular weight Mn and the epoxy equivalent of the polymer, the imidation ratio of the polyimide, and the solution viscosity of the polymer solution were measured by the following methods.
  • the required amounts of raw material compounds and polymers used in the following examples were ensured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
  • Mw and Mn are polystyrene equivalent values measured by GPC under the following conditions.
  • Epoxy equivalent The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
  • Imidation ratio [%] (1- (A 1 / (A 2 ⁇ ⁇ ))) ⁇ 100 (1)
  • a 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm
  • a 2 is a peak area derived from other protons
  • is a precursor of a polymer ( It is the number ratio of other protons to one NH group proton in the polyamic acid).
  • Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
  • polymer (PI-1) polyimide having an imidation ratio of about 90%.
  • the obtained polymer (PI-1) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 410 mPa ⁇ s.
  • the use amount Q2) of the monomer having a specific group with respect to the total amount Q1 is 0.25 mol%.
  • Content ratio ⁇ [mol%] (Q2 / Q1) ⁇ 100
  • polyimide hereinafter referred to as polymer (PI-2)
  • the imidation ratio of the obtained polyimide was 55%, and the weight average molecular weight was 48,000.
  • the content ratio ⁇ is 22.6 mol%.
  • polymer (PI-3) a polyimide
  • the content ratio ⁇ is 0 mol%.
  • polymer (PAA-1) polyamic acid
  • PAA-1 polyamic acid
  • the obtained polymer (PAA-1) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 80 mPa ⁇ s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good.
  • the content ratio ⁇ is 0 mol%.
  • polymer (PAA-2) polyamic acid
  • the obtained polymer (PAA-2) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 90 mPa ⁇ s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good.
  • the content ratio ⁇ is 11 mol%.
  • the operation of concentrating the reaction solution and diluting with butyl acetate was repeated twice to distill off triethylamine and water to obtain a polymer solution containing polyorganosiloxane (SEp-1) having an epoxy group.
  • SEp-1 polyorganosiloxane having an epoxy group.
  • the polyorganosiloxane (SEp-1) had an Mw of 11,000 and an epoxy equivalent of 200 g / mol.
  • Siloxane (SEp-2) was obtained as a viscous transparent liquid.
  • This polyorganosiloxane (SEp-2) was analyzed by 1 H-NMR, and it was confirmed that no side reaction of the epoxy group occurred during the reaction.
  • the weight average molecular weight (Mw) of the polyorganosiloxane (SEp-2) obtained in Synthesis Example 6 was 2,200, and the epoxy equivalent was 186 g / mol.
  • the solution temperature was raised to 80 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a polymer (PAc-1) which is an epoxy group-containing polymethacrylate.
  • PAc-1 polymer which is an epoxy group-containing polymethacrylate.
  • finish of reaction computed from the measurement result of solid content concentration of a polymer solution was 99%.
  • Mn of the obtained polymer (PAc-1) was 16,000.
  • Liquid Crystal Composition II MLC6080 manufactured by Merck
  • ULC-001-K1 manufactured by DIC Corporation
  • a polymerizable liquid crystal compound were mixed at a mass ratio of 85:15. 3% by weight of dichroic dye and 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator so as to be 1% by weight and stirring while maintaining at 80 ° C. did.
  • Dichroic dye A mixture of 6.0 parts by mass of the compound (m-1), 2.0 parts by mass of the compound (m-2), and 2.0 parts by mass of the compound (m-3) was used.
  • GBL ⁇ -butyl lactone
  • BC butyl cellosolve
  • liquid crystal aligning agent (A-1) prepared above was applied on the electrode placement surface of a PET film substrate (PET-ITO substrate) having an ITO electrode on the substrate surface using a bar coater, After pre-baking with a hot plate for 1 minute, a coating film (liquid crystal alignment film) having an average film thickness of 0.1 ⁇ m was formed by heating (post-baking) for 30 minutes in an oven at 120 ° C. in which the inside of the chamber was purged with nitrogen. .
  • the coating film was rubbed with a rubbing machine having a roll wrapped with a rayon cloth at a roll rotation speed of 1000 rpm, a stage moving speed of 25 cm / sec, and a hair foot indentation length of 0.4 mm. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then drying was performed in a 100 ° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film. By repeating the same operation, a pair (two) of substrates having a liquid crystal alignment film was prepared. Next, a 6 ⁇ m spacer was applied to the surface of one substrate having the liquid crystal alignment film, and then the liquid crystal composition I prepared above was dropped onto the liquid crystal alignment film surface to which the spacer was applied.
  • This liquid crystal cell was irradiated with ultraviolet rays under the conditions of a wavelength of 365 nm, an ultraviolet intensity of 15 mW / cm 2 , an irradiation time of 15 seconds, and a substrate surface temperature of 20 ° C. using an ultraviolet irradiation device having an ultraviolet light emitting diode as a light source.
  • the product I was cured to obtain a liquid crystal element.
  • ⁇ Evaluation> 1 Evaluation of Light Transparency Transparency when no voltage was applied was evaluated by measuring the haze (HAZE) of the liquid crystal element when no voltage was applied. The measurement was performed using a spectroscopic haze meter (manufactured by Tokyo Denshoku). It means that transparency is so favorable that haze value is low. As a result, in this example, the haze value was 10%, and the transparency when no voltage was applied was excellent. 2. Evaluation of light scattering property The light scattering property at the time of voltage application was evaluated by measuring the (HAZE) of the liquid crystal element in the voltage application state.
  • the measurement was performed using a spectroscopic haze meter (manufactured by Tokyo Denshoku Co., Ltd.) in the same manner as in “1.
  • a higher haze value means better light scattering properties.
  • the haze value was 92%, and the light scattering property was excellent when a voltage was applied.
  • Adhesion strength measurement test A liquid crystal element having a size of 30 ⁇ 35 mm was produced in the same manner as described above, and this liquid crystal element was fixed to a push-pull gauge (PSM-50N, manufactured by Imada Co., Ltd.) and a 90 ° peel test was performed. It was.
  • the peel strength (N / 30 mm) was measured at two types of peel speeds (0.2 mm / sec and 5 mm / sec). As a result, a peel speed of 0.2 mm / sec showed a value of 4.8 N / 30 mm, and a peel speed of 5 mm / sec showed a value of 12.5 N / 30 mm. 4).
  • Adhesion Reliability (High Temperature and High Humidity Resistance) Test The liquid crystal device manufactured above is placed in a high temperature and high humidity atmosphere at 85 ° C. and 85% RH for 500 hours, and then the same operation as in “3. Adhesion strength measurement test” above. The contact reliability was evaluated. As a result, a peel speed of 0.2 mm / sec showed a value of 4.3 N / 30 mm, and a peel speed of 5 mm / sec showed a value of 12.3 N / 30 mm. Therefore, in this example, the peel strength did not change much before and after exposure to high temperature and high humidity conditions, and the adhesion reliability was good.
  • the liquid crystal element produced above was irradiated with xenon lamp light (illuminance 250 W / m 2 (300-800 nm)) for 200 hours using a light resistance tester (SUNTEST CPS +: manufactured by Toyo Seiki Co., Ltd.). About the liquid crystal element after light irradiation, the haze value in a voltage application state was measured by the method similar to said "2. Evaluation of light scattering property", and the weather resistance was evaluated based on the haze value. As a result, in the liquid crystal element of this example, the haze value was 92% even after the light irradiation, and the light scattering property did not change before and after the light irradiation.
  • Examples 2 to 6 and Comparative Examples 1 to 3 The liquid crystal aligning agents (A-2) to (A-9) were prepared in the same manner as in the preparation of the liquid crystal aligning agent (A-1) except that the components of the types and blending amounts shown in Table 2 were used. Prepared. In addition, the liquid crystal element was evaluated in the same manner as in Example 1 using each of the liquid crystal alignment agents (A-2) to (A-9). The results are shown in Table 3.
  • Example 7 Production and Evaluation of Liquid Crystal Element A liquid crystal element was produced in the same manner as in Example 1 except that the liquid crystal composition II was used instead of the liquid crystal composition I. Moreover, evaluation similar to Example 1 was performed using the obtained liquid crystal element. The results are shown in Table 3 below.
  • Example 7 the above 1.
  • the following evaluations evaluation of light transmission, evaluation of light blocking properties, and evaluation of repeated driving durability test were further performed using the liquid crystal element manufactured in (1).
  • Evaluation of light transmittance Transparency when no voltage was applied was evaluated by measuring the transmittance of the liquid crystal element when no voltage was applied. For the measurement, the light transmittance was evaluated by the light transmittance (%) at a wavelength of 400 nm using a spectrophotometer (150-20 type double beam manufactured by Hitachi, Ltd.). The higher the transmittance value, the better the transparency. As a result, in this example, the transmittance was 85%, and the transparency when no voltage was applied was excellent. 3.
  • the light blocking property during voltage application was evaluated by measuring the transmittance of the liquid crystal element in a voltage applied state. The measurement is as described in 1. above. 40V is applied to the liquid crystal element manufactured in step 2 by alternating current drive, and 2. In the same manner as described above, a spectrophotometer (150-20 type double beam manufactured by Hitachi, Ltd.) was used. The lower the transmittance value, the better the light blocking property. As a result, in this example, the transmittance was 5%, and the light blocking property was excellent when a voltage was applied. 4). Evaluation of Repeated Drive Durability Test A voltage of 40 V was applied to the liquid crystal element for 1 second, and then no voltage was applied for 1 second. After repeating this operation 1800 times, the above 2. And 3.
  • the repeated driving durability test was evaluated by evaluating the light transmittance and the light blocking property in the same manner as described above.
  • the transmittance when no voltage was applied 85%
  • the transmittance when a voltage was applied 6%
  • no change in transmittance was observed when no voltage was applied.
  • the increase in transmittance was only 1%. From this result, it can be said that the liquid crystal element of this example is excellent in repeated driving durability.
  • the numerical values of the blending amounts of the polymer and additive in Table 2 indicate the blending ratio (parts by mass) of each compound with respect to 100 parts by mass in total of the polymer components used for preparing the liquid crystal aligning agent.
  • the numerical value of the compounding amount of the solvent indicates the compounding ratio (parts by mass) of each compound with respect to 100 parts by mass of the total amount of the solvent used for preparing the liquid crystal aligning agent.
  • the abbreviations of the solvents are as follows.
  • PGME Propylene glycol monomethyl ether
  • PGMEA Propylene glycol monomethyl ether acetate
  • NMP N-methyl-2-pyrrolidone BC; Butyl cellosolve GBL; ⁇ -butyrolactone BA; n-butyl acetate MEK;
  • Example 2 and 3 since the polymer contained in the liquid crystal aligning agent of Example 2 and 3 has a photo-alignment group, the result similar to the said Example 2 and 3 is obtained by performing a photo-alignment process by a well-known method. Each can be obtained.
  • Example 3 As can be seen from Table 3, in Examples 1 to 7, light transmission characteristics and light scattering characteristics were good. Further, even when exposed to a high temperature and high humidity environment, the peel strength was high and the adhesion to the substrate was excellent. Moreover, the change in haze value before and after application of light stress was small, and the weather resistance was excellent. Further, Example 6 containing an antioxidant in the liquid crystal alignment film has a lower haze value when no voltage is applied and better transparency than Example 3 which does not contain an antioxidant in the liquid crystal alignment film. Met. In Example 7 in which a dye (dichroic dye) was dispersed in the liquid crystal layer, the adhesion and the weather resistance of the liquid crystal element were good.
  • a dye dichroic dye
  • Comparative Example 2 using a liquid crystal aligning agent that does not have a structural unit derived from a monomer having a specific group and does not contain a silicon-containing compound in the polymer component, The weather resistance was inferior to that of the examples. Further, in Comparative Examples 1 and 3 in which the proportion of the structural unit derived from the monomer having a specific group is larger than 10 mol%, the adhesion to the base material was further lowered as compared with Comparative Example 2. Moreover, the comparative examples 1 and 3 were also inferior in weather resistance compared with the Example.
  • Example 8 ⁇ Display test when combined with a transparent display>
  • Example 4 A display test was conducted in the same manner as in Example 8 except that a polarizing plate type liquid crystal element was used instead of the liquid crystal element in Example 8.
  • a polarizing plate type liquid crystal element a transparent electrode and a liquid crystal alignment film are formed on each of opposing surfaces of a pair of glass substrates, a liquid crystal is filled between the pair of substrates, and a sealing agent is disposed around What used the polarizing plate arrange
  • the light transmittance of the liquid crystal element was poor, and the visibility of the display on the transparent display was determined to be “bad”.
  • the liquid crystal element of the present invention is particularly excellent as a display element superimposed on a transparent display.

Abstract

This liquid crystal element is provided with: a pair of substrates that are disposed to face each other; electrodes that are disposed on the opposed surfaces of the pair of substrates; a liquid crystal layer which is interposed between the pair of substrates and which is formed by curing a liquid crystal composition comprising liquid crystal and a polymerizable compound; and a liquid crystal alignment film that is formed on the surfaces on which the electrodes are disposed. The polymerizable compound contains a monofunctional (meth)acrylate compound, a polyfunctional (meth)acrylate compound, and the like. The liquid crystal alignment film is formed using a liquid crystal aligning agent containing a polymer component. The liquid crystal aligning agent contains at least one type of compound which is selected from the group consisting of silane compounds and polysiloxanes and in which the content ratio of a structural unit derived from a monomer having a specific side-chain structure is 10 mol% or less with respect to the total amount of all structural units of the polymer component.

Description

液晶素子及びその製造方法、並びに表示装置Liquid crystal element, manufacturing method thereof, and display device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年2月6日に出願された日本出願番号2017-19833号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2017-19833 filed on Feb. 6, 2017, the contents of which are incorporated herein by reference.
 本開示は、液晶素子及びその製造方法、並びに表示装置に関する。 The present disclosure relates to a liquid crystal element, a manufacturing method thereof, and a display device.
 液晶素子としては、近年、透明電極が表面に形成された一対のフィルム基材の間に、液晶と高分子との複合材料からなる液晶層が配置された高分子分散型液晶素子が知られており、こうした高分子分散型液晶素子を調光素子として用いることが提案されている(例えば、特許文献1や特許文献2参照)。特許文献1及び特許文献2の調光素子は、透明電極の電圧印加/電圧無印加の切り替えによって透明性が変化して調光機能を発現する。また、こうした調光機能を利用して、ショーウィンドウやスマートフォン、テレビ、モニタ、建築物、家具等において新たな機能を付与することが検討されている。高分子分散型液晶としては、例えばPDLC(Polymer Dispersed Liquid Cristal)やPNLC(Polymer Network Liquid Cristal)などが知られている。 As a liquid crystal element, a polymer-dispersed liquid crystal element in which a liquid crystal layer made of a composite material of a liquid crystal and a polymer is disposed between a pair of film bases on which transparent electrodes are formed has been known in recent years. Therefore, it has been proposed to use such a polymer dispersed liquid crystal element as a light control element (see, for example, Patent Document 1 and Patent Document 2). The light control elements of Patent Document 1 and Patent Document 2 exhibit a light control function by changing the transparency by switching between voltage application and voltage non-application of the transparent electrode. In addition, it has been studied to add a new function to a show window, a smartphone, a television, a monitor, a building, furniture, or the like using such a dimming function. Known polymer-dispersed liquid crystals include PDLC (Polymer Dispersed Liquid Crystal) and PNLC (Polymer Network Liquid Cristal).
 特許文献3には、有機EL素子からなる透明ディスプレイの背面に液晶表示パネルを配置した表示装置が提案されている。この表示装置では、液晶表示パネルに印加する電圧を制御することによって光透過性を制御し、これにより透明ディスプレイの表示の視認性を高めることが提案されている。また、特許文献4には、一対の電極間に電圧を印加していないときには光が透過して透明な状態になり、電圧印加時には光が散乱して非透明な状態になるリバース型液晶素子について開示されている。特許文献4に記載のリバース型液晶素子では、液晶を垂直に配向させる配向膜としてポリイミド膜を有し、このポリイミド膜によって、液晶層中の液晶分子の配向状態を制御している。 Patent Document 3 proposes a display device in which a liquid crystal display panel is arranged on the back of a transparent display made of organic EL elements. In this display device, it has been proposed to control the light transmittance by controlling the voltage applied to the liquid crystal display panel, thereby improving the visibility of the display on the transparent display. Patent Document 4 discloses a reverse liquid crystal element in which light is transmitted and transparent when no voltage is applied between a pair of electrodes, and light is scattered and non-transparent when a voltage is applied. It is disclosed. The reverse type liquid crystal element described in Patent Document 4 has a polyimide film as an alignment film for vertically aligning liquid crystals, and the alignment state of liquid crystal molecules in the liquid crystal layer is controlled by this polyimide film.
特開2013-3319号公報JP 2013-3319 A 特開2013-148744号公報JP 2013-148744 A 特開2008-083510号公報JP 2008-083510 A 国際公開第2015/022980号International Publication No. 2015/022980
 調光素子は屋外での使用用途に適用されることが想定されるため、耐候性に優れていることが要求される。また、調光素子は、その使用用途の拡大に伴い種々の環境で使用されることが想定され、よって高温高湿耐性に優れていることが要求される。しかしながら、液晶を垂直に配向させる配向膜を有する従来のリバース型液晶素子は耐候性が十分でなく、また、高温高湿環境下に曝すと基板から配向膜が剥離しやすく、高温高湿耐性が十分でない。そこで、光透過特性及び光散乱特性が良好でありながら、しかも高湿高温耐性及び耐候性が良好な液晶素子の開発が求められている。 Since the dimmer element is assumed to be used for outdoor use, it is required to have excellent weather resistance. In addition, the dimmer element is assumed to be used in various environments as its usage is expanded, and therefore, it is required to have excellent high temperature and high humidity resistance. However, the conventional reverse type liquid crystal element having an alignment film for vertically aligning the liquid crystal has insufficient weather resistance, and when exposed to a high-temperature and high-humidity environment, the alignment film is easily peeled off and has high-temperature and high-humidity resistance. not enough. Therefore, development of a liquid crystal element having good light transmission characteristics and light scattering characteristics, and also having high humidity and high temperature resistance and good weather resistance is required.
 本開示は上記課題に鑑みなされたものであり、高温高湿耐性が高く基材に対する密着性に優れているとともに、耐候性に優れ、かつ光透過特性及び光散乱特性に優れた液晶素子を提供することを主たる目的とする。 The present disclosure has been made in view of the above problems, and provides a liquid crystal device that has high temperature and high humidity resistance and excellent adhesion to a substrate, excellent weather resistance, and excellent light transmission characteristics and light scattering characteristics. The main purpose is to do.
 本開示は、上記課題を解決するために、以下の手段を採用した。 This disclosure employs the following means in order to solve the above problems.
[1] 対向配置された一対の基材と、前記一対の基材において互いに対向する面にそれぞれ配置された電極と、前記一対の基材間に配置され、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層と、前記一対の基板の少なくとも一方の電極配置面上に形成された液晶配向膜と、を備え、前記重合性化合物は、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物、多官能チオール化合物及びスチレン系化合物よりなる群から選ばれる少なくとも一種を含み、前記液晶配向膜は、重合体成分を含む液晶配向剤を用いて形成されてなり、前記液晶配向剤は、前記重合体成分における、下記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶素子。
(a)炭素数8~22のアルキル基又はアルコキシ基。
(b)炭素数6~18のフルオロアルキル基又はフルオロアルコキシ基。
(c)ベンゼン環、シクロへキサン環及び複素環のいずれかの環と、炭素数1~20のアルキル基、アルコキシ基、フルオロアルキル基又はフルオロアルコキシ基とが結合した1価の基。
(d)ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる少なくとも1種の環を合計2個以上有し、これら複数個の環が直接又は2価の連結基を介して結合した1価の基。
(e)ステロイド骨格を有する炭素数17~51の1価の基。
[2] 上記[1]の液晶素子と、非表示状態で透明となる透明ディスプレイと、を備える表示装置。
[3] 各基材面に設けられた電極が対向するように配置された一対の基材間に、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層を備える液晶素子の液晶配向膜を形成するための液晶配向剤であって、重合体成分において、上記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶配向剤。
[4] 各基材面に設けられた電極が対向するように配置された一対の基材間に、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層を備える液晶素子の製造方法であって、前記一対の基材の少なくとも一方の電極配置面上に液晶配向剤を塗布して液晶配向膜を形成する工程と、前記液晶配向膜の形成後に前記一対の基材を、前記液晶組成物を含む層を介して前記電極が対向するように配置して液晶セルを構築する工程と、前記液晶セルの構築後に前記重合性化合物を硬化させる工程と、を含み、前記重合性化合物は、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物、多官能チオール化合物及びスチレン系化合物よりなる群から選ばれる少なくとも一種を含み、前記液晶配向剤は、重合体成分において、上記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶素子の製造方法。
[1] A liquid crystal composition comprising a pair of opposed substrates, electrodes arranged on opposite surfaces of the pair of substrates, and a liquid crystal and a polymerizable compound arranged between the pair of substrates. A liquid crystal layer formed by curing an object, and a liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of substrates, wherein the polymerizable compound is a monofunctional (meth) acrylate compound, Including at least one selected from the group consisting of a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrene compound, and the liquid crystal alignment film is formed using a liquid crystal alignment agent including a polymer component, The liquid crystal aligning agent has a content ratio of a structural unit derived from a monomer having at least one structure selected from the group consisting of the following (a) to (e) in the polymer component: A liquid crystal device, which is 10 mol% or less based on the total amount of all structural units of the polymer component, and contains at least one compound selected from the group consisting of silane compounds and polysiloxanes.
(A) an alkyl group or alkoxy group having 8 to 22 carbon atoms;
(B) a C6-C18 fluoroalkyl group or fluoroalkoxy group.
(C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
(D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group. Monovalent group.
(E) a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
[2] A display device comprising the liquid crystal element according to the above [1] and a transparent display that is transparent in a non-display state.
[3] A liquid crystal device comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of base materials arranged so that electrodes provided on the base material faces each other A liquid crystal aligning agent for forming a liquid crystal alignment film, wherein the polymer component is a structural unit derived from a monomer having at least one structure selected from the group consisting of (a) to (e). The liquid crystal aligning agent whose content rate is 10 mol% or less with respect to the total amount of all the structural units of the said polymer component, and contains at least 1 type of compound chosen from the group which consists of a silane compound and polysiloxane.
[4] A liquid crystal element comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of base materials arranged so that electrodes provided on the base material surfaces face each other. A method of forming a liquid crystal alignment film by applying a liquid crystal aligning agent on at least one electrode arrangement surface of the pair of base materials, and forming the pair of base materials after forming the liquid crystal alignment film. A step of constructing a liquid crystal cell by placing the electrodes so as to face each other through a layer containing the liquid crystal composition, and a step of curing the polymerizable compound after the construction of the liquid crystal cell, The functional compound includes at least one selected from the group consisting of a monofunctional (meth) acrylate compound, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrene compound, and the liquid crystal aligning agent is contained in the polymer component. The content ratio of the structural unit derived from the monomer having at least one structure selected from the group consisting of the above (a) to (e) is 10 mol with respect to the total amount of all the structural units of the polymer component. %, And at least one compound selected from the group consisting of silane compounds and polysiloxanes.
 上記構成によれば、高温高湿耐性が高く、基材に対する密着性に優れ、かつ耐候性に優れた液晶素子を得ることができる。また、光透過特性及び光散乱特性に優れた液晶素子を得ることができる。 According to the above configuration, a liquid crystal element having high resistance to high temperature and high humidity, excellent adhesion to a substrate, and excellent weather resistance can be obtained. In addition, a liquid crystal element having excellent light transmission characteristics and light scattering characteristics can be obtained.
液晶素子の概略構成を示す図。The figure which shows schematic structure of a liquid crystal element. 液晶素子の機能を説明する図。4A and 4B illustrate functions of a liquid crystal element. 液晶素子と透明ディスプレイとを備える表示装置の概略構成を示す図。The figure which shows schematic structure of a display apparatus provided with a liquid crystal element and a transparent display.
 以下、実施形態について図面を参照しつつ説明する。
<液晶素子>
 本実施形態の液晶素子10は、図1に示すように、第1基材11及び第2基材12からなる一対の基材と、第1基材11と第2基材12との間に配置された液晶層13と、を備えている。液晶層13は、高分子マトリクスと液晶とを有する高分子/液晶複合材料層である高分子分散型液晶層であり、本実施形態では、層中にポリマーネットワークが形成されたポリマー分散型液晶(PDLC)である。液晶素子10は、ポリマーネットワーク中に存在している液晶分子の配向を電界によって制御することにより、光を透過する透過状態と、光を散乱させる不透過状態とが切り替わる調光素子である。
Hereinafter, embodiments will be described with reference to the drawings.
<Liquid crystal element>
As shown in FIG. 1, the liquid crystal element 10 of the present embodiment includes a pair of base materials including a first base material 11 and a second base material 12, and a first base material 11 and a second base material 12. And a liquid crystal layer 13 disposed. The liquid crystal layer 13 is a polymer-dispersed liquid crystal layer that is a polymer / liquid crystal composite material layer having a polymer matrix and a liquid crystal. In this embodiment, a polymer-dispersed liquid crystal (polymer dispersed liquid crystal in which a polymer network is formed in the layer ( PDLC). The liquid crystal element 10 is a dimming element that switches between a transmissive state that transmits light and a non-transmissive state that scatters light by controlling the orientation of liquid crystal molecules present in the polymer network with an electric field.
 第1基材11及び第2基材12は、高分子材料からなる透明基材である。基材を構成する高分子材料としては、例えば、シリコン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリプロピレン、ポリ塩化ビニル、芳香族ポリアミド、ポリアミドイミド、ポリイミド、トリアセチルセルロース(TAC)、ポリメチルメタクリレート等の材料が挙げられる。なお、第1基材11及び第2基材12をガラス基板としてもよいが、液晶素子の薄型化及び軽量化を図るために、プラスチック基板であることが特に好ましい。 The first substrate 11 and the second substrate 12 are transparent substrates made of a polymer material. Examples of the polymer material constituting the substrate include silicon, polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polypropylene, polyvinyl chloride, aromatic polyamide, polyamideimide, polyimide, triacetyl cellulose (TAC), Examples include materials such as polymethyl methacrylate. In addition, although the 1st base material 11 and the 2nd base material 12 are good also as a glass substrate, in order to achieve thickness reduction and weight reduction of a liquid crystal element, it is especially preferable that it is a plastic substrate.
 第1基材及び第2基材12において互いに対向する面には、透明電極16,17がそれぞれ配置されており、これら透明電極16,17によって電極対が構築されている。本実施形態において、透明電極16,17は透明導電膜であり、例えば酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜、又は炭素材料からなる膜である。なお、透明電極16,17は、例えば帯状、櫛歯状等の所定のパターンを有していてもよい。 Transparent electrodes 16 and 17 are respectively arranged on surfaces of the first base material 12 and the second base material 12 that face each other, and an electrode pair is constructed by the transparent electrodes 16 and 17. In the present embodiment, the transparent electrodes 16 and 17 are transparent conductive films, for example, a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), indium oxide-tin oxide (In 2 O 3 —SnO 2 ). An ITO film made of or a film made of a carbon material. The transparent electrodes 16 and 17 may have a predetermined pattern such as a band shape or a comb shape.
 第1基材11及び第2基材12のそれぞれの電極配置面上には、液晶配向膜14,15が形成されている。液晶配向膜14,15は、液晶層13中の液晶分子の配向方位を規制する有機薄膜であり、重合体と溶剤とを含む重合体組成物を用いて形成されている。なお、液晶配向膜14,15は、一対の基板の少なくとも一方に設けられていればよいが、配向安定性の観点から両方の基板に設けることが好ましい。液晶層13は、一対の基材と、一対の基材間において電極配置面の外縁部を囲むように配置されたシール剤(図示略)とによって囲まれた空間に液晶組成物を配置した後、液晶組成物を硬化することによって形成されている。 The liquid crystal alignment films 14 and 15 are formed on the electrode arrangement surfaces of the first base material 11 and the second base material 12, respectively. The liquid crystal alignment films 14 and 15 are organic thin films that regulate the alignment orientation of liquid crystal molecules in the liquid crystal layer 13 and are formed using a polymer composition containing a polymer and a solvent. The liquid crystal alignment films 14 and 15 may be provided on at least one of the pair of substrates, but are preferably provided on both substrates from the viewpoint of alignment stability. The liquid crystal layer 13 has a liquid crystal composition disposed in a space surrounded by a pair of base materials and a sealing agent (not shown) disposed so as to surround the outer edge portion of the electrode placement surface between the pair of base materials. It is formed by curing the liquid crystal composition.
 なお、液晶素子10は、第1基材11及び第2基材12の外側表面に偏光板を備えていない。そのため、光の吸収損失が少なく、光の利用効率が高い点で優れている。 The liquid crystal element 10 does not include a polarizing plate on the outer surfaces of the first base material 11 and the second base material 12. Therefore, it is excellent in that light absorption loss is small and light utilization efficiency is high.
 図2は、液晶素子10の機能を説明するための図であり、(a)は透明電極16,17間に電圧が印加されていない状態を示し、(b)は透明電極16,17間に電圧が印加されている状態を示す。液晶素子10はリバース型PDLCであり、透明電極16,17間に電圧が印加されていない状態では、入射光が一対の基板の一方から他方へ透過して透明な状態となり、透明電極16,17間に電圧が印加されている状態では、液晶の配向状態が変化することにより、入射光が散乱して非透明な状態となる。本実施形態において、液晶層13中の液晶は、電極間に電圧を印加していない状態では、長軸方向が捻れた状態(例えば、270度STN配列や90度TN配列)となり、電極間に電圧を印加することによってその捻れがなくなる。こうした電圧の印加/無印加の切り替えによって液晶の配向状態が変化し、液晶素子10は調光機能を発現する。液晶素子10は、例えばフィルム状や板状である。液晶素子10は、印加電圧に応じて光透過率を可変とするものであってもよい。なお、電圧無印加時における液晶の配向状態は捻れ配向に限らず、ホモジニアス配向であってもよい。 2A and 2B are diagrams for explaining the function of the liquid crystal element 10. FIG. 2A shows a state in which no voltage is applied between the transparent electrodes 16 and 17, and FIG. 2B shows a state between the transparent electrodes 16 and 17. The state where the voltage is applied is shown. The liquid crystal element 10 is a reverse PDLC, and in a state where no voltage is applied between the transparent electrodes 16 and 17, incident light is transmitted from one of the pair of substrates to the other to be transparent, and the transparent electrodes 16 and 17. In a state where a voltage is applied between them, the alignment state of the liquid crystal changes, so that incident light is scattered and becomes non-transparent. In the present embodiment, the liquid crystal in the liquid crystal layer 13 is twisted in the major axis direction (for example, 270 ° STN alignment or 90 ° TN alignment) when no voltage is applied between the electrodes. The twist is eliminated by applying a voltage. By switching between application / non-application of voltage, the alignment state of the liquid crystal changes, and the liquid crystal element 10 exhibits a dimming function. The liquid crystal element 10 has, for example, a film shape or a plate shape. The liquid crystal element 10 may change the light transmittance according to the applied voltage. Note that the alignment state of the liquid crystal when no voltage is applied is not limited to the twisted alignment but may be a homogeneous alignment.
<液晶組成物>
 次に、液晶層13の形成に用いる液晶組成物について説明する。液晶組成物は、液晶と重合性化合物とを含む。
<Liquid crystal composition>
Next, a liquid crystal composition used for forming the liquid crystal layer 13 will be described. The liquid crystal composition includes a liquid crystal and a polymerizable compound.
 液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。また、これらの液晶にコレステリック液晶やカイラル剤、強誘電性液晶などを添加して使用してもよい。 Examples of the liquid crystal include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable. Further, a cholesteric liquid crystal, a chiral agent, a ferroelectric liquid crystal, or the like may be added to these liquid crystals.
 重合性化合物としては、ラジカル重合性を示す化合物であることが好ましく、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物、多官能チオール化合物、及びスチレン系化合物よりなる群から選ばれる少なくとも一種の化合物(以下、「特定重合性化合物」ともいう。)を含むことがより好ましく、多官能(メタ)アクリレート化合物であることが特に好ましい。なお、本明細書において「(メタ)アクリレート」は、アクリレート及びメタクリレートを含むことを意味する。 The polymerizable compound is preferably a compound exhibiting radical polymerizability, and is at least selected from the group consisting of monofunctional (meth) acrylate compounds, polyfunctional (meth) acrylate compounds, polyfunctional thiol compounds, and styrene compounds. It is more preferable to include a kind of compound (hereinafter also referred to as “specific polymerizable compound”), and it is particularly preferable to be a polyfunctional (meth) acrylate compound. In the present specification, “(meth) acrylate” means containing acrylate and methacrylate.
 重合性化合物としては、光学的異方性を示す重合性化合物(以下、「重合性液晶化合物」ともいう。)が好ましく使用される。重合性液晶化合物としては、例えば、ULC-001、ULC-001-K1、ULC-008、ULC-011(以上、DIC(株)社製)、RM257、RM8(以上、メルク社製)等が挙げられる。液晶材料と重合性液晶化合物との組み合わせとして、液晶材料であるMLC6080(メルク社製)は、重合性液晶化合物であるULC-001-K1と屈折率がほぼ等しく、電圧無印加時において高い光透過状態を示すため好ましい。 As the polymerizable compound, a polymerizable compound exhibiting optical anisotropy (hereinafter also referred to as “polymerizable liquid crystal compound”) is preferably used. Examples of the polymerizable liquid crystal compound include ULC-001, ULC-001-K1, ULC-008, ULC-011 (manufactured by DIC Corporation), RM257, RM8 (manufactured by Merck), and the like. It is done. As a combination of a liquid crystal material and a polymerizable liquid crystal compound, MLC6080 (manufactured by Merck & Co., Inc.), a liquid crystal material, has almost the same refractive index as ULC-001-K1, which is a polymerizable liquid crystal compound, and has high light transmission when no voltage is applied This is preferable because it indicates the state.
 重合性化合物の含有割合(2種以上含む場合にはその合計量)は、液晶組成物中における液晶と重合性化合物との合計量に対して、1~95質量%とすることが好ましく、5~90質量%とすることがより好ましく、10~90質量%とすることがさらに好ましい。
 液晶組成物中における重合性液晶化合物の含有割合は、重合性液晶化合物と液晶との合計量に対して、1~95質量%とすることが好ましく、3~90質量%とすることがより好ましく、5~90質量%とすることがさらに好ましい。
The content of the polymerizable compound (the total amount when two or more are included) is preferably 1 to 95% by mass with respect to the total amount of the liquid crystal and the polymerizable compound in the liquid crystal composition. More preferably, the content is set to ˜90 mass%, and more preferably 10 to 90 mass%.
The content ratio of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 1 to 95% by mass, more preferably 3 to 90% by mass with respect to the total amount of the polymerizable liquid crystal compound and the liquid crystal. More preferably, the content is 5 to 90% by mass.
 液晶組成物は、液晶及び重合性化合物以外のその他の成分を含有していてもよい。例えば、重合性化合物の重合性をさらに高めて、液晶層13中における(好ましくは、液晶層13の全体に亘って)ポリマーネットワークの形成を促進させる観点から、その他の成分として重合開始剤を含有することが好ましい。 The liquid crystal composition may contain other components other than the liquid crystal and the polymerizable compound. For example, from the viewpoint of further enhancing the polymerizability of the polymerizable compound and promoting the formation of a polymer network in the liquid crystal layer 13 (preferably over the entire liquid crystal layer 13), a polymerization initiator is contained as another component. It is preferable to do.
 液晶組成物中に含有させる重合開始剤は、可視光線、紫外線、遠紫外線、電子線、X線等の放射線の照射によって重合性化合物の重合を開始可能な化合物(光重合開始剤)であることが好ましい。光重合開始剤としては、光照射によってラジカルを発生可能なラジカル重合開始剤であることが好ましく、具体的には、例えば4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-メトキシ-2-フェニルアセトフェノン、2アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-ヒドロキシ-2-フェニルアセトフェノン、2-ベンジル-2-(ジメチルアミノ)-1-[4-(モルホリノ)フェニル]-1-ブタノン等が挙げられる。 The polymerization initiator contained in the liquid crystal composition is a compound (photopolymerization initiator) capable of initiating polymerization of a polymerizable compound upon irradiation with radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray. Is preferred. The photopolymerization initiator is preferably a radical polymerization initiator capable of generating radicals by light irradiation. Specifically, for example, 4,4′-bis (diethylamino) benzophenone, 2-methoxy-2-phenylacetophenone 2-acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-benzyl-2 -Dimethylamino-1- (4-morpholino Benzyl) -butanone-1,2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 4,4′-bis (diethylamino) benzophenone, 2-hydroxy- And 2-phenylacetophenone, 2-benzyl-2- (dimethylamino) -1- [4- (morpholino) phenyl] -1-butanone, and the like.
 液晶組成物中における重合開始剤の含有割合は、硬化反応を速やかに行わせるとともに、過剰量の添加に起因する硬化性の低下を抑制する観点から、液晶組成物中に含まれる溶媒以外の成分(固形分)の合計質量に対して、0.1~10質量%とすることが好ましく、0.5~8質量%とすることがより好ましく、1~7質量%とすることが更に好ましい。なお、重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。 The content ratio of the polymerization initiator in the liquid crystal composition is a component other than the solvent contained in the liquid crystal composition from the viewpoint of promptly performing a curing reaction and suppressing a decrease in curability due to addition of an excessive amount. It is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 7% by mass with respect to the total mass of (solid content). In addition, a polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
 液晶組成物に配合されるその他の成分として、色素を用いてもよい。色素を用いることにより、液晶層13中に色素が分散された液晶素子10を得ることができる。また、本開示の液晶素子10によれば、液晶層13中に色素を分散させた場合にも、電圧の印加/無印加の切り替えによる光遮光性/光透過性の変化が明瞭であり、また、繰り返し駆動した場合の耐久性も良好である点で好ましい。
 色素としては、二色性色素を好ましく用いることができる。使用する二色性色素は特に限定されず、公知の化合物を適宜用いることができるが、例えば、ポリヨウ素、アゾ化合物、アントラキノン化合物、ジオキサジン化合物等が挙げられる。これらのうち、耐光性に優れ、しかも二色比が高い点で、アゾ化合物及びアントラキノン化合物よりなる群から選ばれる少なくとも一種が好ましく、アゾ化合物が特に好ましい。なお、色素は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
A dye may be used as the other component blended in the liquid crystal composition. By using the dye, the liquid crystal element 10 in which the dye is dispersed in the liquid crystal layer 13 can be obtained. In addition, according to the liquid crystal element 10 of the present disclosure, even when a pigment is dispersed in the liquid crystal layer 13, the change in light shielding property / light transmittance due to switching between application / non-application of voltage is clear, and It is preferable in that it has good durability when it is repeatedly driven.
A dichroic dye can be preferably used as the dye. The dichroic dye to be used is not particularly limited, and known compounds can be used as appropriate, and examples thereof include polyiodine, azo compounds, anthraquinone compounds, dioxazine compounds and the like. Among these, at least one selected from the group consisting of an azo compound and an anthraquinone compound is preferable, and an azo compound is particularly preferable in terms of excellent light resistance and a high dichroic ratio. In addition, a pigment | dye may be used individually by 1 type and may combine 2 or more types.
 色素の配合割合(2種以上配合される場合には、その合計量)は、液晶組成物中の固形分の合計質量に対して、0.05~5質量%とすることが好ましく、0.1~3質量%とすることがより好ましい。 The blending ratio of the dye (the total amount when two or more are blended) is preferably 0.05 to 5% by mass relative to the total mass of the solid content in the liquid crystal composition. More preferably, the content is 1 to 3% by mass.
 液晶組成物は、液晶及び重合性化合物、並びに必要に応じて添加されるその他の成分が混合されることによって調製される。これらの成分を混合する処理は、常温で行ってもよいし、昇温しながら行ってもよい。また、適当な有機溶媒に各成分を溶解し、その後、例えば蒸留操作により溶媒を除去することも可能である。 The liquid crystal composition is prepared by mixing a liquid crystal, a polymerizable compound, and other components added as necessary. The treatment for mixing these components may be performed at room temperature or while raising the temperature. It is also possible to dissolve each component in a suitable organic solvent and then remove the solvent, for example, by distillation.
<液晶配向剤>
 次に、液晶配向膜14,15を形成するために用いる液晶配向剤について説明する。当該液晶配向剤は、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物(以下、「ケイ素含有化合物」ともいう。)を含有する。これらのうち、液晶素子10の耐候性の改善効果がより高く、かつポストベーク温度の更なる低温化を図ることができる点で、ポリシロキサンを含むことが特に好ましい。また、基材に対する密着性をより高くできる点で、シラン化合物を含有することが好ましい。
<Liquid crystal aligning agent>
Next, a liquid crystal aligning agent used for forming the liquid crystal alignment films 14 and 15 will be described. The liquid crystal aligning agent contains at least one compound selected from the group consisting of a silane compound and polysiloxane (hereinafter also referred to as “silicon-containing compound”). Among these, it is particularly preferable to contain polysiloxane in that the effect of improving the weather resistance of the liquid crystal element 10 is higher and the post-baking temperature can be further lowered. Moreover, it is preferable to contain a silane compound at the point which can make adhesiveness with respect to a base material higher.
(ポリシロキサン)
 ポリシロキサンは、例えば加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。加水分解性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン化合物;メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジエトキシシラン等のアルキル基又はアリール基含有アルコキシシラン化合物;
3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン等の硫黄含有アルコキシシラン化合物;
グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有アルコキシシラン化合物;
3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、ビニルトリエトキシシラン等の不飽和結合含有アルコキシシラン化合物;
3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-メチルカルボニルオキシエチル-N’-トリメトキシシリルプロピルエチレンジアミン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン等の窒素含有アルコキシシラン化合物;
トリメトキシシリルプロピルコハク酸無水物等の酸無水物基含有アルコキシシラン化合物;などを挙げることができる。加水分解性シラン化合物は、これらの1種を単独で又は2種以上を組み合わせて使用することができる。なお、「(メタ)アクリロ」は、「アクリロ」及び「メタクリロ」を含む意味である。
(Polysiloxane)
Polysiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound. Examples of the hydrolyzable silane compound include tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; alkyl groups or aryl groups such as methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane. Containing alkoxysilane compounds;
Sulfur-containing alkoxysilane compounds such as 3-mercaptopropyltriethoxysilane and mercaptomethyltriethoxysilane;
Glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Epoxy group-containing alkoxysilane compounds such as xylpropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane;
Unsaturated bond-containing alkoxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, vinyltriethoxysilane ;
3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N -(2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-methylcarbonyloxyethyl-N'-trimethoxysilylpropylethylenediamine, N- Nitrogen-containing alkoxysilane compounds such as ethoxycarbonyl-3-aminopropyltrimethoxysilane;
And acid anhydride group-containing alkoxysilane compounds such as trimethoxysilylpropyl succinic anhydride. One of these hydrolyzable silane compounds can be used alone, or two or more thereof can be used in combination. Note that “(meth) acrylo” means “acrylo” and “methacrylo”.
 上記の加水分解・縮合反応は、上記の如き加水分解性シラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、加水分解性シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して、好ましくは0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどが挙げられ、これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは10~10,000質量部である。 The above hydrolysis / condensation reaction is carried out by reacting one or more of the above hydrolyzable silane compounds with water, preferably in the presence of an appropriate catalyst and an organic solvent. In the reaction, the amount of water used is preferably 1 to 30 mol with respect to 1 mol of the hydrolyzable silane compound (total amount). Examples of the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like. The amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and should be set appropriately. For example, the amount is preferably 0.01 to 3 times the total amount of the silane compound. . Examples of the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols, and the like. Among these, it is preferable to use a water-insoluble or slightly water-soluble organic solvent. The organic solvent is used in an amount of preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compounds used in the reaction.
 上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。その際、加熱温度は130℃以下とすることが好ましく、加熱時間は0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリシロキサンが得られる。なお、ポリシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。 The above hydrolysis / condensation reaction is preferably carried out by heating with, for example, an oil bath. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain the target polysiloxane. The method for synthesizing the polysiloxane is not limited to the hydrolysis / condensation reaction described above. For example, the polysiloxane may be synthesized by a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
 ポリシロキサンとしては、光配向性基やプレチルト角付与基等の機能性基を側鎖に有するポリシロキサンを液晶配向剤に含有させてもよい。こうした機能性基を有するポリシロキサンは、例えば、原料の少なくとも一部に、エポキシ基含有の加水分解性シラン化合物を用いた重合により、エポキシ基を側鎖に有するポリシロキサンを合成し、次いでエポキシ基を有するポリシロキサンと、機能性基を有するカルボン酸とを反応させることにより得ることができる。あるいは、機能性基を有する加水分解性のシラン化合物をモノマーに用いた重合による方法を採用してもよい。 As the polysiloxane, the liquid crystal aligning agent may contain a polysiloxane having a functional group such as a photo-alignment group or a pretilt angle imparting group in the side chain. The polysiloxane having such a functional group is obtained by, for example, synthesizing a polysiloxane having an epoxy group in a side chain by polymerization using an epoxy group-containing hydrolyzable silane compound as at least a part of the raw material, It can be obtained by reacting a polysiloxane having a functional group with a carboxylic acid having a functional group. Alternatively, a polymerization method using a hydrolyzable silane compound having a functional group as a monomer may be employed.
 エポキシ基含有ポリシロキサンとカルボン酸との反応は、好ましくは触媒及び有機溶媒の存在下で行われる。カルボン酸の使用割合は、エポキシ基含有ポリシロキサンが有するエポキシ基に対して、好ましくは5モル%以上、より好ましくは10~80モル%である。上記触媒としては、例えば有機塩基、エポキシ化合物の反応を促進するいわゆる硬化促進剤として公知の化合物などを用いることができる。触媒の使用割合は、エポキシ基含有ポリシロキサン100質量部に対して、好ましくは100質量部以下である。 The reaction between the epoxy group-containing polysiloxane and the carboxylic acid is preferably performed in the presence of a catalyst and an organic solvent. The proportion of the carboxylic acid used is preferably 5 mol% or more, more preferably 10 to 80 mol%, based on the epoxy group of the epoxy group-containing polysiloxane. As said catalyst, a well-known compound etc. can be used as what is called a hardening accelerator which accelerates | stimulates reaction of an organic base and an epoxy compound, for example. The ratio of the catalyst used is preferably 100 parts by mass or less with respect to 100 parts by mass of the epoxy group-containing polysiloxane.
 使用する有機溶媒の好ましい具体例としては、2-ブタノン、2-ヘキサノン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン及び酢酸ブチル等が挙げられる。有機溶媒は、固形分濃度が5~50質量%となる割合で使用することが好ましい。上記反応における反応温度は、好ましくは0~200℃であり、反応時間は、好ましくは0.1~50時間である。反応終了後においては、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、機能性基を有するポリシロキサンを得ることができる。 Preferable specific examples of the organic solvent to be used include 2-butanone, 2-hexanone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and butyl acetate. The organic solvent is preferably used in such a ratio that the solid content concentration is 5 to 50% by mass. The reaction temperature in the above reaction is preferably 0 to 200 ° C., and the reaction time is preferably 0.1 to 50 hours. After the completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain a polysiloxane having a functional group.
 ポリシロキサンにつき、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、500~1,000,000であることが好ましく、1,000~100,000であることがより好ましく、さらに1,000~50,000であることが好ましい。なお、ポリシロキサンは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 For the polysiloxane, the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography (GPC) is preferably 500 to 1,000,000, more preferably 1,000 to 100,000. Further, it is preferably 1,000 to 50,000. In addition, polysiloxane may be used individually by 1 type and may be used in combination of 2 or more type.
(シラン化合物)
 液晶配向剤中に含有させるシラン化合物は、炭素-ケイ素結合を有する有機ケイ素化合物であり、その具体例としては、ポリシロキサンの合成に使用するシラン化合物として例示した加水分解性シラン化合物などが挙げられる。当該シラン化合物は、アルコキシシリル基(-Si(OR)3-r(Rはアルキル基であり、rは1~3の整数である。複数のRは互いに同じでも異なっていてもよい。))を有することが好ましく、エポキシ基、アミノ基及びチオール基よりなる群から選ばれる少なくとも一種の官能基を有するアルコキシシラン化合物がより好ましく、エポキシ基含有アルコキシシラン化合物が特に好ましい。なお、シラン化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、ケイ素含有化合物として、ポリシロキサンとシラン化合物とを併用してもよい。
(Silane compound)
The silane compound contained in the liquid crystal aligning agent is an organosilicon compound having a carbon-silicon bond, and specific examples thereof include hydrolyzable silane compounds exemplified as silane compounds used for the synthesis of polysiloxane. . The silane compound has an alkoxysilyl group (—Si (OR) r R 3-r (R is an alkyl group, and r is an integer of 1 to 3. A plurality of R may be the same or different from each other). )), An alkoxysilane compound having at least one functional group selected from the group consisting of an epoxy group, an amino group and a thiol group is more preferable, and an epoxy group-containing alkoxysilane compound is particularly preferable. In addition, a silane compound may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together a polysiloxane and a silane compound as a silicon-containing compound.
 液晶配向剤中のケイ素含有化合物は、使用する化合物に応じて適宜選択することができる。例えば、ケイ素含有化合物としてポリシロキサンを含有させる場合、液晶配向剤中のポリシロキサンの含有割合は、得られる液晶素子10の耐候性を十分に高くする観点から、液晶配向剤中の重合体成分の合計量に対して、1質量%以上とすることが好ましく、2質量%以上とすることがより好ましく、5質量%以上とすることがさらに好ましい。また、ポリシロキサンの含有割合の上限値は、97質量%以下とすることが好ましく、90質量%以下とすることがより好ましい。
 また、ケイ素含有化合物としてシラン化合物を液晶配向剤に配合する場合、その配合割合は、基材に対する密着性及び液晶素子10の耐候性の改善効果を十分に得る観点から、液晶配向剤中の重合体成分の合計100質量部に対して、0.5質量部以上とすることが好ましく、1~30質量部とすることがより好ましい。
The silicon-containing compound in the liquid crystal aligning agent can be appropriately selected according to the compound to be used. For example, when polysiloxane is contained as the silicon-containing compound, the content of the polysiloxane in the liquid crystal aligning agent is such that the polymer component in the liquid crystal aligning agent has a sufficiently high weather resistance from the viewpoint of sufficiently increasing the weather resistance of the liquid crystal element 10 to be obtained. It is preferable to set it as 1 mass% or more with respect to a total amount, It is more preferable to set it as 2 mass% or more, It is further more preferable to set it as 5 mass% or more. Further, the upper limit value of the polysiloxane content is preferably 97% by mass or less, and more preferably 90% by mass or less.
Further, when a silane compound is blended in the liquid crystal aligning agent as a silicon-containing compound, the blending ratio is the weight in the liquid crystal aligning agent from the viewpoint of sufficiently obtaining the effect of improving the adhesion to the substrate and the weather resistance of the liquid crystal element 10. The total amount is preferably 0.5 parts by mass or more, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the combined components.
 本実施形態の液晶配向剤は、当該液晶配向剤に含まれる重合体成分において、以下の(a)~(e)よりなる群から選ばれる少なくとも一種の側鎖構造(以下、「特定基」ともいう。)を有する単量体に由来する構造単位の含有割合が、重合体成分の全構造単位の合計量に対し10モル%以下である。
(a)炭素数8~22のアルキル基又はアルコキシ基。
(b)炭素数6~18のフルオロアルキル基又はフルオロアルコキシ基。
(c)ベンゼン環、シクロへキサン環及び複素環のいずれかの環と、炭素数1~20のアルキル基、アルコキシ基、フルオロアルキル基又はフルオロアルコキシ基とが結合した1価の基。
(d)ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる少なくとも1種の環を合計2個以上有し、これら複数個の環が直接又は2価の連結基を介して結合した1価の基。
(e)ステロイド骨格を有する炭素数17~51の1価の基。
The liquid crystal aligning agent of the present embodiment includes at least one side chain structure (hereinafter referred to as “specific group”) selected from the group consisting of the following (a) to (e) in the polymer component contained in the liquid crystal aligning agent. The content ratio of the structural unit derived from the monomer having) is 10 mol% or less with respect to the total amount of all the structural units of the polymer component.
(A) an alkyl group or alkoxy group having 8 to 22 carbon atoms;
(B) a C6-C18 fluoroalkyl group or fluoroalkoxy group.
(C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
(D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group. Monovalent group.
(E) a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
 ここで、本明細書において、「側鎖構造を有する単量体」における「側鎖構造」とは、単量体の構造式のうち重合体の主鎖に導入される部分を主骨格とした場合に、その主骨格に直接又は連結基を介して結合している部分構造を意味する。つまり、単量体が有する「側鎖構造」は、その単量体を用いて重合を行った場合、当該重合により得られる重合体の側鎖に導入される。なお、重合体の「主鎖」とは、重合体のうち最も長い原子の連鎖からなる「幹」の部分をいう。この「幹」の部分が環構造を含むことは許容される。重合体の「側鎖」とは、重合体の「幹」から分岐した部分をいう。したがって、例えばポリアミック酸やポリイミドの合成に使用されるジアミンの場合、2個の1級アミノ基を含む骨格を主骨格とし、その主骨格に直接又は連結基を介して結合する部分構造が「側鎖構造」に相当する。なお、シアノ基を有する側鎖構造は、この側鎖構造によって液晶分子は水平配向する。液晶層13中の液晶分子を垂直配向させる場合、特定基はシアノ基を有さないことが好ましい。 Here, in the present specification, the “side chain structure” in the “monomer having a side chain structure” means that the main skeleton is the portion introduced into the main chain of the polymer in the structural formula of the monomer. In some cases, it means a partial structure bonded to the main skeleton directly or via a linking group. That is, the “side chain structure” possessed by the monomer is introduced into the side chain of the polymer obtained by the polymerization when the monomer is used for polymerization. The “main chain” of the polymer refers to a “trunk” portion composed of the longest chain of atoms in the polymer. It is permissible for this “trunk” part to contain a ring structure. The “side chain” of the polymer refers to a portion branched from the “trunk” of the polymer. Therefore, for example, in the case of a diamine used for the synthesis of polyamic acid or polyimide, a skeleton containing two primary amino groups is a main skeleton, and a partial structure bonded to the main skeleton directly or via a linking group is “side”. Corresponds to “chain structure”. In the side chain structure having a cyano group, the liquid crystal molecules are horizontally aligned by this side chain structure. When the liquid crystal molecules in the liquid crystal layer 13 are vertically aligned, the specific group preferably has no cyano group.
 「特定基を有する単量体に由来する構造単位の含有割合が、重合体成分の全構造単位の合計量に対し10モル%以下である」とは、液晶配向剤が2種以上の重合体を含有する場合には、各重合体が有する、特定基を有する単量体に由来する構造単位のモル数と、その重合体の質量混合比率とを乗じたモル部数の合計を意味する。したがって、例えば、液晶配向剤が、重合体1及び重合体2の2種類の重合体を質量比60:40で含有する場合、重合体1における特定基を有する単量体に由来する構造単位数が0モル%であって、重合体2における特定基を有する単量体に由来する構造単位数が20モル%であれば、この液晶配向剤の「特定基を有する単量体に由来する構造単位の含有割合」は、60質量部×0モル%+40質量部×20モル%=8モル%となる。よって、この場合には、「特定基を有する単量体に由来する構造単位の含有割合が、重合体成分の全構造単位の合計量に対し10モル%以下である」の要件を満たす。なお、重合体成分が特定基を有さない場合にもこの要件を満たす。 “The content of the structural unit derived from the monomer having a specific group is 10 mol% or less with respect to the total amount of all the structural units of the polymer component” means that the liquid crystal alignment agent is a polymer of two or more types. Is included, it means the total number of mole parts obtained by multiplying the number of moles of the structural unit derived from the monomer having a specific group and the mass mixing ratio of the polymer. Therefore, for example, when the liquid crystal aligning agent contains two types of polymers, polymer 1 and polymer 2, at a mass ratio of 60:40, the number of structural units derived from the monomer having a specific group in polymer 1 Is 0 mol% and the number of structural units derived from the monomer having the specific group in the polymer 2 is 20 mol%, the “structure derived from the monomer having the specific group” of this liquid crystal aligning agent The “unit content ratio” is 60 parts by mass × 0 mol% + 40 parts by mass × 20 mol% = 8 mol%. Therefore, in this case, the requirement “the content ratio of the structural unit derived from the monomer having the specific group is 10 mol% or less with respect to the total amount of all the structural units of the polymer component” is satisfied. This requirement is also satisfied when the polymer component does not have a specific group.
 一方、上記の重合体1及び重合体2からなる重合体成分について、重合体1と重合体2との配合割合が質量比20:80である場合、この液晶配向剤の「特定基を有する単量体に由来する構造単位の含有割合」は、20質量部×0モル%+80質量部×20モル%=16モル%となる。よって、この場合には、「特定基を有する単量体に由来する構造単位の含有割合が、重合体成分の全構造単位の合計量に対し10モル%以下である」の要件を満たさない。 On the other hand, when the blending ratio of the polymer 1 and the polymer 2 is a mass ratio of 20:80 with respect to the polymer component composed of the polymer 1 and the polymer 2, the “single group having a specific group” of the liquid crystal aligning agent The “content ratio of the structural unit derived from the monomer” is 20 parts by mass × 0 mol% + 80 parts by mass × 20 mol% = 16 mol%. Therefore, in this case, the requirement “the content ratio of the structural unit derived from the monomer having the specific group is 10 mol% or less with respect to the total amount of all the structural units of the polymer component” is not satisfied.
 上記特定基の具体例としては、(a)のアルキル基及びアルコキシ基として、例えばn-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ヘプタデシル基、n-オクタデシル基等の直鎖状アルキル基及びこれらの直鎖状アルキル基と酸素原子とが結合した直鎖状アルコキシ基を;(b)のフルオロアルキル基及びフルオロアルコキシ基として、例えば上記(a)のアルキル基及びアルコキシ基の少なくとも1個の水素原子をフッ素原子で置換した直鎖状のフルオロアルキル基及びフルオロアルコキシ基を;(c)の基及び(d)の基として、例えば下記式(5)で表される基等を;(e)の基として、例えばコレスタニル基、コレステリル基、ラノスタニル基等を、それぞれ挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(式(5)中、A~Aは、それぞれ独立に、フェニレン基又はシクロへキシレン基であり、環部分に置換基を有していてもよい。R21は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基、炭素数1~20のシアノ基含有アルキル基、炭素数1~20のシアノ基含有アルコキシ基、フッ素原子又はシアノ基であり、R22及びR23は、それぞれ独立に、単結合、-O-、-COO-、-OCO-又は炭素数1~3のアルカンジイル基である。k、m及びnは、1≦k+m+n≦4を満たす0以上の整数である。R21が水素原子、炭素数1~3のアルキル基、炭素数1~20のシアノ基含有アルキル基、炭素数1~20のシアノ基含有アルコキシ基、フッ素原子又はシアノ基の場合、k+m+n≧2を満たす。「*」は結合手を示す。)
Specific examples of the specific group include (a) alkyl group and alkoxy group such as n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group. A linear alkyl group such as n-heptadecyl group and n-octadecyl group and a linear alkoxy group in which these linear alkyl group and an oxygen atom are bonded; the fluoroalkyl group and the fluoroalkoxy group in (b) For example, a linear fluoroalkyl group and a fluoroalkoxy group in which at least one hydrogen atom of the alkyl group and alkoxy group in the above (a) is substituted with a fluorine atom; a group in (c) and a group in (d) For example, the group represented by the following formula (5); and the group (e) include, for example, a cholestanyl group, a cholesteryl group, a lanostannyl group, and the like. Door can be.
Figure JPOXMLDOC01-appb-C000001
(In Formula (5), A 1 to A 3 each independently represents a phenylene group or a cyclohexylene group, and may have a substituent in the ring portion. R 21 represents a hydrogen atom or a carbon number. An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, a cyano group-containing alkyl group having 1 to 20 carbon atoms, a carbon number A cyano group-containing alkoxy group having 1 to 20 carbon atoms, a fluorine atom or a cyano group, wherein R 22 and R 23 are each independently a single bond, —O—, —COO—, —OCO— or a group having 1 to 3 carbon atoms. K, m, and n are integers of 0 or more that satisfy 1 ≦ k + m + n ≦ 4, R 21 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a cyano group having 1 to 20 carbon atoms. Contains alkyl group, 1-20 carbon atoms (In the case of a cyano group-containing alkoxy group, a fluorine atom or a cyano group, k + m + n ≧ 2 is satisfied. “*” Indicates a bond.)
 上記式(5)で表される基の具体例としては、例えば下記式で表される基などが挙げられるが、これらに限定されるものではない。A~Aが環部分に有していてもよい置換基としては、例えばフッ素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基が挙げられる。k+m+nは、2~4であることが好ましい。R21は、炭素数3以上であることが好ましく、4以上であることがより好ましく、7以上であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、「*」は結合手を示す。)
Specific examples of the group represented by the above formula (5) include, but are not limited to, a group represented by the following formula. Examples of the substituent that A 1 to A 3 may have in the ring portion include a fluorine atom, an alkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms. k + m + n is preferably 2 to 4. R 21 is preferably 3 or more carbon atoms, more preferably 4 or more, more preferably 7 or more.
Figure JPOXMLDOC01-appb-C000002
(In the formula, “*” indicates a bond.)
 液晶配向剤に含有される重合体成分において、特定基を有する単量体に由来する構造単位の含有割合は、耐候性及び高温高湿耐性がより高い液晶素子を得る観点から、重合体成分の全構造単位の合計量に対して8モル%以下であることが好ましく、5モル以下であることがより好ましく、2モル以下であることがさらに好ましい。なお、本明細書において、上記(a)~(e)の部分構造の少なくとも一部が、以下に示す光配向性基の一部を構成している場合、又は上記(a)~(e)の部分構造が光配向性基に結合されている場合、当該(a)~(e)についても特定基に該当する。 In the polymer component contained in the liquid crystal aligning agent, the content ratio of the structural unit derived from the monomer having a specific group is selected from the viewpoint of obtaining a liquid crystal element having higher weather resistance and high temperature and high humidity resistance. It is preferably 8 mol% or less, more preferably 5 mol or less, and even more preferably 2 mol or less, based on the total amount of all structural units. In the present specification, when at least a part of the partial structures (a) to (e) constitutes a part of the photoalignable group shown below, or the above (a) to (e) In the case where the partial structure is bonded to the photoalignable group, the above (a) to (e) also correspond to the specific group.
(重合体成分)
 液晶配向剤に含有される重合体成分は、上述したポリシロキサンのみであってもよいが、ポリシロキサンとは異なる重合体(以下、「その他の重合体」ともいう。)でもよく、ポリシロキサンとその他の重合体との混合物でもよい。ケイ素含有化合物としてシラン化合物のみを含有する場合、液晶配向剤は、重合体成分として、以下に示すその他の重合体を含有する。
(Polymer component)
The polymer component contained in the liquid crystal aligning agent may be only the above-described polysiloxane, but may be a polymer different from polysiloxane (hereinafter also referred to as “other polymer”), It may be a mixture with other polymers. When only the silane compound is contained as the silicon-containing compound, the liquid crystal aligning agent contains the other polymer shown below as the polymer component.
 その他の重合体の主骨格は特に限定されないが、例えばポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどの主骨格が挙げられる。これらの中でも、耐熱性や機械的強度、液晶との親和性などの観点から、ポリアミック酸、ポリアミック酸エステル、ポリイミド及びポリ(メタ)アクリレートよりなる群から選ばれる少なくとも一種の重合体であることが好ましい。なお、その他の重合体は、1種のみでもよく、2種以上であってもよい。(メタ)アクリレートは、アクリレート及びメタクリレートを含むことを意味する。 The main skeleton of the other polymer is not particularly limited. For example, polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate, etc. The main skeleton is mentioned. Among these, it is at least one polymer selected from the group consisting of polyamic acid, polyamic acid ester, polyimide, and poly (meth) acrylate from the viewpoint of heat resistance, mechanical strength, affinity with liquid crystal, and the like. preferable. In addition, only 1 type may be sufficient as another polymer, and 2 or more types may be sufficient as it. (Meth) acrylate is meant to include acrylate and methacrylate.
 液晶配向剤がポリシロキサンを含有する場合、その他の重合体の配合割合は、液晶配向剤中の重合体成分の合計量に対して、1~95質量%とすることが好ましく、5~95質量%とすることがより好ましく、10~90質量%とすることがさらに好ましい。なお、その他の重合体は、1種を単独で又は2種以上を併用することができる。 When the liquid crystal aligning agent contains polysiloxane, the blending ratio of the other polymer is preferably 1 to 95% by mass with respect to the total amount of the polymer components in the liquid crystal aligning agent, and 5 to 95% by mass. %, More preferably 10 to 90% by mass. In addition, another polymer can be used individually by 1 type or in combination of 2 or more types.
(光配向性基を有する重合体)
 液晶配向膜14,15の形成に用いる液晶配向剤は、光配向性基を有する重合体を含有していることが好ましい。ここで、「光配向性基」とは、光照射による光異性化反応や光二量化反応、光分解反応、光フリース転位反応によって膜に異方性を付与する官能基を意味する。光配向性基の具体例としては、例えばアゾベンゼン又はその誘導体を基本骨格として含むアゾベンゼン含有基、桂皮酸又はその誘導体を基本骨格として含む桂皮酸構造含有基、カルコン又はその誘導体を基本骨格として含むカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含むベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として含むクマリン含有基、シクロブタン又はその誘導体を基本骨格として含むシクロブタン含有構造等が挙げられる。これらのうち、光に対する感度が高い点で、桂皮酸構造含有基が好ましく、例えば、下記式(1)で表される部分構造を有する基等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~10のフルオロアルキル基、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~10のフルオロアルコキシ基、又はフッ素原子である。aは0~4の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。「*」は結合手を示す。)
(Polymer having photo-alignment group)
It is preferable that the liquid crystal aligning agent used for formation of the liquid crystal aligning films 14 and 15 contains the polymer which has a photo-alignment group. Here, the “photo-alignable group” means a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, a photolysis reaction, or a photofleece rearrangement reaction by light irradiation. Specific examples of the photo-alignment group include an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof as a basic skeleton, or a chalcone containing a chalcone or a derivative thereof as a basic skeleton. And a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton, a coumarin-containing group containing coumarin or a derivative thereof as a basic skeleton, and a cyclobutane-containing structure containing cyclobutane or a derivative thereof as a basic skeleton. Among these, a cinnamic acid structure-containing group is preferable in terms of high sensitivity to light, and examples thereof include a group having a partial structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a fluoroalkyl group having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. A fluoroalkoxy group having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom, or a fluorine atom, a is an integer of 0 to 4. When a is 2 or more, a plurality of R May be the same or different. “*” Represents a bond.)
 上記式(1)で表される部分構造において、2つの結合手「*」の一方は、下記式(4)で表される基に結合していることが好ましい。この場合、得られる液晶素子の光透過性及び光散乱性を高めることができ好適である。
Figure JPOXMLDOC01-appb-C000004
(式(4)中、R11は、フェニレン基、ビフェニレン基、ターフェニレン基、シクロヘキシレン基又はビシクロヘキシレン基であり、環部分に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された炭素数1~20の置換アルキル基、少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された炭素数1~20の置換アルコキシ基、フッ素原子又はシアノ基を有していてもよい。R12は、式(1)中のベンゼン環に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-であり、式(1)中のカルボニル基に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。「*」は結合手を示す。)
In the partial structure represented by the above formula (1), one of the two bonds “*” is preferably bonded to a group represented by the following formula (4). In this case, the light transmittance and light scattering property of the obtained liquid crystal element can be improved, which is preferable.
Figure JPOXMLDOC01-appb-C000004
(In the formula (4), R 11 is a phenylene group, a biphenylene group, a terphenylene group, a cyclohexylene group, or a bicyclohexylene group, and an alkyl group having 1 to 20 carbon atoms or 1 to 20 carbon atoms in the ring portion. An alkoxy group, a substituted alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom or a cyano group, and one to 1 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom or a cyano group It may have a substituted alkoxy group of 20, a fluorine atom or a cyano group, and when R 12 is bonded to the benzene ring in formula (1), it is a single bond or an alkane having 1 to 3 carbon atoms. Diyl group, oxygen atom, sulfur atom, —CH═CH—, —NH—, —COO— or —OCO—, and when bonded to the carbonyl group in formula (1), a single bond, carbon Numbers 1-3 Kanjiiru group, an oxygen atom, a sulfur atom or -NH-. "*" Indicates a bond.)
 光配向性基は、ポリシロキサンが有していてもよいが、ポリシロキサンとは異なる重合体が有していてもよい。液晶素子10の信頼性及び耐候性を確保する観点で、光配向性基を有する重合体としては、光配向性基を有するポリシロキサンを好ましく用いることができる。 The photo-alignment group may be contained in polysiloxane, but may be contained in a polymer different from polysiloxane. From the viewpoint of ensuring the reliability and weather resistance of the liquid crystal element 10, a polysiloxane having a photoalignable group can be preferably used as the polymer having a photoalignable group.
 光配向性基を有する重合体を合成する方法は特に制限されず、重合体の主骨格に応じて適宜選択すればよい。具体例としては、(1)光配向性基を有するモノマーを用いて重合する方法、(2)第1の官能基(例えばエポキシ基など)を側鎖に有する重合体を合成し、次いで第1の官能基と反応し得る第2の官能基(例えばカルボキシル基など)及び光配向性基を有する反応性化合物と、第1の官能基を有する重合体とを反応させる方法、等が挙げられる。光配向性基を有する重合体がポリシロキサンの場合、側鎖への導入効率が高い点で、(2)の方法によることが好ましい。 The method for synthesizing the polymer having a photoalignable group is not particularly limited, and may be appropriately selected according to the main skeleton of the polymer. As specific examples, (1) a method of polymerizing using a monomer having a photo-alignment group, (2) a polymer having a first functional group (for example, an epoxy group) in the side chain, and then the first And a method of reacting a reactive compound having a second functional group capable of reacting with the functional group (for example, a carboxyl group) and a photoalignable group with a polymer having the first functional group. When the polymer having a photo-alignment group is polysiloxane, the method (2) is preferable in that the introduction efficiency into the side chain is high.
 液晶配向剤が、光配向性基を有する重合体と、光配向性基を有さない重合体とを含有する場合、光配向性基を有する重合体の含有割合は、液晶配向剤を用いて形成した塗膜に対し放射線照射によって十分な配向能を付与する観点から、液晶配向剤中の重合体成分の合計量に対して、1質量%以上とすることが好ましく、5~99質量%とすることがより好ましい。 When the liquid crystal aligning agent contains a polymer having a photo-alignable group and a polymer having no photo-alignable group, the content ratio of the polymer having a photo-alignable group is determined using the liquid crystal aligning agent. From the viewpoint of imparting sufficient alignment ability to the formed coating film by irradiation, it is preferably 1% by mass or more with respect to the total amount of the polymer components in the liquid crystal aligning agent, and is 5 to 99% by mass. More preferably.
(架橋剤)
 液晶配向剤は、その他の成分として、架橋性基を有する化合物(以下、架橋剤ともいう。)を含有することが好ましい。架橋性基は、光や熱によって同一又は異なる分子間に共有結合を形成可能な基であり、例えば(メタ)アクリロイル基、ビニル基を有する基(アルケニル基、ビニルフェニル基など)、エチニル基、エポキシ基(オキシラニル基、オキセタニル基)、カルボキシル基、(保護)イソシアネート基等が挙げられる。これらの中でも、反応性が高い点で、(メタ)アクリロイル基が特に好ましい。架橋剤が有する架橋性基の数は、1個でも複数個でもよい。液晶素子の信頼性を十分に高くする点で、好ましくは2個以上であり、2~6個がより好ましい。
(Crosslinking agent)
It is preferable that a liquid crystal aligning agent contains the compound (henceforth a crosslinking agent) which has a crosslinkable group as another component. The crosslinkable group is a group capable of forming a covalent bond between the same or different molecules by light or heat. For example, a (meth) acryloyl group, a group having a vinyl group (alkenyl group, vinylphenyl group, etc.), an ethynyl group, Examples thereof include an epoxy group (oxiranyl group, oxetanyl group), a carboxyl group, and a (protected) isocyanate group. Among these, a (meth) acryloyl group is particularly preferable in terms of high reactivity. The number of crosslinkable groups possessed by the crosslinking agent may be one or more. In view of sufficiently increasing the reliability of the liquid crystal element, the number is preferably 2 or more, and more preferably 2 to 6.
 架橋剤の具体例としては、例えば、フタル酸ジアリルなどのアリル基含有化合物;
エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレングリコールトリ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等の(メタ)アクリル系化合物;
マレイン酸、イタコン酸、トリメリット酸、テトラカルボン酸、シス-1,2,3,4-テトラヒドロフタル酸、エチレングリコールビストリメート、プロピレングリコールビストリメート、4,4’-オキシジフタル酸、トリメリット酸無水物等のカルボン酸;
エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ビス(4-ヒドロキシフェニル)プロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン、N,N-ジグリシジル-シクロヘキシルアミン等のエポキシ化合物;
トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート等の多価イソシアネートを保護基で保護した(保護)イソシアネート化合物、などが挙げられる。架橋剤としては、これらの中でも、多官能(メタ)アクリレート化合物が好ましい。
Specific examples of the crosslinking agent include allyl group-containing compounds such as diallyl phthalate;
Ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene glycol tri (meth) acrylate, polyether (meta ) Acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 2-methyl 1,8-octanediol di (meth) acrylate of (meth) acrylic compound;
Maleic acid, itaconic acid, trimellitic acid, tetracarboxylic acid, cis-1,2,3,4-tetrahydrophthalic acid, ethylene glycol bistrimate, propylene glycol bistrimate, 4,4'-oxydiphthalic acid, trimellitic anhydride Carboxylic acids such as products;
Ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2- Bis (4-hydroxyphenyl) propane diglycidyl ether, trimethylolpropane triglycidyl ether, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N-diglycidyl) Aminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, N, N-diglycidyl-benzylamine, N, N-diglycidyl-a Bruno methylcyclohexane, N, N-diglycidyl - epoxy compounds such as cyclohexylamine;
Examples thereof include (protected) isocyanate compounds in which polyvalent isocyanates such as tolylene diisocyanate, hexamethylene diisocyanate, and diphenylmethylene diisocyanate are protected with a protecting group. Among these, a polyfunctional (meth) acrylate compound is preferable as the crosslinking agent.
 架橋剤の配合割合は、液晶配向性及び電気特性の改善効果を十分に得る観点から、液晶配向剤の調製に使用する重合体成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1~40質量部、さらに好ましくは5~30質量部である。なお、架橋剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The blending ratio of the cross-linking agent is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer component used for the preparation of the liquid crystal aligning agent, from the viewpoint of sufficiently obtaining the effect of improving the liquid crystal alignment property and electrical characteristics. The amount is more preferably 1 to 40 parts by mass, still more preferably 5 to 30 parts by mass. In addition, a crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
(酸化防止剤)
 液晶配向剤は、その他の成分として、酸化防止剤(重合禁止剤ともいう。)を含有することが好ましい。酸化防止剤は、紫外線や熱などのエネルギがきっかけとなって発生したラジカルや過酸化物を無効化し、重合を遅延又は禁止する機能を有する。このような酸化防止剤を配向膜中に含有させることにより、液晶素子の電圧無印加時の透明性を改善することができる点で好ましい。なお、この効果は、酸化防止剤の存在により、配向膜表面近傍に存在する液晶組成物中の重合性化合物の重合反応が抑制され、液晶の配向性の低下が抑制されたことによるものと推測される。
 酸化防止剤の具体例としては、例えば、アミン構造(好ましくは、ヒンダードアミン構造)を有する化合物、フェノール構造(好ましくは、ヒンダードフェノール構造)を有する化合物、アルキルホスフェート構造を有する化合物(リン系酸化防止剤)、チオエーテル構造を有する化合物(イオウ系酸化防止剤)、及びこれらの混合物(ブレンド系酸化防止剤)などが挙げられる。
(Antioxidant)
The liquid crystal aligning agent preferably contains an antioxidant (also referred to as a polymerization inhibitor) as another component. The antioxidant has a function of invalidating radicals and peroxides generated by energy such as ultraviolet rays and heat, and delaying or prohibiting polymerization. The inclusion of such an antioxidant in the alignment film is preferable in that the transparency of the liquid crystal element when no voltage is applied can be improved. This effect is presumed to be due to the presence of the antioxidant suppressing the polymerization reaction of the polymerizable compound in the liquid crystal composition existing in the vicinity of the alignment film surface and suppressing the decrease in the alignment of the liquid crystal. Is done.
Specific examples of the antioxidant include, for example, a compound having an amine structure (preferably a hindered amine structure), a compound having a phenol structure (preferably a hindered phenol structure), and a compound having an alkyl phosphate structure (phosphorous antioxidant). Agent), a compound having a thioether structure (sulfur-based antioxidant), and a mixture thereof (blend-based antioxidant).
 酸化防止剤の好ましい例としては、アミン構造を有する化合物として、例えばアデカスタブLA-52、LA-57、LA-63、LA-68、LA-72、LA-77、LA-81、LA-81、LA-82、LA-87、LA-402、LA-502(以上、ADEKA製)、CHIMASSORB119、CHIMASSORB2020、CHIMASSORB944、TINUVIN622、TINUVIN123、TINUVIN144、TINUVIN765、TINUVIN770、TINUVIN111、TINUVIN783、TINUVIN791(以上、BASFジャパン製)等を;
フェノール構造を有する化合物として、例えばアデカスタブAO-20、同AO-30、同AO-40、同AO-50、同AO-60、同AO-80、同AO-330(以上、ADEKA製)、IRGANOX1010、IRGANOX1035、IRGAOX1076、IRGANOX1098、IRGANOX1135、IRGANOX1330、IRGANOX1726、IRGANOX1425、IRGANOX1520、IRGANOX245、IRGANOX259、IRGANOX3114、IRGANOX3790、IRGANOX5057、IRGANOX565、IRGAMOD295(以上、BASFジャパン製)等を;
Preferred examples of the antioxidant include compounds having an amine structure such as ADK STAB LA-52, LA-57, LA-63, LA-68, LA-72, LA-77, LA-81, LA-81, LA-82, LA-87, LA-402, LA-502 (above, manufactured by ADEKA), CHIMASSORB119, CHIMASSORB2020, CHIMASSORB944, TINUVIN622, TINUVIN123, TINUVIN144, TINUVIN765, TINUVIN770, TINUVIN111, TINUVIN79, TINUV3111, TINUV3 Etc .;
As a compound having a phenol structure, for example, ADK STAB AO-20, AO-30, AO-40, AO-50, AO-60, AO-80, AO-330 (above, manufactured by ADEKA), IRGANOX1010 IRGANOX 1035, IRGAOX 1076, IRGANOX 198, IRGANOX 1135, IRGANOX 1330, IRGANOX 1726, IRGANOX 1425, IRGANOX 1520, IRGANOX 245, IRGANOX 259, IRGANOX 3114, IRGANOX 3790, IRGANOB 5057, IRGANO BAX
リン系酸化防止剤として、例えばアデカスタブPEP-4C、同PEP-8、同PEP-36、HP-10、2112(以上、ADEKA製)、IRGAFOS168、GSY-P101(以上、堺化学工業製)、IRGAFOS168、IRGAFOS12、IRGAFOS126、IRGAFOS38、IRGAFOS P-EPQ(以上、BASFジャパン製)等を;
イオウ系酸化防止剤として、例えばアデカスタブAO-412、同AO-503(以上、ADEKA製)、IRGANOX PS 800、IRGANOX PS 802(以上、BASFジャパン製)等を;
ブレンド系酸化防止剤として、例えばアデカスタブA-611、同A-612、同A-613、同AO-37、同AO-15、同AO-18、328(以上、ADEKA製)、TINUVIN111、TINUVIN783、TINUVIN791(以上、BASFジャパン製)等を、それぞれ挙げることができる。酸化防止剤は、これらのうちの1種を単独で、又は2種以上を組み合わせて使用することができる。
Examples of phosphorus antioxidants include ADK STAB PEP-4C, PEP-8, PEP-36, HP-10, 2112 (above, manufactured by ADEKA), IRGAFOS168, GSY-P101 (above, manufactured by Sakai Chemical Industry), IRGAFOS168 IRGAFOS12, IRGAFOS126, IRGAFOS38, IRGAFOS P-EPQ (above, manufactured by BASF Japan) and the like;
Examples of sulfur-based antioxidants include ADK STAB AO-412, AO-503 (above, manufactured by ADEKA), IRGANOX PS 800, IRGANOX PS 802 (above, manufactured by BASF Japan) and the like;
Examples of blend antioxidants include ADK STAB A-611, A-612, A-613, AO-37, AO-15, AO-18, 328 (above, manufactured by ADEKA), TINUVIN111, TINUVIN783, TINUVIN 791 (above, manufactured by BASF Japan) and the like can be mentioned. One of these antioxidants can be used alone, or two or more can be used in combination.
 液晶配向剤中における酸化防止剤の含有割合は、液晶配向剤の調製に使用する重合体成分100質量部に対して、好ましくは0.01~15質量部であり、より好ましくは0.01~10質量部であり、特に好ましくは0.1~10質量部である。 The content of the antioxidant in the liquid crystal aligning agent is preferably 0.01 to 15 parts by mass, more preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the polymer component used for preparing the liquid crystal aligning agent. The amount is 10 parts by mass, and particularly preferably 0.1 to 10 parts by mass.
 液晶配向剤に含有されるその他の成分としては、例えば、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤などが挙げられる。これらその他の成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。 Examples of other components contained in the liquid crystal aligning agent include metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, and photosensitizers. The blending ratio of these other components can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
(溶剤)
 液晶配向剤は、重合体成分及び必要に応じて使用される成分が、適当な溶剤中に溶解してなる液状の組成物として調製される。
 使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
(solvent)
The liquid crystal aligning agent is prepared as a liquid composition in which a polymer component and components used as necessary are dissolved in a suitable solvent.
Examples of the organic solvent used include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, γ-butyrolactone, γ-butyrolactam, and N, N-dimethylformamide. N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol methyl ether, Ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether Ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diisobutyl ketone, isoamyl propionate, isoamyl iso Examples include butyrate, diisopentyl ether, ethylene carbonate, and propylene carbonate. These can be used alone or in admixture of two or more.
 液晶配向剤の調製に使用する有機溶媒は、ポストベーク温度を低くした場合(例えば、150℃以下とした場合)にも良好な素子特性を示す液晶配向膜を得るために、これらのうち、1気圧における沸点が150℃以下の化合物を、溶剤の合計量に対して40質量%以上含むことが好ましく、50質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましい。 The organic solvent used for the preparation of the liquid crystal aligning agent is one of these in order to obtain a liquid crystal aligning film that exhibits good device characteristics even when the post-bake temperature is lowered (for example, 150 ° C. or lower). The compound having a boiling point at atmospheric pressure of 150 ° C. or less is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more based on the total amount of the solvent.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. When the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
<液晶素子の製造方法>
 次に、液晶素子10の製造方法について説明する。液晶素子10は、第1基材11及び第2基材12のそれぞれの電極配置面に液晶配向剤を塗布して液晶配向膜14,15を形成する工程Aと、液晶配向膜14,15を有する一対の基材を、液晶組成物の層を介して互いの電極配置面が対向するように配置して液晶セルを構築する工程Bと、液晶セルの構築後に重合性化合物を硬化させる工程Cと、を含む方法により製造することができる。
<Manufacturing method of liquid crystal element>
Next, a method for manufacturing the liquid crystal element 10 will be described. The liquid crystal element 10 includes a step A in which a liquid crystal alignment film 14 and 15 is formed by applying a liquid crystal alignment agent on each electrode arrangement surface of the first base material 11 and the second base material 12, and the liquid crystal alignment films 14 and 15. A step B of constructing a liquid crystal cell by arranging a pair of substrates having a liquid crystal composition layer so that the electrode arrangement surfaces face each other, and a step C of curing the polymerizable compound after the construction of the liquid crystal cell And can be manufactured by a method including:
(工程A)
 液晶配向剤の塗布は、第1基材11及び第2基材12のそれぞれの電極配置面上に、例えばオフセット印刷法、スピンコート法、ロールコーター法、インクジェット印刷法、バーコーター法などの公知の塗布方法により行う。液晶配向剤を塗布した後には、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、基材の種類に応じて設定されるが、140℃以下とすることが好ましく、120℃以下とすることがより好ましく、100℃以下とすることがさらに好ましい。プレベーク温度の下限は、30℃以上とすることが好ましく、40℃以上とすることがより好ましい。プレベーク時間は、好ましくは0.25~10分である。
(Process A)
Application of the liquid crystal aligning agent is, for example, a known method such as an offset printing method, a spin coating method, a roll coater method, an ink jet printing method, or a bar coater method on each electrode arrangement surface of the first substrate 11 and the second substrate 12. The coating method is used. After applying the liquid crystal aligning agent, preheating (pre-baking) is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent. The pre-baking temperature is set according to the type of substrate, but is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower. The lower limit of the pre-bake temperature is preferably 30 ° C or higher, and more preferably 40 ° C or higher. The prebake time is preferably 0.25 to 10 minutes.
 その後、溶剤を完全に除去し、必要に応じて架橋反応を促進させることを目的として焼成(ポストベーク)工程が実施されることが好ましい。このときの焼成温度(ポストベーク温度)は、高分子材料からなる基材を用いる場合、160℃以下とすることが好ましく、150℃以下とすることがより好ましく、110℃以下とすることが特に好ましい。ポストベーク時間は、好ましくは5~200分であり、より好ましく10~120分である。 Thereafter, it is preferable to carry out a baking (post-bake) step for the purpose of completely removing the solvent and, if necessary, promoting the crosslinking reaction. The firing temperature (post-bake temperature) at this time is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, particularly 110 ° C. or lower, when using a base material made of a polymer material. preferable. The post-bake time is preferably 5 to 200 minutes, more preferably 10 to 120 minutes.
 液晶配向剤を用いて形成した塗膜に対しては、液晶配向能を付与する処理(配向処理)を施す。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 The coating film formed using the liquid crystal aligning agent is subjected to a treatment for imparting liquid crystal alignment ability (alignment treatment). Examples of the alignment treatment include a rubbing treatment in which a coating film is rubbed in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton, and a photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. Is mentioned.
(工程B)
 工程Bでは、液晶配向膜を有する基材を2枚準備し、液晶配向膜が相対するように対向配置した2枚の基材間に、液晶及び重合性化合物を含有する液晶組成物の層を配置して液晶セルを製造する。具体的には、第1基材11及び第2基材12の周辺部をシール剤によって貼り合わせ、基材表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填した後、注入孔を封止する方法;一方の基材の液晶配向膜側の周辺部にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶組成物を滴下した後、液晶配向膜が対向するように他方の基材を貼り合わせるとともに液晶を基材の全面に押し広げ、その後シール剤を硬化する方法(ODF方式)、などが挙げられる。シール剤としては、例えば硬化剤及びスペーサとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。
(Process B)
In Step B, two base materials having a liquid crystal alignment film are prepared, and a liquid crystal composition layer containing a liquid crystal and a polymerizable compound is provided between the two base materials facing each other so that the liquid crystal alignment films face each other. A liquid crystal cell is manufactured by arranging. Specifically, the peripheral portions of the first base material 11 and the second base material 12 are bonded together with a sealing agent, and the liquid crystal composition is injected and filled into the cell gap defined by the base material surface and the sealing agent, and then injected. A method of sealing the holes; after applying a sealing agent to the periphery of one substrate on the liquid crystal alignment film side and further dropping the liquid crystal composition at predetermined locations on the surface of the liquid crystal alignment film, the liquid crystal alignment film The other base material is bonded so as to face each other, and the liquid crystal is spread over the entire surface of the base material, and then the sealing agent is cured (ODF method). As the sealant, for example, an epoxy resin containing a hardener and aluminum oxide spheres as a spacer can be used.
(工程C)
 工程Cでは、加熱及び光照射から選択される1種以上の処理を施すことによって、液晶組成物を硬化させる処理を行う。硬化反応の際の加熱温度は、使用する重合性化合物及び液晶の種類によって適宜に選択されるが、例えば40~80℃の範囲の温度で加熱する。加熱時間は、好ましくは0.5~5分である。光照射により硬化させる場合、照射光としては、200~500nmの範囲の波長を有する非偏光の紫外線を好ましく使用することができる。光の照射量としては、50~10,000mJ/cmとすることが好ましく、100~5,000mJ/cmとすることがより好ましい。
(Process C)
In step C, the liquid crystal composition is cured by performing at least one treatment selected from heating and light irradiation. The heating temperature for the curing reaction is appropriately selected depending on the type of the polymerizable compound and the liquid crystal to be used. For example, the heating temperature is 40 to 80 ° C. The heating time is preferably 0.5 to 5 minutes. In the case of curing by light irradiation, non-polarized ultraviolet rays having a wavelength in the range of 200 to 500 nm can be preferably used as the irradiation light. The amount of light irradiation is preferably 50 to 10,000 mJ / cm 2 , more preferably 100 to 5,000 mJ / cm 2 .
 液晶素子10は種々の用途に適用可能であり、例えば、建物の窓や、室内外の仕切り(パーティション)、ショーウィンドウ、車両(自動車、航空機、船舶、鉄道など)の窓、室内外の各種広告、案内標識、家電機器、携帯電話、スマートフォン、各種モニタ、時計、携帯型ゲーム、パソコン、眼鏡、サングラス、医療機器、家具等の各種調光素子として有効に使用することができる。液晶素子10は、素子の厚みや硬さ、形状、用途等に応じて、そのまま使用してもよく、ガラスや透明樹脂等に貼り付けて使用してもよい。 The liquid crystal element 10 can be applied to various uses. For example, a building window, an indoor / outdoor partition (partition), a show window, a vehicle (automobile, aircraft, ship, railway, etc.) window, and various indoor and outdoor advertisements. It can be effectively used as various light control elements such as information signs, home appliances, mobile phones, smartphones, various monitors, watches, portable games, personal computers, glasses, sunglasses, medical equipment, furniture, and the like. The liquid crystal element 10 may be used as it is, depending on the thickness, hardness, shape, application, etc. of the element, or may be used by being attached to glass or a transparent resin.
(液晶装置)
 本開示の表示装置は、上述した液晶素子と、非表示状態で透明となる透明ディスプレイと、を備える。具体的には、図3に示すように、表示装置20は、透明ディスプレイ30の背面に液晶素子10が配置された構造となっており、液晶素子10が調光素子として機能することにより、透明ディスプレイ30の表示の視認性が変化するものとなっている。
(Liquid crystal device)
A display device of the present disclosure includes the above-described liquid crystal element and a transparent display that is transparent in a non-display state. Specifically, as shown in FIG. 3, the display device 20 has a structure in which the liquid crystal element 10 is disposed on the back surface of the transparent display 30, and the liquid crystal element 10 functions as a dimming element, thereby being transparent. The visibility of display on the display 30 changes.
 透明ディスプレイ30は、例えば有機エレクトロルミネッセンス素子(有機EL素子)であり、一対のガラス基板と、透明電極材料で形成された陽極電極及び陰極電極と、陽極電極と陰極電極との間に形成された正孔輸送層及び発光層と、を備えている。透明ディスプレイ30は、電圧無印加の非表示状態では全面が透明であり、電圧印加されることで、電圧印加された画素が発光し、文字や画像等が表示される。 The transparent display 30 is, for example, an organic electroluminescence element (organic EL element), and is formed between a pair of glass substrates, an anode electrode and a cathode electrode formed of a transparent electrode material, and the anode electrode and the cathode electrode. A hole transport layer and a light emitting layer. The transparent display 30 is transparent in the non-display state in which no voltage is applied. When a voltage is applied, the pixels to which the voltage is applied emit light, and characters, images, and the like are displayed.
 図3の表示装置20において、液晶素子10及び透明ディスプレイ30が電圧無印加の状態では、表示装置20の全面が透明となる。そのため、例えば表示装置20がショーウィンドウの前面ガラスや後面ガラスとして適用された場合、ショーケースに陳列された商品や、店内の様子を屋外から視認することが可能となる。また、液晶素子10を電圧無印加にした状態のまま透明ディスプレイ30に電圧が印加されることによって、透明ディスプレイ30に表示された文字や画像等はガラスに浮き出た状態で表示されることとなる。 In the display device 20 shown in FIG. 3, when the liquid crystal element 10 and the transparent display 30 are not applied with voltage, the entire surface of the display device 20 is transparent. Therefore, for example, when the display device 20 is applied as a front glass or a rear glass of a show window, it is possible to visually check the products displayed in the showcase and the inside of the store from the outside. In addition, when a voltage is applied to the transparent display 30 while the liquid crystal element 10 is not applied with a voltage, characters, images, and the like displayed on the transparent display 30 are displayed in a state of being raised on the glass. .
 一方、液晶素子10に電圧が印加された状態では、透明ディスプレイ30の背面が遮光される。この場合、表示装置20に表示された文字や画像等と、表示装置20の背後の物体とが重ならないようにすることができ、透明ディスプレイ30の表示が見やすくなる。また、装飾性を高めることもできる。あるいは、表示装置20の前面や背面の明るさに応じて、液晶素子10の印加電圧を制御することによって、表示装置20の前面から背面への光の透過の度合いを可変にする構成としてもよい。 On the other hand, the back surface of the transparent display 30 is shielded from light when a voltage is applied to the liquid crystal element 10. In this case, it is possible to prevent the characters, images, and the like displayed on the display device 20 from overlapping with objects behind the display device 20, and the display on the transparent display 30 is easy to see. In addition, decorativeness can be improved. Or it is good also as a structure which makes variable the degree of permeation | transmission of the light from the front surface of the display apparatus 20 by controlling the applied voltage of the liquid crystal element 10 according to the brightness of the front surface of the display apparatus 20, or a back surface. .
 なお、図3の表示装置20において、透明ディスプレイ30の一部の領域のみに調光素子10を配置する構成としてもよい。あるいは、透明ディスプレイ30の表示領域を複数に分割し、表示領域ごとに調光素子を配置することにより、表示領域ごとに透過率を変更可能な構成としてもよい。 In the display device 20 of FIG. 3, the light control element 10 may be arranged only in a partial region of the transparent display 30. Or it is good also as a structure which can change the transmittance | permeability for every display area by dividing | segmenting the display area of the transparent display 30 into several, and arrange | positioning a light control element for every display area.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 以下の例において、重合体の重量平均分子量Mw、数平均分子量Mn及びエポキシ当量、ポリイミドのイミド化率、並びに重合体溶液の溶液粘度は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。 In the following examples, the weight average molecular weight Mw, the number average molecular weight Mn and the epoxy equivalent of the polymer, the imidation ratio of the polyimide, and the solution viscosity of the polymer solution were measured by the following methods. The required amounts of raw material compounds and polymers used in the following examples were ensured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
[重合体の重量平均分子量Mw及び数平均分子量Mn]
 Mw及びMnは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン、又はリチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液
 温度:40℃
 圧力:68kgf/cm
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
  イミド化率[%]=(1-(A/(A×α)))×100   …(1)
(数式(1)中、Aは、化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aは、その他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[Weight average molecular weight Mw and number average molecular weight Mn of the polymer]
Mw and Mn are polystyrene equivalent values measured by GPC under the following conditions.
Column: Tosoh Co., Ltd., TSKgelGRCXLII
Solvent: Tetrahydrofuran or N, N-dimethylformamide solution containing lithium bromide and phosphoric acid Temperature: 40 ° C
Pressure: 68 kgf / cm 2
[Epoxy equivalent]
The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
[Imidation rate of polyimide]
The polyimide solution was poured into pure water, and the resulting precipitate was sufficiently dried at room temperature under reduced pressure, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance. From the obtained 1 H-NMR spectrum, the imidation ratio [%] was determined by the following formula (1).
Imidation ratio [%] = (1- (A 1 / (A 2 × α))) × 100 (1)
(In Formula (1), A 1 is a peak area derived from protons of NH groups appearing near a chemical shift of 10 ppm, A 2 is a peak area derived from other protons, and α is a precursor of a polymer ( It is the number ratio of other protons to one NH group proton in the polyamic acid).
[Solution viscosity of polymer solution]
The solution viscosity (mPa · s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
 以下の例で使用した化合物の略称と構造式との関係は以下のとおりである。なお、以下では便宜上、「式(X)で表される化合物」を単に「化合物(X)」と示すことがある。 The relationship between the abbreviations of the compounds used in the following examples and the structural formulas is as follows. Hereinafter, for convenience, the “compound represented by the formula (X)” may be simply referred to as “compound (X)”.
(カルボン酸)
Figure JPOXMLDOC01-appb-C000005
(carboxylic acid)
Figure JPOXMLDOC01-appb-C000005
(添加剤)
Figure JPOXMLDOC01-appb-C000006
(Additive)
Figure JPOXMLDOC01-appb-C000006
(酸化防止剤)
Figure JPOXMLDOC01-appb-C000007
(Antioxidant)
Figure JPOXMLDOC01-appb-C000007
(二色性色素)
Figure JPOXMLDOC01-appb-C000008
(Dichroic dye)
Figure JPOXMLDOC01-appb-C000008
<ポリイミドの合成>
[合成例1]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物16.5g(合成に使用したジアミンの全体量100モル部に対して98モル部)、並びにジアミン化合物としてパラフェニレンジアミンを8.0g(同99.5モル部)及びコレステニルオキシ-2,4-ジアミノベンゼン0.2g(同0.5モル部)をN-メチル-2-ピロリドン(NMP)225gに溶解し、60℃で1時間反応を行った。その後、NMP250g、ピリジン29.11g及び無水酢酸22.54gを添加して、110℃で5時間脱水閉環反応を行った。
 次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、イミド化率約90%のポリイミド(以下、重合体(PI-1)とする。)を43g得た。得られた重合体(PI-1)をNMPにて10質量%となるように調製し、この溶液の粘度を測定したところ、410mPa・sであった。また、この重合体溶液を20℃において3日間静置したところ、ゲル化することはなく、保存安定性は良好であった。重合体(PI-1)につき、重合体が有する全構成単位に対する、特定基を有する単量体に由来する構造単位の含有割合β(ポリイミド及びポリアミック酸の場合、重合に使用した単量体の合計量Q1に対する、特定基を有する単量体の使用量Q2)は、0.25モル%である。
 含有割合β[モル%]=(Q2/Q1)×100
<Synthesis of polyimide>
[Synthesis Example 1]
16.5 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride (98 mol parts with respect to 100 mol parts of the total amount of diamine used in the synthesis), and paraphenylenediamine as diamine compound 8.0 g (99.5 mol parts) and 0.2 g (0.5 mol parts) cholestenyloxy-2,4-diaminobenzene were dissolved in 225 g of N-methyl-2-pyrrolidone (NMP). Reaction was performed at 60 degreeC for 1 hour. Thereafter, 250 g of NMP, 29.11 g of pyridine, and 22.54 g of acetic anhydride were added, and a dehydration ring-closing reaction was performed at 110 ° C. for 5 hours.
The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried under reduced pressure at 40 ° C. for 15 hours to obtain 43 g of polyimide (hereinafter referred to as polymer (PI-1)) having an imidation ratio of about 90%. The obtained polymer (PI-1) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 410 mPa · s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good. For polymer (PI-1), the content ratio β of structural units derived from the monomer having a specific group to all the structural units of the polymer (in the case of polyimide and polyamic acid, the monomer used for polymerization) The use amount Q2) of the monomer having a specific group with respect to the total amount Q1 is 0.25 mol%.
Content ratio β [mol%] = (Q2 / Q1) × 100
[合成例2]
 テトラカルボン酸二無水物として2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物3.19g(12.8mmol)、並びにジアミン化合物として1,3-ジアミノ-4-[4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシメチル]ベンゼン4.59g(11.6mmol)及び3,5-ジアミノ安息香酸2.16g(14.2mmol)をNMP24.9gに溶解し、80℃で5時間反応を行った後、テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物2.50g(12.8mmol)、及びNMP12.4gを加え、40℃で8時間反応を行い、重合体濃度が25質量%のポリアミック酸溶液を得た。得られたポリアミック酸溶液30.0gにNMPを加えて6質量%に希釈した後、無水酢酸3.95g及びピリジン2.40gを加え、50℃で2時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下100℃で乾燥することにより、ポリイミド(以下、重合体(PI-2)とする。)を得た。得られたポリイミドのイミド化率は55%であり、重量平均分子量は48,000であった。重合体(PI-2)において、含有割合βは22.6モル%である。
[Synthesis Example 2]
2,4,6,8-tetracarboxybicyclo [3.3.0] octane-2: 4,6: 8-dianhydride 3.19 g (12.8 mmol) as tetracarboxylic dianhydride, and diamine compound 1,5-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene 4.59 g (11.6 mmol) and 3,5-diaminobenzoic acid 2.16 g (14.2 mmol) Was dissolved in 24.9 g of NMP and reacted at 80 ° C. for 5 hours. Then, 2.50 g (12.8 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride, And 12.4 g of NMP were added and reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a polymer concentration of 25% by mass. NMP was added to 30.0 g of the obtained polyamic acid solution to dilute it to 6% by mass, and then 3.95 g of acetic anhydride and 2.40 g of pyridine were added and reacted at 50 ° C. for 2 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and dried at 100 ° C. under reduced pressure to obtain polyimide (hereinafter referred to as polymer (PI-2)). The imidation ratio of the obtained polyimide was 55%, and the weight average molecular weight was 48,000. In the polymer (PI-2), the content ratio β is 22.6 mol%.
[合成例3]
 テトラカルボン酸二無水物としてピロメリット酸二無水物32.39g(合成に使用したジアミンの全体量100モル部に対して98モル部)、及びジアミン化合物としてヘキサメチレンジアミン17.60gをNMP200gに溶解し、60℃で1時間反応を行った。その後、NMP250g、ピリジン23.5g及び無水酢酸30.4gを添加して80℃で2時間脱水閉環反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下、40℃において15時間乾燥することにより、ポリイミド(以下、重合体(PI-3)とする。)を得た。重合体(PI-3)において、含有割合βは0モル%である。
[Synthesis Example 3]
Dissolve 32.39 g of pyromellitic dianhydride as tetracarboxylic dianhydride (98 mol parts with respect to 100 mol parts of the total amount of diamine used in the synthesis) and 17.60 g of hexamethylenediamine as diamine compounds in 200 g of NMP. And reacted at 60 ° C. for 1 hour. Thereafter, 250 g of NMP, 23.5 g of pyridine and 30.4 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 80 ° C. for 2 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The collected precipitate was washed with methanol and then dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyimide (hereinafter referred to as polymer (PI-3)). In the polymer (PI-3), the content ratio β is 0 mol%.
<ポリアミック酸の合成>
[合成例4-1]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物136.7g(合成に使用したジアミン100モル部に対して90モル部)、ジアミンとして2,2’-ジメチル-4,4’-ジアミノビフェニル163.3gをNMP1700gに溶解させ、40℃で3時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(以下、重合体(PAA-1)とする。)を290g得た。得られた重合体(PAA-1)をNMPにて10質量%となるように調製し、この溶液の粘度を測定したところ80mPa・sであった。また、この重合体溶液を20℃において3日間静置したところ、ゲル化することはなく、保存安定性は良好であった。重合体(PAA-1)において、含有割合βは0モル%である。
<Synthesis of polyamic acid>
[Synthesis Example 4-1]
136.7 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride (90 mol parts with respect to 100 mol parts of diamine used for synthesis), 2,2′-dimethyl as diamine 163.3 g of -4,4′-diaminobiphenyl was dissolved in 1700 g of NMP and reacted at 40 ° C. for 3 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried at 40 ° C. under reduced pressure for 15 hours to obtain 290 g of polyamic acid (hereinafter referred to as polymer (PAA-1)). The obtained polymer (PAA-1) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 80 mPa · s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good. In the polymer (PAA-1), the content ratio β is 0 mol%.
[合成例4-2]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物25.0g(合成に使用したジアミン100モル部に対して45モル部)及びピロメリット酸二無水物27.8g(合成に使用したジアミン100モル部に対して45モル部)、ジアミンとして4-{4-[2-(4’-ペンチル-1,1’-ビシクロヘキシル)エチル]フェノキシ}ベンゼン-1,3-ジアミン27.6g、3,5-ジアミノ安息香酸8.2g、4-(4アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン17.7g、及びビス[2-(4-アミノフェニル)エチル]ヘキサン二酸43.6gをNMP850gに溶解させ、40℃で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(以下、重合体(PAA-2)とする。)を140g得た。得られた重合体(PAA-2)をNMPにて10質量%となるように調製し、この溶液の粘度を測定したところ90mPa・sであった。また、この重合体溶液を20℃において3日間静置したところ、ゲル化することはなく、保存安定性は良好であった。重合体(PAA-2)において、含有割合βは11モル%である。
[Synthesis Example 4-2]
26. As a tetracarboxylic dianhydride, 25.0 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (45 mol parts with respect to 100 mol parts of diamine used in the synthesis) and pyromellitic dianhydride 8 g (45 parts by mole with respect to 100 parts by mole of the diamine used in the synthesis), 4- {4- [2- (4′-pentyl-1,1′-bicyclohexyl) ethyl] phenoxy} benzene-1, 2-diamine 27.6 g, 3,5-diaminobenzoic acid 8.2 g, 4- (4 aminophenoxycarbonyl) -1- (4-aminophenyl) piperidine 17.7 g, and bis [2- (4-aminophenyl) ) Ethyl] hexane diacid (43.6 g) was dissolved in NMP (850 g) and reacted at 40 ° C. for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried at 40 ° C. under reduced pressure for 15 hours to obtain 140 g of polyamic acid (hereinafter referred to as polymer (PAA-2)). The obtained polymer (PAA-2) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 90 mPa · s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good. In the polymer (PAA-2), the content ratio β is 11 mol%.
<エポキシ基含有ポリオルガノシロキサンの合成>
[合成例5]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン70.5g、テトラエトキシシラン14.9g、エタノール85.4g及びトリエチルアミン8.8gを仕込み、室温で混合した。次いで、脱イオン水70.5gを滴下漏斗より30分かけて滴下した後、還流下で攪拌しつつ、80℃で2時間反応させた。反応溶液を濃縮し、酢酸ブチルで希釈する操作を2 回繰り返すことにより、トリエチルアミン及び水を留去し、エポキシ基を有するポリオルガノシロキサン(SEp-1)を含む重合体溶液を得た。H-NMR分析を行ったところ、反応中にエポキシ基の副反応が起こっていないことが確認された。このポリオルガノシロキサン(SEp-1)のMwは11,000、エポキシ当量は200g/モルであった。
<Synthesis of epoxy group-containing polyorganosiloxane>
[Synthesis Example 5]
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 70.5 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 14.9 g of tetraethoxysilane, 85.4 g of ethanol and triethylamine 8.8 g was charged and mixed at room temperature. Subsequently, 70.5 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 2 hours while stirring under reflux. The operation of concentrating the reaction solution and diluting with butyl acetate was repeated twice to distill off triethylamine and water to obtain a polymer solution containing polyorganosiloxane (SEp-1) having an epoxy group. As a result of 1 H-NMR analysis, it was confirmed that no side reaction of the epoxy group occurred during the reaction. The polyorganosiloxane (SEp-1) had an Mw of 11,000 and an epoxy equivalent of 200 g / mol.
[合成例6]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサン(SEp-2)を粘調な透明液体として得た。このポリオルガノシロキサン(SEp-2)について、H-NMR分析を行ったところ、反応中にエポキシ基の副反応が起こっていないことが確認された。合成例6で得られたポリオルガノシロキサン(SEp-2)の重量平均分子量(Mw)は2,200であり、エポキシ当量は186g/モルであった。
[Synthesis Example 6]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methyl isobutyl ketone and 10.0 g of triethylamine at room temperature. Mixed with. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to give a polyorgano having an epoxy group. Siloxane (SEp-2) was obtained as a viscous transparent liquid. This polyorganosiloxane (SEp-2) was analyzed by 1 H-NMR, and it was confirmed that no side reaction of the epoxy group occurred during the reaction. The weight average molecular weight (Mw) of the polyorganosiloxane (SEp-2) obtained in Synthesis Example 6 was 2,200, and the epoxy equivalent was 186 g / mol.
<機能性基を有するポリオルガノシロキサンの合成>
[合成例7]
 100mLの三口フラスコに、合成例5で得たポリオルガノシロキサン(SEp-1)11.3g、酢酸n-ブチル13.3g、上記式(CA-1)で表される桂皮酸誘導体1.7g(ポリオルガノシロキサン(SEp-1)が有するエポキシ基100モル部に対して32モル部)、アクリロイル基含有カルボン酸(アロニックスM-5300、東亜合成(株)製)0.54g(ポリオルガノシロキサン(SEp-1)が有するエポキシ基100モル部に対して8モル部)、及びテトラブチルアンモニウムブロミド0.9gを仕込み、80℃で12時間撹拌した。反応終了後、酢酸n-ブチルをさらに20g追加し、この溶液を3回水洗した後、酢酸n-ブチルをさらに20g追加し、固形分濃度10質量%となるように溶媒を留去した。これにより、光配向性ポリオルガノシロキサンである重合体(S-1)を含有する固形分濃度10質量%の酢酸n-ブチル溶液を得た。重合体(S-1)の重量平均分子量Mwは18,000であった。重合体(S-1)において、含有割合βは32モル%である。
[合成例8]
 100mLの三口フラスコに、合成例6で得たポリオルガノシロキサン(SEp-2)8g、シクロペンタノン27.5g、上記式(CA-2)で表される桂皮酸誘導体2.5g(ポリオルガノシロキサン(SEp-2)が有するエポキシ基100モル部に対して60モル部)、及びテトラブチルアンモニウムブロミド0.1gを仕込み、100℃で12時間撹拌した。反応終了後、シクロヘキサノン30gを追加し、この溶液を6回分液洗浄により水洗した後、NMPをさらに100g追加し、固形分濃度10質量%となるように溶媒を留去した。これにより、光配向性ポリオルガノシロキサンである重合体(S-2)を含有する固形分濃度10質量%のNMP溶液を得た。重合体(S-2)の重量平均分子量Mwは12,000であった。重合体(S-2)において、含有割合βは60モル%である。
<Synthesis of polyorganosiloxane having functional group>
[Synthesis Example 7]
In a 100 mL three-necked flask, 11.3 g of polyorganosiloxane (SEp-1) obtained in Synthesis Example 5, 13.3 g of n-butyl acetate, 1.7 g of cinnamic acid derivative represented by the above formula (CA-1) ( Polyorganosiloxane (SEp-1) has 32 mol parts per 100 mol of epoxy groups), acryloyl group-containing carboxylic acid (Aronix M-5300, manufactured by Toagosei Co., Ltd.) 0.54 g (polyorganosiloxane (SEp-1) -1) was added in an amount of 8 mole parts per 100 mole parts of the epoxy group, and 0.9 g of tetrabutylammonium bromide, and the mixture was stirred at 80 ° C for 12 hours. After completion of the reaction, an additional 20 g of n-butyl acetate was added, and this solution was washed with water three times. Then, an additional 20 g of n-butyl acetate was added, and the solvent was distilled off to a solid content concentration of 10% by mass. As a result, an n-butyl acetate solution having a solid content concentration of 10% by mass containing the polymer (S-1) which is a photoalignable polyorganosiloxane was obtained. The weight average molecular weight Mw of the polymer (S-1) was 18,000. In the polymer (S-1), the content ratio β is 32 mol%.
[Synthesis Example 8]
In a 100 mL three-necked flask, 8 g of the polyorganosiloxane (SEp-2) obtained in Synthesis Example 6, 27.5 g of cyclopentanone, and 2.5 g of a cinnamic acid derivative represented by the above formula (CA-2) (polyorganosiloxane) (60 mol parts relative to 100 mol parts of epoxy group of (SEp-2)) and 0.1 g of tetrabutylammonium bromide were added and stirred at 100 ° C. for 12 hours. After completion of the reaction, 30 g of cyclohexanone was added, and this solution was washed with water by liquid separation washing 6 times. Then, 100 g of NMP was further added, and the solvent was distilled off so that the solid content concentration was 10% by mass. As a result, an NMP solution having a solid content concentration of 10% by mass containing the polymer (S-2), which is a photoalignable polyorganosiloxane, was obtained. The weight average molecular weight Mw of the polymer (S-2) was 12,000. In the polymer (S-2), the content ratio β is 60 mol%.
[合成例9]
 反応に用いるカルボン酸の種類及び量を下記表1に記載のとおり変更した以外は、合成例8と同様の操作を行い、光配向性ポリオルガノシロキサンである重合体(S-3)を得た。なお、表中の数字は、使用したエポキシ基含有ポリオルガノシロキサンが有するエポキシ基100モル部に対する、カルボン酸の使用割合(モル部)を表す。表1中、「M-5300」は、アクリロイル基含有カルボン酸(アロニックスM-5300、東亜合成(株)製)を表す。重合体(S-3)において、含有割合βは50モル%である。
[Synthesis Example 9]
A polymer (S-3), which is a photoalignable polyorganosiloxane, was obtained in the same manner as in Synthesis Example 8 except that the type and amount of the carboxylic acid used in the reaction were changed as shown in Table 1 below. . In addition, the number in a table | surface represents the usage-amount (mol part) of carboxylic acid with respect to 100 mol part of epoxy groups which the used epoxy-group-containing polyorganosiloxane has. In Table 1, “M-5300” represents an acryloyl group-containing carboxylic acid (Aronix M-5300, manufactured by Toagosei Co., Ltd.). In the polymer (S-3), the content ratio β is 50 mol%.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<ポリ(メタ)クリレートの合成>
[合成例10]
 冷却管及び攪拌機を備えたフラスコに、重合開始剤として2,2’-アゾビス(イソブチロニトリル)1質量部、及び溶媒としてジエチレングリコールメチルエチルエーテル180質量部を仕込んだ。続いて、3,4-エポキシシクロヘキシルメチルメタクリレート80質量部、及び3-メチル-3-オキセタニルメチルメタクリレート20質量部を加え、窒素置換した後、緩やかに攪拌を始めた。溶液温度を80℃に上昇させ、この温度を5時間保持し、エポキシ基含有ポリメタクリレートである重合体(PAc-1)を含む重合体溶液を得た。なお、重合体溶液の固形分濃度の測定結果から算出された反応終了後のモノマー消費率(反応コンバージョン)は99%であった。また、得られた重合体(PAc-1)のMnは16,000であった。
[合成例11]
 合成例10で得られたエポキシ基含有ポリメタクリレート(PAc-1)100質量部、アクリロイル基含有カルボン酸(アロニックスM-5300、東亜合成(株)製)30質量部、触媒としてテトラブチルアンモニウムブロマイド10質量部、溶媒としてプロピレングリコールモノメチルエーテルアセテート150質量部を仕込み、窒素雰囲気下90℃で12時間撹拌した。反応終了後、プロピレングリコールモノメチルエーテルアセテート100質量部で希釈し、3回水洗した。この溶液を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、アクリロイル基含有ポリメタクリレートである重合体(PAc-2)を含む重合体溶液を得た。得られた重合体のMnは20,000であった。重合体(PAc-2)において、含有割合βは0モル%である。
<Synthesis of poly (meth) acrylate>
[Synthesis Example 10]
A flask equipped with a condenser and a stirrer was charged with 1 part by mass of 2,2′-azobis (isobutyronitrile) as a polymerization initiator and 180 parts by mass of diethylene glycol methyl ethyl ether as a solvent. Subsequently, 80 parts by mass of 3,4-epoxycyclohexylmethyl methacrylate and 20 parts by mass of 3-methyl-3-oxetanylmethyl methacrylate were added, and after nitrogen substitution, stirring was started gently. The solution temperature was raised to 80 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a polymer (PAc-1) which is an epoxy group-containing polymethacrylate. In addition, the monomer consumption rate (reaction conversion) after completion | finish of reaction computed from the measurement result of solid content concentration of a polymer solution was 99%. Further, Mn of the obtained polymer (PAc-1) was 16,000.
[Synthesis Example 11]
100 parts by mass of the epoxy group-containing polymethacrylate (PAc-1) obtained in Synthesis Example 10, 30 parts by mass of acryloyl group-containing carboxylic acid (Aronix M-5300, manufactured by Toagosei Co., Ltd.), tetrabutylammonium bromide 10 as a catalyst 150 parts by mass of propylene glycol monomethyl ether acetate as a part by mass and a solvent were charged and stirred at 90 ° C. for 12 hours in a nitrogen atmosphere. After completion of the reaction, the reaction mixture was diluted with 100 parts by mass of propylene glycol monomethyl ether acetate and washed with water three times. The operation of concentrating this solution and diluting with butyl acetate was repeated twice to obtain a polymer solution containing a polymer (PAc-2) which is an acryloyl group-containing polymethacrylate. Mn of the obtained polymer was 20,000. In the polymer (PAc-2), the content ratio β is 0 mol%.
<液晶組成物の調製>
1.液晶組成物Iの調製
 液晶材料としてMLC6080(メルク社製)と、重合性液晶化合物としてULC-001-K1(DIC(株)社製)とを、質量比85:15で混合し、さらに光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンを1質量%加え、80℃に維持しながら撹拌し、これを液晶組成物Iとした。
2.液晶組成物IIの調製
 液晶材料としてMLC6080(メルク社製)と、重合性液晶化合物としてULC-001-K1(DIC(株)社製)とを、質量比85:15で混合し、さらに、下記に示す二色性色素を3質量%、及び、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンを1質量%となるように加え、80℃に維持しながら撹拌し、これを液晶組成物IIとした。
 (二色性色素)
 化合物(m-1)を6.0質量部、化合物(m-2)を2.0質量部、及び化合物(m-3)を2.0質量部、を混合したものを用いた。
<Preparation of liquid crystal composition>
1. Preparation of Liquid Crystal Composition I MLC6080 (manufactured by Merck) as a liquid crystal material and ULC-001-K1 (manufactured by DIC Corporation) as a polymerizable liquid crystal compound were mixed at a mass ratio of 85:15 and further photopolymerized. 1% by mass of 1-hydroxycyclohexyl phenyl ketone was added as an initiator, and the mixture was stirred while maintaining at 80 ° C. to obtain a liquid crystal composition I.
2. Preparation of Liquid Crystal Composition II MLC6080 (manufactured by Merck) as a liquid crystal material and ULC-001-K1 (manufactured by DIC Corporation) as a polymerizable liquid crystal compound were mixed at a mass ratio of 85:15. 3% by weight of dichroic dye and 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator so as to be 1% by weight and stirring while maintaining at 80 ° C. did.
(Dichroic dye)
A mixture of 6.0 parts by mass of the compound (m-1), 2.0 parts by mass of the compound (m-2), and 2.0 parts by mass of the compound (m-3) was used.
[実施例1]
<液晶配向剤の調製>
 重合体成分として、合成例1で得た重合体(PI-1)を含有する溶液を、重合体(PI-1)に換算して100質量部に相当する量、及び添加剤として化合物(Add-1)を0.5質量部混合し、これに溶媒として、γ-ブチルラクトン(GBL)及びブチルセロソルブ(BC)を加え、固形分濃度が4.5質量%、各溶媒の質量比がGBL:BC=95:5となるように調製した。次いで、この得られた溶液を孔径0.2μmのフィルターでろ過することにより液晶配向剤(A-1)を得た。
[Example 1]
<Preparation of liquid crystal aligning agent>
A solution containing the polymer (PI-1) obtained in Synthesis Example 1 as a polymer component was added in an amount corresponding to 100 parts by mass in terms of the polymer (PI-1), and a compound (Add) as an additive. -1) is mixed in an amount of 0.5 parts by mass, and γ-butyl lactone (GBL) and butyl cellosolve (BC) are added to this as a solvent, the solid content concentration is 4.5% by mass, and the mass ratio of each solvent is GBL: A BC = 95: 5 was prepared. Next, the obtained solution was filtered through a filter having a pore size of 0.2 μm to obtain a liquid crystal aligning agent (A-1).
<液晶素子の作製>
 上記で調製した液晶配向剤(A-1)を、基材表面にITO電極を有するPETフィルム基材(PET-ITO基材)の電極配置面上にバーコーターを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した120℃のオーブンで30分間加熱(ポストベーク)することにより、平均膜厚0.1μmの塗膜(液晶配向膜)を形成した。この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数1000rpm、ステージ移動速度25cm/秒、毛足押しこみ長さ0.4mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基材を得た。同じ操作を繰り返して、液晶配向膜を有する基材を一対(2枚)作成した。
 次いで、一方の基材の液晶配向膜を有する面に、6μmのスペーサを塗布し、その後、スペーサを塗布した液晶配向膜面に、上記で調製した液晶組成物Iを滴下した。次いで、他方の基材の液晶配向膜面が向き合うように、2枚の基材をシール剤により貼り合わせ、液晶セルを得た。この液晶セルに、紫外線発光ダイオードを光源とする紫外線照射装置を用いて、波長365nm、紫外線強度15mW/cm、照射時間15秒、基材表面温度20℃の条件で紫外線を照射して液晶組成物Iを硬化させ、液晶素子を得た。
<Production of liquid crystal element>
The liquid crystal aligning agent (A-1) prepared above was applied on the electrode placement surface of a PET film substrate (PET-ITO substrate) having an ITO electrode on the substrate surface using a bar coater, After pre-baking with a hot plate for 1 minute, a coating film (liquid crystal alignment film) having an average film thickness of 0.1 μm was formed by heating (post-baking) for 30 minutes in an oven at 120 ° C. in which the inside of the chamber was purged with nitrogen. . The coating film was rubbed with a rubbing machine having a roll wrapped with a rayon cloth at a roll rotation speed of 1000 rpm, a stage moving speed of 25 cm / sec, and a hair foot indentation length of 0.4 mm. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then drying was performed in a 100 ° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film. By repeating the same operation, a pair (two) of substrates having a liquid crystal alignment film was prepared.
Next, a 6 μm spacer was applied to the surface of one substrate having the liquid crystal alignment film, and then the liquid crystal composition I prepared above was dropped onto the liquid crystal alignment film surface to which the spacer was applied. Next, the two substrates were bonded together with a sealant so that the liquid crystal alignment film surface of the other substrate faced to obtain a liquid crystal cell. This liquid crystal cell was irradiated with ultraviolet rays under the conditions of a wavelength of 365 nm, an ultraviolet intensity of 15 mW / cm 2 , an irradiation time of 15 seconds, and a substrate surface temperature of 20 ° C. using an ultraviolet irradiation device having an ultraviolet light emitting diode as a light source. The product I was cured to obtain a liquid crystal element.
<評価>
1.光透過性の評価
 電圧無印加状態での液晶素子のヘーズ(HAZE)を測定することにより、電圧無印加時の透明性を評価した。測定は、分光式ヘーズメータ(東京電色社製)を用いて行った。ヘーズ値が低いほど、透明性が良好であることを意味する。その結果、本実施例では、ヘーズ値=10%であり、電圧無印加状態での透明性に優れていた。
2.光散乱性の評価
 電圧印加状態での液晶素子の(HAZE)を測定することにより、電圧印加時の光散乱性について評価した。測定は、上記で製造した液晶素子に対し、交流駆動で20V印加し、上記「1.光透過性の評価」と同様、分光式ヘーズメータ(東京電色社製)を用いて行った。ヘーズ値が高いほど、光散乱性が良好であることを意味する。その結果、本実施例では、ヘーズ値=92%であり、電圧印加状態での光散乱性に優れていた。
<Evaluation>
1. Evaluation of Light Transparency Transparency when no voltage was applied was evaluated by measuring the haze (HAZE) of the liquid crystal element when no voltage was applied. The measurement was performed using a spectroscopic haze meter (manufactured by Tokyo Denshoku). It means that transparency is so favorable that haze value is low. As a result, in this example, the haze value was 10%, and the transparency when no voltage was applied was excellent.
2. Evaluation of light scattering property The light scattering property at the time of voltage application was evaluated by measuring the (HAZE) of the liquid crystal element in the voltage application state. The measurement was performed using a spectroscopic haze meter (manufactured by Tokyo Denshoku Co., Ltd.) in the same manner as in “1. A higher haze value means better light scattering properties. As a result, in this example, the haze value was 92%, and the light scattering property was excellent when a voltage was applied.
3.密着強度測定試験
 上記と同様にして30×35mmの大きさの液晶素子を製造し、この液晶素子をプッシュプルゲージ(イマダ社製、PSM-50N)のステージに固定して90°剥離試験を行った。なお、引き剥がし強度(N/30mm)の測定は、2種類のピール速度(0.2mm/sec及び5mm/sec)で行った。その結果、ピール速度0.2mm/secでは4.8N/30mmの値を示し、ピール速度5mm/secでは12.5N/30mmの値を示した。
4.密着信頼性(高温高湿耐性)試験
 上記で製造した液晶素子を、85℃、85%RHの高温高湿雰囲気下に500時間置き、その後、上記「3.密着強度測定試験」と同様の操作を行い、密着信頼性を評価した。その結果、ピール速度0.2mm/secでは4.3N/30mmの値を示し、ピール速度5mm/secでは12.3N/30mmの値を示した。このことから、この実施例では、高温高湿条件下に曝す前後で引き剥がし強度はさほど変わらず、密着信頼性は良好であった。
3. Adhesion strength measurement test A liquid crystal element having a size of 30 × 35 mm was produced in the same manner as described above, and this liquid crystal element was fixed to a push-pull gauge (PSM-50N, manufactured by Imada Co., Ltd.) and a 90 ° peel test was performed. It was. The peel strength (N / 30 mm) was measured at two types of peel speeds (0.2 mm / sec and 5 mm / sec). As a result, a peel speed of 0.2 mm / sec showed a value of 4.8 N / 30 mm, and a peel speed of 5 mm / sec showed a value of 12.5 N / 30 mm.
4). Adhesion Reliability (High Temperature and High Humidity Resistance) Test The liquid crystal device manufactured above is placed in a high temperature and high humidity atmosphere at 85 ° C. and 85% RH for 500 hours, and then the same operation as in “3. Adhesion strength measurement test” above. The contact reliability was evaluated. As a result, a peel speed of 0.2 mm / sec showed a value of 4.3 N / 30 mm, and a peel speed of 5 mm / sec showed a value of 12.3 N / 30 mm. Therefore, in this example, the peel strength did not change much before and after exposure to high temperature and high humidity conditions, and the adhesion reliability was good.
5.耐候性の評価
 上記で製造した液晶素子に対し、耐光性試験機(SUNTEST CPS+:東洋精機社製)によりキセノンランプ光(照度250W/m(300-800nm))を200時間照射した。光照射後の液晶素子につき、上記「2.光散乱性の評価」と同様の方法により、電圧印加状態でのヘーズ値を測定し、ヘーズ値に基づき耐候性を評価した。その結果、本実施例の液晶素子では、光照射後もヘーズ値は92%であり、光照射の前後で光散乱性は変わらなかった。
5). Evaluation of weather resistance The liquid crystal element produced above was irradiated with xenon lamp light (illuminance 250 W / m 2 (300-800 nm)) for 200 hours using a light resistance tester (SUNTEST CPS +: manufactured by Toyo Seiki Co., Ltd.). About the liquid crystal element after light irradiation, the haze value in a voltage application state was measured by the method similar to said "2. Evaluation of light scattering property", and the weather resistance was evaluated based on the haze value. As a result, in the liquid crystal element of this example, the haze value was 92% even after the light irradiation, and the light scattering property did not change before and after the light irradiation.
[実施例2~6及び比較例1~3]
 下記表2に示す種類及び配合量の各成分を用いた以外は、液晶配向剤(A-1)の調製と同様に操作し、各液晶配向剤(A-2)~(A-9)を調製した。また、各液晶配向剤(A-2)~(A-9)を用いて、実施例1と同様に液晶素子の評価を行った。その結果を表3に示した。
[Examples 2 to 6 and Comparative Examples 1 to 3]
The liquid crystal aligning agents (A-2) to (A-9) were prepared in the same manner as in the preparation of the liquid crystal aligning agent (A-1) except that the components of the types and blending amounts shown in Table 2 were used. Prepared. In addition, the liquid crystal element was evaluated in the same manner as in Example 1 using each of the liquid crystal alignment agents (A-2) to (A-9). The results are shown in Table 3.
[実施例7]
1.液晶素子の製造及び評価
 液晶組成物Iに代えて液晶組成物IIを使用した以外は、実施例1と同様にして液晶素子を製造した。また、得られた液晶素子を用いて、実施例1と同様の評価を行った。その結果を下記表3に示した。
[Example 7]
1. Production and Evaluation of Liquid Crystal Element A liquid crystal element was produced in the same manner as in Example 1 except that the liquid crystal composition II was used instead of the liquid crystal composition I. Moreover, evaluation similar to Example 1 was performed using the obtained liquid crystal element. The results are shown in Table 3 below.
 実施例7では、上記1.で製造した液晶素子を用いて、さらに以下に示す評価(光透過性の評価、光遮断性の評価、及び繰り返し駆動耐久試験の評価)を行った。
2.光透過性の評価
 電圧無印加状態での液晶素子の透過率を測定することにより、電圧無印加時の透明性を評価した。測定は、分光光度計(日立製作所(株)製の150-20型ダブルビーム)を用いて、波長400nmにおける光線透過率(%)により光透過性を評価した。透過率値が高いほど、透明性が良好であることを意味する。その結果、本実施例では透過率=85%であり、電圧無印加状態での透明性に優れていた。
3.光遮断性の評価
 電圧印加状態での液晶素子の透過率を測定することにより、電圧印加時の光遮断性について評価した。測定は、上記1.で製造した液晶素子に対し、交流駆動で40V印加し、上記2.と同様、分光光度計(日立製作所(株)製の150-20型ダブルビーム)を用いて行った。透過率値が低いほど、光遮断性が良好であることを意味する。その結果、本実施例では透過率=5%であり、電圧印加状態での光遮断性に優れていた。
4.繰り返し駆動耐久試験の評価
 液晶素子に対し、40Vの電圧を1秒間印加し、その後1秒間、無印加の状態にした。この操作を1800回繰り返した後に、上記2.及び上記3.と同様にして光透過性及び光遮断性を評価することにより、繰り返し駆動耐久試験の評価を行った。その結果、本実施例では、電圧無印加時の透過率=85%、電圧印加時の透過率=6%であり、駆動の前後において、電圧無印加時では透過率の変化が見られず、電圧印加時では透過率の増加は1%のみであった。この結果から、本実施例の液晶素子は繰り返し駆動耐久性に優れていると言える。
In Example 7, the above 1. The following evaluations (evaluation of light transmission, evaluation of light blocking properties, and evaluation of repeated driving durability test) were further performed using the liquid crystal element manufactured in (1).
2. Evaluation of light transmittance Transparency when no voltage was applied was evaluated by measuring the transmittance of the liquid crystal element when no voltage was applied. For the measurement, the light transmittance was evaluated by the light transmittance (%) at a wavelength of 400 nm using a spectrophotometer (150-20 type double beam manufactured by Hitachi, Ltd.). The higher the transmittance value, the better the transparency. As a result, in this example, the transmittance was 85%, and the transparency when no voltage was applied was excellent.
3. Evaluation of light blocking property The light blocking property during voltage application was evaluated by measuring the transmittance of the liquid crystal element in a voltage applied state. The measurement is as described in 1. above. 40V is applied to the liquid crystal element manufactured in step 2 by alternating current drive, and 2. In the same manner as described above, a spectrophotometer (150-20 type double beam manufactured by Hitachi, Ltd.) was used. The lower the transmittance value, the better the light blocking property. As a result, in this example, the transmittance was 5%, and the light blocking property was excellent when a voltage was applied.
4). Evaluation of Repeated Drive Durability Test A voltage of 40 V was applied to the liquid crystal element for 1 second, and then no voltage was applied for 1 second. After repeating this operation 1800 times, the above 2. And 3. The repeated driving durability test was evaluated by evaluating the light transmittance and the light blocking property in the same manner as described above. As a result, in this example, the transmittance when no voltage was applied = 85%, the transmittance when a voltage was applied = 6%, and before and after driving, no change in transmittance was observed when no voltage was applied. When voltage was applied, the increase in transmittance was only 1%. From this result, it can be said that the liquid crystal element of this example is excellent in repeated driving durability.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2中の重合体及び添加剤の配合量の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各化合物の配合割合(質量部)を示す。溶剤の配合量の数値は、液晶配向剤の調製に使用した溶剤の全体量100質量部に対する各化合物の配合割合(質量部)を示す。表2中、溶剤の略号は以下の通りである。
 PGME:プロピレングリコールモノメチルエーテル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 NMP:N-メチル-2-ピロリドン
 BC;ブチルセロソルブ
 GBL;γ-ブチロラクトン
 BA;酢酸n-ブチル
 MEK;メチルエチルケトン
The numerical values of the blending amounts of the polymer and additive in Table 2 indicate the blending ratio (parts by mass) of each compound with respect to 100 parts by mass in total of the polymer components used for preparing the liquid crystal aligning agent. The numerical value of the compounding amount of the solvent indicates the compounding ratio (parts by mass) of each compound with respect to 100 parts by mass of the total amount of the solvent used for preparing the liquid crystal aligning agent. In Table 2, the abbreviations of the solvents are as follows.
PGME: Propylene glycol monomethyl ether PGMEA: Propylene glycol monomethyl ether acetate NMP: N-methyl-2-pyrrolidone BC; Butyl cellosolve GBL; γ-butyrolactone BA; n-butyl acetate MEK;
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、実施例2、3の液晶配向剤中に含有させた重合体は光配向性基を有するため、公知の方法で光配向処理を行うことにより、上記実施例2、3と同様の結果をそれぞれ得ることができる。 In addition, since the polymer contained in the liquid crystal aligning agent of Example 2 and 3 has a photo-alignment group, the result similar to the said Example 2 and 3 is obtained by performing a photo-alignment process by a well-known method. Each can be obtained.
 表3から分かるように、実施例1~7では、光透過特性及び光散乱特性が良好であった。また、高温高湿環境下に曝した場合にも、引き剥がし強度が高く、基材に対する密着性に優れていた。また、光ストレスの付与の前後でのヘーズ値の変化が小さく、耐候性にも優れていた。
 また、液晶配向膜中に酸化防止剤を含む実施例6は、酸化防止剤を液晶配向膜中に含まない実施例3と比較して、電圧無印加時のヘーズ値が低く、透明性が良好であった。
 また、液晶層に色素(二色性色素)を分散させた実施例7でも、密着性及び液晶素子の耐候性は良好であった。またさらに、液晶素子を電圧印加/無印加を繰り返し行った後でも光遮光性及び光透過性が共に良好であり、駆動耐久性に優れていた。この挙動は、配向膜側からのアシストによるものと考えられる。
 これに対し、重合体成分中に、特定基を有する単量体に由来する構造単位を有さず、かつケイ素含有化合物を含有しない液晶配向剤を用いた比較例2では、基板に対する密着性及び耐候性が実施例のものよりも劣っていた。また、特定基を有する単量体に由来する構造単位の割合が10モル%よりも多い比較例1、3では、基材に対する密着性が比較例2よりもさらに低下した。また、比較例1、3は、実施例に比べて耐候性も劣っていた。
As can be seen from Table 3, in Examples 1 to 7, light transmission characteristics and light scattering characteristics were good. Further, even when exposed to a high temperature and high humidity environment, the peel strength was high and the adhesion to the substrate was excellent. Moreover, the change in haze value before and after application of light stress was small, and the weather resistance was excellent.
Further, Example 6 containing an antioxidant in the liquid crystal alignment film has a lower haze value when no voltage is applied and better transparency than Example 3 which does not contain an antioxidant in the liquid crystal alignment film. Met.
In Example 7 in which a dye (dichroic dye) was dispersed in the liquid crystal layer, the adhesion and the weather resistance of the liquid crystal element were good. Furthermore, even after the voltage application / non-application of the liquid crystal element was repeated, both the light shielding properties and the light transmission properties were good, and the driving durability was excellent. This behavior is considered to be due to the assist from the alignment film side.
On the other hand, in Comparative Example 2 using a liquid crystal aligning agent that does not have a structural unit derived from a monomer having a specific group and does not contain a silicon-containing compound in the polymer component, The weather resistance was inferior to that of the examples. Further, in Comparative Examples 1 and 3 in which the proportion of the structural unit derived from the monomer having a specific group is larger than 10 mol%, the adhesion to the base material was further lowered as compared with Comparative Example 2. Moreover, the comparative examples 1 and 3 were also inferior in weather resistance compared with the Example.
<透明ディスプレイと組み合わせたときの表示試験>
[実施例8]
 透明ディスプレイの一方の外側表面に、実施例3で製造した液晶素子を重ね合せた表示装置を作製し、透明ディスプレイの表示を行ったところ、液晶素子の透過性は良好であり、透明ディスプレイの表示の視認性は「良好」と判断された。
<Display test when combined with a transparent display>
[Example 8]
When a display device in which the liquid crystal element manufactured in Example 3 was superposed on one outer surface of the transparent display was produced and the transparent display was displayed, the liquid crystal element had good transparency and the display of the transparent display The visibility of was judged as “good”.
[比較例4]
 実施例8の液晶素子に代えて、偏光板方式の液晶素子を用いた以外は実施例8と同様に表示試験を行った。偏光板方式の液晶素子としては、一対のガラス基板の対向する面のそれぞれに透明電極及び液晶配向膜が形成されており、一対の基板間に液晶が充填され、周辺にシール剤を配置した液晶セルのガラス基板の外側に偏光板を配置したものを用いた。その結果、比較例4では、液晶素子の光透過性が悪く、透明ディスプレイの表示の視認性は「不良」と判断された。これは、特定基の含有割合が10モル%以下であるPDLC素子の光透過性が良好であることに起因するものと考えられる。一方、偏光板方式の液晶素子では、偏光板での光の吸収が存在するため、理論的に透過率は50%以上とならず、透明ディスプレイの視認性が劣る。以上のことから、透明ディスプレイに重ね合わせる表示素子として、本発明の液晶素子は特に優れているといえる。
[Comparative Example 4]
A display test was conducted in the same manner as in Example 8 except that a polarizing plate type liquid crystal element was used instead of the liquid crystal element in Example 8. As a polarizing plate type liquid crystal element, a transparent electrode and a liquid crystal alignment film are formed on each of opposing surfaces of a pair of glass substrates, a liquid crystal is filled between the pair of substrates, and a sealing agent is disposed around What used the polarizing plate arrange | positioned on the outer side of the glass substrate of a cell was used. As a result, in Comparative Example 4, the light transmittance of the liquid crystal element was poor, and the visibility of the display on the transparent display was determined to be “bad”. This is considered to be due to the good light transmittance of the PDLC element having a specific group content of 10 mol% or less. On the other hand, in the polarizing plate type liquid crystal element, since light absorption by the polarizing plate exists, the transmittance is not theoretically 50% or more, and the visibility of the transparent display is inferior. From the above, it can be said that the liquid crystal element of the present invention is particularly excellent as a display element superimposed on a transparent display.
 本開示は、実施形態に準拠して記述されたが、本開示は上記実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the above-described embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 10…液晶素子、11…第1基材、12…第2基材、13…液晶層、14,15…液晶配向膜、16,17…透明電極、20…表示装置、30…透明ディスプレイ DESCRIPTION OF SYMBOLS 10 ... Liquid crystal element, 11 ... 1st base material, 12 ... 2nd base material, 13 ... Liquid crystal layer, 14, 15 ... Liquid crystal aligning film, 16, 17 ... Transparent electrode, 20 ... Display apparatus, 30 ... Transparent display

Claims (11)

  1.  対向配置された一対の基材と、
     前記一対の基材において互いに対向する面にそれぞれ配置された電極と、
     前記一対の基材間に配置され、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層と、
     前記一対の基板の少なくとも一方の電極配置面上に形成された液晶配向膜と、を備え、
     前記重合性化合物は、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物、多官能チオール化合物及びスチレン系化合物よりなる群から選ばれる少なくとも一種を含み、
     前記液晶配向膜は、重合体成分を含む液晶配向剤を用いて形成されてなり、
     前記液晶配向剤は、前記重合体成分における、下記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶素子。
    (a)炭素数8~22のアルキル基又はアルコキシ基。
    (b)炭素数6~18のフルオロアルキル基又はフルオロアルコキシ基。
    (c)ベンゼン環、シクロへキサン環及び複素環のいずれかの環と、炭素数1~20のアルキル基、アルコキシ基、フルオロアルキル基又はフルオロアルコキシ基とが結合した1価の基。
    (d)ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる少なくとも1種の環を合計2個以上有し、これら複数個の環が直接又は2価の連結基を介して結合した1価の基。
    (e)ステロイド骨格を有する炭素数17~51の1価の基。
    A pair of opposed substrates,
    Electrodes disposed on surfaces facing each other in the pair of substrates,
    A liquid crystal layer disposed between the pair of substrates and formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound;
    A liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of substrates,
    The polymerizable compound includes at least one selected from the group consisting of a monofunctional (meth) acrylate compound, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrenic compound,
    The liquid crystal alignment film is formed using a liquid crystal alignment agent containing a polymer component,
    The liquid crystal aligning agent has a content ratio of structural units derived from a monomer having at least one structure selected from the group consisting of the following (a) to (e) in the polymer component: A liquid crystal device, which is 10 mol% or less based on the total amount of all structural units, and contains at least one compound selected from the group consisting of silane compounds and polysiloxanes.
    (A) an alkyl group or alkoxy group having 8 to 22 carbon atoms;
    (B) a C6-C18 fluoroalkyl group or fluoroalkoxy group.
    (C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
    (D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group. Monovalent group.
    (E) a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
  2.  前記液晶配向剤は、架橋性基を有する化合物を含有する、請求項1に記載の液晶素子。 The liquid crystal element according to claim 1, wherein the liquid crystal aligning agent contains a compound having a crosslinkable group.
  3.  前記液晶配向剤は、光配向性基を有する重合体を含有する、請求項1又は2に記載の液晶素子。 The liquid crystal element according to claim 1, wherein the liquid crystal aligning agent contains a polymer having a photo-alignable group.
  4.  前記重合性化合物は、光学的異方性を示す化合物である、請求項1~3のいずれか一項に記載の液晶素子。 The liquid crystal device according to any one of claims 1 to 3, wherein the polymerizable compound is a compound exhibiting optical anisotropy.
  5.  前記液晶組成物は、色素を更に含有する、請求項1~4のいずれか一項に記載の液晶素子。 The liquid crystal element according to any one of claims 1 to 4, wherein the liquid crystal composition further contains a pigment.
  6.  前記色素は、アゾ化合物及びアントラキノン化合物よりなる群から選ばれる少なくとも一種である、請求項5に記載の液晶素子。 The liquid crystal element according to claim 5, wherein the dye is at least one selected from the group consisting of an azo compound and an anthraquinone compound.
  7.  前記液晶組成物は、酸化防止剤を更に含有する、請求項1~6のいずれか一項に記載の液晶素子。 The liquid crystal element according to any one of claims 1 to 6, wherein the liquid crystal composition further contains an antioxidant.
  8.  請求項1~7のいずれか一項に記載の液晶素子と、非表示状態で透明となる透明ディスプレイと、を備える表示装置。 A display device comprising the liquid crystal element according to any one of claims 1 to 7 and a transparent display that is transparent in a non-display state.
  9.  各基材面に設けられた電極が対向するように配置された一対の基材間に、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層を備える液晶素子の液晶配向膜を形成するための液晶配向剤であって、
     重合体成分において、下記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶配向剤。
    (a)炭素数8~22のアルキル基又はアルコキシ基。
    (b)炭素数6~18のフルオロアルキル基又はフルオロアルコキシ基。
    (c)ベンゼン環、シクロへキサン環及び複素環のいずれかの環と、炭素数1~20のアルキル基、アルコキシ基、フルオロアルキル基又はフルオロアルコキシ基とが結合した1価の基。
    (d)ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる少なくとも1種の環を合計2個以上有し、これら複数個の環が直接又は2価の連結基を介して結合した1価の基。
    (e)ステロイド骨格を有する炭素数17~51の1価の基。
    Liquid crystal alignment of a liquid crystal element comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of substrates arranged so that electrodes provided on each substrate surface face each other A liquid crystal aligning agent for forming a film,
    In the polymer component, the content of the structural unit derived from the monomer having at least one structure selected from the group consisting of the following (a) to (e) is the total amount of all the structural units of the polymer component. The liquid crystal aligning agent which is 10 mol% or less and contains the at least 1 type compound chosen from the group which consists of a silane compound and polysiloxane.
    (A) an alkyl group or alkoxy group having 8 to 22 carbon atoms;
    (B) a C6-C18 fluoroalkyl group or fluoroalkoxy group.
    (C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
    (D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group. Monovalent group.
    (E) a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
  10.  各基材面に設けられた電極が対向するように配置された一対の基材間に、液晶及び重合性化合物を含む液晶組成物を硬化させて形成された液晶層を備える液晶素子の製造方法であって、
     前記一対の基材の少なくとも一方の電極配置面上に液晶配向剤を塗布して液晶配向膜を形成する工程と、
     前記液晶配向膜の形成後に前記一対の基材を、前記液晶組成物を含む層を介して前記電極が対向するように配置して液晶セルを構築する工程と、
     前記液晶セルの構築後に前記重合性化合物を硬化させる工程と、を含み、
     前記重合性化合物は、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物、多官能チオール化合物及びスチレン系化合物よりなる群から選ばれる少なくとも一種を含み、
     前記液晶配向剤は、重合体成分において、下記(a)~(e)よりなる群から選ばれる少なくとも一種の構造を有する単量体に由来する構造単位の含有割合が、前記重合体成分の全構造単位の合計量に対し10モル%以下であり、かつ、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する、液晶素子の製造方法。
    (a)炭素数8~22のアルキル基又はアルコキシ基。
    (b)炭素数6~18のフルオロアルキル基又はフルオロアルコキシ基。
    (c)ベンゼン環、シクロへキサン環及び複素環のいずれかの環と、炭素数1~20のアルキル基、アルコキシ基、フルオロアルキル基又はフルオロアルコキシ基とが結合した1価の基。
    (d)ベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる少なくとも1種の環を合計2個以上有し、これら複数個の環が直接又は2価の連結基を介して結合した1価の基。
    (e)ステロイド骨格を有する炭素数17~51の1価の基。
    A method for producing a liquid crystal device comprising a liquid crystal layer formed by curing a liquid crystal composition containing a liquid crystal and a polymerizable compound between a pair of substrates arranged so that electrodes provided on each substrate surface face each other Because
    Applying a liquid crystal aligning agent on at least one electrode arrangement surface of the pair of base materials to form a liquid crystal alignment film;
    Arranging the pair of base materials after forming the liquid crystal alignment film so that the electrodes face each other through the layer containing the liquid crystal composition;
    Curing the polymerizable compound after the construction of the liquid crystal cell,
    The polymerizable compound includes at least one selected from the group consisting of a monofunctional (meth) acrylate compound, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound, and a styrenic compound,
    The liquid crystal aligning agent is such that, in the polymer component, the content ratio of structural units derived from a monomer having at least one structure selected from the group consisting of the following (a) to (e) is The manufacturing method of a liquid crystal element which is 10 mol% or less with respect to the total amount of a structural unit, and contains the at least 1 type of compound chosen from the group which consists of a silane compound and polysiloxane.
    (A) an alkyl group or alkoxy group having 8 to 22 carbon atoms;
    (B) a C6-C18 fluoroalkyl group or fluoroalkoxy group.
    (C) A monovalent group in which any one of a benzene ring, a cyclohexane ring and a heterocyclic ring is bonded to an alkyl group, alkoxy group, fluoroalkyl group or fluoroalkoxy group having 1 to 20 carbon atoms.
    (D) It has a total of two or more of at least one ring selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and these plural rings are bonded directly or via a divalent linking group. Monovalent group.
    (E) a monovalent group having 17 to 51 carbon atoms and having a steroid skeleton.
  11.  前記電極配置面上に塗布した液晶配向剤を150℃以下で加熱する、請求項10に記載の液晶素子の製造方法。 The method for producing a liquid crystal element according to claim 10, wherein the liquid crystal aligning agent applied on the electrode arrangement surface is heated at 150 ° C. or lower.
PCT/JP2018/002007 2017-02-06 2018-01-23 Liquid crystal element and production method therefor, and display device WO2018143017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018566077A JP6766894B2 (en) 2017-02-06 2018-01-23 Liquid crystal elements, their manufacturing methods, and display devices
CN201880006576.5A CN110168439B (en) 2017-02-06 2018-01-23 Liquid crystal element, method for producing same, liquid crystal aligning agent, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019833 2017-02-06
JP2017019833 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143017A1 true WO2018143017A1 (en) 2018-08-09

Family

ID=63039612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002007 WO2018143017A1 (en) 2017-02-06 2018-01-23 Liquid crystal element and production method therefor, and display device

Country Status (4)

Country Link
JP (1) JP6766894B2 (en)
CN (1) CN110168439B (en)
TW (1) TWI745537B (en)
WO (1) WO2018143017A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142290A (en) * 2018-11-06 2020-05-12 Dic株式会社 Liquid crystal display element
KR20200104481A (en) * 2019-02-26 2020-09-04 주식회사 디케이티 The polymer dispersed liquid crystal display device
WO2022196361A1 (en) * 2021-03-15 2022-09-22 株式会社ジャパンディスプレイ Method for manufacturing display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829759A (en) * 1994-07-18 1996-02-02 Kawamura Inst Of Chem Res Liquid crystal device and its production
JP2003253265A (en) * 2002-02-27 2003-09-10 Dainippon Ink & Chem Inc Material for forming light-controlling layer and liquid crystal device
JP2004317908A (en) * 2003-04-18 2004-11-11 Sony Corp Portable information display device
JP2007334344A (en) * 2006-05-19 2007-12-27 Nec Lcd Technologies Ltd Light source device, display device, terminal device, and transparency/scattering changing element
JP2011059589A (en) * 2009-09-14 2011-03-24 Sony Ericsson Mobilecommunications Japan Inc Display device, mobile information terminal, display control method of mobile information terminal and display control program
US20140078455A1 (en) * 2011-11-29 2014-03-20 Beijing Boe Optoelectronics Technology Co., Ltd. Liquid display panel and process for preparing same
WO2014167885A1 (en) * 2013-04-12 2014-10-16 Jsr株式会社 Optical device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4627484B2 (en) * 2005-10-28 2011-02-09 大日本印刷株式会社 Optical element manufacturing method and liquid crystal display device
US8446548B2 (en) * 2006-05-19 2013-05-21 Nlt Technologies, Ltd. Light source device, display device, terminal device, and transparent/scattering state switching element
JP4708287B2 (en) * 2006-08-25 2011-06-22 富士フイルム株式会社 Manufacturing method of optical film, optical film, polarizing plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure device
JP6241058B2 (en) * 2013-04-15 2017-12-06 ソニー株式会社 Liquid crystal display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829759A (en) * 1994-07-18 1996-02-02 Kawamura Inst Of Chem Res Liquid crystal device and its production
JP2003253265A (en) * 2002-02-27 2003-09-10 Dainippon Ink & Chem Inc Material for forming light-controlling layer and liquid crystal device
JP2004317908A (en) * 2003-04-18 2004-11-11 Sony Corp Portable information display device
JP2007334344A (en) * 2006-05-19 2007-12-27 Nec Lcd Technologies Ltd Light source device, display device, terminal device, and transparency/scattering changing element
JP2011059589A (en) * 2009-09-14 2011-03-24 Sony Ericsson Mobilecommunications Japan Inc Display device, mobile information terminal, display control method of mobile information terminal and display control program
US20140078455A1 (en) * 2011-11-29 2014-03-20 Beijing Boe Optoelectronics Technology Co., Ltd. Liquid display panel and process for preparing same
WO2014167885A1 (en) * 2013-04-12 2014-10-16 Jsr株式会社 Optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142290A (en) * 2018-11-06 2020-05-12 Dic株式会社 Liquid crystal display element
KR20200104481A (en) * 2019-02-26 2020-09-04 주식회사 디케이티 The polymer dispersed liquid crystal display device
KR102178886B1 (en) 2019-02-26 2020-11-17 재단법인 구미전자정보기술원 The polymer dispersed liquid crystal display device
WO2022196361A1 (en) * 2021-03-15 2022-09-22 株式会社ジャパンディスプレイ Method for manufacturing display device

Also Published As

Publication number Publication date
TWI745537B (en) 2021-11-11
JPWO2018143017A1 (en) 2019-11-07
TW201835317A (en) 2018-10-01
CN110168439A (en) 2019-08-23
CN110168439B (en) 2022-05-17
JP6766894B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
KR101726250B1 (en) Liquid crystal display device and method for manufacturing the same
CN103748506B (en) The manufacture method of liquid crystal display cells, aligning agent for liquid crystal and liquid crystal display cells
JP6288412B2 (en) Liquid crystal alignment agent
TWI510464B (en) Material for display, liquid crystal alignment agent and liquid crystal display device and manufacturing method thereof
JP7096533B2 (en) Compounds, liquid crystal compositions and liquid crystal display elements
JP6766894B2 (en) Liquid crystal elements, their manufacturing methods, and display devices
JP6658213B2 (en) Viewing angle compensation film, manufacturing method of viewing angle compensation film, polarizing plate, liquid crystal display device, and organic EL device
JP2013109151A (en) Liquid crystal aligning agent
CN113614624A (en) Resin composition, resin film, and liquid crystal display element
JP2016029465A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film
WO2021235088A1 (en) Liquid crystal element and method for producing same
JP6870689B2 (en) Liquid crystal elements, their manufacturing methods, and display devices
JP2015099344A (en) Liquid crystal alignment agent for psa mode liquid crystal display element, liquid crystal alignment film for psa mode liquid crystal display element, and psa mode liquid crystal display element and manufacturing method of the same
JP6981542B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for manufacturing liquid crystal element
JP7074142B2 (en) Manufacturing method of liquid crystal element
KR102237289B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method for the same, liquid crystal display device, and phase difference film and manufacturing method for the same
WO2018168440A1 (en) Liquid crystal element and method for producing same
JP2020016710A (en) Liquid crystal element, method for manufacturing the same, display device, and liquid crystal composition
CN111793502A (en) Liquid crystal element and method for producing same, liquid crystal composition and method for producing same, and polymer for forming organic layer
JP2015180916A (en) Liquid crystal display device manufacturing method
WO2017086040A1 (en) Method for manufacturing light control element, and light control element
JP2023117826A (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748669

Country of ref document: EP

Kind code of ref document: A1