WO2018142578A1 - Drive control system and method for controlling drive control system - Google Patents

Drive control system and method for controlling drive control system Download PDF

Info

Publication number
WO2018142578A1
WO2018142578A1 PCT/JP2017/003976 JP2017003976W WO2018142578A1 WO 2018142578 A1 WO2018142578 A1 WO 2018142578A1 JP 2017003976 W JP2017003976 W JP 2017003976W WO 2018142578 A1 WO2018142578 A1 WO 2018142578A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
motor
phase
drive control
Prior art date
Application number
PCT/JP2017/003976
Other languages
French (fr)
Japanese (ja)
Inventor
真次 河住
真吾 大崎
賢斗 松元
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2017546257A priority Critical patent/JP6430654B1/en
Priority to PCT/JP2017/003976 priority patent/WO2018142578A1/en
Publication of WO2018142578A1 publication Critical patent/WO2018142578A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a drive control system and a control method for the drive control system.
  • a control unit (ECU) of a drive control system that controls driving of a 4-stroke internal combustion engine (engine)
  • a driver circuit is controlled based on changes in the top dead center and rotation angle of the internal combustion engine detected by a sensor. And what drives a motor is known.
  • the control unit (ECU) of this conventional drive control system since the information about the stroke (rotation angle) of the stopped internal combustion engine is not held, at the time of turning on the power, before the motor start control, It is necessary to determine the stroke of the internal combustion engine.
  • the above-described conventional technique corresponds to the top dead center of the internal combustion engine based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil when the motor is turned on.
  • the reference position to be detected was not detected.
  • the reference position corresponding to the top dead center of the internal combustion engine is detected based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil. It is an object of the present invention to provide a drive control system that can be used.
  • a drive control system for controlling the drive of a four-stroke internal combustion engine, A motor for applying torque to the internal combustion engine; U-phase, V-phase, and W-phase sensor elements that output U-phase, V-phase, and W-phase detection signals corresponding to respective switching of magnetic fluxes of the U-phase, V-phase, and W-phase coils of the motor; A relucter provided on the rotor of the motor and having two edges in the rotation direction of the motor, and a pulse wave of the first polarity is output when the rising edge of the edge of the reluctor is detected and the falling edge of the reluctor edge A pickup coil that outputs a pulse wave of the second polarity upon detecting the passage of A driver circuit for controlling the operation of a motor for applying torque to the internal combustion engine; A controller that controls the driver circuit to drive the motor based on a change in top dead center and rotation angle of the internal combustion engine detected by the sensor, and The controller is After the power is turned on, the motor
  • a reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine, After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor A reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil according to rotation of the motor.
  • the controller is After the power is turned on, the reference torque is applied to the internal combustion engine to rotate the internal combustion engine in a normal direction by driving the motor forward.
  • the reference torque is applied to the internal combustion engine to rotate the internal combustion engine in a normal direction by driving the motor forward.
  • the reference torque is applied to the internal combustion engine to rotate the internal combustion engine in a normal direction by driving the motor forward.
  • the reluctator is detected next to the first edge detected by the pickup coil when the motor is rotated forward, and next to the first edge when the motor is rotated forward.
  • a second edge The first edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a first detection angle between a natural stop position and top dead center.
  • a detection angle of The second edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a second detection angle closer to the top dead center than the first detection angle, and It is related to the second detection angle.
  • the second detection angle is set to a top dead center of the internal combustion engine.
  • the natural stop position is a rotation angle of the internal combustion engine that is located when the internal combustion engine is naturally stopped in a state where no torque is applied from the motor.
  • the controller is After the motor is driven forward and the reference torque is applied to the internal combustion engine, it is first determined whether or not the first pulse wave of the pulse information output from the pickup coil has the first polarity. And If the first pulse wave has the first polarity, determine whether the motor is reversely rotated after the motor is driven forward, When the motor is reversely rotated after the motor is driven to rotate forward, the first pulse wave is based on the first edge, The second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine.
  • the controller is If the motor is not rotating in the reverse direction after the motor is driven forward, it is determined whether or not the pickup coil is outputting a second pulse wave next to the first pulse wave of the pulse information. And When the pickup coil outputs the second pulse wave, the second pulse wave is based on the second edge, and the second pulse wave is associated with the second edge. A detection angle is detected as the reference position corresponding to the second top dead center of the internal combustion engine.
  • the controller is When the pulse wave of the pulse information output from the pickup coil at first is not in the first polarity, it is determined whether or not the motor is reversely rotated after the motor is driven forward, When the motor is rotating in the reverse direction after the motor is driven forward, the first pulse wave of the pulse information is based on the first edge, The second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine.
  • the controller is It is determined whether or not the motor is reversely rotated after the motor is driven forward, and when the motor is not reversely rotated after the motor is driven forwardly, the first pulse wave of the pulse information is Is based on the second edge, and detects the second detection angle associated with the second edge as the reference position corresponding to the second top dead center of the internal combustion engine.
  • the first edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is in a compression stroke.
  • the drive control system is mounted on a motorcycle,
  • the motor is connected to the internal combustion engine of the motorcycle;
  • the control unit starts and / or drives the internal combustion engine by driving the motor by the driver circuit.
  • the controller is Starting to apply torque from the motor to the internal combustion engine, Start measuring the torque application time from the start of torque application to the internal combustion engine, Determining whether or not the rotational speed of the internal combustion engine has reached a target value; When it is determined that the rotational speed of the internal combustion engine has not reached the target value, it is determined whether the torque application time has passed a set time, When it is determined that the rotational speed of the internal combustion engine has reached the target value and when it is determined that the torque application time has passed the set time, the application of torque from the motor to the internal combustion engine is stopped. Thus, forward drive control of the motor is executed.
  • the controller is configured to determine whether the motor is rotating forward or reversely based on changes in the U-phase, V-phase, and W-phase detection signals.
  • the controller is After the power is turned on and before starting the internal combustion engine, the motor is rotated forward so that the reference torque is applied to the internal combustion engine to cause the internal combustion engine to rotate forward.
  • the controller is After the power is turned on and before starting the internal combustion engine, the motor is rotated forward so that the reference torque is applied to the internal combustion engine to cause the internal combustion engine to rotate forward.
  • the stroke of the internal combustion engine is determined based on the detected reference position while controlling the motor, and ignition of the internal combustion engine is controlled.
  • a driver circuit that controls the operation of a motor that applies torque to the internal combustion engine, and a top dead center and a rotation angle detected by the sensor Based on the change, a control method of a drive control system and a control unit
  • a reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine, After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor A reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil according to rotation of the motor.
  • the top dead center of the internal combustion engine based on the three detection signals obtained from the three sensor elements and the pulse information output by the pickup coil Can be detected.
  • FIG. 1 is a diagram illustrating an example of a configuration of a drive control system 1000 according to the first embodiment which is an aspect of the present invention.
  • FIG. 2 is a diagram illustrating an example of a detailed configuration of the drive control device 100 and the motor 102 illustrated in FIG. 1.
  • FIG. 3 is a diagram showing an example of a detailed configuration of the motor 102 shown in FIG.
  • FIG. 4 is a diagram showing an example of the relationship between each stroke (crank angle) of the internal combustion engine 103 of the drive control system 1000 shown in FIG. 1 and the pressure in the cylinder.
  • FIG. 5 is a diagram showing an example (pattern 1) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 1 is a diagram illustrating an example of a configuration of a drive control system 1000 according to the first embodiment which is an aspect of the present invention.
  • FIG. 2 is a diagram illustrating an example of a detailed configuration of the drive control
  • FIG. 6 is a diagram showing an example (pattern 2) of a relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 7 is a diagram showing an example (pattern 3) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 8 is a diagram showing an example (pattern 4) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 9 is a flowchart showing an example of the flow of forward drive control of the motor 102 in order for the drive control apparatus 100 shown in FIGS.
  • FIG. 10 is a flowchart showing an example of a flow for the drive control device 100 shown in FIGS. 1 and 2 to detect a reference position corresponding to the top dead center of the internal combustion engine 103.
  • FIG. 11 is a flowchart showing an example of the motor stage determination process shown in FIG.
  • FIG. 12 is a flowchart illustrating an example of normal / reverse rotation determination processing illustrated in FIG. 10.
  • FIG. 13 is a flowchart illustrating an example of the position determination process illustrated in FIG.
  • FIG. 1 is a diagram illustrating an example of a configuration of a drive control system 1000 according to the first embodiment which is an aspect of the present invention.
  • FIG. 2 is a diagram illustrating an example of a detailed configuration of the drive control device 100 and the motor 102 illustrated in FIG. 1.
  • FIG. 3 is a diagram showing an example of a detailed configuration of the motor 102 shown in FIG.
  • FIG. 4 is a diagram showing an example of a relationship between each stroke (crank angle) of the internal combustion engine 103 of the drive control system 1000 shown in FIG. 1 and the pressure in the cylinder.
  • a drive control system 1000 that controls the drive of the internal combustion engine according to the present embodiment includes, for example, a drive control device (ECU: Engine Control Unit) 100, a battery B, and a motor 102, as shown in FIGS.
  • the engine (internal combustion engine) 103 and the sensor 104 are provided.
  • the drive control system 1000 is mounted on, for example, a two-wheeled vehicle (not shown).
  • the motor 102 is connected to the internal combustion engine 103 of the motorcycle.
  • the internal combustion engine 103 is, for example, a 4-stroke engine. Therefore, as shown in FIG. 4, the state of the internal combustion engine 103 changes between an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke. Further, as shown in FIG. 4, the pressure in the cylinder of the internal combustion engine 103 (that is, the rotational load of the crank) becomes maximum at the top dead center.
  • the motor 102 applies torque to the internal combustion engine 103 (that is, the crankshaft of the internal combustion engine 103).
  • the motor 102 is connected to the crankshaft of the internal combustion engine 103 so as to be able to transmit and receive torque. That is, the motor 102 has both functions of an electric motor and a generator. As described above, the motor 102 is driven by the internal combustion engine 103 to generate electric power, and also functions as an AC generator (ACG) that outputs an AC voltage.
  • ACG AC generator
  • the motor 102 includes, for example, a U-phase coil CU, a V-phase coil CV and a W-phase coil CW provided in the stator, and a rotor RO as shown in FIGS.
  • the sensor 104 detects the rotation speed (rpm) and crank angle (for example, change in rotation angle, top dead center) of the internal combustion engine 103, and outputs a detection signal corresponding to the detection result. .
  • the senor 104 is configured such that the rotation angle of the internal combustion engine 103 is such that the second top dead center TDC2 (reference position) between the exhaust stroke and the intake stroke, and the first between the compression stroke and the combustion stroke.
  • a reference position signal pulse information SPC is output as one of the detection signals.
  • the sensor 104 includes a U-phase sensor element ICU, a V-phase sensor element ICV, and a W-phase sensor element ICW, a relaxor RE, and a pickup coil PC.
  • the U-phase, V-phase, and W-phase sensor elements ICU, ICV, ICW are U-phase detection signals IHU corresponding to the switching of the magnetic flux of the U-phase, V-phase, and W-phase coils CU, CV, CW of the motor 102, respectively.
  • the V-phase detection signal IHV and the W-phase detection signal IHW are output.
  • the pickup coil PC outputs pulse waves P1 and P2 when it detects the passage of the edge of the reluctator RE.
  • the pickup coil PC outputs a pulse wave having a first polarity (in this case, positive) when detecting the rising passage of the edge of the reluctor RE, and outputs the second wave when detecting the falling passage of the edge of the reluctor RE.
  • Polarity (here negative) pulse waves are output.
  • the above passage means that, for example, the relaxor RE passes through a range where the pickup coil PC can detect an edge (in the vicinity of the pickup coil PC).
  • the reluctator RE is provided on the rotor RO of the motor 102 and has two edges E1 and E2 in the rotation direction of the motor 102 (forward rotation direction in FIG. 3).
  • the reluctator RE has a first edge E1 first detected by the pickup coil PC when the motor 102 is rotated forward (FIG. 3), and a first edge detected by the pickup coil PC when the motor 102 is rotated forward. And a second edge E2 detected next to E1.
  • the first edge E1 is provided at a position detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is at a first detection angle between the natural stop position and the top dead center.
  • the first edge E1 is provided at a position that is detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is in the compression stroke, for example.
  • this 1st edge E1 is linked
  • the first edge E1 is stored in the storage unit M in association with the first detection angle.
  • the natural stop position is a rotation angle of the internal combustion engine 103 that is located when the internal combustion engine 103 is naturally stopped in a state where no torque is applied from the motor 102.
  • the second edge E2 is provided at a position detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is at a second detection angle closer to the top dead center than the first detection angle. It has been.
  • the second edge E2 is associated with the second detection angle by the control unit CON.
  • the second edge E2 is stored in the storage unit M in association with the second detection angle.
  • the second detection angle is set at the top dead center of the internal combustion engine 103, for example.
  • the battery B supplies driving power to the motor 102 or charges regenerative power from the motor 103.
  • the drive control device 100 determines the state of the motor 102 based on the detection signal (that is, the rotation speed and crank angle (for example, change in rotation angle, top dead center) of the motor 102 obtained from the detection signal).
  • the driving of the internal combustion engine 103 is controlled.
  • the drive control device 100 includes, for example, a control unit (CPU: Central Processing Unit) CON, a storage unit M, and a driver circuit D.
  • a control unit CPU: Central Processing Unit
  • driver circuit D is configured to control the operation of the motor 102 that applies torque to the internal combustion engine 103.
  • the storage unit M is configured to store a map for controlling the start of the internal combustion engine 103 (for controlling the motor 102).
  • the control unit CON refers to the storage unit M and controls the driver circuit D based on the rotation speed and crank angle (for example, change in rotation angle, top dead center) of the internal combustion engine 103 detected by the sensor 104.
  • the motor 102 is driven.
  • the controller CON drives the internal combustion engine 103 and drives the internal combustion engine 103 by driving the motor 102 by the driver circuit D.
  • the controller CON drives the motor 102 (in this case, normal rotation driving) after the power is turned on and before starting (ignition control) of the internal combustion engine 103, so that the exhaust stroke and the intake stroke of the internal combustion engine 103 are driven.
  • a reference torque is applied to the internal combustion engine 103 so as to exceed the second top dead center TDC2 between and the internal combustion engine 103 and not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke of the internal combustion engine 103.
  • the internal combustion engine 103 is rotated (forward rotation here).
  • the reference torque is set to a value that is greater than or equal to the rotational load (pressure) MAX2 at the second top dead center TDC2 of the internal combustion engine 103 and less than the rotational load (pressure) MAX1 at the first top dead center TDC1 of the internal combustion engine 103. Is done.
  • the controller CON drives the motor 102 (here, forward rotation driving) to apply a reference torque to the internal combustion engine 103, and then controls the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor 102. Based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output from the ICU, ICV, and ICW, it is determined whether the motor 102 is rotating forward or reversely. It has become.
  • control unit CON drives the motor 102 (in this case, normal rotation driving) to apply a reference torque to the internal combustion engine 103, and then controls the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor 102. Based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output from the ICU, ICV, and ICW, a motor stage, which will be described later, of the motor 102 is determined.
  • control unit CON drives the motor 102 (here, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then before starting the internal combustion engine 103, the U phase according to the rotation of the motor 102, V-phase and W-phase sensor elements ICU, ICV, ICW output U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW, and pulse waves output from the pickup coil PC according to the rotation of the motor 102 A reference position corresponding to the top dead center of the internal combustion engine 103 is detected based on the included pulse information SPC.
  • FIG. 5 is a diagram showing an example (pattern 1) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 6 is a diagram showing an example (pattern 2) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 7 is a diagram showing an example (pattern 3) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 8 is a diagram showing an example (pattern 4) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
  • FIG. 9 is a flowchart showing an example of the flow of forward drive control of the motor 102 in order for the drive control apparatus 100 shown in FIGS. 1 and 2 to apply the reference torque to the internal combustion engine 103.
  • the control unit CON of the drive control device 100 starts normal rotation drive control, and the internal combustion engine 103 starts from the motor 102 having the rotation shaft connected to the crankshaft of the internal combustion engine 103.
  • the application of torque is started (step S1).
  • control unit CON starts measuring and counting the torque application time after starting to apply torque to the internal combustion engine 103 (step S2).
  • control unit CON determines whether or not the rotational speed of the internal combustion engine 103 detected by the sensor 104 has reached a target value (step S3).
  • control unit CON determines whether or not the torque application time has passed the set time (step). S4).
  • step S4 determines in step S4 that the torque application time has not passed the set time, whether or not the rotational speed of the internal combustion engine 103 detected by the sensor 104 has reached the target value. It returns to step S3 which judges whether.
  • step S5 determines that the rotational speed of the internal combustion engine 103 has reached the target value in step S3 and if it is determined in step S4 that the torque application time has passed the set time, the reference CON It is determined that torque has been applied to the internal combustion engine 103, and the forward rotation drive control is stopped, thereby stopping the application of torque from the motor 102 to the internal combustion engine 103 (step S5).
  • FIG. 10 is a flowchart showing an example of a flow for the drive control device 100 shown in FIGS. 1 and 2 to detect a reference position corresponding to the top dead center of the internal combustion engine 103.
  • FIG. 11 is a flowchart showing an example of the motor stage determination process shown in FIG.
  • FIG. 12 is a flowchart showing an example of normal / reverse rotation determination processing shown in FIG.
  • FIG. 13 is a flowchart illustrating an example of the position determination process illustrated in FIG.
  • the drive control system 1000 when the ignition key is operated by the user, the drive control system 1000 is turned on and the drive control apparatus 100 is activated. At the time of turning on the power, the drive control device 100 does not have information regarding the stroke (rotation angle) of the stopped internal combustion engine. That is, before the internal combustion engine 103 is started (ignition control), the engine stage of the internal combustion engine 103 is in an undetermined state (step Sa).
  • the control unit CON of the drive control device 100 performs a forward rotation control of the motor 102 before the internal combustion engine 103 is started (ignition control). 2 is applied to the internal combustion engine 103 so that the internal combustion engine 103 does not exceed the top dead center TDC2 of 2 and does not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke. Turn.
  • step Sb when the control unit CON detects the edge of the W-phase detection signal IHW output from the W-phase sensor element ICW according to the rotation of the motor 102 (step Sb), the control unit CON Accordingly, when the edge of the V-phase detection signal IHV output from the V-phase sensor element ICV is detected (step Sc), and according to the rotation of the motor 102, the U-phase detection signal IHU output from the U-phase sensor element ICU If an edge is detected (step Sd), motor stage determination processing is executed (step Se).
  • the motor stage is determined by the combination of the “High” level and the “Low” level of the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW.
  • the motor stage is divided into “0” to motor stage “5”.
  • one motor stage is 10 ° in the rotation angle of the internal combustion engine 103.
  • the motor stage is repeatedly changed in the order of the motor stages “0”, “1”, “2”, “3”, “4”, “5”.
  • the motor stage is repeatedly changed in the order of the motor stages “5”, “4”, “3”, “2”, “1”, “0”.
  • the controller CON controls the edges of the U-phase, V-phase, or W-phase detection signals IHU, IHV, and IHW (for example, the U-phase in FIGS. 5 to 8).
  • the current (current) motor stage value for example, “1” when the motor 102 is rotating forward
  • the previous motor stage value (“1”.
  • control unit CON starts from a level detected by the U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW (for example, “High” level, “High” level, “Low” level) from a new motor stage ( "2") is determined (step Se2).
  • control unit CON updates the determined new motor stage (“2”) as the current motor stage (step Se3).
  • the controller CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then, according to the rotation of the motor 102, the U phase, V phase, and W
  • the motor stage of the motor 102 is determined based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output by the phase sensor elements ICU, ICV, and ICW.
  • step Se the control part CON performs a motor stage determination process (step Sf).
  • step Sf for example, as shown in FIG. 12, first, the control unit CON acquires the previous motor stage value (step Sf1).
  • control part CON acquires the value of this time (present) motor stage (step Sf2).
  • control unit CON determines whether or not the current motor stage value is larger than the previous motor stage value (step Sf3).
  • step Sf3 When the previous motor stage value is smaller than the current motor stage value (YES in step Sf3), the control unit CON sets the previous motor stage value to “0” and the current motor stage value to “5”. Is determined (step Sf4).
  • control unit CON determines whether or not the previous motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “0” to “5”. .
  • Step Sf5 the control unit CON determines that the motor 102 is rotating in reverse.
  • the controller CON determines that the motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “0” to “5”. It is determined that 102 is reversed.
  • Step Sf6 when the previous motor stage value is “0” and the current motor stage value is not “5” (NO in step Sf4), the control unit CON performs the normal rotation of the motor 102. (Step Sf6).
  • the controller CON determines that the motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “5” to “0”. It is determined that 102 is rotating forward.
  • step Sf3 if the value of the previous motor stage is not smaller than the value of the current motor stage (NO in step Sf3), the control unit CON sets the previous motor stage value to “5” and the current motor stage value to “0”. Is determined (step Sf7).
  • control unit CON determines whether or not the previous motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “5” to “0”. .
  • the controller CON determines that the motor 102 is rotating forward when the previous motor stage value is “5” and the current motor stage value is “0” (YES in step Sf7). (Step Sf8).
  • control unit CON determines that the motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “5” to “0”. It is determined that 102 is rotating forward.
  • Step Sf9 when the previous motor stage value is “5” and the current motor stage value is not “0” (NO in step Sf7), the control unit CON reverses the motor 102. (Step Sf9).
  • control unit CON determines that the motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “0” to “5”. It is determined that 102 is reversed.
  • control unit CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then, according to the rotation of the motor 102, the U phase, the V phase, and the W phase.
  • motor 102 in this case, forward rotation driving
  • control unit CON executes the forward / reverse rotation determination process (step Sf) and then executes the position detection process (step Sg).
  • step Sg for example, as shown in FIG. 13, for example, first, the control unit CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103. After that, it is determined whether or not the first pulse wave P1 of the pulse information (pulse signal SPC) output from the pickup coil PC first has the first polarity (positive in this case) (step Sg1).
  • step Sg1 when the first pulse wave P1 has the first polarity (YES in step Sg1), the control unit CON obtains the result obtained in the above-described forward / reverse rotation determination process (step Sf). Based on the above, it is determined whether or not the motor 102 is reversely rotated after the motor 102 is driven forward (step Sg2).
  • step Sg3 when the motor 102 rotates in the reverse direction after the motor 102 is driven in the forward direction (YES in step Sg2), the control unit CON is configured so that the first pulse wave P1 is based on the first edge E1. It is determined that the value of the engine stage is “14” (step Sg3).
  • the internal combustion engine 103 when the internal combustion engine 103 is stopped at the rotation angle “a” of the compression stroke, if the motor 102 is driven forwardly to apply the reference torque to the internal combustion engine 103, the first The first pulse wave P1 having the first polarity (positive) is output from the pickup coil PC at the engine stage 14 before the top dead center TDC1.
  • the internal combustion engine 103 does not exceed the first top dead center TDC1 but reverses at the rotation angle b, and the engine stage 13 outputs the second pulse wave P2 of the second polarity (negative) from the pickup coil PC. (Pattern 1 of pulse information SPC).
  • the pulse information SPC is the pattern 1 in FIG. It can be seen that the pulse wave P1 is based on the first edge E1 (rising edge). Note that the second pulse wave P2 is also based on the first edge E1 (falling).
  • the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 14 before the first top dead center TDC1 (the first edge E1 is positioned between the engine stages 13 and 14).
  • control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the first top dead center TDC1 of the internal combustion engine 103.
  • step Sg2 when the motor 102 does not reversely rotate after the motor 102 is driven to rotate forward (NO in step Sg2), the control unit CON causes the pickup coil PC to follow the first pulse wave P1 of the pulse information SPC. It is determined whether or not the second pulse wave P2 is output (step Sg4).
  • step Sg5 when the pickup coil PC outputs the second pulse wave P2 (in the case of YES at step Sg4), the controller CON determines that the second pulse wave P2 is based on the second edge E2. Then, it is determined that the value of the engine stage is “3” (step Sg5).
  • the pulse information SPC is the pattern 2 in FIG. Therefore, it can be seen that the first pulse wave P1 is based on the first edge E1 (rising edge), and the second pulse wave P2 is based on the second edge E2 (falling edge).
  • the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 3 before the second top dead center TDC2 (the second edge E2 is positioned between the engine stages 3).
  • control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the second top dead center TDC2 of the internal combustion engine 103.
  • step Sg6 When the pickup coil PC does not output the second pulse wave P2 (in the case of NO in step Sg4), the controller CON reversely rotates the motor 102 or outputs the second edge E2. Since it cannot be determined whether the pattern 1 or the pattern 2 is already described, for example, the value of the engine stage is provisionally determined to be “14” (step Sg6).
  • the control unit CON first sets the motor 102. It is determined whether or not the motor 102 is rotating in the reverse direction after driving forward (step Sg7).
  • step Sg7 When the motor 102 rotates in the reverse direction after the motor 102 is driven to rotate forward (YES in step Sg7), the control unit CON determines that the first pulse wave P1 of the pulse information SPC has the first edge. Based on E1, it is determined that the value of the engine stage is “13” (step Sg8).
  • the pulse information SPC is the pattern 3 in FIG. It can be seen that the first pulse wave P1 is based on the first edge E1 (falling).
  • the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 13 before the first top dead center TDC1 (the first edge E1 is positioned between the engine stages 13 and 14).
  • control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the first top dead center TDC1 of the internal combustion engine 103.
  • step Sg7 when the motor 102 does not reversely rotate after the motor 102 is normally driven (NO in step Sg7), the control unit CON determines that the first pulse wave P1 of the pulse information SPC is the second edge E2. Is determined to be “3” (step Sg9).
  • the engine stage 3 outputs the first pulse wave P1 having the second polarity (negative) from the pickup coil PC (Pattern 4 of the pulse information SPC). .
  • this pulse information SPC is the pattern 4 in FIG. It can be seen that the first pulse wave P1 is based on the second edge E2 (falling).
  • the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 3 before the second top dead center TDC2 (the second edge E2 is positioned between the engine stages 3).
  • control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the second top dead center TDC2 of the internal combustion engine 103.
  • step Sg the control part CON judges whether the engine stage in which the internal combustion engine 103 is located is decided.
  • control unit CON ends the process. On the other hand, when the engine stage where the internal combustion engine 103 is located is not determined, the control unit CON performs step Sa. Returning to FIG.
  • one of the 24 engine stages 00 to 23 corresponding to the four strokes of the four-stroke engine corresponds to a rotation angle of 30 degrees of the internal combustion engine 103.
  • the rotation angle corresponding to one stage of the engine stage is not limited to 30 degrees, and may be other angles such as 10 degrees and 15 degrees.
  • the control unit CON drives the motor 102 in the normal direction after the power is turned on and before starting the internal combustion engine 103, thereby supplying the reference torque to the internal combustion engine 103.
  • the reference position corresponding to the top dead center of the internal combustion engine that is, the rotation angle (engine stage) of the internal combustion engine 103 and the reluctator) RE (relationship with the position of the second edge E2) is detected.
  • the control unit CON controls the motor 102, determines the stroke of the internal combustion engine 103 based on the detected reference position, and controls ignition of the internal combustion engine 103. Then, the internal combustion engine 103 is driven.
  • the drive control system 1000 is a drive control system that controls the drive of a four-stroke internal combustion engine, and includes the motor 102 that applies torque to the internal combustion engine, and the U phase of the motor.
  • U phase, V phase, and W phase that output U phase, V phase, and W phase detection signals IHU, IHV, IHW according to the switching of magnetic flux of coils CU, CV, CW
  • the sensor element ICU, ICV, ICW and the rotor RO of the motor are detected to detect the passing of the rising edge of the reluctator RE and two edges in the rotational direction of the motor, the first polarity pulse wave
  • a detection sensor 1 including a pickup coil PC that outputs and outputs a pulse wave of the second polarity when the falling edge of the reluctator RE is detected. 4
  • a driver circuit D that controls the operation of the motor that applies torque to the internal combustion engine, and a driver circuit that controls the motor based on changes in the top dead center and the rotation angle detected by the
  • the control unit rotates the motor in the forward direction so as to exceed the second top dead center TDC2 between the exhaust stroke and the intake stroke of the internal combustion engine 103 and to compress the internal combustion engine 103.
  • a reference torque that does not exceed the first top dead center TDC1 between the stroke and the combustion stroke is applied to the internal combustion engine to cause the internal combustion engine to rotate forward, and the motor is driven to rotate forward to drive the reference torque to the internal combustion engine 103.
  • the U-phase, V-phase, and W-phase sensor elements output from the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor, and the pulse wave that is output from the pickup coil according to the rotation of the motor. Based on the pulse information SPC, a reference position corresponding to the first or second top dead center TDC1, TDC2 of the internal combustion engine is detected.
  • the three Hall ICs that output the U-phase, V-phase, and W-phase detection signals and the pulse information SPC are output.
  • the motor is rotated with a torque that does not exceed the first top dead center TDC1 between the exhaust stroke and the intake stroke of the internal combustion engine.
  • the reference position corresponding to the top dead center is detected based on the U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW and pulse information (pulse signal SPC) obtained by the above.
  • the reference position corresponding to the top dead center of the internal combustion engine can be detected based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil PC. it can.
  • the reference position corresponding to the top dead center of the internal combustion engine can be detected earlier, and the timing for specifying the stroke can be adjusted by adjusting the positions of the first and second edges of the reluctor RE.
  • FIG. 1 shows the case where the internal combustion engine 103 and the motor 102 are integrated, the internal combustion engine 103 and the motor 102 may be separated.
  • the motor 102 has both functions of an electric motor and a generator is shown.
  • the motor 102 is connected so as to give torque to the crankshaft of the internal combustion engine 103 and has only the function of an electric motor, the operation and effect of the present invention can be achieved.
  • a motor that functions as a generator is prepared separately.
  • the above-described reference torque is applied to the internal combustion engine 103 to rotate the internal combustion engine 103 (forward rotation in this case).
  • the control unit CON drives the motor 102 in the reverse direction, thereby exceeding the second top dead center TDC2 between the exhaust stroke and the intake stroke of the internal combustion engine 103 and the internal combustion engine 103.
  • a reference torque that does not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke may be applied to the internal combustion engine 103 to reverse the internal combustion engine 103.
  • the reference torque is a value that is greater than or equal to the rotational load (pressure) MAX2 at the second top dead center TDC2 of the internal combustion engine 103 and less than the rotational load (pressure) MAX1 at the first top dead center TDC1 of the internal combustion engine 103.

Abstract

According to the present invention, a control unit of a drive control system, by driving a motor after power is turned on, causes an internal combustion engine to rotate by imparting thereto a standard torque that exceeds a second top dead center between an exhaust stroke and an intake stroke of the internal combustion engine and that does not exceed a first top dead center between a compression stroke and a combustion stroke of the internal combustion engine, and, after having imparted the standard torque by driving the motor, detects a standard position corresponding to the top dead center of the internal combustion engine on the basis of U-, V-, and W-phase detection signals respectively outputted by U-, V-, and W-phase sensor elements, in accordance with the rotation of the motor and also on the basis of pulse information including a pulse wave outputted by a pickup coil in accordance with the rotation of the motor.

Description

駆動制御システム、および、駆動制御システムの制御方法Drive control system and drive control system control method
 本発明は、駆動制御システム、および、駆動制御システムの制御方法に関する。 The present invention relates to a drive control system and a control method for the drive control system.
 従来、4ストロークの内燃機関(エンジン)の駆動を制御する駆動制御システムの制御部(ECU)として、センサにより検出された内燃機関の上死点および回転角度の変化に基づいて、ドライバ回路を制御してモータを駆動するものが知られている。この従来の駆動制御システムの制御部(ECU)の電源投入時は、停止している内燃機関の行程(回転角度)に関する情報を保有していないため、電源投入時において、モータ始動制御前に、内燃機関の行程を判別する必要がある。 Conventionally, as a control unit (ECU) of a drive control system that controls driving of a 4-stroke internal combustion engine (engine), a driver circuit is controlled based on changes in the top dead center and rotation angle of the internal combustion engine detected by a sensor. And what drives a motor is known. At the time of turning on the power of the control unit (ECU) of this conventional drive control system, since the information about the stroke (rotation angle) of the stopped internal combustion engine is not held, at the time of turning on the power, before the motor start control, It is necessary to determine the stroke of the internal combustion engine.
 ここで、特許5097654号に記載の従来の駆動制御システムは、電源投入時において、モータを回転させ、4つのセンサ素子(ホールIC)から得られた4つの検出信号に基づいて、内燃機関の上死点に対応する基準位置を検出するものである。 Here, in the conventional drive control system described in Japanese Patent No. 5097654, when the power is turned on, the motor is rotated and based on the four detection signals obtained from the four sensor elements (Hall ICs), The reference position corresponding to the dead point is detected.
 すなわち、上記従来技術は、電源投入時において、モータを回転させ、3つのセンサ素子から得られた3つの検出信号とピックアップコイルが出力するパルス情報とに基づいて、内燃機関の上死点に対応する基準位置を検出するものではなかった。 In other words, the above-described conventional technique corresponds to the top dead center of the internal combustion engine based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil when the motor is turned on. The reference position to be detected was not detected.
 そこで、本発明では、電源投入時において、3つのセンサ素子から得られた3つの検出信号とピックアップコイルが出力するパルス情報とに基づいて、内燃機関の上死点に対応する基準位置を検出することが可能な駆動制御システムを提供することを目的とする。 Therefore, in the present invention, when the power is turned on, the reference position corresponding to the top dead center of the internal combustion engine is detected based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil. It is an object of the present invention to provide a drive control system that can be used.
 本発明の一態様に係る駆動制御システムでは、
 4ストロークの内燃機関の駆動を制御する駆動制御システムであって、
 前記内燃機関にトルクを付与するモータと、
 前記モータのU相、V相、及びW相コイルの磁束のそれぞれの切り替わりに応じたU相、V相、及びW相検出信号を出力するU相、V相、及びW相センサ素子と、前記モータのロータに設けられ、前記モータの回転方向に2つのエッジを有するリラクタと、前記リラクタのエッジの立ち上がりの通過を検出すると第1の極性のパルス波を出力するとともに前記リラクタのエッジの立ち下がりの通過を検出すると第2の極性のパルス波を出力するピックアップコイルと、を含むセンサと、
 前記内燃機関にトルクを付与するモータの動作を制御するドライバ回路と、
 前記センサにより検出された前記内燃機関の上死点および回転角度の変化に基づいて、前記ドライバ回路を制御して前記モータを駆動する制御部と、を備え、  
 前記制御部は、
 電源が投入された後、前記モータを駆動することにより、前記内燃機関の排気行程と吸気行程との間の第2の上死点を超え且つ前記内燃機関の圧縮行程と燃焼行程との間の第1の上死点を超えないような基準トルクを、前記内燃機関に付与して前記内燃機関を回転させ、
 前記モータを駆動して前記基準トルクを前記内燃機関に付与した後、前記モータの回転に応じて前記U相、V相、及びW相センサ素子が出力する前記U相、V相、及びW相検出信号、及び前記モータの回転に応じて前記ピックアップコイルが出力する前記パルス波を含むパルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
 ことを特徴とする。
In the drive control system according to one aspect of the present invention,
A drive control system for controlling the drive of a four-stroke internal combustion engine,
A motor for applying torque to the internal combustion engine;
U-phase, V-phase, and W-phase sensor elements that output U-phase, V-phase, and W-phase detection signals corresponding to respective switching of magnetic fluxes of the U-phase, V-phase, and W-phase coils of the motor; A relucter provided on the rotor of the motor and having two edges in the rotation direction of the motor, and a pulse wave of the first polarity is output when the rising edge of the edge of the reluctor is detected and the falling edge of the reluctor edge A pickup coil that outputs a pulse wave of the second polarity upon detecting the passage of
A driver circuit for controlling the operation of a motor for applying torque to the internal combustion engine;
A controller that controls the driver circuit to drive the motor based on a change in top dead center and rotation angle of the internal combustion engine detected by the sensor, and
The controller is
After the power is turned on, the motor is driven to exceed a second top dead center between the exhaust stroke and the intake stroke of the internal combustion engine and between the compression stroke and the combustion stroke of the internal combustion engine. A reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine,
After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor A reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil according to rotation of the motor.
 前記駆動制御システムにおいて、
 前記制御部は、
 前記電源が投入された後、前記モータを正転駆動することにより、前記基準トルクを、前記内燃機関に付与して前記内燃機関を正転させ、
 前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、前記U相、V相、及びW相検出信号、及び前記パルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
 ことを特徴とする。
In the drive control system,
The controller is
After the power is turned on, the reference torque is applied to the internal combustion engine to rotate the internal combustion engine in a normal direction by driving the motor forward.
Corresponding to the top dead center of the internal combustion engine based on the U-phase, V-phase, and W-phase detection signals and the pulse information after driving the motor forward and applying the reference torque to the internal combustion engine It is characterized by detecting the reference position.
 前記駆動制御システムにおいて、
 前記リラクタは、前記モータを正転した際に前記ピックアップコイルにより始めに検出される第1のエッジと、前記モータを正転した際に前記ピックアップコイルにより前記第1のエッジの次に検出される第2のエッジと、を有し、
 前記第1のエッジは、前記内燃機関の回転角度が自然停止位置から上死点との間の第1の検出角度にあるときに前記ピックアップコイルで検出される位置に設けられるとともに、前記第1の検出角度に関連付けられ、且つ、
 前記第2のエッジは、前記内燃機関の回転角度が前記第1の検出角度よりも上死点に近い第2の検出角度にあるときに前記ピックアップコイルで検出される位置に設けられるとともに、前記第2の検出角度に関連付けられている
 ことを特徴とする。
In the drive control system,
The reluctator is detected next to the first edge detected by the pickup coil when the motor is rotated forward, and next to the first edge when the motor is rotated forward. A second edge,
The first edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a first detection angle between a natural stop position and top dead center. And a detection angle of
The second edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a second detection angle closer to the top dead center than the first detection angle, and It is related to the second detection angle.
 前記駆動制御システムにおいて、
 前記第2の検出角度は、前記内燃機関の上死点に設定されていることを特徴とする。
In the drive control system,
The second detection angle is set to a top dead center of the internal combustion engine.
 前記駆動制御システムにおいて、
 前記自然停止位置は、前記モータからトルクを付与されない状態で前記内燃機関が自然に停止したときに位置する前記内燃機関の回転角度である
 ことを特徴とする。
In the drive control system,
The natural stop position is a rotation angle of the internal combustion engine that is located when the internal combustion engine is naturally stopped in a state where no torque is applied from the motor.
 前記駆動制御システムにおいて、
 前記制御部は、
 前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、最初に前記ピックアップコイルが出力した前記パルス情報の第1のパルス波が前記第1の極性であるか否かを判断し、
 前記第1のパルス波が前記第1の極性である場合には、前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、
 前記モータを正転駆動した後に前記モータが逆転している場合には、前記第1のパルス波が前記第1のエッジに基づいたものとして、
 前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第1の上死点に対応する前記基準位置として検出する
 ことを特徴とする。
In the drive control system,
The controller is
After the motor is driven forward and the reference torque is applied to the internal combustion engine, it is first determined whether or not the first pulse wave of the pulse information output from the pickup coil has the first polarity. And
If the first pulse wave has the first polarity, determine whether the motor is reversely rotated after the motor is driven forward,
When the motor is reversely rotated after the motor is driven to rotate forward, the first pulse wave is based on the first edge,
The second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine.
 前記駆動制御システムにおいて、
 前記制御部は、
 前記モータを正転駆動した後に前記モータが逆転していない場合には、前記ピックアップコイルが前記パルス情報の前記第1のパルス波の次の第2のパルス波を出力しているか否かを判断し、
 前記ピックアップコイルが前記第2のパルス波を出力している場合には、前記第2のパルス波が前記第2のエッジに基づいたものとして、前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第2の上死点に対応する前記基準位置として検出する
 ことを特徴とする。
In the drive control system,
The controller is
If the motor is not rotating in the reverse direction after the motor is driven forward, it is determined whether or not the pickup coil is outputting a second pulse wave next to the first pulse wave of the pulse information. And
When the pickup coil outputs the second pulse wave, the second pulse wave is based on the second edge, and the second pulse wave is associated with the second edge. A detection angle is detected as the reference position corresponding to the second top dead center of the internal combustion engine.
 前記駆動制御システムにおいて、
 前記制御部は、
 最初に前記ピックアップコイルが出力した前記パルス情報のパルス波が前記第1の極性ではない場合には、前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、
 前記モータを正転駆動した後に前記モータが逆転している場合には、前記パルス情報の前記第1のパルス波が前記第1のエッジに基づいたものとして、
 前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第1の上死点に対応する前記基準位置として検出する
 ことを特徴とする。
In the drive control system,
The controller is
When the pulse wave of the pulse information output from the pickup coil at first is not in the first polarity, it is determined whether or not the motor is reversely rotated after the motor is driven forward,
When the motor is rotating in the reverse direction after the motor is driven forward, the first pulse wave of the pulse information is based on the first edge,
The second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine.
 前記駆動制御システムにおいて、
 前記制御部は、
 前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、前記モータを正転駆動した後に前記モータが逆転していない場合には、前記パルス情報の前記第1のパルス波が前記第2のエッジに基づいたものとして、前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第2の上死点に対応する前記基準位置として検出する
 ことを特徴とする。
In the drive control system,
The controller is
It is determined whether or not the motor is reversely rotated after the motor is driven forward, and when the motor is not reversely rotated after the motor is driven forwardly, the first pulse wave of the pulse information is Is based on the second edge, and detects the second detection angle associated with the second edge as the reference position corresponding to the second top dead center of the internal combustion engine. Features.
 前記駆動制御システムにおいて、
 前記第1のエッジは、前記内燃機関の回転角度が圧縮行程にあるときに前記ピックアップコイルで検出される位置に設けられている
 ことを特徴とする。
In the drive control system,
The first edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is in a compression stroke.
 前記駆動制御システムにおいて、
 前記駆動制御システムは、二輪車に積載され、
 前記モータは前記二輪車の内燃機関に接続され、
 前記制御部は、前記ドライバ回路により前記モータを駆動することにより、前記内燃機関を起動及び/又は駆動する
 ことを特徴とする。
In the drive control system,
The drive control system is mounted on a motorcycle,
The motor is connected to the internal combustion engine of the motorcycle;
The control unit starts and / or drives the internal combustion engine by driving the motor by the driver circuit.
 前記駆動制御システムにおいて、
 前記制御部は、
 前記モータから前記内燃機関へのトルクの付与を開始し、
 前記内燃機関へのトルクの付与を開始してからのトルク付与時間の計測を開始し、
 前記内燃機関の回転速度が目標値に達したか否かを判断し、
 前記内燃機関の回転速度が前記目標値に達していないと判断した場合には、前記トルク付与時間が設定時間を経過したか否かを判断し、
 前記内燃機関の回転速度が前記目標値に達したと判断した場合および前記トルク付与時間が前記設定時間を経過したと判断した場合には、前記モータから前記内燃機関へのトルクの付与を停止することで、前記モータの正転駆動制御を実行する
 ことを特徴とする。
In the drive control system,
The controller is
Starting to apply torque from the motor to the internal combustion engine,
Start measuring the torque application time from the start of torque application to the internal combustion engine,
Determining whether or not the rotational speed of the internal combustion engine has reached a target value;
When it is determined that the rotational speed of the internal combustion engine has not reached the target value, it is determined whether the torque application time has passed a set time,
When it is determined that the rotational speed of the internal combustion engine has reached the target value and when it is determined that the torque application time has passed the set time, the application of torque from the motor to the internal combustion engine is stopped. Thus, forward drive control of the motor is executed.
 前記駆動制御システムにおいて、
 前記制御部は、前記U相、V相、及びW相検出信号の変化に基づいて、前記モータが、正転しているか、若しくは、逆転しているかを判定することを特徴とする。
In the drive control system,
The controller is configured to determine whether the motor is rotating forward or reversely based on changes in the U-phase, V-phase, and W-phase detection signals.
 前記駆動制御システムにおいて、 
 前記制御部は、
 前記電源が投入された後、前記内燃機関の始動前に、前記モータを正転駆動することにより、前記基準トルクを、前記内燃機関に付与して前記内燃機関を正転させ、
 前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、前記U相、V相、及びW相検出信号、及び前記パルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出し、
 前記内燃機関の始動の際に、前記モータを制御しつつ、検出した前記基準位置に基づいて、前記内燃機関の行程を判別して、前記内燃機関の点火を制御する
 ことを特徴とする。
In the drive control system,
The controller is
After the power is turned on and before starting the internal combustion engine, the motor is rotated forward so that the reference torque is applied to the internal combustion engine to cause the internal combustion engine to rotate forward.
Corresponding to the top dead center of the internal combustion engine based on the U-phase, V-phase, and W-phase detection signals and the pulse information after driving the motor forward and applying the reference torque to the internal combustion engine To detect the reference position
When starting the internal combustion engine, the stroke of the internal combustion engine is determined based on the detected reference position while controlling the motor, and ignition of the internal combustion engine is controlled.
 本発明の一態様に係る駆動制御方法では、  
 4ストロークの内燃機関の駆動を制御する駆動制御システムであって、前記内燃機関にトルクを付与するモータと、前記モータのU相、V相、及びW相コイルの磁束のそれぞれの切り替わりに応じたU相、V相、及びW相検出信号を出力するU相、V相、及びW相センサ素子と、前記モータのロータに設けられ、前記モータの回転方向に2つのエッジを有するリラクタと、前記リラクタのエッジの立ち上がりの通過を検出すると第1の極性のパルス波を出力するとともに前記リラクタのエッジの立ち下がりの通過を検出すると第2の極性のパルス波を出力するピックアップコイルと、を含むセンサと、前記内燃機関にトルクを付与するモータの動作を制御するドライバ回路と、前記センサにより検出された前記内燃機関の上死点および回転角度の変化に基づいて、前記ドライバ回路を制御して前記モータを駆動する制御部と、を備えた駆動制御システムの制御方法であって、  
 前記制御部は、
 電源が投入された後、前記モータを駆動することにより、前記内燃機関の排気行程と吸気行程との間の第2の上死点を超え且つ前記内燃機関の圧縮行程と燃焼行程との間の第1の上死点を超えないような基準トルクを、前記内燃機関に付与して前記内燃機関を回転させ、
 前記モータを駆動して前記基準トルクを前記内燃機関に付与した後、前記モータの回転に応じて前記U相、V相、及びW相センサ素子が出力する前記U相、V相、及びW相検出信号、及び前記モータの回転に応じて前記ピックアップコイルが出力する前記パルス波を含むパルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
 ことを特徴とする。
In the drive control method according to one aspect of the present invention,
A drive control system for controlling the drive of a four-stroke internal combustion engine according to each switching of a motor that applies torque to the internal combustion engine and a magnetic flux of a U-phase, V-phase, and W-phase coil of the motor U-phase, V-phase, and W-phase sensor elements that output U-phase, V-phase, and W-phase detection signals; a relucter that is provided in the rotor of the motor and has two edges in the rotation direction of the motor; A pickup coil that outputs a pulse wave of a first polarity when detecting the passage of a rising edge of a reluctator edge and outputs a pulse wave of a second polarity when detecting the passage of a trailing edge of the reluctator edge A driver circuit that controls the operation of a motor that applies torque to the internal combustion engine, and a top dead center and a rotation angle detected by the sensor Based on the change, a control method of a drive control system and a control unit which controls the driver circuit to drive the motor,
The controller is
After the power is turned on, the motor is driven to exceed a second top dead center between the exhaust stroke and the intake stroke of the internal combustion engine and between the compression stroke and the combustion stroke of the internal combustion engine. A reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine,
After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor A reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil according to rotation of the motor.
 本発明の一態様に係る車両用電力供給システムにより、電源投入時において、3つのセンサ素子から得られた3つの検出信号とピックアップコイルが出力するパルス情報とに基づいて、内燃機関の上死点に対応する基準位置を検出することができる。 According to the vehicle power supply system of one aspect of the present invention, when the power is turned on, the top dead center of the internal combustion engine based on the three detection signals obtained from the three sensor elements and the pulse information output by the pickup coil Can be detected.
図1は、本発明の一態様である第1の実施形態に係る駆動制御システム1000の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a drive control system 1000 according to the first embodiment which is an aspect of the present invention. 図2は、図1に示す駆動制御装置100及びモータ102の詳細な構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a detailed configuration of the drive control device 100 and the motor 102 illustrated in FIG. 1. 図3は、図1に示すモータ102の詳細な構成の一例を示す図である。FIG. 3 is a diagram showing an example of a detailed configuration of the motor 102 shown in FIG. 図4は、図1に示す駆動制御システム1000の内燃機関103の各行程(クランクの角度)と気筒内の圧力との関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between each stroke (crank angle) of the internal combustion engine 103 of the drive control system 1000 shown in FIG. 1 and the pressure in the cylinder. 図5は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン1)を示す図である。FIG. 5 is a diagram showing an example (pattern 1) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. 図6は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン2)を示す図である。FIG. 6 is a diagram showing an example (pattern 2) of a relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. 図7は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン3)を示す図である。FIG. 7 is a diagram showing an example (pattern 3) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. In FIG. 図8は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン4)を示す図である。FIG. 8 is a diagram showing an example (pattern 4) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. In FIG. 図9は、図1、図2に示す駆動制御装置100が基準トルクを内燃機関103に付与するために、モータ102の正転駆動制御のフローの一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the flow of forward drive control of the motor 102 in order for the drive control apparatus 100 shown in FIGS. 1 and 2 to apply the reference torque to the internal combustion engine 103. 図10は、図1、図2に示す駆動制御装置100が内燃機関103の上死点に対応する基準位置を検出するためのフローの一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a flow for the drive control device 100 shown in FIGS. 1 and 2 to detect a reference position corresponding to the top dead center of the internal combustion engine 103. 図11は、図10に示すモータステージ判定処理の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of the motor stage determination process shown in FIG. 図12は、図10に示す正転・逆転判定処理の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of normal / reverse rotation determination processing illustrated in FIG. 10. 図13は、図10に示す位置判定処理の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of the position determination process illustrated in FIG.
 以下、本発明に係る実施形態について図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1の実施形態First embodiment
 図1は、本発明の一態様である第1の実施形態に係る駆動制御システム1000の構成の一例を示す図である。また、図2は、図1に示す駆動制御装置100及びモータ102の詳細な構成の一例を示す図である。また、図3は、図1に示すモータ102の詳細な構成の一例を示す図である。また、図4は、図1に示す駆動制御システム1000の内燃機関103の各行程(クランクの角度)と気筒内の圧力との関係の一例を示す図である。 FIG. 1 is a diagram illustrating an example of a configuration of a drive control system 1000 according to the first embodiment which is an aspect of the present invention. FIG. 2 is a diagram illustrating an example of a detailed configuration of the drive control device 100 and the motor 102 illustrated in FIG. 1. FIG. 3 is a diagram showing an example of a detailed configuration of the motor 102 shown in FIG. FIG. 4 is a diagram showing an example of a relationship between each stroke (crank angle) of the internal combustion engine 103 of the drive control system 1000 shown in FIG. 1 and the pressure in the cylinder.
 本実施形態に係る内燃機関の駆動を制御する駆動制御システム1000は、例えば、図1、図2に示すように、駆動制御装置(ECU:Engine Control Unit)100と、バッテリBと、モータ102と、エンジン(内燃機関)103と、センサ104と、を備える。 A drive control system 1000 that controls the drive of the internal combustion engine according to the present embodiment includes, for example, a drive control device (ECU: Engine Control Unit) 100, a battery B, and a motor 102, as shown in FIGS. The engine (internal combustion engine) 103 and the sensor 104 are provided.
 この駆動制御システム1000は、例えば、二輪車(図示せず)に積載される。この場合、モータ102は該二輪車の内燃機関103に接続される。 The drive control system 1000 is mounted on, for example, a two-wheeled vehicle (not shown). In this case, the motor 102 is connected to the internal combustion engine 103 of the motorcycle.
 内燃機関103は、ここでは、例えば、4ストロークエンジンである。したがって、図4に示すように、内燃機関103の状態は、吸気行程、圧縮行程、燃焼行程、および、排気行程を遷移するようになっている。また、図4に示すように、内燃機関103の気筒内の圧力(すなわち、クランクの回転負荷)は、上死点で最大になる。 Here, the internal combustion engine 103 is, for example, a 4-stroke engine. Therefore, as shown in FIG. 4, the state of the internal combustion engine 103 changes between an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke. Further, as shown in FIG. 4, the pressure in the cylinder of the internal combustion engine 103 (that is, the rotational load of the crank) becomes maximum at the top dead center.
 また、モータ102は、内燃機関103(すなわち、内燃機関103のクランク軸)にトルクを付与するようになっている。 The motor 102 applies torque to the internal combustion engine 103 (that is, the crankshaft of the internal combustion engine 103).
 ここでは、モータ102は、内燃機関103のクランク軸にトルクを授受可能に連結されている。すなわち、このモータ102は、電動機と発電機の両方の機能を併せ持つ。このように、モータ102は、内燃機関103により駆動されて発電し、交流電圧を出力する交流発電機(ACG)としても機能するようになっている。 Here, the motor 102 is connected to the crankshaft of the internal combustion engine 103 so as to be able to transmit and receive torque. That is, the motor 102 has both functions of an electric motor and a generator. As described above, the motor 102 is driven by the internal combustion engine 103 to generate electric power, and also functions as an AC generator (ACG) that outputs an AC voltage.
 このモータ102は、例えば、図2、図3に示すように、ステータに設けられたU相コイルCU、V相コイルCV、及びW相コイルCWと、ロータROと、を含む。 The motor 102 includes, for example, a U-phase coil CU, a V-phase coil CV and a W-phase coil CW provided in the stator, and a rotor RO as shown in FIGS.
 また、センサ104は、内燃機関103の回転速度(rpm)およびクランク角(例えば、回転角度の変化、上死点)を検出し、この検出結果に応じた検出信号を出力するようになっている。 The sensor 104 detects the rotation speed (rpm) and crank angle (for example, change in rotation angle, top dead center) of the internal combustion engine 103, and outputs a detection signal corresponding to the detection result. .
 特に、このセンサ104は、内燃機関103の回転角度が、排気行程と吸気行程との間の第2の上死点TDC2(基準位置)、および、圧縮行程と燃焼行程との間の第1の上死点TDC1(基準位置)を通過した場合に、検出信号の1つとして基準位置信号(パルス情報SPC)を出力するようになっている。 In particular, the sensor 104 is configured such that the rotation angle of the internal combustion engine 103 is such that the second top dead center TDC2 (reference position) between the exhaust stroke and the intake stroke, and the first between the compression stroke and the combustion stroke. When passing through top dead center TDC1 (reference position), a reference position signal (pulse information SPC) is output as one of the detection signals.
 このセンサ104は、例えば、図2、図3に示すように、U相センサ素子ICU、V相センサ素子ICV、及びW相センサ素子ICWと、リラクタREと、ピックアップコイルPCと、を含む。 2 and 3, for example, the sensor 104 includes a U-phase sensor element ICU, a V-phase sensor element ICV, and a W-phase sensor element ICW, a relaxor RE, and a pickup coil PC.
 U相、V相、及びW相センサ素子ICU、ICV、ICWは、モータ102のU相、V相、及びW相コイルCU、CV、CWの磁束のそれぞれの切り替わりに応じたU相検出信号IHU、V相検出信号IHV、及びW相検出信号IHWを出力するようになっている。 The U-phase, V-phase, and W-phase sensor elements ICU, ICV, ICW are U-phase detection signals IHU corresponding to the switching of the magnetic flux of the U-phase, V-phase, and W-phase coils CU, CV, CW of the motor 102, respectively. The V-phase detection signal IHV and the W-phase detection signal IHW are output.
 また、ピックアップコイルPCは、リラクタREのエッジの通過を検出するとパルス波P1、P2を出力するようになっている。 The pickup coil PC outputs pulse waves P1 and P2 when it detects the passage of the edge of the reluctator RE.
 例えば、ピックアップコイルPCは、リラクタREのエッジの立ち上がりの通過を検出すると第1の極性(ここでは正)のパルス波を出力するとともに、リラクタREのエッジの立ち下がりの通過を検出すると第2の極性(ここでは負)のパルス波を出力するようになっている。 For example, the pickup coil PC outputs a pulse wave having a first polarity (in this case, positive) when detecting the rising passage of the edge of the reluctor RE, and outputs the second wave when detecting the falling passage of the edge of the reluctor RE. Polarity (here negative) pulse waves are output.
 なお、上記通過とは、例えば、ピックアップコイルPCがエッジを検出可能な範囲(ピックアップコイルPCの近傍)を、リラクタREが通過することを意味する。 The above passage means that, for example, the relaxor RE passes through a range where the pickup coil PC can detect an edge (in the vicinity of the pickup coil PC).
 また、リラクタREは、モータ102のロータROに設けられ、モータ102の回転方向(図3の正転方向)に2つのエッジE1、E2を有する。 The reluctator RE is provided on the rotor RO of the motor 102 and has two edges E1 and E2 in the rotation direction of the motor 102 (forward rotation direction in FIG. 3).
 すなわち、リラクタREは、モータ102を正転(図3)した際にピックアップコイルPCにより始めに検出される第1のエッジE1と、モータ102を正転した際にピックアップコイルPCにより第1のエッジE1の次に検出される第2のエッジE2と、を有する。 That is, the reluctator RE has a first edge E1 first detected by the pickup coil PC when the motor 102 is rotated forward (FIG. 3), and a first edge detected by the pickup coil PC when the motor 102 is rotated forward. And a second edge E2 detected next to E1.
 例えば、第1のエッジE1は、内燃機関103の回転角度が自然停止位置から上死点との間の第1の検出角度にあるときにピックアップコイルPCで検出される位置に設けられる。 For example, the first edge E1 is provided at a position detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is at a first detection angle between the natural stop position and the top dead center.
 この第1のエッジE1は、本実施形態では、例えば、内燃機関103の回転角度が圧縮行程にあるときにピックアップコイルPCで検出される位置に設けられている。 In the present embodiment, the first edge E1 is provided at a position that is detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is in the compression stroke, for example.
 そして、この第1のエッジE1は、制御部CONにより、該第1の検出角度に関連付けられている。例えば、第1のエッジE1は、該第1の検出角度に関連付けて記憶部Mに記憶されている。 And this 1st edge E1 is linked | related with this 1st detection angle by the control part CON. For example, the first edge E1 is stored in the storage unit M in association with the first detection angle.
 なお、該自然停止位置は、モータ102からトルクを付与されない状態で内燃機関103が自然に停止したときに位置する内燃機関103の回転角度である。 The natural stop position is a rotation angle of the internal combustion engine 103 that is located when the internal combustion engine 103 is naturally stopped in a state where no torque is applied from the motor 102.
 また、例えば、第2のエッジE2は、内燃機関103の回転角度が該第1の検出角度よりも上死点に近い第2の検出角度にあるときにピックアップコイルPCで検出される位置に設けられている。 Further, for example, the second edge E2 is provided at a position detected by the pickup coil PC when the rotation angle of the internal combustion engine 103 is at a second detection angle closer to the top dead center than the first detection angle. It has been.
 この第2のエッジE2は、制御部CONにより、該第2の検出角度に関連付けられている。例えば、第2のエッジE2は、該第2の検出角度に関連付けて記憶部Mに記憶されている。 The second edge E2 is associated with the second detection angle by the control unit CON. For example, the second edge E2 is stored in the storage unit M in association with the second detection angle.
 なお、該第2の検出角度は、本実施形態では、例えば、内燃機関103の上死点に設定されている。 In the present embodiment, the second detection angle is set at the top dead center of the internal combustion engine 103, for example.
 また、図1、図2に示すように、バッテリBは、モータ102に駆動電力を供給し、または、モータ103による回生電力を充電するようになっている。 Further, as shown in FIGS. 1 and 2, the battery B supplies driving power to the motor 102 or charges regenerative power from the motor 103.
 また、駆動制御装置100は、検出信号(すなわち、検出信号から得られるモータ102の回転速度およびクランク角(例えば、回転角度の変化、上死点))に基づいて、モータ102の状態を判断し、内燃機関103の駆動を制御するようになっている。 Further, the drive control device 100 determines the state of the motor 102 based on the detection signal (that is, the rotation speed and crank angle (for example, change in rotation angle, top dead center) of the motor 102 obtained from the detection signal). The driving of the internal combustion engine 103 is controlled.
 この駆動制御装置100は、例えば、制御部(CPU:Central Processing Unit)CONと、記憶部Mと、ドライバ回路Dと、を有する。 The drive control device 100 includes, for example, a control unit (CPU: Central Processing Unit) CON, a storage unit M, and a driver circuit D.
 また、ドライバ回路Dは、内燃機関103にトルクを付与するモータ102の動作を制御するようになっている。 Further, the driver circuit D is configured to control the operation of the motor 102 that applies torque to the internal combustion engine 103.
 また、記憶部Mは、内燃機関103の始動等を制御するため(モータ102を制御するための)のマップを記憶するようになっている。 Further, the storage unit M is configured to store a map for controlling the start of the internal combustion engine 103 (for controlling the motor 102).
 制御部CONは、記憶部Mを参照し、センサ104により検出された内燃機関103の回転速度およびクランク角(例えば、回転角度の変化、上死点)に基づいて、ドライバ回路Dを制御してモータ102を駆動するようになっている。 The control unit CON refers to the storage unit M and controls the driver circuit D based on the rotation speed and crank angle (for example, change in rotation angle, top dead center) of the internal combustion engine 103 detected by the sensor 104. The motor 102 is driven.
 すなわち、制御部CONは、ドライバ回路Dによりモータ102を駆動することにより、内燃機関103を起動するとともに、内燃機関103を駆動するようになっている。 That is, the controller CON drives the internal combustion engine 103 and drives the internal combustion engine 103 by driving the motor 102 by the driver circuit D.
 この制御部CONは、電源が投入された後、内燃機関103の始動(点火制御)前に、モータ102を駆動(ここでは、正転駆動)することにより、内燃機関103の排気行程と吸気行程との間の第2の上死点TDC2を超え且つ内燃機関103の圧縮行程と燃焼行程との間の第1の上死点TDC1を超えないような基準トルクを、内燃機関103に付与して内燃機関103を回転(ここでは、正転)させるようになっている。 The controller CON drives the motor 102 (in this case, normal rotation driving) after the power is turned on and before starting (ignition control) of the internal combustion engine 103, so that the exhaust stroke and the intake stroke of the internal combustion engine 103 are driven. A reference torque is applied to the internal combustion engine 103 so as to exceed the second top dead center TDC2 between and the internal combustion engine 103 and not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke of the internal combustion engine 103. The internal combustion engine 103 is rotated (forward rotation here).
 なお、該基準トルクは、内燃機関103の第2の上死点TDC2における回転負荷(圧力)MAX2以上、内燃機関103の第1の上死点TDC1における回転負荷(圧力)MAX1未満の値に設定される。 The reference torque is set to a value that is greater than or equal to the rotational load (pressure) MAX2 at the second top dead center TDC2 of the internal combustion engine 103 and less than the rotational load (pressure) MAX1 at the first top dead center TDC1 of the internal combustion engine 103. Is done.
 そして、制御部CONは、モータ102を駆動(ここでは、正転駆動)して基準トルクを内燃機関103に付与した後、モータ102の回転に応じてU相、V相、及びW相センサ素子ICU、ICV、ICWが出力するU相、V相、及びW相検出信号IHU、IHV、IHWの変化に基づいて、モータ102が、正転しているか、若しくは、逆転しているかを判定するようになっている。 Then, the controller CON drives the motor 102 (here, forward rotation driving) to apply a reference torque to the internal combustion engine 103, and then controls the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor 102. Based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output from the ICU, ICV, and ICW, it is determined whether the motor 102 is rotating forward or reversely. It has become.
 さらに、制御部CONは、モータ102を駆動(ここでは、正転駆動)して基準トルクを内燃機関103に付与した後、モータ102の回転に応じてU相、V相、及びW相センサ素子ICU、ICV、ICWが出力するU相、V相、及びW相検出信号IHU、IHV、IHWの変化に基づいて、モータ102の後述のモータステージを判定するようになっている。 Further, the control unit CON drives the motor 102 (in this case, normal rotation driving) to apply a reference torque to the internal combustion engine 103, and then controls the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor 102. Based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output from the ICU, ICV, and ICW, a motor stage, which will be described later, of the motor 102 is determined.
 さらに、制御部CONは、モータ102を駆動(ここでは、正転駆動)して基準トルクを内燃機関103に付与した後、内燃機関103の始動前に、モータ102の回転に応じてU相、V相、及びW相センサ素子ICU、ICV、ICWが出力するU相、V相、及びW相検出信号IHU、IHV、IHW、及びモータ102の回転に応じてピックアップコイルPCが出力するパルス波を含むパルス情報SPCに基づいて、内燃機関103の上死点に対応する基準位置を検出するようになっている。 Further, the control unit CON drives the motor 102 (here, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then before starting the internal combustion engine 103, the U phase according to the rotation of the motor 102, V-phase and W-phase sensor elements ICU, ICV, ICW output U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW, and pulse waves output from the pickup coil PC according to the rotation of the motor 102 A reference position corresponding to the top dead center of the internal combustion engine 103 is detected based on the included pulse information SPC.
 次に、以上のような構成を有する駆動制御システム1000の制御方法の一例について、説明する。図5は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン1)を示す図である。また、図6は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン2)を示す図である。また、図7は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン3)を示す図である。また、図8は、図1、図2に示す駆動制御システム1000の各信号と内燃機関103の回転負荷との関係の一例(パターン4)を示す図である。 Next, an example of a control method of the drive control system 1000 having the above configuration will be described. FIG. 5 is a diagram showing an example (pattern 1) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. FIG. 6 is a diagram showing an example (pattern 2) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. FIG. 7 is a diagram showing an example (pattern 3) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103. FIG. 8 is a diagram showing an example (pattern 4) of the relationship between each signal of the drive control system 1000 shown in FIGS. 1 and 2 and the rotational load of the internal combustion engine 103.
 まず、駆動制御装置100が基準トルクを内燃機関103に付与するために、モータ102の正転駆動制御のフローの一例について説明する。図9は、図1、図2に示す駆動制御装置100が基準トルクを内燃機関103に付与するために、モータ102の正転駆動制御のフローの一例を示すフローチャートである。 First, an example of a flow of forward drive control of the motor 102 in order for the drive control device 100 to apply the reference torque to the internal combustion engine 103 will be described. FIG. 9 is a flowchart showing an example of the flow of forward drive control of the motor 102 in order for the drive control apparatus 100 shown in FIGS. 1 and 2 to apply the reference torque to the internal combustion engine 103.
 この図9に示すように、先ず、駆動制御装置100の制御部CONは、は、正転駆動制御を開始して、内燃機関103のクランク軸に回転軸が接続されたモータ102から内燃機関103へのトルクの付与を開始する(ステップS1)。 As shown in FIG. 9, first, the control unit CON of the drive control device 100 starts normal rotation drive control, and the internal combustion engine 103 starts from the motor 102 having the rotation shaft connected to the crankshaft of the internal combustion engine 103. The application of torque is started (step S1).
 次に、制御部CONは、は、内燃機関103へのトルクの付与を開始してからのトルク付与時間の計測カウントを開始する(ステップS2)。 Next, the control unit CON starts measuring and counting the torque application time after starting to apply torque to the internal combustion engine 103 (step S2).
 そして、制御部CONは、は、センサ104により検出した内燃機関103の回転速度が目標値に達したか否かを判断する(ステップS3)。 Then, the control unit CON determines whether or not the rotational speed of the internal combustion engine 103 detected by the sensor 104 has reached a target value (step S3).
 そして、制御部CONは、は、このステップS3において内燃機関103の回転速度が目標値に達していないと判断した場合には、トルク付与時間が設定時間を経過したか否かを判断する(ステップS4)。 Then, if the control unit CON determines that the rotational speed of the internal combustion engine 103 has not reached the target value in step S3, the control unit CON determines whether or not the torque application time has passed the set time (step). S4).
 そして、制御部CONは、は、このステップS4においてトルク付与時間が設定時間を経過していないと判断した場合には、センサ104により検出した内燃機関103の回転速度が目標値に達したか否かを判断するステップS3に戻る。 If the control unit CON determines in step S4 that the torque application time has not passed the set time, whether or not the rotational speed of the internal combustion engine 103 detected by the sensor 104 has reached the target value. It returns to step S3 which judges whether.
 このようにして、排気行程と吸気行程との間の第2の上死点TDC2を超え且つ圧縮行程と燃焼行程との間の第1の上死点TDC1を超えないような既述の基準トルクを正転駆動制御により内燃機関103に付与して、内燃機関103を正転させる(図5~図8)。 In this way, the above-mentioned reference torque that exceeds the second top dead center TDC2 between the exhaust stroke and the intake stroke and does not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke. Is applied to the internal combustion engine 103 by forward drive control to cause the internal combustion engine 103 to rotate forward (FIGS. 5 to 8).
 一方、制御部CONは、は、ステップS3において内燃機関103の回転速度が目標値に達したと判断した場合およびステップS4においてトルク付与時間が設定時間を経過したと判断した場合には、該基準トルクが内燃機関103に付与されたと判断し、正転駆動制御を停止することによりモータ102から内燃機関103へのトルクの付与を停止する(ステップS5)。 On the other hand, if the control unit CON determines that the rotational speed of the internal combustion engine 103 has reached the target value in step S3 and if it is determined in step S4 that the torque application time has passed the set time, the reference CON It is determined that torque has been applied to the internal combustion engine 103, and the forward rotation drive control is stopped, thereby stopping the application of torque from the motor 102 to the internal combustion engine 103 (step S5).
 次に、駆動制御装置100が内燃機関103の上死点に対応する基準位置を検出するためのフローの一例について説明する。図10は、図1、図2に示す駆動制御装置100が内燃機関103の上死点に対応する基準位置を検出するためのフローの一例を示すフローチャートである。また、図11は、図10に示すモータステージ判定処理の一例を示すフローチャートである。また、図12は、図10に示す正転・逆転判定処理の一例を示すフローチャートである。また、図13は、図10に示す位置判定処理の一例を示すフローチャートである。 Next, an example of a flow for the drive control device 100 to detect a reference position corresponding to the top dead center of the internal combustion engine 103 will be described. FIG. 10 is a flowchart showing an example of a flow for the drive control device 100 shown in FIGS. 1 and 2 to detect a reference position corresponding to the top dead center of the internal combustion engine 103. FIG. 11 is a flowchart showing an example of the motor stage determination process shown in FIG. FIG. 12 is a flowchart showing an example of normal / reverse rotation determination processing shown in FIG. FIG. 13 is a flowchart illustrating an example of the position determination process illustrated in FIG.
 図10に示すように、例えば、ユーザによりイグニッションキーが操作されると、駆動制御システム1000に電源が投入されて、駆動制御装置100が起動する。この電源投入時においては、駆動制御装置100は、停止している内燃機関の行程(回転角度)に関する情報を保有していない。すなわち、内燃機関103の始動(点火制御)前に、内燃機関103のエンジンステージは未確定の状態である(ステップSa)。 As shown in FIG. 10, for example, when the ignition key is operated by the user, the drive control system 1000 is turned on and the drive control apparatus 100 is activated. At the time of turning on the power, the drive control device 100 does not have information regarding the stroke (rotation angle) of the stopped internal combustion engine. That is, before the internal combustion engine 103 is started (ignition control), the engine stage of the internal combustion engine 103 is in an undetermined state (step Sa).
 その後、図10に示すように、駆動制御装置100の制御部CONは、内燃機関103の始動(点火制御)前に、モータ102の正転駆動制御により、排気行程と吸気行程との間の第2の上死点TDC2を超え且つ圧縮行程と燃焼行程との間の第1の上死点TDC1を超えないような既述の基準トルクを、内燃機関103に付与して、内燃機関103を正転させる。 After that, as shown in FIG. 10, the control unit CON of the drive control device 100 performs a forward rotation control of the motor 102 before the internal combustion engine 103 is started (ignition control). 2 is applied to the internal combustion engine 103 so that the internal combustion engine 103 does not exceed the top dead center TDC2 of 2 and does not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke. Turn.
 そして、図10に示すように、制御部CONは、モータ102の回転に応じてW相センサ素子ICWが出力するW相検出信号IHWのエッジを検出した場合(ステップSb)、モータ102の回転に応じてV相センサ素子ICVが出力するV相検出信号IHVのエッジを検出した場合(ステップSc)、及び、モータ102の回転に応じて、U相センサ素子ICUが出力するU相検出信号IHUのエッジを検出した場合(ステップSd)には、モータステージ判定処理を実行する(ステップSe)。 As shown in FIG. 10, when the control unit CON detects the edge of the W-phase detection signal IHW output from the W-phase sensor element ICW according to the rotation of the motor 102 (step Sb), the control unit CON Accordingly, when the edge of the V-phase detection signal IHV output from the V-phase sensor element ICV is detected (step Sc), and according to the rotation of the motor 102, the U-phase detection signal IHU output from the U-phase sensor element ICU If an edge is detected (step Sd), motor stage determination processing is executed (step Se).
 ここで、モータステージは、例えば、図5ないし図8に示すように、U相、V相、及びW相検出信号IHU、IHV、IHWの“High”レベルと“Low”レベルの組み合わせで決まる6個のモータステージ“0”~モータステージ“5”に区分されている。図5ないし図8の例では、1つのモータステージは、内燃機関103の回転角度で10°である。 Here, for example, as shown in FIGS. 5 to 8, the motor stage is determined by the combination of the “High” level and the “Low” level of the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW. The motor stage is divided into “0” to motor stage “5”. In the example of FIGS. 5 to 8, one motor stage is 10 ° in the rotation angle of the internal combustion engine 103.
 そして、例えば、モータ102が正転する場合、モータステージは、モータステージ“0”、“1”、“2”、“3”、“4”、“5”の順番の変化が繰り返されることなる。一方、モータ102が逆転する場合、モータステージは、モータステージ“5”、“4”、“3”、“2”、“1”、“0”の順番の変化が繰り返されることなる。 For example, when the motor 102 rotates in the forward direction, the motor stage is repeatedly changed in the order of the motor stages “0”, “1”, “2”, “3”, “4”, “5”. . On the other hand, when the motor 102 rotates in the reverse direction, the motor stage is repeatedly changed in the order of the motor stages “5”, “4”, “3”, “2”, “1”, “0”.
 このモータステージ判定処理では、例えば、図11に示すように、制御部CONは、U相、V相、又はW相検出信号IHU、IHV、IHWのエッジ(例えば、図5ないし図8のU相検出信号IHUの立ち下がりエッジ)を検出すると、今回(現在)のモータステージの値(モータ102が正転している場合、例えば、“1”)を、前回のモータステージの値(“1”)として保持する(ステップSe1)。 In this motor stage determination process, for example, as shown in FIG. 11, the controller CON controls the edges of the U-phase, V-phase, or W-phase detection signals IHU, IHV, and IHW (for example, the U-phase in FIGS. 5 to 8). When the falling edge of the detection signal IHU is detected, the current (current) motor stage value (for example, “1” when the motor 102 is rotating forward) is changed to the previous motor stage value (“1”). (Step Se1).
 そして、制御部CONは、U相、V相、及びW相検出信号IHU、IHV、IHWの検出したレベル(例えば“High”レベル、“High”レベル、“Low”レベル)から、新しいモータステージ(“2”)を判定する(ステップSe2)。 Then, the control unit CON starts from a level detected by the U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW (for example, “High” level, “High” level, “Low” level) from a new motor stage ( "2") is determined (step Se2).
 そして、制御部CONは、判定した新しいモータステージ(“2”)を、今回のモータステージとして更新する(ステップSe3)。 Then, the control unit CON updates the determined new motor stage (“2”) as the current motor stage (step Se3).
 このようにして、制御部CONは、モータ102を駆動(ここでは、正転駆動)して基準トルクを内燃機関103に付与した後、モータ102の回転に応じてU相、V相、及びW相センサ素子ICU、ICV、ICWが出力するU相、V相、及びW相検出信号IHU、IHV、IHWの変化に基づいて、モータ102のモータステージを判定する。 In this way, the controller CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then, according to the rotation of the motor 102, the U phase, V phase, and W The motor stage of the motor 102 is determined based on changes in the U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output by the phase sensor elements ICU, ICV, and ICW.
 そして、図10に示すように、制御部CONは、このモータステージ判定処理(ステップSe)を実行した後、モータステージ判定処理を実行する(ステップSf)。 And as shown in FIG. 10, after performing this motor stage determination process (step Se), the control part CON performs a motor stage determination process (step Sf).
 このモータステージ判定処理(ステップSf)では、例えば、図12に示すように、先ず、制御部CONは、前回モータステージの値を取得する(ステップSf1)。 In this motor stage determination process (step Sf), for example, as shown in FIG. 12, first, the control unit CON acquires the previous motor stage value (step Sf1).
 そして、制御部CONは、今回(現在)モータステージの値を取得する(ステップSf2)。 And the control part CON acquires the value of this time (present) motor stage (step Sf2).
 そして、制御部CONは、今回モータステージの値が前回モータステージの値よりも大きいか否かを判断する(ステップSf3)。 Then, the control unit CON determines whether or not the current motor stage value is larger than the previous motor stage value (step Sf3).
 すなわち、モータステージの値が“0”、“1”、“2”、“3”、“4”、“5”の順番で変化しているか(モータ102が正転しているか)否か、を判断する。なお、今回モータステージの値が前回モータステージの値よりも大きい場合には、モータステージの値が“0”から“5”の順番で変化している場合(モータ102が逆転している場合)も含まれることになるが、この場合は、以下のステップSf4、Sf7で判断することになる。 That is, whether the value of the motor stage is changing in the order of “0”, “1”, “2”, “3”, “4”, “5” (whether the motor 102 is rotating forward), Judging. If the value of the motor stage is greater than the value of the previous motor stage, the value of the motor stage changes in the order of “0” to “5” (when the motor 102 is reversed). In this case, the determination is made in the following steps Sf4 and Sf7.
 そして、制御部CONは、前回モータステージの値が今回モータステージの値よりも小さい場合(ステップSf3でYESの場合)、前回モータステージの値が“0”且つ今回モータステージの値が“5”であるか否かを判断する(ステップSf4)。 When the previous motor stage value is smaller than the current motor stage value (YES in step Sf3), the control unit CON sets the previous motor stage value to “0” and the current motor stage value to “5”. Is determined (step Sf4).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも小さい場合であって、モータステージの値が“0”から“5”の順番で変化しているか否かを判断する。 That is, the control unit CON determines whether or not the previous motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “0” to “5”. .
 そして、制御部CONは、前回モータステージの値が“0”且つ今回モータステージの値が“5”である場合(ステップSf4でYESの場合)には、モータ102が逆転していると判断する(ステップSf5)。 Then, if the previous motor stage value is “0” and the current motor stage value is “5” (YES in step Sf4), the control unit CON determines that the motor 102 is rotating in reverse. (Step Sf5).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも小さい場合であって、モータステージの値が“0”から“5”の順番で変化している場合には、モータ102が逆転していると判断する。 That is, the controller CON determines that the motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “0” to “5”. It is determined that 102 is reversed.
 また、制御部CONは、前回モータステージの値が“0”且つ今回モータステージの値が“5”ではない場合(ステップSf4でNOの場合)には、制御部CONは、モータ102が正転していると判断する(ステップSf6)。 In addition, when the previous motor stage value is “0” and the current motor stage value is not “5” (NO in step Sf4), the control unit CON performs the normal rotation of the motor 102. (Step Sf6).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも小さい場合であって、モータステージの値が“5”から“0”の順番で変化している場合には、モータ102が正転していると判断する。 That is, the controller CON determines that the motor stage value is smaller than the current motor stage value and the motor stage value changes in the order of “5” to “0”. It is determined that 102 is rotating forward.
 一方、制御部CONは、前回モータステージの値が今回モータステージの値よりも小さくない場合(ステップSf3でNOの場合)、前回モータステージの値が“5”且つ今回モータステージの値が“0”であるか否かを判断する(ステップSf7)。 On the other hand, if the value of the previous motor stage is not smaller than the value of the current motor stage (NO in step Sf3), the control unit CON sets the previous motor stage value to “5” and the current motor stage value to “0”. Is determined (step Sf7).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも大きい場合であって、モータステージの値が“5”から“0”の順番で変化しているか否かを判断する。 That is, the control unit CON determines whether or not the previous motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “5” to “0”. .
 そして、制御部CONは、前回モータステージの値が“5”且つ今回モータステージの値が“0”である場合(ステップSf7でYESの場合)には、モータ102が正転していると判断する(ステップSf8)。 Then, the controller CON determines that the motor 102 is rotating forward when the previous motor stage value is “5” and the current motor stage value is “0” (YES in step Sf7). (Step Sf8).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも大きい場合であって、モータステージの値が“5”から“0”の順番で変化している場合には、モータ102が正転していると判断する。 That is, the control unit CON determines that the motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “5” to “0”. It is determined that 102 is rotating forward.
 また、制御部CONは、前回モータステージの値が“5”且つ今回モータステージの値が“0”ではない場合(ステップSf7でNOの場合)には、制御部CONは、モータ102が逆転していると判断する(ステップSf9)。 In addition, when the previous motor stage value is “5” and the current motor stage value is not “0” (NO in step Sf7), the control unit CON reverses the motor 102. (Step Sf9).
 すなわち、制御部CONは、前回モータステージの値が今回モータステージの値よりも大きい場合であって、モータステージの値が“0”から“5”の順番で変化している場合には、モータ102が逆転していると判断する。 That is, the control unit CON determines that the motor stage value is larger than the current motor stage value and the motor stage value changes in the order of “0” to “5”. It is determined that 102 is reversed.
 このように、制御部CONは、モータ102を駆動(ここでは、正転駆動)して基準トルクを内燃機関103に付与した後、モータ102の回転に応じてU相、V相、及びW相センサ素子ICU、ICV、ICWが出力するU相、V相、及びW相検出信号IHU、IHV、IHWの変化に基づいて、モータ102が、正転しているか、若しくは、逆転しているかを判定する。 As described above, the control unit CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103, and then, according to the rotation of the motor 102, the U phase, the V phase, and the W phase. Based on changes in U-phase, V-phase, and W-phase detection signals IHU, IHV, and IHW output from sensor elements ICU, ICV, and ICW, it is determined whether motor 102 is rotating forward or reversely. To do.
 そして、図10に示すように、制御部CONは、この正転・逆転判定処理(ステップSf)を実行した後、位置検出処理を実行する(ステップSg)。 Then, as shown in FIG. 10, the control unit CON executes the forward / reverse rotation determination process (step Sf) and then executes the position detection process (step Sg).
 この位置検出処理を実行する(ステップSg)では、例えば、図13に示すように、先ず、制御部CONは、モータ102を駆動(ここでは正転駆動)して基準トルクを内燃機関103に付与した後、最初にピックアップコイルPCが出力したパルス情報(パルス信号SPC)の第1のパルス波P1が第1の極性(ここでは正)であるか否かを判断する(ステップSg1)。 In this position detection process (step Sg), for example, as shown in FIG. 13, for example, first, the control unit CON drives the motor 102 (in this case, forward rotation driving) to apply the reference torque to the internal combustion engine 103. After that, it is determined whether or not the first pulse wave P1 of the pulse information (pulse signal SPC) output from the pickup coil PC first has the first polarity (positive in this case) (step Sg1).
 そして、制御部CONは、第1のパルス波P1が第1の極性である場合(ステップSg1でYESの場合)には、既述の正転・逆転判定処理(ステップSf)で得られた結果に基づいて、モータ102を正転駆動した後にモータ102が逆転しているか否かを判断する(ステップSg2)。 Then, when the first pulse wave P1 has the first polarity (YES in step Sg1), the control unit CON obtains the result obtained in the above-described forward / reverse rotation determination process (step Sf). Based on the above, it is determined whether or not the motor 102 is reversely rotated after the motor 102 is driven forward (step Sg2).
 そして、制御部CONは、モータ102を正転駆動した後にモータ102が逆転している場合(ステップSg2でYESの場合)には、第1のパルス波P1が第1のエッジE1に基づいたものとして、エンジンステージの値が“14”であると判定する(ステップSg3)。 Then, when the motor 102 rotates in the reverse direction after the motor 102 is driven in the forward direction (YES in step Sg2), the control unit CON is configured so that the first pulse wave P1 is based on the first edge E1. It is determined that the value of the engine stage is “14” (step Sg3).
 ここで、例えば、図5に示すように、内燃機関103が圧縮行程の回転角度aで停止している場合、モータ102を正転駆動して基準トルクを内燃機関103に付与すると、第1の上死点TDC1の手前のエンジンステージ14で、ピックアップコイルPCから第1の極性(正)の第1のパルス波P1が出力される。しかし、内燃機関103が第1の上死点TDC1を超えずに、回転角度bで逆転し、エンジンステージ13で、ピックアップコイルPCから第2の極性(負)の第2のパルス波P2が出力されることとなる(パルス情報SPCのパターン1)。 Here, for example, as shown in FIG. 5, when the internal combustion engine 103 is stopped at the rotation angle “a” of the compression stroke, if the motor 102 is driven forwardly to apply the reference torque to the internal combustion engine 103, the first The first pulse wave P1 having the first polarity (positive) is output from the pickup coil PC at the engine stage 14 before the top dead center TDC1. However, the internal combustion engine 103 does not exceed the first top dead center TDC1 but reverses at the rotation angle b, and the engine stage 13 outputs the second pulse wave P2 of the second polarity (negative) from the pickup coil PC. (Pattern 1 of pulse information SPC).
 そして、上記ステップSg1~Sg3により、内燃機関103が第1の上死点TDC1を超えずに逆転したことから、このパルス情報SPCが図5のパターン1であることが判別されるため、第1のパルス波P1が第1のエッジE1(立ち上がり)に基づいたものであることが分かる。なお、第2のパルス波P2も第1のエッジE1(立ち下がり)に基づいたものである。 Since the internal combustion engine 103 is reversed without exceeding the first top dead center TDC1 by the above steps Sg1 to Sg3, it is determined that the pulse information SPC is the pattern 1 in FIG. It can be seen that the pulse wave P1 is based on the first edge E1 (rising edge). Note that the second pulse wave P2 is also based on the first edge E1 (falling).
 そして、第1のエッジE1と第2のエッジE2との間隔、および、第1のエッジE1と第2のエッジE2と内燃機関103の回転角度との関係は既知のものである。すなわち、第1の上死点TDC1の手前のエンジンステージ14に内燃機関103が位置(第1のエッジE1がエンジンステージ13、14の間に位置)していることが分かる。 The distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 14 before the first top dead center TDC1 (the first edge E1 is positioned between the engine stages 13 and 14).
 これにより、図5に示す状態では、制御部CONは、第2のエッジE2に関連付けられた第2の検出角度を内燃機関103の第1の上死点TDC1に対応する基準位置として検出する。 Thus, in the state shown in FIG. 5, the control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the first top dead center TDC1 of the internal combustion engine 103.
 一方、制御部CONは、モータ102を正転駆動した後にモータ102が逆転していない場合(ステップSg2でNOの場合)には、ピックアップコイルPCがパルス情報SPCの第1のパルス波P1の次の第2のパルス波P2を出力しているか否かを判断する(ステップSg4)。 On the other hand, when the motor 102 does not reversely rotate after the motor 102 is driven to rotate forward (NO in step Sg2), the control unit CON causes the pickup coil PC to follow the first pulse wave P1 of the pulse information SPC. It is determined whether or not the second pulse wave P2 is output (step Sg4).
 そして、制御部CONは、ピックアップコイルPCが第2のパルス波P2を出力している場合(ステップSg4でYESの場合)には、第2のパルス波P2が第2のエッジE2に基づいたものとして、エンジンステージの値が“3”であると判定する(ステップSg5)。 Then, when the pickup coil PC outputs the second pulse wave P2 (in the case of YES at step Sg4), the controller CON determines that the second pulse wave P2 is based on the second edge E2. Then, it is determined that the value of the engine stage is “3” (step Sg5).
 ここで、例えば、図6に示すように、内燃機関103が燃焼行程の回転角度cで停止している場合、モータ102を正転駆動して基準トルクを内燃機関103に付与すると、第2の上死点TDC2の手前のエンジンステージ2で、ピックアップコイルPCから第1の極性(正)の第1のパルス波P1が出力される。さらに、内燃機関103が第2の上死点TDC2を超えるため、エンジンステージ3で、ピックアップコイルPCから第2の極性(負)の第2のパルス波P2が出力されることとなる(パルス情報SPCのパターン2)。 Here, for example, as shown in FIG. 6, when the internal combustion engine 103 is stopped at the rotation angle c of the combustion stroke, if the motor 102 is driven forward to apply a reference torque to the internal combustion engine 103, the second In the engine stage 2 before the top dead center TDC2, the first pulse wave P1 having the first polarity (positive) is output from the pickup coil PC. Further, since the internal combustion engine 103 exceeds the second top dead center TDC2, the engine stage 3 outputs the second pulse wave P2 having the second polarity (negative) from the pickup coil PC (pulse information). SPC pattern 2).
 そして、上記ステップSg1、Sg2、Sg4、Sg5により、内燃機関103が第2の上死点TDC2を超えて正転したことから、このパルス情報SPCが図6のパターン2であることが判別されるため、第1のパルス波P1が第1のエッジE1(立ち上がり)に基づいたものであり、第2のパルス波P2は第2のエッジE2(立ち下がり)に基づいたものであることが分かる。 Then, by the above steps Sg1, Sg2, Sg4, and Sg5, since the internal combustion engine 103 has rotated forward beyond the second top dead center TDC2, it is determined that the pulse information SPC is the pattern 2 in FIG. Therefore, it can be seen that the first pulse wave P1 is based on the first edge E1 (rising edge), and the second pulse wave P2 is based on the second edge E2 (falling edge).
 そして、既述のように、第1のエッジE1と第2のエッジE2との間隔、および、第1のエッジE1と第2のエッジE2と内燃機関103の回転角度との関係は既知のものである。すなわち、第2の上死点TDC2の手前のエンジンステージ3に内燃機関103が位置(第2のエッジE2がエンジンステージ3の間に位置)していることが分かる。 As described above, the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 3 before the second top dead center TDC2 (the second edge E2 is positioned between the engine stages 3).
 これにより、図6に示す状態では、制御部CONは、第2のエッジE2に関連付けられた第2の検出角度を内燃機関103の第2の上死点TDC2に対応する基準位置として検出する。 Thereby, in the state shown in FIG. 6, the control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the second top dead center TDC2 of the internal combustion engine 103.
 なお、制御部CONは、ピックアップコイルPCが第2のパルス波P2を出力していない場合(ステップSg4でNOの場合)には、モータ102が逆転し、若しくは、第2のエッジE2が出力するまでは、既述のパターン1又はパターン2の何れであるかを確定できないため、例えば、エンジンステージの値を、“14”に仮決めする(ステップSg6)。 When the pickup coil PC does not output the second pulse wave P2 (in the case of NO in step Sg4), the controller CON reversely rotates the motor 102 or outputs the second edge E2. Since it cannot be determined whether the pattern 1 or the pattern 2 is already described, for example, the value of the engine stage is provisionally determined to be “14” (step Sg6).
 一方、制御部CONは、最初にピックアップコイルPCが出力したパルス情報SPCのパルス波が第1の極性ではない(第2の極性である)場合(ステップSg1でNOの場合)には、モータ102を正転駆動した後にモータ102が逆転しているか否かを判断する(ステップSg7)。 On the other hand, when the pulse wave of the pulse information SPC output from the pickup coil PC first is not the first polarity (the second polarity) (in the case of NO in step Sg1), the control unit CON first sets the motor 102. It is determined whether or not the motor 102 is rotating in the reverse direction after driving forward (step Sg7).
 そして、制御部CONは、モータ102を正転駆動した後にモータ102が逆転している場合(ステップSg7でYESの場合)には、パルス情報SPCの前記第1のパルス波P1が第1のエッジE1に基づいたものとして、エンジンステージの値が“13”であると判定する(ステップSg8)。 When the motor 102 rotates in the reverse direction after the motor 102 is driven to rotate forward (YES in step Sg7), the control unit CON determines that the first pulse wave P1 of the pulse information SPC has the first edge. Based on E1, it is determined that the value of the engine stage is “13” (step Sg8).
 ここで、例えば、図7に示すように、内燃機関103が圧縮行程の回転角度dで停止している場合、モータ102を正転駆動して基準トルクを内燃機関103に付与すると、内燃機関103が第1の上死点TDC1を超えずに、この回転角度dで逆転し、エンジンステージ13で、ピックアップコイルPCから第2の極性(負)の第1のパルス波P1が出力されることとなる(パルス情報SPCのパターン3)。 Here, for example, as shown in FIG. 7, when the internal combustion engine 103 is stopped at the rotation angle d of the compression stroke, the internal combustion engine 103 is driven when the motor 102 is driven to rotate forward to apply the reference torque to the internal combustion engine 103. Is reversed at the rotation angle d without exceeding the first top dead center TDC1, and the engine stage 13 outputs the first pulse wave P1 having the second polarity (negative) from the pickup coil PC. (Pattern 3 of pulse information SPC)
 そして、上記ステップSg1、Sg7、Sg8により、内燃機関103が第1の上死点TDC1を超えずに逆転したことから、このパルス情報SPCが図7のパターン3であることが判別されるため、第1のパルス波P1が第1のエッジE1(立ち下がり)に基づいたものであることが分かる。 Since the internal combustion engine 103 is reversed without exceeding the first top dead center TDC1 by the steps Sg1, Sg7, Sg8, it is determined that the pulse information SPC is the pattern 3 in FIG. It can be seen that the first pulse wave P1 is based on the first edge E1 (falling).
 そして、既述のように、第1のエッジE1と第2のエッジE2との間隔、および、第1のエッジE1と第2のエッジE2と内燃機関103の回転角度との関係は既知のものである。すなわち、第1の上死点TDC1の手前のエンジンステージ13に内燃機関103が位置(第1のエッジE1がエンジンステージ13、14の間に位置)していることが分かる。 As described above, the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 13 before the first top dead center TDC1 (the first edge E1 is positioned between the engine stages 13 and 14).
 これにより、図7に示す状態では、制御部CONは、第2のエッジE2に関連付けられた第2の検出角度を内燃機関103の第1の上死点TDC1に対応する基準位置として検出する。 Thus, in the state shown in FIG. 7, the control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the first top dead center TDC1 of the internal combustion engine 103.
 また、制御部CONは、モータ102を正転駆動した後にモータ102が逆転していない場合(ステップSg7でNOの場合)には、パルス情報SPCの第1のパルス波P1が第2のエッジE2に基づいたものとして、エンジンステージの値が“3”であると判定する(ステップSg9)。 In addition, when the motor 102 does not reversely rotate after the motor 102 is normally driven (NO in step Sg7), the control unit CON determines that the first pulse wave P1 of the pulse information SPC is the second edge E2. Is determined to be “3” (step Sg9).
 ここで、例えば、図8に示すように、内燃機関103が排気行程の回転角度eで停止している場合、モータ102を正転駆動して基準トルクを内燃機関103に付与すると、内燃機関103が第2の上死点TDC2を超えるため、エンジンステージ3で、ピックアップコイルPCから第2の極性(負)の第1のパルス波P1が出力されることとなる(パルス情報SPCのパターン4)。 Here, for example, as shown in FIG. 8, when the internal combustion engine 103 is stopped at the rotation angle e of the exhaust stroke, when the motor 102 is driven in the forward direction to apply the reference torque to the internal combustion engine 103, the internal combustion engine 103 Exceeds the second top dead center TDC2, the engine stage 3 outputs the first pulse wave P1 having the second polarity (negative) from the pickup coil PC (Pattern 4 of the pulse information SPC). .
 そして、上記ステップSg1、Sg7、Sg9により、内燃機関103が第2の上死点TDC2を超えて正転したことから、このパルス情報SPCが図8のパターン4であることが判別されるため、第1のパルス波P1が第2のエッジE2(立ち下がり)に基づいたものであることが分かる。 Since the internal combustion engine 103 has rotated forward beyond the second top dead center TDC2 by the above steps Sg1, Sg7, Sg9, it is determined that this pulse information SPC is the pattern 4 in FIG. It can be seen that the first pulse wave P1 is based on the second edge E2 (falling).
 そして、既述のように、第1のエッジE1と第2のエッジE2との間隔、および、第1のエッジE1と第2のエッジE2と内燃機関103の回転角度との関係は既知のものである。すなわち、第2の上死点TDC2の手前のエンジンステージ3に内燃機関103が位置(第2のエッジE2がエンジンステージ3の間に位置)していることが分かる。 As described above, the distance between the first edge E1 and the second edge E2 and the relationship between the first edge E1, the second edge E2, and the rotation angle of the internal combustion engine 103 are known. It is. That is, it can be seen that the internal combustion engine 103 is positioned on the engine stage 3 before the second top dead center TDC2 (the second edge E2 is positioned between the engine stages 3).
 これにより、図8に示す状態では、制御部CONは、第2のエッジE2に関連付けられた第2の検出角度を内燃機関103の第2の上死点TDC2に対応する基準位置として検出する。 Thus, in the state shown in FIG. 8, the control unit CON detects the second detection angle associated with the second edge E2 as the reference position corresponding to the second top dead center TDC2 of the internal combustion engine 103.
 そして、図10に示すように、制御部CONは、この位置検出処理(ステップSg)を実行した後、内燃機関103が位置するエンジンステージが確定しているか否かを判断する(ステップSg)。 And as shown in FIG. 10, after performing this position detection process (step Sg), the control part CON judges whether the engine stage in which the internal combustion engine 103 is located is decided (step Sg).
 そして、制御部CONは、内燃機関103が位置するエンジンステージが確定している場合には、処理を終了し、一方、内燃機関103が位置するエンジンステージが確定していない場合には、ステップSaに戻り、同様の処理を実行する。 When the engine stage where the internal combustion engine 103 is located is determined, the control unit CON ends the process. On the other hand, when the engine stage where the internal combustion engine 103 is located is not determined, the control unit CON performs step Sa. Returning to FIG.
 なお、既述の図5ないし図8において、4ストロークエンジンの4つの行程に対応する24個のエンジンステージ00から23のうちの、1つのステージは、内燃機関103の30度の回転角度に相当する。しかし、このエンジンステージの1つのステージに対応する回転角度は、30度に限られず、10度や15度等のその他の角度であってもよい。 5 to 8 described above, one of the 24 engine stages 00 to 23 corresponding to the four strokes of the four-stroke engine corresponds to a rotation angle of 30 degrees of the internal combustion engine 103. To do. However, the rotation angle corresponding to one stage of the engine stage is not limited to 30 degrees, and may be other angles such as 10 degrees and 15 degrees.
 以上のステップにより、駆動制御装置100が実行する制御方法では、制御部CONは、電源が投入された後、内燃機関103の始動前に、モータ102を正転駆動して基準トルクを内燃機関103に付与した後、U相、V相、及びW相検出信号、及びパルス情報に基づいて、内燃機関の上死点に対応する基準位置(すなわち、内燃機関103の回転角度(エンジンステージ)とリラクタRE(第2のエッジE2)の位置との関係)を検出する。 In the control method executed by the drive control device 100 through the above steps, the control unit CON drives the motor 102 in the normal direction after the power is turned on and before starting the internal combustion engine 103, thereby supplying the reference torque to the internal combustion engine 103. After that, based on the U-phase, V-phase, and W-phase detection signals and pulse information, the reference position corresponding to the top dead center of the internal combustion engine (that is, the rotation angle (engine stage) of the internal combustion engine 103 and the reluctator) RE (relationship with the position of the second edge E2)) is detected.
 そして、制御部CONは、内燃機関103の始動の際には、モータ102を制御しつつ、検出した基準位置に基づいて、内燃機関103の行程を判別して、内燃機関103の点火を制御して、内燃機関103を駆動する。 Then, when the internal combustion engine 103 is started, the control unit CON controls the motor 102, determines the stroke of the internal combustion engine 103 based on the detected reference position, and controls ignition of the internal combustion engine 103. Then, the internal combustion engine 103 is driven.
 以上のように、本発明の一態様に係る駆動制御システム1000は、4ストロークの内燃機関の駆動を制御する駆動制御システムであって、内燃機関にトルクを付与するモータ102と、モータのU相、V相、及びW相コイルCU、CV、CWの磁束のそれぞれの切り替わりに応じたU相、V相、及びW相検出信号IHU,IHV,IHWを出力するU相、V相、及びW相センサ素子ICU、ICV、ICWと、モータのロータROに設けられ、モータの回転方向に2つのエッジを有するリラクタREと、リラクタREのエッジの立ち上がりの通過を検出すると第1の極性のパルス波を出力するとともにリラクタREのエッジの立ち下がりの通過を検出すると第2の極性のパルス波を出力するピックアップコイルPCと、を含む検出センサ104と、内燃機関にトルクを付与するモータの動作を制御するドライバ回路Dと、検出センサにより検出された内燃機関の上死点および回転角度の変化に基づいて、ドライバ回路を制御してモータを駆動する制御部CONと、を備える。 As described above, the drive control system 1000 according to an aspect of the present invention is a drive control system that controls the drive of a four-stroke internal combustion engine, and includes the motor 102 that applies torque to the internal combustion engine, and the U phase of the motor. U phase, V phase, and W phase that output U phase, V phase, and W phase detection signals IHU, IHV, IHW according to the switching of magnetic flux of coils CU, CV, CW When the sensor element ICU, ICV, ICW and the rotor RO of the motor are detected to detect the passing of the rising edge of the reluctator RE and two edges in the rotational direction of the motor, the first polarity pulse wave A detection sensor 1 including a pickup coil PC that outputs and outputs a pulse wave of the second polarity when the falling edge of the reluctator RE is detected. 4, a driver circuit D that controls the operation of the motor that applies torque to the internal combustion engine, and a driver circuit that controls the motor based on changes in the top dead center and the rotation angle detected by the detection sensor And a control unit CON to be driven.
 そして、制御部は、電源が投入された後、モータを正転駆動することにより、内燃機関103の排気行程と吸気行程との間の第2の上死点TDC2を超え且つ内燃機関103の圧縮行程と燃焼行程との間の第1の上死点TDC1を超えないような基準トルクを、内燃機関に付与して内燃機関を正転させ、モータを正転駆動して基準トルクを内燃機関103に付与した後、モータの回転に応じてU相、V相、W相センサ素子が出力するU相、V相、W相検出信号、及びモータの回転に応じてピックアップコイルが出力するパルス波のパルス情報SPCに基づいて、内燃機関の第1又は第2の上死点TDC1、TDC2に対応する基準位置を検出する。 Then, after the power is turned on, the control unit rotates the motor in the forward direction so as to exceed the second top dead center TDC2 between the exhaust stroke and the intake stroke of the internal combustion engine 103 and to compress the internal combustion engine 103. A reference torque that does not exceed the first top dead center TDC1 between the stroke and the combustion stroke is applied to the internal combustion engine to cause the internal combustion engine to rotate forward, and the motor is driven to rotate forward to drive the reference torque to the internal combustion engine 103. Of the U-phase, V-phase, and W-phase sensor elements output from the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor, and the pulse wave that is output from the pickup coil according to the rotation of the motor. Based on the pulse information SPC, a reference position corresponding to the first or second top dead center TDC1, TDC2 of the internal combustion engine is detected.
 このように、本発明の駆動制御装置では、内燃機関の行程を検出するための構成として、U相、V相、及びW相検出信号を出力する3つのホールICのと、パルス情報SPCを出力するピックアップコイルおよびリラクタREを用い、内燃機関の始動時の電源投入時には、内燃機関の排気行程と吸気行程との間の第1の上死点TDC1を超えない程度のトルクでモータを回転させることにより得られる、U相、V相、及びW相検出信号IHU,IHV,IHWとパルス情報(パルス信号SPC)に基づいて、上死点に対応する基準位置を検出する。 As described above, in the drive control device of the present invention, as the configuration for detecting the stroke of the internal combustion engine, the three Hall ICs that output the U-phase, V-phase, and W-phase detection signals and the pulse information SPC are output. When the power is turned on when starting the internal combustion engine, the motor is rotated with a torque that does not exceed the first top dead center TDC1 between the exhaust stroke and the intake stroke of the internal combustion engine. The reference position corresponding to the top dead center is detected based on the U-phase, V-phase, and W-phase detection signals IHU, IHV, IHW and pulse information (pulse signal SPC) obtained by the above.
 これにより、電源投入時において、3つのセンサ素子から得られた3つの検出信号とピックアップコイルPCが出力するパルス情報とに基づいて、内燃機関の上死点に対応する基準位置を検出することができる。 Thus, when the power is turned on, the reference position corresponding to the top dead center of the internal combustion engine can be detected based on the three detection signals obtained from the three sensor elements and the pulse information output from the pickup coil PC. it can.
 特に、電源投入時において、より早く内燃機関の上死点に対応する基準位置を検出でき、リラクタREの第1、第2のエッジの位置を調整することで行程を特定するタイミングが調整できる。 In particular, when the power is turned on, the reference position corresponding to the top dead center of the internal combustion engine can be detected earlier, and the timing for specifying the stroke can be adjusted by adjusting the positions of the first and second edges of the reluctor RE.
 なお、図1においては、内燃機関103とモータ102とが一体になった場合に示しているが、内燃機関103とモータ102とが別体になっていてもよい。 Although FIG. 1 shows the case where the internal combustion engine 103 and the motor 102 are integrated, the internal combustion engine 103 and the motor 102 may be separated.
 また、実施形態においては、モータ102は、電動機と発電機の両方の機能を併せ持つ場合について示している。 Further, in the embodiment, the case where the motor 102 has both functions of an electric motor and a generator is shown.
 しかし、モータ102が内燃機関103のクランク軸にトルクを与えるように連結され、電動機の機能のみを持つようにしても、本発明の作用・効果を奏することができる。この場合、発電機として機能するモータが別途用意される。 However, even if the motor 102 is connected so as to give torque to the crankshaft of the internal combustion engine 103 and has only the function of an electric motor, the operation and effect of the present invention can be achieved. In this case, a motor that functions as a generator is prepared separately.
 また、実施形態では、既述の基準トルクは、内燃機関103に付与して内燃機関103を回転(ここでは、正転)させるようになっていた。しかし、制御部CONは、電源が投入された後、モータ102を逆転駆動することにより、内燃機関103の排気行程と吸気行程との間の第2の上死点TDC2を超え且つ内燃機関103の圧縮行程と燃焼行程との間の第1の上死点TDC1を超えないような基準トルクを、内燃機関103に付与して内燃機関103を逆転させるようにしてもよい。この場合も、該基準トルクは、内燃機関103の第2の上死点TDC2における回転負荷(圧力)MAX2以上、内燃機関103の第1の上死点TDC1における回転負荷(圧力)MAX1未満の値に設定される。 In the embodiment, the above-described reference torque is applied to the internal combustion engine 103 to rotate the internal combustion engine 103 (forward rotation in this case). However, after the power is turned on, the control unit CON drives the motor 102 in the reverse direction, thereby exceeding the second top dead center TDC2 between the exhaust stroke and the intake stroke of the internal combustion engine 103 and the internal combustion engine 103. A reference torque that does not exceed the first top dead center TDC1 between the compression stroke and the combustion stroke may be applied to the internal combustion engine 103 to reverse the internal combustion engine 103. Also in this case, the reference torque is a value that is greater than or equal to the rotational load (pressure) MAX2 at the second top dead center TDC2 of the internal combustion engine 103 and less than the rotational load (pressure) MAX1 at the first top dead center TDC1 of the internal combustion engine 103. Set to
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1000 駆動制御システム
100 駆動制御装置(ECU)
B バッテリ
102 モータ
103 内燃機関(エンジン)
104 センサ
1000 Drive Control System 100 Drive Control Device (ECU)
B Battery 102 Motor 103 Internal combustion engine (engine)
104 sensors

Claims (15)

  1.  4ストロークの内燃機関の駆動を制御する駆動制御システムであって、
     前記内燃機関にトルクを付与するモータと、
     前記モータのU相、V相、及びW相コイルの磁束のそれぞれの切り替わりに応じたU相、V相、及びW相検出信号を出力するU相、V相、及びW相センサ素子と、前記モータのロータに設けられ、前記モータの回転方向に2つのエッジを有するリラクタと、前記リラクタのエッジの立ち上がりの通過を検出すると第1の極性のパルス波を出力するとともに前記リラクタのエッジの立ち下がりの通過を検出すると第2の極性のパルス波を出力するピックアップコイルと、を含むセンサと、
     前記内燃機関にトルクを付与するモータの動作を制御するドライバ回路と、
     前記センサにより検出された前記内燃機関の上死点および回転角度の変化に基づいて、前記ドライバ回路を制御して前記モータを駆動する制御部と、を備え、  
     前記制御部は、
     電源が投入された後、前記モータを駆動することにより、前記内燃機関の排気行程と吸気行程との間の第2の上死点を超え且つ前記内燃機関の圧縮行程と燃焼行程との間の第1の上死点を超えないような基準トルクを、前記内燃機関に付与して前記内燃機関を回転させ、
     前記モータを駆動して前記基準トルクを前記内燃機関に付与した後、前記モータの回転に応じて前記U相、V相、及びW相センサ素子が出力する前記U相、V相、及びW相検出信号、及び前記モータの回転に応じて前記ピックアップコイルが出力する前記パルス波を含むパルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
     ことを特徴とする駆動制御システム。
    A drive control system for controlling the drive of a four-stroke internal combustion engine,
    A motor for applying torque to the internal combustion engine;
    U-phase, V-phase, and W-phase sensor elements that output U-phase, V-phase, and W-phase detection signals corresponding to respective switching of magnetic fluxes of the U-phase, V-phase, and W-phase coils of the motor; A relucter provided on the rotor of the motor and having two edges in the rotation direction of the motor, and a pulse wave of the first polarity is output when the rising edge of the edge of the reluctor is detected and the falling edge of the reluctor edge A pickup coil that outputs a pulse wave of the second polarity upon detecting the passage of
    A driver circuit for controlling the operation of a motor for applying torque to the internal combustion engine;
    A controller that controls the driver circuit to drive the motor based on a change in top dead center and rotation angle of the internal combustion engine detected by the sensor, and
    The controller is
    After the power is turned on, the motor is driven to exceed a second top dead center between the exhaust stroke and the intake stroke of the internal combustion engine and between the compression stroke and the combustion stroke of the internal combustion engine. A reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine,
    After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor Drive control, wherein a reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil in accordance with rotation of the motor. system.
  2.  前記制御部は、
     前記電源が投入された後、前記モータを正転駆動することにより、前記基準トルクを、前記内燃機関に付与して前記内燃機関を正転させ、
     前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、前記U相、V相、及びW相検出信号、及び前記パルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
     ことを特徴とする請求項1に記載の駆動制御システム。
    The controller is
    After the power is turned on, the reference torque is applied to the internal combustion engine to rotate the internal combustion engine in a normal direction by driving the motor forward.
    Corresponding to the top dead center of the internal combustion engine based on the U-phase, V-phase, and W-phase detection signals and the pulse information after driving the motor forward and applying the reference torque to the internal combustion engine The drive control system according to claim 1, wherein a reference position to be detected is detected.
  3.  前記リラクタは、前記モータを正転した際に前記ピックアップコイルにより始めに検出される第1のエッジと、前記モータを正転した際に前記ピックアップコイルにより前記第1のエッジの次に検出される第2のエッジと、を有し、
     前記第1のエッジは、前記内燃機関の回転角度が自然停止位置から上死点との間の第1の検出角度にあるときに前記ピックアップコイルで検出される位置に設けられるとともに、前記第1の検出角度に関連付けられ、且つ、
     前記第2のエッジは、前記内燃機関の回転角度が前記第1の検出角度よりも上死点に近い第2の検出角度にあるときに前記ピックアップコイルで検出される位置に設けられるとともに、前記第2の検出角度に関連付けられている
     ことを特徴とする請求項2に記載の駆動制御システム。
    The reluctator is detected next to the first edge detected by the pickup coil when the motor is rotated forward, and next to the first edge when the motor is rotated forward. A second edge,
    The first edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a first detection angle between a natural stop position and top dead center. And a detection angle of
    The second edge is provided at a position detected by the pickup coil when the rotation angle of the internal combustion engine is at a second detection angle closer to the top dead center than the first detection angle, and The drive control system according to claim 2, wherein the drive control system is associated with the second detection angle.
  4.  前記第2の検出角度は、前記内燃機関の上死点に設定されていることを特徴とする請求項3に記載の駆動制御システム。 The drive control system according to claim 3, wherein the second detection angle is set to a top dead center of the internal combustion engine.
  5.  前記自然停止位置は、前記モータからトルクを付与されない状態で前記内燃機関が自然に停止したときに位置する前記内燃機関の回転角度である
     ことを特徴とする請求項3に記載の駆動制御システム。
    The drive control system according to claim 3, wherein the natural stop position is a rotation angle of the internal combustion engine that is located when the internal combustion engine is naturally stopped in a state where no torque is applied from the motor.
  6.  前記制御部は、
     前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、最初に前記ピックアップコイルが出力した前記パルス情報の第1のパルス波が前記第1の極性であるか否かを判断し、
     前記第1のパルス波が前記第1の極性である場合には、前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、
     前記モータを正転駆動した後に前記モータが逆転している場合には、前記第1のパルス波が前記第1のエッジに基づいたものとして、
     前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第1の上死点に対応する前記基準位置として検出する
     ことを特徴とする請求項4に記載の駆動制御システム。
    The controller is
    After the motor is driven forward and the reference torque is applied to the internal combustion engine, it is first determined whether or not the first pulse wave of the pulse information output from the pickup coil has the first polarity. And
    If the first pulse wave has the first polarity, determine whether the motor is reversely rotated after the motor is driven forward,
    When the motor is reversely rotated after the motor is driven to rotate forward, the first pulse wave is based on the first edge,
    The drive control system according to claim 4, wherein the second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine. .
  7.  前記制御部は、
     前記モータを正転駆動した後に前記モータが逆転していない場合には、前記ピックアップコイルが前記パルス情報の前記第1のパルス波の次の第2のパルス波を出力しているか否かを判断し、
     前記ピックアップコイルが前記第2のパルス波を出力している場合には、前記第2のパルス波が前記第2のエッジに基づいたものとして、前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第2の上死点に対応する前記基準位置として検出する
     ことを特徴とする請求項6に記載の駆動制御システム。
    The controller is
    If the motor is not rotating in the reverse direction after the motor is driven forward, it is determined whether or not the pickup coil is outputting a second pulse wave next to the first pulse wave of the pulse information. And
    When the pickup coil outputs the second pulse wave, the second pulse wave is based on the second edge, and the second pulse wave is associated with the second edge. The drive control system according to claim 6, wherein a detection angle is detected as the reference position corresponding to the second top dead center of the internal combustion engine.
  8.  前記制御部は、
     最初に前記ピックアップコイルが出力した前記パルス情報のパルス波が前記第1の極性ではない場合には、前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、
     前記モータを正転駆動した後に前記モータが逆転している場合には、前記パルス情報の前記第1のパルス波が前記第1のエッジに基づいたものとして、
     前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第1の上死点に対応する前記基準位置として検出する
     ことを特徴とする請求項6に記載の駆動制御システム。
    The controller is
    When the pulse wave of the pulse information output from the pickup coil at first is not in the first polarity, it is determined whether or not the motor is reversely rotated after the motor is driven forward,
    When the motor is rotating in the reverse direction after the motor is driven forward, the first pulse wave of the pulse information is based on the first edge,
    The drive control system according to claim 6, wherein the second detection angle associated with the second edge is detected as the reference position corresponding to the first top dead center of the internal combustion engine. .
  9.  前記制御部は、
     前記モータを正転駆動した後に前記モータが逆転しているか否かを判断し、前記モータを正転駆動した後に前記モータが逆転していない場合には、前記パルス情報の前記第1のパルス波が前記第2のエッジに基づいたものとして、前記第2のエッジに関連付けられた前記第2の検出角度を前記内燃機関の前記第2の上死点に対応する前記基準位置として検出する
     ことを特徴とする請求項8に記載の駆動制御システム。
    The controller is
    It is determined whether or not the motor is reversely rotated after the motor is driven forward, and when the motor is not reversely rotated after the motor is driven forwardly, the first pulse wave of the pulse information is Is based on the second edge, and detects the second detection angle associated with the second edge as the reference position corresponding to the second top dead center of the internal combustion engine. The drive control system according to claim 8, wherein:
  10.  前記第1のエッジは、前記内燃機関の回転角度が圧縮行程にあるときに前記ピックアップコイルで検出される位置に設けられている
     ことを特徴とする請求項4に記載の駆動制御システム。
    The drive control system according to claim 4, wherein the first edge is provided at a position detected by the pickup coil when a rotation angle of the internal combustion engine is in a compression stroke.
  11.  前記駆動制御システムは、二輪車に積載され、
     前記モータは前記二輪車の内燃機関に接続され、
     前記制御部は、前記ドライバ回路により前記モータを駆動することにより、前記内燃機関を起動及び/又は駆動する
     ことを特徴とする請求項1に記載の駆動制御システム。
    The drive control system is mounted on a motorcycle,
    The motor is connected to the internal combustion engine of the motorcycle;
    The drive control system according to claim 1, wherein the control unit starts and / or drives the internal combustion engine by driving the motor by the driver circuit.
  12.  前記制御部は、
     前記モータから前記内燃機関へのトルクの付与を開始し、
     前記内燃機関へのトルクの付与を開始してからのトルク付与時間の計測を開始し、
     前記内燃機関の回転速度が目標値に達したか否かを判断し、
     前記内燃機関の回転速度が前記目標値に達していないと判断した場合には、前記トルク付与時間が設定時間を経過したか否かを判断し、
     前記内燃機関の回転速度が前記目標値に達したと判断した場合および前記トルク付与時間が前記設定時間を経過したと判断した場合には、前記モータから前記内燃機関へのトルクの付与を停止することで、前記モータの正転駆動制御を実行する
     ことを特徴とする請求項3に記載の駆動制御システム。
    The controller is
    Starting to apply torque from the motor to the internal combustion engine,
    Start measuring the torque application time from the start of torque application to the internal combustion engine,
    Determining whether or not the rotational speed of the internal combustion engine has reached a target value;
    When it is determined that the rotational speed of the internal combustion engine has not reached the target value, it is determined whether the torque application time has passed a set time,
    When it is determined that the rotational speed of the internal combustion engine has reached the target value and when it is determined that the torque application time has passed the set time, the application of torque from the motor to the internal combustion engine is stopped. Thus, the forward drive control of the motor is executed. The drive control system according to claim 3.
  13.  前記制御部は、前記U相、V相、及びW相検出信号の変化に基づいて、前記モータが、正転しているか、若しくは、逆転しているかを判定する
     ことを特徴とする請求項6に記載の駆動制御システム。
    The said control part determines whether the said motor is carrying out normal rotation or reverse rotation based on the change of the said U phase, V phase, and W phase detection signal. The drive control system described in 1.
  14.  前記制御部は、
     前記電源が投入された後、前記内燃機関の始動前に、前記モータを正転駆動することにより、前記基準トルクを、前記内燃機関に付与して前記内燃機関を正転させ、
     前記モータを正転駆動して前記基準トルクを前記内燃機関に付与した後、前記U相、V相、及びW相検出信号、及び前記パルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出し、
     前記内燃機関の始動の際に、前記モータを制御しつつ、検出した前記基準位置に基づいて、前記内燃機関の行程を判別して、前記内燃機関の点火を制御する
     ことを特徴とする請求項3に記載の駆動制御システム。
    The controller is
    After the power is turned on and before starting the internal combustion engine, the motor is rotated forward so that the reference torque is applied to the internal combustion engine to cause the internal combustion engine to rotate forward.
    Corresponding to the top dead center of the internal combustion engine based on the U-phase, V-phase, and W-phase detection signals and the pulse information after driving the motor forward and applying the reference torque to the internal combustion engine To detect the reference position
    The ignition of the internal combustion engine is controlled by determining the stroke of the internal combustion engine based on the detected reference position while controlling the motor when starting the internal combustion engine. 4. The drive control system according to 3.
  15.  4ストロークの内燃機関の駆動を制御する駆動制御システムであって、前記内燃機関にトルクを付与するモータと、前記モータのU相、V相、及びW相コイルの磁束のそれぞれの切り替わりに応じたU相、V相、及びW相検出信号を出力するU相、V相、及びW相センサ素子と、前記モータのロータに設けられ、前記モータの回転方向に2つのエッジを有するリラクタと、前記リラクタのエッジの立ち上がりの通過を検出すると第1の極性のパルス波を出力するとともに前記リラクタのエッジの立ち下がりの通過を検出すると第2の極性のパルス波を出力するピックアップコイルと、を含むセンサと、前記内燃機関にトルクを付与するモータの動作を制御するドライバ回路と、前記センサにより検出された前記内燃機関の上死点および回転角度の変化に基づいて、前記ドライバ回路を制御して前記モータを駆動する制御部と、を備えた駆動制御システムの制御方法であって、  
     前記制御部は、
     電源が投入された後、前記モータを駆動することにより、前記内燃機関の排気行程と吸気行程との間の第2の上死点を超え且つ前記内燃機関の圧縮行程と燃焼行程との間の第1の上死点を超えないような基準トルクを、前記内燃機関に付与して前記内燃機関を回転させ、
     前記モータを駆動して前記基準トルクを前記内燃機関に付与した後、前記モータの回転に応じて前記U相、V相、及びW相センサ素子が出力する前記U相、V相、及びW相検出信号、及び前記モータの回転に応じて前記ピックアップコイルが出力する前記パルス波を含むパルス情報に基づいて、前記内燃機関の上死点に対応する基準位置を検出する
     ことを特徴とする駆動制御システムの制御方法。
    A drive control system for controlling the drive of a four-stroke internal combustion engine according to each switching of a motor that applies torque to the internal combustion engine and a magnetic flux of a U-phase, V-phase, and W-phase coil of the motor U-phase, V-phase, and W-phase sensor elements that output U-phase, V-phase, and W-phase detection signals; a relucter that is provided in the rotor of the motor and has two edges in the rotation direction of the motor; A pickup coil that outputs a pulse wave of a first polarity when detecting the passage of the rising edge of the reluctor edge, and outputs a pulse wave of the second polarity when detecting the passage of the falling edge of the reluctor edge A driver circuit that controls the operation of a motor that applies torque to the internal combustion engine, and a top dead center and a rotation angle detected by the sensor Based on the change, a control method of a drive control system and a control unit which controls the driver circuit to drive the motor,
    The controller is
    After the power is turned on, the motor is driven to exceed a second top dead center between the exhaust stroke and the intake stroke of the internal combustion engine and between the compression stroke and the combustion stroke of the internal combustion engine. A reference torque that does not exceed the first top dead center is applied to the internal combustion engine to rotate the internal combustion engine,
    After driving the motor and applying the reference torque to the internal combustion engine, the U-phase, V-phase, and W-phase output by the U-phase, V-phase, and W-phase sensor elements according to the rotation of the motor Drive control, wherein a reference position corresponding to a top dead center of the internal combustion engine is detected based on a detection signal and pulse information including the pulse wave output from the pickup coil in accordance with rotation of the motor. How to control the system.
PCT/JP2017/003976 2017-02-03 2017-02-03 Drive control system and method for controlling drive control system WO2018142578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017546257A JP6430654B1 (en) 2017-02-03 2017-02-03 Drive control system and drive control system control method
PCT/JP2017/003976 WO2018142578A1 (en) 2017-02-03 2017-02-03 Drive control system and method for controlling drive control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003976 WO2018142578A1 (en) 2017-02-03 2017-02-03 Drive control system and method for controlling drive control system

Publications (1)

Publication Number Publication Date
WO2018142578A1 true WO2018142578A1 (en) 2018-08-09

Family

ID=63040446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003976 WO2018142578A1 (en) 2017-02-03 2017-02-03 Drive control system and method for controlling drive control system

Country Status (2)

Country Link
JP (1) JP6430654B1 (en)
WO (1) WO2018142578A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027181A1 (en) * 2000-09-28 2002-04-04 Mitsuba Corporation Engine starter
WO2014002185A1 (en) * 2012-06-26 2014-01-03 新電元工業株式会社 Drive control device and drive control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027181A1 (en) * 2000-09-28 2002-04-04 Mitsuba Corporation Engine starter
WO2014002185A1 (en) * 2012-06-26 2014-01-03 新電元工業株式会社 Drive control device and drive control method

Also Published As

Publication number Publication date
JP6430654B1 (en) 2018-11-28
JPWO2018142578A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US7348684B2 (en) Drive unit
WO2015093576A1 (en) Engine unit and vehicle
WO2001038728A1 (en) Starter, start control device, and crank angle detector of internal combustion engine
JP5035895B2 (en) Power generation control device
JP2006214386A (en) Control device for internal combustion engine
KR100604388B1 (en) Engine starting control system
JP5384769B1 (en) Drive control device and drive control method
JP5283786B2 (en) Drive control device, drive control system, and drive control method
JP5929342B2 (en) Vehicle start control device
TWI658202B (en) Process for starting an internal combustion engine
US20090042459A1 (en) Control device for marine engine
JP2019044712A (en) Outboard motor and engine starter
JP5212323B2 (en) Control device for rotating electrical machine for vehicle
JP6430654B1 (en) Drive control system and drive control system control method
JP6577145B1 (en) Drive control system, motor, and control method of drive control system
JP2006151335A (en) Power steering device
JP2017129065A (en) Vehicle
JP5929414B2 (en) Motor generator control device for engine-driven vehicle
JP2003307170A (en) Controlling method and device for ignition of engine
JP2001221139A (en) Method and device for starting internal combustion engine
JPS62255534A (en) Torque fluctuation suppression device for internal combustion engine
JP2012020650A (en) Control device of vehicle
JP6930250B2 (en) Engine control device and engine control method
JP2023120799A (en) Vehicle device
JP2017155732A (en) Stop position control device of engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017546257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895288

Country of ref document: EP

Kind code of ref document: A1