WO2001038728A1 - Starter, start control device, and crank angle detector of internal combustion engine - Google Patents

Starter, start control device, and crank angle detector of internal combustion engine Download PDF

Info

Publication number
WO2001038728A1
WO2001038728A1 PCT/JP2000/008241 JP0008241W WO0138728A1 WO 2001038728 A1 WO2001038728 A1 WO 2001038728A1 JP 0008241 W JP0008241 W JP 0008241W WO 0138728 A1 WO0138728 A1 WO 0138728A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
crankshaft
angle
engine
Prior art date
Application number
PCT/JP2000/008241
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsunori Inaba
Yutaka Nozue
Hidekazu Uchiyama
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to EP00977866A priority Critical patent/EP1233175B1/en
Publication of WO2001038728A1 publication Critical patent/WO2001038728A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • F02P7/0675Electromagnetic pick-up devices, e.g. providing induced current in a coil with variable reluctance, e.g. depending on the shape of a tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/007Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation using inertial reverse rotation

Definitions

  • the present invention relates to an internal combustion engine starter and an internal combustion engine start controller that start an internal combustion engine applied to a motorcycle or an automobile. Further, the present invention relates to a crank angle detecting device for an internal combustion engine applied to a motorcycle or an automobile.
  • crankshaft In order to start the engine (internal combustion engine), the crankshaft must be rotated by external force until the required rotation is maintained in order to inhale, compress and explode the fuel mixture.
  • a starter using a battery as a driving source that is, a star is used.
  • crankshaft When the engine is stopped, the crankshaft coasts. Later, after the engine's compression load in the compression stroke acts as a brake and the rotation stops once, it is often returned slightly in the opposite direction by the reaction due to compression and stops near the bottom dead center of the compression stroke. Therefore, when starting the engine, the crankshaft often starts to rotate from a position near the bottom dead center of the compression stroke.
  • a pulsar signal is obtained by a signal generating means including an iron protrusion called a reluctor and a pulsar coil, and is used as a reference signal.
  • a relaxed evening is formed at a predetermined position of a rotating body that rotates together with the crankshaft, such as a flywheel or a star evening sun.
  • a pulsar coil is provided on the stay side, and the reluctor is arranged so as to pass in the vicinity thereof.
  • the pulsar signal is always output at a predetermined crank angle
  • the pulsar signal is used as an ignition reference signal to control the ignition timing.
  • the reluctor is generally configured such that one is formed on a rotating body, and in this case, a pulsar signal is output once per crankshaft rotation. Therefore, the engine speed can be calculated based on the interval between the pulsar signals, and various processes such as fuel injection amount control are executed using the calculated value.
  • An object of the present invention is to realize more efficient engine start control by recognizing an absolute angle of a crankshaft of an engine. Another object of the present invention is to provide a crank angle detecting device capable of accurately recognizing an absolute angle of a crank shaft of an engine without increasing the number of reluctors.
  • a starting device for an internal combustion engine obtains an absolute angle of a crankshaft based on a star motor connected to a crankshaft of the internal combustion engine, an ignition reference signal in the internal combustion engine, and a rotation pulse signal.
  • Control means for controlling the star-night mode based on the absolute angle.
  • the starting device for an internal combustion engine of the present invention includes a star motor connected to a crankshaft of the internal combustion engine, an ignition reference signal in the internal combustion engine, and a commutation position pulse signal of the star motor.
  • the absolute angle of the crankshaft is obtained by using the existing signals such as the ignition reference signal and the commutation position pulse signal, and the star and the motor are controlled based on this. Therefore, accurate starting control using the absolute angle of the crankshaft is possible without additionally providing a crank angle sensor and the like, and efficient engine starting can be realized.
  • control means may start the internal combustion engine by energizing the crankshaft once to reverse rotation once to a predetermined crank position based on the absolute angle and then energizing forward rotation.
  • the timing of the reverse rotation of the crankshaft to the normal rotation can be accurately controlled, and efficient inertial start control can be performed by lean engine start control.
  • the forward rotation energization may be performed by detecting that the crankshaft has reached a predetermined crank angle position.
  • the detection may be performed by detecting that the shaft has started to rotate forward.
  • a relaxation or pulse coil for generating a second reference signal may be provided in addition to the ignition reference signal.
  • control means stops idling when waiting for a traffic light or the like, and restarts the engine when the vehicle starts.
  • the internal combustion engine has a predetermined The absolute angle is recognized from the time when the rotation speed becomes equal to or less than the rotation speed.
  • the crank shaft is once reversely energized to a predetermined crank position and then forwardly energized based on the absolute angle after stopping.
  • the internal combustion engine may be started.
  • control means moves the crankshaft to a predetermined crank position based on the absolute angle acquired before the stop of the internal combustion engine at the next start. It is also possible to start the internal combustion engine by energizing the engine in the reverse direction and then energizing the engine in the forward direction.
  • control means may preliminarily rotate the crankshaft to a position on the forward rotation side from the ignition reference signal generating position before the reverse rotation, whereby the ignition is always performed when the crankshaft rotates reversely.
  • the reference signal generation position can be passed, and the ignition reference signal can be reliably obtained.
  • control means may adjust the ⁇ reverse energization end position and the forward rotation start position of the crankshaft based on at least one of the battery voltage and the engine temperature.
  • finer start control can be performed based on the state of the battery and the engine, and the start time can be reduced.
  • a start control device for an internal combustion engine for controlling the driving of a star motor connected to a shaft comprising: a ignition reference signal obtaining means for obtaining an ignition reference signal in the internal combustion engine; and a commutation of the star motor.
  • Commutation position pulse signal acquisition means for acquiring a position pulse signal; absolute angle calculation means for calculating an absolute angle of the crankshaft based on the ignition reference signal and the commutation position pulse signal;
  • Motor control instruction means for controlling the star control based on an absolute angle.
  • the absolute angle of the crankshaft is obtained using the existing signals such as the ignition reference signal and the commutation position pulse signal, and the star control is performed based on the absolute angle.
  • Accurate start control using the absolute angle of the crankshaft is possible without additionally providing a crank angle sensor or the like, and efficient engine start can be realized.
  • the motor control instruction means is based on the absolute angle. After the crankshaft has been reverse-energized to a predetermined crank position once to detect that the crankshaft has reached a predetermined crankangle position, or after detecting that the crankshaft has started to rotate forward. The forward rotation may be performed.
  • the start control device further includes a battery voltage detection unit that detects a battery voltage, and an engine temperature detection unit that detects an engine temperature.
  • the motor control instruction unit includes at least one of the battery voltage and the engine temperature.
  • the absolute angle may be controlled based on the absolute angle, thereby enabling more fine-grained start control based on the state of the battery and the engine, and shortening the start time. Can be achieved.
  • forward rotation here refers to the normal rotation direction of the engine, and reverse rotation. Means a rotation direction opposite to the normal rotation direction.
  • the crank angle detection device for an internal combustion engine is a crank angle detection device for an internal combustion engine that is started by a brushless star motor connected to a crank shaft, and is formed on a rotating body provided on the crank shaft.
  • a reference signal generating means which is arranged close to the rotating body and generates an electric signal at a predetermined crank angle with the passage of the relaxation time; and the starter motor with the rotation of the starter motor.
  • a commutation position signal generating means for generating a control commutation position signal; an angle pulse forming means for forming an angle pulse having a predetermined period based on the commutation position signal;
  • a crank angle calculating means for calculating an absolute angle of the crankshaft based on a signal and the angle pulse. are doing.
  • the absolute angle of the crankshaft can be calculated based on the electric signal from the reference signal generating means and the angle pulse formed from the commutation position signal. For this reason, the current crank angle can be grasped without adding a reluctor or attaching a crank angle sensor, and it becomes possible to execute high-accuracy engine control based on the crank angle. Therefore, it is possible to respond to the control of a high-performance engine without increasing costs due to an increase in the number of processing steps and the number of parts.
  • the reference signal generating means a signal that outputs an ignition reference signal for determining the ignition timing of the internal combustion engine may be used, whereby an existing signal can be used, and cost increases. Suppression can be achieved.
  • the commutation position signal generating means outputs a pulse signal having a plurality of phases
  • the angle pulse forming means generates an angle pulse signal having a predetermined period based on a change in the pulse signals of the plurality of phases.
  • the angle calculating means includes the step of calculating the angle pattern from the time of inputting the electric signal from the reference signal generating means. Alternatively, the absolute angle of the crankshaft may be calculated by counting the number of screws.
  • FIG. 1 is a cross-sectional view showing a configuration of a night and night mode to which an engine starting device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a front view of FIG. 1 from which the housing and cover of the star and sun are omitted.
  • FIG. 3 is a block diagram showing the configuration of the control system for the star and night modes of FIG.
  • FIG. 4 is an explanatory diagram showing the configuration of the functional means relating to the start control in the CPU applied to the control of the night and night mode of FIG.
  • FIGS. 5A and 5B are charts showing an engine start operation according to the first embodiment of the present invention, wherein FIG. 5A shows a start load in each stroke, FIG. 5B shows a start energy, and FIG. 5C shows a piston position during the start operation. (D) shows the pulse signal from the commutation position detection sensor, and (e) shows the camshaft signal.
  • FIG. 6 is a flowchart showing a procedure of engine start control according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart showing a procedure of engine start control according to Embodiment 1 of the present invention.
  • FIG. 8 is an explanatory diagram showing the relationship between the commutation position pulse signal and the ignition reference signal.
  • FIG. 9 is a chart showing an engine start operation according to Embodiment 2 of the present invention, where (a) is a start load in each stroke, (b) is a start energy, and (c) is a piston in the start operation. (D) shows the pulse signal from the commutation position detection sensor, and (e) shows the camshaft signal.
  • FIG. 10 shows a procedure of engine start control according to Embodiment 2 of the present invention. It is a flowchart showing the above.
  • FIG. 11 is a flowchart showing a procedure of a preliminary forward rotation process according to the second embodiment of the present invention.
  • FIG. 12 is a table showing an example of a control pattern in the start control device of the present invention.
  • FIG. 13 is an explanatory diagram showing the configuration of functional means relating to crank angle detection processing in the CPU.
  • FIG. 14 is an explanatory diagram showing the relationship between the commutation position detection sensor signal and the angle pulse formed from the commutation position detection sensor signal and the ignition reference signal.
  • FIG. 15 is an explanatory diagram showing the relationship between the commutation position detection sensor signal, the angle pulse, and the ignition reference signal when the interval between the angle pulses is 60 °.
  • FIG. 16 is an explanatory diagram showing the relationship between the commutation position detection sensor signal, the angle pulse, and the ignition reference signal when the interval between the angle pulses is about 10 °.
  • Figure 17 shows that (a) shows the case where the angular pulse is divided into 5 ° intervals, (b) shows the case where the angular pulse is divided into 15 ° intervals, and (c) shows the case where the angular pulse interval is This is an explanation showing a case where the adjustment is made in consideration of the CPU load.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a star motor to which an engine starting device according to a first embodiment of the present invention is applied
  • FIG. 2 is a view in which a housing and a cover of a star motor of FIG. 1 are omitted.
  • FIG. 3 is a block diagram showing a configuration of a control system for one night.
  • the star motor shown in Fig. 1 (hereinafter abbreviated as motor) 10 is directly connected to a four-stroke engine for a motorcycle, and has a stator 12 fixed to an engine case 11 of the engine. And a rotor (rotating body) 14 connected to the crankshaft 13 of the engine.
  • the rotor 14 includes a yoke 15 formed of a bottomed short cylindrical shape using a magnetic material such as iron, and a cylindrical boss is provided on the inner surface of the bottom wall of the yoke 15.
  • the part 16 is concentrically and integrally protruded.
  • the boss portion 16 and the crankshaft 13 are tapered to each other by wedge operation and fastened by the set nut 17 so that the rotor 14 is integrally rotated with the crankshaft 13.
  • the stator 12 of the motor 10 includes a core 19 formed of a substantially star-shaped short disk using a magnetic material such as iron.
  • the core 19 is fastened and fixed to a housing 20 installed concentrically with the crankshaft 13 on the outer surface of the engine case 11 by bolts 21 as fastening means.
  • a cover 26 is attached to the outside of the housing 20.
  • a rotor 14 is disposed outside the stator 12 in the housing 20 so as to surround the outer periphery of the stator 12. The rotor 14 is driven by the crankshaft 13 to rotate the stator 12. It is designed to rotate around. ;
  • the core 19 is formed by laminating a large number of thin plates made of a magnetic material made of iron and is integrated, and includes a core body 22 formed in a donut shape.
  • a plurality of salient poles 23 are radially provided on the outer periphery of the core body 22.
  • stator coil 24 is wound in a three-phase connection winding
  • the stator coil 24 is connected to a motor driver 31 through a terminal (not shown) by a lead wire and a wire assembly (neither is shown). That is, the motor 10 is configured as a brushless motor driven by the motor driver 31.
  • a plurality of (for example, three) commutation position detection sensors (means for generating a commutation position signal) 25 are provided in the cover 26, and the sensor magnet 42 It is configured to detect the rotational position of the rotor 14 in response to magnetism.
  • the output of the commutation position detection sensor 25 is supplied to the motor driver 31 via a CPU (start control device) 32 described later, and the motor driver 31 receives the detection signal from the commutation position detection sensor 25.
  • An energization signal corresponding to the signal is generated, and a current based on the energization signal is supplied to the stator coil 24 to sequentially excite the stator coil 24.
  • stator coils 24 When the stator coils 24 are sequentially excited, a rotating magnetic field is formed by the stator coils 24. This rotating magnetic field acts on the permanent magnet 18, which rotates the rotor 14, and transmits the rotating force of the rotor 14 to the crankshaft 13 via the boss 16 of the yoke 15. And the engine is started. Further, one reluctor 40 is provided on the outer periphery of the rotor 14 so as to protrude. A pulsar coil (reference signal generating means) 41 is provided on the housing 20 side so as to face the reluctor 40. Then, each time the crankshaft 13 makes one revolution, the reluctor 40 passes once near the pulsar coil 41, and an electric signal is generated in the pulsar coil 41 each time.
  • this electric signal is generated when the crankshaft 13 comes to a predetermined angle, and in the engine concerned:
  • This signal output here is used as an ignition reference signal for controlling the ignition timing. That is, the reluctor 40 passes through the pulsar coil 41 immediately before the end of the compression stroke (before the top dead center), where the ignition reference signal is obtained.
  • the crankshaft 1 3 per stroke Since the motor rotates twice, this ignition reference signal is also generated immediately before the end of the exhaust stroke.
  • the motor 10 is driven by the motor driver 31 under the control of the CPU (control means) 32, as shown in FIG.
  • the CPU 32 includes a commutation position detection sensor 25, a pulsar coil 41 that generates an ignition reference signal based on the operation of the crankshaft 13, an engine switch 3 4 and an ignition switch 3. 9 is connected.
  • an ignition coil 35 for engine ignition is connected to the CPU 32 via an ignition unit 36.
  • a ROM 37 storing various control programs related to the motor driver driving logic engine control and the like and a RAM 38 storing data from various sensors are connected.
  • a control signal is transmitted to the motor driver 31 and the ignition unit 36, etc. And engine ignition control and the like.
  • the motor 10 itself, the CPU 32 and the like are driven by a battery (not shown) mounted on the vehicle as a power source.
  • FIG. 4 is an explanatory diagram showing the configuration of functional means relating to start control in the CPU 32.
  • the CPU 32 acquires ignition reference signal acquiring means 51 for acquiring the ignition reference signal of the engine from the pulsar coil 41, and acquires the commutation position pulse signal of the motor 10 from the commutation position detection sensor 25.
  • a motor control instruction means 54 for controlling the motor 10 based on the absolute angle of the crankshaft 13 calculated by the calculating means 53 is provided.
  • the CPU 32 further includes a battery voltage detecting means 55 for detecting the voltage of the vehicle-mounted battery, and an engine temperature detecting means 56 for detecting the temperature of the engine based on a cooling water temperature or the like.
  • FIG. 5 is a diagram showing the starting principle when the starting device of the present invention is applied to a four-stroke cycle engine, where (a) is the starting load in each stroke, (b) is the starting energy, and (c) is the starting energy.
  • the piston position during the starting operation (d) shows the pulse signal from the commutation position detection sensor, and (e) shows the ignition reference signal.
  • both the intake stroke in which the air-fuel mixture is sucked into the cylinder by lowering the piston from the top dead center with the intake valve opened and the exhaust valve closed, and both the intake valve and the exhaust valve
  • the air-fuel mixture is ignited just before the compression stroke where the air-fuel mixture is compressed in the closed state and shortly before the top dead center where the compression stroke ends, and the combustion is performed in the state where the intake and exhaust valves are closed.
  • the piston has a work stroke in which the piston is depressed by the high-pressure gas generated by the combustion, that is, an explosion stroke, and an exhaust stroke in which the gas expanded with the intake valve closed and the exhaust valve opened is discharged to the outside.
  • One cycle is composed of two rotations of three, that is, four strokes.
  • the starter of the present invention when the engine is started from a state where the engine is stopped at the stop position Pa in the normal stop range shown in FIG. Elapse the intake and exhaust strokes and reverse the crankshaft 13 to within the explosion stroke.
  • the piston moves in the direction opposite to the direction indicated by the arrow in the uppermost column of Fig. 5, and at the position of the suction stroke, the piston moves toward the top dead center, and the exhaust If it is in the stroke position, it will move toward the bottom dead center, and if it is in the explosion stroke position, it will move toward the top dead center.
  • crankshaft 13 After the crankshaft 13 reverses to the reverse position, ie, the normal rotation position Qa, in the normal rotation start range Q of the explosion stroke, the crankshaft 13 is rotated forward by the motor 10. At this time, the positive rotation energy stored by the compression of the gas in the combustion chamber is released to the rotating system of the crankshaft 13 including the flywheel, etc. The energy of the compression reaction released and the rotational energy added by the motor 10 are added.
  • Fig. 5 (b) the change in the motor energy applied to the crankshaft 13 due to the forward rotation of the motor 10 is indicated by a solid line, and the change in the inertial energy stored in the rotating system is indicated by the dashed line.
  • inertia energy is rapidly increased in the rotating system due to the compression reaction due to the release of gas energy accumulated by compression.
  • the rotating system rotates the rotating system from the explosion stroke to the compression stroke due to the rotational force of the motor 10.
  • the inertial energy will gradually increase. Therefore, in the compression stroke, the energy of the synthesis of the inertial energy stored in the rotating system and the energy of the motor 10 is applied to the crankshaft 13 as indicated by the thick solid line. .
  • crankshaft 13 is driven by the inertia energy released during the reduction of the rotational speed and consumed in the compression stroke, and the rotational torque of the motor 10, and the maximum riding torque T is determined by the inertia torque.
  • the sum of the maximum value T i of the released energy and the maximum value Tm of the motor torque will overcome the load of the first compression stroke.
  • FIGS. 6 and 7 are flowcharts showing the procedure of the engine start control according to the present invention.
  • the CPU 32 first enters the routine by turning off the identification switch 39 in step S1, and proceeds to step S2 to determine whether the star switch 34 has been turned ON. I do. Then, when the starter switch 34 is turned ON, the process proceeds to step S3, and the engine is once reversed. That is, in FIG. 5, the engine is reversed from the stop position Pa toward the explosion stroke side.
  • step S4 it is determined whether or not the ignition reference signal has been output while the engine is rotating in the reverse direction.
  • the ignition reference signal is output once each time the crankshaft 13 makes one rotation as described above. Therefore, when the engine is reversed from the stop position Pa in FIG. As shown in), the ignition reference signal is output even when the vehicle enters the exhaust stroke from the intake stroke.
  • step S5 the absolute position of the piston, that is, the absolute angle of the crankshaft is recognized and corrected.
  • FIG. 8 is an explanatory diagram showing the relationship between the commutation position pulse signal and the ignition reference signal.
  • three-phase commutation sensor signals U, V, W are output from three commutation position detection sensors 25 installed equally. Then, by capturing the rising time of each signal, a commutation position pulse signal having a predetermined period is formed.
  • the ignition reference signal is output when the reluctor 40 passes in front of the pulsar coil 41, the obtained crank angle is always constant (before top dead center).
  • a commutation position pulse signal is obtained at a predetermined crank angle interval. Therefore, after counting the number of commutation position pulse signals after the ignition reference signal is obtained, the rotation angle from a certain predetermined crank angle can be determined, and the current crank angle can be accurately grasped. It is possible to do.
  • step S6 After grasping the absolute angle of the crankshaft in this manner, the process proceeds to step S6, and it is determined whether or not the piston has reached the middle position of the explosion stroke while monitoring the crank angle. Then, when it is recognized that the explosion stroke intermediate position has been reached, the process proceeds to step S7, and the reverse rotation energization is stopped. On the other hand, when the explosion stroke intermediate position has not been reached, the process proceeds to step S8, where the piston is moved. It is determined whether or not the compressor is in the reverse compression state. That is, it is determined whether or not a compression load is received before the explosion stroke intermediate position during the reverse rotation of the crankshaft. In this case, the determination of the reverse compression state in step S8 is based on the change in the crank angle. It is performed by obtaining.
  • the period of the commutation position pulse signal is detected, and the value obtained this time is compared with the value obtained last time. If the difference is equal to or greater than a predetermined value, it is determined that the amount of change in the crank angle is reduced by the piston receiving the compression force, and it is determined that a reverse compression state has been achieved.
  • the speed may be calculated from the cycle and compared with the value, or the acceleration may be calculated therefrom and the change may be compared with a predetermined value.
  • the pseudo acceleration change determination based on the above-described cycle has an advantage that the load on the CPU 32 can be reduced.
  • step S8 When the reverse compression state is detected in step S8, the process proceeds to step S7, and the reverse rotation energization is stopped. On the other hand, if the reverse compression is not detected, the process proceeds to step S9, and it is determined whether or not a preset maximum reverse rotation time has elapsed. Then, if the maximum reverse rotation time has elapsed, the process proceeds to step S7 to stop the reverse rotation energization, while if the maximum reverse rotation time has not elapsed, the process returns to step S6 and the above-described procedure is repeated.
  • step S7 When the reverse rotation energization is stopped in step S7 in this way, the crankshaft 13 rotates by inertia, and is then switched to the forward rotation drive.
  • this switching is performed as follows: (1) whether the crankshaft has reversed to the reverse rotation allowable position (before compression top dead center), (2) whether the crankshaft has already started normal rotation, or (3) whether a predetermined time has elapsed since the power supply was stopped. Judgment from the three conditions of absolute angle and movement-time.
  • step S10 since the absolute angle of the crankshaft has already been recognized in step S5, it is first determined in step S10 whether the crank angle has reached the maximum position where reverse rotation is permitted (reverse rotation allowable position). . Then, when the reverse rotation allowable position (Qa in FIG. 5 (c)) is reached, the process proceeds to step S11, where the crankshaft 13 is rotated forward to start a normal starting operation.
  • the reverse rotation allowable position is determined by the engine temperature (water temperature, air temperature, unit (Temperature or motor temperature, etc.) ⁇ It is also possible to adjust appropriately according to the battery voltage state. In other words, by checking the engine temperature / battery voltage, the reverse rotation allowable position is set so as to generate the optimum riding torque, and starting in the shortest time is possible according to the state at that time.
  • the battery voltage is high or the engine temperature is high and the engine is easy to start, such as when restarting immediately after stopping the engine, the engine is returned to the exhaust stroke and normal rotation is started from there. If the battery voltage is slightly low or the engine is not warmed up, return to the explosion stroke and rotate forward.
  • the engine rotates forward by using the compression reaction force of the explosion stroke. Furthermore, when the voltage is lower and the engine temperature is even lower, the engine is rotated forward to use the reaction force of the compression stroke, then reverse, and then start by applying the reaction force of the explosion stroke. In addition, under conditions where it is expected that the engine cannot be started even if these operations are performed, the starting operation itself will not be performed, and the driver will be notified of this by a warning lamp or the like.
  • step S10 if it is recognized in step S10 that the crankshaft 13 has not reached the reverse rotation allowable position, the process proceeds to step S12, and it is determined whether the crankshaft 13 is already in the normal rotation state. That is, it is determined whether or not the rotation is returned by the compressive force before the rotation reaches the reverse rotation allowable position and the normal rotation is not started. Then, if normal rotation has begun, the process proceeds to step S11, and the normal rotation operation is started immediately.
  • step S12 If the normal rotation is not detected in step S12, the process proceeds to step S13, and it is determined whether or not a predetermined energization stop time (for example, ⁇ 0 O ms) has elapsed. That is, a predetermined maximum value is set for the inertial rotation time after the reverse rotation, and when the time has elapsed, the process proceeds to step S11 even before reaching the forward rotation allowable position to perform the normal rotation. Start. If the power interruption time has not elapsed, the process returns to step S10, and the above procedure is repeated. Will be returned.
  • a predetermined energization stop time for example, ⁇ 0 O ms
  • the crank angle can be accurately determined using the ignition reference signal and the commutation position pulse signal. Control of reverse rotation ⁇ forward rotation can be reliably performed based on the angle. Further, since the maximum values are set for the reverse rotation energizing time and the energizing stop time, it is possible to prevent a start time lag longer than a predetermined time due to the reverse rotation at the time of starting.
  • step S4 the control based on the absolute angle as described above cannot be performed. In such a case, as described above, there is not much, but it cannot be said that there is no end. In this case, the control device determines the normal rotation timing by the above-described pseudo acceleration change determination. If not, the process proceeds to step S14 in FIG. 7, and it is determined whether or not it is in the reverse compression state as in step S8.
  • step S15 When the reverse rotation compression is detected, the process proceeds to step S15, and the reverse rotation energization is stopped. On the other hand, if it is not in the reverse compression state, the process proceeds to step S16, and it is determined whether or not a preset maximum reverse rotation time has elapsed. Then, if the maximum reverse rotation time has elapsed, the process proceeds to step S15 to stop the reverse rotation energization, whereas if the maximum reverse rotation time has not elapsed, the process returns to step S4 and the above-described procedure is repeated.
  • step S15 When the reverse rotation energization is stopped in step S15, the crankshaft 13 rotates by inertia. Then, the process proceeds to step S17, and it is determined whether the crankshaft 13 is already in the normal rotation state. That is, The piston is returned by the compression force, and it is determined whether or not the crankshaft 13 has started to rotate forward. If the crankshaft 13 has started to rotate forward, the process proceeds to step S18 to start the normal rotation operation immediately.
  • step S17 If the normal rotation is not detected in step S17, the process proceeds to step S19, and it is determined whether a predetermined energization stop time has elapsed. Then, when the energization stop time has elapsed, the process proceeds to step S18 to start the normal rotation even before the normal rotation is detected. If the energization stop time has not elapsed, the process returns to step S17, and the above-described procedure is repeated. Then, the motor 10 starts normal rotation by these operations. In this case, since the crankshaft 13 rotates at a low load in the exhaust stroke and the suction stroke, the motor 10 reaches the maximum rotational speed close to the no-load rotational speed before the piston enters the compression stroke. Reach. Therefore, the crankshaft 13 is also rotated at the maximum speed possible by the motor 10 immediately before the compression stroke, and the inertial energy stored in the inertial mass of the rotating system also reaches the maximum state and enters the compression stroke. I do.
  • the crankshaft 13 is rotated by the combined energy (solid line) which is the sum of the inertial energy (dashed line) and the motor energy (solid line) during the compression stroke.
  • the motor 10 gives its driving energy to the crankshaft 13 in two stages, that is, when approaching and when passing over. Therefore, it is possible to use the motor energy more efficiently than in the case of a conventional motor in which the compression stroke load is passed over by one energy application.
  • the motor 10 returns the piston to the explosion stroke side once before starting the engine, and starts the engine from there. Therefore, the inertia energy of the crankshaft 13 can be increased before the first stroke of the compression stroke. In other words, by setting the run-up section of the crankshaft 13 and using the energy stored during that time, it is possible to get over the first compression stroke with a smaller motor torque than before. Therefore, the size and cost of the motor can be reduced, and the power consumption of the motor can be reduced.
  • the absolute position of the piston (absolute angle of the crankshaft) is grasped using the ignition reference signal and the commutation position pulse signal, and based on that, the reverse rotation of the motor is performed. Controls stop and normal rotation evening. Therefore, the reverse rotation ⁇ forward rotation can be accurately controlled by the existing sensors without using other sensors such as a cam angle sensor and a crank angle sensor. Also, the timing of the reverse rotation of the crankshaft to the normal rotation of the crankshaft can be accurately controlled based on the absolute angle, and more efficient inertial start control can be performed.
  • the reverse / forward operation of the motor 10 at the next start is controlled based on the acquired absolute angle.
  • efficient starting can be performed while avoiding useless movement of the motor 10.
  • the absolute angle must be set at least from the point when the engine speed drops below the specified speed.
  • FIGS. 9A and 9B are diagrams showing the starting principle according to the second embodiment.
  • FIG. 9A shows the starting load in each stroke
  • FIG. 9B shows the starting energy
  • FIG. 9C shows the piston position during the starting operation
  • FIG. The pulse signal from the flow position detection sensor and (e) shows the ignition reference signal.
  • FIG. 10 is a flowchart showing the control procedure.
  • the CPU 32 first turns on the ignition switch 39 in step S20.
  • the routine proceeds to step S21, where it is determined whether or not the star switch 34 has been turned ON.
  • the process proceeds to step S22, and a preliminary forward rotation process for temporarily rotating the engine forward is executed.
  • FIG. 11 is a flowchart showing the procedure of the preliminary forward rotation processing subroutine.
  • step S41 the motor 10 is preliminarily rotated forward.
  • the forward rotation operation is sufficient if the piston has enough driving force to move from the vicinity of the bottom dead center of the exhaust stroke to the vicinity of the bottom dead center of the compression stroke. Rotates at low power.
  • step S42 it is determined whether or not the piston is in a forward rotation compression state. That is, it is determined whether or not the piston enters a compression stroke and receives a compression load by the crankshaft preliminary forward rotation.
  • the determination of the normal rotation compression state in step S42 is performed by the above-described pseudo acceleration change determination.
  • step S42 When the normal rotation compression state is detected in step S42, the process proceeds to step S43 to stop the normal rotation energization. On the other hand, when normal rotation compression is not detected, the process proceeds to step S44, and it is determined whether or not a preset maximum preliminary normal rotation time has elapsed. If the maximum preliminary forward rotation time has elapsed, the process proceeds to step S43 to stop the forward rotation energization, whereas if the maximum preliminary forward rotation time has not elapsed, the process returns to step S42 to repeat the above-described procedure.
  • the reverse rotation energization is stopped in step S43 in this way, the routine exits from the routine in FIG. 11 and proceeds to step S23 in FIG. 10 to execute the reverse rotation operation.
  • crankshaft 13 is reversed, and an ignition reference signal is obtained in step S24.
  • reverse in step S23 At the start of the rolling operation, the piston is present in the compression stroke or near the bottom dead center of the suction stroke. Be sure to pass the location. Ie
  • the piston stops at a position such as Pb, the piston moves to the compression stroke side once, so that it always passes through the ignition reference signal generation position. Therefore, the ignition reference signal can be reliably obtained in step S24, and thereafter, the crank angle can be reliably grasped from the ignition reference signal and the commutation position pulse signal.
  • step S25 the absolute position of the piston, that is, the absolute angle of the crankshaft is recognized and corrected. Then, based on this absolute angle, control of reverse rotation-forward rotation is performed in steps S26 to S33. Note that the control in steps S26 to S33 is the same as that in steps S6 to S13 in the first embodiment, and a detailed description thereof will be omitted.
  • the ignition reference signal generation position is always passed during the reverse operation, so that it is ensured.
  • the ignition reference signal it is possible to perform control that accurately recognizes the absolute angle of the crankshaft.
  • the ignition reference signal is obtained twice, and any one of them can be used to perform absolute angle control.
  • the reference signal is obtained, the preliminary forward rotation may be stopped immediately at that point, and the operation may be shifted to the reverse rotation.
  • the present invention is applied to a two-stroke engine
  • the ignition reference Since the signal is output once each time the crankshaft 13 makes one revolution, in the case of a two-stroke engine with one revolution and one ignition, there is no reference signal in the approach section of inertial start and there is no reference signal as described above. Such control cannot be performed.
  • a second reluctor is added so as to generate a signal during an inertial start running period, and a reference signal for crank angle recognition (second reference signal) ) Can realize the control mode according to the present invention.
  • the additional reactor is installed at the position where the reference signal is output during the bottom dead center from the scavenging stroke where the intake air-fuel mixture is not in the cylinder, the engine will be used even if ignition is performed by this signal. There is no effect on the combustion behavior of the fuel.
  • a reluctor may be additionally installed at a position other than the above, but in that case, it is necessary to perform a process of prohibiting ignition with the output reference signal.
  • the control may be performed based on signals from these reluctors.
  • a pulsar coil may be added instead of the reluctor. That is, in addition to the pulsar coil 41 in Fig. 1, a second pulsar coil is installed at the position of its non-compression stroke (about BTD C 90 ° to 270.), and two reference signals per crankshaft revolution. May be output.
  • the same two pulsar coils may be used, but in this case, the ignition operation is also performed by the signal of the additional pulsar coil, similarly to the regular pulsar coil 41. Ignition near the bottom dead center of the explosion stroke is not harmful to the engine combustion operation, but the ignition energy is wasted. Further, the bottom dead center side may be determined based on the recognition result of the absolute position. Therefore, the polarity (order of voltage change) of the additional pulsar coil may be reversed from that of the regular pulsar coil 41 so that the two signals have different forms, and the CPU 32 may determine it. As a result, other than the regular ignition position It is possible to suppress ignition at the time of ignition, thereby preventing ignition harmful to the combustion operation and reducing waste of energy.
  • Embodiment 4 a star motor used in an engine (internal combustion engine) to which the crank angle detection device is applied will be described.
  • the same members and portions as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the configuration of the fourth embodiment is almost the same as that of FIGS. 1 to 3, and therefore the description of FIGS. 1 to 3 is omitted.
  • FIG. 13 is an explanatory diagram showing the configuration of functional means relating to crank angle detection processing in CPU 32.
  • the CPU 32 calculates the absolute angle of the crankshaft based on the ignition reference signal and the angle pulse, and obtains ignition reference signal acquisition means 51 for acquiring the engine ignition reference signal from the pulsar coil 41, and commutation.
  • Angle pulse forming means 152 for obtaining a commutation position detection sensor signal (commutation position signal) for motor 10 control from the position detection sensor 25 and forming an angle pulse described later; Crank angle calculating means 15 3 for calculating the absolute angle of the crankshaft 13 based on the angle pulse, and the motor 10 based on the absolute angle of the crankshaft 13 calculated by the crank angle calculating means 15 3 And motor control instruction means 154 for controlling the motor.
  • FIG. 14 is an explanatory diagram showing the relationship between the commutation position detection sensor signal and the angle pulse formed from the commutation position detection sensor signal and the ignition reference signal.
  • FIG. 14 shows how angular pulses at 20 ° intervals are formed based on the rising edges of the three-phase commutation position detection sensor signals U, V, and W.
  • the obtained crank angle is always constant (before top dead center). That is, the crank angle ⁇ at which the ignition reference signal is output. Is always constant.
  • the angle pulse is also formed at a constant crank angle interval (20 ° in FIG. 14). Therefore, the ignition reference signal is the crank angle ⁇ . After obtaining in, count how many angle pulses are input, and the crank angle ⁇ . The rotation angle can be known from the current crank angle.
  • the crank angle can be grasped by one reactor without increasing the number of the reluctors 40, and the same control as when a plurality of reluctors are provided can be executed by one reluctor. It is possible to reduce the number of man-hours required for the expansion of the reactor and reduce costs. Also, without using other sensors such as a cam angle sensor and a crank angle sensor, the crank angle can be accurately grasped by existing sensors and the cost can be suppressed.
  • FIG. 14 is an explanatory diagram showing a relationship between an angle pulse and an ignition reference signal in a case where the ignition pulse is applied.
  • FIG. 16 shows a case where a unipolar detection type Hall IC is used as the commutation position detection sensor 25.
  • the Hi duty ratio is It is larger than 50%. For this reason, if an angle pulse is formed using both a rising edge and a falling edge, narrow and wide pulse intervals are generated alternately. In such a case, it is possible to detect the crank angle at an evenly-period period by using the moving average of the even period (for example, two periods) as the period measurement of the angle pulse.
  • a bipolar detection type Hall IC is used as the commutation position detection sensor 25, it is possible to reduce the deviation of the duty as described above.
  • the commutation position detection sensor signal can be appropriately processed by the angle pulse forming means 52 of the CPU 32 to optimize the angle pulse.
  • Fig. 17 (a) shows that the angle pulse physically obtained at the changing point of the commutation position detection sensor signal is frequency-divided to improve the control accuracy. This is an example in which an angle pulse is formed in a place where there is no signal.
  • an angle pulse formed at 10 ° intervals is divided by using both the rising edge and the falling edge to form an angle pulse at 5 ° intervals. This makes it possible to form an angular pulse at a position that does not exist in the initial angular pulse at 10 ° intervals, without changing the number of commutation position detection sensors 25, without changing the circuit or software. It is possible to further increase the detection accuracy.
  • Angle pulses can be formed at positions that do not exist in the angle pulses at 0 ° intervals.
  • the physical The angle pulse formed can be adjusted to an appropriate pulse interval by a circuit or software. If the rotation speed exceeds a predetermined value, it is possible to switch to control using only one phase of the commutation position detection sensor signal.
  • the present invention is also applicable to an engine for a four-wheeled vehicle. Further, the present invention can be applied not only to a single cylinder but also to an engine having a plurality of cylinders.
  • the motor directly connected to the crankshaft of the engine has been described as an example. However, not only the motor directly connected, but also a motor of the type that drives the crankshaft via gears. Applicable. Also, the type of motor is not limited to the auta rotor type as described above. Is also applicable.
  • the present invention can be applied to a field control motor having a control magnetic pole made of a magnetic material as a field pole of the motor, or a so-called hybrid motor in which permanent magnets and the control magnetic poles are alternately arranged.
  • FIG. 12 is a table showing the control patterns, and the X mark indicates that no operation is performed.
  • Embodiment 4 described above a case where a reluctor is formed on the motor rotor is described.
  • the position where the reluctor is formed is not limited to this, and the rotor is separately provided on the crankshaft. Or a flywheel or the like.
  • the description has been made by taking a motorcycle engine as an example.
  • the present invention can be applied to a four-wheel vehicle engine.
  • the present invention is applicable not only to a single cylinder but also to an engine having a plurality of cylinders.
  • the present invention is applicable not only to a four-stroke engine but also to a two-stroke engine.
  • the absolute angle of the crankshaft is obtained based on the ignition reference signal and the commutation position pulse signal, and the motor is controlled based on the absolute angle. Because of this, the existing reference signals such as the ignition reference signal and the commutation position pulse signal can be used to control the night and night. Therefore, accurate starting control based on the absolute angle of the crankshaft is possible without separately providing a crank angle sensor and the like, and efficient engine starting can be realized. Also, after once reversing the crankshaft based on the absolute angle, By starting the internal combustion engine by rotating the engine forward, it is possible to accurately control the reverse-forward rotation of the crankshaft. Accordingly, lean engine start control can be performed without waste, and inertia start control can be performed more efficiently.
  • crankshaft may be preliminarily rotated forward before the reverse rotation, whereby the ignition reference signal generation position can always be passed during the reverse rotation of the crankshaft, and the ignition reference signal can be reliably obtained. It becomes possible.
  • the reverse rotation amount of the crankshaft may be adjusted based on at least one of the battery voltage and the engine temperature, so that appropriate starting control can be performed based on the battery and the engine state. However, the starting time can be reduced.
  • the ignition reference signal obtaining means and the commutation position pulse signal obtaining means, and the absolute angle of the crankshaft are calculated based on the ignition reference signal and the commutation position pulse signal.
  • the start control device further includes a battery voltage detecting means and an engine temperature detecting means, and the motor control instructing means controls the star and the sun based on at least one of the battery voltage and the engine temperature and the absolute angle. This makes it possible to perform appropriate start control based on the state of the battery and the engine, thereby shortening the start time. It becomes possible.
  • crank angle detection device of the present invention since the absolute angle of the crankshaft can be detected by using the electric signal from the pulsar coil and the commutation position detection sensor signal, it is possible to increase the number of reluctors and increase the crank angle sensor. It is possible to determine the absolute angle of the crankshaft without having to install any additional parts. Therefore, it is possible to execute engine control based on the crank angle without increasing the number of processing steps and the number of parts, and it is possible to cope with the control of a high-performance engine without increasing costs.
  • the present invention is useful for an internal combustion engine starting device and an internal combustion engine start control device for starting an internal combustion engine applied to a motorcycle or an automobile according to the present invention. Or, it is useful for a crank angle detecting device of an internal combustion engine applied to an automobile or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

A start control device of an internal combustion engine capable of realizing a more efficient start control of the engine by recognizing the absolute angle of an engine crank shaft, wherein the absolute angle of the crankshaft (13) is calculated based on the ignition reference signal of the engine and the commutation position pulse signal of a starter motor (10) and the starter motor (10) is controlled based on the absolute angle. The starter motor (10) is rotated reversely based on the calculated absolute angle, and rotated forwardly to start the engine after the crankshaft (13) is temporarily rotated reversely to an expansion stroke, whereby, because the timing of the crankshaft (13) from reverse to forward rotation is controlled accurately by the absolute angle to enable an efficient engine start control, an efficient inertia start control can be realized, and the absolute angle of the crankshaft (13) of the engine can be recognized accurately by a crank angle detector without increasing the number of reluctors (40).

Description

明 細 書 内燃機関の始動装置および内燃機関の始動制御装置、 並びに、 内燃機 関のクランク角検出装置 技術分野  Description Startup device for internal combustion engine, start control device for internal combustion engine, and crank angle detection device for internal combustion engine
本発明は自動二輪車あるいは自動車などに適用される内燃機関を始 動させる、 内燃機関の始動装置および内燃機関の始動制御装置に関す る。 また、 本発明は自動二輪車あるいは自動車などに適用される内燃 機関のクランク角検出装置に関する。 背景技術  The present invention relates to an internal combustion engine starter and an internal combustion engine start controller that start an internal combustion engine applied to a motorcycle or an automobile. Further, the present invention relates to a crank angle detecting device for an internal combustion engine applied to a motorcycle or an automobile. Background art
エンジン (内燃機関) を始動させるには、 燃料の混合気吸入、 圧縮 および爆発をさせるために、 所要の回転を保持するまで外力によって クランクシャフトを回転させなければならず、 エンジンを始動させる ために、 バッテリを駆動源とした始動装置つまりスター夕が用いられ ている。  In order to start the engine (internal combustion engine), the crankshaft must be rotated by external force until the required rotation is maintained in order to inhale, compress and explode the fuel mixture. However, a starter using a battery as a driving source, that is, a star is used.
従来のスター夕には、 モータの回転を減速機構を介してクランクシ ャフ卜の回転に伝達するようにしたタイプと、 クランクシャフ卜にモ —夕を直結させるようにしたタイプのものがある。 減速機構を介して クランクシャフ卜を回転させるタイプのものは、 エンジンのフライホ ィールの外周に設けられたリングギヤにピニオンが嚙み合うようにな り、 ピニオンはモ一夕シャフトに沿って前後動するようになっており 、 始動時にはピニオンギヤがリングギヤに嚙み合って減速されてクラ ンクシャフトに回転力を伝達し、 始動完了後には嚙み合いが外れて元 の位置に戻ることになる。  There are two types of conventional star and sunset types, in which the rotation of the motor is transmitted to the rotation of the crankshaft via a reduction mechanism, and a type in which the motor is directly connected to the crankshaft. In the type that rotates the crankshaft through the speed reduction mechanism, the pinion engages with a ring gear provided on the outer periphery of the engine flywheel, and the pinion moves back and forth along the motor shaft. When starting, the pinion gear meshes with the ring gear and is decelerated to transmit the torque to the crankshaft. After the start is completed, the meshing is released and returns to the original position.
通常、 エンジンを停止した場合、 クランクシャフトは惰性回転した 後に、 ェンジンの圧縮行程での圧縮負荷がブレーキとして作用して一 旦回転が停止した後に、 圧縮による反動で少し逆方向に戻されて圧縮 行程の下死点付近で停止することが多い。 したがって、 エンジンを始 動させる際には、 圧縮行程の下死点付近の位置からクランクシャフト の回転を開始することが多い。 Usually, when the engine is stopped, the crankshaft coasts. Later, after the engine's compression load in the compression stroke acts as a brake and the rotation stops once, it is often returned slightly in the opposite direction by the reaction due to compression and stops near the bottom dead center of the compression stroke. Therefore, when starting the engine, the crankshaft often starts to rotate from a position near the bottom dead center of the compression stroke.
しかしながら、 この位置からクランクシャフ卜を回転させて始動さ せるようにクランキングする場合には、 回転開始直後から圧縮の負荷 がクランクシャフ卜に加わるために、 クランクシャフトの回転速度が 上がりにくく、 圧縮時の反力が最大となる位置では、 スター夕モ一夕 はロック時に近い電流が流れることになる。 したがって、 この時に発 生するトルクは、 ほぼロックトルクと同等のトルクで上死点を乗り越 すことになるので、 スター夕モータは、 この乗り越しトルク以上の口 ックトルクを発生できる容量にする必要がある。  However, when cranking to start the crankshaft by rotating it from this position, the compression load is applied to the crankshaft immediately after the start of rotation, so that the rotation speed of the crankshaft hardly increases, and At the position where the reaction force at the time becomes the maximum, the current near the time of the lock will flow during the night. Therefore, the torque generated at this time crosses the top dead center with almost the same torque as the lock torque.Therefore, the star motor needs to have a capacity that can generate a torque that exceeds this crossing torque. is there.
特に、 減速機構のないクランクシャフ卜に直結されるタイプの A C Gモ一夕をスター夕モータとした場合には、 大きなロック卜ルクを発 生させる必要があり、 大型で高価なモータを使用しなければならない という問題点がある。 さらに、 磁界にマグネットを使用する場合には 強い磁界が必要となり、 A C Gとして動作させる時の回転抵抗が大き くなり、 燃費の低下やエンジン出力の低下を招くという問題点がある また、 一般にエンジン (内燃機関) は、 燃料の混合気吸入、 圧縮、 点火、 爆発および排気という一連の行程によりクランクシャフトを回 転させて出力を得ており、 そこでは、 点火時期や開弁タイミング等の 制御、 或いはエンジン回転数のモニタ等のため、 その基準となる信号 が必要とされる。 そして、 多くのエンジンでは、 リラクタと呼ばれる 鉄製の突起物とパルサコイルとからなる信号発生手段により、 パルサ 信号を得、 それを基準信号とする構成が採用されている。 このようなエンジンでは、 フライホイールやスター夕モー夕のロー 夕など、 クランクシャフトと共に回転する回転体の所定位置にリラク 夕を形成する。 また、 その一方、 スティ夕側にはパルサコイルを設け 、 リラクタがその近傍を通過するように配置する。 そして、 クランク シャフ卜の回転に伴ってリラクタがパルサコイルの近傍を通過すると 、 その近接離反によりパルサコイルに電気的信号が発生しパルサ信号 が出力される。 In particular, when an ACG motor that is directly connected to a crankshaft without a reduction mechanism is used as a star motor, a large lock torque must be generated, and a large and expensive motor must be used. There is a problem that must be. In addition, when a magnet is used as a magnetic field, a strong magnetic field is required, which increases the rotational resistance when operating as an ACG, which leads to a reduction in fuel consumption and a decrease in engine output. The internal combustion engine) obtains output by rotating the crankshaft through a series of steps of intake, compression, ignition, explosion, and exhaust of a mixture of fuel, and controls ignition timing and valve opening timing, or For monitoring the engine speed, a reference signal is required. In many engines, a pulsar signal is obtained by a signal generating means including an iron protrusion called a reluctor and a pulsar coil, and is used as a reference signal. In such an engine, a relaxed evening is formed at a predetermined position of a rotating body that rotates together with the crankshaft, such as a flywheel or a star evening sun. On the other hand, a pulsar coil is provided on the stay side, and the reluctor is arranged so as to pass in the vicinity thereof. When the retractor passes near the pulsar coil with the rotation of the crankshaft, an electrical signal is generated in the pulsar coil due to the approach and separation, and a pulsar signal is output.
この場合、 パルサ信号は、 常に所定のクランク角にて出力されるた め、 これを点火基準信号として用い、 点火タイミングの制御が実行さ れる。 また、 前記リラクタは、 回転体上に 1個形成される構成が主流 となっており、 その場合、 パルサ信号はクランクシャフト 1回転につ き 1回出力される。 従って、 このパルサ信号の間隔に基づいてェンジ ン回転数を算出することができ、 この算出値を用いて燃料噴射量制御 等の各種処理が実行される。  In this case, since the pulsar signal is always output at a predetermined crank angle, the pulsar signal is used as an ignition reference signal to control the ignition timing. In addition, the reluctor is generally configured such that one is formed on a rotating body, and in this case, a pulsar signal is output once per crankshaft rotation. Therefore, the engine speed can be calculated based on the interval between the pulsar signals, and various processes such as fuel injection amount control are executed using the calculated value.
ところで、 近年、 エンジンが高性能化するに伴い、 その制御形態も 複雑化し、 クランクシャフト 1回転の間の回転数変動をもモニタし、 それに応じた細かな制御が必要となってきている。 そこで、 前記リラ クタの数を増加させ、 より細かな角度間隔でパルサ信号を出力させ、 これにより高性能な制御の実現が図られてきた。  By the way, in recent years, as engines have become more sophisticated, their control forms have become more complicated, and it has become necessary to monitor fluctuations in the number of revolutions during one revolution of the crankshaft, and to perform fine control accordingly. Therefore, the number of the reluctors has been increased, and pulsar signals have been output at finer angular intervals, thereby realizing high-performance control.
しかしながら、 このようにリラクタの個数を増加させると、 その分 加工工数が増大し、 リラクタを増やして精密な制御を行おうとすれば する程、 コストが嵩むという問題があった。  However, when the number of reluctors is increased in this way, the number of processing steps increases accordingly, and there is a problem that the cost increases as the number of reluctors is increased and precise control is performed.
本発明の目的は、 エンジンのクランクシャフ の絶対角度を認識し て、 より効率の良いエンジンの始動制御を実現することにある。 また 、 本発明の目的は、 リラクタの個数を増やすことなく、 エンジンのク ランクシャフトの絶対角度を正確に認識し得るクランク角検出装置を 提供することにある。 本発明の前記並びにその他の目的と新規な特徴は、 本明細書の記述 および添付図面から明らかになるであろう。 An object of the present invention is to realize more efficient engine start control by recognizing an absolute angle of a crankshaft of an engine. Another object of the present invention is to provide a crank angle detecting device capable of accurately recognizing an absolute angle of a crank shaft of an engine without increasing the number of reluctors. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
発明の開示 Disclosure of the invention
本発明の内燃機関の始動装置は、 内燃機関のクランクシャフトに連 結されるスター夕モータと、 前記内燃機関における点火基準信号と、 回転パルス信号に基づいてクランクシャフ卜の絶対角度を取得し、 前 記絶対角度に基づいて前記スター夕モー夕を制御する制御手段とを有 することを特徴としている。  A starting device for an internal combustion engine according to the present invention obtains an absolute angle of a crankshaft based on a star motor connected to a crankshaft of the internal combustion engine, an ignition reference signal in the internal combustion engine, and a rotation pulse signal. Control means for controlling the star-night mode based on the absolute angle.
また、 本発明の内燃機関の始動装置は、 内燃機関のクランクシャフ 卜に連結されるスター夕モータと、 前記内燃機関における点火基準信 号と、 前記ス夕一夕モータの転流位置パルス信号に基づいてクランク シャフトの絶対角度を取得し、 前記絶対角度に基づいて前記スター夕 モー夕を制御する制御手段とを有することを特徴としている。  Further, the starting device for an internal combustion engine of the present invention includes a star motor connected to a crankshaft of the internal combustion engine, an ignition reference signal in the internal combustion engine, and a commutation position pulse signal of the star motor. Control means for acquiring an absolute angle of the crankshaft based on the absolute angle, and controlling the star-shaft mode based on the absolute angle.
本発明にあっては、 点火基準信号や転流位置パルス信号という既存 の信号を用いてクランクシャフ卜の絶対角度を取得し、 これに基づき スター夕モー夕を制御する。 従って、 クランク角センサ等をさらに付 設することなく、 クランクシャフ卜の絶対角度を用いた正確な始動制 御が可能となり、 効率の良いェンジン始動が実現できる。  In the present invention, the absolute angle of the crankshaft is obtained by using the existing signals such as the ignition reference signal and the commutation position pulse signal, and the star and the motor are controlled based on this. Therefore, accurate starting control using the absolute angle of the crankshaft is possible without additionally providing a crank angle sensor and the like, and efficient engine starting can be realized.
この場合、 前記制御手段は、 前記絶対角度に基づいて前記クランク シャフトを所定クランク位置まで一旦逆転通電した後正転通電して前 記内燃機関を始動させるようにしても良い。 これにより、 クランクシ ャフ卜の逆転→正転のタイミングを正確に制御することができ、 無駄 のないエンジン始動制御により、 効率の良い慣性始動制御を行うこと ができる。  In this case, the control means may start the internal combustion engine by energizing the crankshaft once to reverse rotation once to a predetermined crank position based on the absolute angle and then energizing forward rotation. As a result, the timing of the reverse rotation of the crankshaft to the normal rotation can be accurately controlled, and efficient inertial start control can be performed by lean engine start control.
この際、 前記正転通電は、 前記クランクシャフトが所定クランク角 位置に到達したことを検出して行っても良く、 また、 前記クランクシ ャフトが正転し始めたことを検出して行っても良い。 At this time, the forward rotation energization may be performed by detecting that the crankshaft has reached a predetermined crank angle position. The detection may be performed by detecting that the shaft has started to rotate forward.
さらに、 前記内燃機関が 2ストロークエンジンの場合には、 前記点 火基準信号に加えて、 第 2の基準信号を発生させるリラク夕またはパ ルザコイルを設けても良い。  Further, when the internal combustion engine is a two-stroke engine, a relaxation or pulse coil for generating a second reference signal may be provided in addition to the ignition reference signal.
加えて、 前記制御手段は、 信号待ち時等にアイドリングを停止させ 、 発車時にエンジンを再起動させる S T O P & G O動作時における前 記内燃機関停止後の再始動時においては、 少なくとも前記内燃機関が 所定回転数以下となった時点から前記絶対角度を認識させ、 前記内燃 機関再始動時には停止後の前記絶対角度に基づいて、 前記クランクシ ャフ卜を所定クランク位置まで一旦逆転通電した後正転通電して前記 内燃機関を始動させるようにしても良い。  In addition, the control means stops idling when waiting for a traffic light or the like, and restarts the engine when the vehicle starts. At the time of the restart after the internal combustion engine is stopped during the STOP & GO operation, at least the internal combustion engine has a predetermined The absolute angle is recognized from the time when the rotation speed becomes equal to or less than the rotation speed.When the internal combustion engine is restarted, the crank shaft is once reversely energized to a predetermined crank position and then forwardly energized based on the absolute angle after stopping. Thus, the internal combustion engine may be started.
また、 前記制御手段は、 前記内燃機関が圧縮行程を乗り越した後に 停止した場合、 次回の始動時においては、 前記内燃機関停止前に取得 した前記絶対角度に基づいて、 前記クランクシャフトを所定クランク 位置まで一旦逆転通電した後正転通電して前記内燃機関を始動させる ようにしても良い。  Further, when the internal combustion engine stops after jumping over the compression stroke, the control means moves the crankshaft to a predetermined crank position based on the absolute angle acquired before the stop of the internal combustion engine at the next start. It is also possible to start the internal combustion engine by energizing the engine in the reverse direction and then energizing the engine in the forward direction.
さらに、 前記制御手段は、 前記逆転に先立ち、 前記クランクシャフ 卜を点火基準信号発生位置より正転方向側の位置まで予備回転させる ようにしても良く、 これにより、 クランクシャフトの逆転時に必ず点 火基準信号発生位置を通過させることができ、 確実に点火基準信号を 取得することが可能となる。  Further, the control means may preliminarily rotate the crankshaft to a position on the forward rotation side from the ignition reference signal generating position before the reverse rotation, whereby the ignition is always performed when the crankshaft rotates reversely. The reference signal generation position can be passed, and the ignition reference signal can be reliably obtained.
加えて、 前記制御手段は、 バッテリ電圧とエンジン温度の少なくと も何れか一方に基づき前記クランクシャフ卜の ^逆転通電終了位置およ び正転開始位置を調整するようにしても良く、 これにより、 バッテリ やエンジン状態に基づいてよりきめ細かな始動制御を行うことができ 、 始動時間の短縮化を図ることが可能となる。  In addition, the control means may adjust the ^ reverse energization end position and the forward rotation start position of the crankshaft based on at least one of the battery voltage and the engine temperature. However, finer start control can be performed based on the state of the battery and the engine, and the start time can be reduced.
一方、 本発明の内燃機関の始動制御装置は、 内燃機関のクランクシ ャフ卜に連結されるスター夕モータの駆動制御を行う内燃機関の始動 制御装置であって、 前記内燃機関における点火基準信号を取得する点 火基準信号取得手段と、 前記スター夕モータの転流位置パルス信号を 取得する転流位置パルス信号取得手段と、 前記点火基準信号と前記転 流位置パルス信号に基づいて、 前記クランクシャフトの絶対角度を算 出する絶対角度算出手段と、 算出された前記絶対角度に基づいて前記 スター夕モー夕を制御するモー夕制御指示手段とを備えたことを特徴 On the other hand, the internal combustion engine start control device of the present invention What is claimed is: 1. A start control device for an internal combustion engine for controlling the driving of a star motor connected to a shaft, comprising: a ignition reference signal obtaining means for obtaining an ignition reference signal in the internal combustion engine; and a commutation of the star motor. Commutation position pulse signal acquisition means for acquiring a position pulse signal; absolute angle calculation means for calculating an absolute angle of the crankshaft based on the ignition reference signal and the commutation position pulse signal; Motor control instruction means for controlling the star control based on an absolute angle.
そして本発明の制御装置にあっては、 点火基準信号や転流位置パル ス信号という既存の信号を用いてクランクシャフ卜の絶対角度を取得 し、 これに基づきスター夕モー夕を制御するため、 クランク角センサ 等をさらに付設することなく、 クランクシャフトの絶対角度を用いた 正確な始動制御が可能となり、 効率の良いェンジン始動が実現できる この場合、 前記モータ制御指示手段は、 前記絶対角度に基づいて前 記クランクシャフ卜を所定クランク位置まで一旦逆転通電し、 前記ク ランクシャフトが所定クランク角位置に到達したことを検出した後、 あるいは、 前記クランクシャフトが正転し始めたことを検出した後に 正転通電を行うようにしても良い。 In the control device of the present invention, the absolute angle of the crankshaft is obtained using the existing signals such as the ignition reference signal and the commutation position pulse signal, and the star control is performed based on the absolute angle. Accurate start control using the absolute angle of the crankshaft is possible without additionally providing a crank angle sensor or the like, and efficient engine start can be realized. In this case, the motor control instruction means is based on the absolute angle. After the crankshaft has been reverse-energized to a predetermined crank position once to detect that the crankshaft has reached a predetermined crankangle position, or after detecting that the crankshaft has started to rotate forward. The forward rotation may be performed.
また、 前記始動制御装置は、 バッテリ電圧を検知するバッテリ電圧 検知手段と、 エンジン温度を検知するエンジン温度検知手段をさらに 備え、 前記モータ制御指示手段は、 前記バッテリ電圧とエンジン温度 の少なくとも何れか一方と、 前記絶対角度とに ¾づき前記スター夕モ 一夕を制御するようにしても良く、 これにより、 バッテリやエンジン 状態に基づいてよりきめ細かな始動制御を行うことができ、 始動時間 の短縮化を図ることが可能となる。  In addition, the start control device further includes a battery voltage detection unit that detects a battery voltage, and an engine temperature detection unit that detects an engine temperature. The motor control instruction unit includes at least one of the battery voltage and the engine temperature. And the absolute angle may be controlled based on the absolute angle, thereby enabling more fine-grained start control based on the state of the battery and the engine, and shortening the start time. Can be achieved.
なお、 ここで言う正転とはエンジンの正規の回転方向を言い、 逆転 とは正規の回転方向とは逆方向の回転方向を言う。 Note that forward rotation here refers to the normal rotation direction of the engine, and reverse rotation. Means a rotation direction opposite to the normal rotation direction.
本発明の内燃機関のクランク角検出装置は、 クランクシャフ卜に連 結されたブラシレススター夕モータによって起動される内燃機関のク ランク角検出装置であって、 前記クランクシャフトに設けた回転体に 形成されたリラクタと、 前記回転体に近接して配置され、 前記リラク 夕の通過に伴い所定のクランク角において電気信号を発生する基準信 号発生手段と、 前記スタータモータの回転に伴い、 前記スタータモー 夕制御用の転流位置信号を発生する転流位置信号発生手段と、 前記転 流位置信号に基づき、 所定周期を有する角度パルスを形成する角度パ ルス形成手段と、 前記基準信号発生手段からの電気信号と前記角度パ ルスとに基づいて前記クランクシャフトの絶対角度を算出するクラン ク角度算出手段とを有することを特徴としている。  The crank angle detection device for an internal combustion engine according to the present invention is a crank angle detection device for an internal combustion engine that is started by a brushless star motor connected to a crank shaft, and is formed on a rotating body provided on the crank shaft. A reference signal generating means which is arranged close to the rotating body and generates an electric signal at a predetermined crank angle with the passage of the relaxation time; and the starter motor with the rotation of the starter motor. A commutation position signal generating means for generating a control commutation position signal; an angle pulse forming means for forming an angle pulse having a predetermined period based on the commutation position signal; A crank angle calculating means for calculating an absolute angle of the crankshaft based on a signal and the angle pulse. are doing.
本発明にあっては、 基準信号発生手段からの電気信号と、 転流位置 信号から形成された角度パルスとに基づいてクランクシャフ卜の絶対 角度を算出することができる。 このため、 リラクタの増設やクランク 角センサの付設等を行うことなく現在のクランク角を把握でき、 クラ ンク角に基づいた高精度のェンジン制御を実行することが可能となる 。 従って、 加工工数の増大や部品点数の増加等によるコストアップを 招くことなく、 高性能エンジンの制御に対応することが可能となる。 この場合、 前記基準信号発生手段として、 前記内燃機関の点火タイ ミングを決定するための点火基準信号を出力するものを用いても良く 、 これにより既存の信号を活用することができ、 コストアップの抑制 を図ることができる。  According to the present invention, the absolute angle of the crankshaft can be calculated based on the electric signal from the reference signal generating means and the angle pulse formed from the commutation position signal. For this reason, the current crank angle can be grasped without adding a reluctor or attaching a crank angle sensor, and it becomes possible to execute high-accuracy engine control based on the crank angle. Therefore, it is possible to respond to the control of a high-performance engine without increasing costs due to an increase in the number of processing steps and the number of parts. In this case, as the reference signal generating means, a signal that outputs an ignition reference signal for determining the ignition timing of the internal combustion engine may be used, whereby an existing signal can be used, and cost increases. Suppression can be achieved.
また、 前記転流位置信号発生手段が複数相からなるパルス信号を出 力し、 前記角度パルス形成手段は、 前記複数相のパルス信号の変化に 基づき所定周期の角度パルス信号を作成し、 前記クランク角度算出手 段は、 前記基準信号発生手段からの電気信号入力時からの前記角度パ ルスを計数して前記クランクシャフ卜の絶対角度を算出するようにし ても良い。 図面の簡単な説明 The commutation position signal generating means outputs a pulse signal having a plurality of phases, and the angle pulse forming means generates an angle pulse signal having a predetermined period based on a change in the pulse signals of the plurality of phases. The angle calculating means includes the step of calculating the angle pattern from the time of inputting the electric signal from the reference signal generating means. Alternatively, the absolute angle of the crankshaft may be calculated by counting the number of screws. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1であるエンジン始動装置が適用され るス夕一夕モー夕の構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of a night and night mode to which an engine starting device according to a first embodiment of the present invention is applied.
図 2は、 図 1のスター夕モー夕のハウジングおよびカバーを省略し た正面図である。  FIG. 2 is a front view of FIG. 1 from which the housing and cover of the star and sun are omitted.
図 3は、 図 1のスター夕モー夕の制御系の構成を示すブロック図で ある。  FIG. 3 is a block diagram showing the configuration of the control system for the star and night modes of FIG.
図 4は、 図 1のス夕一夕モ一夕の制御に適用される C P Uにおける 始動制御に関する機能手段の構成を示す説明図である。  FIG. 4 is an explanatory diagram showing the configuration of the functional means relating to the start control in the CPU applied to the control of the night and night mode of FIG.
図 5は、 本発明の実施の形態 1におけるエンジン始動動作を示した チャートであり、 (a ) は各行程における始動負荷、 (b ) は始動エネ ルギ、 (c ) は始動動作時におけるピストン位置、 (d ) は転流位置検 出センサからのパルス信号、 (e ) はカムシャフト信号を示している。 図 6は、 本発明の実施の形態 1におけるエンジン始動制御の手順を 示したフローチャートである。  FIGS. 5A and 5B are charts showing an engine start operation according to the first embodiment of the present invention, wherein FIG. 5A shows a start load in each stroke, FIG. 5B shows a start energy, and FIG. 5C shows a piston position during the start operation. (D) shows the pulse signal from the commutation position detection sensor, and (e) shows the camshaft signal. FIG. 6 is a flowchart showing a procedure of engine start control according to Embodiment 1 of the present invention.
図 7は、 本発明の実施の形態 1におけるエンジン始動制御の手順を 示したフローチヤ一卜である。  FIG. 7 is a flowchart showing a procedure of engine start control according to Embodiment 1 of the present invention.
図 8は、 転流位置パルス信号と点火基準信号との関係を示した説明 図である。  FIG. 8 is an explanatory diagram showing the relationship between the commutation position pulse signal and the ignition reference signal.
図 9は、 本発明の実施の形態 2におけるエン ン始動動作を示した チャートであり、 (a ) は各行程における始動負荷、 (b ) は始動エネ ルギ、 (c ) は始動動作時におけるピストン位置、 (d ) は転流位置検 出センサからのパルス信号、 (e ) はカムシャフト信号を示している。 図 1 0は、 本発明の実施の形態 2におけるエンジン始動制御の手順 を示したフローチヤ一卜である。 FIG. 9 is a chart showing an engine start operation according to Embodiment 2 of the present invention, where (a) is a start load in each stroke, (b) is a start energy, and (c) is a piston in the start operation. (D) shows the pulse signal from the commutation position detection sensor, and (e) shows the camshaft signal. FIG. 10 shows a procedure of engine start control according to Embodiment 2 of the present invention. It is a flowchart showing the above.
図 1 1は、 本発明の実施の形態 2における予備正転処理の手順を示 したフローチヤ一卜である。  FIG. 11 is a flowchart showing a procedure of a preliminary forward rotation process according to the second embodiment of the present invention.
図 1 2は、 本発明の始動制御装置における制御パターンの例を示し た表である。  FIG. 12 is a table showing an example of a control pattern in the start control device of the present invention.
図 1 3は、 C P Uにおけるクランク角検出処理に関する機能手段の 構成を示す説明図である。  FIG. 13 is an explanatory diagram showing the configuration of functional means relating to crank angle detection processing in the CPU.
図 1 4は、 転流位置検出センサ信号および転流位置検出センサ信号 から形成される角度パルスと点火基準信号との関係を示した説明図で ある。  FIG. 14 is an explanatory diagram showing the relationship between the commutation position detection sensor signal and the angle pulse formed from the commutation position detection sensor signal and the ignition reference signal.
図 1 5は、 角度パルスの間隔を 6 0 ° とした場合における転流位置 検出センサ信号、 角度パルス、 点火基準信号のそれぞれの関係を示し た説明図である。  FIG. 15 is an explanatory diagram showing the relationship between the commutation position detection sensor signal, the angle pulse, and the ignition reference signal when the interval between the angle pulses is 60 °.
図 1 6は、 角度パルスの間隔を約 1 0 ° とした場合における転流位 置検出センサ信号、 角度パルス、 点火基準信号のそれぞれの関係を示 した説明図である。  FIG. 16 is an explanatory diagram showing the relationship between the commutation position detection sensor signal, the angle pulse, and the ignition reference signal when the interval between the angle pulses is about 10 °.
図 1 7は、 (a ) は角度パルスを 5 ° 間隔に分周した場合、 (b ) は 角度パルスを 1 5 ° 間隔に分周した場合、 (c ) は角度パルス間隔を高 回転領域における C P U負荷を考慮して調整した場合を示す説明であ る。 発明を実施するための最良の形態  Figure 17 shows that (a) shows the case where the angular pulse is divided into 5 ° intervals, (b) shows the case where the angular pulse is divided into 15 ° intervals, and (c) shows the case where the angular pulse interval is This is an explanation showing a case where the adjustment is made in consideration of the CPU load. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
図 1は本発明の実施の形態 1であるエンジン始動装置が適用される スター夕モ一夕の構成を示す断面図、 図 2は図 1のス夕一夕モータの ハウジングおよびカバ一を省略した正面図、 図 3は図 1のスター夕モ 一夕の制御系の構成を示すブロック図である。 FIG. 1 is a cross-sectional view illustrating a configuration of a star motor to which an engine starting device according to a first embodiment of the present invention is applied, and FIG. 2 is a view in which a housing and a cover of a star motor of FIG. 1 are omitted. Front view, Fig. 3 FIG. 3 is a block diagram showing a configuration of a control system for one night.
図 1のスター夕モータ (以下、 モー夕と略記する) 1 0は、 自動二 輪車用の 4サイクルエンジンに直結されて、 エンジンのエンジンケ一 ス 1 1に固定される固定子 1 2と、 エンジンのクランクシャフト 1 3 に連結される回転子 (回転体) 1 4とを備えている。  The star motor shown in Fig. 1 (hereinafter abbreviated as motor) 10 is directly connected to a four-stroke engine for a motorcycle, and has a stator 12 fixed to an engine case 11 of the engine. And a rotor (rotating body) 14 connected to the crankshaft 13 of the engine.
回転子 1 4は、 鉄等の磁性材料が用いられて有底の短尺円筒形状に 形成されているヨーク 1 5を備えており、 このヨーク 1 5の底壁の内 面には円筒形状のボス部 1 6が同心状に一体的に突設されている。 ボ ス部 1 6とクランクシャフト 1 3とは夫々のテーパ面同士がくさび作 用的に結合されてセットナツト 1 7によって締結されることにより、 この回転子 1 4はクランクシャフト 1 3に一体回転されるよう固定さ れる。 ヨーク 1 5の内周面には、 界磁子磁極を構成するための永久磁 石 1 8が、 隣合う永久磁石 1 8が異極となるよう、 複数個周方向に配 されて固定されている。  The rotor 14 includes a yoke 15 formed of a bottomed short cylindrical shape using a magnetic material such as iron, and a cylindrical boss is provided on the inner surface of the bottom wall of the yoke 15. The part 16 is concentrically and integrally protruded. The boss portion 16 and the crankshaft 13 are tapered to each other by wedge operation and fastened by the set nut 17 so that the rotor 14 is integrally rotated with the crankshaft 13. Fixed so that On the inner peripheral surface of the yoke 15, a plurality of permanent magnets 18 for constituting field magnetic poles are arranged and fixed in the circumferential direction so that adjacent permanent magnets 18 have different polarities. I have.
モータ 1 0の固定子 1 2は、 鉄等の磁性材料が用いられて大略星形 の短尺円盤形状に形成されているコア 1 9を備えている。 コア 1 9は エンジンケース 1 1の外面にクランクシャフト 1 3と同心的に配され て据え付けられたハウジング 2 0に、 締結手段としてのボルト 2 1に よって締結されて固定されている。 また、 ハウジング 2 0の外側には 、 カバ一 2 6が取り付けられている。 そして、 ハウジング 2 0内にお ける固定子 1 2の外側には回転子 1 4がその外周を取り囲むように配 されており、 回転子 1 4はクランクシャフト 1 3の駆動によって固定 子 1 2の周囲を回転するようになっている。 ;  The stator 12 of the motor 10 includes a core 19 formed of a substantially star-shaped short disk using a magnetic material such as iron. The core 19 is fastened and fixed to a housing 20 installed concentrically with the crankshaft 13 on the outer surface of the engine case 11 by bolts 21 as fastening means. A cover 26 is attached to the outside of the housing 20. A rotor 14 is disposed outside the stator 12 in the housing 20 so as to surround the outer periphery of the stator 12. The rotor 14 is driven by the crankshaft 13 to rotate the stator 12. It is designed to rotate around. ;
コア 1 9は、 鉄製の磁性材料からなる薄板が多数枚積層されて一体 化されており、 ドーナツ形状に形成されたコア本体 2 2を備えている 。 コア本体 2 2の外周には複数本の突極 2 3が放射状に突設されてい る。 各突極 2 3には固定子コイル 2 4が三相結線巻きにそれぞれ捲線 されており、 この固定子コイル 2 4は図示しないターミナルを介して リード線および組電線 (何れも図示せず) によりモー夕ドライバ 3 1 に接続されている。 すなわち、 このモータ 1 0はモータドライバ 3 1 によって駆動されるブラシレスモ一夕として構成されている。 The core 19 is formed by laminating a large number of thin plates made of a magnetic material made of iron and is integrated, and includes a core body 22 formed in a donut shape. A plurality of salient poles 23 are radially provided on the outer periphery of the core body 22. On each salient pole 23, stator coil 24 is wound in a three-phase connection winding The stator coil 24 is connected to a motor driver 31 through a terminal (not shown) by a lead wire and a wire assembly (neither is shown). That is, the motor 10 is configured as a brushless motor driven by the motor driver 31.
また、 モー夕 1 0には、 転流位置検出センサ (転流位置信号発生手 段) 2 5が複数個 (例えば 3個) カバー 2 6内に配設されており、 セ ンサマグネッ卜 4 2の磁気の感応して回転子 1 4の回転位置を検出す るように構成されている。 転流位置検出センサ 2 5の出力は後述する C P U (始動制御装置) 3 2を介してモータドライバ 3 1に供給され ており、 モー夕ドライバ 3 1は転流位置検出センサ 2 5からの検出信 号に応じた通電信号を生成し、 この通電信号に基づく電流を固定子コ ィル 2 4へ供給して固定子コイル 2 4を順次励磁する。 固定子コイル 2 4が順次励磁されると、 固定子コイル 2 4により回転磁界が形成さ れる。 この回転磁界は永久磁石 1 8に作用し、 この回転磁界により回 転子 1 4が回転され、 回転子 1 4の回転力がヨーク 1 5のボス部 1 6 を介してクランクシャフト 1 3に伝達されエンジンが始動される。 さらに、 回転子 1 4の外周にはリラクタ 4 0が 1個突設されている 。 また、 ハウジング 2 0側には、 このリラクタ 4 0に対向するように パルサコイル (基準信号発生手段) 4 1が配設されている。 そして、 クランクシャフト 1 3が 1回転するごとに、 リラクタ 4 0がパルサコ ィル 4 1近傍を 1回通過し、 パルサコイル 4 1にはその度に電気信号 が発生する。 従って、 この電気信号は、 クランクシャフト 1 3が所定 の角度に来たときに発生し、 当該エンジンでは: ここで出力されるこ の信号を点火基準信号として点火時期の制御に使用している。 すなわ ち、 リラクタ 4 0は、 圧縮行程の終了直前 (上死点前) にパルサコィ ル 4 1を通過し、 そこで点火基準信号が得られるようになつている。 なお、 4サイクルエンジンでは、 1行程につきクランクシャフト 1 3 が 2回転するため、 この点火基準信号は排気行程の終了直前にも発生 する。 In the motor 10, a plurality of (for example, three) commutation position detection sensors (means for generating a commutation position signal) 25 are provided in the cover 26, and the sensor magnet 42 It is configured to detect the rotational position of the rotor 14 in response to magnetism. The output of the commutation position detection sensor 25 is supplied to the motor driver 31 via a CPU (start control device) 32 described later, and the motor driver 31 receives the detection signal from the commutation position detection sensor 25. An energization signal corresponding to the signal is generated, and a current based on the energization signal is supplied to the stator coil 24 to sequentially excite the stator coil 24. When the stator coils 24 are sequentially excited, a rotating magnetic field is formed by the stator coils 24. This rotating magnetic field acts on the permanent magnet 18, which rotates the rotor 14, and transmits the rotating force of the rotor 14 to the crankshaft 13 via the boss 16 of the yoke 15. And the engine is started. Further, one reluctor 40 is provided on the outer periphery of the rotor 14 so as to protrude. A pulsar coil (reference signal generating means) 41 is provided on the housing 20 side so as to face the reluctor 40. Then, each time the crankshaft 13 makes one revolution, the reluctor 40 passes once near the pulsar coil 41, and an electric signal is generated in the pulsar coil 41 each time. Therefore, this electric signal is generated when the crankshaft 13 comes to a predetermined angle, and in the engine concerned: This signal output here is used as an ignition reference signal for controlling the ignition timing. That is, the reluctor 40 passes through the pulsar coil 41 immediately before the end of the compression stroke (before the top dead center), where the ignition reference signal is obtained. For a four-stroke engine, the crankshaft 1 3 per stroke Since the motor rotates twice, this ignition reference signal is also generated immediately before the end of the exhaust stroke.
一方、 モー夕 1 0は、 図 3に示したように、 C P U (制御手段) 3 2に制御されてモー夕ドライバ 3 1によって駆動される。 この C P U 3 2には、 転流位置検出センサ 2 5と、 クランクシャフト 1 3の動作 に基づき点火基準信号を発生させるパルサコイル 4 1と、 エンジンの ス夕一夕スィツチ 3 4およびィグニッシヨンスィツチ 3 9が接続され ている。 また、 C P U 3 2には、 エンジン点火用のイダニッシヨンコ ィル 3 5が点火ユニット 3 6を介して接続されている。 さらに、 モー 夕ドライバ駆動ロジックゃェンジン制御等に関する各種制御プロダラ ムが格納された R OM 3 7および、 各種センサ類からのデータ等を格 納する R AM 3 8が接続されている。 そして、 転流位置検出センサ 2 5やパルサコイル 4 1等、 各種センサ類の検出値や信号に基づいて、 モー夕ドライバ 3 1や点火ュニット 3 6等に制御信号を送出し、 モ一 夕 1 0やエンジン点火制御等を行うようになっている。 なお、 モー夕 1 0それ自体や C P U 3 2等は、 車両搭載の図示しないバッテリを電 源として駆動される。  On the other hand, the motor 10 is driven by the motor driver 31 under the control of the CPU (control means) 32, as shown in FIG. The CPU 32 includes a commutation position detection sensor 25, a pulsar coil 41 that generates an ignition reference signal based on the operation of the crankshaft 13, an engine switch 3 4 and an ignition switch 3. 9 is connected. In addition, an ignition coil 35 for engine ignition is connected to the CPU 32 via an ignition unit 36. Furthermore, a ROM 37 storing various control programs related to the motor driver driving logic engine control and the like and a RAM 38 storing data from various sensors are connected. Then, based on the detection values and signals of various sensors such as the commutation position detection sensor 25 and the pulsar coil 41, a control signal is transmitted to the motor driver 31 and the ignition unit 36, etc. And engine ignition control and the like. The motor 10 itself, the CPU 32 and the like are driven by a battery (not shown) mounted on the vehicle as a power source.
また、 C P U 3 2には、 次のような機能手段が設けられている。 図 4は、 C P U 3 2における始動制御に関する機能手段の構成を示す説 明図である。 当該 C P U 3 2は、 パルサコイル 4 1からエンジンの点 火基準信号を取得する点火基準信号取得手段 5 1と、 転流位置検出セ ンサ 2 5からモー夕 1 0の転流位置パルス信号を取得する転流位置パ ルス信号取得手段 5 2と、 点火基準信号と転流位置パルス信号に基づ いて後述のようにクランクシャフト 1 3の絶対角度を算出する絶対角 度算出手段 5 3と、 絶対角度算出手段 5 3にて算出されたクランクシ ャフト 1 3の絶対角度に基づいてモ一夕 1 0を制御するモ一夕制御指 示手段 5 4とを備えている。 また、 C P U 3 2はさらに、 車載バッテリの電圧を検知するバッテ リ電圧検知手段 5 5と、 冷却水温等によりエンジンの温度を検知する エンジン温度検知手段 5 6とを備えている。 Further, the CPU 32 is provided with the following functional means. FIG. 4 is an explanatory diagram showing the configuration of functional means relating to start control in the CPU 32. The CPU 32 acquires ignition reference signal acquiring means 51 for acquiring the ignition reference signal of the engine from the pulsar coil 41, and acquires the commutation position pulse signal of the motor 10 from the commutation position detection sensor 25. A commutation position pulse signal acquisition means 52; an absolute angle calculation means 53 for calculating an absolute angle of the crankshaft 13 based on the ignition reference signal and the commutation position pulse signal, as described later; and an absolute angle A motor control instruction means 54 for controlling the motor 10 based on the absolute angle of the crankshaft 13 calculated by the calculating means 53 is provided. Further, the CPU 32 further includes a battery voltage detecting means 55 for detecting the voltage of the vehicle-mounted battery, and an engine temperature detecting means 56 for detecting the temperature of the engine based on a cooling water temperature or the like.
図 5は、 本発明の始動装置を 4ストロークサイクルのエンジンに適 用した場合における始動原理を示す図であり、 (a ) は各行程における 始動負荷、 (b ) は始動エネルギ、 (c ) は始動動作時におけるピスト ン位置、 (d ) は転流位置検出センサからのパルス信号、 (e ) は点火 基準信号を示している。  FIG. 5 is a diagram showing the starting principle when the starting device of the present invention is applied to a four-stroke cycle engine, where (a) is the starting load in each stroke, (b) is the starting energy, and (c) is the starting energy. The piston position during the starting operation, (d) shows the pulse signal from the commutation position detection sensor, and (e) shows the ignition reference signal.
このエンジンは、 吸入弁が開き排気弁が閉じた状態のもとでビスト ンが上死点から下降して混合気がシリンダ内へ吸入される吸入行程と 、 吸入弁と排気弁とがいずれも閉じた状態のもとで混合気が圧縮され る圧縮行程と、 圧縮行程が終わる上死点の少し前で混合気が点火され 、 吸入弁と排気弁が閉じられた状態のもとで、 燃焼により生じた高圧 ガスによりピストンが押し下げられる仕事行程つまり爆発行程と、 吸 入弁が閉じ排気弁が開いた状態もとで膨張したガスが外部に排出され る排気行程とを有し、 クランクシャフト 1 3の 2回転つまり 4行程で 1サイクルが構成される。  In this engine, both the intake stroke in which the air-fuel mixture is sucked into the cylinder by lowering the piston from the top dead center with the intake valve opened and the exhaust valve closed, and both the intake valve and the exhaust valve The air-fuel mixture is ignited just before the compression stroke where the air-fuel mixture is compressed in the closed state and shortly before the top dead center where the compression stroke ends, and the combustion is performed in the state where the intake and exhaust valves are closed. The piston has a work stroke in which the piston is depressed by the high-pressure gas generated by the combustion, that is, an explosion stroke, and an exhaust stroke in which the gas expanded with the intake valve closed and the exhaust valve opened is discharged to the outside. One cycle is composed of two rotations of three, that is, four strokes.
エンジンが停止された状態のもとで、 モータ 1 0を回転させて始動 させる際には、 始動させるときにエンジンがどの行程の位置となって いるかにより、 (a ) に示すように、 始動時の負荷が相違することにな る。 すなわち、 排気行程や吸入行程では、 吸入弁と排気弁のいずれか が開かれた状態でピストンが上下動するため、 クランクシャフト 1 3 を回転させるための負荷は比較的小さくなる。 これに対して、 圧縮行 程でエンジンを始動させるには、 吸入弁と排気弁とが閉じられた状態 でピストンを上昇させるため、 クランクシャフト 1 3の回転負荷は大 きくなり、 その値は上死点の少し手前で最大となる。  When starting the motor 10 by rotating it with the engine stopped, as shown in (a), depending on the stroke position of the engine when starting, Will be different. That is, in the exhaust stroke and the suction stroke, the piston moves up and down with either the intake valve or the exhaust valve being open, and the load for rotating the crankshaft 13 is relatively small. On the other hand, in order to start the engine in the compression stroke, the piston is lifted with the intake valve and the exhaust valve closed, and the rotational load on the crankshaft 13 increases, and the value increases. It reaches its maximum just before the dead center.
前述のように、 エンジン停止の際には通常、 ピストンは圧縮行程の 下死点付近の位置で停止することが多い。 従来の始動装置ではこの位 置からエンジンを始動させるため、 始動の際には、 圧縮行程での負荷 を乗り越えるべくクランクシャフト 1 3に対して図 5において破線で 示したようなエネルギーをスター夕モータにより供給する必要がある a As mentioned above, when the engine is stopped, the piston normally moves during the compression stroke. It often stops near the bottom dead center. In the conventional starter, the engine is started from this position, and at the time of start, the energy shown by the dashed line in Fig. 5 is applied to the crankshaft 13 to overcome the load in the compression stroke. Need to be supplied by
本発明の始動装置にあっては、 図 5 ( c ) に示す通常停止範囲 の うち、 たとえば停止位置 P aで停止していた状態からエンジンを始動 させる際に、 まず、 エンジンを一旦逆転させて吸入行程と排気行程の 位置を経過させ、 爆発行程内にまでクランクシャフト 1 3を逆転させ る。 この逆転過程においては、 ピストンは図 5の最上欄において矢印 で示す方向とは逆の方向に移動することになり、 吸入行程の位置にあ つてはピストンは上死点に向けて移動し、 排気行程の位置にあっては 下死点に向けて移動し、 爆発行程の位置にあっては上死点に向けて移 動することになる。  In the starter of the present invention, when the engine is started from a state where the engine is stopped at the stop position Pa in the normal stop range shown in FIG. Elapse the intake and exhaust strokes and reverse the crankshaft 13 to within the explosion stroke. In this reverse rotation process, the piston moves in the direction opposite to the direction indicated by the arrow in the uppermost column of Fig. 5, and at the position of the suction stroke, the piston moves toward the top dead center, and the exhaust If it is in the stroke position, it will move toward the bottom dead center, and if it is in the explosion stroke position, it will move toward the top dead center.
従って、 この逆転によって爆発行程においては、 吸入弁と排気弁と が閉じた状態のもとで、 燃焼室内に残留している気体は圧縮されるこ とになり、 燃焼室内に圧縮反動による正回転エネルギが蓄積される。 図 5 ( b ) における二点鎖線は蓄積された気体圧縮エネルギを示す。 なお、 始動を開始させる際に、 ピストンが通常停止範囲 P内となって いる場合のみならず、 吸入行程や排気行程の位置でピストンが停止し ている状態となっており、 その位置からエンジンを始動させる場合に も前述と同様に逆転動作を行うことができる。  Therefore, in the explosion stroke due to this reversal, the gas remaining in the combustion chamber is compressed while the intake valve and the exhaust valve are closed, and the combustion chamber is rotated forward by the compression reaction. Energy is stored. The two-dot chain line in Fig. 5 (b) indicates the stored gas compression energy. When starting the engine, not only when the piston is within the normal stop range P, but also when the piston is stopped at the intake stroke and exhaust stroke positions, the engine is stopped from that position. When starting the motor, the reverse rotation operation can be performed in the same manner as described above.
クランクシャフト 1 3が爆発行程の正転開始範囲 Qのうち、 たとえ ば反転位置つまり正転位置 Q aまで逆転した後に、 クランクシャフト 1 3をモータ 1 0により正転される。 この時、 燃焼室内の気体の圧縮 により蓄えられた正回転エネルギが、 フライホイールなどを含めたク ランクシャフト 1 3の回転系に放出されることになり、 回転系にはこ の放出された圧縮反動のエネルギと、 モー夕 1 0により加えられれた 回転エネルギとが加えられることになる。 After the crankshaft 13 reverses to the reverse position, ie, the normal rotation position Qa, in the normal rotation start range Q of the explosion stroke, the crankshaft 13 is rotated forward by the motor 10. At this time, the positive rotation energy stored by the compression of the gas in the combustion chamber is released to the rotating system of the crankshaft 13 including the flywheel, etc. The energy of the compression reaction released and the rotational energy added by the motor 10 are added.
図 5 ( b ) において、 正転するモ一夕 1 0によりクランクシャフト 1 3に加えられるモータのエネルギの変化を実線で示し、 回転系に蓄 えられる慣性エネルギの変化を一点鎖線で示すように、 正転初期に回 転系には圧縮により蓄積された気体のエネルギの放出による圧縮反動 で迅速に慣性エネルギが高まり、 さらに、 モー夕 1 0の回転力により 、 回転系は爆発行程から圧縮行程に向けて、 徐々に慣性エネルギが増 大することになる。 したがって、 圧縮行程においては、 それまでに回 転系に蓄えられた慣性エネルギとモー夕 1 0のエネルギとの合成のェ ネルギが太い実線で示すように、 クランクシャフト 1 3に加えられる ことになる。 つまり、 クランクシャフト 1 3は、 その回転数の低下に 伴って放出されて圧縮行程に費やされる慣性エネルギと、 モータ 1 0 の回転トルクとにより駆動され、 最大の乗り越しトルク Tは、 慣性卜 ルクの放出エネルギの最大値 T i と、 モータトルクの最大値 Tm との 合計により初回の圧縮行程の負荷を乗り越えることになる。  In Fig. 5 (b), the change in the motor energy applied to the crankshaft 13 due to the forward rotation of the motor 10 is indicated by a solid line, and the change in the inertial energy stored in the rotating system is indicated by the dashed line. At the beginning of normal rotation, inertia energy is rapidly increased in the rotating system due to the compression reaction due to the release of gas energy accumulated by compression. Further, the rotating system rotates the rotating system from the explosion stroke to the compression stroke due to the rotational force of the motor 10. , The inertial energy will gradually increase. Therefore, in the compression stroke, the energy of the synthesis of the inertial energy stored in the rotating system and the energy of the motor 10 is applied to the crankshaft 13 as indicated by the thick solid line. . In other words, the crankshaft 13 is driven by the inertia energy released during the reduction of the rotational speed and consumed in the compression stroke, and the rotational torque of the motor 10, and the maximum riding torque T is determined by the inertia torque. The sum of the maximum value T i of the released energy and the maximum value Tm of the motor torque will overcome the load of the first compression stroke.
図 6 , 7は、 このような本発明によるエンジン始動制御の手順を示 したフローチヤ一卜である。 ここでは、 C P U 3 2はまずステップ S 1にてイダニッシヨンスィツチ 3 9が〇Nされることによりル一チン に入り、 ステップ S 2に進みスター夕スィッチ 3 4が O Nされたか否 かを判断する。 そして、 スタータスイッチ 3 4が O Nされるとステツ プ S 3に進み、 エンジンを一旦逆転させる。 すなわち、 図 5において 停止位置 P aから爆発行程側に向かってエンジンを逆転させる。  FIGS. 6 and 7 are flowcharts showing the procedure of the engine start control according to the present invention. Here, the CPU 32 first enters the routine by turning off the identification switch 39 in step S1, and proceeds to step S2 to determine whether the star switch 34 has been turned ON. I do. Then, when the starter switch 34 is turned ON, the process proceeds to step S3, and the engine is once reversed. That is, in FIG. 5, the engine is reversed from the stop position Pa toward the explosion stroke side.
次に、 ステップ S 4にて、 エンジンを逆転させつつ点火基準信号が 出力されたか否かが判断される。 この場合、 点火基準信号は、 前述の ようにクランクシャフ卜 1 3が 1回転するごとに 1回出力される。 こ のため、 図 5の停止位置 P aからエンジンを逆転させると、 図 5 ( e ) に示したように、 吸入行程から排気行程に入ったところでも点火基 準信号が出力される。 そして、 ステップ S 4にて点火基準信号が得ら れたときにはステップ S 5に進み、 ピストンの絶対位置、 すなわちク ランクシャフトの絶対角度の認識、 補正が行われる。 Next, in step S4, it is determined whether or not the ignition reference signal has been output while the engine is rotating in the reverse direction. In this case, the ignition reference signal is output once each time the crankshaft 13 makes one rotation as described above. Therefore, when the engine is reversed from the stop position Pa in FIG. As shown in), the ignition reference signal is output even when the vehicle enters the exhaust stroke from the intake stroke. When the ignition reference signal is obtained in step S4, the process proceeds to step S5, in which the absolute position of the piston, that is, the absolute angle of the crankshaft is recognized and corrected.
ここで当該モ一夕 1 0では、 その回転制御のため、 図 5に示したよ うに転流位置パルス信号が取得されている。 図 8は、 この転流位置パ ルス信号と点火基準信号との関係を示した説明図である。 図 8に示し たように、 モ一夕 1 0では、 等分に 3個設置された転流位置検出セン サ 2 5から三相の転流センサ信号 U, V, Wが出力されている。 そし て、 各信号の立ち上がり時を捉えることにより、 所定周期の転流位置 パルス信号が形成される。 この場合、 点火基準信号は、 リラクタ 4 0 がパルサコイル 4 1前を通過することによって出力されるため、 それ が得られるクランク角は常に一定である (上死点前)。 また、 転流位置 パルス信号も所定クランク角度間隔にて得られる。 従って、 点火基準 信号が得られた後、 転流位置パルス信号がいくつ入力されたかをカウ ン卜すれば、 ある所定クランク角からの回転角度が分かることになり 、 現在のクランク角を正確に把握することが可能となる。  Here, in the motor 10, a commutation position pulse signal is acquired as shown in FIG. 5 for the rotation control. FIG. 8 is an explanatory diagram showing the relationship between the commutation position pulse signal and the ignition reference signal. As shown in FIG. 8, in the mode 10, three-phase commutation sensor signals U, V, W are output from three commutation position detection sensors 25 installed equally. Then, by capturing the rising time of each signal, a commutation position pulse signal having a predetermined period is formed. In this case, since the ignition reference signal is output when the reluctor 40 passes in front of the pulsar coil 41, the obtained crank angle is always constant (before top dead center). Also, a commutation position pulse signal is obtained at a predetermined crank angle interval. Therefore, after counting the number of commutation position pulse signals after the ignition reference signal is obtained, the rotation angle from a certain predetermined crank angle can be determined, and the current crank angle can be accurately grasped. It is possible to do.
このようにしてクランクシャフ卜の絶対角度を把握した後、 ステツ プ S 6に進み、 クランク角をモニタしつつビストンが爆発行程の中間 位置まで来たか否かが判断される。 そして、 爆発行程中間位置まで来 たことが認識されると、 ステップ S 7に進み、 逆転通電が停止される 一方、 爆発行程中間位置まで達しない場合には、 ステップ S 8に進 み、 ピストンが逆転圧縮状態になっていないかどうかが判断される。 すなわち、 クランクシャフト逆転中に爆発行程中間位置以前にて、 圧 縮負荷を受ける状態となっているか否かが判断される。 この場合、 ス テツプ S 8における逆転圧縮状態の判定は、 クランク角の変化量を捉 えることにより行われる。 つまり、 まず転流位置パルス信号の周期を 検出し、 今回取得した値と前回取得した値とを比較する。 そして、 そ の差が所定値以上となった場合には、 ピストンが圧縮力を受けてクラ ンク角の変化量が減少したと判断し、 逆転圧縮状態となったと判定す る。 なお、 周期から速度を算出してその値を比較したり、 さらにそこ から加速度を求めてその変化を所定値と比較したりしても良い。 但し 、 前述のような周期による疑似加速度変化判定の方が C P U 3 2への 負担が少なくて済むという利点がある。 After grasping the absolute angle of the crankshaft in this manner, the process proceeds to step S6, and it is determined whether or not the piston has reached the middle position of the explosion stroke while monitoring the crank angle. Then, when it is recognized that the explosion stroke intermediate position has been reached, the process proceeds to step S7, and the reverse rotation energization is stopped. On the other hand, when the explosion stroke intermediate position has not been reached, the process proceeds to step S8, where the piston is moved. It is determined whether or not the compressor is in the reverse compression state. That is, it is determined whether or not a compression load is received before the explosion stroke intermediate position during the reverse rotation of the crankshaft. In this case, the determination of the reverse compression state in step S8 is based on the change in the crank angle. It is performed by obtaining. That is, first, the period of the commutation position pulse signal is detected, and the value obtained this time is compared with the value obtained last time. If the difference is equal to or greater than a predetermined value, it is determined that the amount of change in the crank angle is reduced by the piston receiving the compression force, and it is determined that a reverse compression state has been achieved. Note that the speed may be calculated from the cycle and compared with the value, or the acceleration may be calculated therefrom and the change may be compared with a predetermined value. However, the pseudo acceleration change determination based on the above-described cycle has an advantage that the load on the CPU 32 can be reduced.
ステップ S 8にて逆転圧縮状態が検出された場合には、 ステップ S 7に進んで逆転通電を停止する。 これに対して逆転圧縮が検出されな い場合には、 ステップ S 9に進み、 予め設定された最大逆転時間が経 過したか否かが判定される。 そして、 最大逆転時間が経過した場合に はステップ S 7に進んで逆転通電を停止させる一方、 経過前の場合は ステップ S 6に戻り前述の手順が繰り返される。  When the reverse compression state is detected in step S8, the process proceeds to step S7, and the reverse rotation energization is stopped. On the other hand, if the reverse compression is not detected, the process proceeds to step S9, and it is determined whether or not a preset maximum reverse rotation time has elapsed. Then, if the maximum reverse rotation time has elapsed, the process proceeds to step S7 to stop the reverse rotation energization, while if the maximum reverse rotation time has not elapsed, the process returns to step S6 and the above-described procedure is repeated.
このようにしてステップ S 7にて逆転通電が停止されると、 クラン クシャフト 1 3は惰性にて回転し、 その後正転駆動に切り換えられる 。 本発明による制御では、 この切り換えは、 ①クランクシャフトが逆 転許容位置 (圧縮上死点前) まで逆転したか、 ②既に正転し始めてい るか、 ③通電停止から所定時間経過しているかの、 絶対角度 ·動作 - 時間の 3条件から判断する。  When the reverse rotation energization is stopped in step S7 in this way, the crankshaft 13 rotates by inertia, and is then switched to the forward rotation drive. In the control according to the present invention, this switching is performed as follows: (1) whether the crankshaft has reversed to the reverse rotation allowable position (before compression top dead center), (2) whether the crankshaft has already started normal rotation, or (3) whether a predetermined time has elapsed since the power supply was stopped. Judgment from the three conditions of absolute angle and movement-time.
そこで、 クランクシャフ卜の絶対角度は既にステップ S 5にて認識 されているため、 まずステップ S 1 0において、 クランク角が逆転が 許される最大位置 (逆転許容位置) に至ったか かが判定される。 そ して、 逆転許容位置 (図 5 ( c ) における Q a ) に達するとステップ S 1 1に進み、 クランクシャフト 1 3を正転させ正規の始動動作に入 る。  Therefore, since the absolute angle of the crankshaft has already been recognized in step S5, it is first determined in step S10 whether the crank angle has reached the maximum position where reverse rotation is permitted (reverse rotation allowable position). . Then, when the reverse rotation allowable position (Qa in FIG. 5 (c)) is reached, the process proceeds to step S11, where the crankshaft 13 is rotated forward to start a normal starting operation.
なお、 前記逆転許容位置は、 エンジン温度 (水温、 気温、 ュニッ卜 温度、 または、 モータ温度等) ゃバッテリ電圧状態によって適宜調整 することも可能である。 すなわち、 エンジン温度ゃバッテリ電圧を見 て、 最適な乗り越しトルクを発生させるよう逆転許容位置を設定し、 そのときの状態に応じて最短時間での始動が可能になる。 例えばェン ジン停止直後の再始動のように、 バッテリ電圧が高いときやエンジン 温度が高く始動しやすい条件のときには、 排気行程まで戻してそこか ら正転させる。 また、 バッテリ電圧がやや低いときや、 エンジンが暖 機されていないときには爆発行程まで戻して正転させる。 さらに、 電 圧が低いときやエンジンが低温のときには、 爆発行程の圧縮反力を利 用して正転させる。 さらにまた、 電圧がさらに低くエンジンもさらに 低温の場合には、 一旦正転させて圧縮行程の反力を利用してから逆転 させ、 それに爆発行程の反力を加えて始動する。 加えて、 これらの動 作を行っても始動できないことが予測されるような条件においては、 始動動作自体を行わないようにし、 警告ランプ等によりその旨を運転 者に知らせるようにする。 The reverse rotation allowable position is determined by the engine temperature (water temperature, air temperature, unit (Temperature or motor temperature, etc.) ゃ It is also possible to adjust appropriately according to the battery voltage state. In other words, by checking the engine temperature / battery voltage, the reverse rotation allowable position is set so as to generate the optimum riding torque, and starting in the shortest time is possible according to the state at that time. When the battery voltage is high or the engine temperature is high and the engine is easy to start, such as when restarting immediately after stopping the engine, the engine is returned to the exhaust stroke and normal rotation is started from there. If the battery voltage is slightly low or the engine is not warmed up, return to the explosion stroke and rotate forward. In addition, when the voltage is low or the engine temperature is low, the engine rotates forward by using the compression reaction force of the explosion stroke. Furthermore, when the voltage is lower and the engine temperature is even lower, the engine is rotated forward to use the reaction force of the compression stroke, then reverse, and then start by applying the reaction force of the explosion stroke. In addition, under conditions where it is expected that the engine cannot be started even if these operations are performed, the starting operation itself will not be performed, and the driver will be notified of this by a warning lamp or the like.
これに対しステップ S 1 0にて、 逆転許容位置まで至っていないこ とが認識されると、 ステップ S 1 2に進み、 既にクランクシャフト 1 3が正転状態になっていないかが判定される。 つまり、 逆転許容位置 に至る前に圧縮力により戻されて正転を始めていないか否かが判定さ れる。 そして、 正転し始めていればステップ S 1 1に進んですぐに正 転動作を開始させる。  On the other hand, if it is recognized in step S10 that the crankshaft 13 has not reached the reverse rotation allowable position, the process proceeds to step S12, and it is determined whether the crankshaft 13 is already in the normal rotation state. That is, it is determined whether or not the rotation is returned by the compressive force before the rotation reaches the reverse rotation allowable position and the normal rotation is not started. Then, if normal rotation has begun, the process proceeds to step S11, and the normal rotation operation is started immediately.
また、 ステップ S 1 2にて正転が検出されない場合には、 ステップ S 1 3に進み、 所定の通電停止時間 (例えば、 Ί 0 O ms) を経過した か否かが判定される。 すなわち、 逆転後の惰性回転時間には所定の最 大値が設定されており、 その時間が経過した場合には正転許容位置に 至る前であってもステップ S 1 1に進んで正転を開始する。 なお、 通 電停止時間経過前の場合にはステップ S 1 0に戻り、 前述の手順が繰 り返される。 If the normal rotation is not detected in step S12, the process proceeds to step S13, and it is determined whether or not a predetermined energization stop time (for example, Ί0 O ms) has elapsed. That is, a predetermined maximum value is set for the inertial rotation time after the reverse rotation, and when the time has elapsed, the process proceeds to step S11 even before reaching the forward rotation allowable position to perform the normal rotation. Start. If the power interruption time has not elapsed, the process returns to step S10, and the above procedure is repeated. Will be returned.
このように本発明による始動制御においては、 点火基準信号と転流 位置パルス信号を用いてクランク角を正確に判定できるため、 特にク ランク角を検出するセンサを別途設けることなく、 クランクシャフト の絶対角度に基づいて逆転→正転の制御を確実に行うことが可能とな る。 また、 逆転通電時間や通電停止時間にはそれぞれ最大値が設定さ れているため、 始動時の逆転により所定時間以上の起動タイムラグが 生じるのを防ぐことができる。  As described above, in the starting control according to the present invention, the crank angle can be accurately determined using the ignition reference signal and the commutation position pulse signal. Control of reverse rotation → forward rotation can be reliably performed based on the angle. Further, since the maximum values are set for the reverse rotation energizing time and the energizing stop time, it is possible to prevent a start time lag longer than a predetermined time due to the reverse rotation at the time of starting.
その一方、 エンジン停止の際に、 ピストンが圧縮行程の下死点付近 ではなく、 例えば図 5 ( c ) における P bのように、 排気行程の下死 点付近にて停止した場合には、 点火基準信号を得ることができない。 すなわち、 ステップ S 4にて点火基準信号が得られない場合には、 前 述のような絶対角度による制御を行うことができない。 かかる場合は 前述のように多くはないが絶無とは言えず、 当該制御装置では、 この ときには前述の疑似加速度変化判定により正転タイミングを決定する そこで、 ステップ S 4にて点火基準信号が得られない場合には、 図 7のステップ S 1 4に進み、 ステップ S 8と同様にして逆転圧縮状態 か否かが判定される。 そして、 逆転圧縮が検出された場合にはステツ プ S 1 5に進み、 逆転通電を停止する。 一方、 逆転圧縮状態でない場 合にはステップ S 1 6に進み、 予め設定された最大逆転時間が経過し たか否かが判定される。 そして、 最大逆転時間が経過した場合にはス テツプ S 1 5に進んで逆転通電を停止させる一方、 経過前の場合はス テツプ S 4に戻り前述の手順が繰り返される。  On the other hand, when the engine stops, if the piston stops not near the bottom dead center of the compression stroke but near the bottom dead center of the exhaust stroke, for example, as indicated by Pb in Fig. 5 (c), ignition occurs The reference signal cannot be obtained. That is, if the ignition reference signal cannot be obtained in step S4, the control based on the absolute angle as described above cannot be performed. In such a case, as described above, there is not much, but it cannot be said that there is no end. In this case, the control device determines the normal rotation timing by the above-described pseudo acceleration change determination. If not, the process proceeds to step S14 in FIG. 7, and it is determined whether or not it is in the reverse compression state as in step S8. When the reverse rotation compression is detected, the process proceeds to step S15, and the reverse rotation energization is stopped. On the other hand, if it is not in the reverse compression state, the process proceeds to step S16, and it is determined whether or not a preset maximum reverse rotation time has elapsed. Then, if the maximum reverse rotation time has elapsed, the process proceeds to step S15 to stop the reverse rotation energization, whereas if the maximum reverse rotation time has not elapsed, the process returns to step S4 and the above-described procedure is repeated.
ステップ S 1 5にて逆転通電が停止されると、 クランクシャフト 1 3は惰性にて回転する。 そして、 ステップ S 1 7に進み、 既にクラン クシャフト 1 3が正転状態になっていないかが判定される。 つまり、 ピストンが圧縮力により戻され、 クランクシャフト 1 3が正転を始め ていないか否かが判定され、 正転し始めていればステップ S 1 8に進 んですぐに正転動作を開始させる。 When the reverse rotation energization is stopped in step S15, the crankshaft 13 rotates by inertia. Then, the process proceeds to step S17, and it is determined whether the crankshaft 13 is already in the normal rotation state. That is, The piston is returned by the compression force, and it is determined whether or not the crankshaft 13 has started to rotate forward. If the crankshaft 13 has started to rotate forward, the process proceeds to step S18 to start the normal rotation operation immediately.
また、 ステップ S 1 7にて正転が検出されない場合には、 ステップ S 1 9に進み、 所定の通電停止時間を経過したか否かが判定される。 そして、 通電停止時間が経過した場合には、 正転が検出される前であ つてもステップ S 1 8に進んで正転を開始する。 なお、 通電停止時間 経過前の場合にはステップ S 1 7に戻り、 前述の手順が繰り返される そして、 これらの動作によりモ一夕 1 0が正転を開始する。 この場 合、 クランクシャフト 1 3は、 排気行程および吸入行程においては低 負荷にて回転するため、 モータ 1 0はピストンが圧縮行程に入る前に 、 無負荷回転数に近いほぼ最大の回転数に達する。 従って、 クランク シャフト 1 3も圧縮行程直前においてモー夕 1 0によって可能な最大 の回転数で回転され、 その回転系の慣性マスに蓄えられる慣性エネル ギもまた最大の状態となつて圧縮行程に突入する。  If the normal rotation is not detected in step S17, the process proceeds to step S19, and it is determined whether a predetermined energization stop time has elapsed. Then, when the energization stop time has elapsed, the process proceeds to step S18 to start the normal rotation even before the normal rotation is detected. If the energization stop time has not elapsed, the process returns to step S17, and the above-described procedure is repeated. Then, the motor 10 starts normal rotation by these operations. In this case, since the crankshaft 13 rotates at a low load in the exhaust stroke and the suction stroke, the motor 10 reaches the maximum rotational speed close to the no-load rotational speed before the piston enters the compression stroke. Reach. Therefore, the crankshaft 13 is also rotated at the maximum speed possible by the motor 10 immediately before the compression stroke, and the inertial energy stored in the inertial mass of the rotating system also reaches the maximum state and enters the compression stroke. I do.
このためクランクシャフト 1 3は、 圧縮行程において図 4 ( b ) に 示したように、 慣性エネルギ (一点鎖線) とモー夕エネルギ (実線) の和である合成エネルギ (実太線) により回転される。 また、 図 4 ( b ) に示したように、 モータ 1 0はその駆動エネルギを、 助走時と乗 り越し時の 2回に分けてクランクシャフト 1 3に与えることになる。 従って、 1回のエネルギ付与により圧縮行程負荷の乗り越しを行う従 前のモータに比して、 モータエネルギを効率良 X活用することが可能 となる。  Therefore, as shown in FIG. 4B, the crankshaft 13 is rotated by the combined energy (solid line) which is the sum of the inertial energy (dashed line) and the motor energy (solid line) during the compression stroke. In addition, as shown in FIG. 4 (b), the motor 10 gives its driving energy to the crankshaft 13 in two stages, that is, when approaching and when passing over. Therefore, it is possible to use the motor energy more efficiently than in the case of a conventional motor in which the compression stroke load is passed over by one energy application.
このようにして初回の圧縮行程を乗り越えた後は、 慣性エネルギが 蓄積されているので、 それ以後の圧縮行程における負荷は容易に乗り 越えることができる。 そして、 所定のタイミングにてイダニッシヨン コイル 3 5によってスパークを飛ばすことにより、 エンジンが始動す ることになる。 After overcoming the first compression stroke in this way, since the inertial energy is accumulated, the load in the subsequent compression stroke can be easily overcome. And, at a predetermined timing, Flying the spark with coil 35 will start the engine.
このように、 本発明においては、 モー夕 1 0がエンジン始動に先立 ちピストンを一旦、 爆発行程側に戻してそこからエンジンを起動させ る。 従って、 初回の圧縮行程乗り越しまでに、 クランクシャフト 1 3 の持つ慣性エネルギを高めておくことができる。 すなわち、 クランク シャフト 1 3の助走区間を設定し、 その間蓄積されるエネルギを利用 することで、 従前に比して小さなモータトルクにより初回の圧縮行程 の乗り越しが可能となる。 このため、 モータの小型化や低コスト化を 図ることができ、 また、 モ一夕の消費電力を低減することも可能とな る。  As described above, in the present invention, the motor 10 returns the piston to the explosion stroke side once before starting the engine, and starts the engine from there. Therefore, the inertia energy of the crankshaft 13 can be increased before the first stroke of the compression stroke. In other words, by setting the run-up section of the crankshaft 13 and using the energy stored during that time, it is possible to get over the first compression stroke with a smaller motor torque than before. Therefore, the size and cost of the motor can be reduced, and the power consumption of the motor can be reduced.
さらに、 ピストンを爆発行程側に戻すに際し、 ピストンの絶対位置 (クランクシャフ卜の絶対角度) を点火基準信号と転流位置パルス信 号を用いて把握し、 それに基づいてモ一夕 1 0の逆転停止や正転の夕 イミングを制御する。 従って、 カム角度センサやクランク角センサ等 の他のセンサを用いることなく、 既存のセンサ類にて逆転→正転の制 御を正確に行うことができる。 また、 絶対角度に基づきクランクシャ フ卜の逆転→正転のタイミングを正確に制御することができ、 より効 率の良い慣性始動制御を行うことが可能となる。  Furthermore, when returning the piston to the side of the explosion stroke, the absolute position of the piston (absolute angle of the crankshaft) is grasped using the ignition reference signal and the commutation position pulse signal, and based on that, the reverse rotation of the motor is performed. Controls stop and normal rotation evening. Therefore, the reverse rotation → forward rotation can be accurately controlled by the existing sensors without using other sensors such as a cam angle sensor and a crank angle sensor. Also, the timing of the reverse rotation of the crankshaft to the normal rotation of the crankshaft can be accurately controlled based on the absolute angle, and more efficient inertial start control can be performed.
なお、 このような始動動作により圧縮行程を乗り越し点火を始めた 力 その後エンストした場合には、 取得した絶対角度に基づき、 次の 始動時におけるモータ 1 0の逆転 ·正転動作の制御を行う。 これによ り、 モー夕 1 0の無駄な動きを避けて効率の良い始動が可能となる。 また、 信号待ち時等にアイドリングを停止させ、 発車時にエンジン を起動させるいわゆる S T O P & G O動作時におけるエンジン停止か らの再始動においては、 少なくともエンジンが所定回転数以下となつ た時点から絶対角度を認識させ、 エンジン再始動時には停止時の絶対 角度に基づき逆転 ·正転動作を実行し、 効率の良い始動を行うよう In addition, when the engine starts over the compression stroke due to such a starting operation and the ignition is started, and then the engine stalls, the reverse / forward operation of the motor 10 at the next start is controlled based on the acquired absolute angle. As a result, efficient starting can be performed while avoiding useless movement of the motor 10. In addition, when restarting from an engine stop during so-called STOP & GO operation, in which idling is stopped at the time of waiting for a traffic light and the engine is started at the time of departure, the absolute angle must be set at least from the point when the engine speed drops below the specified speed. When restarting the engine, Performs reverse rotation and forward rotation based on the angle to ensure efficient starting.
その上、 スター夕の転流パルスや直接的なクランク回転信号を含ん だ回転パルスと点火基準信号とによって、 絶対角度を取得し、 スター タモ—夕を制御することも可能である。 In addition, it is also possible to control the starter and receiver by obtaining the absolute angle from the ignition reference signal and the rotation pulse including the commutation pulse of the star and the direct crank rotation signal and the ignition reference signal.
(実施の形態 2 ) (Embodiment 2)
次に、 実施の形態 2として、 実施の形態 1における始動時の逆転動 作に先立って予備的な正転動作を行い、 点火基準信号を確実に取得す るようにした制御形態について説明する。  Next, as a second embodiment, a description will be given of a control mode in which a preliminary forward rotation operation is performed prior to the reverse rotation operation at the time of starting in the first embodiment so as to reliably obtain an ignition reference signal.
ここで、 実施の形態 1の制御形態では、 前述のようにピス卜ンが図 5の P bの位置に停止した場合、 点火基準信号が得られず図 7のよう な疑似加速度変化判定によって逆転→正転の切り換えタイミングを設 定している。 しかしながら、 たとえ P bの位置に停止した場合であつ ても、 点火基準信号の出力位置を 1度でも通過させれば点火基準信号 を得てクランクシャフトの絶対角度による制御が可能となる。 そこで 、 当該実施の形態では、 実施の形態 1における逆転動作の前に、 圧縮 行程を乗り越えない程度の駆動力にて予備正転を行ってビストンを一 旦吸入行程あるいは圧縮行程方向へ正転させてから逆転動作を行わせ 、 ピストンが何れの位置に停止しても必ず点火基準信号を出力させる ようにしている。  Here, in the control mode of the first embodiment, when the piston stops at the position Pb in FIG. 5 as described above, the ignition reference signal is not obtained and the rotation is reversed by the pseudo acceleration change determination as shown in FIG. → The forward switching timing has been set. However, even if it stops at the position of Pb, if it passes through the output position of the ignition reference signal even once, the ignition reference signal is obtained and the control by the absolute angle of the crankshaft becomes possible. Therefore, in the present embodiment, before the reverse rotation operation in the first embodiment, preliminary forward rotation is performed with a driving force that does not exceed the compression stroke, and the piston is once rotated normally in the suction stroke or compression stroke direction. The reverse rotation operation is performed after that, and the ignition reference signal is always output regardless of the position of the piston.
図 9は、 実施の形態 2における始動原理を示す図であり、 (a ) は各 行程における始動負荷、 (b ) は始動エネルギ、 (c ) は始動動作時に おけるピストン位置、 (d ) は転流位置検出セン からのパルス信号、 ( e ) は点火基準信号を示している。 また、 図 1 0は、 その制御手順 を示したフローチヤ一トである。  FIGS. 9A and 9B are diagrams showing the starting principle according to the second embodiment. FIG. 9A shows the starting load in each stroke, FIG. 9B shows the starting energy, FIG. 9C shows the piston position during the starting operation, and FIG. The pulse signal from the flow position detection sensor, and (e) shows the ignition reference signal. FIG. 10 is a flowchart showing the control procedure.
図 1 0に示したように、 当該実施の形態では、 C P U 3 2はまずス テツプ S 2 0にてィグニッシヨンスィツチ 3 9が O Nされることによ りルーチンに入り、 ステップ S 2 1に進みスター夕スィツチ 3 4が〇 Nされたか否かを判断する。 そして、 スター夕スィッチ 3 4が O Nさ れるとステップ S 2 2に進み、 エンジンを一旦正転させる予備正転処 理が実行される。 図 1 1は、 この予備正転処理サブルーチンの手順を 示すフローチャートである。 As shown in FIG. 10, in the present embodiment, the CPU 32 first turns on the ignition switch 39 in step S20. The routine proceeds to step S21, where it is determined whether or not the star switch 34 has been turned ON. When the star switch 34 is turned on, the process proceeds to step S22, and a preliminary forward rotation process for temporarily rotating the engine forward is executed. FIG. 11 is a flowchart showing the procedure of the preliminary forward rotation processing subroutine.
この正転処理では、 図 5において停止位置 P aあるいは P bから圧 縮行程側に向かってエンジンを予備的に正転させ、 前述の疑似加速度 変化判定により、 逆転切り換えのタイミングを決定している。 すなわ ち、 まずステップ S 4 1にて、 モータ 1 0を予備的に正転させる。 こ の場合の正転動作は、 ピストンが排気行程下死点近傍から圧縮行程下 死点近傍まで移動できるだけの駆動力があれば十分であり、 モータ 1 0は、 正規の正転始動時よりも低出力にて回転する。  In this normal rotation process, the engine is preliminarily rotated forward from the stop position Pa or Pb in FIG. 5 toward the compression stroke, and the timing of reverse rotation switching is determined by the pseudo acceleration change determination described above. . That is, first, in step S41, the motor 10 is preliminarily rotated forward. In this case, the forward rotation operation is sufficient if the piston has enough driving force to move from the vicinity of the bottom dead center of the exhaust stroke to the vicinity of the bottom dead center of the compression stroke. Rotates at low power.
次に、 ステップ S 4 2に進み、 ピストンが正転圧縮状態になってい ないかどうかが判断される。 すなわち、 クランクシャフト予備正転に よりピストンが圧縮行程に入り圧縮負荷を受ける状態となっているか 否かが判断される。 なお、 ステップ S 4 2における正転圧縮状態の判 定は、 前述の疑似加速度変化判定により行われる。  Next, proceeding to step S42, it is determined whether or not the piston is in a forward rotation compression state. That is, it is determined whether or not the piston enters a compression stroke and receives a compression load by the crankshaft preliminary forward rotation. The determination of the normal rotation compression state in step S42 is performed by the above-described pseudo acceleration change determination.
ステップ S 4 2にて正転圧縮状態が検出された場合には、 ステップ S 4 3に進んで正転通電を停止する。 これに対して正転圧縮が検出さ れない場合には、 ステップ S 4 4に進み、 予め設定された最大予備正 転時間が経過したか否かが判定される。 そして、 最大予備正転時間が 経過した場合にはステップ S 4 3に進んで正転通電を停止させる一方 、 経過前の場合はステップ S 4 2に戻り前述の丰順が繰り返される。 このようにしてステップ S 4 3にて逆転通電が停止されると、 図 1 1のル一チンを抜け、 図 1 0のステップ S 2 3に進み逆転動作が実行 される。 これによりクランクシャフト 1 3は逆転され、 ステップ S 2 4にて点火基準信号が取得される。 この場合、 ステップ S 2 3にて逆 転動作が開始される際、 ビストンは圧縮行程中あるいは吸入行程下死 点近傍に存在しており、 そこから爆発行程側に駆動されると、 排気行 程上死点近傍にある点火基準信号発生位置を必ず通過する。 すなわちWhen the normal rotation compression state is detected in step S42, the process proceeds to step S43 to stop the normal rotation energization. On the other hand, when normal rotation compression is not detected, the process proceeds to step S44, and it is determined whether or not a preset maximum preliminary normal rotation time has elapsed. If the maximum preliminary forward rotation time has elapsed, the process proceeds to step S43 to stop the forward rotation energization, whereas if the maximum preliminary forward rotation time has not elapsed, the process returns to step S42 to repeat the above-described procedure. When the reverse rotation energization is stopped in step S43 in this way, the routine exits from the routine in FIG. 11 and proceeds to step S23 in FIG. 10 to execute the reverse rotation operation. Thus, the crankshaft 13 is reversed, and an ignition reference signal is obtained in step S24. In this case, reverse in step S23 At the start of the rolling operation, the piston is present in the compression stroke or near the bottom dead center of the suction stroke. Be sure to pass the location. Ie
、 たとえ P bのような位置にピストンが停止しても、 一旦圧縮行程側 にピストンを移動するため、 必ず点火基準信号発生位置を通過するこ とになる。 従って、 ステップ S 2 4にて確実に点火基準信号が取得で き、 以後、 この点火基準信号と転流位置パルス信号によりクランク角 が確実に把握できる。 However, even if the piston stops at a position such as Pb, the piston moves to the compression stroke side once, so that it always passes through the ignition reference signal generation position. Therefore, the ignition reference signal can be reliably obtained in step S24, and thereafter, the crank angle can be reliably grasped from the ignition reference signal and the commutation position pulse signal.
そこで、 点火基準信号を取得した後ステップ S 2 5に進み、 ビスト ンの絶対位置、 すなわちクランクシャフトの絶対角度の認識、 補正が 行われる。 そして、 その後この絶対角度に基づき、 ステップ S 2 6〜 S 3 3にて逆転—正転の制御が行われる。 なお、 ステップ S 2 6〜S 3 3の制御は、 実施の形態 1におけるステップ S 6〜S 1 3と同様で あるためその詳細は省略する。  Therefore, after obtaining the ignition reference signal, the process proceeds to step S25, and the absolute position of the piston, that is, the absolute angle of the crankshaft is recognized and corrected. Then, based on this absolute angle, control of reverse rotation-forward rotation is performed in steps S26 to S33. Note that the control in steps S26 to S33 is the same as that in steps S6 to S13 in the first embodiment, and a detailed description thereof will be omitted.
このように、 当該実施の形態では、 逆転動作の前に一旦予備的な正 転動作を行うようにしているため、 逆転動作中に点火基準信号発生位 置を必ず通過することになり、 確実に点火基準信号を取得して、 クラ ンクシャフトの絶対角度を正確に認識した制御を行うことが可能とな る。  As described above, in the present embodiment, since the preliminary forward operation is performed once before the reverse operation, the ignition reference signal generation position is always passed during the reverse operation, so that it is ensured. By acquiring the ignition reference signal, it is possible to perform control that accurately recognizes the absolute angle of the crankshaft.
なお、 P bのように点火基準信号発生位置よりも爆発行程寄りに停 止した場合には、 点火基準信号が 2回得られるが、 その何れを使用し て絶対角度制御を行っても良い。 またこの際、 基準信号が得られた場 合、 その時点で直ちに予備的正転の通電を停止 I、 逆転に移行しても 良い。  When the vehicle stops closer to the explosion stroke than the ignition reference signal generation position as in Pb, the ignition reference signal is obtained twice, and any one of them can be used to perform absolute angle control. At this time, when the reference signal is obtained, the preliminary forward rotation may be stopped immediately at that point, and the operation may be shifted to the reverse rotation.
(実施の形態 3 )  (Embodiment 3)
さらに、 実施の形態 3として、 2ストロークエンジンに本発明を適 用する場合について説明する。 当該モータ 1 0においては、 点火基準 信号は、 クランクシャフト 1 3が 1回転する毎に 1回出力される構成 となっているため、 1回転 1発火の 2ストロークエンジンの場合には 、 慣性始動の助走区間に基準信号がなく前述のような制御を行うこと ができない。 Furthermore, a case where the present invention is applied to a two-stroke engine will be described as a third embodiment. In the motor 10, the ignition reference Since the signal is output once each time the crankshaft 13 makes one revolution, in the case of a two-stroke engine with one revolution and one ignition, there is no reference signal in the approach section of inertial start and there is no reference signal as described above. Such control cannot be performed.
そこで、 2ストロークエンジンにおいては、 前記点火基準信号に加 えて、 慣性始動助走期間に信号を発生するように第 2のリラクタを追 加し、 クランク角認識のための基準信号 (第 2の基準信号) を得るこ とで本発明による制御形態が実現できる。 この場合、 追加のリラクタ は、 吸気混合気がシリンダ内にない掃気行程から下死点の間に基準信 号が出力される位置に設置すれば、 この信号で点火が行われてもェン ジンの燃焼動作には影響がない。  Therefore, in a two-stroke engine, in addition to the ignition reference signal, a second reluctor is added so as to generate a signal during an inertial start running period, and a reference signal for crank angle recognition (second reference signal) ) Can realize the control mode according to the present invention. In this case, if the additional reactor is installed at the position where the reference signal is output during the bottom dead center from the scavenging stroke where the intake air-fuel mixture is not in the cylinder, the engine will be used even if ignition is performed by this signal. There is no effect on the combustion behavior of the fuel.
なお、 前記以外の位置にリラクタを追加設置しても良いが、 その際 には、 出力される基準信号では点火を禁止する処理を行う必要がある 。 また、 点火制御をより精密に行うためリラクタを複数配置したもの では、 これらのリラクタによる信号に基づいて制御行っても良い。 一方、 リラクタの追加に代えて、 パルサコイルを追加しても良い。 すなわち、 図 1のパルサコイル 4 1に加えて、 その非圧縮行程 (約 BTD C 9 0 ° 〜2 7 0。 ) の位置に第 2のパルサコイルを設置し、 クランク シャフト 1回転につき 2個の基準信号を出力させても良い。  In addition, a reluctor may be additionally installed at a position other than the above, but in that case, it is necessary to perform a process of prohibiting ignition with the output reference signal. In the case where a plurality of reluctors are arranged in order to perform ignition control more precisely, the control may be performed based on signals from these reluctors. On the other hand, a pulsar coil may be added instead of the reluctor. That is, in addition to the pulsar coil 41 in Fig. 1, a second pulsar coil is installed at the position of its non-compression stroke (about BTD C 90 ° to 270.), and two reference signals per crankshaft revolution. May be output.
前記 2個のパルサコイルは同一のものを用いても良いが、 この場合 、 正規のパルサコイル 4 1と同様に、 追加のパルサコイルの信号によ つても点火動作が行われる。 爆発行程下死点付近での点火はエンジン 燃焼動作にとっては有害ではないが、 点火エネリレギ一は無駄となる。 また、 絶対位置の認識結果に基づき下死点側を判断しても良い。 そこ で、 追加のパルサコイルの極性 (電圧変化の順序) を正規のパルサコ ィル 4 1とは逆にして 2つの信号を異なる形態とし、 それを C P U 3 2にて判別するようにしても良い。 これにより、 正規の点火位置以外 における点火を抑止することができ、 燃焼動作にとって有害な点火を 防ぐと共にエネルギーの無駄を省くことが可能となる。 The same two pulsar coils may be used, but in this case, the ignition operation is also performed by the signal of the additional pulsar coil, similarly to the regular pulsar coil 41. Ignition near the bottom dead center of the explosion stroke is not harmful to the engine combustion operation, but the ignition energy is wasted. Further, the bottom dead center side may be determined based on the recognition result of the absolute position. Therefore, the polarity (order of voltage change) of the additional pulsar coil may be reversed from that of the regular pulsar coil 41 so that the two signals have different forms, and the CPU 32 may determine it. As a result, other than the regular ignition position It is possible to suppress ignition at the time of ignition, thereby preventing ignition harmful to the combustion operation and reducing waste of energy.
(実施の形態 4 )  (Embodiment 4)
次に、 実施の形態 4としてクランク角検出装置が適用されるェンジ ン (内燃機関) に使用されたスター夕モータについて説明する。 なお 、 実施の形態 1と同様の部材、 部分については同一の符号を付しその 説明は省略する。  Next, as Embodiment 4, a star motor used in an engine (internal combustion engine) to which the crank angle detection device is applied will be described. The same members and portions as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施の形態 4におけるスター夕モー夕は、 図 1〜図 3とほぼ同様 な構成となっているので、 図 1〜図 3の説明は省略する。  The configuration of the fourth embodiment is almost the same as that of FIGS. 1 to 3, and therefore the description of FIGS. 1 to 3 is omitted.
また、 C P U 3 2には、 次のような機能手段が設けられている。 図 1 3は、 C P U 3 2におけるクランク角検出処理に関する機能手段の 構成を示す説明図である。 当該 C P U 3 2では、 点火基準信号と角度 パルスに基づきクランクシャフ卜の絶対角度を算出しており、 パルサ コイル 4 1からェンジンの点火基準信号を取得する点火基準信号取得 手段 5 1と、 転流位置検出センサ 2 5からモー夕 1 0制御用の転流位 置検出センサ信号 (転流位置信号) を取得して後述する角度パルスを 形成する角度パルス形成手段 1 5 2と、 点火基準信号と角度パルスに 基づいてクランクシャフト 1 3の絶対角度を算出するクランク角度算 出手段 1 5 3と、 クランク角度算出手段 1 5 3にて算出されたクラン クシャフト 1 3の絶対角度に基づいてモータ 1 0を制御するモータ制 御指示手段 1 5 4とを備えた構成となっている。  The CPU 32 is provided with the following functional means. FIG. 13 is an explanatory diagram showing the configuration of functional means relating to crank angle detection processing in CPU 32. The CPU 32 calculates the absolute angle of the crankshaft based on the ignition reference signal and the angle pulse, and obtains ignition reference signal acquisition means 51 for acquiring the engine ignition reference signal from the pulsar coil 41, and commutation. Angle pulse forming means 152 for obtaining a commutation position detection sensor signal (commutation position signal) for motor 10 control from the position detection sensor 25 and forming an angle pulse described later; Crank angle calculating means 15 3 for calculating the absolute angle of the crankshaft 13 based on the angle pulse, and the motor 10 based on the absolute angle of the crankshaft 13 calculated by the crank angle calculating means 15 3 And motor control instruction means 154 for controlling the motor.
一方、 当該モー夕 1 0では、 その回転制御のため、 図 1 4に示した ように転流位置検出センサ信号が取得されている。 図 1 4は、 この転 流位置検出センサ信号および転流位置検出センサ信号から形成される 角度パルスと点火基準信号との関係を示した説明図である。  On the other hand, in the motor 10, a commutation position detection sensor signal is acquired as shown in FIG. 14 for the rotation control. FIG. 14 is an explanatory diagram showing the relationship between the commutation position detection sensor signal and the angle pulse formed from the commutation position detection sensor signal and the ignition reference signal.
図 1 4に示したように、 モー夕 1 0では、 等分に 3個設置された転 流位置検出センサ 2 5から三相の転流位置検出センサ信号 U, V, W が出力されている。 そして、 各信号の変化時を捉えることにより、 所 定周期の角度パルスが形成される。 図 1 4では、 三相の転流位置検出 センサ信号 U, V, Wの立ち上がりエッジに基づき、 2 0 ° 間隔の角 度パルスが形成される様子が示されている。 As shown in Fig. 14, in motor 10, three commutation position detection sensor signals U, V, and W are output from three commutation position detection sensors 25 installed at equal intervals. Is output. Then, by capturing the time when each signal changes, an angle pulse having a predetermined period is formed. Figure 14 shows how angular pulses at 20 ° intervals are formed based on the rising edges of the three-phase commutation position detection sensor signals U, V, and W.
ここで、 点火基準信号は、 リラクタ 4 0がパルサコイル 4 1前を通 過することによって出力されるため、 それが得られるクランク角は常 に一定である (上死点前)。 すなわち、 点火基準信号が出力されるクラ ンク角 ø。 は常に一定である。 また、 角度パルスも一定クランク角度間 隔 (図 1 4においては 2 0 ° ) にて形成される。 従って、 点火基準信 号がクランク角 θ。 にて得られた後、 角度パルスがいくつ入力されたか をカウントすれば、 クランク角 θ。 からの回転角度が分かることになり 、 現在のクランク角を把握することが可能となる。  Here, since the ignition reference signal is output when the reluctor 40 passes in front of the pulsar coil 41, the obtained crank angle is always constant (before top dead center). That is, the crank angle ø at which the ignition reference signal is output. Is always constant. The angle pulse is also formed at a constant crank angle interval (20 ° in FIG. 14). Therefore, the ignition reference signal is the crank angle θ. After obtaining in, count how many angle pulses are input, and the crank angle θ. The rotation angle can be known from the current crank angle.
従って、 リラクタ 4 0を増設することなく、 1個のリラクタにてク ランク角を把握することが可能となり、 複数個のリラクタを設けた場 合と同様の制御を 1個のリラクタで実行でき、 リラクタ増設に要する 工数を削減しコストダウンを図ることが可能となる。 また、 カム角度 センサやクランク角センサ等の他のセンサを用いることなく、 既存の センサ類にてクランク角を正確に把握することができ、 コストアップ を抑えることも可能となる。  Therefore, the crank angle can be grasped by one reactor without increasing the number of the reluctors 40, and the same control as when a plurality of reluctors are provided can be executed by one reluctor. It is possible to reduce the number of man-hours required for the expansion of the reactor and reduce costs. Also, without using other sensors such as a cam angle sensor and a crank angle sensor, the crank angle can be accurately grasped by existing sensors and the cost can be suppressed.
そして、 このようにして検出されたクランク角の絶対角度に基づき 、 C P U 3 2は、 エンジンの点火時期制御のみならず、 エンジン始動 制御、 燃料噴射タイミング制御、 燃料噴射量制御等の各種エンジン制 御を R O M 3 7に格納された各種制御プログラムに基づいて実行する ところで、 クランク角検出精度は、 図 1 4からも分かるように、 角 度パルスの周期を変えることにより適宜変更することが可能である。 図 1 5 , 1 6は、 角度パルスの間隔を、 それぞれ 6 0 ° 、 約 1 0 ° とし た場合における角度パルスと点火基準信号との関係を示した説明図で ある。 Then, based on the absolute angle of the crank angle detected in this way, the CPU 32 controls not only the ignition timing of the engine but also various engine controls such as engine start control, fuel injection timing control, and fuel injection amount control. Is executed based on various control programs stored in the ROM 37.As can be seen from FIG. 14, the crank angle detection accuracy can be changed as appropriate by changing the cycle of the angle pulse. . Figures 15 and 16 show that the interval between angle pulses is 60 ° and about 10 °, respectively. FIG. 4 is an explanatory diagram showing a relationship between an angle pulse and an ignition reference signal in a case where the ignition pulse is applied.
図 1 5では、 転流位置検出センサ信号のうち、 1相分 (U相) のみ を用い、 その立ち上がりから角度パルスを形成したものであり、 その 間隔が図 1 4のもの比して長くなつている。 このため、 図 1 5の場合 、 クランク角検出精度自体は図 1 4の場合よりも低下することになる 力 C P U 3 2にかかる負担はその分軽減されており、 さほど厳密な 制御が必要とされない汎用ェンジンの制御などに有効である。  In Fig. 15, only one phase (U phase) of the commutation position detection sensor signal is used, and an angle pulse is formed from its rise, and the interval is longer than that in Fig. 14. ing. For this reason, in the case of FIG. 15, the crank angle detection accuracy itself is lower than in the case of FIG. 14. The load on the CPU 32 is reduced correspondingly, and less strict control is required. This is effective for controlling general-purpose engines.
これに対し図 1 6の場合には、 転流位置検出センサ 2 5からの 3相 信号の立ち上がりと立ち下がりの両方を用いて角度パルスを形成した ものであり、 その間隔が図 1 4のもの比して短くなつている。 従って 、 図 1 4の場合よりも、 クランク角の検出精度を上げることが可能と なり、 より高性能で厳密な制御が必要なェンジンに好適である。  On the other hand, in the case of Fig. 16, an angle pulse is formed using both the rising and falling edges of the three-phase signal from the commutation position detection sensor 25, and the interval between them is that of Fig. 14. It is shorter than it is. Therefore, the detection accuracy of the crank angle can be increased as compared with the case of FIG. 14, and it is suitable for an engine that requires higher performance and strict control.
なお、 図 1 6は、 転流位置検出センサ 2 5として片極性検出型のホ ール I Cを使用した場合を示しており、 この場合、 片極性検出型ホー ル I Cでは H iのデューティ比が 5 0 %よりも大きくなる。 このため 、 立ち上がりエツジと立ち下がりエツジの両方を用いて角度パルスを 形成すると、 パルス間隔の狭いものと広いものが交互に発生すること になる。 このような場合、 角度パルスの周期計測を偶数周期 (例えば 2周期) での移動平均とすることで、 等間隔の周期によるクランク角 検出を行うことが可能となる。 但し、 転流位置検出センサ 2 5として 両極性検出型のホール I Cを使用すれば、 前述のようなデューティー のずれを小さくすることが可能である。  FIG. 16 shows a case where a unipolar detection type Hall IC is used as the commutation position detection sensor 25. In this case, in the unipolar detection type Hall IC, the Hi duty ratio is It is larger than 50%. For this reason, if an angle pulse is formed using both a rising edge and a falling edge, narrow and wide pulse intervals are generated alternately. In such a case, it is possible to detect the crank angle at an evenly-period period by using the moving average of the even period (for example, two periods) as the period measurement of the angle pulse. However, if a bipolar detection type Hall IC is used as the commutation position detection sensor 25, it is possible to reduce the deviation of the duty as described above.
さらに、 転流位置検出センサ信号を、 C P U 3 2の角度パルス形成 手段 5 2において適宜処理し、 角度パルスの最適化を行うことも可能 である。 図 1 7 ( a ) は、 制御精度向上のため、 転流位置検出センサ 信号の変化点にて物理的に得られる角度パルスを分周処理して、 物理 信号のない場所に角度パルスを形成した例である。 Furthermore, the commutation position detection sensor signal can be appropriately processed by the angle pulse forming means 52 of the CPU 32 to optimize the angle pulse. Fig. 17 (a) shows that the angle pulse physically obtained at the changing point of the commutation position detection sensor signal is frequency-divided to improve the control accuracy. This is an example in which an angle pulse is formed in a place where there is no signal.
図 1 7 ( a ) においては、 立ち上がりエッジと立ち下がりエッジの 両方を用いて 1 0 ° 間隔で形成した角度パルスを分周処理し、 5 ° 間 隔の角度パルスを形成している。 これにより、 当初の 1 0 ° 間隔の角 度パルスには存在しない位置に角度パルスを形成することができ、 転 流位置検出センサ 2 5の個数を変えることなく、 回路またはソフトゥ ェァ上の対応にて検出精度をさらに上げることが可能となる。  In FIG. 17 (a), an angle pulse formed at 10 ° intervals is divided by using both the rising edge and the falling edge to form an angle pulse at 5 ° intervals. This makes it possible to form an angular pulse at a position that does not exist in the initial angular pulse at 10 ° intervals, without changing the number of commutation position detection sensors 25, without changing the circuit or software. It is possible to further increase the detection accuracy.
一方、 このような分周処理を 1パルスおきに分周を行い、 図 1 7 ( b ) のように角度パルスを 1 5 ° 間隔にて形成することも可能であり 、 この場合も当初の 1 0 ° 間隔の角度パルスには存在しない位置に角 度パルスを形成することができる。  On the other hand, it is also possible to perform such frequency division processing every other pulse and form angle pulses at 15 ° intervals as shown in FIG. 17 (b). Angle pulses can be formed at positions that do not exist in the angle pulses at 0 ° intervals.
加えて、 エンジン高回転域にて角度パルスの間隔 (周期) が短くな り、 C P U 3 2の演算処理能力を超えてしまう場合などには、 図 1 7 ( c ) のように、 物理的に形成される角度パルスを回路またはソフト ウェアにより適切なパルス間隔に調整することも可能である。 なお、 所定回転以上となった場合には、 転流位置検出センサ信号のうち 1相 のみを用いた制御に切り換えるなどの対応も可能である。  In addition, when the interval (cycle) of the angle pulse becomes short in the high engine speed range and exceeds the processing capacity of the CPU 32, as shown in Fig. 17 (c), the physical The angle pulse formed can be adjusted to an appropriate pulse interval by a circuit or software. If the rotation speed exceeds a predetermined value, it is possible to switch to control using only one phase of the commutation position detection sensor signal.
本発明は前記実施の形態に限定されるものではなく、 その要旨を逸 脱しない範囲で種々変更可能であることはいうまでもない。  The present invention is not limited to the above embodiment, and it goes without saying that various changes can be made without departing from the spirit of the invention.
たとえば、 前述の実施の形態 1〜3では、 二輪車用のエンジンを例 にとつて説明したが、 四輪自動車用のエンジンにも本発明を適用する ことが可能である。 さらに、 単気筒のみならず複数気筒を有するェン ジンにも適用可能である。 加えて、 前述の実施 形態では、 エンジン のクランク軸に直結されるモータを例にとって説明したが、 直結モー 夕のみならず、 ギアを介してクランクシャフトを駆動するタイプのス 夕—夕モータにも適用可能である。 また、 モー夕の種類も前述のよう なァウタロータタイプには限られず、 ィンナロータタイプのモー夕に も適用可能である。 For example, in the above-described first to third embodiments, an example has been described in which an engine for a motorcycle is used, but the present invention is also applicable to an engine for a four-wheeled vehicle. Further, the present invention can be applied not only to a single cylinder but also to an engine having a plurality of cylinders. In addition, in the embodiment described above, the motor directly connected to the crankshaft of the engine has been described as an example. However, not only the motor directly connected, but also a motor of the type that drives the crankshaft via gears. Applicable. Also, the type of motor is not limited to the auta rotor type as described above. Is also applicable.
さらに、 モータの界磁極として、 磁性体からなる制御磁極を配した 界磁制御モータや、 永久磁石と前記制御磁極とを交互に配設したいわ ゆるハイブリッド型のモー夕などにも適用可能である。  Further, the present invention can be applied to a field control motor having a control magnetic pole made of a magnetic material as a field pole of the motor, or a so-called hybrid motor in which permanent magnets and the control magnetic poles are alternately arranged.
加えて、 前述の実施の形態では、 モー夕の 「逆転—正転」 あるいは 「正転—逆転"→正転」 を、 スタータスイッチ 3 4の〇N後に実行して いるが、 これらをエンジン停止時ゃィグニッションスィツチ O N時、 スタータスィツチ〇N時のいかなるタイミングにて実施するかは適宜 選択可能である。 図 1 2は、 その制御パターンを示した表であり、 X 印は動作を行わない旨の表示である。  In addition, in the above-described embodiment, the “reverse rotation—forward rotation” or “forward rotation—reverse rotation” → forward rotation of the motor is executed after 〇N of the starter switch 34, but these are stopped. When the ignition switch is ON and when the status switch is N, the timing at which the switch is executed can be selected as appropriate. FIG. 12 is a table showing the control patterns, and the X mark indicates that no operation is performed.
また、 たとえば、 前述の実施の形態 4では、 モー夕の回転子にリラ クタを形成したものを説明したが、 リラクタの形成位置はこれには限 られず、 別途クランクシャフ卜に設けたロー夕やフライホイール等に 設けても良い。 また、 前述の実施の形態では、 二輪車用のエンジンを 例にとって説明したが、 四輪自動車用のエンジンにも本発明を適用す ることが可能である。 さらに、 単気筒のみならず複数気筒を有するェ ンジンにも適用可能である。 加えて、 本発明を 4サイクルエンジンに 適用した場合を説明したが、 本発明は 4サイクルェンジンのみならず 、 2サイクルエンジンにも適用可能である。  Further, for example, in Embodiment 4 described above, a case where a reluctor is formed on the motor rotor is described. However, the position where the reluctor is formed is not limited to this, and the rotor is separately provided on the crankshaft. Or a flywheel or the like. Further, in the above-described embodiment, the description has been made by taking a motorcycle engine as an example. However, the present invention can be applied to a four-wheel vehicle engine. Further, the present invention is applicable not only to a single cylinder but also to an engine having a plurality of cylinders. In addition, the case where the present invention is applied to a four-stroke engine has been described. However, the present invention is applicable not only to a four-stroke engine but also to a two-stroke engine.
本発明の内燃機関の始動制御装置にあっては、 点火基準信号と転流 位置パルス信号に基づいてクランクシャフトの絶対角度を取得し、 こ の絶対角度に基づいてス夕一夕モータを制御するようにしているため 、 点火基準信号や転流位置パルス信号という既存の信号を用いてス夕 一夕モー夕を制御することができる。 従って、 クランク角センサ等を 別途付設することなく、 クランクシャフトの絶対角度に基づいた正確 な始動制御が可能となり、 効率の良いエンジン始動が実現できる。 また、 絶対角度に基づいてクランクシャフ卜を一旦逆転させた後、 正転させて内燃機関を始動させることにより、 クランクシャフトの逆 転—正転の夕イミングを正確に制御することが可能となる。 従って、 無駄のないェンジン始動制御が可能となり、 より効率良く慣性始動制 御を行うことができる。 In the start control device for an internal combustion engine of the present invention, the absolute angle of the crankshaft is obtained based on the ignition reference signal and the commutation position pulse signal, and the motor is controlled based on the absolute angle. Because of this, the existing reference signals such as the ignition reference signal and the commutation position pulse signal can be used to control the night and night. Therefore, accurate starting control based on the absolute angle of the crankshaft is possible without separately providing a crank angle sensor and the like, and efficient engine starting can be realized. Also, after once reversing the crankshaft based on the absolute angle, By starting the internal combustion engine by rotating the engine forward, it is possible to accurately control the reverse-forward rotation of the crankshaft. Accordingly, lean engine start control can be performed without waste, and inertia start control can be performed more efficiently.
さらに、 逆転に先立ちクランクシャフトを予備正転させるようにし ても良く、 これにより、 クランクシャフトの逆転時に必ず点火基準信 号発生位置を通過させることができ、 確実に点火基準信号を取得する ことが可能となる。  Furthermore, the crankshaft may be preliminarily rotated forward before the reverse rotation, whereby the ignition reference signal generation position can always be passed during the reverse rotation of the crankshaft, and the ignition reference signal can be reliably obtained. It becomes possible.
加えて、 バッテリ電圧とエンジン温度の少なくとも何れか一方に基 づきクランクシャフトの逆転量を調整するようにしても良く、 これに より、 バッテリやエンジン状態に基づいて適切な始動制御を行うこと ができ、 始動時間の短縮化を図ることが可能となる。  In addition, the reverse rotation amount of the crankshaft may be adjusted based on at least one of the battery voltage and the engine temperature, so that appropriate starting control can be performed based on the battery and the engine state. However, the starting time can be reduced.
一方、 本発明の内燃機関の始動制御装置にあっては、 点火基準信号 取得手段および転流位置パルス信号取得手段と、 点火基準信号と転流 位置パルス信号に基づいてクランクシャフトの絶対角度を算出する絶 対角度算出手段と、 絶対角度に基づいてスター夕モー夕を制御するモ 一夕制御指示手段とを備えたことにより、 点火基準信号や転流位置パ ルス信号という既存の信号を用いてクランクシャフトの絶対角度を取 得し、 これに基づきス夕一夕モー夕を制御することができる。 従って 、 クランク角センサ等を別途付設することなく、 クランクシャフトの 絶対角度に基づいた正確な始動制御が可能となり、 効率の良いェンジ ン始動が実現できる。  On the other hand, in the internal combustion engine start control device of the present invention, the ignition reference signal obtaining means and the commutation position pulse signal obtaining means, and the absolute angle of the crankshaft are calculated based on the ignition reference signal and the commutation position pulse signal. Angle calculating means for controlling the start and stop of the motor based on the absolute angle. The absolute angle of the crankshaft is obtained, and based on this, the night and night modes can be controlled. Therefore, accurate start control based on the absolute angle of the crankshaft is possible without separately providing a crank angle sensor and the like, and efficient engine start can be realized.
また、 始動制御装置に、 バッテリ電圧検知手 とエンジン温度検知 手段をさらに設け、 モータ制御指示手段は、 バッテリ電圧とエンジン 温度の少なくとも何れか一方と絶対角度とに基づいてスター夕モー夕 を制御するようにしても良く、 これにより、 バッテリやエンジン状態 に基づいて適切な始動制御を行うことができ、 始動時間の短縮化を図 ることが可能となる。 The start control device further includes a battery voltage detecting means and an engine temperature detecting means, and the motor control instructing means controls the star and the sun based on at least one of the battery voltage and the engine temperature and the absolute angle. This makes it possible to perform appropriate start control based on the state of the battery and the engine, thereby shortening the start time. It becomes possible.
さらに、 本発明のクランク角検出装置にあっては、 パルサコイルか らの電気信号や転流位置検出センサ信号を用いてクランクシャフトの 絶対角度を検出することができるため、 リラクタの増設やクランク角 センサの付設等を行うことなく、 クランクシャフ卜の絶対角度を把握 することが可能となる。 従って、 加工工数や部品点数を増やすことな く、 クランク角に基づいたエンジン制御を実行することができ、 コス 卜アップを招くことなく、 高性能エンジンの制御に対応することが可 能となる。  Further, in the crank angle detection device of the present invention, since the absolute angle of the crankshaft can be detected by using the electric signal from the pulsar coil and the commutation position detection sensor signal, it is possible to increase the number of reluctors and increase the crank angle sensor. It is possible to determine the absolute angle of the crankshaft without having to install any additional parts. Therefore, it is possible to execute engine control based on the crank angle without increasing the number of processing steps and the number of parts, and it is possible to cope with the control of a high-performance engine without increasing costs.
その上、 基準パルスと、 A C Gスター夕の転流パルスとを用いてク ランクシャフトの絶対角度を検出することにより、 リラクタ (点火基 準用以外) やクランク角センサの増設をすることなく、 精密な点火時 期制御、 E F I制御、 および、 始動制御ができる。 産業上の利用可能性  In addition, by detecting the absolute angle of the crankshaft using the reference pulse and the commutation pulse of the ACG star, precise precision can be achieved without the need for additional reluctors (other than for ignition reference) or additional crank angle sensors. Ignition time control, EFI control, and start control can be performed. Industrial applicability
以上のように、 本発明にかかる自動二輪車あるいは自動車などに適 用される内燃機関を始動させる、 内燃機関の始動装置および内燃機関 の始動制御装置に有用であり、 また、 本発明にかかる自動二輪車ある いは自動車などに適用される内燃機関のクランク角検出装置に有用で ある。  As described above, the present invention is useful for an internal combustion engine starting device and an internal combustion engine start control device for starting an internal combustion engine applied to a motorcycle or an automobile according to the present invention. Or, it is useful for a crank angle detecting device of an internal combustion engine applied to an automobile or the like.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関のクランクシャフ卜に連結されるスター夕モータと、 前記内燃機関における点火基準信号と、 回転パルス信号に基づいて クランクシャフトの絶対角度を取得し、 前記絶対角度に基づいて前記 スター夕モータを制御する制御手段とを有することを特徴とする内燃 1. A star motor connected to a crankshaft of an internal combustion engine; an ignition reference signal in the internal combustion engine; and an absolute angle of a crankshaft obtained based on a rotation pulse signal. And control means for controlling a motor.
2 . 内燃機関のクランクシャフトに連結されるス夕一夕モー夕と、 前記内燃機関における点火基準信号と、 前記スター夕モータの転流 位置パルス信号に基づいてクランクシャフ卜の絶対角度を取得し、 前 記絶対角度に基づいて前記スター夕モータを制御する制御手段とを有 することを特徴とする内燃機関の始動装置。 2. Obtain the absolute angle of the crankshaft based on the motor connected to the crankshaft of the internal combustion engine, the ignition reference signal in the internal combustion engine, and the commutation position pulse signal of the star motor. And a control unit for controlling the star motor based on the absolute angle.
3 . 請求項 1または 2記載の内燃機関の始動装置において、 前記制 御手段は、 前記絶対角度に基づいて前記クランクシャフ卜を所定クラ ンク位置まで一旦逆転通電した後正転通電して前記内燃機関を始動さ せることを特徴とする内燃機関の始動装置。 3. The starting device for an internal combustion engine according to claim 1 or 2, wherein the control means applies a reverse rotation to the crankshaft once to a predetermined crank position based on the absolute angle, and then applies a forward rotation to the internal combustion engine. An internal combustion engine starting device for starting an engine.
4 . 請求項 3記載の内燃機関の始動装置において、 前記正転通電は 、 前記クランクシャフトが所定クランク角位置に到達したことを検出 して行われることを特徴とする内燃機関の始動装置。 4. The starting apparatus for an internal combustion engine according to claim 3, wherein the forward rotation energization is performed by detecting that the crankshaft has reached a predetermined crank angle position.
5 . 請求項 3記載の内燃機関の始動装置において、 前記正転通電は 、 前記クランクシャフトが正転し始めたことを検出して行われること を特徴とする内燃機関の始動装置。 5. The starting device for an internal combustion engine according to claim 3, wherein the forward rotation energization is performed by detecting that the crankshaft starts rotating forward.
6 . 請求項 1〜 5の何れか 1項に記載の内燃機関の始動装置におい て、 前記内燃機関が 2ストロークエンジンであり、 前記点火基準信号 に加えて、 第 2の基準信号を発生させるリラクタまたはパルサコイル を設けたことを特徴とする内燃機関の始動装置。 6. The starting device for an internal combustion engine according to any one of claims 1 to 5, wherein the internal combustion engine is a two-stroke engine, and a reluctor that generates a second reference signal in addition to the ignition reference signal. Alternatively, a starting device for an internal combustion engine, comprising a pulsar coil.
7 . 請求項 1〜 6の何れか 1項に記載の内燃機関の始動装置において 、 前記制御手段は、 S T O P & G O動作時における前記内燃機関停止 後の再始動時においては、 少なくとも前記内燃機関が所定回転数以下 となった時点から前記絶対角度を認識させ、 前記内燃機関再始動時に は停止後の前記絶対角度に基づいて、 前記クランクシャフトを所定ク ランク位置まで一旦逆転通電した後正転通電して前記内燃機関を始動 させることを特徴とする内燃機関の始動装置。 7. The starting device for an internal combustion engine according to any one of claims 1 to 6, wherein the control means includes: at least a restart of the internal combustion engine during a STOP & GO operation; The absolute angle is recognized from the time when the rotation speed becomes equal to or less than a predetermined rotation speed.When the internal combustion engine is restarted, the crankshaft is once reversely energized to a predetermined crank position and then forwardly energized based on the absolute angle after stopping. And starting the internal combustion engine as described above.
8 . 請求項 1〜 7の何れか 1項に記載の内燃機関の始動装置におい て、 前記制御手段は、 前記内燃機関が圧縮行程を乗り越した後に停止 した場合、 次回の始動時においては、 前記内燃機関停止前に取得した 前記絶対角度に基づいて、 前記クランクシャフトを所定クランク位置 まで一旦逆転通電した後正転通電して前記内燃機関を始動させること を特徴とする内燃機関の始動装置。 8. The starting device for an internal combustion engine according to any one of claims 1 to 7, wherein the control unit is configured to stop when the internal combustion engine stops over a compression stroke. A starting device for an internal combustion engine, comprising: applying a reverse rotation to the crankshaft once to a predetermined crank position and then applying a normal rotation to start the internal combustion engine based on the absolute angle acquired before the internal combustion engine is stopped.
9 . 請求項 1〜 8の何れか 1項に記載の内燃機関の始動装置におい て、 前記制御手段は、 前記逆転に先立ち、 前記クランクシャフトを点 火基準信号発生位置より正転方向側の位置まで 備回転させることを 特徴とする内燃機関の始動装置。 9. The starting device for an internal combustion engine according to any one of claims 1 to 8, wherein the control unit is configured to, prior to the reverse rotation, position the crankshaft on a forward rotation side from a ignition reference signal generation position. A starting device for an internal combustion engine, characterized in that it is pre-rotated.
1 0 . 請求項 1〜 9の何れか 1項に記載の内燃機関の始動装置にお いて、 前記制御手段は、 バッテリ電圧とエンジン温度の少なくとも何 れか一方に基づき前記クランクシャフ卜の逆転通電終了位置および正 転開始位置を調整することを特徴とする内燃機関の始動装置。 10. The starting device for an internal combustion engine according to any one of claims 1 to 9, wherein the control means includes at least one of a battery voltage and an engine temperature. A starting device for an internal combustion engine, wherein the reverse rotation energizing end position and the normal rotation start position of the crankshaft are adjusted based on one of them.
1 1 . 内燃機関のクランクシャフトに連結されるスター夕モータの 駆動制御を行う内燃機関の始動制御装置であって、 1 1. A start control device for an internal combustion engine that controls the driving of a star motor connected to a crankshaft of the internal combustion engine,
前記内燃機関における点火基準信号を取得する点火基準信号取得手 段と、  An ignition reference signal obtaining means for obtaining an ignition reference signal in the internal combustion engine;
前記スタ一タモータの転流位置パルス信号を取得する転流位置パル ス信号取得手段と、  A commutation position pulse signal acquiring means for acquiring a commutation position pulse signal of the starter motor;
前記点火基準信号と前記転流位置パルス信号に基づいて、 前記クラ ンクシャフトの絶対角度を算出する絶対角度算出手段と、  Absolute angle calculating means for calculating an absolute angle of the crankshaft based on the ignition reference signal and the commutation position pulse signal;
算出された前記絶対角度に基づいて前記ス夕一夕モー夕を制御する モータ制御指示手段とを備えたことを特徴とする内燃機関の始動制御  Starting control of the internal combustion engine, comprising: a motor control instructing means for controlling the motor speed based on the calculated absolute angle.
1 2 . 請求項 1 1記載の内燃機関の始動制御装置において、 前記モ 一夕制御指示手段は、 前記絶対角度に基づいて前記クランクシャフト を所定クランク位置まで一旦逆転通電し、 前記クランクシャフトが所 定クランク角位置に到達したことを検出した後に正転通電を行うこと を特徴とする内燃機関の始動制御装置。 12. The start control device for an internal combustion engine according to claim 11, wherein the motor control instructing means temporarily reversely energizes the crankshaft to a predetermined crank position based on the absolute angle, and the crankshaft is located at a predetermined position. A start control device for an internal combustion engine, which performs forward rotation energization after detecting that a predetermined crank angle position has been reached.
1 3 . 請求項 1 1または 1 2記載の内燃機関の始動制御装置におい て、 前記モー夕制御指示手段は、 前記絶対角度こ基づいて前記クラン クシャフトを所定クランク位置まで一旦逆転通電し、 前記クランクシ ャフトが正転し始めたことを検出した後に正転通電を行うことを特徴 とする内燃機関の始動制御装置。 13. The start control device for an internal combustion engine according to claim 11 or 12, wherein the motor control instruction means is configured to temporarily reversely energize the crankshaft to a predetermined crank position based on the absolute angle, and A start control device for an internal combustion engine, which performs forward rotation energization after detecting that the shaft has started to rotate forward.
1 4 . 請求項 1 1〜 1 3の何れか 1項に記載の内燃機関の始動制御 装置において、 前記始動制御装置は、 バッテリ電圧を検知するバッテ リ電圧検知手段と、 エンジン温度を検知するエンジン温度検知手段を さらに備え、 前記モータ制御指示手段は、 前記バッテリ電圧とェンジ ン温度の少なくとも何れか一方と、 前記絶対角度とに基づき前記ス夕 一夕モー夕を制御することを特徴とする内燃機関の始動制御装置。 14. The start control device for an internal combustion engine according to any one of claims 11 to 13, wherein the start control device includes a battery voltage detection unit that detects a battery voltage, and an engine that detects an engine temperature. Temperature control means, wherein the motor control instructing means controls the motor mode based on at least one of the battery voltage and the engine temperature and the absolute angle. Engine start control.
1 5 . クランクシャフ卜に連結されたブラシレススター夕モ一夕に よって起動される内燃機関のクランク角検出装置であって、 15. A crank angle detecting device for an internal combustion engine, which is started by a brushless star connected to a crank shaft,
前記クランクシャフトに設けた回転体に形成されたリラクタと、 前記回転体に近接して配置され、 前記リラクタの通過に伴い所定の クランク角において電気信号を発生する基準信号発生手段と、  A reluctor formed on a rotating body provided on the crankshaft; a reference signal generating means arranged in proximity to the rotating body and generating an electric signal at a predetermined crank angle as the reluctor passes;
前記スター夕モータの回転に伴い、 前記スター夕モー夕制御用の転 流位置信号を発生する転流位置信号発生手段と、  A commutation position signal generating means for generating a commutation position signal for controlling the star and evening motor with the rotation of the star and evening motor;
前記転流位置信号に基づき、 所定周期を有する角度パルスを形成す る角度パルス形成手段と、  Angle pulse forming means for forming an angle pulse having a predetermined period based on the commutation position signal;
前記基準信号発生手段からの電気信号と前記角度パルスとに基づい て前記クランクシャフ卜の絶対角度を算出するクランク角度算出手段 とを有することを特徴とする内燃機関のクランク角検出装置。  Crank angle calculating means for calculating an absolute angle of the crankshaft based on the electric signal from the reference signal generating means and the angle pulse.
1 6 . 請求項 1 5記載の内燃機関のクランク角検出装置において、 前記基準信号発生手段は、 前記内燃機関の点火タイミングを決定する ための点火基準信号を出力することを特徴とす ^る内燃機関のクランク 角検出装置。 16. The internal combustion engine crank angle detection device according to claim 15, wherein the reference signal generating means outputs an ignition reference signal for determining an ignition timing of the internal combustion engine. Engine crank angle detector.
1 7 . 請求項 1 5または 1 6記載の内燃機関のクランク角検出装置 において、 前記転流位置信号発生手段は、 複数相からなるパルス信号を出力し 前記角度パルス形成手段は、 前記複数相のパルス信号の変化に基づ き所定周期の角度パルス信号を作成し、 17. The crank angle detection device for an internal combustion engine according to claim 15 or 16, The commutation position signal generating means outputs a pulse signal having a plurality of phases, and the angle pulse forming means generates an angle pulse signal having a predetermined cycle based on a change in the pulse signals of the plurality of phases.
前記クランク角度算出手段は、 前記基準信号発生手段からの電気信 号入力時からの前記角度パルスを計数して前記クランクシャフ卜の絶 対角度を算出することを特徴とする内燃機関のクランク角検出装置。  The crank angle calculating means calculates the absolute angle of the crank shaft by counting the angle pulse from the time of input of the electric signal from the reference signal generating means, and detects the crank angle of the internal combustion engine. apparatus.
PCT/JP2000/008241 1999-11-24 2000-11-22 Starter, start control device, and crank angle detector of internal combustion engine WO2001038728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00977866A EP1233175B1 (en) 1999-11-24 2000-11-22 Starter, start control device, and crank angle detector of internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33316499 1999-11-24
JP11/333164 1999-11-24
JP34276699 1999-12-02
JP11/342766 1999-12-02

Publications (1)

Publication Number Publication Date
WO2001038728A1 true WO2001038728A1 (en) 2001-05-31

Family

ID=26574419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008241 WO2001038728A1 (en) 1999-11-24 2000-11-22 Starter, start control device, and crank angle detector of internal combustion engine

Country Status (4)

Country Link
EP (1) EP1233175B1 (en)
CN (1) CN1279279C (en)
TW (1) TW479106B (en)
WO (1) WO2001038728A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321667A1 (en) * 2000-09-28 2003-06-25 Mitsuba Corporation Engine starter
JP2004028009A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Engine starter
JP2007224835A (en) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd Engine starter and engine starting method
JP2007255272A (en) * 2006-03-22 2007-10-04 Honda Motor Co Ltd Starter of internal combustion engine
CN100383430C (en) * 2002-05-04 2008-04-23 曼B与W狄赛尔公司 Compensating apparatus
CN100392286C (en) * 2002-05-04 2008-06-04 曼B与W狄赛尔公司 Compensating apparatus and method for starting said apparatus
WO2014084393A2 (en) 2012-11-30 2014-06-05 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and vehicle
JP2014168345A (en) * 2013-02-28 2014-09-11 Honda Motor Co Ltd Position detection structure of crankshaft
TWI563167B (en) * 2014-05-09 2016-12-21 Sanyang Industry Co Ltd A method for controlling engine starting of a starter and generator device
CN111717046A (en) * 2020-06-30 2020-09-29 重庆宗申发动机制造有限公司 Start control strategy of range extender
WO2021246116A1 (en) * 2020-06-02 2021-12-09 株式会社デンソー Control device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004872B2 (en) 2002-06-27 2007-11-07 本田技研工業株式会社 Engine starter
JP2004339952A (en) * 2003-05-13 2004-12-02 Toyota Motor Corp Starting system of internal combustion engine
JP4228882B2 (en) 2003-11-11 2009-02-25 トヨタ自動車株式会社 Internal combustion engine starter and automobile equipped with the same
JP4315287B2 (en) * 2004-03-08 2009-08-19 本田技研工業株式会社 Engine start control device
DE102011080243A1 (en) * 2011-08-02 2013-02-07 Robert Bosch Gmbh Method for starting internal combustion engine, involves selecting fuel injection timing and ignition timing of working cylinder so that torque transmitted by ignition of fuel/air mixture from cylinder to crankshaft is maximized
TWI476320B (en) * 2012-03-21 2015-03-11 Kwang Yang Motor Co Reduce the engine starting torque control method
CN103899465B (en) * 2012-12-27 2016-06-22 光阳工业股份有限公司 Reduce the control method of engine start torsion
WO2014132719A1 (en) * 2013-02-28 2014-09-04 本田技研工業株式会社 Structure for installing sensor in engine unit
CN107795422B (en) * 2013-12-20 2019-05-21 雅马哈发动机株式会社 Engine unit and vehicle
JP2017031808A (en) * 2013-12-20 2017-02-09 ヤマハ発動機株式会社 Engine unit and vehicle
CN106164452B (en) * 2014-03-31 2019-12-10 康明斯有限公司 Fast engine synchronization for restart management
US10066591B2 (en) 2014-08-01 2018-09-04 Piaggio & C. S.P.A. Process for starting an internal combustion engine
US10233887B2 (en) 2014-08-01 2019-03-19 Piaggio & C. S.P.A. Permanent magnet electric motor for an internal combustion engine and related starting control system
TWI613357B (en) * 2015-04-15 2018-02-01 三陽工業股份有限公司 Engine with dual decompression devices
ITUB20152786A1 (en) 2015-08-03 2017-02-03 Piaggio & C Spa PROCEDURE FOR MANAGING THE RE-STARTING OF AN INTERNAL COMBUSTION ENGINE IN A START AND STOP SYSTEM
TWI561729B (en) * 2015-10-29 2016-12-11 Sanyang Motor Co Ltd Method for controlling engines running
US9827974B1 (en) * 2016-09-12 2017-11-28 Ford Global Technologies, Llc Methods and system for positioning an engine
JP2018053776A (en) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 Engine unit and saddle riding type vehicle
CN108667367B (en) * 2017-04-01 2020-10-02 光阳工业股份有限公司 Crankshaft position synchronization control method and system of integrated starter generator
DE102017220728A1 (en) * 2017-11-20 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Motor assembly for a motor vehicle
WO2020035882A1 (en) 2018-08-14 2020-02-20 Varroc Engineering India Pvt. Ltd Method of starting an internal combustion engine
CN109695528A (en) * 2019-01-31 2019-04-30 上海概胜贸易商行 Engine starting motor from be inverted to rotate forward Rule of judgment method
JP7215950B2 (en) * 2019-03-28 2023-01-31 本田技研工業株式会社 engine starting device
EP3851664A1 (en) * 2020-01-20 2021-07-21 BRP-Rotax GmbH & Co. KG Cranking procedure for a four-stroke internal combustion engine with a crankshaft mounted electric turning machine
CN112392613B (en) * 2020-11-18 2022-06-28 潍柴动力股份有限公司 Starting method and starting system of gas engine
WO2023186493A1 (en) * 2022-03-28 2023-10-05 Robert Bosch Gmbh A modified trigger wheel, a controller and method for a prime mover of a vehicle
WO2023187806A1 (en) * 2022-03-31 2023-10-05 Tvs Motor Company Limited A method and a system for normalizing position of a piston

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241689A (en) * 1988-07-28 1990-02-09 Mazda Motor Corp Controller for starting motor
JPH0771350A (en) * 1993-09-02 1995-03-14 Nippondenso Co Ltd Starting device of internal combustion engine for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179922A (en) * 1977-03-25 1979-12-25 Harris Corporation Data acquisition for use in determining malfunctions of cylinders of an internal combustion engine
JPH04109062A (en) * 1990-08-28 1992-04-10 Hitachi Ltd Abnormal combustion detecting device and torque control device for internal combustion engine
DE4200606A1 (en) * 1992-01-13 1993-07-15 Helmut L Karcher Starter for multicylinder direct-injection four-stroke engine - employs crankshaft angle detector and computer to open magnetic injector valve immediately on passage through TDC.
US5514977A (en) * 1992-08-28 1996-05-07 Linfinity Microelectronics, Inc. Pulse detection and conditioning circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241689A (en) * 1988-07-28 1990-02-09 Mazda Motor Corp Controller for starting motor
JPH0771350A (en) * 1993-09-02 1995-03-14 Nippondenso Co Ltd Starting device of internal combustion engine for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1233175A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321667A4 (en) * 2000-09-28 2006-12-27 Mitsuba Corp Engine starter
EP1321667A1 (en) * 2000-09-28 2003-06-25 Mitsuba Corporation Engine starter
CN100383430C (en) * 2002-05-04 2008-04-23 曼B与W狄赛尔公司 Compensating apparatus
CN100392286C (en) * 2002-05-04 2008-06-04 曼B与W狄赛尔公司 Compensating apparatus and method for starting said apparatus
JP2004028009A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Engine starter
JP4545103B2 (en) * 2006-02-24 2010-09-15 三菱重工業株式会社 Engine starter composed of single cylinder cylinder
JP2007224835A (en) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd Engine starter and engine starting method
JP4640830B2 (en) * 2006-03-22 2011-03-02 本田技研工業株式会社 Starter for internal combustion engine
JP2007255272A (en) * 2006-03-22 2007-10-04 Honda Motor Co Ltd Starter of internal combustion engine
WO2014084393A2 (en) 2012-11-30 2014-06-05 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and vehicle
EP4109723A1 (en) 2012-11-30 2022-12-28 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and vehicle
EP4112915A1 (en) 2012-11-30 2023-01-04 Yamaha Hatsudoki Kabushiki Kaisha Engine unit and vehicle
JP2014168345A (en) * 2013-02-28 2014-09-11 Honda Motor Co Ltd Position detection structure of crankshaft
TWI563167B (en) * 2014-05-09 2016-12-21 Sanyang Industry Co Ltd A method for controlling engine starting of a starter and generator device
WO2021246116A1 (en) * 2020-06-02 2021-12-09 株式会社デンソー Control device
JP2021188586A (en) * 2020-06-02 2021-12-13 株式会社デンソー Control device
JP7243688B2 (en) 2020-06-02 2023-03-22 株式会社デンソー Control device
CN111717046A (en) * 2020-06-30 2020-09-29 重庆宗申发动机制造有限公司 Start control strategy of range extender

Also Published As

Publication number Publication date
EP1233175B1 (en) 2006-12-13
CN1279279C (en) 2006-10-11
TW479106B (en) 2002-03-11
CN1413291A (en) 2003-04-23
EP1233175A1 (en) 2002-08-21
EP1233175A4 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
WO2001038728A1 (en) Starter, start control device, and crank angle detector of internal combustion engine
JP4230116B2 (en) Starter and starter for internal combustion engine
US7891330B2 (en) Engine starting method and device
EP1321666A1 (en) Engine starter
EP1321667A1 (en) Engine starter
US20090020092A1 (en) Engine starting device
US7930092B2 (en) Control apparatus for internal combustion engine
TWI551776B (en) Engine unit and vehicle
TWI544143B (en) Engine unit and vehicle
JP5035895B2 (en) Power generation control device
JP2006070753A (en) Rotational state detecting device of internal combustion engine
JP2001193540A (en) Stop position controlling method and device for internal combustion engine
US7878173B2 (en) Control device for marine engine
US9777605B2 (en) Motor control apparatus
JP6019246B2 (en) Engine start control device
EP3533995B1 (en) Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle
JP2006129680A (en) Apparatus and method of controlling generator, and motorcycle
JP2017036666A (en) Engine unit
JP5929414B2 (en) Motor generator control device for engine-driven vehicle
JP2002339792A (en) Stroke determining method and device for 4-cycle internal combustion engine
JP6933919B2 (en) Electronic control device
JP2017036665A (en) Engine unit
JP2021179203A (en) Engine start control device
JP2021080842A (en) Engine start control device
JP2015117677A (en) Engine unit and vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID IN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 540047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/723/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000977866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008177708

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000977866

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000977866

Country of ref document: EP