US10941832B2 - Hydromount - Google Patents

Hydromount Download PDF

Info

Publication number
US10941832B2
US10941832B2 US16/482,441 US201816482441A US10941832B2 US 10941832 B2 US10941832 B2 US 10941832B2 US 201816482441 A US201816482441 A US 201816482441A US 10941832 B2 US10941832 B2 US 10941832B2
Authority
US
United States
Prior art keywords
duct
actuating member
chamber
hydromount
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/482,441
Other versions
US20200040961A1 (en
Inventor
Thomas Romanski
Viktor Klostreich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vibracoustic SE
Original Assignee
Vibracoustic SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vibracoustic SE filed Critical Vibracoustic SE
Assigned to VIBRACOUSTIC GMBH reassignment VIBRACOUSTIC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Klostreich, Viktor, Romanski, Thomas
Publication of US20200040961A1 publication Critical patent/US20200040961A1/en
Application granted granted Critical
Publication of US10941832B2 publication Critical patent/US10941832B2/en
Assigned to VIBRACOUSTIC AG reassignment VIBRACOUSTIC AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIBRACOUSTIC GMBH
Assigned to VIBRACOUSTIC SE reassignment VIBRACOUSTIC SE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VIBRACOUSTIC AG
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0005Attachment, e.g. to facilitate mounting onto confer adjustability

Definitions

  • the invention relates to a hydromount, in particular for mounting a motor vehicle engine at a vehicle body, comprising a supporting spring supporting a mount core and surrounding a working chamber, and a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm, wherein the separating assembly includes at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed, and wherein the compensating chamber and the working chamber are filled with a liquid and are connected to each other in a liquid-conducting manner by the damping ducts.
  • Such hydromounts are also referred to as hydraulically damping mounts and serve for supporting a motor vehicle engine on a motor vehicle body in order to, on the one hand, dampen the vibrations caused by road bumps and, on the other hand, to provide isolation against acoustic vibrations.
  • the supporting spring consisting of an elastomeric material effects an acoustic isolation.
  • the vibrations caused by road bumps are dampened by a hydraulic system, with the hydraulic system being formed by the liquid-dampened working chamber, the compensating chamber, and the damping ducts.
  • the working chamber is made larger or smaller by a movement of the supporting spring, whereby a hydraulic pressure is built up in the working chamber. Due to the pressure, the liquid located in the working chamber is pressed via the damping ducts into the compensating chamber. Due to the small diameter of the damping ducts and the high mechanical transmission associated therewith, which results from the equivalent displacing cross-section of the supporting spring in relation to the damping duct cross-section, the introduced vibrations are absorbed or damped.
  • the incorporation of an elastic diaphragm within the nozzle systems is known.
  • the membrane vibrates with high-frequency, low-amplitude vibrations, so that a damping action is decoupled via the damping duct.
  • DE 10 2004 059 406 B4 discloses a hydromount with a working chamber separated from a compensating chamber by an intermediate plate. Two ducts are incorporated into the intermediate plate. The intermediate plate has two nozzle systems comprising one diaphragm each.
  • Hydromounts in which an intermediate plate separates a working chamber from a compensating chamber are known from each of DE 198 07 868 C2 and DE 602 02 234 T2.
  • One damping duct is incorporated into the intermediate plate in each case.
  • the hydromounts each include an absorber duct configured to be switchable.
  • the invention is based on the object of providing a mount that has an improved stiffness.
  • a hydromount with the features of claim 1 is proposed in order to achieve this object.
  • the separating assembly has an absorber duct connecting the working chamber with the compensating chamber, wherein a switchable actuating member is assigned to the absorber duct.
  • the hydromount has a low level of stiffness during the idle operation of the engine.
  • the absorber duct connected in parallel is opened by the switchable actuating member, whereby the damping duct (Stuckerkanal) is switched off.
  • the targeted adjustment of the idle-operation absorber duct results in achieving a reduction of the dynamic stiffness and in improving isolation at the desired idle-operation frequency.
  • the actuating member can be switched electrically, pneumatically or mechanically.
  • the absorber duct can be opened and closed by the actuating member because it is capable of being switched.
  • the electric terminals required for the switching capability are usually available in current motor vehicle models, particularly in the case of a capability of being electrically switched. Such a switching capability can be realized in a cost-effective manner and with a compact design.
  • the absorber duct penetrates the separating assembly in the axial direction.
  • the absorber duct connects the working chamber with the compensating chamber.
  • the at least two nozzle systems are arranged in series in the direction from the working chamber to the compensating chamber, with the damping ducts of the nozzle systems following one another.
  • the switching capability acts particularly on the nozzle system directly adjoining the working chamber.
  • the absorber duct has a radial boundary formed on one of the nozzle systems.
  • the radial boundary is formed in a continuous manner along the entire length of the absorber duct, so that no turbulences formed by irregularities in the radial boundary are able to form if the liquid flows through the absorber duct.
  • the separating assembly has at least one intermediate chamber that is disposed in each case between two adjacent nozzle systems.
  • the hydromount has a housing and a lid, the lid being fixed to the housing by flanging the housing.
  • the flanging of the housing can result in a stable fixation in which the individual components of the hydromount are clamped together.
  • the compensating diaphragm is clamped between the lid and one of the nozzle systems.
  • the compensating diaphragm is clamped between the lid and the nozzle system that directly adjoins the compensating chamber.
  • the nozzle system may have a recess into which the compensating diaphragm can be inserted.
  • FIG. 1 shows a sectional view of a first exemplary embodiment of the hydromount having a capability of being switched pneumatically
  • FIG. 2 shows a sectional view of a second exemplary embodiment of the hydromount having a capability of being switched electrically.
  • FIGS. 1 and 2 each show a hydromount 10 for supporting a motor vehicle unit that is not shown, in particular for supporting a motor vehicle engine that is not shown on a motor vehicle body that is not shown.
  • the hydromounts 10 each have a supporting spring 11 consisting of an elastomeric material for supporting a mount core 12 incorporated by vulcanization.
  • the motor vehicle engine (not shown) is attached to the mount cores 12 .
  • the supporting springs 11 each delimit a working chamber 13 , which is separated from a compensating chamber 16 by means of a separating assembly 14 .
  • the compensating chambers 16 are each delimited by a compensating diaphragm 15 , which is also referred to as a roller bellows.
  • the chambers 13 and 16 are filled with a hydraulic liquid.
  • the separating assembly 14 may have at least one first nozzle system 19 a and one second nozzle system 19 b .
  • a damping duct 17 a is formed in the first nozzle system 19 a
  • a damping duct 17 b is formed in the second nozzle system 19 b .
  • the chambers 13 , 16 are connected to each other in a liquid-conducting manner by the damping ducts 17 a , 17 b.
  • the nozzle systems 19 a , 19 b of the separating assembly 14 further include one decoupling diaphragm 18 a , 18 b each.
  • the decoupling diaphragms 18 a , 18 b may be accommodated in the nozzle systems 19 a , 19 b in a positive fit, for example.
  • the separating assembly 14 further has an absorber duct 20 connecting the working chamber 13 with the compensating chamber 16 .
  • a switchable actuating member 25 is assigned in each case to the absorber duct 20 .
  • the actuating member 25 may be switched electrically, pneumatically or mechanically.
  • the exemplary embodiment of the hydromount 10 shown in FIG. 1 has a pneumatic switchability of the actuating member 25 .
  • the actuating member 25 may be configured as an elastic member and connected to the compensating diaphragm 15 .
  • the actuating member 25 may further adjoin to an air chamber 27 which can be pressurized via an opening 28 .
  • the actuating member 25 closes the absorber duct 20 with the compensating diaphragm 15 when the air chamber 27 is pressurized.
  • the elastic actuating member 25 is sucked in the direction of the air chamber 27 so that the actuating member 25 opens the absorber duct 20 .
  • the exemplary embodiment of the hydromount 10 shown in FIG. 2 has an electric switchability of the actuating member 25 .
  • the hydromount 10 includes an electrical actuator 26 , which is capable of causing the actuating member 25 to move.
  • the actuating member 25 can be engaged with a feed 29 formed on the absorber duct 20 in such a way that the actuating member 25 and the feed 29 close the absorber duct 20 .
  • a connecting duct 30 which connects the absorber duct 20 with the compensating chamber 16 , is formed between the feed 29 and the actuating member 25 .
  • the connecting duct 30 is opened when the actuating member 25 is moved away from the absorber duct 20 . If the actuating member 25 is moved towards the absorber duct 20 , the connecting duct 30 , and thus the absorber duct 20 , is closed.
  • the actuating member 25 and the feed 29 can be positively connected.
  • the actuating member 25 may have a projection in the center, for example, which is capable of reaching into a recess formed on the feed 29 .
  • the actuating member 25 may have an arm resting against the feed 29 , in order to close the connecting duct 30 .
  • the absorber duct 20 can be opened and closed by means of the switchable actuating member 25 .
  • an absorptive action is obtained in the opened state of the absorber duct 20 .
  • the hydromount 10 has a low level of stiffness. This is desirable particularly in the case of an idle operation of the engine, in which high-frequency and low-amplitude vibrations are to the isolated.
  • the decoupling diaphragms 18 a , 18 b vibrate with vibrations having a low amplitude at a high frequency, and cause decoupling. A damping action is prevented by the decoupling of the vibrations.
  • the dynamic stiffness of the hydromount 10 is increased, whereby a suitable damping action of low-frequency and high-amplitude vibrations, as they occur during the driving operation, is obtained.
  • opening the absorber duct 20 causes a reduction of the dynamic stiffness of the hydromount in a defined frequency range, which depends on the exact geometry of the duct.
  • the absorber duct 20 penetrates the separating assembly 14 in the axial direction.
  • the nozzle systems 19 a , 19 b are arranged in series in the direction from the working chamber 13 to the compensating chamber 16 .
  • the damping ducts 17 a , 17 b of the nozzle systems 19 a , 19 b follow one another and are separated only by an intermediate chamber 22 , so that a continuous connection of the working chamber 13 to the compensating chamber 16 is ensured by the damping ducts 17 a , 17 b.
  • the absorber duct 20 has a radial boundary 21 formed on one of the nozzle systems 19 a , 19 b .
  • the radial boundary 21 is in each case formed on the nozzle system 19 a that directly adjoins the working chamber 13 .
  • the hydromounts 10 each have a housing 24 and a lid 23 .
  • the lid 23 is fixed to the housing 24 by flanging the housing 24 .
  • the compensating diaphragm 15 is clamped between the lid 23 and one of the nozzle systems 19 a , 19 b .
  • the compensating diaphragm 15 is in each case clamped between the lid 23 and the nozzle system 19 b that directly adjoins the compensating chamber 16 .
  • a common feature of the hydromounts 10 is that they have an improved stiffness due to being adaptable to the respective driving situation. In particular, a large spreading of the stiffness that can be obtained with the hydromounts 10 is ensured. Furthermore, the hydromounts 10 afford good absorption capabilities in the idle range, i.e. in the range of relatively high frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

A hydromount that is suitable for mounting a motor vehicle engine at a vehicle body includes a supporting spring supporting a mount core and surrounding a working chamber, and a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm. The separating assembly may have at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed. The compensating chamber and the working chamber may be filled with a liquid and may be connected to each other in a liquid-conducting manner by damping ducts. The separating assembly may have an absorber duct connecting the working chamber with the compensating chamber. A switchable actuating member may be assigned to the absorber duct.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a National Stage Patent Application of International Patent Application No. PCT/EP2018/050754, filed Jan. 12, 2018, which claims the benefit of German Application Serial No. 10 2017 101 968.5, filed Feb. 1, 2017, the contents of each are incorporated by reference in their entireties.
TECHNICAL FIELD
The invention relates to a hydromount, in particular for mounting a motor vehicle engine at a vehicle body, comprising a supporting spring supporting a mount core and surrounding a working chamber, and a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm, wherein the separating assembly includes at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed, and wherein the compensating chamber and the working chamber are filled with a liquid and are connected to each other in a liquid-conducting manner by the damping ducts.
BACKGROUND
Such hydromounts are also referred to as hydraulically damping mounts and serve for supporting a motor vehicle engine on a motor vehicle body in order to, on the one hand, dampen the vibrations caused by road bumps and, on the other hand, to provide isolation against acoustic vibrations. For example, the supporting spring consisting of an elastomeric material effects an acoustic isolation. The vibrations caused by road bumps are dampened by a hydraulic system, with the hydraulic system being formed by the liquid-dampened working chamber, the compensating chamber, and the damping ducts.
The working chamber is made larger or smaller by a movement of the supporting spring, whereby a hydraulic pressure is built up in the working chamber. Due to the pressure, the liquid located in the working chamber is pressed via the damping ducts into the compensating chamber. Due to the small diameter of the damping ducts and the high mechanical transmission associated therewith, which results from the equivalent displacing cross-section of the supporting spring in relation to the damping duct cross-section, the introduced vibrations are absorbed or damped.
In order to decouple high-frequency, low-amplitude vibrations, i.e. in the acoustically relevant range, the incorporation of an elastic diaphragm within the nozzle systems is known. In this case, the membrane vibrates with high-frequency, low-amplitude vibrations, so that a damping action is decoupled via the damping duct.
In idle operation of the engine, a dynamic reduction smaller than the static stiffness of the mount is desirable. In contrast, a high level of dynamic stiffness of the mount is demanded in the driving operation in order to efficiently dampen the prevailing engine vibrations. In this regard, it is known to provide hydromounts with a switching device with which the mount can be adapted to a driving operation or an idle operation of the engine.
DE 10 2004 059 406 B4 discloses a hydromount with a working chamber separated from a compensating chamber by an intermediate plate. Two ducts are incorporated into the intermediate plate. The intermediate plate has two nozzle systems comprising one diaphragm each.
Hydromounts in which an intermediate plate separates a working chamber from a compensating chamber are known from each of DE 198 07 868 C2 and DE 602 02 234 T2. One damping duct is incorporated into the intermediate plate in each case. Furthermore, the hydromounts each include an absorber duct configured to be switchable.
SUMMARY
The invention is based on the object of providing a mount that has an improved stiffness.
A hydromount with the features of claim 1 is proposed in order to achieve this object.
Advantageous embodiments of the hydromount are the subject matter of the dependent claims.
In the hydromount according to the invention, the separating assembly has an absorber duct connecting the working chamber with the compensating chamber, wherein a switchable actuating member is assigned to the absorber duct.
It is desirable that the hydromount has a low level of stiffness during the idle operation of the engine. For this purpose, the absorber duct connected in parallel is opened by the switchable actuating member, whereby the damping duct (Stuckerkanal) is switched off. The targeted adjustment of the idle-operation absorber duct results in achieving a reduction of the dynamic stiffness and in improving isolation at the desired idle-operation frequency.
In driving operation, however, vibrations having a high amplitude at a low frequency act on the mount. In this case, a high stiffness of the decoupling diaphragms is desirable in order to dampen the vibrations. In order to increase the stiffness of the decoupling diaphragms, it is advantageous during the driving operation that the absorber duct is closed. Therefore, opening the absorber duct causes a reduction of the dynamic stiffness of the hydromount in a defined frequency range, which depends on the exact geometry of the duct.
Advantageously, the actuating member can be switched electrically, pneumatically or mechanically. The absorber duct can be opened and closed by the actuating member because it is capable of being switched. The electric terminals required for the switching capability are usually available in current motor vehicle models, particularly in the case of a capability of being electrically switched. Such a switching capability can be realized in a cost-effective manner and with a compact design.
In an advantageous embodiment, the absorber duct penetrates the separating assembly in the axial direction. In this case, the absorber duct connects the working chamber with the compensating chamber.
Advantageously, the at least two nozzle systems are arranged in series in the direction from the working chamber to the compensating chamber, with the damping ducts of the nozzle systems following one another. As a result, the switching capability acts particularly on the nozzle system directly adjoining the working chamber.
In an advantageous embodiment, the absorber duct has a radial boundary formed on one of the nozzle systems. Thus, the radial boundary is formed in a continuous manner along the entire length of the absorber duct, so that no turbulences formed by irregularities in the radial boundary are able to form if the liquid flows through the absorber duct.
Advantageously, the separating assembly has at least one intermediate chamber that is disposed in each case between two adjacent nozzle systems.
Advantageously, the hydromount has a housing and a lid, the lid being fixed to the housing by flanging the housing. The flanging of the housing can result in a stable fixation in which the individual components of the hydromount are clamped together.
In one advantageous embodiment, the compensating diaphragm is clamped between the lid and one of the nozzle systems. In particular, the compensating diaphragm is clamped between the lid and the nozzle system that directly adjoins the compensating chamber. For this purpose, the nozzle system may have a recess into which the compensating diaphragm can be inserted.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is schematically explained below with reference to drawings by means of exemplary embodiments. In the drawings:
FIG. 1 shows a sectional view of a first exemplary embodiment of the hydromount having a capability of being switched pneumatically, and
FIG. 2 shows a sectional view of a second exemplary embodiment of the hydromount having a capability of being switched electrically.
DETAILED DESCRIPTION
FIGS. 1 and 2 each show a hydromount 10 for supporting a motor vehicle unit that is not shown, in particular for supporting a motor vehicle engine that is not shown on a motor vehicle body that is not shown.
The hydromounts 10 each have a supporting spring 11 consisting of an elastomeric material for supporting a mount core 12 incorporated by vulcanization. The motor vehicle engine (not shown) is attached to the mount cores 12.
The supporting springs 11 each delimit a working chamber 13, which is separated from a compensating chamber 16 by means of a separating assembly 14. The compensating chambers 16 are each delimited by a compensating diaphragm 15, which is also referred to as a roller bellows. The chambers 13 and 16 are filled with a hydraulic liquid. The separating assembly 14 may have at least one first nozzle system 19 a and one second nozzle system 19 b. A damping duct 17 a is formed in the first nozzle system 19 a, and a damping duct 17 b is formed in the second nozzle system 19 b. The chambers 13, 16 are connected to each other in a liquid-conducting manner by the damping ducts 17 a, 17 b.
The nozzle systems 19 a, 19 b of the separating assembly 14 further include one decoupling diaphragm 18 a, 18 b each. The decoupling diaphragms 18 a, 18 b may be accommodated in the nozzle systems 19 a, 19 b in a positive fit, for example. The separating assembly 14 further has an absorber duct 20 connecting the working chamber 13 with the compensating chamber 16. A switchable actuating member 25 is assigned in each case to the absorber duct 20.
In particular, the actuating member 25 may be switched electrically, pneumatically or mechanically. The exemplary embodiment of the hydromount 10 shown in FIG. 1 has a pneumatic switchability of the actuating member 25. To this end, the actuating member 25 may be configured as an elastic member and connected to the compensating diaphragm 15. The actuating member 25 may further adjoin to an air chamber 27 which can be pressurized via an opening 28. Thus, the actuating member 25 closes the absorber duct 20 with the compensating diaphragm 15 when the air chamber 27 is pressurized. When the air chamber 27 is evacuated, so that a negative pressure prevails in it, the elastic actuating member 25 is sucked in the direction of the air chamber 27 so that the actuating member 25 opens the absorber duct 20.
The exemplary embodiment of the hydromount 10 shown in FIG. 2 has an electric switchability of the actuating member 25. For this purpose, the hydromount 10 includes an electrical actuator 26, which is capable of causing the actuating member 25 to move. In the exemplary embodiment shown in FIG. 2, the actuating member 25 can be engaged with a feed 29 formed on the absorber duct 20 in such a way that the actuating member 25 and the feed 29 close the absorber duct 20. A connecting duct 30, which connects the absorber duct 20 with the compensating chamber 16, is formed between the feed 29 and the actuating member 25. The connecting duct 30 is opened when the actuating member 25 is moved away from the absorber duct 20. If the actuating member 25 is moved towards the absorber duct 20, the connecting duct 30, and thus the absorber duct 20, is closed.
In the exemplary embodiment according to FIG. 2, the actuating member 25 and the feed 29 can be positively connected. For this purpose, the actuating member 25 may have a projection in the center, for example, which is capable of reaching into a recess formed on the feed 29. Furthermore, the actuating member 25 may have an arm resting against the feed 29, in order to close the connecting duct 30.
Thus, the absorber duct 20 can be opened and closed by means of the switchable actuating member 25. In the process, an absorptive action is obtained in the opened state of the absorber duct 20. Moreover, the hydromount 10 has a low level of stiffness. This is desirable particularly in the case of an idle operation of the engine, in which high-frequency and low-amplitude vibrations are to the isolated. The decoupling diaphragms 18 a, 18 b vibrate with vibrations having a low amplitude at a high frequency, and cause decoupling. A damping action is prevented by the decoupling of the vibrations.
In the closed state of the absorber duct 20, the dynamic stiffness of the hydromount 10 is increased, whereby a suitable damping action of low-frequency and high-amplitude vibrations, as they occur during the driving operation, is obtained.
Therefore, opening the absorber duct 20 causes a reduction of the dynamic stiffness of the hydromount in a defined frequency range, which depends on the exact geometry of the duct.
The absorber duct 20 penetrates the separating assembly 14 in the axial direction. The nozzle systems 19 a, 19 b are arranged in series in the direction from the working chamber 13 to the compensating chamber 16. The damping ducts 17 a, 17 b of the nozzle systems 19 a, 19 b follow one another and are separated only by an intermediate chamber 22, so that a continuous connection of the working chamber 13 to the compensating chamber 16 is ensured by the damping ducts 17 a, 17 b.
The absorber duct 20 has a radial boundary 21 formed on one of the nozzle systems 19 a, 19 b. In the exemplary embodiments according to FIGS. 1 and 2, the radial boundary 21 is in each case formed on the nozzle system 19 a that directly adjoins the working chamber 13.
The hydromounts 10 each have a housing 24 and a lid 23. The lid 23 is fixed to the housing 24 by flanging the housing 24. In this case, the compensating diaphragm 15 is clamped between the lid 23 and one of the nozzle systems 19 a, 19 b. In the exemplary embodiments as they are shown in FIGS. 1 and 2, the compensating diaphragm 15 is in each case clamped between the lid 23 and the nozzle system 19 b that directly adjoins the compensating chamber 16.
A common feature of the hydromounts 10 is that they have an improved stiffness due to being adaptable to the respective driving situation. In particular, a large spreading of the stiffness that can be obtained with the hydromounts 10 is ensured. Furthermore, the hydromounts 10 afford good absorption capabilities in the idle range, i.e. in the range of relatively high frequencies.

Claims (20)

The invention claimed is:
1. A hydromount for mounting a motor vehicle engine to a vehicle body, the hydromount comprising:
a supporting spring supporting a mount core and surrounding a working chamber, and
a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm,
wherein the separating assembly includes at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed, the compensating chamber and the working chamber are filled with a liquid and are connected to each other in a liquid-conducting manner by the damping ducts, the separating assembly has an absorber duct connecting the working chamber with the compensating chamber, and a switchable actuating member is assigned to the absorber duct.
2. The hydromount according to claim 1, wherein the actuating member can be switched electrically, pneumatically or mechanically.
3. The hydromount according to claim 1, wherein the absorber duct penetrates the separating assembly in an axial direction.
4. The hydromount according to claim 1, wherein the at least two nozzle systems are arranged in series in a direction from the working chamber to the compensating chamber, with the damping ducts of the nozzle systems following one another.
5. The hydromount according to claim 1, wherein the absorber duct has a radial boundary formed on one of the nozzle systems.
6. The hydromount according to claim 1, wherein the separating assembly has at least one intermediate chamber that is disposed in each case between two adjacent nozzle systems.
7. The hydromount according to claim 1, including a housing and a lid, the lid being fixed to the housing by flanging the housing.
8. The hydromount according to claim 7, wherein the compensating diaphragm is clamped between the lid and one of the nozzle systems.
9. The hydromount according to claim 1, wherein the compensating diaphragm comprises a roller bellows.
10. The hydromount according to claim 2, wherein the actuating member is pneumatically switchable, and is configured as an elastic member connected to the compensating diaphragm.
11. The hydromount according to claim 10, wherein the actuating member adjoins an air chamber, such that the actuating member closes the absorber duct with the compensating diaphragm when the air chamber is pressurized, and is sucked towards the air chamber so that the actuating member opens the absorber duct when the air chamber is evacuated to provide a negative pressure in the air chamber.
12. The hydromount according to claim 2, wherein the actuating member is electrically switchable, and the hydromount includes an electrical actuator configured to cause or initiate movement of the actuating member.
13. The hydromount according to claim 12, wherein a feed is formed on or with the absorber duct, and a connecting duct is provided between the feed and the actuating member, the connecting duct connecting the absorber duct with the compensating chamber; and wherein the connecting duct opens when the actuating member moves away from the absorber duct, and the connecting duct closes when the actuating member moves towards the absorber duct.
14. The hydromount according to claim 13, wherein the actuating member and the feed are positively connected.
15. The hydromount according to claim 14, wherein at least one of:
the actuating member has a projection that extends into a recess formed on the feed; and
the actuating member has an arm resting against the feed to close off the connecting duct.
16. The hydromount according to claim 1, wherein the supporting spring comprises an elastomeric material.
17. The hydromount according to claim 1, wherein each decoupling diaphragm is accommodated in a positive fit manner in a respective nozzle system of the at least two nozzle systems.
18. A hydromount for mounting a motor vehicle engine to a vehicle body, the hydromount comprising:
a supporting spring supporting a mount core and surrounding a working chamber, and
a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm,
wherein the separating assembly includes at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed, the compensating chamber and the working chamber are filled with a liquid and are connected to each other in a liquid-conducting manner by the damping ducts, the separating assembly has an absorber duct connecting the working chamber with the compensating chamber, and a switchable actuating member is assigned to the absorber duct, wherein the actuating member adjoins an air chamber, such that the actuating member closes the absorber duct with the compensating diaphragm when the air chamber is pressurized, and is sucked in the direction of the air chamber so that the actuating member opens the absorber duct when the air chamber is evacuated so that it is under negative pressure.
19. A hydromount for mounting a motor vehicle engine to a vehicle body, the hydromount comprising:
a supporting spring supporting a mount core and surrounding a working chamber, and
a compensating chamber separated from the working chamber by a separating assembly and delimited by a compensating diaphragm,
wherein the separating assembly includes at least two nozzle systems which have one decoupling diaphragm each and in each of which one damping duct is disposed, the compensating chamber and the working chamber are filled with a liquid and are connected to each other in a liquid-conducting manner by the damping ducts, the separating assembly has an absorber duct connecting the working chamber with the compensating chamber, and a switchable actuating member is assigned to the absorber duct, wherein a feed is formed on the absorber duct, and a connecting duct is formed between the feed and the actuating member, the connecting duct connecting the absorber duct with the compensating chamber, wherein the connecting duct is opened when the actuating member is moved away from the absorber duct, and the connecting duct is closed when the actuating member is moved towards the absorber duct.
20. The hydromount according to claim 19, wherein at least one of:
the actuating member has a projection that extends into a recess formed on the feed; and
the actuating member has an arm resting against the feed to close off the connecting duct.
US16/482,441 2017-02-01 2018-01-12 Hydromount Active 2038-03-22 US10941832B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017101968.5 2017-02-01
DE102017101968.5A DE102017101968B4 (en) 2017-02-01 2017-02-01 Hydro bearing
PCT/EP2018/050754 WO2018141531A1 (en) 2017-02-01 2018-01-12 Hydromount

Publications (2)

Publication Number Publication Date
US20200040961A1 US20200040961A1 (en) 2020-02-06
US10941832B2 true US10941832B2 (en) 2021-03-09

Family

ID=61024746

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/482,441 Active 2038-03-22 US10941832B2 (en) 2017-02-01 2018-01-12 Hydromount

Country Status (4)

Country Link
US (1) US10941832B2 (en)
CN (1) CN110234902B (en)
DE (1) DE102017101968B4 (en)
WO (1) WO2018141531A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626531B (en) * 2017-03-23 2021-09-07 青岛胶南海尔洗衣机有限公司 Footing for household appliance and household appliance
JP7000243B2 (en) * 2018-04-26 2022-01-19 山下ゴム株式会社 Anti-vibration device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344127A (en) * 1991-12-14 1994-09-06 Firma Carl Freudenberg Switchable bearing
US5911412A (en) * 1996-11-04 1999-06-15 Hutchinson Hydraulic antivibration support
DE19807868A1 (en) 1998-02-25 1999-09-09 Freudenberg Carl Fa Hydraulically damping bearing with work chamber and compensating chamber
CN1235880A (en) 1998-05-19 1999-11-24 卡尔·弗罗伊登伯格公司 Hydraulic support
US6244578B1 (en) * 1998-04-16 2001-06-12 Firma Carl Freudenberg Switchable, hydraulically dampening bearing
US6585242B2 (en) * 2001-07-16 2003-07-01 Toyo Tire & Rubber Co., Ltd. Switching type liquid-in vibration isolating device
US6592110B2 (en) * 2000-02-01 2003-07-15 Toyo Tire & Rubber Co., Ltd. Switchable liquid-filled vibration absorbing mount
US6601835B2 (en) 2001-04-02 2003-08-05 Hutchinson Hydraulic antivibration support
EP1443240A1 (en) 2003-01-31 2004-08-04 Delphi Technologies, Inc. Bi-state rate dip hydraulic mount
CN1626845A (en) 2003-12-12 2005-06-15 东海橡胶工业株式会社 Fluid-filled vibration damping device
EP1544500A2 (en) 2003-12-17 2005-06-22 Vibracoustic GmbH & Co. KG Hydraulic support
JP2006214586A (en) 2005-02-02 2006-08-17 Carl Freudenberg Kg Liquid pressure type mount
US7275739B2 (en) * 2003-12-18 2007-10-02 Carl Freudenberg Kg Support bearing
US8556240B2 (en) * 2008-06-30 2013-10-15 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device and control method of the device used as engine mount
CN103363012A (en) 2012-03-29 2013-10-23 科德宝两合公司 Hydraulic suspension device
US20140145383A1 (en) 2012-10-26 2014-05-29 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP2743540A1 (en) 2012-12-14 2014-06-18 Carl Freudenberg KG Switchable motor bearing
EP3045766A1 (en) 2015-01-13 2016-07-20 TrelleborgVibracoustic GmbH Compensation membrane for a hydraulically damping bearing
US9605727B2 (en) * 2014-11-18 2017-03-28 Hyundai Motor Company Active engine mount for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213996A1 (en) * 2002-03-27 2003-10-16 Freudenberg Carl Kg Switchable unit bearing with hydraulic damping

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344127A (en) * 1991-12-14 1994-09-06 Firma Carl Freudenberg Switchable bearing
US5911412A (en) * 1996-11-04 1999-06-15 Hutchinson Hydraulic antivibration support
DE19807868A1 (en) 1998-02-25 1999-09-09 Freudenberg Carl Fa Hydraulically damping bearing with work chamber and compensating chamber
US6244578B1 (en) * 1998-04-16 2001-06-12 Firma Carl Freudenberg Switchable, hydraulically dampening bearing
CN1235880A (en) 1998-05-19 1999-11-24 卡尔·弗罗伊登伯格公司 Hydraulic support
US6592110B2 (en) * 2000-02-01 2003-07-15 Toyo Tire & Rubber Co., Ltd. Switchable liquid-filled vibration absorbing mount
US6601835B2 (en) 2001-04-02 2003-08-05 Hutchinson Hydraulic antivibration support
DE60202234T2 (en) 2001-04-02 2005-06-02 Hutchinson Hydraulic, anti-vibration bearing
US6585242B2 (en) * 2001-07-16 2003-07-01 Toyo Tire & Rubber Co., Ltd. Switching type liquid-in vibration isolating device
EP1443240A1 (en) 2003-01-31 2004-08-04 Delphi Technologies, Inc. Bi-state rate dip hydraulic mount
CN1626845A (en) 2003-12-12 2005-06-15 东海橡胶工业株式会社 Fluid-filled vibration damping device
US7210674B2 (en) 2003-12-12 2007-05-01 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP1544500A2 (en) 2003-12-17 2005-06-22 Vibracoustic GmbH & Co. KG Hydraulic support
US20050285318A1 (en) * 2003-12-17 2005-12-29 Gerold Winkler Hydro-mount
US7275739B2 (en) * 2003-12-18 2007-10-02 Carl Freudenberg Kg Support bearing
JP2006214586A (en) 2005-02-02 2006-08-17 Carl Freudenberg Kg Liquid pressure type mount
US8556240B2 (en) * 2008-06-30 2013-10-15 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device and control method of the device used as engine mount
CN103363012A (en) 2012-03-29 2013-10-23 科德宝两合公司 Hydraulic suspension device
US20140145383A1 (en) 2012-10-26 2014-05-29 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP2743540A1 (en) 2012-12-14 2014-06-18 Carl Freudenberg KG Switchable motor bearing
US9605727B2 (en) * 2014-11-18 2017-03-28 Hyundai Motor Company Active engine mount for vehicle
EP3045766A1 (en) 2015-01-13 2016-07-20 TrelleborgVibracoustic GmbH Compensation membrane for a hydraulically damping bearing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CN Search Report 2018800092565, dated Sep. 23, 2020.
International Serach Report PCT/EP2018/050754, filed May 4, 2018.

Also Published As

Publication number Publication date
WO2018141531A1 (en) 2018-08-09
CN110234902B (en) 2021-02-05
DE102017101968B4 (en) 2020-07-23
CN110234902A (en) 2019-09-13
US20200040961A1 (en) 2020-02-06
DE102017101968A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP3539067B2 (en) Fluid-filled mounting device
JP2843088B2 (en) Fluid-filled mounting device
US6663090B2 (en) Hydraulic engine mount
JP4381333B2 (en) Fluid filled vibration isolator
US10316927B2 (en) Hydromount for mounting a motor vehicle engine
US8016274B2 (en) Antivibration device, and vehicle comprising same
KR101288997B1 (en) Switching engine mount apparatus
US10941832B2 (en) Hydromount
US11761510B2 (en) Hydraulic mount
EP0821181A2 (en) Fluid-filled elestic mount having low-and medium-frequency vibration damping orifices, and high-frequency vibration isolating movable member
KR101573436B1 (en) Apparatus for engine mount using mre
US20050127585A1 (en) Series-type engine mount and method of manufacturing series-type engine mount
CN111656045B (en) Hydraulic damping support
KR20160013609A (en) Semi active engine mount for vehicle
JP2011038595A (en) Vibration isolating device
JP2004069005A (en) Fluid-sealed type vibration damper
JP2005113954A (en) Vibration damping device
CN109642633B (en) Hydraulic damping support
KR20120051447A (en) Engine-mount for vehicle
JP2016008709A (en) Vibration prevention device
JP5723944B2 (en) Vibration isolator
JP2005233242A (en) Pneumatic switch-over type fluid-filled engine mount
JP2657550B2 (en) Fluid-filled mounting device
US8783667B2 (en) Axially damping hydraulic mount
JP2004218753A (en) Fluid sealing type vibration control device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: VIBRACOUSTIC GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROMANSKI, THOMAS;KLOSTREICH, VIKTOR;REEL/FRAME:050307/0203

Effective date: 20190904

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: VIBRACOUSTIC AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIBRACOUSTIC GMBH;REEL/FRAME:057687/0381

Effective date: 20190116

AS Assignment

Owner name: VIBRACOUSTIC SE, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:VIBRACOUSTIC AG;REEL/FRAME:058357/0478

Effective date: 20201207