WO2018141982A1 - Halbzeug mit unterschiedlichen eigenschaften - Google Patents

Halbzeug mit unterschiedlichen eigenschaften Download PDF

Info

Publication number
WO2018141982A1
WO2018141982A1 PCT/EP2018/052881 EP2018052881W WO2018141982A1 WO 2018141982 A1 WO2018141982 A1 WO 2018141982A1 EP 2018052881 W EP2018052881 W EP 2018052881W WO 2018141982 A1 WO2018141982 A1 WO 2018141982A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
layer
semifinished product
polymer composite
composite system
Prior art date
Application number
PCT/EP2018/052881
Other languages
English (en)
French (fr)
Inventor
Lothar Patberg
Stefan Mayer
Andreas Cott
Christian Paul
Dieter Kalemba
Sophie REISEWITZ
Erik Hilfrich
Original Assignee
Thyssenkrupp Steel Europe Ag
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag, Thyssenkrupp Ag filed Critical Thyssenkrupp Steel Europe Ag
Publication of WO2018141982A1 publication Critical patent/WO2018141982A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the invention relates to a semi-finished product with different properties.
  • Material composites in particular hybrid materials with at least one metallic layer and at least one layer of a fiber-reinforced polymer for producing a component, in particular a body component for vehicles, which have the lowest possible weight and good mechanical properties, in particular a high energy absorption in the event of a crash and strength, in particular from the German patent application DE 10 2011 015 071 AI known.
  • These composite materials are semi-finished products with a uniform structure and uniform properties. An alignment with regard to optimum adjustment of the loading direction and load distribution in the semifinished product or in the component to be formed is comparatively low.
  • Other generic semi-finished products are known from the publications WO 2002/078951 AI and EP 1 431 026 Bl. With regard to the state of the art, there is further potential for improvement, in particular with regard to a stress-oriented and individual design of the semifinished product.
  • the invention is therefore based on the object to develop a semi-finished, which can be designed to load and individual.
  • a semifinished product which comprises a metallic layer with at least one cohesively bonded layer of a fiber-polymer composite system which has a thickness, width and length, wherein the semifinished product at least partially over its thickness, width and / or length has different properties, in particular in the single-layer thickness, conductivity, attenuation, shielding, strength and / or rigidity.
  • the conductivity, the damping, the shielding, the strength and / or the rigidity in the semi-finished better adaptation to the requirements
  • a load-compatible design is made possible, provided and associated therewith can also be accompanied by a reduction in weight, in particular by saving material, for example in the reduction of the single-layer thickness (s).
  • the metallic layer is preferably single-layered or layer-formed from a metallic material.
  • the metallic material is a sheet of a steel alloy, in particular a carbon steel alloy, an aluminum alloy, a magnesium alloy or a stainless steel alloy.
  • the sheet may be coated with a corrosion protection layer at least on one side.
  • the layer of a fiber-polymer composite system can be designed in one or more layers, wherein in a multilayer design at least one of the layers can also be designed fiber-free.
  • the fiber-polymer composite system comprises a polymer matrix and fibers, in particular fibers stored in the polymer matrix.
  • a material for the polymer matrix in particular thermoplastics, such as.
  • thermoplastics such as.
  • PA polyamide
  • PE polyethylene
  • PPS polyphenylsulfide
  • PSU polysulfone
  • PU polyurethane
  • thermosets such as.
  • epoxy resin elastomers and thermoplastic elastomers used.
  • fibers in particular, carbon fibers, glass fibers, natural fibers, aramid fibers, polymer fibers, metal fibers, ceramic fibers, mineral fibers, recycled fibers or mixtures thereof can be used as the fibers.
  • the use as short fiber, long fiber and / or endless fiber is also conceivable.
  • the fibers may be provided as roving, mat, fabric, nonwoven, tape and / or scrim.
  • the metallic layer and the layer of the fiber-polymer composite system are bonded together in a material-locking manner, wherein the layer of the fiber-polymer composite system can preferably be arranged over the entire surface or only partially in one or more regions on the metallic layer.
  • an intermediate layer in the form of an adhesion promoter between metal and fiber-polymer composite system can also be considered.
  • interconnected sheets also called tailored "welded" blank or strip called used.
  • Also a three-dimensionally shaped sheet, which is not flat (plan) is formed, can be used as a metallic layer
  • the sheet metal may also have openings and / or recesses at least in some areas, in particular as a perforated sheet metal
  • the properties, such as rigidity, strength, heat absorption and / or impact behavior, of the semifinished product or of the component to be produced can thereby be positively influenced in a positive manner.
  • the layer of fiber-polymer composite system has at least regionally varying geometric, electromagnetic, damping and / or mechanical properties.
  • the layer of fiber-polymer composite system may have regions of different thicknesses and / or materials. Different materials in the layer of the fiber-polymer composite system may vary in thickness, width and / or length side by side and / or over one another with respect to the various polymer matrix and / or fibrous materials (e.g., carbon, glass, etc.).
  • the types of fibers eg, scrim, fabric, nonwoven, etc.
  • the arrangement of the fibers eg, atlas, twill, plain weave etc.
  • the orientation angle of the fibers in particular the fiber volume proportion or the fiber density vary.
  • the layer of the fiber-polymer composite system at least partially have a filler.
  • organic and / or inorganic particles, carbon nanotubes, graphene nanoplatelets, filler spheres, hollow spheres or mixtures thereof, in particular in regions for increasing the strength can be used as fillers.
  • fiber-free regions may also be provided in some regions in the fiber-polymer composite system. The properties, such.
  • a layer of a thermoplastic polymer matrix based fiber-polymer composite system can be prepared in three ways.
  • the first type relates to a continuous production process in which individual layers are formed by pressure and heat, for example in a continuous lamination process, in particular via a double belt press or laminating rollers to form a layer of a fiber-polymer composite system.
  • (dry) fibers are provided as an endless material and a polymer matrix in the form of one or more films and consolidated in the lamination process by means of heat and pressure to form a layer.
  • the area-wise different properties can vary, for example, over the width of the layer to be created, for example by placing different fiber materials next to one another.
  • the properties may alternatively vary along the length of the layer to be created, for example, by alternately feeding the fibers, whereby areas in the longitudinal direction can be made fiber-free.
  • prefabricated (consolidated), fiber-reinforced polymer materials in particular in the form of organo sheets or organo-foils can be provided, wherein preferably several, different prefabricated, fiber-reinforced polymer materials are fed to the lamination process, so that a layer of a fiber-polymer composite system with over the thickness , Width and / or length varying properties can be produced.
  • the second type relates to a discontinuous production process in which individual layers can be formed by pressure and heat, in particular via a platen press to form a layer of a fiber-polymer composite system.
  • (dry) fibers are provided as blanks and a polymer matrix in the form of one or more blanks and consolidated in the lamination process by means of heat and pressure to form a layer.
  • the area-wise different properties can vary, for example, across the width of the layer to be created, for example by placing different fiber materials next to one another or by aligning the alignment angles of the fibers differently.
  • the properties may alternatively vary along the length of the layer to be created, with areas in the longitudinal direction being able to be made fiber-free.
  • prefabricated, fiber-reinforced polymer materials in particular in the form of organoplates or organofilms, may be provided as a blank, wherein preferably several, different prefabricated, fiber-reinforced polymer materials are fed to the lamination process, so that a layer of a fiber-polymer composite system with over the thickness, Width and / or length varying properties can be produced.
  • the third type relates to a semi-continuous manufacturing process which has the advantages of continuous production by providing continuous materials with a discontinuous laminating process, e.g. B. by a rotating plate press, united, which over a longer period compared to the continuous production process advantageously a higher pressure and heat can act on the layer to be created from a fiber-polymer composite system.
  • a layer of a fiber-polymer composite system based on a thermosetting polymer matrix can be prepared in an analogous manner, such as on the basis of a thermoplastic polymer matrix, but with the difference that if a subsequent forming of the semifinished product is to be ensured, hardening of the thermosetting polymer matrix (z B. resin and hardener) is prevented as much as possible during the production of the semifinished product, since a complete curing does not allow molding and thereby the semifinished product can only be used as a substantially flat material.
  • the layer of fiber-polymer composite system remains in a pre-impregnated or not finally reacted or polymerized state (bi-stage system) and therefore becomes later in the further processing process or forms associated with at least one metallic layer in the shaped semifinished product or component by z.
  • the semifinished product comprises at least one further layer made of a fiber-polymer composite system, which in particular is present over the entire surface or partially arranged relative to the other layers in the semifinished product and are bonded to one another in a material-locking manner.
  • a semifinished product according to the invention which in the simplest embodiment has a metallic layer cohesively connected to a layer of a fiber-polymer composite system
  • different embodiments are possible, in particular as regards the structure of the layers in particular.
  • the semifinished product can also comprise more than three layers, depending on requirements and requirements of the semifinished product or the component to be produced therefrom.
  • the metallic layer has a thickness between 0, 1 and 0.6 mm and the layer of fiber-polymer composite system has a thickness between 0.2 and 1.5 mm.
  • At least one inlay can be arranged at least partially within the fiber-polymer composite system.
  • the inlay preferably consists of a metallic and / or graphite-like material, the electrical conductivity within the fiber-polymer composite system can thereby be increased, whereby, for example, an area with an improved connection or connection with other parts or components can be provided, in particular for the Vehicle industry established resistance spot welding.
  • metallic material in the shaping depending on the polymer matrix, preferably when using a thermoplastic polymer matrix, promote the heating of the semifinished product, for. B improve the heatability.
  • shielding and damping properties in the semi-finished product or in the component to be produced can also be improved if necessary, for example when using electrical steel.
  • the inlay can also consist of a polymeric material.
  • semifinished products with locally defined, integrated functionalities can thereby be provided.
  • the elastic and the plastic deformation behavior as well as the failure behavior in the component to be produced or produced can be selectively influenced in relation to different external mechanical and thermal loads.
  • electromagnetic, thermal and / or acoustic shielding and / or damping as well as conductivity can be positively influenced, in particular by local variation of the fiber-polymer composite system, with and without fillers, positive.
  • the invention relates to a use of the semifinished product according to the invention, in particular after a shaping of the semifinished product into a component, as a component for vehicles, in particular for road and rail vehicles and vehicles of the aerospace industry.
  • the component is used as an axial and lateral crash-loaded structural component, in particular as a B-pillar or as a stiffness-optimized component in vehicles.
  • the molding of the semifinished product according to the invention into a component can be carried out by deep drawing, roll profiling, bending, folding or a combination thereof.
  • the joining of the semifinished product according to the invention can be carried out in different ways, preferably by means of riveting, gluing, screwing, crimping, flanging etc.
  • FIG. 2 shows a schematic section through a second embodiment of a semifinished product
  • FIG. 3 shows a schematic section through a third embodiment of a semifinished product
  • FIG. 4 shows a schematic section through a fourth embodiment of a semifinished product
  • FIG. 5 shows a schematic section through FIG 6 shows a schematic section through a first embodiment of a semifinished product according to the invention
  • FIG. 7 shows a schematic section through a second embodiment of a semifinished product according to the invention.
  • Fig. 1 is a schematic section through a first embodiment of a semifinished product (1) is shown.
  • the semifinished product (1) comprises a first metallic layer (2) in the form of a metal sheet, preferably a steel sheet having a thickness (d) between 0.1 to 0.6 mm and a second metallic layer (3), preferably a monolithic material a flexibly rolled sheet, which has regions of different thicknesses (d, D).
  • a fiber-polymer composite system (4) which for example consists of a thermoplastic matrix, preferably a blend of PA-PE, with a fiber material made of carbon or glass, which in the complete layer in particular a fiber content (4.1) between 20 and 40 vol .-% based on the layer (total volume) of the fiber-polymer composite system (4) exists.
  • the semifinished product (1) has a length (L), a width (B) and a thickness (H), wherein the thickness (H) of the semifinished product (1) is substantially constant, so that the area-wise greater thickness (D ) of the sheet (3) while reducing the thickness (single layer thickness) of the layer (4) in this area a higher rigidity and / or strength in the semifinished product (1) can be set locally, defined.
  • Fig. 2 is a schematic section through a second embodiment of a semifinished product () is shown.
  • the semifinished product (10) comprises a first metallic layer (2) in the form of a metal sheet, preferably a steel sheet having a thickness (d) between 0.1 to 0.6 mm and a second metallic layer (3 ') in the form of a metal sheet the metal sheets (2, 3 ') may be formed from the same material or may consist of different materials, in particular of a steel, aluminum or magnesium alloy.
  • a fiber-polymer composite system (4) is arranged, which at For example, from a thermosetting matrix, preferably an epoxy resin, with a fiber material made of glass or carbon, wherein in particular different areas in the layer (4) with different fiber proportions (4.1, 4.2), for example in at least one area a fiber content (4.1) between 20 and 40 vol .-% and in at least one further area a fiber content (4.2)> 40 vol .-% based on the layer (total volume) of the fiber-polymer composite system (4) is provided exists.
  • a thermosetting matrix preferably an epoxy resin
  • a fiber material made of glass or carbon wherein in particular different areas in the layer (4) with different fiber proportions (4.1, 4.2), for example in at least one area a fiber content (4.1) between 20 and 40 vol .-% and in at least one further area a fiber content (4.2)> 40 vol .-% based on the layer (total volume) of the fiber-polymer composite system (4) is provided exists.
  • the semifinished product ( ⁇ ) has a length (L), a width (B) and a thickness (H), wherein by the partially different fiber portions (4.1, 4.2) within the layer (4) in particular along the length (L) of Semi-finished product () different properties can be set locally, defined. If the semifinished product ( ⁇ ) is still supplied to a mold to form a three-dimensional component, care must be taken to ensure that the thermoset matrix is not yet (fully) cured, but the curing takes place only in the course of molding or subsequently.
  • the semifinished product (1") comprises a first metallic layer (2) in the form of a metal sheet, preferably a steel sheet with a thickness (d) between 0 , 1 to 0.6 mm, and a second metallic layer (3) in the form of a three-dimensionally shaped metal sheet, preferably a steel sheet having a constant thickness (d).
  • a fiber-polymer composite system (4) which consists for example of a thermoplastic matrix, preferably a blend of PA-PE, with a fiber material made of carbon, which in the complete layer in particular a fiber content ( 4.1) has between 20 and 40% by volume, based on the layer (total volume) of the fiber-polymer composite system (4)
  • the semifinished product (1) has a length (L), a width (B) and different thicknesses (h , H) in particular along the length (L). Due to the different thicknesses (h, H), different properties can be set locally, defined.
  • the semifinished product (" comprises a first metallic layer (2) in the form of a metal sheet, preferably a steel sheet with a thickness (d) between 0 , 1 to 0.6 mm and a second metallic layer (3 "'), which consists of two sheets (3"' l, 3 "'.2), which via a joint connection (3"' .3) as a tailored "
  • the material used for the sheets may be identical or dissimilar materials, for example both sheets (3 '', 1,3 '', 2) consist of steel alloys with different compositions or for weight reduction, in particular a steel alloy (3 ''. 1) and an aluminum alloy (3 ''.
  • a magnesium alloy having a lower density compared with a steel alloy may be used to provide a low weight semi-finished product.
  • a fiber-polymer composite system (4) arranged, for example, from a thermosetting matrix, preferably an epoxy resin, with a fiber material of a combination of natural fibers and mineral fibers, in particular a fiber content (4.1 ) between 20 and 40% by volume, based on the layer (total volume) of the fiber-polymer composite system (4) in the complete layer,
  • the semifinished product (1 "') has a length (L), a width (B ) and a thickness (H), wherein different properties can be set locally, defined locally by the tailor-made "welded" blank of the second metal layer (3 "'), in particular along the length (L) of the semifinished product (")
  • Semi-finished product (1 "') is still supplied to a mold to a three-dimensional component, it is important
  • Fig. 5 is a schematic section through a fifth embodiment of a semifinished product (1 "") is shown.
  • the semifinished product (1 "") comprises a first metallic layer (2) in the form of a metal sheet, preferably a steel sheet with a thickness (d) between 0, 1 to 0.6 mm and a second metallic layer (3 ') in the form of a Metal sheet, wherein the metal sheets (2, 3 ') are formed of a material or may consist of different materials, in particular of a steel, aluminum or magnesium alloy.
  • a fiber-polymer composite system (4) is arranged, which for example consists of a thermoplastic matrix, preferably a polypropylene with different fiber materials, in particular different areas in the layer (4) with different fiber proportions (4.1, 4.3), for example, in at least one area a fiber content (4.1) between 20 and 40 vol .-% with a glass fiber and in at least one other area a fiber content (4.3) ⁇ 20 vol .-% with a carbon fiber based on the layer (total volume ) of the fiber-polymer composite system (4) is provided.
  • the second region may also have a fiber content (4.3) equal to 0, so that this area may be fiber-free.
  • the semifinished product (1 "") comprises at least one inlay (5), which is arranged at least partially within the fiber-polymer composite system (4).
  • the semifinished product (1 "") has a length (L), a width (B) and a thickness (H), wherein the inlay (5) within the layer (4) in this region, in particular if the inlay (5 ) consists of an electrical sheet, the shielding and damping properties in the semis (1 "") respectively in the component to be produced locally, with an integrated Functionality can be improved.
  • the inlay (5) may also comprise a layer consisting of an unreinforced thermoplastic and serve for the local modification of rigidity, strength properties and acoustic properties.
  • the semi-finished product according to the invention (1 "" ') is shown in a first embodiment of the invention, namely comprising a metallic layer (2) in the form of a metal sheet having a thickness (d) between 0, 1 to 0.6 mm and a Fiber-polymer composite system (4), which consists for example of a thermosetting matrix, preferably an epoxy resin, with a fiber material made of glass or carbon, in particular different areas in the layer (4) with different fiber proportions (4.1, 4.2), for example in at least one area a fiber content (4.1) between 20 and 40 vol .-% and in at least one further area a fiber content (4.2)> 40 vol .-% based on the layer (total volume) of the fiber-polymer composite system (4) is provided exists.
  • a thermosetting matrix preferably an epoxy resin
  • the semifinished product has a length (L), a width (B) and a thickness (h), wherein the partially different fiber portions (4.1, 4.2) within the layer (4), in particular along the length (L) of the semi-finished product () different properties can be set locally, defined.
  • the layer of the fiber-polymer composite system may be formed homogeneously and the metallic layer may have different properties, for example, be designed as a tailored product.
  • the semifinished product (1 ''') according to the invention comprises a metallic layer (2) in the form of a metal sheet having a thickness (d) of between 0.1 and 0 6 mm, which is arranged between two fiber-polymer composite system layers 4.
  • the layers 4 consist, for example, of a thermoplastic matrix, preferably a polypropylene with a fiber material of glass or carbon, in particular different regions in the layers (4 ) with different fiber contents (4.1, 4.2), for example in at least one area a fiber content (4.1) between 20 and 40% by volume and in at least one further area a fiber content (4.2)> 40% by volume based on the layer (
  • the semifinished product (1 """) has a length (L), a width (B) and a thickness (h), wherein the area underscal different fiber components (4.1, 4.2) within the layers (4) in particular along the length (L) of the semifinished product ( ⁇ ) different properties locally, defined can be set.
  • one or both layers of the fiber-polymer composite system may be formed homogeneously or from different matrix Systems exist, and / or the metallic layer may have different properties, for example, the metallic layer may be formed of a tailored product.
  • the invention is not limited to the embodiments shown in the drawing, in particular the number of layers is not limited to three. In particular, even further layers of fiber-polymer composite systems can be provided. Other materials in terms of fibers and matrix are useful.
  • the metal sheets (2, 3 ', 3 ", 3"') if they consist of a steel alloy, may be coated with a corrosion protection layer, preferably based on zinc, at least on one side.
  • the sheet (2, 3 ', 3 ", 3"') coated on at least one side of the layer (4) facing side with a bonding agent be.

Landscapes

  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Halbzeug (1, 1', 1'', 1''', 1'''', 1''''', 1'''''') umfassend eine metallische Schicht (2, 3, 3', 3'', 3''') mit mindestens einer stoffschlüssig angebundenen Schicht (4) aus einem Faser-Polymerverbundsystem, welches eine Dicke (h, H), Breite (B) und Länge (L) aufweist, wobei das Halbzeug (1, 1', 1'', 1''', 1'''',1''''', 1'''''') über seine Dicke (h, H), Breite (B) und/oder Länge (L) zumindest bereichsweise unterschiedliche Eigenschaften aufweist.

Description

Halbzeug mit unterschiedlichen Eigenschaften Technisches Gebiet
Die Erfindung betrifft ein Halbzeug mit unterschiedlichen Eigenschaften. Technischer Hintergrund
Aus dem Stand der Technik sind Werkstoffverbunde, insbesondere Hybridwerkstoffe mit mindestens einer metallischen Lage und mindestens einer Lage aus einem faserverstärkten Polymer zum Herstellen eines Bauteils, insbesondere eines Karosseriebauteils für Fahrzeuge, welches ein möglichst geringes Gewicht und gute mechanische Eigenschaften, insbesondere eine hohe Energieaufnahme im Crashfall sowie Festigkeit, aufweist, insbesondere aus der deutschen Offenlegungsschrift DE 10 2011 015 071 AI bekannt. Diese Werkstoffverbunde sind Halbzeuge mit einem gleichmäßigen Aufbau und gleichförmigen Eigenschaften. Eine Ausrichtung hinsichtlich optimaler Einstellung der Belastungsrichtung und Belastungsverteilung im Halbzeug respektive im zu formenden Bauteil ist vergleichsweise gering. Weitere gattungsgemäße Halbzeuge sind aus den Druckschriften WO 2002/078951 AI und EP 1 431 026 Bl bekannt. In Bezug auf den Stand der Technik besteht weiteres Verbesserungspotential, insbesondere hinsichtlich einer belastungsgerechten und individuellen Auslegung des Halbzeuges.
Zusammenfassung der Erfindung
Der Erfindung liegt somit die Aufgabe zu Grunde, ein Halbzeug weiterzubilden, das belastungsgerecht und individuell ausgelegt werden kann.
Gelöst wird diese Aufgabe durch ein Halbzeug mit den Merkmalen des Patentanspruchs l.
Gemäß einem ersten Aspekt ist erfindungsgemäß ein Halbzeug vorgesehen, welches eine metallische Schicht mit mindestens einer stoffschlüssig angebundenen Schicht aus einem Faser-Polymerverbundsystem umfasst, welches eine Dicke, Breite und Länge aufweist, wobei das Halbzeug über seine Dicke, Breite und/oder Länge zumindest bereichsweise unterschiedliche Eigenschaften, insbesondere in der Einzelschichtdicke, Leitfähigkeit, Dämpfung, Abschirmung, Festigkeit und/oder Steifigkeit aufweist.
Mit der Erfindung kann über die bereichsweise variierenden Eigenschaften vorzugsweise hinsichtlich der Einzelschichtdicke, der Leitfähigkeit, der Dämpfung, der Abschirmung, der Festigkeit und/oder der Steifigkeit in dem Halbzeug eine bessere Anpassung an die Anforderungen im herzustellenden Bauteil, insbesondere wird eine belastungsgerechte Auslegung ermöglicht, bereitgestellt werden und damit verbunden kann auch eine Gewichtsreduzierung, insbesondere durch Materialeinsparung einhergehen, beispielsweise bei der Reduzierung der Ein- zelschichtdicke(n). Die metallische Schicht ist vorzugsweise einlagig respektive lagenförmig aus einem metallischen Material gebildet. Vorzugsweise handelt es sich bei dem metallischen Material um ein Blech aus einer Stahllegierung, insbesondere einer Kohlenstoff- Stahllegierung, einer Aluminiumlegierung, einer Magnesiumlegierung oder einer Edelstahllegierung. Bei Verwendung einer Stahllegierung kann das Blech mit einer Korrosionsschutzschicht zumindest einseitig beschichtet sein.
Die Schicht aus einem Faser-Polymerverbundsystem kann ein- oder mehrlagig ausgeführt sein, wobei bei einer mehrlagigen Ausführung mindestens eine der Lagen auch faserfrei ausgeführt sein kann. Das Faser-Polymerverbundsystem umfasst eine Polymermatrix und Fasern, insbesondere in der Polymermatrix gelagerte Fasern. Als Material für die Polymermatrix sind insbesondere Thermoplaste, wie z. B. Polyamid (PA), Polyethylen (PE), Polyphenylsulfid (PPS), Polysulfon (PSU), Polypropylen (PP), Polyurethan (PU) oder deren Mischungen, sowie Duroplaste, wie z. B. Epoxidharz, Elastomere und thermoplastische Elastomere verwendbar. Als Fasern sind insbesondere Karbonfasern, Glasfasern, Naturfasern, Aramidfasern, Polymerfasern, Metallfasern, Keramikfasern, mineralische Fasern, recycelte Fasern oder deren Mischungen verwendbar. Hierbei ist ferner der Einsatz als Kurzfaser, Langfaser und/oder als Endlosfaser vorstellbar. Insbesondere können die Fasern als Roving, Matte, Gewebe, Vlies, Tape und/oder Gelege bereitgestellt werden.
Zur Bildung respektive Bereitstellung des erfindungsgemäßen Halbzeugs sind die metallische Schicht und die Schicht aus dem Faser-Polymerverbundsystem stoffschlüssig miteinander verbunden, wobei die Schicht des Faser-Polymerverbundsystems vorzugsweise vollflächig oder nur partiell in einem oder mehreren Bereichen auf der metallischen Schicht angeordnet sein kann. Zur Erhöhung der Haftung zwischen den beiden Schichten kann auch eine Zwischenschicht in Form eines Haftvermittlers zwischen Metall und Faser-Polymerverbundsystem berücksichtigt werden.
Die unterschiedlichen Eigenschaften des erfindungsgemäßen Halbzeugs werden insbesondere durch die Eigenschaften der einen metallischen Schicht und/oder der mindestens einen Schicht aus einem Faser-Polymerverbundsystem bestimmt. Gemäß einer ersten Ausführungsform des Halbzeugs weist die metallische Schicht zumindest bereichsweise variierende geometrische und/oder mechanische Eigenschaften auf. Die metallische Schicht respektive das Blech kann bereichsweise unterschiedliche Dicken und/ oder Materialien aufweisen, vorzugsweise als Tailored Product ausgeführt sein. Bei unterschiedlichen Dicken kann ein monolithisches Material als flexibel gewalztes Blech, auch tailored rolled blank oder strip genannt, oder ein aus zwei Blechen mit unterschiedlicher Dicke aus einem Material, beispielsweise artgleiches Material, z. B. einer Stahllegierung mit gleicher Zusammensetzung, oder aus unterschiedlichen Materialien, beispielsweise artgleiche Materialien, z. B. Stahllegierungen mit unterschiedlicher Zusammensetzung, oder artungleiche Materialien, z. B. eine Stahllegierung und eine Aluminiumlegierung, miteinander verbundenen Blechen, auch tailored„welded" blank oder strip genannt, verwendet werden. Auch ein dreidimensional geformtes Blech, welches nicht eben (plan) ausgebildet ist, kann als metallische Schicht verwendet werden. Des Weiteren kann das Blech auch zumindest bereichsweise Öffnungen und/oder Aussparungen aufweisen, insbesondere als Lochblech ausgeführt sein. Die Eigenschaften, wie z. B. Steifigkeit, Festigkeit, Wärmeaufnahme und/oder Impactverhalten, des Halbzeugs respektive des herzustellenden Bauteils können dadurch gezielt positiv beeinflusst werden.
Gemäß einer kumulativen oder alternativen Ausführungsform des Halbzeugs weist die Schicht aus Faser-Polymerverbundsystem zumindest bereichsweise variierende geometrische, elektromagnetische, dämpfende und/ oder mechanische Eigenschaften auf. Die Schicht aus Faser-Polymerverbundsystem kann bereichsweise unterschiedliche Dicken und/oder Materialien aufweisen. Unterschiedliche Materialien in der Schicht aus dem Faser-Polymerverbundsystem können in der Dicke, Breite und/oder Länge hinsichtlich der verschiedenen Polymermatrix- und/oder Fasermaterialien (z. B. Karbon-, Glasfasern etc.) nebeneinander und/oder übereinander variieren. Des Weiteren können bereichsweise die Faserarten (z. B. Gelege, Gewebe, Vlies etc.) und/oder die Anordnung der Fasern (z. B. Atlas-, Köper-, Leinwandbindung etc.) und/oder der Ausrichtungswinkel der Fasern, insbesondere der Faservolumenanteil respektive die Faserdichte variieren. Kumulativ kann die Schicht aus dem Faser-Polymerverbundsystem zumindest bereichsweise einen Füllstoff aufweisen. Als Füllstoffe können insbesondere organische und/oder anorganische Partikel, Karbon-Nanotubes, Graphene-Nanoplatelets, Füllkugeln, Hohlkugeln oder deren Mischungen, insbesondere bereichsweise zur Erhöhung der Festigkeit, verwendet werden. Insbesondere können auch bereichsweise faserfreie Bereiche in dem Faser-Polymerverbundsystem vorgesehen sein. Die Eigenschaften, wie z. B. Leitfähigkeit, elektromagnetische, akustische, thermische Abschirmung und/oder Dämpfung, Steifigkeit, Festigkeit und/oder Impactverhalten, des Halbzeugs respektive des herzustellenden Bau- teils können dadurch kumulativ oder alternativ zu der variierenden Ausführung der metallischen Schicht gezielt positiv beeinflusst werden.
Eine Schicht eines Faser-Polymerverbundsystems auf Basis einer thermoplastischen Polymermatrix kann auf drei Arten hergestellt werden. Die erste Art betrifft ein kontinuierliches Herstellungsverfahren, bei dem einzelne Lagen durch Druck und Wärme, beispielsweise in einem kontinuierlichen Laminierprozess, insbesondere über eine Doppelbandpresse oder über Lami- nierrollen zu einer Schicht aus einem Faser-Polymerverbundsystem ausgebildet werden. Vorzugsweise werden (trockene) Fasern als Endlos-Material und eine Polymermatrix in Form einer oder mehreren Folien bereitgestellt und im Laminierprozess mittels Wärme und Druck zu einer Schicht konsolidiert. Insbesondere kann die bereichsweise unterschiedlichen Eigenschaften beispielsweise über die Breite der zu erstellenden Schicht variieren, indem beispielsweise unterschiedliche Fasermaterialien nebeneinander platziert werden. Beispielsweise können die Eigenschaften alternativ entlang der Länge der zu erstellenden Schicht variieren, indem beispielsweise durch alternierende Zuführung der Fasern, wobei durchaus Bereiche in Längsrichtung faserfrei ausgeführt werden können. Alternativ können bereits vorgefertigte (konsolidierte), faserverstärkte Polymermaterialien, insbesondere in Form von Organoblechen oder Orga- nofolien bereitgestellt werden, wobei vorzugsweise mehrere, unterschiedliche vorgefertigte, faserverstärkte Polymermaterialien dem Laminierprozess zugeführt werden, so dass eine Schicht aus einem Faser-Polymerverbundsystem mit über die Dicke, Breite und/ oder Länge variierende Eigenschaften hergestellt werden kann. Die zweite Art betrifft ein diskontinuierliches Herstellungsverfahren, bei dem einzelne Lagen durch Druck und Wärme, insbesondere über eine Plattenpresse zu einer Schicht aus einem Faser-Polymerverbundsystem ausgebildet werden kann. Vorzugsweise werden (trockene) Fasern als Zuschnitte und eine Polymermatrix in Form einer oder mehrerer Zuschnitte bereitgestellt und im Laminierprozess mittels Wärme und Druck zu einer Schicht konsolidiert. Insbesondere kann die bereichsweise unterschiedlichen Eigenschaften beispielsweise über die Breite der zu erstellenden Schicht variieren, indem beispielsweise unterschiedliche Fasermaterialien nebeneinander platziert werden oder die Ausrichtungswinkel der Fasern verschieden ausgerichtet werden. Beispielsweise können die Eigenschaften alternativ entlang der Länge der zu erstellenden Schicht variieren, wobei durchaus Bereiche in Längsrichtung faserfrei ausgeführt werden können. Alternativ können bereits vorgefertigte, faserverstärkte Polymermaterialien, insbesondere in Form von Organoblechen oder Organofolien als Zuschnitt bereitgestellt werden, wobei vorzugsweise mehrere, unterschiedliche vorgefertigte, faserverstärkte Polymermaterialien dem Laminierprozess zugeführt werden, so dass eine Schicht aus einem Faser-Polymerverbundsystem mit über die Dicke, Breite und/oder Länge variierende Eigenschaften hergestellt werden kann. Die dritte Art betrifft ein semi-kontinuierliches Herstellungsverfahren, welches die Vorteile der kontinuierlichen Herstellung durch Bereitstellung von Endlos-Materialien mit einem diskontinuierlichen Lami- nierprozess, z. B. durch eine mitlaufende Plattenpresse, vereint, wodurch über einen längeren Zeitraum im Vergleich zum kontinuierlichen Herstellungsverfahren vorteilhaft ein höher Druck und Wärme auf die zu erstellende Schicht aus einem Faser-Polymerverbundsystem einwirken kann.
Eine Schicht eines Faser-Polymerverbundsystems auf Basis einer duroplastischen Polymermatrix kann in analoger Art und Weise, wie auf Basis einer thermoplastischen Polymermatrix hergestellt werden, jedoch mit dem Unterschied, dass wenn ein nachträgliches Formen des Halbzeuges gewährleistet werden soll, ein Aushärten der duroplastischen Polymermatrix (z. B. Harz und Härter) während der Herstellung des Halbzeugs weitestgehend verhindert wird, da ein vollständiges Aushärten kein Formen ermöglicht und dadurch das Halbzeugs nur als ein im Wesentlichen Flachmaterial eingesetzt werden kann. Zur Sicherstellung der Möglichkeit eines nachträglichen Formens nach der Herstellung des Halbzeugs verbleibt die Schicht aus Faser-Polymerverbundsystem in einem vorimprägnierten oder nicht final ausreagierten respektive polymerisierten Zustand (Bi-Stage-System) und wird daher erst später beim Weiter- verarbeitungsprozess respektive Formen in Verbindung mit mindestens einer metallischen Schicht im geformten Halbzeug respektive Bauteil durch z. B. thermische, chemische und/oder photolytische Aktivierung ausgehärtet.
Gemäß einer weiteren Ausgestaltung des Halbzeugs umfasst das Halbzeug mindestens eine weitere Schicht aus einem Faser-Polymerverbundsystem, die insbesondere vollflächig oder partiell angeordnet zu den anderen Schichten in dem Halbzeug vorliegen und stoffschlüssig miteinander verbunden sind. So sind neben einem erfindungsgemäßen Halbzeug, das in der einfachsten Ausführung eine metallische Schicht stoffschlüssig verbunden mit einer Schicht aus einem Faser-Polymerverbundsystem aufweist, unterschiedliche Ausgestaltungen möglich, insbesondere was den Aufbau insbesondere der Schichten anbelangt. Das Halbzeug kann auch mehr als drei Schichten umfassen, je nach Bedarf und Anforderung an das Halbzeug respektive das daraus herzustellende Bauteil. So können auch Halbzeuge mit einem alternierenden Aufbau (Blech/Faser-Polymerverbundsystem) bereitgestellt werden, insbesondere auch nur ein Blech als Zwischenschicht mit auf beiden Seiten des Blechs lokal oder vollflächig verbundenen Faser-Polymerverbundsystemen. Gemäß einer weiteren Ausgestaltung des Halbzeugs weist die metallische Schicht eine Dicke zwischen 0, 1 und 0,6 mm und die Schicht aus Faser-Polymerverbundsystem eine Dicke zwischen 0,2 und 1,5 mm auf.
Gemäß einer weiteren Ausgestaltung des Halbzeugs kann mindestens ein Inlay zumindest bereichsweise innerhalb des Faser-Polymerverbundsystems angeordnet sein. Besteht das Inlay vorzugsweise aus einem metallischen und/oder graphitähnlichen Material, kann dadurch die elektrische Leitfähigkeit innerhalb des Faser-Polymerverbundsystems erhöht werden, wodurch beispielsweise ein Bereich mit einer verbesserten Anbindung respektive Verbindung mit anderen Teilen respektive Bauteilen bereitgestellt werden kann, insbesondere für das in der Fahrzeugindustrie etablierte Widerstandspunktschweißen. Zudem kann metallisches Material bei der Formgebung, je nach Polymermatrix, vorzugsweise bei Verwendung einer thermoplastischen Polymermatrix, die Erwärmung des Halbzeugs begünstigen, z. B die Heizbarkeit verbessern. Abhängig vom Material des Inlays können auch Abschirmungs- und Dämpfungseigenschaften im Halbzeug respektive im herzustellenden Bauteil verbessert ggf. gewährleistet werden, beispielsweise bei Verwendung von Elektroblech. Das Inlay kann auch aus einem polymeren Material bestehen. In vorteilhafter Weise können dadurch Halbzeuge mit lokal, definiert integrierten Funktionalitäten bereitgestellt werden.
Im Vergleich zu den Halbzeugen aus dem Stand der Technik kann in vorteilhafter Weise durch das erfindungsgemäße Halbzeug
- bei gleicher mechanischer Performance das Gewicht reduziert werden,
- bei gleichem Gewicht die Performance gesteigert werden,
- die Verwendung von hochwertigen Materialien in weniger relevanten oder in nachträglich zum Verschnitt zugehörigen Bereichen reduziert werden,
- ein zusätzliches Funktionsspektrum, wie z. B. Abschirmung, dämpfende Eigenschaften, elektrische Leitfähigkeit und/oder Heizbarkeit lokal, definiert integriert werden,
- ökologische und ökonomische Aspekte besser berücksichtigt werden.
Außerdem können durch einen definierten Aufbau des erfindungsgemäßen Halbzeugs das elastische und das plastische Verformungsverhalten sowie das Versagensverhalten im herzustellenden bzw. hergestellten Bauteil bezogen auf unterschiedliche äußere mechanische und thermische Belastungen gezielt beeinflussen werden. Auch im Hinblick auf elektromagnetische, thermische und/oder akustische Abschirmung und/oder Dämpfung sowie Leitfähigkeit kann gezielt, insbesondere durch lokale Variation des Faser-Polymerverbundsystems, mit und ohne Füllstoffen, positiv Einfluss genommen werden.
Gemäß einem zweiten Aspekt betrifft die Erfindung eine Verwendung des erfindungsgemäßen Halbzeugs, insbesondere nach einem Formen des Halbzeugs zu einem Bauteil, als Bauteil für Fahrzeuge, insbesondere für Straßen- und schienengebundene Fahrzeuge sowie Fahrzeuge der Luft und Raumfahrt. Vorzugsweise kommt das Bauteil als axial- und lateral-Crash-belaste- tes Strukturbauteil, insbesondere als B-Säule oder als steifigkeitsoptimiertes Bauteil in Fahrzeugen zum Einsatz.
Das Formen des erfindungsgemäßen Halbzeugs zu einem Bauteil kann mittels Tiefziehen, Rollprofilieren, Biegen, Abkanten oder einer Kombination daraus durchgeführt werden.
Das Fügen des erfindungsgemäßen Halbzeugs kann auf unterschiedliche Arten erfolgen, vorzugsweise mittels Nieten, Kleben, Schrauben, Krimpen, Bördeln etc..
Beispielhafte Einsatzgebiete und Anwendungsfälle des erfindungsgemäßen Halbzeugs wären:
- Flächige Bauteile in Fahrzeugen mit Anforderungen an Crashdeformationswiderstand, zum Beispiel Bodenblech, Stirnwand etc.
- Längliche Bauteile in Fahrzeugen mit Anforderungen an Crash-Deformationswiderstand, zum Beispiel Stoßfänger-Querträger, Seitenaufprallträger etc.
- Bauteilanwendungen für Panzerung, insbesondere in Fahrzeugen als Bodenblech, als seitlich angeordnete Panzerplatten und im Dach
- Bauteilanwendungen in Bereichen in denen besondere Anforderungen z. B. an thermische, elektromagnetische und/oder akustische Abschirmung und/oder Dämpfung und/oder Leitfähigkeit gestellt werden
- Rumpfschalen und Tragflächenelementen in Flugzeugen
- Crashboxen für Schienenfahrzeuge, insbesondere durch Variation von metallischer Schicht und/oder Faser-Polymerverbundsystem kann gezielt das Falten im Crash gesteuert werden.
Kurze Beschreibung der Zeichnung
Im Folgenden wird die Erfindung anhand einer Zeichnung näher erläutert. Gleiche Teile sind stets mit gleichen Bezugszeichen versehen. Es zeigen: Fig. 1 : einen schematischen Schnitt durch eine erste Ausgestaltung eines
Halbzeugs,
Fig. 2: einen schematischen Schnitt durch eine zweite Ausgestaltung eines Halbzeugs, Fig. 3: einen schematischen Schnitt durch eine dritte Ausgestaltung eines Halbzeugs, Fig. 4: einen schematischen Schnitt durch eine vierte Ausgestaltung eines Halbzeugs, Fig. 5: einen schematischen Schnitt durch eine fünfte Ausgestaltung eines Halbzeugs, Fig. 6: einen schematischen Schnitt durch eine erste Ausgestaltung eines erfindundgsgemä- ßen Halbzeugs und
Fig. 7: einen schematischen Schnitt durch eine zweite Ausgestaltung eines erfindungsgemäßen Halbzeugs.
Beschreibung der bevorzugten Ausführungsform
In Fig. 1 ist ein schematischer Schnitt durch eine erste Ausgestaltung eines Halbzeugs (1) dargestellt. Das Halbzeug (1) umfasst eine erste metallische Schicht (2) in Form eines Metallblechs, vorzugsweise eines Stahlblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und eine zweite metallische Schicht (3), vorzugsweise ein monolithisches Material aus einem flexibel gewalzten Blech, welches bereichsweise unterschiedliche Dicken (d, D) aufweist. Zwischen den beiden Blechen (2, 3) ist ein Faser-Polymerverbundsystem (4) angeordnet, welches beispielsweise aus einer thermoplastischen Matrix, vorzugsweise einem Blend aus PA-PE, mit einem Fasermaterial aus Karbon oder Glas, welches in der kompletten Schicht insbesondere einen Faseranteil (4.1) zwischen 20 und 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) aufweist, besteht. Das Halbzeug (1) weist eine Länge (L), eine Breite (B) und eine Dicke (H) auf, wobei die Dicke (H) des Halbzeugs (1) im Wesentlichen konstant ist, so dass durch die bereichsweise größere Dicke (D) des Blechs (3) bei gleichzeitiger Reduzierung der Dicke (Einzelschichtdicke) der Schicht (4) in diesem Bereich eine höhere Steifigkeit und/oder Festigkeit im Halbzeug (1) lokal, definiert eingestellt werden kann.
In Fig. 2 ist ein schematischer Schnitt durch eine zweite Ausgestaltung eines Halbzeugs ( ) dargestellt. Das Halbzeug ( ) umfasst eine erste metallische Schicht (2) in Form eines Metallblechs, vorzugsweise eines Stahlblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und eine zweite metallische Schicht (3') in Form eines Metallblechs, wobei die Metallbleche (2, 3') aus dem gleichen Material gebildet sein können oder aus unterschiedlichen Materialien bestehen können, insbesondere aus einer Stahl-, Aluminium- oder Magnesiumlegierung. Zwischen den beiden Blechen (2, 3') ist ein Faser-Polymerverbundsystem (4) angeordnet, welches bei- spielsweise aus einer duroplastischen Matrix, vorzugsweise einem Epoxidharz, mit einem Fasermaterial aus Glas oder Karbon, wobei insbesondere unterschiedliche Bereiche in der Schicht (4) mit unterschiedlichen Faseranteilen (4.1, 4.2), beispielsweise in mindestens einem Bereich ein Faseranteil (4.1) zwischen 20 und 40 Vol.-% und in mindestens einem weiteren Bereich ein Faseranteil (4.2) > 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) vorgesehen ist, besteht. Das Halbzeug (Γ) weist eine Länge (L), eine Breite (B) und eine Dicke (H) auf, wobei durch die bereichsweise unterschiedlichen Faseranteile (4.1, 4.2) innerhalb der Schicht (4) insbesondere entlang der Länge (L) des Halbzeugs ( ) unterschiedliche Eigenschaften lokal, definiert eingestellt werden können. Falls das Halbzeug (Γ) noch einem Formen zu einem dreidimensional Bauteil zugeführt wird, ist darauf zu achten, dass die duroplastische Matrix noch nicht (voll-) ausgehärtet ist, sondern die Aushärtung erst im Zuge des Formens oder nachträglich erfolgt.
In Fig. 3 ist ein schematischer Schnitt durch eine dritte Ausgestaltung eines Halbzeugs (1 ") dargestellt. Das Halbzeug (1 ") umfasst eine erste metallische Schicht (2) in Form eines Metallblechs, vorzugsweise eines Stahlblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und eine zweite metallische Schicht (3) in Form eines dreidimensional geformten Metallblechs, vorzugsweise eines Stahlblechs mit einer konstanten Dicken (d). Zwischen den beiden Blechen (2, 3") ist ein Faser-Polymerverbundsystem (4) angeordnet, welches beispielsweise aus einer thermoplastischen Matrix, vorzugsweise einem Blend aus PA-PE, mit einem Fasermaterial aus Karbon, welches in der kompletten Schicht insbesondere einen Faseranteil (4.1) zwischen 20 und 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) aufweist, besteht. Das Halbzeug (1) weist eine Länge (L), eine Breite (B) und unterschiedliche Dicken (h, H) insbesondere entlang der Länge (L) auf. Durch die unterschiedlichen Dicken (h, H) können unterschiedliche Eigenschaften lokal, definiert eingestellt werden.
In Fig. 4 ist ein schematischer Schnitt durch eine vierte Ausgestaltung eines Halbzeugs (1"') dargestellt. Das Halbzeug ( ") umfasst eine erste metallische Schicht (2) in Form eines Metallblechs, vorzugsweise eines Stahlblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und eine zweite metallische Schicht (3" '), welche aus zwei Blechen (3"' . l, 3"' .2), die über eine Fügeverbindung (3"' .3) als tailored„welded" blank miteinander verbunden sind, gebildet ist. Als Material für die Bleche kommen artgleiche oder artungleiche Materialien in Frage, beispielsweise bestehen beide Bleche (3"'. l, 3"'.2) aus Stahllegierungen mit unterschiedlichen Zusammensetzungen oder zur Gewichtsreduzierung insbesondere aus einer Stahllegierung (3"'. l) und eine Aluminiumlegierung (3"'.2), die bevorzugt mittels einer Reibrührverbindung miteinander verbunden sind. Neben einer Aluminiumlegierung kann auch eine Magnesiumlegierung mit einer im Vergleich zu einer Stahllegierung geringeren Dichte verwendet werden, um ein Halbzeug mit einem geringen Gewicht bereit zu stellen. Zwischen den beiden Blechen (2, 3" ') ist ein Faser-Polymerverbundsystem (4) angeordnet, welches beispielsweise aus einer duroplastischen Matrix, vorzugsweise einem Epoxidharz, mit einem Fasermaterial aus einer Kombination aus Naturfasern und mineralischen Fasern, wobei insbesondere ein Faseranteil (4.1) zwischen 20 und 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) in der kompletten Schicht vorgesehen ist, besteht. Das Halbzeug (1"') weist eine Länge (L), eine Breite (B) und eine Dicke (H) auf, wobei durch das tailo- red„welded" blank der zweiten Metallschicht (3"') insbesondere entlang der Länge (L) des Halbzeugs ( ") unterschiedliche Eigenschaften lokal, definiert eingestellt werden können. Falls das Halbzeug (1"') noch einem Formen zu einem dreidimensional Bauteil zugeführt wird, ist darauf zu achten, dass die duroplastische Matrix noch nicht (voll-) ausgehärtet ist, sondern die Aushärtung erst im Zuge des Formens oder nachträglich erfolgt.
In Fig. 5 ist ein schematischer Schnitt durch eine fünfte Ausgestaltung eines Halbzeugs (1" ") dargestellt. Das Halbzeug (1"") umfasst eine erste metallische Schicht (2) in Form eines Metallblechs, vorzugsweise eines Stahlblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und eine zweite metallische Schicht (3') in Form eines Metallblechs, wobei die Metallbleche (2, 3') aus einem Material gebildet sind oder aus unterschiedlichen Materialien bestehen können, insbesondere aus einer Stahl-, Aluminium- oder Magnesiumlegierung. Zwischen den beiden Blechen (2, 3') ist ein Faser-Polymerverbundsystem (4) angeordnet, welches beispielsweise aus einer thermoplastischen Matrix, vorzugsweise einem Polypropylen mit unterschiedlichen Fasermaterialien, wobei insbesondere unterschiedliche Bereiche in der Schicht (4) mit unterschiedlichen Faseranteilen (4.1, 4.3), beispielsweise in mindestens einem Bereich ein Faseranteil (4.1) zwischen 20 und 40 Vol.-% mit einer Glasfaser und in mindestens einem weiteren Bereich ein Faseranteil (4.3) <20 Vol.-% mit einer Karbonfaser bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) vorgesehen ist, besteht. Nicht dargestellt, kann der zweite Bereich auch einen Faseranteil (4.3) gleich 0 aufweisen, so dass dieser Bereich faserfrei sein kann. Des Weiteren umfasst das Halbzeug (1 "") mindestens ein Inlay (5), welches zumindest bereichsweise innerhalb des Faser-Polymerverbundsystems (4) angeordnet ist. Das Halbzeug (1" ") weist eine Länge (L), eine Breite (B) und eine Dicke (H) auf, wobei durch das Inlay (5) innerhalb der Schicht (4) in diesem Bereich, insbesondere wenn das Inlay (5) aus einem Elektroblech besteht, die Abschirmungs- und Dämpfungseigenschaften im Halbzeug (1" ") respektive im herzustellenden Bauteil lokal, mit einer integrierten Funktionalität verbessert werden kann. Des Weiteren kann das Inlay (5) auch eine Schicht bestehend aus einem unverstärkten thermoplastischen Kunststoff umfassen und zur lokalen Veränderung von Steifigkeit-, Festigkeitseigenschaften und akustischen Eigenschaften dienen.
In Fig. 6 ist das erfindungsgemäße Halbzeug (1"" ') in einer ersten erfindungsgemäßen Ausführung dargestellt, nämlich umfassend eine metallische Schicht (2) in Form eines Metallblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm und ein Faser-Polymerverbundsystem (4), welches beispielsweise aus einer duroplastischen Matrix, vorzugsweise einem Epoxidharz, mit einem Fasermaterial aus Glas oder Karbon, wobei insbesondere unterschiedliche Bereiche in der Schicht (4) mit unterschiedlichen Faseranteilen (4.1, 4.2), beispielsweise in mindestens einem Bereich ein Faseranteil (4.1) zwischen 20 und 40 Vol.-% und in mindestens einem weiteren Bereich ein Faseranteil (4.2) > 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) vorgesehen ist, besteht. Das Halbzeug ( "") weist eine Länge (L), eine Breite (B) und eine Dicke (h) auf, wobei durch die bereichsweise unterschiedlichen Faseranteile (4.1, 4.2) innerhalb der Schicht (4) insbesondere entlang der Länge (L) des Halbzeugs ( ) unterschiedliche Eigenschaften lokal, definiert eingestellt werden können. Hier nicht dargestellt, kann alternativ die Schicht des Faser-Polymerverbundsystems homogen ausgebildet sein und die metallische Schicht kann unterschiedliche Eigenschaften aufweisen, beispielsweise als Tailored Product ausgebildet sein.
In Fig. 7, welche einen schematischen Schnitt durch eine zweite Ausgestaltung eines erfindungsgemäßen Halbzeugs zweigt, umfasst das erfindungsgemäße Halbzeug (l"" ") eine metallische Schicht (2) in Form eines Metallblechs mit einer Dicke (d) zwischen 0, 1 bis 0,6 mm, welche zwischen zwei Faser-Polymerverbundsystem-Schichten (4) angeordnet ist. Die Schichten (4) bestehen beispielsweise aus einer thermoplastischen Matrix, vorzugsweise einem Polypropylen mit einem Fasermaterial aus Glas oder Karbon, wobei insbesondere unterschiedliche Bereiche in den Schichten (4) mit unterschiedlichen Faseranteilen (4.1, 4.2), beispielsweise in mindestens einem Bereich ein Faseranteil (4.1) zwischen 20 und 40 Vol.-% und in mindestens einem weiteren Bereich ein Faseranteil (4.2) > 40 Vol.-% bezogen auf die Schicht (Gesamtvolumen) des Faser-Polymerverbundsystems (4) vorgesehen sind. Das Halbzeug (1"" ") weist eine Länge (L), eine Breite (B) und eine Dicke (h) auf, wobei durch die bereichsweise unterschiedlichen Faseranteile (4.1, 4.2) innerhalb der Schichten (4) insbesondere entlang der Länge (L) des Halbzeugs (Γ) unterschiedliche Eigenschaften lokal, definiert eingestellt werden können. Hier nicht dargestellt, können alternativ eine oder beide Schichten des Faser-Polymerverbundsystems homogen ausgebildet sein oder aus unterschiedlichen Matrix- Systemen bestehen, und/oder die metallische Schicht kann unterschiedliche Eigenschaften aufweisen, beispielsweise kann die metallische Schicht aus einem Tailored Product gebildet sein.
Die Erfindung ist nicht auf die in der Zeichnung dargestellten Ausführungsbeispiele, insbesondere ist die Anzahl der Schichten nicht auf drei beschränkt. Insbesondere können auch noch weitere Schichten aus Faser-Polymerverbundsystemen vorgesehen werden. Auch andere Materialien hinsichtlich Fasern und Matrix sind verwendbar. Des Weiteren können die Bleche (2, 3', 3", 3"'), wenn sie aus einer Stahllegierung bestehen, mit einer Korrosionsschutzschicht, vorzugsweise auf Zink-Basis, zumindest einseitig beschichtet sein. Insbesondere zur Erhöhung der Haftung zwischen der metallischen Schicht und der Schicht aus Faser-Polymerverbundsystem (4) kann das Blech (2, 3', 3", 3" ') zumindest einseitig auf der der Schicht (4) zugewandten Seite mit einem Haftvermittler beschichtet sein.
Bezugszeichenliste
Halbzeug
2 erste metallische Schicht, Blech
3 3 3 3 zweite metallische Schicht, Blech
3"' .1, 3" '.2 Bleche unterschiedlicher Zusammensetzung/Materialien
3"' .3 Fügeverbindung
4 Faser-Polymerverbundsystem
4.1, 4.2, 4.3 Bereiche mit unterschiedlichem Faseranteil
5 Inlay
d, D Dicke der metallischen Schicht
h, H Dicke des Halbzeugs

Claims

Patentansprüche
1. Halbzeug (1, 1 ', 1 ", 1"', 1 "", 1""', 1 " "") umfassend eine metallische Schicht (2, 3, 3', 3", 3"') mit mindestens einer stoffschlüssig angebundenen Schicht aus einem Faser-Polymerverbundsystem (4), welches eine Dicke (h, H), Breite (B) und Länge (L) aufweist,
dadurch gekennzeichnet, dass
das Halbzeug (1, 1 ', 1", 1 "', 1 " ", 1 " "', 1 " "") über seine Dicke (D), Breite (B) und/oder Länge (L) zumindest bereichsweise unterschiedliche Eigenschaften aufweist.
2. Halbzeug nach Anspruch 1, dadurch gekennzeichnet, dass die metallische Schicht (3, 3", 3"') zumindest bereichsweise variierende geometrische und/oder mechanische Eigenschaften aufweist.
3. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht (4) aus Faser-Polymerverbundsystem zumindest bereichsweise variierende geometrische, elektromagnetische, dämpfende und/oder mechanische Eigenschaften aufweist.
4. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Halbzeug (1, , 1 ", ", 1 "", l""") mindestens eine weitere Schicht aus einem Faser-Polymerverbundsystem umfasst, die insbesondere vollflächig oder partiell angeordnet zu den anderen Schichten in dem Halbzeug vorliegen und stoffschlüssig miteinander verbunden sind.
5. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die metallische Schicht (2, 3', 3", 3" ') eine Dicke zwischen 0, 1 und 0,6 mm und die Schicht (4) aus Faser-Polymerverbundsystem eine Dicke zwischen 0,2 und 1,5 mm aufweist.
6. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Inlay (5) zumindest bereichsweise innerhalb des Faser-Polymerverbundsystems (4) angeordnet ist, welches aus einem metallischen, einem graphitähnlichen und/oder einem polymeren Material besteht.
7. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Halbzeug ( " ") eine metallische Schicht (2) mit einer stoffschlüssig angebundenen Schicht aus einem Faser-Polymerverbundsystem (4) aufweist.
8. Halbzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Halbzeug (l"" ") eine metallische Schicht (2) umfasst, welche zwischen zwei Schichten (4) aus einem Faser-Polymerverbundsystem angeordnet ist.
9. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht (4) aus dem Faser-Polymerverbundsystem zumindest bereichsweise einen Füllstoff aufweist.
10. Halbzeug nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Haftvermittlerschicht zwischen metallischer Schicht (2, 3, 3', 3", 3"') und der Schicht (4) aus Faser-Polymerverbundsystem angeordnet ist.
11. Verwendung des Halbzeugs (1, 1', 1", 1" ', 1 "", 1 " "', 1 " "") nach einem der vorgenannten Ansprüche, insbesondere nach einem Formen des Halbzeugs (1, , 1", ", 1 "", " ", l """) zu einem Bauteil, als Bauteil für Fahrzeuge, insbesondere für Straßen- und schienengebundene Fahrzeuge sowie Fahrzeuge der Luft und Raumfahrt.
PCT/EP2018/052881 2017-02-06 2018-02-06 Halbzeug mit unterschiedlichen eigenschaften WO2018141982A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201834.8 2017-02-06
DE102017201834.8A DE102017201834A1 (de) 2017-02-06 2017-02-06 Halbzeug mit unterschiedlichen Eigenschaften

Publications (1)

Publication Number Publication Date
WO2018141982A1 true WO2018141982A1 (de) 2018-08-09

Family

ID=61188800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/052881 WO2018141982A1 (de) 2017-02-06 2018-02-06 Halbzeug mit unterschiedlichen eigenschaften

Country Status (2)

Country Link
DE (1) DE102017201834A1 (de)
WO (1) WO2018141982A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121882A1 (de) * 2018-09-07 2020-03-12 Auto-Kabel Management Gmbh Strukturelement für ein Kraftfahrzeug und Verfahren zum Herstellen eines Strukturelements
EP3792375A1 (de) 2019-09-10 2021-03-17 ThyssenKrupp Steel Europe AG Toleranzausgleich durch metall-kunststoff-hybridwerkstoff
DE102020202818A1 (de) 2020-03-05 2021-09-09 Thyssenkrupp Steel Europe Ag Hybrides Metall-Kunststoffhalbzeug mit verbessertem Wärmedurchgang
DE102020202813A1 (de) 2020-03-05 2021-09-09 Thyssenkrupp Steel Europe Ag Drückwalzen von Metall-Kunststoff-Halbzeugen
WO2022080369A1 (ja) * 2020-10-15 2022-04-21 キョーラク株式会社 パネル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204407A1 (de) * 2018-03-22 2019-09-26 Thyssenkrupp Ag Funktionsintegrierte Temperierung in Stahl-Kunststoff-Hybriden durch wärmeleitfähige Füllstoffe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045954A2 (de) * 2000-12-07 2002-06-13 Henkel Kommanditgesellschaft Auf Aktien Mehrschichtiger formkörper mit lokal begrenzten verstärkungselementen
WO2002078951A1 (en) 2001-03-30 2002-10-10 Saab Ab Metal-composite laminates and a method for fabricating same
WO2005002845A2 (en) * 2003-07-03 2005-01-13 Stork Fokker Aesp B.V. Laminate with local reinforcement
EP1683914A1 (de) * 2005-01-20 2006-07-26 Voith Paper Patent GmbH Schaberklinge
EP1431026B1 (de) 2002-12-20 2008-08-06 Stork Fokker AESP B.V. Laminat mit stumpf geschweissten Metallschichten
DE102007019716A1 (de) * 2007-04-26 2008-10-30 Airbus Deutschland Gmbh Faser-Metall-Laminat-Panel
DE102011015071A1 (de) 2011-03-24 2012-09-27 Thyssenkrupp Steel Europe Ag Verbundwerkstoff und Strukturbauteil für ein Kraftfahrzeug
DE102011109724A1 (de) * 2011-08-06 2013-02-07 Daimler Ag Faserverstärktes Kunststoffverbundbauteil, Faser-Matrix-Halbzeug und Herstellungsverfahren
DE102011088932A1 (de) * 2011-12-19 2013-06-20 Robert Bosch Gmbh Verbundkörper und Verfahren zum Herstellen eines Verbundkörpers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105415769B (zh) 2011-02-21 2019-07-16 多产研究有限责任公司 包括不同性能的区域的复合材料和方法
DE102012003731A1 (de) 2012-02-28 2013-08-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Halbzeug für die Herstellung eines Faserverbund-Metallhybridlaminats und Verfahren zur Herstellung eines derartigen Halbzeuges
DE102012111488A1 (de) 2012-11-27 2014-05-28 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines Strukturbauteils, insbesondere für eine Karosserie
DE102013105080B4 (de) 2013-05-17 2016-06-23 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung von Halbzeugen oder Bauteilen aus faserverstärktem thermoplastischen Kunststoff, nach dem Verfahren hergestelltes Halbzeug und daraus hergestelltes Bauteil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045954A2 (de) * 2000-12-07 2002-06-13 Henkel Kommanditgesellschaft Auf Aktien Mehrschichtiger formkörper mit lokal begrenzten verstärkungselementen
WO2002078951A1 (en) 2001-03-30 2002-10-10 Saab Ab Metal-composite laminates and a method for fabricating same
EP1431026B1 (de) 2002-12-20 2008-08-06 Stork Fokker AESP B.V. Laminat mit stumpf geschweissten Metallschichten
WO2005002845A2 (en) * 2003-07-03 2005-01-13 Stork Fokker Aesp B.V. Laminate with local reinforcement
EP1683914A1 (de) * 2005-01-20 2006-07-26 Voith Paper Patent GmbH Schaberklinge
DE102007019716A1 (de) * 2007-04-26 2008-10-30 Airbus Deutschland Gmbh Faser-Metall-Laminat-Panel
DE102011015071A1 (de) 2011-03-24 2012-09-27 Thyssenkrupp Steel Europe Ag Verbundwerkstoff und Strukturbauteil für ein Kraftfahrzeug
DE102011109724A1 (de) * 2011-08-06 2013-02-07 Daimler Ag Faserverstärktes Kunststoffverbundbauteil, Faser-Matrix-Halbzeug und Herstellungsverfahren
DE102011088932A1 (de) * 2011-12-19 2013-06-20 Robert Bosch Gmbh Verbundkörper und Verfahren zum Herstellen eines Verbundkörpers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121882A1 (de) * 2018-09-07 2020-03-12 Auto-Kabel Management Gmbh Strukturelement für ein Kraftfahrzeug und Verfahren zum Herstellen eines Strukturelements
US11208059B2 (en) 2018-09-07 2021-12-28 Auto-Kabel Management Gmbh Structural element for a motor vehicle and method of manufacturing a structural element
EP3792375A1 (de) 2019-09-10 2021-03-17 ThyssenKrupp Steel Europe AG Toleranzausgleich durch metall-kunststoff-hybridwerkstoff
DE102020202818A1 (de) 2020-03-05 2021-09-09 Thyssenkrupp Steel Europe Ag Hybrides Metall-Kunststoffhalbzeug mit verbessertem Wärmedurchgang
DE102020202813A1 (de) 2020-03-05 2021-09-09 Thyssenkrupp Steel Europe Ag Drückwalzen von Metall-Kunststoff-Halbzeugen
WO2022080369A1 (ja) * 2020-10-15 2022-04-21 キョーラク株式会社 パネル

Also Published As

Publication number Publication date
DE102017201834A1 (de) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018141982A1 (de) Halbzeug mit unterschiedlichen eigenschaften
EP2481569B1 (de) Kraftfahrzeugbauteil und Verfahren zur Herstellung des Kraftfahrzeugbauteils
EP2331318B1 (de) Faserverbundbauteil zur energieabsorption im crash-fall für ein luft- oder raumfahrzeug, rumpfstrukturabschnitt eines luft- oder raumfahrzeugs und luft- oder raumfahrzeug
DE102013105080B4 (de) Verfahren zur Herstellung von Halbzeugen oder Bauteilen aus faserverstärktem thermoplastischen Kunststoff, nach dem Verfahren hergestelltes Halbzeug und daraus hergestelltes Bauteil
DE19939227B4 (de) Verbundwerkstoff
EP2688743A1 (de) Verbundwerkstoff und strukturbauteil für ein kraftfahrzeug
DE102018213456A1 (de) Gestaltungsmerkmale von mit ungleichem Material verstärkten Rohlingen und Stangenpresslingen zum Formen
DE102015224388B4 (de) Faserverstärktes Kunststoffelement für Fahrzeuge, Verfahren zum Herstellen von diesem und Fahrzeug
EP2650108A1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils aus einem Metallträger und einer Beschichtung aus faserverstärktem Kunststoff, Halbzeug oder Bauteil hierfür und Verwendung zur Herstellung eines Strukturbauteils
DE102016116552A1 (de) Vorrichtung zum Laminieren eines Faserstrangs und Herstellungsverfahren für ein Produkt, welches dieselbe verwendet
DE102013100773B4 (de) Strukturelement zur axialen Kraftaufnahme
WO2010031372A1 (de) Verbindungen zwischen einem monolithischen metallbauteil und einem endlos faserverstärkten laminatbauteil sowie verfahren zur herstellung derselben
DE102011011387B4 (de) Verfahren zur Herstellung eines mehrschichtigen Faserkunststoffverbundhalbzeugs
DE102013202046B4 (de) Verfahren zur Herstellung von Bauteilen aus Faser-Verbundwerkstoffen
EP2732946B1 (de) Komposit, Bauteil hieraus sowie Verfahren zur Herstellung hierfür
EP3405341B1 (de) Schichtverbund, aufgebaut aus einer ersten schicht aus einem ersten material und einer zweiten schicht aus einem mit endlosfasern verstärkten polymer
DE102014108112A1 (de) Verfahren zur Herstellung eines Verbundbauteils und Verbundbauteil
DE102011113319B4 (de) Karosserie- oder Fahrwerksbauteil von Kraftfahrzeugen mit Kurzfaser verstärktem Verstärkungsteil und Herstellungsverfahren
EP4272936A1 (de) Faserverstärktes, als sichtcarbon-bauteil ausgebildetes composite-bauteil, textile fläche und verwendung der textilen fläche für ein als sichtcarbon-bauteil ausgebildetes composite-bauteil sowie verfahren zur herstellung eines solchen composite-bauteils
DE10238669A1 (de) Dreidimensional geformtes Bauteil, insbesondere Kraftfahrzeug-Karosseriebauteil
DE102014225576A1 (de) Verbundbauteil sowie ein Verfahren zu seiner Herstellung und dessen Verwendung
WO2018077710A1 (de) Mehrschichtiges strukturbauteil, verfahren zu dessen herstellung und verwendungen dafür
DE102019206217A1 (de) Fahrwerklenker
DE102012212610A1 (de) Verfahren zur Herstellung von Leichtbauelementen aus kohlenstofffaserverstärktem, thermoplastischem Kunststoff
DE102017222652A1 (de) Faserverstärkte Fahrzeugkarosserie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18703973

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18703973

Country of ref document: EP

Kind code of ref document: A1