WO2018142843A1 - 摩擦伝動ベルト - Google Patents

摩擦伝動ベルト Download PDF

Info

Publication number
WO2018142843A1
WO2018142843A1 PCT/JP2018/000089 JP2018000089W WO2018142843A1 WO 2018142843 A1 WO2018142843 A1 WO 2018142843A1 JP 2018000089 W JP2018000089 W JP 2018000089W WO 2018142843 A1 WO2018142843 A1 WO 2018142843A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
knitted fabric
yarn
transmission belt
rubber
Prior art date
Application number
PCT/JP2018/000089
Other languages
English (en)
French (fr)
Inventor
喬 遠藤
梅田 栄
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2018504309A priority Critical patent/JPWO2018142843A1/ja
Publication of WO2018142843A1 publication Critical patent/WO2018142843A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • This disclosure relates to a friction transmission belt.
  • Patent Document 1 discloses a V-belt, a flat belt, and the like in which the entire belt body is covered with a tubular outer cloth, and a knitted fabric may be used as the outer cloth.
  • Patent Document 1 is not satisfactory in terms of suppressing abnormal noise, and further improvement is required.
  • the purpose of the transmission belt of the present disclosure is to further improve the effect of suppressing abnormal noise when wet.
  • the friction transmission belt of the present disclosure for solving the above problems is a friction transmission belt in which a belt main body formed of a rubber composition is wound around a pulley and transmits power. At least the surface on the pulley contact side of the belt body is covered with a knitted fabric.
  • the yarn constituting the knitted fabric extends while reversing the traveling direction, and has a reversing portion that reverses the traveling direction and a straight traveling portion that extends between the reversing portions.
  • the knitted fabric covers the surface on the pulley contact side so as to have a rectilinear portion located on the surface side of the inverted portion.
  • the yarn of the knitted fabric covering the pulley contact portion extends in the width direction of the belt and has a portion exposed on the surface. Since the yarn of the part exhibits the effect of scraping water when the belt is wet, stick-slip noise can be suppressed.
  • FIG. 1 is a diagram schematically illustrating an exemplary V-ribbed belt in an embodiment of the present disclosure.
  • FIG. 2 is a view schematically showing a flat knitted fabric used as a reinforcing fabric for the V-ribbed belt of FIG.
  • FIG. 3 is a diagram schematically showing a rubber knitted fabric used as a reinforcing fabric for the V-ribbed belt of FIG.
  • FIG. 4 is a diagram schematically showing a pearl knitted fabric used as a reinforcing fabric for the V-ribbed belt of FIG. 1.
  • FIG. 5 shows two types of knitted fabrics sewn into a cylindrical shape depending on the direction of the yarns constituting the knitted fabric.
  • FIG. 6 is a diagram for explaining a method of manufacturing the V-ribbed belt of FIG. FIG.
  • FIG. 7 is a diagram for explaining a manufacturing method of the V-ribbed belt of FIG. 1 following FIG. 6.
  • FIG. 8 is a diagram showing a pulley layout of a belt running test apparatus used for the water injection transmission capability test.
  • FIG. 9 is a graph showing the results of the water injection transmission capability test.
  • FIG. 10 is a diagram showing a pulley layout of a belt running test apparatus used for an abnormal noise evaluation test.
  • FIG. 1 shows an exemplary V-ribbed belt B of this embodiment.
  • This V-ribbed belt is used, for example, in an accessory drive belt transmission provided in an engine room of an automobile, and has a belt circumferential length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5 0.0 mm.
  • the V-ribbed belt B includes a belt main body 10 configured as a double layer of an adhesive rubber layer 11 on the belt outer peripheral side and a compression rubber layer 12 on the belt inner peripheral side.
  • a back rubber layer 17 is attached to the belt outer peripheral surface of the belt body 10.
  • a knitted fabric 14 is provided as a rib-side reinforcing fabric.
  • the core 16 is embedded in the adhesive rubber layer 11 so as to form a spiral having a pitch in the belt width direction.
  • the adhesive rubber layer 11 is formed in a band shape having a horizontally long cross section, and has a thickness of 1.0 to 2.5 mm, for example.
  • the adhesive rubber layer 11 is formed of a rubber composition in which various compounding agents are blended with the raw rubber component.
  • Examples of the raw rubber component of the rubber composition constituting the adhesive rubber layer 11 include ethylene- ⁇ -olefin elastomers such as ethylene / propylene rubber (EPR) and ethylene propylene diene monomer rubber (EPDM), chloroprene rubber (CR), Examples thereof include chlorosulfonated polyethylene rubber (CSM) and hydrogenated acrylonitrile rubber (HNBR). Of these, ethylene- ⁇ -olefin elastomers are preferred from the viewpoint of exhibiting excellent properties in terms of heat resistance and cold resistance.
  • EPR ethylene / propylene rubber
  • EPDM ethylene propylene diene monomer rubber
  • CSM chlorosulfonated polyethylene rubber
  • HNBR hydrogenated acrylonitrile rubber
  • the compounding agent used for the adhesive rubber layer 11 examples include a crosslinking agent (for example, sulfur, organic peroxide), an anti-aging agent, a processing aid, a plasticizer, a reinforcing material such as carbon black, a filler, and the like.
  • a crosslinking agent for example, sulfur, organic peroxide
  • an anti-aging agent for example, sulfur, organic peroxide
  • an anti-aging agent for example, sulfur, organic peroxide
  • the short fiber may be mix
  • the rubber composition for forming the adhesive rubber layer 11 is obtained by blending a raw material rubber component with a compounding agent, and heating and pressing the kneaded uncrosslinked rubber composition so as to be crosslinked
  • the core wire 16 is embedded in the adhesive rubber layer 11 so as to extend in the belt length direction and to form a spiral having a pitch in the belt width direction.
  • the core wire 16 is composed of a twisted yarn 16 'such as polyester fiber, polyethylene naphthalate (PEN) fiber, aramid fiber, vinylon fiber, polyketone fiber.
  • the core wire 16 has an outer diameter of 0.7 to 1.1 mm, for example.
  • the core 16 is subjected to an adhesive treatment that is heated after being immersed in an RFL aqueous solution before molding and / or an adhesive treatment that is dried after being immersed in rubber paste in order to impart adhesion to the belt body 10. ing.
  • the compressed rubber layer 12 is provided with a plurality of V ribs 13 depending on the belt inner peripheral side.
  • Each of the plurality of V ribs 13 is formed in a protruding shape having a substantially triangular cross section extending in the belt length direction, and is arranged in parallel in the belt width direction.
  • Each V-rib 13 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm.
  • the number of ribs is, for example, 3 to 6 (in FIG. 1, the number of ribs is 6).
  • the compressed rubber layer 12 is formed of a rubber composition in which various compounding agents are blended with the raw rubber component.
  • Examples of the raw rubber component of the rubber composition constituting the compressed rubber layer 12 include ethylene- ⁇ -olefin elastomers such as ethylene / propylene rubber (EPR) and ethylene propylene diene monomer rubber (EPDM), chloroprene rubber (CR), Examples thereof include chlorosulfonated polyethylene rubber (CSM) and hydrogenated acrylonitrile rubber (H-NBR). Of these, ethylene- ⁇ -olefin elastomers are preferred from the viewpoint of exhibiting excellent properties in terms of heat resistance and cold resistance.
  • EPR ethylene / propylene rubber
  • EPDM ethylene propylene diene monomer rubber
  • CSM chlorosulfonated polyethylene rubber
  • H-NBR hydrogenated acrylonitrile rubber
  • Examples of the compounding agent used for the compressed rubber layer 12 include a crosslinking agent (for example, sulfur, organic peroxide), an antioxidant, a processing aid, a plasticizer, a reinforcing material such as carbon black, a filler, a short fiber, and the like. Is mentioned.
  • the rubber composition forming the compressed rubber layer 12 is obtained by blending a raw material rubber component with a compounding agent, and heating and pressurizing the kneaded uncrosslinked rubber composition so as to be crosslinked with the crosslinking agent.
  • Examples of the short fibers blended in the rubber composition constituting the compressed rubber layer 12 include nylon short fibers, vinylon short fibers, aramid short fibers, polyester short fibers, cotton short fibers, and the like.
  • the short fiber has, for example, a length of 0.2 to 5.0 mm and a fiber diameter of 10 to 50 ⁇ m.
  • the short fiber is manufactured by, for example, cutting a long fiber that has been subjected to an adhesive treatment to be heated after being immersed in an RFL aqueous solution or the like into a predetermined length along the length direction. A part of the short fibers may be dispersedly exposed on the surface of the V-rib 13, and the short fibers exposed on the surface of the V-rib 13 may protrude from the surface of the V-rib 13.
  • the adhesive rubber layer 11 and the compressed rubber layer 12 may be formed of separate rubber compositions or may be formed of the same rubber composition.
  • the back rubber layer 17 is formed of a rubber composition comprising the same raw rubber components and compounding agents as the adhesive rubber layer 11.
  • the back rubber layer 17 is formed of a rubber composition slightly harder than the adhesive rubber layer 12 from the viewpoint of suppressing the occurrence of adhesion due to contact between the belt back surface and the flat pulley.
  • the thickness of the back rubber layer 17 is, for example, 0.4 mm to 0.8 mm. From the viewpoint of suppressing sound generated between the back rubber layer 17 and a flat pulley with which the back surface of the belt contacts, it is preferable that the texture of the woven fabric is transferred.
  • the back-side reinforcing fabric is made of, for example, a fabric material, a knitted fabric, a nonwoven fabric, or the like woven into plain weave, twill weave, satin weave, or the like, using yarn such as cotton, polyamide fiber, polyester fiber, or aramid fiber.
  • the back side reinforcing cloth is coated with rubber paste on the surface on the side of the belt body 10 and / or an adhesive treatment in which it is immersed in an RFL aqueous solution and heated before molding to give adhesion to the belt body. An adhesion treatment for drying is performed.
  • the knitted fabric 14 that covers the rib side surface of the belt body 10 is, for example, a yarn (wooly processed yarn) obtained by false twisting (wooly processing) of polyamide fiber, polyester fiber, cotton, nylon fiber, or the like.
  • a yarn (covering yarn) covered with a covering yarn using a polyurethane elastic yarn as a core yarn is used as a knitted fabric.
  • the surface of the knitted fabric 14 is covered with an RFL layer.
  • the RFL coating contains a friction coefficient reducing agent in a dispersed state.
  • the friction coefficient reducing agent include polytetrafluoroethylene (PTFE), tetrafluoroethylene / ethylene copolymer (ETFE), and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA).
  • PTFE polytetrafluoroethylene
  • ETFE tetrafluoroethylene / ethylene copolymer
  • PFA perfluoroalkyl vinyl ether copolymer
  • the knitted fabric 14 is surface-coated with an RFL coating containing a friction coefficient reducing agent, dust and rust adhere to the inside of the knitted fabric 14 even when used in an environment where dust and rust are generated. And a state of a low friction coefficient can be maintained. Therefore, it is possible to solve the problem that the friction coefficient increases and the belt wears out early, the problem that abnormal noise occurs due to the large friction coefficient, and the like.
  • FIG. 2 shows one specific example of the knitted fabric 14.
  • FIG. 2 shows an enlarged view of the knitted fabric 14 when the rib-side surface of the V-ribbed belt is observed. Further, the vertical direction and the horizontal direction in FIG. 2 correspond to the width direction and the traveling direction of the V-ribbed belt, respectively.
  • the knitted fabric 14 shown in FIG. 2 is called a flat knitting or a tentacle knitting.
  • the knitted fabric has a distinction between a warp knitting and a flat knitting, but a flat knitting is a kind of flat knitting.
  • the yarn 21 constituting the knitted fabric 14 extends in the running direction (lateral direction in the drawing) of the V-ribbed belt while being reversed (meandering) so as to reciprocate in the width direction (vertical direction in the drawing) of the V-ribbed belt.
  • the yarn 21 has a reversing portion 22 that reverses the traveling direction of the yarn, and a rectilinear portion 23 that extends between the reversing portions 22. Since the yarn 21 meanders so as to reciprocate in the width direction of the V-ribbed belt, the rectilinear portion 23 extends substantially in the width direction of the V-ribbed belt.
  • the rectilinear portion 23 may extend strictly in the width direction. However, as shown in FIG.
  • the straight portion 23 may be slightly inclined depending on how the yarn is entangled in the knitted fabric. This is referred to as the “width direction”. It can also be said that it extends closer to the width direction (that is, in a direction closer to the width direction than the traveling direction).
  • the inversion portion 22 is shown as having a portion in which the yarn 21 extends straight in the belt running direction (left and right direction in FIG. 2). The direction may be reversed. Further, “straight forward” of the straight portion 23 means that the yarn 21 extends in substantially the same direction in comparison with the change of the direction of the thread 21 in the reversal portion 22, and does not strictly extend linearly (FIG. 2). Also slightly curved in an S shape).
  • the yarn is entangled depends on the type of knitted fabric.
  • the rectilinear portion 23 always passes over the reversal portion 22 (the front side of the drawing in the drawing).
  • the side with the straight portion 23 facing upward is the front side, and the opposite side is the back side.
  • the knitted fabric 14 is arranged so that the straight portion 23 has a portion that protrudes to the surface side (opposite side of the belt body 10) from the reverse portion 22. Since the knitted fabric 14 is a flat knitted fabric in FIG. As a result, there is a yarn that is located on the outermost surface of the belt and extends substantially in the width direction of the belt. Such a portion of the yarn (straight forward portion 23) located on the belt surface and extending in the width direction of the belt exerts an effect of scraping water when it gets wet during belt running. As a result, there is an effect of suppressing a decrease in transmission capability due to the wetness of the belt, and consequently stick-slip noise can be suppressed.
  • the direction of the knitted fabric 14 is changed by 90 ° C. so that the straight portion 23 extends substantially in the belt running direction.
  • the straight portion 23 since the running direction of the belt and the extending direction of the straight portion 23 substantially coincide with each other, the straight portion 23 does not exhibit the effect of scraping water and does not exhibit the effect of suppressing stick-slip noise.
  • the rectilinear portion 23 is below the inversion portion 22a. In this case, there is no portion of the yarn located on the belt surface and extending in the belt width direction. Therefore, even in this case, the effect of suppressing stick-slip abnormal noise is not exhibited.
  • the rectilinear portion 23 is longer than the reversing portion 22 (for example, about twice as long), and the reversing portion 22 does not always have a portion extending straight as shown in FIG. This demonstrates the effect of scraping water.
  • one step 24b of the stitch constituted by meandering of the yarn 21 is adjacent to the step 24a and the step 24b, and the respective yarns 21 are intertwined.
  • the rectilinear portion 23 in one stage is continuously arranged with the rectilinear portion 23 in an adjacent stage.
  • the direction in which the individual straight portions 23 extend has an angle with respect to the width direction of the V-ribbed belt (the vertical direction in the figure), but the continuation of the straight portions 23 at each stage extends in the width direction of the V-ribbed belt. .
  • the rectilinear portion 23 is continuous in the width direction of the V-ribbed belt, the water scraping effect is further improved.
  • the thickness of the knitted fabric 14 is, for example, 0.2 to 1.0 mm.
  • the yarn density of the knitted fabric 14 is 55 to 80 / 2.54 cm in the traveling direction of the V-ribbed belt and 40 to 70 / 2.54 cm in the width direction as the number of stitches.
  • FIG. 2 the entire connection of the yarns 21 of the knitted fabric 14 (reversed portion 22 and rectilinear portion 23) is depicted, but the knitted fabric 14 is partially covered with the rubber of the belt body 10 on the rib side surface of the V-ribbed belt B. It may be embedded.
  • the rectilinear portion 23 of the yarn 21 is located on the surface side of the reversing portion 22, for example, the reversing portion 22 is embedded in rubber and the rectilinear portion 23 protrudes from the rubber.
  • the rectilinear portion 23 extending substantially in the width direction of the belt protrudes from the rubber and exhibits the effect of scraping off water.
  • FIG. 3 shows a rubber knitted fabric as another example of the knitted fabric 14.
  • the vertical relationship between the rectilinear portion 23 and the reversing portion 22 is reversed every time the thread 21 meanders and reciprocates. That is, in FIG. 3, the rectilinear portion 23 a indicated by hatching is located above the reversal portion 22 a (on the surface side of the V-ribbed belt), similarly to the flat knitting in FIG. 2. However, in a portion adjacent to the belt traveling direction (left and right in the figure), the straight traveling portion 23a is lower than the reversing portion 22a.
  • a part of the rectilinear portion 23a is above the inversion portion 22a, so that the rectilinear portion 23a exhibits the effect of scraping water.
  • the portion can be protruded from the rubber even when a part of the knitted fabric 14 is embedded in the rubber of the belt main body 10.
  • the straight-ahead portion located on the surface of the belt is halved as compared with the case of flat knitting, so the effect of suppressing abnormal noise may be reduced.
  • rubber knitting differs in fabric properties compared to flat knitting (for example, greater stretchability in the lateral direction). Therefore, it is conceivable to use a rubber knitted fabric depending on the characteristics required for the belt, the convenience in manufacturing the belt, and the like.
  • FIG. 4 shows a pearl knitting as still another example of the knitted fabric 14.
  • the rectilinear portion 23b included in one stage of the yarn 21 is positioned below the inversion portion 22b included in one of the two adjacent stages, and more than the inversion portion 22b included in the other stage. Also located on the top. Also in this case, since the rectilinear portion 23b located above the reversing portion 22b exists, the portion exhibits the effect of scraping water and thus suppressing the abnormal noise. Also in the case of pearl knitting, since the straight advancement portion 23b located on the surface of the belt is less than that in the flat knitting, the effect of suppressing abnormal noise may be reduced.
  • the pearl knitting has different properties from the flat knitting and the rubber knitting (for example, the stretchability in the vertical and horizontal directions is large), it may be considered to use the pearl knitting depending on the characteristics required for the belt and the convenience in manufacturing the belt. It is done.
  • V-ribbed belt manufacturing method- Next, a method for manufacturing the V-ribbed belt B of the present embodiment will be described with reference to FIGS.
  • Adhesive rubber materials 11a ′ and 11b ′ and a compressed rubber material 12 ′ for forming the adhesive rubber layer 11 and the compressed rubber layer 12 are produced by a known method, and a twisted yarn 16 ′ that becomes the core 16 is known. Bonding process is performed.
  • a PTFE-containing RFL aqueous solution for performing RFL adhesion treatment on the knit cloth 14 ′ is prepared.
  • the PTFE-containing RFL aqueous solution is prepared by mixing a latex with an initial condensate of resorcin and formalin and further blending a friction coefficient reducing agent such as polytetrafluoroethylene (PTFE).
  • the solid content of the RFL aqueous solution is, for example, 10 to 30% by mass.
  • the latex examples include ethylene propylene diene monomer rubber latex (EPDM), ethylene propylene rubber latex (EPR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex (CSM), hydrogenated acrylonitrile rubber latex (X-NBR). ) And the like.
  • the friction coefficient reducing agent is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the RFL solid content.
  • the knit cloth 14 ′ After the knit cloth 14 ′ is immersed in this RFL aqueous solution, it is dried by heating at 120 to 170 ° C. using a drying furnace. At this time, water in the RFL aqueous solution is scattered and a condensation reaction between resorcin and formalin proceeds, and an RFL film is formed so as to cover the surface of the knit cloth 14 ′.
  • the RFL adhesion amount is, for example, 5 to 30 parts by mass with respect to 100 parts by mass of the knitted cloth 14 '.
  • the knit cloth 14 'whose surface is coated with the RFL film is formed into a cylindrical shape.
  • the knit cloth 14 ' is cut into predetermined lengths, folded and overlapped so that both ends of the cut pieces are aligned, and the positions of these ends are set on the ultrasonic heating device. Install a cutter above them. Then, by applying high frequency vibration (for example, 10 to 30 KHz) with an ultrasonic heating device and thermocompression bonding, the thermocompression bonded portion is cut with a cutter, and the folded knit cloth 14 ′ is spread. , A tubular knit cloth is formed.
  • high frequency vibration for example, 10 to 30 KHz
  • the direction of the straight portion 23 of the yarn 21 constituting the cloth can be set in the tubular knit cloth 14 ′ by the method of cutting and connecting the knit cloth. That is, as schematically shown in FIG. 5, the tubular knit cloth 14 a meandering so that the yarn 21 reciprocates in the width direction (therefore, the straight portion 23 of the yarn extends in the width direction), and the yarn It is possible to make a tubular knit cloth 14b that meanders 21 so as to reciprocate in the circumferential direction (the straight portion 23 of the yarn extends in the circumferential direction).
  • the joint portion 25 that connects the cloths in a tubular shape may be provided in parallel to the belt width direction. That is, the knit cloth is cut into a rectangular shape, and the cut portions are connected to form a cylinder. In this case, since cutting and joining are performed along the cloth direction, there is an advantage that the cylindrical knit cloth can be most easily manufactured.
  • connection method can be selected according to need in consideration of the simplicity of connection work and crack resistance.
  • the belt forming apparatus 30 includes a cylindrical rubber sleeve mold 31 and a cylindrical outer mold 32 that fits the cylindrical rubber sleeve mold 31.
  • the rubber sleeve mold 31 is a flexible one made of, for example, acrylic rubber.
  • the rubber sleeve mold 31 is inflated radially outward by a method such as sending high-temperature steam from the inside of the cylinder, and is pressed against the cylindrical outer mold 32.
  • the outer peripheral surface of the rubber sleeve mold 31 has a shape for smoothly molding the surface on the back side of the V-ribbed belt B.
  • the rubber sleeve mold 31 has, for example, an outer diameter of 700 to 2800 mm, a thickness of 8 to 20 mm, and a height of 500 to 1000 mm.
  • the cylindrical outer mold 32 is made of, for example, metal, and a protrusion 32a having a substantially triangular cross section for forming the V rib 13 of the V ribbed belt B extends on the inner surface in the height direction. They are arranged side by side. For example, 140 protrusions 32a are provided side by side in the height direction.
  • the cylindrical outer mold 32 has, for example, an outer diameter of 830 to 2930 mm, an inner diameter (not including the protrusion 32a) of 730 to 2830 mm, a height of 500 to 1000 mm, and a height of the protrusion 32a of 2.0 to The width per 2.5 mm and the protrusion 32a is 3.5 to 3.6 mm.
  • the belt material is sequentially set in the belt forming apparatus 30.
  • a cylindrical rubber sheet 17 ′ to be the back rubber layer 17 is fitted in the rubber sleeve mold 31, and then a plurality of sheet-like adhesive rubber materials 11 a ′ are wound and the twisted threads 16 ′ are wound in a circumferential direction.
  • the twisted yarn 16 ′ is wound so as to form a spiral having a pitch in the height direction of the rubber sleeve mold 31.
  • the sheet-like adhesive rubber material 11b ' is wound around the twisted yarn 16', and further the sheet-like compressed rubber material 12 'is wound.
  • a knitted cloth 14 ' (tubular knitted cloth 14a or 14b) is fitted over the compressed rubber material 12'.
  • the rubber sheet 17 ′, the adhesive rubber material 11 a ′, the twisted yarn 16 ′, the adhesive rubber material 11 b ′, the compressed rubber material 12 ′, and the knitted cloth 14 are sequentially arranged from the rubber sleeve mold 31. 'Is in a stacked state. Furthermore, the cylindrical outer mold
  • the knit cloth 14 ′ is disposed on the rib side surface of the belt slab with V ribs (similar to the knitted cloth 14 shown in FIG. 1).
  • the yarn of the knitted cloth 14 ' may be partially embedded in the rubber layer. However, it is avoided that the rubber component passes through the knitted cloth 14 ′ when flowing, and the knitted cloth 14 ′ is completely embedded in the rubber layer. This is generally performed, but can be realized by appropriately selecting the characteristics (yarn density, stretchability, etc.), rubber characteristics, processing temperature, pressure, etc. of the knit cloth 14 '.
  • V-ribbed belt slab is cooled and then removed from the belt forming apparatus 30. Thereafter, the removed belt slab with V-rib is cut into a width of, for example, 10.68 to 28.48 mm, and each side is turned over. As a result, a V-ribbed belt B is obtained.
  • the sheet-like adhesive rubber material 11 ′ and the compressed rubber material 12 ′ are wound and set around the rubber sleeve mold 31, but a previously molded cylindrical shape is fitted into the rubber sleeve mold 31 and set. Also good.
  • the belt forming apparatus 30 has been described as being provided with the V groove for forming the V rib 13 of the V ribbed belt B on the inner surface of the cylindrical outer mold 32, it is not particularly limited thereto.
  • a protruding portion for forming the V rib 13 of the V-ribbed belt B is provided on the outer peripheral side surface of the rubber sleeve mold, and the inner peripheral surface of the cylindrical outer mold 32 is smooth to form the back surface of the V-ribbed belt B. It may be provided.
  • the knitted cloth 14 ', the compressed rubber material 12', the adhesive rubber material 11 ', the twisted yarn 16', the adhesive rubber material 11 ', and the rubber sheet 17' are wound around the rubber sleeve mold 31 in this order.
  • V-ribbed belt and its manufacturing method above, it is not restricted to this, A flat belt, V belt, etc. may be sufficient.
  • Test evaluation belt Two V-ribbed belts B were prepared as test evaluation belts as follows.
  • EPDM manufactured by JSR, trade name: JSR EP123
  • carbon black manufactured by Asahi Carbon Co., trade name: Asahi # 60
  • plasticizer Nihon Sun Oil Co., Ltd., trade name: Sunflex 2280
  • cross-linking agent Nippon Yushi Co., Ltd., trade name: Park Mill D
  • anti-aging agent 3 parts by weight, manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name: Antage MB, 6 parts by weight of zinc oxide (made by Sakai Chemical Industry Co., Ltd., trade name: zinc oxide type 2)
  • stearic acid trade name: manufactured by Kao Corporation, trade name: stearic acid
  • An unvulcanized rubber composition was prepared by blending 1 part by mass and kneading. This
  • EPDM is used as a raw rubber, and 55 parts by mass of carbon black, 15 parts by mass of a plasticizer, 8 parts by mass of a crosslinking agent, aging,
  • An unvulcanized rubber composition was prepared by blending 3 parts by mass of the inhibitor, 6 parts by mass of zinc oxide, and 1 part by mass of stearic acid. This uncrosslinked rubber composition was processed into a sheet having a thickness of 0.7 mm using a roll.
  • a polyester fiber twisted yarn was prepared, and this was immersed in an RFL aqueous solution and dried by heating.
  • the knitted fabric used is a flat knitted fabric (tengu knitted fabric) using a urethane elastic yarn covered with 6-nylon yarn.
  • the fineness of the urethane elastic yarn is 22 denier (24.4 dtex), and the 6-nylon yarn has a fineness of 78 denier (86.7 dtex) and 52 filaments.
  • the knitting density of the knit cloth is 66 / 2.54 cm and 70 / 2.54 cm.
  • the thickness of the knitted cloth is 0.52 mm.
  • RFL solid 30 parts by mass of PTFE (manufactured by AGC, trade name: Fullon PTFE AD911, PTFE average particle size 0.25 ⁇ m, PTFE 60% by mass) is blended with 100 parts by mass of the mixture, and the mixture is stirred for 24 hours to perform an aqueous PTFE-containing RFL Was prepared.
  • An RFL film was formed on the surface of the knitted fabric by immersing the knitted fabric in this PTFE-containing RFL aqueous solution and drying it by heating.
  • the end portions (joint portions) of the knit cloth subjected to the RFL adhesion treatment were subjected to thermocompression bonding while applying ultrasonic vibration (frequency of about 80 KHz), thereby forming the knit cloth into a cylindrical shape.
  • the cylindrical knitted cloth 14 a in which the straightly running portion 23 of the yarn 21 constituting the knitted cloth faces in the width direction, and the cylindrical knitted cloth 14 b in the circumferential direction. Produced. Also, the knit cloth, which is a flat knitting, is turned outward.
  • a rubber sheet that forms the back rubber layer 17, a non-crosslinked rubber material for forming an adhesive rubber layer, and a twisted yarn are wound around the rubber sleeve mold 31 of the belt molding apparatus 30 in order, and then an uncoated rubber layer for forming the adhesive rubber layer is formed.
  • the crosslinked rubber material, the uncrosslinked rubber material for forming the compressed rubber layer, and the cylindrical knitted fabrics 14a and 14b subjected to the above-described adhesion treatment were wound.
  • the cylindrical outer mold 32 provided with the V-groove was fitted into a rubber sleeve mold from above the belt material and expanded, pressed against the rubber sleeve mold 31 side, and heated with high-temperature steam or the like.
  • the rubber component flowed and the crosslinking reaction proceeded, and in addition, the adhesion reaction of the twisted yarn and the rib-side knit reinforcing fabric to the rubber also proceeded.
  • a cylindrical belt precursor was obtained.
  • the belt precursor is removed from the belt forming apparatus 30, and the width is adjusted so that the width is 10.68 mm (3PK: the number of ribs is 3) or the width is 21.36 (6PK: the number of ribs is 6).
  • a V-ribbed belt was obtained by cutting and turning the front and back.
  • FIG. 8 shows a pulley layout of the belt running test machine 40 used for the water injection transmission capability test.
  • the belt running test machine 40 includes a driving pulley 41 that is a rib pulley having a pulley diameter of 121.6 mm, a driven pulley 42 that is a rib pulley having a pulley diameter of 141.5 mm arranged on the right side thereof, and a pulley arranged on the upper right side thereof.
  • a driven pulley 43 which is a rib pulley having a diameter of 77.0 mm
  • a driven pulley 45 which is a rib pulley having a pulley diameter of 61.0 mm, disposed on the upper left side thereof.
  • the idler pulley 44 which is a flat pulley having a pulley diameter of 76.2 mm, disposed between the driven pulley 43 and the driven pulley 45, and the pulley diameter of 76.2 mm disposed between the driven pulley 45 and the driving pulley 41.
  • an idler pulley 46 which is a flat pulley.
  • the rib side of the V-ribbed belt contacts the drive pulley 41, the driven pulley 42, the driven pulley 43, and the driven pulley 45 that are rib pulleys, and the back side contacts the idler pulley 44 and the idler pulley 46 that are flat pulleys. Is configured to do.
  • a belt tension of 706 N (72 kgf) was applied by the driven pulley 45, and the pulley contact angle at the driven pulley 42 was 39 ° and the ambient temperature was 21 ° C. Further, in the portion between the driving pulley 41 and the driven pulley 42, water was injected into the V-ribbed belt at a water injection amount of 300 ml / min.
  • the rotational speed of the driving pulley 41 was 800 rpm
  • the rotational speed of the driven pulley 42 was 931 rpm.
  • the rotation direction of the pulley is a direction in which the drive pulley 41 is rotated to the right as indicated by an arrow in FIG. 8, and the V-ribbed belt away from the drive pulley 41 moves toward the idler pulley 46.
  • the V-ribbed belt of the example (the straight portion 23 of the yarn extends in the width direction of the belt) is the V-ribbed belt of the comparative example (the straight portion 23 extends in the direction of travel of the belt).
  • the torque is greater than Specifically, in both the example and the comparative example, the torque is maximum when the slip ratio is about 1%, and the torque of the example is about 8 Nm, which is 25% compared to about 6 Nm of the comparative example. It is getting bigger.
  • FIG. 10 shows a pulley layout of the belt running test machine 50 used for the abnormal noise evaluation test.
  • the belt running test machine 50 includes a driving pulley 51 (DR) which is a rib pulley having a pulley diameter of 146 mm, a driven pulley 52 (DN1) which is a rib pulley having a pulley diameter of 125 mm arranged on the lower right side thereof, and an upper side thereof.
  • An idler pulley 53 (ID1) which is a flat pulley having a pulley diameter of 120 mm
  • DN2 which is a rib pulley having a pulley diameter of 58 mm disposed on the upper right side thereof, and a flat pulley having a pulley diameter of 95 mm disposed on the left side thereof.
  • the belt running test machine 50 is configured such that the rib side of the V-ribbed belt contacts the drive pulley 51, the driven pulley 52, and the driven pulley 54 that are rib pulleys, and the back side contacts the idler pulley 53 and the idler pulley 55 that are flat pulleys.
  • Table 1 shows the coordinates of the center of each pulley when the center of the driving pulley 51 is the origin (0, 0) of the XY coordinates as shown in FIG.
  • the center of the driven pulley 52 is (162, ⁇ 67) in coordinates, which means a position of 162 mm on the right and 67 mm on the lower side in FIG.
  • drive pulley 51 is a no-paint pulley
  • driven pulley 52 and the driven pulley 54 are paint pulleys.
  • the linearly moving portion of the yarn is on the surface side of the belt (opposite side of the belt body) with respect to the reverse portion, and is directed in the width direction of the belt.
  • the friction transmission belt of the present disclosure can be used as a friction transmission belt used in a wet environment because it can maintain the driving force when it is wet and suppress the generation of abnormal noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Knitting Of Fabric (AREA)

Abstract

摩擦伝動ベルトは、ゴム組成物により形成されたベルト本体(10)がプーリに巻き掛けられて動力を伝達する。ベルト本体(10)における少なくともプーリ接触側の表面は、編布(14)によって被覆されている。編布(14)を構成する糸は、進行方向を反転しながら延びており、進行方向を反転させる反転部分(22)と、当該反転部分(22)同士の間を繋いで延びる直進部分(23)とを有する。編布(14)は、反転部分(22)よりも表面側に位置する直進部分(23)を有するようにプーリ接触側の表面を被覆している。

Description

摩擦伝動ベルト
 本開示は、摩擦伝動ベルトに関する。
 エンジン、モーター等の回転動力を伝達する手段として、駆動側と従動側との回転軸にプーリ等を固定させて設けると共に、それぞれのプーリにVリブドベルト、Vベルト等の伝動ベルトを掛け渡す方法が広く用いられている。このような伝動ベルトは、例えば、運転中に被水した際にスティック-スリップ等と呼ばれる現象を起こすこと、つまり、伝動ベルトとプーリとの間においてスリップが生じ、異音を発生させることが知られている。このような伝動ベルトのスリップ音は、装置の噪音の原因となることから、種々の対策が検討されている。
 例えば、特許文献1には、ベルト本体全体が筒状の外皮布にて覆われたVベルト、平ベルト等が開示され、外皮布として編物を用いても良いとされている。
特開平5-272593号公報
 しかしながら、前記特許文献1については、異音を抑制するという点については満足のいくものではなく、更なる改善が求められている。
 以上から、本開示の伝動ベルトの目的は、被水時等における異音抑制の効果を更に改善することである。
 前記課題を解決するための本開示の摩擦伝動ベルトは、ゴム組成物により形成されたベルト本体がプーリに巻き掛けられて動力を伝達する摩擦伝動ベルトである。ベルト本体における少なくともプーリ接触側の表面は、編布によって被覆されている。編布を構成する糸は、進行方向を反転しながら延びており、進行方向を反転させる反転部分と、当該反転部分同士の間を繋いで延びる直進部分とを有する。編布は、反転部分よりも表面側に位置する直進部分を有するようにプーリ接触側の表面を被覆している。
 本開示の摩擦伝動ベルトによると、そのプーリ接触部分を被覆する編布の糸が概ねベルトの幅方向に延び且つ表面に露出した部分を有する。当該部分の糸がベルトの被水時に水を掻き取る効果を発揮するので、スティックスリップ異音を抑制することができる。
図1は、本開示の一実施形態における例示的Vリブドベルトを模式的に示す図である。 図2は、図1のVリブドベルトの補強布として用いる平編布を模式的に示す図である。 図3は、図1のVリブドベルトの補強布として用いるゴム編布を模式的に示す図である。 図4は、図1のVリブドベルトの補強布として用いるパール編布を模式的に示す図である。 図5は、筒状に縫い合わせた編布について、編布を構成する糸の向きの違いによる2種を示している。 図6は、図1のVリブドベルトの製造方法を説明する図である。 図7は、図6に続いて、図1のVリブドベルトの製造方法を説明する図である。 図8は、注水伝動能力試験に用いるベルト走行試験装置のプーリレイアウトを示す図である。 図9は、注水伝動能力試験の結果を示すグラフである。 図10は、異音評価試験に用いるベルト走行試験装置のプーリレイアウトを示す図である。
 以下、本開示の一実施形態について、図面を参照しながら説明する。
  (Vリブドベルト)
 図1は、本実施形態の例示的VリブドベルトBを示す。このVリブドベルトは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置に用いられるものであり、ベルト周長700~3000mm、ベルト幅10~36mm、及びベルト厚さ4.0~5.0mmに形成されている。
 このVリブドベルトBは、ベルト外周側の接着ゴム層11と、ベルト内周側の圧縮ゴム層12との二重層に構成されたベルト本体10を備えている。ベルト本体10のベルト外周側表面には、背面ゴム層17が貼設されている。ベルト本体10のリブ側の表面には、リブ側補強布として編布14が設けられている。また、接着ゴム層11には、心線16がベルト幅方向にピッチを有する螺旋を形成するように埋設されている。以下、それぞれの構成要素を説明する。
 接着ゴム層11は、断面横長矩形の帯状に形成され、例えば、厚さ1.0~2.5mmである。接着ゴム層11は、原料ゴム成分に種々の配合剤が配合されたゴム組成物により形成されている。
 接着ゴム層11を構成するゴム組成物の原料ゴム成分としては、例えば、エチレン・プロピレンゴム(EPR)やエチレンプロピレンジエンモノマーゴム(EPDM)等のエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリルニトリルゴム(HNBR)等が挙げられる。これらのうち、耐熱性及び耐寒性の点で優れた性質を示す観点から、エチレン-α-オレフィンエラストマーが好ましい。
 接着ゴム層11に用いる配合剤としては、例えば、架橋剤(例えば、硫黄、有機過酸化物)、老化防止剤、加工助剤、可塑剤、カーボンブラック等の補強材、充填材等が挙げられる。接着ゴム層11を構成するゴム組成物には、短繊維が配合されていてもよいが、心線16との接着性の点からは短繊維が配合されていないことが好ましい。尚、接着ゴム層11を形成するゴム組成物は、原料ゴム成分に配合剤を配合し、混練した未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたものである。
 次に、心線16は、接着ゴム層11にベルト長さ方向に伸びると共に、ベルト幅方向にピッチを有する螺旋を形成するように埋設されている。心線16は、ポリエステル繊維、ポリエチレンナフタレート(PEN)繊維、アラミド繊維、ビニロン繊維、ポリケトン繊維等の撚り糸16’で構成されている。心線16は、例えば外径が0.7~1.1mmである。心線16には、ベルト本体10に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬した後に加熱する接着処理、及び/又は、ゴム糊に浸漬した後に乾燥させる接着処理が施されている。
 次に、圧縮ゴム層12には、複数のVリブ13がベルト内周側に垂下するように設けられている。これらの複数のVリブ13は、各々がベルト長さ方向に延びる断面略三角形の突状に形成されていると共に、ベルト幅方向に並設されている。各Vリブ13は、例えば、リブ高さが2.0~3.0mm、基端間の幅が1.0~3.6mmである。また、リブ数は、例えば、3~6個である(図1では、リブ数が6)。
 また、圧縮ゴム層12は、原料ゴム成分に種々の配合剤が配合されたゴム組成物により形成されている。
 圧縮ゴム層12を構成するゴム組成物の原料ゴム成分としては、例えば、エチレン・プロピレンゴム(EPR)、エチレンプロピレンジエンモノマーゴム(EPDM)等のエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリルニトリルゴム(H-NBR)等が挙げられる。これらのうち、耐熱性及び耐寒性の点で優れた性質を示す観点から、エチレン-α-オレフィンエラストマーが好ましい。
 圧縮ゴム層12に用いる配合剤としては、例えば、架橋剤(例えば、硫黄、有機過酸化物)、老化防止剤、加工助剤、可塑剤、カーボンブラック等の補強材、充填材、短繊維等が挙げられる。尚、圧縮ゴム層12を形成するゴム組成物は、原料ゴム成分に配合剤を配合し、混練した未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたものである。
 圧縮ゴム層12を構成するゴム組成物に配合される短繊維としては、例えば、ナイロン短繊維、ビニロン短繊維、アラミド短繊維、ポリエステル短繊維、綿短繊維等が挙げられる。短繊維は、例えば、長さが0.2~5.0mm、及び、繊維径が10~50μmである。短繊維は、例えば、RFL水溶液等に浸漬した後に加熱する接着処理が施された長繊維を、長さ方向に沿って所定長に切断することにより製造される。短繊維のうち一部分は、Vリブ13表面に分散して露出していてもよく、Vリブ13表面に露出した短繊維は、Vリブ13表面から突出していてもよい。
 接着ゴム層11と圧縮ゴム層12とは、別々のゴム組成物により形成されていても良いし、全く同じゴム組成物により形成されていても良い。
 次に、背面ゴム層17は、接着ゴム層11と同様の原料ゴム成分及び配合剤から成るゴム組成物により形成される。ただし、ベルト背面と平プーリとの接触により粘着が生じるのを抑制する観点から、背面ゴム層17は、接着ゴム層12よりもやや硬めのゴム組成物によって形成されていることが好ましい。また、背面ゴム層17の厚さは例えば0.4mm~0.8mmである。背面ゴム層17の表面には、ベルト背面が接触する平プーリとの間で生じる音を抑制する観点から、織布の布目が転写されていることが好ましい。
 尚、背面ゴム層17に代えて、背面側補強布を用いることも可能である。この場合、背面側補強布は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸を用い、平織、綾織、朱子織等に製織した布材料、編物、不織布等により構成される。背面側補強布は、ベルト本体に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬して加熱する接着処理、及び/又は、ベルト本体10側となる表面にゴム糊をコーティングして乾燥させる接着処理が施される。
 次に、ベルト本体10のリブ側表面を被覆する編布14は、例えば、ポリアミド繊維、ポリエステル繊維、綿、ナイロン繊維等を仮撚加工(ウーリー加工)して得られる糸(ウーリー加工糸)、又は、ポリウレタン弾性糸を芯糸としてカバーリング糸でカバーリングした糸(カバーリングヤーン)等を編布としたものである。
 編布14は、RFL層によって繊維表面が被覆されている。RFL被膜は、摩擦係数低下剤を分散された状態にて含有している。摩擦係数低下剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)が挙げられる。これらのうち、摩擦係数低下剤としては、最も摩擦係数低下の効果が高いポリテトラフルオロエチレンの粒子が配合されていることが好ましい。
 編布14が摩擦係数低下剤を含有したRFL被膜によって表面被覆されているので、ダストやサビが発生する環境下で使用された場合でも、編布14の内部にまでダストやサビが付着することがなく、低摩擦係数の状態を維持することができる。そのため、摩擦係数が大きくなってベルトが早期に摩耗する問題、摩擦係数が大きいことによって異音が発生する問題等を解決することができる。
 編布14について、具体例の1つを図2に示す。図2は、Vリブドベルトのリブ側表面を観察した時の編布14を拡大して示している。また、図2の縦方向及び横方向が、それぞれ、Vリブドベルトの幅方向及び走行方向に対応する。編布には様々な種類があり、図2に示す編布14は、平編又は天竺編と呼ばれるものである。また、編布には縦編と横編との区別があるが、平編は横編の1種である。
 編布14を構成する糸21は、Vリブドベルトの幅方向(図の縦方向)に往復するように反転(蛇行)しながら、Vリブドベルトの走行方向(図の横方向)に延びている。このことから、糸21は、糸の進行方向を反転させる反転部分22と、反転部分22同士の間を繋いで延びる直進部分23とを有する。糸21がVリブドベルトの幅方向に往復するように蛇行しているので、直進部分23はVリブドベルトの概ね幅方向に延びている。直進部分23は、厳密に幅方向に延びていても良いが、図2等に示すように通常は編布における糸の絡み方に応じて幾分斜めになっても良く、このことを「概ね幅方向」と称している。また、幅方向寄りに(つまり、走行方向よりも幅方向に近い方向に)延びているとも言える。
 尚、図2では反転部分22はベルトの走行方向(図2の左右方向)に糸21が真っ直ぐ延びる部分を有するように示されているが、これには限らず、全体的に緩やかにカーブ進行方向を反転させていてもよい。また、直進部分23の「直進」とは反転部分22において糸21が向きを変えることとの比較において、概ね同じ方向に延びることを意味し、厳密に直線状に延びるということではない(図2においても、僅かにS字状にカーブしている)。
 ここで、編布の種類により、糸の絡まり方は異なる。図2に示す平編布において、直進部分23は、常に反転部分22の上(図面において、紙面の手前側)を通っている。平編布の場合、このように直進部分23が上になっている側が表、その反対側が裏である。
 図2のように、Vリブドベルトにおいて、直進部分23が反転部分22よりも表面側(ベルト本体10とは反対側)に出ている部分を有するように、編布14を配置する。図2では編布14は平編布であるから、布の表を表面側に向けて配置する。これにより、ベルトの最も表面に位置し、概ねベルトの幅方向に延びる糸が存在するようになる。このような、ベルト表面に位置し且つベルトの幅方向に延びる部分の糸(直進部分23)は、ベルト走行中に被水した際に、水を掻き取る効果を発揮する。この結果、ベルトの被水による伝動能力の低下を抑制する効果があり、ひいてはスティックスリップ異音を抑制することができる。
 ここで、仮に編布14の向きを90℃変更し、直進部分23が概ねベルトの走行方向に延びるようにしたとする。この場合、ベルトの走行方向と直進部分23の延びる方向が概ね一致しているので、直進部分23が水を掻き取る効果は発揮されず、スティックスリップ異音を抑制する効果も発揮されない。
 また、仮に編布14を裏返しにしたとすると、直進部分23は、反転部分22aよりも下になる。この場合、ベルト表面に位置し、概ねベルトの幅方向に延びる部分の糸は存在しないことになる。従って、この場合にも、スティックスリップ異音を抑制する効果は発揮されない。直進部分23は反転部分22よりも長い(例えば2倍程度)こと、反転部分22は図2に示すほど真っ直ぐに伸びている部分を有するとは限らないこと等から、直進部分23を表に出すことで水を掻き取る効果が発揮される。
 尚、糸21の蛇行により構成される編目の1つの段24bは、段24a及び段24bと隣接しており、それぞれの糸21が絡み合っている。1つの段における直進部分23は、隣接する段における直進部分23と連続的に配置されている。個々の直進部分23の延びる方向はVリブドベルトの幅方向(図の上下方向)に対して角度を有しているが、各段の直進部分23の連続は、Vリブドベルトの幅方向に延びている。このように直進部分23がVリブドベルトの幅方向に連続していることにより、水の掻き取り効果が更に向上する。
 また、編布14の厚さは、例えば0.2~1.0mmである。また、編布14の糸の密度は、編み目の数として、Vリブドベルトの進行方向が55~80/2.54cmで且つ幅方向が40~70/2.54cmである。
 図2では、編布14の糸21の繋がり全体(反転部分22及び直進部分23)を描いているが、VリブドベルトBのリブ側表面において、編布14は部分的にベルト本体10のゴムに埋め込まれていてもよい。このとき、糸21の直進部分23が反転部分22よりも表面側に位置しているので、例えば反転部分22はゴムに埋め込まれ、直進部分23はゴムから突出した状態となる。このように、Vリブドベルトのリブ側表面において、概ねベルトの幅方向に延びる直進部分23がゴムから突出し、水を掻き取る効果を発揮する。
 次に、図3には、編布14の他の例として、ゴム編布を示している。ゴム編では、糸21の蛇行の1往復毎に、直進部分23と反転部分22との上下関係が逆になる。つまり、図3において、斜線を付けて示す直進部分23aは、図2の平編と同様に、反転部分22aよりも上(Vリブドベルトの表面側)に位置している。しかし、そのベルト走行方向(図では左右)の隣の部分では、直進部分23aは、反転部分22aよりも下になっている。
 このようなゴム編の布においても、直進部分23aの一部は反転部分22aよりも上になっているのであるから、そのような直進部分23aは、水を掻き取る効果を発揮する。また、当該部分は、編布14の一部をベルト本体10のゴムに埋め込む場合にも、ゴムから突出した状態にすることができる。ゴム編の場合、ベルトの表面に位置する直進部分は平編の場合に比べて半分になるので、異音を抑制する効果は小さくなる場合がある。しかしながら、ゴム編は平編に比べて布地の性質が異なる(例えば、横方向の伸縮性が大きい)。従って、ベルトに要求される特性、ベルト製造上の都合等により、ゴム編を用いることも考えられる。
 次に、図4には、編布14の更に他の例として、パール編を示している。パール編では、1つの段の糸21に含まれる直進部分23bは、隣接する2つの段の一方に含まれる反転部分22bよりも下に位置し、且つ、他方の段に含まれる反転部分22bよりも上に位置する。この場合にも、反転部分22bよりも上に位置する直進部分23bが存在するので、当該部分は、水を掻き取る効果、ひいては異音を抑制する効果を発揮する。パール編の場合も、平編に比べるとベルトの表面に位置する直進部分23bは少ないので、異音を抑制する効果は小さくなる場合がある。しかし、パール編も平編、ゴム編とは異なる性質を有する(例えば、縦横の伸縮性が大きい)ので、ベルトに要求される特性、ベルト製造上の都合等により、パール編を用いることも考えられる。
 編布の種類には他にも様々存在するが、どのような種類であっても、ベルトの幅方向に伸びる糸の直進部分が表面に存在するように配置することにより、水の掻き取り効果を発揮させることができる。例えば、ダブルニット、両面編等により、裏、表の両面が平編の表面と同様の構成となった編布を用いても良い。
 また、図2~図4はいずれも横編布を示しているが、縦編布を用いることも可能である。縦編布の場合、糸が、ベルトの幅方向に往復(行き戻り)するように進行方向を反転しながら、全体的にベルト幅方向に進行する。この場合も、概ねベルトの幅方向に延びる直進部分が存在するので、これが反転部分よりも表面側に位置するように編布を用いれば良い。
  ――Vリブドベルトの製造方法――
 次に、本実施形態のVリブドベルトBの製造方法について、図5~図7を参照して説明する。
  ―ベルト本体の材料の準備―
 公知の方法によって、接着ゴム層11及び圧縮ゴム層12を形成するための接着ゴム材料11a’、11b’、及び圧縮ゴム材料12’を作製し、また、心線16となる撚り糸16’公知の接着処理を行う。
  ―補強布の調製―
 まず、ニット布14’にRFL接着処理を行うためのPTFE含有RFL水溶液を調製する。PTFE含有RFL水溶液は、レゾルシンとホルマリンとの初期縮合物にラテックスを混合したものに、更にポリテトラフルオロエチレン(PTFE)等の摩擦係数低下剤を配合して調製する。RFL水溶液の固形分については、例えば、10~30質量%である。レゾルシン(R)とホルマリン(F)とのモル比については、例えばR/F=1/1~1/2である。ラテックスとしては、例えば、エチレンプロピレンジエンモノマーゴムラテックス(EPDM)、エチレンプロピレンゴムラテックス(EPR)、クロロプレンゴムラテックス(CR)、クロロスルホン化ポリエチレンゴムラテックス(CSM)、水素添加アクリロニトリルゴムラテックス(X-NBR)等が挙げられる。レゾルシンとホルマリンとの初期縮合物(RF)とラテックス(L)の質量比については、例えば、RF/L=1/5~1/20とする。摩擦係数低下剤は、例えば、配合量がRFL固形分100質量部に対して10~50質量部である。
 このRFL水溶液にニット布14’を浸漬した後、乾燥炉を用いて120~170℃で加熱乾燥する。このとき、RFL水溶液の水分が飛散すると共にレゾルシンとホルマリンとの縮合反応が進行し、ニット布14’の表面を被覆するようにRFL被膜が形成される。RFL付着量は、例えば、ニット布14’の100質量部に対して5~30質量部である。
 続いて、RFL被膜で表面被覆されたニット布14’を、筒状に成形する。
 このためには、ニット布14’を所定長毎に切断し、その切断片の両端辺同士を揃えるようにして折りたたんで重ね、それらの両端辺の位置を超音波加熱装置の上にセットすると共に、それらの上方にカッターを取り付ける。そして、超音波加熱装置によって高周波数(例えば、10~30KHz)の振動を与えると共に熱圧着し、同時にカッターでその熱圧着した部分を切断し、折りたたまれた状態のニット布14’を広げることにより、
筒状のニット布が形成される。
 この際のニット布の切断及び接続の方法によって、筒状のニット布14’において、当該布を構成する糸21の直進部分23の向きを設定することができる。つまり、図5に模式的に示すように、糸21が幅方向に往復するように蛇行している(従って、糸の直進部分23は幅方向に延びている)筒状ニット布14aと、糸21が周方向に往復するように蛇行している(糸の直進部分23は周方向に延びている)筒状ニット布14bとを作ることができる。
 尚、筒状ニット布14a及び14bにおいて、布を筒状に接続するジョイント部25は、ベルト幅方向に対して平行に設けてもよい。つまり、ニット布を長方形状に切断し、切断部分同士を接続して筒とする。この場合は、布目方向に沿った裁断及び接合となるので、最も簡易に筒状ニット布を製造できる利点がある。これに対し、図5に示すように、ジョイント部25を斜めに設けても良い。これは、ニット布を平行四辺形に切断して筒状に接続することにより実現できる。このようにすると、ベルトの使用時(逆曲げ時)にリブ先端のジョイント部25にかかる応力を分散でき、耐クラック性を向上できるという利点がある。従って、接続作業の簡易さ及び耐クラック性を考慮し、必要に合わせて接続方法を選択することができる。
  -Vリブドベルトの成形-
 次に、VリブドベルトBの製造方法を、図6及び図7に基づいて説明する。
 ここでは、ベルト成形装置30を使用する。ベルト成形装置30は、円筒状のゴムスリーブ型31と、それを嵌合する円筒状外型32とを備える。
 ゴムスリーブ型31は、例えばアクリルゴム製の可撓性のものであり、円筒内側から高温の水蒸気を送りこむ等の方法によってゴムスリーブ型31を半径方向外方に膨らませ、円筒状外型32に圧接させることができる。ゴムスリーブ型31の外周面は、例えば、VリブドベルトBの背面側となる面を平滑に成形するための形状となっている。ゴムスリーブ型31は、例えば、外径が700~2800mm、厚さが8~20mm、及び高さが500~1000mmである。
 円筒状外型32は、例えば金属製のものであり、内側面に、VリブドベルトBのVリブ13を形成するための断面略三角形の突条部32aが、周方向に伸びると共に高さ方向に並ぶようにして設けられている。突条部32aは、例えば、高さ方向に140本並べて設けられている。円筒状外型32は、例えば、外径が830~2930mm、内径(突条部32aを含まない)が730~2830mm、高さが500~1000mm、突条部32aの高さが2.0~2.5mm、及び突条部32aの一つ当たりの幅が3.5~3.6mmである。
 このベルト成形装置30に順次ベルト材料をセットする。まず、背面ゴム層17となる筒状のゴムシート17’をゴムスリーブ型31に嵌めた後、シート状の接着ゴム材料11a’を巻き付けると共に撚り糸16’を周方向に伸びるように複数巻き付ける。このとき、ゴムスリーブ型31の高さ方向にピッチを有する螺旋を形成するように撚り糸16’を巻き付ける。次いで、撚り糸16’の上からシート状の接着ゴム材料11b’を巻き付け、更に、シート状の圧縮ゴム材料12’を巻き付ける。そして、圧縮ゴム材料12’の上からニット布14’(筒状ニット布14a又は14b)を嵌めこむ。このとき、図6に示すように、ゴムスリーブ型31の方から順に、ゴムシート17’、接着ゴム材料11a’、撚り糸16’、接着ゴム材料11b’、圧縮ゴム材料12’、及びニット布14’が積層された状態となっている。更に、これらの外側に円筒状外型32を取り付ける。
 続いて、円筒状外型32をゴムスリーブ型31に取り付けた状態において、ゴムスリーブ型31に、例えば高温の水蒸気を送りこんで熱及び圧力をかける。これより、ゴムスリーブ型31を膨らませて円筒状外型32に圧接させ、ゴムスリーブ型31と円筒状外型32とでベルト材料を挟み込む。このときベルト材料は、例えば、温度が150~180℃となっており、半径方向外方に0.5~1.0MPaの圧力がかかった状態となっている。そのため、ゴム成分が流動すると共に架橋反応が進行し、ニット布14’及び撚り糸16’への接着反応も進行し、更に、Vリブ13形成部である円筒状外型32の内側面の突条部32aによってVリブ13の間のV溝が成形される。このようにしてVリブ付ベルトスラブ(ベルト本体前駆体)が成形される。
 尚、ニット布14’は、Vリブ付きベルトスラブのリブ側の表面に配置される(図1に示す編布14と同様)。ニット布14’の糸は、部分的にはゴム層に埋め込まれていても良い。しかし、ゴム成分が流動する際にニット布14’を通り抜けてしまい、ニット布14’がゴム層の中に完全に埋め込まれた状態になるのは避ける。これは、一般に行われていることであるが、ニット布14’の特性(糸の密度、伸縮性等)、ゴムの特性、処理の温度、圧力等を適性に選ぶことにより実現できる。
 最後に、Vリブ付ベルトスラブを冷却してからそれをベルト成形装置30から取り外す。その後、取り外したVリブ付ベルトスラブを例えば10.68~28.48mmの幅に輪切りし、それぞれの表裏を裏返す。これによってVリブドベルトBが得られる。
 尚、本実施形態ではシート状の接着ゴム材料11’及び圧縮ゴム材料12’をゴムスリーブ型31に巻き付けてセットしたが、予め筒状に成形したものをゴムスリーブ型31に嵌めてセットしてもよい。
 また、ベルト成形装置30は、円筒状外型32の内側面にVリブドベルトBのVリブ13を形成するためのV溝が設けられたものとして説明したが、特にこれに限られるものではない。例えば、ゴムスリーブ型の外周側面にVリブドベルトBのVリブ13を形成するための突条部が設けられると共に円筒状外型32の内周面はVリブドベルトBの背面を成形するために平滑に設けられたものであってもよい。この場合、ニット布14’、圧縮ゴム材料12’、接着ゴム材料11’、撚り糸16’、接着ゴム材料11’、ゴムシート17’、の順にゴムスリーブ型31への巻き付けを行う。
 尚、以上ではVリブドベルト及びその製造方法として説明したが、これには限られず、平ベルト、Vベルト等であっても良い。
 (試験評価用ベルト)
 以下の通り、試験評価用ベルトとして2通りのVリブドベルトBを作成した。
 ―ベルト本体の材料の準備―
 接着ゴム層を形成するための接着ゴム材料として、EPDM(JSR社製、商品名:JSR EP123)を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック(旭カーボン社製、商品名:旭#60)50質量部、可塑剤(日本サン石油社製、商品名:サンフレックス2280)15質量部、架橋剤(日本油脂社製、商品名:パークミルD)8質量部、老化防止剤(川口化学工業社製、商品名:アンテージMB)3質量部、酸化亜鉛(堺化学工業社製、商品名:酸化亜鉛二種)6質量部、及びステアリン酸(花王社製、商品名:ステアリン酸)1質量部を配合して混練した未加硫ゴム組成物を調製した。ロールを用いて、この未架橋ゴム組成物を厚さ0.45mmのシート状に加工した。
 また、圧縮ゴム層を形成するための圧縮ゴム材料として、EPDMを原料ゴムとして、この原料ゴム100質量部に対して、カーボンブラック55質量部、可塑剤15質量部、架橋剤8質量部、老化防止剤3質量部、酸化亜鉛6質量部、及びステアリン酸1質量部を配合して混練した未加硫ゴム組成物を調製した。ロールを用いて、この未架橋ゴム組成物を厚さ0.7mmのシート状に加工した。
 同様にして、背面ゴム層を形成するための未架橋ゴム組成物からなるシートを作成した。
 また、心線を形成するための撚り糸としては、ポリエステル繊維の撚り糸を準備し、これにRFL水溶液に浸漬して加熱乾燥する処理を行った。
 ―ニット布の調製―
 以下の手順に従って、リブ側補強布である編布14となるニット布を調製した。
 使用したニット布は、ウレタン弾性糸を6-ナイロン糸にてカバリングした糸を用いた平編(天竺編)の編布である。ウレタン弾性糸の繊度は22デニール(24.4dtex)であり、6-ナイロン糸は繊度が78デニール(86.7dtex)で且つフィラメント数が52本である。また、ニット布の編みの密度は、66本/2.54cm及び70本/2.54cmである。ニット布の厚さは0.52mmである。
 このようなニット布にRFL接着処理を行うためのPTFE含有RFL水溶液を調製した。具体的には、レゾルシン(R)とホルマリン(F)とを混合し、水酸化ナトリウム水溶液を加えて攪拌し、RF初期縮合物(R/Fモル比=1/1.5)を得た。そして、RF初期縮合物にVPラテックス(L)をRF/L質量比=1/8となるよう混合し、更に、水を加えて固形分濃度20%となるよう調整した後、さらに、RFL固形分100質量部に対してPTFE(AGC社製、商品名:フルオンPTFE AD911、PTFE平均粒子径0.25μm、PTFE60質量%含有)30質量部を配合し、24時間攪拌を行ってPTFE含有RFL水溶液を調製した。このPTFE含有RFL水溶液にニット布を浸漬して加熱乾燥する処理を行うことにより、ニット布の表面にRFL被膜を形成した。
 続いて、RFL接着処理済みのニット布の端部(ジョイント部)同士を、超音波振動(振動数約80KHz)を与えながら熱圧着することにより、ニット布を筒状に成形した。
 ここで、図5にて説明したように、ニット布を構成する糸21の直進部分23が幅方向を向いている筒状ニット布14aと、周方向を向いている筒状ニット布14bとを作製した。また、平編であるニット布について、表を外に向けるようにした。
 ベルト成形装置30のゴムスリーブ型31に、背面ゴム層17となるゴムシート、接着ゴム層を形成するための未架橋ゴム材料、撚り糸、を順に巻き付け、次いで、接着ゴム層を形成するための未架橋ゴム材料、圧縮ゴム層を形成するための未架橋ゴム材料、及び、上記の接着処理を行った筒状ニット布14a及び14bを巻き付けた。
 次いで、V溝が設けられた円筒状外型32をベルト材料の上からゴムスリーブ型に嵌めて膨張させ、ゴムスリーブ型31側に押圧すると共にゴムスリーブ型31を高熱の水蒸気等により加熱した。このとき、ゴム成分が流動すると共に架橋反応が進行し、加えて、撚り糸、リブ側ニット補強布のゴムへの接着反応も進行した。これにより、筒状のベルト前駆体が得られた。
 最後に、このベルト前駆体をベルト成形装置30から取り外し、長さ方向に、幅10.68mm(3PK:リブ数が3)又は幅21.36(6PK:リブ数が6)となるように幅切りし、表裏を裏返すことによってVリブドベルトを得た。
 糸21の直進部分23が幅方向を向いている筒状ニット布14aを用いた場合、製造されるVリブドベルトにおいて、直進部分23はベルトの幅方向を向いているようになる。これを、実施例のVリブドベルトとした。
 糸21の直進部分23が周方向を向いている筒状ニット布14bを用いた場合、製造されるVリブドベルトにおいて、直進部分23はベルトの走行方向を向いているようになる。これを、比較例のVリブドベルトとした。
  (試験評価方法)
 ――注水伝動能力試験――
 図8に、注水伝動能力試験に用いたベルト走行試験機40のプーリレイアウトを示す。
 ベルト走行試験機40は、プーリ径121.6mmのリブプーリである駆動プーリ41と、その右方に配置されたプーリ径141.5mmのリブプーリである従動プーリ42と、その右上方に配置されたプーリ径77.0mmのリブプーリである従動プーリ43と、その左上方に配置されたプーリ径61.0mmのリブプーリである従動プーリ45とを備える。更に、従動プーリ43と従動プーリ45との間に配置されたプーリ径76.2mmの平プーリであるアイドラプーリ44と、従動プーリ45と駆動プーリ41との間に配置されたプーリ径76.2mmの平プーリであるアイドラプーリ46とを備える。ベルト走行試験機40は、Vリブドベルトのリブ側がリブプーリである駆動プーリ41、従動プーリ42、従動プーリ43及び従動プーリ45に接触すると共に、背面側が平プーリであるアイドラプーリ44及びアイドラプーリ46と接触するように構成されている。
 従動プーリ45により706N(72kgf)のベルト張力を加え、従動プーリ42におけるプーリ接触角度39°、雰囲気温度21℃とした。また、駆動プーリ41と従動プーリ42との間の部分において、Vリブドベルトに注水量300ml/minで注水した。駆動プーリ41の回転数は800rpm、従動プーリ42の回転数は931rpmとした。プーリの回転方向は、図8において駆動プーリ41を傍の矢印のように右回転させる方向であり、駆動プーリ41から離れたVリブドベルトはアイドラプーリ46に向かう。
 試験結果について、図9に示す。
 図9に示される通り、実施例のVリブドベルト(糸の直進部分23がベルトの概ね幅方向に延びている)の方が、比較例のVリブドベルト(直進部分23がベルトの概ね走行方向に延びている)よりも大きなトルクを実現している。具体的に、実施例及び比較例のいずれにおいてもスリップ率が1%程度の時にトルクは最大となっており、実施例のトルクは8Nm程度であって、比較例の6Nm程度に比べて25%程度大きくなっている。
 ――異音評価試験――
 図10に、異音評価試験に用いたベルト走行試験機50のプーリレイアウトを示す。
 ベルト走行試験機50は、プーリ径146mmのリブプーリである駆動プーリ51(DR)と、その右下方に配置されたプーリ径125mmのリブプーリである従動プーリ52(DN1)と、その上方に配置されたプーリ径120mmの平プーリであるアイドラプーリ53(ID1)と、その右上方に配置されたプーリ径58mmのリブプーリである従動プーリ54(DN2)と、その左方に配置されたプーリ径95mmの平プーリであるアイドラプーリ55(ID2)とを備える。ベルト走行試験機50は、Vリブドベルトのリブ側がリブプーリである駆動プーリ51、従動プーリ52及び従動プーリ54に接触すると共に、背面側が平プーリであるアイドラプーリ53及びアイドラプーリ55に接触するように構成されている。尚、各プーリの正確な配置は、表1に示す通りである。表1には、駆動プーリ51の中心を図10に示すようにXY座標の原点(0,0)とした時の各プーリの中心の座標を示している。例えば、従動プーリ52の中心は座標では(162,-67)であり、これは原点(駆動プーリ51の中心に)対し、図10において右に162mm、下に67mmの位置を意味している。
 また、駆動プーリ51はノーペイントプーリであり、従動プーリ52及び従動プーリ54はペイントプーリである。
 以上のようなベルト走行試験機50において、駆動プーリ51(DR)に回転変動を与え、従動プーリ52(DN1)及び従動プーリ54(DN2)に各負荷を与える。このときに、Vリブドベルトにおける駆動プーリ51と従動プーリ52との間の部分に注水(150ml/回)し、ノイズの有無を騒音計により測定してノイズの有無を確認する。
 このような試験の結果、実施例のVリブドベルト(糸21の直進部分23が幅方向を向いている筒状ニット布14aを使用)ではノイズが発生しなかったのに対し、比較例のVリブドベルト(糸21の直進部分23が周方向を向いている筒状ニット布14bを使用)ではノイズが発生した。
Figure JPOXMLDOC01-appb-T000001
 以上の通り、伝動ベルトのプーリ接触面において、糸の直進部分が反転部分よりもベルトの表面側(ベルト本体とは反対側)にあり、且つ、ベルトの幅方向を向いているようにすることで、被水時においても駆動能力を維持し、且つ、異音の発生を抑制することができる。
 本開示の摩擦伝動ベルトによると、被水時の駆動力の維持及び異音発生の抑制を実現できるので、被水する環境で使用する摩擦伝動ベルトとして有用である。
10   ベルト本体
11   接着ゴム層
11’  接着ゴム材料
11a’ 接着ゴム材料
11b’ 接着ゴム材料
12   圧縮ゴム層
12   接着ゴム層
12’  圧縮ゴム材料
13   Vリブ
14   編布
14’  ニット布
14a  筒状ニット布
14b  筒状ニット布
16   心線
16’  糸
17   背面ゴム層
17’  ゴムシート
21   糸
22   反転部分
22a  反転部分
22b  反転部分
23   直進部分
23a  直進部分
23b  直進部分
24a  段
24b  段
25   ジョイント部
30   ベルト成形装置
31   ゴムスリーブ型
32   円筒状外型
32a  突条部
40   ベルト走行試験機
41   駆動プーリ
42   従動プーリ
43   従動プーリ
44   アイドラプーリ
45   従動プーリ
46   アイドラプーリ
50   ベルト走行試験機
51   駆動プーリ
52   従動プーリ
53   アイドラプーリ
54   従動プーリ
55   アイドラプーリ

Claims (9)

  1.  ゴム組成物により形成されたベルト本体がプーリに巻き掛けられて動力を伝達する摩擦伝動ベルトであって、
     前記ベルト本体における少なくともプーリ接触側の表面は、編布によって被覆されており、
     前記編布を構成する糸は、前記摩擦伝動ベルトの幅方向に往復するように進行方向を反転しながら延びており、進行方向を反転させる反転部分と、当該反転部分同士の間を繋いで延びる直進部分とを有し、
     前記編布は、前記反転部分よりも表面側に位置する前記直進部分を有するように前記プーリ接触側の表面を被覆していることを特徴とする摩擦伝動ベルト。
  2.  請求項1において、
     前記編布を構成する糸は、前記摩擦伝動ベルトの幅方向に往復するように進行方向を反転しながら、前記摩擦伝動ベルトの走行方向に延びていることを特徴とする摩擦伝動ベルト。
  3.  請求項1又は2において、
     前記反転部分よりも表面側に位置している前記直進部分は、それぞれ前記ベルト本体の幅方向寄りに延びていることを特徴とする摩擦伝動ベルト。
  4.  請求項1~3のいずれか1つにおいて、
     前記編布の少なくとも一部は、前記ベルト本体を構成するゴム組成物に埋め込まれており、
     前記反転部分よりも表面側に位置している前記直進部分は、前記ゴム組成物から突出していることを特徴とする摩擦伝動ベルト。
  5.  請求項1~4のいずれか1つにおいて、
     前記編布の個々の段における前記直進部分は、隣接する段の同じ列における前記直進部分に対して前記摩擦伝動ベルトの幅方向に連続的に配置されていることを特徴とする摩擦伝動ベルト。
  6.  請求項1~5のいずれか1つにおいて、
     前記編布は、平編布、ゴム編布又はパール編布であることを特徴とする摩擦伝動ベルト。
  7.  請求項1~6のいずれか1つにおいて、
     前記摩擦伝動ベルトは、ベルト内周側にベルト長さ方向に伸びるように設けられた複数のVリブを有するVリブドベルトであり、
     前記編布は、前記Vリブの表面を被覆していることを特徴とする摩擦伝動ベルト。
  8.  請求項1~7のいずれか1つにおいて、
     前記編布を構成する前記糸は、ポリアミド繊維、ポリエステル繊維、綿又はナイロン繊維を用いたウーリー加工糸であることを特徴とする摩擦伝動ベルト。
  9.  請求項1~8のいずれか1つにおいて、
     前記編布を構成する前記糸は、ポリウレタン弾性糸を芯糸とし、カバーリング糸によりカバーリングした構成であることを特徴とする摩擦伝動ベルト。
PCT/JP2018/000089 2017-02-01 2018-01-05 摩擦伝動ベルト WO2018142843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504309A JPWO2018142843A1 (ja) 2017-02-01 2018-01-05 摩擦伝動ベルト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016459 2017-02-01
JP2017-016459 2017-02-01

Publications (1)

Publication Number Publication Date
WO2018142843A1 true WO2018142843A1 (ja) 2018-08-09

Family

ID=63040670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000089 WO2018142843A1 (ja) 2017-02-01 2018-01-05 摩擦伝動ベルト

Country Status (2)

Country Link
JP (1) JPWO2018142843A1 (ja)
WO (1) WO2018142843A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645504A (en) * 1995-09-29 1997-07-08 The Gates Corporation Power transmission belt with teeth reinforced with a fabric material
JP2009097701A (ja) * 2007-10-19 2009-05-07 Nitta Ind Corp 捻りベルト及びその製造方法
WO2014147948A1 (ja) * 2013-03-21 2014-09-25 バンドー化学株式会社 摩擦伝動ベルト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645504A (en) * 1995-09-29 1997-07-08 The Gates Corporation Power transmission belt with teeth reinforced with a fabric material
JP2009097701A (ja) * 2007-10-19 2009-05-07 Nitta Ind Corp 捻りベルト及びその製造方法
WO2014147948A1 (ja) * 2013-03-21 2014-09-25 バンドー化学株式会社 摩擦伝動ベルト

Also Published As

Publication number Publication date
JPWO2018142843A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6342760B2 (ja) 摩擦伝動ベルト
JP5302074B2 (ja) Vリブドベルト及びその製造方法
KR100907780B1 (ko) 마찰전동벨트 및 그 제조방법
KR101495453B1 (ko) 마찰전동벨트
WO2010047051A1 (ja) 摩擦伝動ベルト
KR102151822B1 (ko) 전동 벨트
WO2017033392A1 (ja) 摩擦伝動ベルト
TW201906913A (zh) 傳動帶
JP2010053935A (ja) Vリブドベルト
WO2013069244A1 (ja) 両面伝達用ローエッジvベルト
JP2022116915A (ja) 摩擦伝動ベルト
WO2014091673A1 (ja) 伝動ベルト
WO2018142843A1 (ja) 摩擦伝動ベルト
JP7323560B2 (ja) 摩擦伝動ベルト
WO2015174005A1 (ja) 伝動ベルト
JP4757041B2 (ja) Vリブドベルト
JP6082853B1 (ja) 摩擦伝動ベルト
JP5379929B1 (ja) 高負荷伝動用vベルト
JP2022168845A (ja) 摩擦伝動ベルト
CN115217906A (zh) 高负荷传动用变速带

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504309

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747460

Country of ref document: EP

Kind code of ref document: A1