WO2018141531A1 - Hydrolager - Google Patents

Hydrolager Download PDF

Info

Publication number
WO2018141531A1
WO2018141531A1 PCT/EP2018/050754 EP2018050754W WO2018141531A1 WO 2018141531 A1 WO2018141531 A1 WO 2018141531A1 EP 2018050754 W EP2018050754 W EP 2018050754W WO 2018141531 A1 WO2018141531 A1 WO 2018141531A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
working chamber
hydraulic bearing
channel
separating arrangement
Prior art date
Application number
PCT/EP2018/050754
Other languages
English (en)
French (fr)
Inventor
Thomas Romanski
Viktor Klostreich
Original Assignee
Vibracoustic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vibracoustic Gmbh filed Critical Vibracoustic Gmbh
Priority to CN201880009256.5A priority Critical patent/CN110234902B/zh
Priority to US16/482,441 priority patent/US10941832B2/en
Publication of WO2018141531A1 publication Critical patent/WO2018141531A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0005Attachment, e.g. to facilitate mounting onto confer adjustability

Definitions

  • the invention relates to a hydraulic bearing, in particular for supporting a motor vehicle engine on a vehicle body, with a suspension spring, which supports a bearing core and encloses a working chamber, and with a compensation chamber, which is separated from the working chamber by a separating arrangement and bounded by a compensation membrane, wherein the Separating arrangement comprises at least two nozzle systems, each having a decoupling membrane and in each of which a damping channel is arranged, and wherein the compensation chamber and the working chamber are filled with a liquid and fluid-conductively connected to each other via the damping channels.
  • Such hydraulic bearings are also referred to as hydraulically damping bearings and are used to support a motor vehicle engine to a motor vehicle body, on the one hand to dampen the vibrations caused by road bumps and on the other hand to isolate acoustic vibrations.
  • the suspension spring made of an elastomeric material causes an acoustic insulation.
  • the vibrations caused by uneven road surfaces are damped by a hydraulic system, whereby the hydraulic system is formed by the fluid-damped working chamber, the compensation chamber and the damping channels.
  • the working chamber is increased or decreased by a movement of the suspension spring, whereby a hydraulic pressure is built up in the working chamber.
  • a hydraulic pressure is built up in the working chamber.
  • the liquid in the working chamber is forced into the compensation chamber via the damping channels.
  • the introduction of an elastic membrane within the nozzle systems is known.
  • the membrane oscillates at high-frequency, small-amplitude oscillations, so that a damping is decoupled via the damping channel.
  • DE 10 2004 059 406 B4 discloses a hydraulic bearing with a working chamber, which is separated by an intermediate plate from a compensation chamber. In the intermediate plate two channels are introduced.
  • the intermediate plate has two nozzle systems, each comprising a membrane.
  • each hydraulic bearing are known in which an intermediate plate separates a working chamber of a compensation chamber.
  • a damping channel is introduced in each case.
  • the hydraulic bearings each have a switchable trained Tilgerkanal.
  • the invention has for its object to provide a bearing having an improved rigidity.
  • the separating arrangement has a Tilgerkanal which connects the working chamber with the compensation chamber, wherein the Tilgerkanal is associated with a switchable actuator.
  • the parallel-connected absorber channel is opened by the switchable actuator, whereby the damping channel (Stuckerkanal) is turned off.
  • the selective tuning of the idle idler channel means that at the desired idling frequency, a reduction of the dy- namic rigidity is achieved and the insulation is improved.
  • the absorber channel is closed.
  • the opening of the absorber channel causes a lowering of the dynamic stiffness of the hydraulic bearing in a defined frequency range, which is dependent on the exact channel geometry.
  • the actuator is electrically, pneumatically or mechanically switchable. Due to the switchability, the absorber channel can be opened and closed by the actuator.
  • the connections required for the switchability are usually available especially in the case of electrical switchability in today's motor vehicle models. Such switchability is inexpensive and can be realized in a compact design.
  • the absorber channel penetrates the separation arrangement in the axial direction.
  • the absorber channel connects the working chamber with the compensation chamber.
  • the at least two nozzle systems are arranged in series in the direction from the working chamber to the compensation chamber, the damping channels of the nozzle systems joining one another.
  • the switchability in particular affects the nozzle system, which is directly adjacent to the working chamber.
  • the absorber channel has a radial boundary, which is formed on one of the nozzle systems.
  • the radial boundary along the entire length of the absorber channel is continuously extended. forms, so that no turbulence formed by unevenness of the radial boundary can form at a flow of the absorber channel through the liquid.
  • the separating arrangement has at least one intermediate chamber, which is in each case arranged between two adjacent nozzle systems.
  • the hydraulic bearing on a housing and a lid, wherein the lid is fixed by crimping of the housing to the housing.
  • crimping the housing a stable determination can be made, in which the individual components of the hydraulic bearing are braced against each other.
  • the compensation membrane is jammed between the lid and one of the nozzle systems.
  • the compensation membrane is clamped between the cover and the nozzle system, which borders directly on the compensation chamber.
  • the nozzle system may for this purpose have a recess into which the compensation membrane can be introduced.
  • Fig. 1 is a sectional view of a first embodiment of the hydraulic bearing, which has a pneumatic switchability, and
  • Fig. 2 is a sectional view of a second embodiment of the hydraulic bearing, which has an electrical switchability.
  • Fig. 1 and Fig. 2 each show a hydraulic bearing 10 for supporting a motor vehicle assembly, not shown, in particular for supporting a motor vehicle engine, not shown, on a motor vehicle body, not shown.
  • the hydraulic bearings 10 each have a suspension spring 1 1 made of an elastomeric material for supporting a vulcanized bearing core 12. At the bearing cores 12 of the motor vehicle engine is mounted (not shown).
  • the suspension springs 1 1 each define a working chamber 13, which is separated by means of a separating arrangement 14 of a compensation chamber 1 6.
  • the compensation chambers 1 6 are each bounded by a compensation membrane 15, which is also referred to as rolling bellows.
  • the chambers 13 and 16 are filled with a hydraulic fluid.
  • the separation assembly 14 may include at least a first nozzle system 19a and a second nozzle system 19b.
  • a damping channel 17a is formed in the first nozzle system 19a, and a damping channel 17b is formed in the second nozzle system 19b.
  • the chambers 13, 16 are connected to one another in a fluid-conducting manner via the damping channels 17a, 17b.
  • the nozzle systems 19a, 19b of the separating arrangement 14 furthermore each have a decoupling membrane 18a, 18b.
  • the decoupling membranes 18a, 18b can be accommodated in the nozzle systems 19a, 19b in a form-fitting manner, for example.
  • the separating arrangement 14 has a absorber channel 20, which connects the working chamber 13 with the compensation chamber 16.
  • the absorber channel 20 is assigned a switchable actuator 25 in each case.
  • the actuator 25 may in particular be electrically, pneumatically or mechanically switchable.
  • the embodiment of the hydraulic bearing 10 shown in FIG. 1 has a pneumatic switchability of the actuator 25.
  • the actuator 25 may be formed as an elastic element and connected to the compensating diaphragm 15.
  • the actuator 25 may further adjoin an air chamber 27, which may be acted upon via an opening 28 with a pressure.
  • the actuator 25 closes with the compensating diaphragm 15 the absorber passage 20 when the air chamber 27 is subjected to a pressure.
  • the elastic actuator 25 is sucked toward the air chamber 27, so that the actuator 25 opens the absorber passage 20.
  • the embodiment of the hydraulic bearing 10 shown in FIG. 2 has an electrical switchability of the actuator 25.
  • the hydraulic bearing 10 comprises an electric actuator 26, which can cause a movement of the actuator 25.
  • the actuator 25 can be brought into engagement with an inlet 29 formed on the absorber channel 20, that the actuator 25 and the inlet 29 close the absorber channel 20.
  • a connecting channel 30 is formed, which connects the Tilgerkanal 20 with the compensation chamber 16. The connecting channel 30 is released when the actuator 25 is moved away from the absorber channel 20. If the actuator 25 is moved toward the absorber channel 20, the connecting channel 30, and thus the absorber channel 20, is closed.
  • the actuator 25 and the inlet 29 can be positively connected to each other.
  • the actuator 25, for example, centrally have a projection which can engage in a formed on the inlet 29 recess.
  • the actuator 25 may include an arm which abuts the inlet 29 to close the connection channel 30.
  • the absorber channel 20 can be opened and closed. In this case, an eradication is achieved in the open state of the absorber channel 20.
  • the hydraulic bearing 10 has a low rigidity. This is particularly desirable in an idling mode of the engine in which high frequency and low amplitude vibrations are to be isolated.
  • the decoupling membranes 18a, 18b oscillate with vibrations having a low amplitude at high frequency and cause decoupling. By decoupling the vibrations damping is prevented.
  • the opening of the absorber channel 20 causes a lowering of the dynamic stiffness of the hydraulic bearing in a defined frequency range, which is dependent on the exact channel geometry.
  • the absorber channel 20 penetrates the separating arrangement 14 in the axial direction.
  • the nozzle systems 1 9a, 19b are arranged in the direction of the working chamber 13 to the compensation chamber 16 in series.
  • the damping channels 17a, 17b of the nozzle Sensing systems 19a, 19b close to each other and are interrupted only by an intermediate chamber 22, so that a continuous connection of the working chamber 13 with the compensation chamber 16 through the damping channels 17a, 17b is ensured.
  • the absorber channel 20 has a radial boundary 21, which is formed on one of the nozzle systems 19a, 19b.
  • the radial boundary 21 is formed in each case on the nozzle system 19 a, which borders directly on the working chamber 13.
  • the hydraulic bearings 10 each have a housing 24 and a cover 23.
  • the lid 23 is fixed by crimping the housing 24 to the housing 24.
  • the compensating diaphragm 15 is clamped between the cover 23 and one of the nozzle systems 19a, 19b.
  • the compensation diaphragm 15 is respectively clamped between the cover 23 and the nozzle system 19b, which borders directly on the compensation chamber 16.
  • the hydraulic bearings 10 have in common that they have improved stiffness due to their adaptability to the particular driving situation. In particular, a large spread of achievable with the hydraulic bearings 10 rigidity is ensured. Furthermore, the hydraulic bearings 10 offer a good possibility for eradication in the no-load range, ie in the range of relatively high frequencies.

Abstract

Die Erfindung betrifft ein Hydrolager (10), insbesondere zur Lagerung eines Kraftfahrzeugmotors an einer Fahrzeugkarosserie, mit einer Tragfeder (11), die einen Lagerkern (12) abstützt und eine Arbeitskammer (13) umschließt, und mit einer Ausgleichskammer (16), die von der Arbeitskammer (13) durch eine Trennanordnung (14) getrennt und von einer Ausgleichsmembran (15) begrenzt ist. Die Trennanordnung (14) umfasst wenigstens zwei Düsensysteme (19a, 19b), die jeweils eine Entkopplungsmembran (18a, 18b) aufweisen und in denen jeweils ein Dämpfungskanal (17a, 17b) angeordnet ist. Die Ausgleichskammer (16) und die Arbeitskammer (13) sind mit einer Flüssigkeit gefüllt und über die Dämpfungskanäle (17a, 17b) flüssigkeitsleitend miteinander verbunden. Die Trennanordnung (14) weist einen Tilgerkanal (20) auf, der die Arbeitskammer (13) mit der Ausgleichskammer (16) verbindet. Dem Tilgerkanal (20) ist ein schaltbares Stellglied (25) zugeordnet.

Description

Hydrolager
Die Erfindung betrifft ein Hydrolager, insbesondere zur Lagerung eines Kraftfahrzeugmotors an einer Fahrzeugkarosserie, mit einer Tragfeder, die einen Lagerkern abstützt und eine Arbeitskammer umschließt, und mit einer Ausgleichskammer, die von der Arbeitskammer durch eine Trennanordnung getrennt und von einer Ausgleichsmembran begrenzt ist, wobei die Trennanordnung wenigstens zwei Düsensysteme umfasst, die jeweils eine Entkopplungsmembran aufweisen und in denen jeweils ein Dämpfungskanal angeordnet ist, und wobei die Ausgleichskammer und die Arbeitskammer mit einer Flüssigkeit gefüllt und über die Dämpfungskanäle flüssigkeitsleitend miteinander verbunden sind.
Derartige Hydrolager werden auch als hydraulisch dämpfende Lager bezeichnet und dienen zur Abstützung eines Kraftfahrzeugmotors an einer Kraftfahrzeugkarosserie, um einerseits die von Fahrbahnunebenheiten hervorgerufenen Schwingungen zu dämpfen und andererseits akustische Schwingungen zu isolieren. So bewirkt die aus einem elastomeren Material bestehende Tragfeder eine akustische Isolierung. Die von Fahrbahnunebenheiten hervorgerufenen Schwingungen werden durch ein hydraulisches System gedämpft, wobei das hydraulische System durch die flüssigkeitsgedämpfte Arbeitskammer, die Ausgleichskammer und die Dämpfungskanäle gebildet wird.
Die Arbeitskammer wird durch eine Bewegung der Tragfeder vergrößert oder verkleinert, wodurch ein hydraulischer Druck in der Arbeitskammer aufgebaut wird. Infolge des Drucks wird die in der Arbeitskammer befindliche Flüssigkeit über die Dämpfungskanäle in die Ausgleichskammer gedrückt. Aufgrund des geringen Durchmessers der Dämpfungskanäle und der damit verbundenen hohen mechanischen Übersetzung, die sich aus dem äquivalenten, verdrängenden Querschnitt der Tragfeder in Relation zu dem Dämpfungskanalquerschnitt ergibt, werden die eingeleiteten Schwingungen gedämpft. Zur Entkopplung hochfrequenter, kleinamplitudiger Schwingungen, das heißt im akustisch relevanten Bereich, ist die Einbringung einer elastischen Membran innerhalb der Düsensysteme bekannt. Hierbei schwingt die Membran bei hochfrequenten, kleinamplitudigen Schwingungen, sodass eine Dämpfung über den Dämpfungskanal entkoppelt wird.
Im Leerlaufbetrieb des Motors ist eine dynamische Absenkung erwünscht, die kleiner als die statische Steifigkeit des Lagers ist. Dahingegen wird im Fahrbetrieb eine hohe dynamische Steifigkeit des Lagers verlangt, um die vorliegenden Motorschwingungen effizient zu bedämpfen. Hierzu ist es bekannt, Hydrolager mit einer Schaltvorrichtung zu versehen, mit der das Lager an einen Fahrbetrieb oder einen Leerlaufbetrieb des Motors angepasst werden kann.
DE 10 2004 059 406 B4 offenbart ein Hydrolager mit einer Arbeitskammer, die durch eine Zwischenplatte von einer Ausgleichskammer getrennt ist. In die Zwischenplatte sind zwei Kanäle eingebracht. Die Zwischenplatte weist zwei Düsensysteme auf, die jeweils eine Membran umfassen.
Aus DE 198 07 868 C2 und aus DE 602 02 234 T2 sind jeweils Hydrolager bekannt, bei denen eine Zwischenplatte eine Arbeitskammer von einer Ausgleichskammer trennt. In die Zwischenplatte ist jeweils ein Dämpfungskanal eingebracht. Ferner weisen die Hydrolager jeweils einen schaltbar ausgebildeten Tilgerkanal auf.
Der Erfindung liegt die Aufgabe zugrunde, ein Lager zu schaffen, das eine verbesserte Steifigkeit aufweist.
Zur Lösung der Aufgabe wird ein Hydrolager mit den Merkmalen des Anspruchs 1 vorgeschlagen.
Vorteilhafte Ausgestaltungen des Hydrolagers sind Gegenstand der abhängigen Ansprüche.
Bei dem erfindungsgemäßen Hydrolager weist die Trennanordnung einen Tilgerkanal auf, der die Arbeitskammer mit der Ausgleichskammer verbindet, wobei dem Tilgerkanal ein schaltbares Stellglied zugeordnet ist. Im Leerlaufbetrieb des Motors ist es gewünscht, dass das Hydrolager eine geringe Steifigkeit aufweist. Zu diesem Zweck wird der parallel geschaltete Tilgerkanal durch das schaltbare Stellglied geöffnet, wodurch der Dämpfungskanal (Stuckerkanal) ausgeschaltet wird. Die gezielte Abstimmung des Leerlauftilgerkanals führt dazu, dass bei der gewünschten Leerlauffrequenz eine Absenkung der dyna- msichen Steifigkeit erzielt und die Isolierung verbessert wird.
Im Fahrbetrieb hingegen wirken Schwingungen auf das Lager, die eine hohe Amplitude bei geringer Frequenz aufweisen. In diesem Fall ist eine hohe Steifigkeit der Entkopplungsmembranen gewünscht, um die Schwingungen zu dämpfen. Um die Steifigkeit der Entkopplungsmembranen zu erhöhen, ist es im Fahrbetrieb vorteilhaft, dass der Tilgerkanal verschlossen ist. Somit bewirkt das Öffnen des Tilgerkanals ein Absenken der dynamischen Steifigkeit des Hydrolagers in einem definierten Frequenzbereich, der von der genauen Kanalgeometrie abhängig ist.
Vorteilhaft ist das Stellglied elektrisch, pneumatisch oder mechanisch schaltbar. Aufgrund der Schaltbarkeit kann der Tilgerkanal durch das Stellglied geöffnet und verschlossen werden. Die für die Schaltbarkeit erforderlichen Anschlüsse sind insbesondere bei einer elektrischen Schaltbarkeit in heutigen Kraftfahrzeugmodellen üblicherweise verfügbar. Eine solche Schaltbarkeit ist kostengünstig und in kompakter Bauweise realisierbar.
Bei einer vorteilhaften Ausgestaltung durchdringt der Tilgerkanal die Trennanordnung in Axialrichtung. Dabei verbindet der Tilgerkanal die Arbeitskammer mit der Ausgleichskammer.
Vorteilhaft sind die wenigstens zwei Düsensysteme in Richtung von der Arbeitskammer zu der Ausgleichskammer in Reihe angeordnet, wobei die Dämpfungskanäle der Düsensysteme aneinander anschließen. Dadurch wirkt die Schaltbarkeit insbesondere auf das Düsensystem, das unmittelbar an die Arbeitskammer grenzt.
Bei einer vorteilhaften Ausgestaltung weist der Tilgerkanal eine radiale Begrenzung auf, die an einem der Düsensysteme ausgebildet ist. Somit ist die radiale Begrenzung entlang der gesamten Länge des Tilgerkanals durchgehend ausge- bildet, sodass sich bei einer Strömung des Tilgerkanals durch die Flüssigkeit keine durch Unebenheiten der radialen Begrenzung gebildeten Verwirbelungen bilden können.
Vorteilhaft weist die Trennanordnung wenigstens eine Zwischenkammer auf, die jeweils zwischen zwei benachbarten Düsensystemen angeordnet ist.
Vorteilhaft weist das Hydrolager ein Gehäuse und einen Deckel auf, wobei der Deckel mittels Bördeln des Gehäuses an dem Gehäuse festgelegt ist. Durch Bördeln des Gehäuses kann eine stabile Festlegung erfolgen, bei der die einzelnen Komponenten des Hydrolagers gegeneinander verspannt werden.
Bei einer vorteilhaften Ausgestaltung ist die Ausgleichsmembran zwischen dem Deckel und einem der Düsensysteme verklemmt. Insbesondere ist die Ausgleichsmembran zwischen dem Deckel und dem Düsensystem verklemmt, das unmittelbar an die Ausgleichskammer grenzt. Das Düsensystem kann zu diesem Zweck eine Ausnehmung aufweisen, in die die Ausgleichsmembran einbringbar ist.
Im Folgenden wird die Erfindung schematisch mit Bezug auf Zeichnungen anhand von Ausführungsbeispielen beschrieben. In den Zeichnungen zeigt:
Fig. 1 eine Schnittansicht eines ersten Ausführungsbeispiels des Hydrolagers, das eine pneumatische Schaltbarkeit aufweist, und
Fig. 2 eine Schnittansicht eines zweiten Ausführungsbeispiels des Hydrolagers, das eine elektrische Schaltbarkeit aufweist.
Fig. 1 und Fig. 2 zeigen jeweils ein Hydrolager 10 zur Lagerung eines nicht dargestellten Kraftfahrzeugaggregats, insbesondere zur Lagerung eines nicht dargestellten Kraftfahrzeugmotors an einer nicht dargestellten Kraftfahrzeugkarosserie.
Die Hydrolager 10 weisen jeweils eine Tragfeder 1 1 aus einem elastomeren Werkstoff zur Abstützung eines einvulkanisierten Lagerkerns 12 auf. An den Lagerkernen 12 ist der Kraftfahrzeugmotor befestigt (nicht dargestellt). Die Tragfedern 1 1 begrenzen jeweils eine Arbeitskammer 13, die mittels einer Trennanordnung 14 von einer Ausgleichskammer 1 6 getrennt ist. Die Ausgleichskammern 1 6 werden jeweils von einer Ausgleichsmembran 15 begrenzt, die auch als Rollbalg bezeichnet wird. Die Kammern 13 und 1 6 sind mit einer hydraulischen Flüssigkeit gefüllt. Die Trennanordnung 14 kann zumindest ein erstes Düsensystem 19a und ein zweites Düsensystem 19b aufweisen. In dem ersten Düsensystem 19a ist ein Dämpfungskanal 17a ausgebildet, und in dem zweiten Düsensystem 19b ist ein Dämpfungskanal 17b ausgebildet. Die Kammern 13, 1 6 sind über die Dämpfungskanäle 17a, 17b flüssigkeitsleitend miteinander verbunden.
Die Düsensysteme 19a, 19b der Trennanordnung 14 weisen ferner jeweils eine Entkopplungsmembran 1 8a, 18b auf. Die Entkopplungsmembranen 18a, 18b können in den Düsensystemen 19a, 19b beispielsweise formschlüssig aufgenommen sein. Ferner weist die Trennanordnung 14 einen Tilgerkanal 20 auf, der die Arbeitskammer 13 mit der Ausgleichskammer 16 verbindet. Dem Tilgerkanal 20 ist jeweils ein schaltbares Stellglied 25 zugeordnet.
Das Stellglied 25 kann insbesondere elektrisch, pneumatisch oder mechanisch schaltbar sein. Das in Fig. 1 gezeigte Ausführungsbeispiel des Hydrolagers 10 weist eine pneumatische Schaltbarkeit des Stellglieds 25 auf. Dazu kann das Stellglied 25 als elastisches Element ausgebildet und mit der Ausgleichsmembran 15 verbunden sein. Das Stellglied 25 kann ferner an eine Luftkammer 27 grenzen, die über eine Öffnung 28 mit einem Druck beaufschlagbar sein kann. So verschließt das Stellglied 25 mit der Ausgleichsmembran 15 den Tilgerkanal 20, wenn die Luftkammer 27 mit einem Druck beaufschlagt wird. Wenn die Luftkammer 27 entleert wird, sodass darin ein Unterdruck vorherrscht, wird das elastische Stellglied 25 in Richtung der Luftkammer 27 gesogen, sodass das Stellglied 25 den Tilgerkanal 20 öffnet.
Das in Fig. 2 gezeigte Ausführungsbeispiel des Hydrolagers 10 weist eine elektrische Schaltbarkeit des Stellglieds 25 auf. Dazu umfasst das Hydrolager 10 einen elektrischen Aktuator 26, der eine Bewegung des Stellglieds 25 bewirken kann. Das Stellglied 25 kann bei dem in Fig. 2 gezeigten Ausführungsbeispiel derart mit einem an dem Tilgerkanal 20 ausgebildeten Zulauf 29 in Eingriff gebracht werden, dass das Stellglied 25 und der Zulauf 29 den Tilgerkanal 20 verschließen. Zwischen dem Zulauf 29 und dem Stellglied 25 ist ein Verbindungskanal 30 ausgebildet, der den Tilgerkanal 20 mit der Ausgleichskammer 16 verbindet. Der Verbindungskanal 30 wird freigegeben, wenn das Stellglied 25 von dem Tilgerkanal 20 weg bewegt wird. Wird das Stellglied 25 zu dem Tilgerkanal 20 hin bewegt, wird der Verbindungskanal 30, und damit der Tilgerkanal 20, verschlossen.
In dem Ausführungsbeispiel gemäß Fig. 2 können das Stellglied 25 und der Zulauf 29 formschlüssig miteinander verbunden werden. Dazu kann das Stellglied 25 zum Beispiel mittig einen Vorsprung aufweisen, der in eine an dem Zulauf 29 ausgebildete Ausnehmung eingreifen kann. Ferner kann das Stellglied 25 einen Arm aufweisen, der an dem Zulauf 29 anliegt, um den Verbindungskanal 30 zu verschließen.
So kann mittels des schaltbaren Stellglieds 25 der Tilgerkanal 20 geöffnet und verschlossen werden. Dabei wird im geöffneten Zustand des Tilgerkanals 20 eine Tilgung erzielt. Ferner weist das Hydrolager 10 eine geringe Steifigkeit auf. Dies ist insbesondere in einem Leerlaufbetrieb des Motors wünschenswert, in dem hochfrequente und niedrigamplitudige Schwingungen isoliert werden sollen. Die Entkopplungsmembranen 18a, 18b schwingen mit Schwingungen, die eine niedrige Amplitude bei hoher Frequenz aufweisen, und bewirken eine Entkopplung. Durch die Entkopplung der Schwingungen wird eine Dämpfung verhindert.
Im geschlossenen Zustand des Tilgerkanals 20 ist die dynamische Steifigkeit des Hydrolagers 10 erhöht, wodurch eine geeignete Dämpfung von niedrigfrequenten und hochamplitudigen Schwingungen, wie sie im Fahrbetrieb stattfinden, erzielt wird.
Somit bewirkt das Öffnen des Tilgerkanals 20 ein Absenken der dynamischen Steifigkeit des Hydrolagers in einem definierten Frequenzbereich, der von der genauen Kanalgeometrie abhängig ist.
Der Tilgerkanal 20 durchdringt die Trennanordnung 14 in Axialrichtung. Die Düsensysteme 1 9a, 19b sind in Richtung von der Arbeitskammer 13 zu der Ausgleichskammer 16 in Reihe angeordnet. Die Dämpfungskanäle 17a, 17b der Dü- sensysteme 19a, 19b schließen aneinander an und sind lediglich durch eine Zwischenkammer 22 unterbrochen, sodass eine durchgängige Verbindung der Arbeitskammer 13 mit der Ausgleichskammer 16 durch die Dämpfungskanäle 17a, 17b gewährleistet ist.
Der Tilgerkanal 20 weist eine radiale Begrenzung 21 auf, die an einem der Düsensysteme 19a, 19b ausgebildet ist. In den Ausführungsbeispielen gemäß Fig. 1 und 2 ist die radiale Begrenzung 21 jeweils an dem Düsensystem 19a ausgebildet, das unmittelbar an die Arbeitskammer 13 grenzt.
Die Hydrolager 10 weisen jeweils ein Gehäuse 24 und einen Deckel 23 auf. Der Deckel 23 ist mittels Bördeln des Gehäuses 24 an dem Gehäuse 24 festgelegt. Dabei ist die Ausgleichsmembran 15 zwischen dem Deckel 23 und einem der Düsensysteme 19a, 19b verklemmt. In den Ausführungsbeispielen, wie sie in Fig. 1 und 2 gezeigt sind, ist die Ausgleichsmembran 15 jeweils zwischen dem Deckel 23 und dem Düsensystem 19b, das unmittelbar an die Ausgleichskammer 1 6 grenzt, verklemmt.
Die Hydrolager 10 haben gemein, dass sie aufgrund ihrer Adaptierbarkeit an die jeweilige Fahrsituation eine verbesserte Steifigkeit aufweisen. Insbesondere ist eine große Spreizung der mit den Hydrolagern 10 erzielbaren Steifigkeit gewährleistet. Ferner bieten die Hydrolager 10 eine gute Möglichkeit zur Tilgung im Leerlaufbereich, also im Bereich relativ hoher Frequenzen.
Bezugszeichenliste
Hydrolager
Tragfeder
Lagerkern
Arbeitskammer
Trennanordnung
Ausgleichsmembran
Ausgleichskammer
a Dämpfungskanal
b Dämpfungskanal
a Entkopplungsmembran
b Entkopplungsmembran
a Düsensystem
b Düsensystem
Tilgerkanal
Begrenzung
Zwischenkammer
Deckel
Gehäuse
Stellglied
Aktuator
Luftkammer
Öffnung
Zulauf
Verbindungskanal

Claims

Ansprüche
1 . Hydrolager (10), insbesondere zur Lagerung eines Kraftfahrzeugmotors an einer Fahrzeugkarosserie, mit einer Tragfeder (1 1 ), die einen Lagerkern (12) abstützt und eine Arbeitskammer (13) umschließt, und mit einer Ausgleichskammer (1 6), die von der Arbeitskammer (13) durch eine Trennanordnung (14) getrennt und von einer Ausgleichsmembran (15) begrenzt ist, wobei die Trennanordnung (14) wenigstens zwei Düsensysteme (19a, 19b) umfasst, die jeweils eine Entkopplungsmembran (18a, 18b) aufweisen und in denen jeweils ein Dämpfungskanal
(17a, 17b) angeordnet ist, und wobei die Ausgleichskammer (1 6) und die Arbeitskammer (13) mit einer Flüssigkeit gefüllt und über die Dämpfungskanäle (17a, 17b) flüssigkeitsleitend miteinander verbunden sind,
dadurch gekennzeichnet, dass die Trennanordnung (14) einen Tilgerkanal (20) aufweist, der die Arbeitskammer (13) mit der Ausgleichskammer (1 6) verbindet, wobei dem Tilgerkanal (20) ein schaltbares Stellglied (25) zugeordnet ist.
2. Hydrolager (10) nach Anspruch 1 , dadurch gekennzeichnet, dass das
Stellglied (25) elektrisch, pneumatisch oder mechanisch schaltbar ist.
3. Hydrolager (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Tilgerkanal (20) die Trennanordnung (14) in Axialrichtung durchdringt.
4. Hydrolager (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens zwei Düsensysteme (19a, 19b) in Richtung von der Arbeitskammer (13) zu der Ausgleichskammer (1 6) in Reihe angeordnet sind, wobei die Dämpfungskanäle (17a, 17b) der Düsensysteme (19a, 19b) aneinander anschließen.
5. Hydrolager (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Tilgerkanal (20) eine radiale Begrenzung (21 ) aufweist, die an einem der Düsensysteme (19a, 19b) ausgebildet ist.
6. Hydrolager (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Trennanordnung (14) wenigstens eine Zwischenkammer (22) aufweist, die jeweils zwischen zwei benachbarten Düsensystemen (19a, 19b) angeordnet ist.
7. Hydrolager (10) nach einem der vorstehenden Ansprüche, gekennzeichnet durch ein Gehäuse (24) und einen Deckel (23), wobei der Deckel (23) mittels Bördeln des Gehäuses (24) an dem Gehäuse (24) festgelegt ist.
8. Hydrolager nach Anspruch 7, dadurch gekennzeichnet, dass die Ausgleichsmembran (15) zwischen dem Deckel (23) und einem der Düsensysteme (19a, 19b) verklemmt ist.
PCT/EP2018/050754 2017-02-01 2018-01-12 Hydrolager WO2018141531A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880009256.5A CN110234902B (zh) 2017-02-01 2018-01-12 液压支承
US16/482,441 US10941832B2 (en) 2017-02-01 2018-01-12 Hydromount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017101968.5 2017-02-01
DE102017101968.5A DE102017101968B4 (de) 2017-02-01 2017-02-01 Hydrolager

Publications (1)

Publication Number Publication Date
WO2018141531A1 true WO2018141531A1 (de) 2018-08-09

Family

ID=61024746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050754 WO2018141531A1 (de) 2017-02-01 2018-01-12 Hydrolager

Country Status (4)

Country Link
US (1) US10941832B2 (de)
CN (1) CN110234902B (de)
DE (1) DE102017101968B4 (de)
WO (1) WO2018141531A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626531B (zh) * 2017-03-23 2021-09-07 青岛胶南海尔洗衣机有限公司 一种家用电器用底脚及家用电器
JP7000243B2 (ja) * 2018-04-26 2022-01-19 山下ゴム株式会社 防振装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807868C2 (de) 1998-02-25 2001-06-28 Freudenberg Carl Fa Hydraulisch dämpfendes Lager
DE60202234T2 (de) 2001-04-02 2005-06-02 Hutchinson Hydraulisches, schwingungsdämpfendes Lager
EP1544500A2 (de) * 2003-12-17 2005-06-22 Vibracoustic GmbH & Co. KG Hydrolager
US20140145383A1 (en) * 2012-10-26 2014-05-29 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP2743540A1 (de) * 2012-12-14 2014-06-18 Carl Freudenberg KG Umschaltbares Motorlager
DE102004059406B4 (de) 2003-12-12 2014-11-20 Tokai Rubber Industries, Ltd. Mit einem Fluid gefüllte Schwingungsdämpfungsvorrichtung
EP3045766A1 (de) * 2015-01-13 2016-07-20 TrelleborgVibracoustic GmbH Ausgleichsmembran für ein hydraulisch dämpfendes lager

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141332C2 (de) * 1991-12-14 1995-05-24 Freudenberg Carl Fa Umschaltbares Lager
FR2755489B1 (fr) * 1996-11-04 1999-01-08 Hutchinson Support antivibratoire hydraulique
DE19816763C1 (de) * 1998-04-16 1999-08-26 Freudenberg Carl Fa Schaltbares, hydraulisch dämpfendes Lager
CN1235880A (zh) 1998-05-19 1999-11-24 卡尔·弗罗伊登伯格公司 液压支承
JP3353082B2 (ja) * 2000-02-01 2002-12-03 東洋ゴム工業株式会社 切替型液封入式防振装置
WO2003008838A1 (en) * 2001-07-16 2003-01-30 Toyo Tire & Rubber Co., Ltd. Switching type liquid-contained vibration isolator
DE10213996A1 (de) * 2002-03-27 2003-10-16 Freudenberg Carl Kg Schaltbares Aggregatelager mit hydraulischer Dämpfung
US20040150145A1 (en) 2003-01-31 2004-08-05 Delphi Technologies Inc. Bi-state rate dip hydraulic mount
DE10359639B4 (de) * 2003-12-18 2014-01-30 Carl Freudenberg Kg Stützlager
DE102005004928B4 (de) 2005-02-02 2006-10-12 Carl Freudenberg Kg Hydrolager
US8556240B2 (en) * 2008-06-30 2013-10-15 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device and control method of the device used as engine mount
DE102012006282B4 (de) 2012-03-29 2016-03-31 Carl Freudenberg Kg Hydrolager
KR101628532B1 (ko) * 2014-11-18 2016-06-08 현대자동차주식회사 자동차용 액티브 엔진 마운트

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807868C2 (de) 1998-02-25 2001-06-28 Freudenberg Carl Fa Hydraulisch dämpfendes Lager
DE60202234T2 (de) 2001-04-02 2005-06-02 Hutchinson Hydraulisches, schwingungsdämpfendes Lager
DE102004059406B4 (de) 2003-12-12 2014-11-20 Tokai Rubber Industries, Ltd. Mit einem Fluid gefüllte Schwingungsdämpfungsvorrichtung
EP1544500A2 (de) * 2003-12-17 2005-06-22 Vibracoustic GmbH & Co. KG Hydrolager
US20140145383A1 (en) * 2012-10-26 2014-05-29 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP2743540A1 (de) * 2012-12-14 2014-06-18 Carl Freudenberg KG Umschaltbares Motorlager
EP3045766A1 (de) * 2015-01-13 2016-07-20 TrelleborgVibracoustic GmbH Ausgleichsmembran für ein hydraulisch dämpfendes lager

Also Published As

Publication number Publication date
DE102017101968A1 (de) 2018-08-02
US10941832B2 (en) 2021-03-09
CN110234902B (zh) 2021-02-05
CN110234902A (zh) 2019-09-13
US20200040961A1 (en) 2020-02-06
DE102017101968B4 (de) 2020-07-23

Similar Documents

Publication Publication Date Title
DE10037954B4 (de) Hydrolager
DE102004059406B4 (de) Mit einem Fluid gefüllte Schwingungsdämpfungsvorrichtung
DE2802896C2 (de) Gummilager mit hydraulischer Dämpfung
EP2132456B1 (de) Pneumatisch dämpfendes lager
DE102004001322B4 (de) Akustisch entkoppeltes Hydrolager
EP1031759B1 (de) Anordnung eines schaltbaren, hydraulisch dämpfenden Lagers
WO2018141531A1 (de) Hydrolager
DE102014224244A1 (de) Hydrolager sowie Kraftfahrzeug mit einem derartigen Hydrolager
WO2018219568A1 (de) Trennvorrichtung zum trennen einer arbeitskammer und einer ausgleichskammer eines hydraulisch dämpfenden lagers sowie ein hydraulisch dämpfendes lager
EP3586034B1 (de) Hydrolager zur lagerung eines aggregats eines kraftfahrzeugs
EP1544500B1 (de) Hydrolager
DE102018102130A1 (de) Hydraulisch dämpfendes Lager
DE102014211953A1 (de) Hydrolager sowie Kraftfahrzeug mit einem derartigen Hydrolager
EP3440379A1 (de) Hydrolager
DE102015016013A1 (de) Lagerungseinrichtung für einen Motor eines Kraftfahrzeugs
DE112021001891T5 (de) Fluidgefüllte Schwingungsdämpfungsvorrichtung
EP2730800B1 (de) Hydrolager
EP3535502B1 (de) Hydraulisch dämpfendes lager
EP0389839B1 (de) Verspannbares, hydraulisch gedämpftes Lagerelement
DE102012217427A1 (de) Hydrolager, insbesondere Aggregatlager für ein Kraftfahrzeug
DE102022115056A1 (de) Hydraulisch dämpfendes Lager
DE102013108602B4 (de) Hydrolager
DE102018116392A1 (de) Hydraulisch dämpfendes lager
DE102005035912B4 (de) Hydraulische Motorlager
DE102015016014A1 (de) Lagerungseinrichtung für einen Motor eines Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18701281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18701281

Country of ref document: EP

Kind code of ref document: A1