WO2018141289A1 - 传输方法和用户终端 - Google Patents

传输方法和用户终端 Download PDF

Info

Publication number
WO2018141289A1
WO2018141289A1 PCT/CN2018/075280 CN2018075280W WO2018141289A1 WO 2018141289 A1 WO2018141289 A1 WO 2018141289A1 CN 2018075280 W CN2018075280 W CN 2018075280W WO 2018141289 A1 WO2018141289 A1 WO 2018141289A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
parameter
subframe
user terminal
transmission
Prior art date
Application number
PCT/CN2018/075280
Other languages
English (en)
French (fr)
Inventor
孙立新
丁颖哲
周明宇
王力
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Publication of WO2018141289A1 publication Critical patent/WO2018141289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/04User notification, e.g. alerting and paging, for incoming communication, change of service or the like multi-step notification using statistical or historical mobility data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/12Inter-network notification

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a transmission method and a user terminal.
  • a mobile communication system refers to a system in which a service provider provides communication services for a user terminal (such as a mobile phone) by deploying a wireless access network device (such as a base station) and a core network device (such as a Home Location Register, HLR). .
  • a wireless access network device such as a base station
  • a core network device such as a Home Location Register, HLR.
  • the first generation of mobile communication refers to the original analog, voice-only cellular phone standard, mainly using analog technology and Frequency Division Multiple Access (FDMA) access method; second generation mobile communication introduced Digital technology, improved network capacity, improved voice quality and confidentiality, "Global System for Mobile Communication” (GSM) and "Code Division Multiple Access” (CDMAIS-95) Representative; third-generation mobile communication mainly refers to CDMA2000, WCDMA, TD-SCDMA three technologies, all using code division multiple access as access technology; the fourth generation mobile communication system standards are relatively unified internationally, for international Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A) developed by the 3GPP, the downlink is based on Orthogonal Frequency Division Multiple Access (OFDMA), and the uplink is based on single carrier frequency.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • MulteFire newly defines the uplink transmission method and can work independently on the LTE technology of the unlicensed band, that is, stand-alone LTE-U.
  • the channel access specification of the band is to be observed.
  • the unlicensed band of 5 GHz needs to be Listened Before Talk (LBT), that is, the channel needs to be detected before being idle. Only allowed to send.
  • LBT Listened Before Talk
  • the base station-centric centralized scheduling is adopted.
  • the scheduling request needs to be initiated first, and then the uplink scheduling of the eNodeB (evolved Node B, eNB) is waited for the transmission, and each time the signal is sent.
  • the eNB or the user equipment (UE) that is the transmission module needs to perform the LBT. Therefore, the traditional eNB-based uplink transmission is in the transmission of the unlicensed frequency band in terms of delay or LBT success probability. This can lead to performance degradation such as upstream throughput and latency, especially when sharing channels with Wi-Fi devices based on distributed scheduling.
  • the MulteFire proposes a UE-based autonomous scheduling uplink transmission method, that is, Autonomous UpLink (AUL) or Grant-less UpLink (GUL), which allows The UE initiates uplink transmission autonomously, reducing the delay and the number of LBTs.
  • AUL Autonomous UpLink
  • GUL Grant-less UpLink
  • the Cat-4LBT is performed by the base station.
  • the eNB transmits the downlink signal and schedules the UE to transmit the uplink signal in the corresponding maximum channel occupation duration (MCOT).
  • MCOT maximum channel occupation duration
  • the UE can use the Cat-4LBT and successfully contend for the channel, and then obtain the uplink transmission corresponding to the current channel access parameter, and within the MCOT, the UE can perform the autonomous scheduling of the UE. Since the autonomously scheduled uplink transmission is not completely controlled by the eNB, the subframe configured by the autonomously scheduled uplink transmission cannot be the same as the downlink subframe and the uplink subframe in other transmissions. Therefore, the available resources for autonomously scheduling uplink transmission are limited. Therefore, the transmission efficiency of the autonomously scheduled uplink transmission is low.
  • the embodiment of the present application provides a transmission method and a user terminal, which can improve transmission efficiency of autonomously scheduling uplink transmission.
  • the embodiment of the present application provides a transmission method, including:
  • the user terminal performs autonomous scheduling uplink transmission on the resource corresponding to the indication information by using the first parameter based on the detection of the common physical downlink control channel and the indication information.
  • the user terminal performs autonomous scheduling uplink transmission on the resource corresponding to the indication information by using the first parameter based on the detection of the common physical downlink control channel and the indication information thereof, including:
  • the user terminal performs autonomous scheduling uplink transmission using the first parameter within the uplink duration of the base station.
  • the first parameter is configured to perform frequency division multiplexing, time division multiplexing, and code division multiplexing in the autonomously scheduled uplink transmission and the base station scheduling uplink transmission within the uplink duration. At least one or any combination.
  • the process in which the user terminal performs the autonomous scheduling uplink transmission by using the first parameter within the uplink duration of the base station includes:
  • the user terminal acquires the indication information by using a common physical downlink control channel
  • the autonomous scheduling uplink transmission is performed by using the first parameter.
  • the autonomous scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to end.
  • the position is before the last symbol in each sub-frame.
  • the foregoing method further includes:
  • the indication information includes a location of a downlink partial end bit subframe and an available symbol location in the end bit subframe;
  • the performing the autonomously scheduling uplink transmission by using the first parameter is specifically: performing the autonomously scheduled uplink transmission in a symbol position of the end bit subframe and/or in a next subframe of the end bit subframe.
  • the foregoing method further includes:
  • the user terminal performs autonomous scheduling uplink transmission using a second parameter outside the uplink duration of the base station
  • the first parameter is different from the second parameter.
  • the number of frequency resources corresponding to the first parameter is m1
  • the number of time domain resources corresponding to the first parameter is n1
  • the number of frequency resources corresponding to the second parameter is m2
  • the second parameter corresponds to The number of time domain resources is n2, where m1, m2, n1, and n2 are positive integers, m1 is less than or equal to m2, and n1 is less than or equal to n2.
  • the frequency resource corresponding to the first parameter is a resource block group in the m1 uplink resource allocation type 3, and the time domain resource corresponding to the first parameter is n1 consecutive subframes, and the second parameter corresponds to The frequency resource is a resource block group in the type 3 of the uplink resource allocation type, and the time domain resource corresponding to the second parameter is n2 consecutive subframes.
  • the first parameter is configured to use the first specified type
  • the first parameter corresponding to the first parameter is configured to use the second specified type
  • the channel of the second specified type is preferentially accessed.
  • the level is higher than or equal to the channel access priority of the first specified type.
  • an embodiment of the present application provides a transmission method, including:
  • the user terminal If the user terminal detects the discovery reference signal of the current cell within the discovery reference signal measurement time configuration window, the user terminal performs autonomous scheduling uplink transmission within the discovery reference signal measurement time configuration window.
  • the autonomously scheduled uplink transmission is configured to be located after a first symbol in each subframe, and/or the autonomously scheduled uplink transmission It is configured to end the position before the last symbol in each subframe.
  • an embodiment of the present application provides a transmission method, including:
  • the user terminal performs autonomous scheduling uplink transmission using the first parameter within a periodic non-anchor uplink time based on the base station scheduling, where the first parameter is used to enable the autonomous within the periodic non-anchor uplink time
  • the scheduling uplink transmission and the periodic non-anchor uplink transmission perform at least one or any combination of three methods of frequency division multiplexing, time division multiplexing, and code division multiplexing.
  • the autonomously scheduled uplink transmission is configured to be located after a transmission location of the periodic non-anchor uplink transmission or a next subframe of a subframe to which the transmission location belongs;
  • the autonomously scheduled uplink transmission is configured to implement frequency division multiplexing using different frequency resources in the same subframe as the periodic non-anchor uplink transmission.
  • an embodiment of the present application provides a transmission method, including:
  • the user terminal does not detect the physical downlink control channel of the paging wireless network temporary identifier scrambling in a specified number of consecutive serving cell subframes within the paging window, the user terminal is in the paging window Autonomous scheduling of uplink transmissions is performed within.
  • the user terminal if the user terminal does not detect the physical downlink control channel of the paging wireless network temporary identifier scrambling in a specified number of consecutive serving cell subframes within the paging window, the user terminal is in the
  • the process of autonomously scheduling uplink transmission within the paging window includes:
  • the user terminal does not detect the physical downlink control channel of the paging wireless network temporary identifier scrambling within a specified number of consecutive serving cell subframes within the paging window, the user terminal is in the specified number of consecutive
  • the second time slot of the last subframe in the serving cell subframe performs autonomous scheduling uplink transmission, or the user terminal is in the last subframe of the specified number of consecutive serving cell subframes
  • One subframe performs autonomous scheduling of uplink transmission.
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be the last location in the end position of each subframe. Before the symbol.
  • an embodiment of the present application provides a transmission method, including:
  • the user terminal detects its own uplink scheduling grant, enter a first mode, in the first mode, in the available subframe of the autonomously scheduled uplink transmission, and the overlapping subframe in the uplink scheduling authorized subframe And transmitting, according to the uplink scheduling grant, performing, by the subframe other than the overlapping subframe, the autonomous scheduling uplink transmission in the available subframe of the autonomously scheduled uplink transmission.
  • the foregoing method further includes:
  • the user terminal If the user terminal does not detect its own uplink scheduling grant within a preset time, enter a second mode, where the autonomous scheduling uplink is performed in an available subframe of the autonomously scheduled uplink transmission. transmission.
  • an embodiment of the present application provides a user terminal, including:
  • the transmitting module is configured to perform autonomous scheduling uplink transmission on the resource corresponding to the indication information by using the first parameter based on the detection of the common physical downlink control channel and the indication information thereof.
  • the transmission module is specifically configured to perform autonomous scheduling uplink transmission by using the first parameter within an uplink duration of the base station.
  • the first parameter is configured to perform frequency division multiplexing, time division multiplexing, and code division multiplexing in the uplink scheduling, the autonomously scheduled uplink transmission, and the base station scheduling uplink transmission. At least one or any combination.
  • the transmission module includes:
  • An obtaining unit configured to acquire the indication information by using a common physical downlink control channel
  • a sending unit configured to: if the available subframe of the autonomously scheduled uplink transmission is located in the uplink duration according to the indication information, perform the autonomous scheduling uplink transmission by using the first parameter.
  • the autonomous scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to end.
  • the position is before the last symbol in each sub-frame.
  • the indication information includes a location of a downlink partial end bit subframe and an available symbol location in the end bit subframe;
  • the sending unit is specifically configured to perform, in the end bit subframe, a symbol position and/or perform the autonomous scheduling uplink transmission in a next subframe of the end bit subframe.
  • the transmitting module is further configured to perform autonomous scheduling uplink transmission by using a second parameter outside an uplink duration of the base station; the first parameter is different from the second parameter.
  • the number of frequency resources corresponding to the first parameter is m1
  • the number of time domain resources corresponding to the first parameter is n1
  • the number of frequency resources corresponding to the second parameter is m2
  • the second parameter corresponds to The number of time domain resources is n2, where m1, m2, n1, and n2 are positive integers, m1 is less than or equal to m2, and n1 is less than or equal to n2.
  • the frequency resource corresponding to the first parameter is a resource block group in the m1 uplink resource allocation type 3, and the time domain resource corresponding to the first parameter is n1 consecutive subframes, and the second parameter corresponds to The frequency resource is a resource block group in the type 3 of the uplink resource allocation type, and the time domain resource corresponding to the second parameter is n2 consecutive subframes.
  • the first parameter is configured to use the first specified type
  • the first parameter corresponding to the first parameter is configured to use the second specified type
  • the channel of the second specified type is preferentially accessed.
  • the level is higher than or equal to the channel access priority of the first specified type.
  • an embodiment of the present application provides a user terminal, including:
  • a transmitting module configured to perform autonomous scheduling uplink transmission within the discovery reference signal measurement time configuration window if the discovery reference signal of the current cell is detected within the discovery reference signal measurement time configuration window.
  • the autonomously scheduled uplink transmission is configured to be located after a first symbol in each subframe, and/or the autonomously scheduled uplink transmission It is configured to end the position before the last symbol in each subframe.
  • an embodiment of the present application provides a user terminal, including:
  • a transmitting module configured to perform autonomous scheduling uplink transmission by using a first parameter within a periodic non-anchor uplink time based on base station scheduling, where the first parameter is used to enable the periodic non-anchor uplink time,
  • the autonomously scheduled uplink transmission and the periodic non-anchor uplink transmission perform at least one or any combination of three methods of frequency division multiplexing, time division multiplexing, and code division multiplexing.
  • the autonomously scheduled uplink transmission is configured to be located after a transmission location of the periodic non-anchor uplink transmission or a next subframe of a subframe to which the transmission location belongs;
  • the autonomously scheduled uplink transmission is configured to implement frequency division multiplexing using different frequency resources in the same subframe as the periodic non-anchor uplink transmission.
  • an embodiment of the present application provides a user terminal, including:
  • a transmission module configured to: if a physical downlink control channel for paging a radio network temporary identifier scrambling is not detected in a specified number of consecutive serving cell subframes within a paging window, Autonomous scheduling of uplink transmissions is performed within.
  • the transmission module is specifically configured to: if a physical downlink control channel for scrambling the temporary identifier of the paging wireless network is not detected in a specified number of consecutive serving cell subframes within the paging window, Performing autonomous scheduling uplink transmission on a second one of the last one of the specified number of consecutive serving cell subframes, or the user terminal is last in the specified number of consecutive serving cell subframes The next subframe of one subframe performs autonomous scheduling uplink transmission.
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be the last location in the end position of each subframe. Before the symbol.
  • an embodiment of the present application provides a user terminal, including:
  • a mode switching module configured to enter the first mode if the uplink scheduling authorization of the user terminal itself is detected
  • a transmitting module configured to transmit, according to the uplink scheduling grant, an overlapping subframe in a subframe of the uplink scheduling grant in an available subframe of the autonomously scheduled uplink transmission in the first mode, where The autonomously scheduled uplink transmission is performed on the subframes other than the overlapping subframes in the available subframes of the autonomously scheduled uplink transmission.
  • the mode switching module is further configured to enter the second mode if the uplink scheduling authorization of the user terminal itself is not detected within a preset time;
  • the transmitting module is further configured to perform, in the second mode, the autonomous scheduled uplink transmission in an available subframe of the autonomously scheduled uplink transmission.
  • the embodiment of the present application further provides a user terminal, including: at least one processor; and a memory communicably connected to the at least one processor; wherein the memory is stored by the at least one An instruction executed by the processor, the instruction being set to perform the above described transmission method of the present application.
  • the transmission method and the user terminal provided by the present application can utilize the available resources in other transmission modes to perform autonomous scheduling uplink transmission when the autonomously scheduled uplink transmission coexists with other transmission modes, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • FIG. 1 is a schematic flow chart of a transmission method in an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a user terminal in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of hardware of a user terminal for performing each transmission method according to this embodiment.
  • first, second, third, etc. may be used to describe XXX in the embodiments of the present application, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present application.
  • second XXX may also be referred to as a first XXX.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the specific technologies of the mobile communication described in this application are not limited, and may be WCDMA, CDMA2000, TD-SCDMA, WiMAX, LTE/LTE-A, LAA, MulteFire, and subsequent fifth, sixth generation, and Nth generation mobiles that may occur.
  • Communication technology may be WCDMA, CDMA2000, TD-SCDMA, WiMAX, LTE/LTE-A, LAA, MulteFire, and subsequent fifth, sixth generation, and Nth generation mobiles that may occur.
  • the terminal described in the present application refers to a terminal side product that can support a communication protocol of a land mobile communication system, and specifically refers to a communication modem module (Wireless Modem), which can be used in various types of terminal forms such as a mobile phone, a tablet computer, and a data card. Integration to complete communication functions
  • the following uses the fourth generation mobile communication system LTE/LTE-A and its derived MulteFire as an example, wherein the mobile communication terminal is represented as a UE (User Equipment), hereinafter referred to as a user terminal.
  • UE User Equipment
  • the embodiment of the present application provides a transmission method, including: detecting, by the user terminal UE, a common physical downlink control channel C-PDCCH (ie, a CC-RNTI scrambled PDCCH) and the indication information thereof, using the first parameter to correspond to the indication information.
  • C-PDCCH ie, a CC-RNTI scrambled PDCCH
  • the indication information of the C-PDCCH includes resources that can be utilized by the autonomously scheduled uplink transmission. Only when the C-PDCCH is detected, the resource corresponding to the indication information can be used for autonomous scheduling uplink transmission, so that other transmission modes can be utilized.
  • the resources are available for autonomous scheduling of uplink transmissions.
  • the transmission method in this embodiment performs the autonomous scheduling uplink transmission by detecting the C-PDCCH and performing the autonomous scheduling uplink transmission on the resource corresponding to the indication information of the C-PDCCH, so that the autonomous scheduling uplink transmission can be performed by using available resources in other transmission modes, thereby The transmission efficiency of the autonomously scheduled uplink transmission is improved.
  • the process of the autonomous scheduling uplink transmission performed by the user terminal UE on the resource corresponding to the indication information by using the first parameter based on the detection of the common physical downlink control channel C-PDCCH and the indication information thereof includes:
  • the user terminal UE performs autonomous scheduling uplink transmission using the first parameter on the autonomously scheduled uplink transmission available resources within the uplink duration (UL duration) of the base station eNB.
  • the first parameter is configured to perform frequency division multiplexing (FDM) and time division multiplexing on the autonomously scheduled uplink transmission and the scheduled uplink uplink (SUL) transmission within the uplink duration UL duration.
  • FDM frequency division multiplexing
  • SUL scheduled uplink uplink
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • OCC Orthogonal Cover Code
  • the transmission method in this embodiment performs frequency division multiplexing (FDM), time division multiplexing (TDM), and code division multiplexing (CDM/OCC) by autonomously scheduling uplink transmission and base station scheduling uplink (SUL) transmission in UL duration. At least one or any combination of the modes, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • CDM/OCC code division multiplexing
  • the process in which the user terminal UE performs autonomous scheduling uplink transmission using the first parameter within the uplink duration UL duration of the base station eNB includes:
  • Step 101 The user terminal UE performs a Common Physical Downlink Control Channel (CPDCCH) detection to determine whether the CPDCCH is detected. If the CPDCCH is detected, the process proceeds to step 102. If the CPDCCH is not detected, the process proceeds to step 105.
  • CPDCCH Common Physical Downlink Control Channel
  • Step 102 The user terminal UE acquires the foregoing indication information by using a common physical downlink control channel CPDCCH.
  • Step 103 The user terminal UE determines, according to the indication information, whether the available subframe of the autonomously scheduled uplink transmission is within the uplink duration UL duration, and if yes, proceeds to step 104, and performs autonomous scheduling uplink transmission by using the first parameter, and if not, Go to step 105.
  • the foregoing indication information may include other information indicating whether to perform autonomous scheduling uplink transmission, in addition to including the UL duration.
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be located at each of the sub-positions. Before the last symbol in the frame. In this way, time can be reserved for the LBT to prevent interference with uplink transmissions based on eNB scheduling.
  • the indication information includes a location of a downlink partial end bit subframe and an available symbol position in the end bit subframe, such as a vacant symbol position or an uplink start position, and the vacant symbol position and the uplink start position are all capable of autonomously scheduling uplink transmission.
  • the method further includes: the user terminal UE performs autonomous scheduling uplink transmission using the second parameter in addition to the uplink duration UL duration of the base station eNB; the first parameter is different from the second parameter. That is, in step 103, if it is detected that the available subframe of the autonomously scheduled uplink transmission is outside the uplink duration UL duration, then the process proceeds to step 105, and the autonomous scheduling uplink transmission is performed using the second parameter.
  • the number of frequency resources corresponding to the first parameter is m1
  • the number of time domain resources corresponding to the first parameter is n1
  • the number of frequency resources corresponding to the second parameter is m2
  • the number of time domain resources corresponding to the second parameter is n2, where , m1, m2, n1, and n2 are positive integers, m1 is less than or equal to m2, and n1 is less than or equal to n2.
  • the frequency resource corresponding to the first parameter is a resource block group in the m1 uplink resource allocation type 3
  • the time domain resource corresponding to the first parameter is n1 consecutive subframes
  • the frequency resource corresponding to the second parameter is m2 uplinks.
  • the resource block group in the resource allocation type 3, and the time domain resource corresponding to the second parameter is n2 consecutive subframes.
  • the first parameter corresponding to the second parameter is said to use the first specified type, for example, the second parameter uses the type 2 uplink channel access procedure (one shot LBT), and the first parameter corresponds to the first listening and then the LBT configuration is used.
  • the second specified type for example, the first parameter uses a Type 1 uplink channel access procedure (cat-4LBT), and the second specified type has a priority higher than or equal to the priority of the first specified type.
  • the embodiment of the present invention provides a transmission method, including: detecting, within a window of a Discovery Signals Measurement Timing Configuration (DMTC) window, if a user terminal is in a Discovery Reference Signal (DRS) After the discovery reference signal DRS to the local cell, the user terminal UE performs autonomous scheduling uplink transmission within the discovery reference signal measurement time configuration window DMTC window.
  • DMTC Discovery Signals Measurement Timing Configuration
  • DRS Discovery Reference Signal
  • the DMTC window is used by the eNB to send the DRS to the UE.
  • the UE may perform the autonomous scheduling uplink transmission on the GUL available subframes in the remaining DMTC window to utilize the resources of the DMTC window.
  • the UE after the UE receives the DRS of the local cell, the UE performs autonomous scheduling uplink transmission in the DMTC window, and fully utilizes the resources of the DMTC window, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the autonomously scheduled uplink transmission is configured such that the starting position is after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to end. The position is before the last symbol in each sub-frame. If the synchronous neighboring cell eNB configured by the same DMTC needs to transmit the DRS, the LBT is performed before the first symbol in the subframe and the DRS is started to be sent in the first symbol, and then the LBT corresponding to the autonomous uplink transmission in the subframe is subsequently scheduled. It will not succeed, so DRS interference to neighboring cells can be avoided.
  • the embodiment of the present application provides a transmission method, including: a user terminal UE performs autonomous scheduling uplink transmission using a first parameter within a periodic non-anchor UpLink time scheduled by a base station eNB, and the first parameter For performing frequency division multiplexing FDM or time division multiplexing TDM for autonomously scheduled uplink transmission and periodic non-anchor uplink secondary non-anchor UpLink transmission within a periodic non-anchor uplink non-anchor UpLink time.
  • Periodic non-anchor UpLink transmission is also called pseudo periodic UpLink transmission.
  • the transmission method in this embodiment performs frequency division multiplexing (FDM), time division multiplexing (TDM), and code division multiplexing in autonomous non-anchor UpLink time by performing periodic non-anchor UpLink transmission. At least one or any combination, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • code division multiplexing in autonomous non-anchor UpLink time by performing periodic non-anchor UpLink transmission. At least one or any combination, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the autonomously scheduled uplink transmission is configured to be located after the transmission location of the periodic non-anchor uplink non-anchor UpLink transmission or the next subframe of the subframe to which the transmission location belongs;
  • the autonomously scheduled uplink transmission is configured to implement frequency division multiplexing FDM using different frequency resources in the same subframe as the periodic non-anchor uplink secondary non-anchor UpLink transmission.
  • the sending position here refers to the entire uplink transmission position in one cycle, and the autonomously scheduled uplink transmission is configured as the starting position after the transmission position of the periodic non-anchor UpLink transmission or the next subframe of the subframe to which the transmission location belongs, which can be prioritized.
  • the periodic non-anchor UpLink transmission is guaranteed, and the remaining resources are then automatically scheduled for uplink transmission.
  • An embodiment of the present application provides a transmission method, including:
  • the user terminal UE does not detect a paging-Radio Network Tempory Identity (P-RNTI) in a specified number of consecutive serving cell subframes within a paging occasion window (POW) If the physical downlink control channel (PDCCH) is scrambled, the user terminal performs autonomous scheduling uplink transmission within the POW.
  • P-RNTI paging-Radio Network Tempory Identity
  • PW paging occasion window
  • the resources of the POW are fully utilized, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the user terminal UE does not detect the physical downlink control channel PDCCH for paging the radio network temporary identifier P-RNTI scrambling in a specified number of consecutive serving cell subframes within the paging window POW, the user terminal The process of the UE performing autonomous scheduling uplink transmission within the paging window POW includes:
  • the user terminal UE If the user terminal UE does not detect the paging WLAN temporary identifier P-RNTI scrambled PDCCH in a specified number of consecutive serving cell subframes within the paging window PW, the user terminal UE is in a specified number of consecutive PDCCHs.
  • the second time slot in the last subframe of the serving cell subframe performs autonomous scheduling uplink transmission, or the user terminal UE is in the next subframe of the last subframe of the specified number of consecutive serving cell subframes. Perform autonomous scheduling of uplink transmissions.
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be located at each end. Before the last symbol in the frame. In order to ensure that the autonomous scheduling of uplink transmission does not affect the transmission of subsequent paging signals.
  • the eNB will only send the paging signal to the same UE once in the POW. After the UE detects the paging signal of the UE, it can perform autonomous scheduling uplink transmission in the subsequent subframe, and assume that the eNB will send multiple paging signals in the POW. In contrast, the limitation of the starting position and the ending position of the autonomously scheduled uplink transmission is more relaxed at this time.
  • the eNB will only send the paging signal to all the UEs in the POW once. After the UE detects the PDCCH scrambled by the P-RNTI, it can perform autonomous scheduling uplink transmission in subsequent subframes, and assume that the eNB will send in the POW. Compared with the case of multiple paging signals, the limitation of the starting position and ending position of the autonomous scheduling uplink transmission is more relaxed at this time.
  • the embodiment of the present application provides a transmission method, including: if a user terminal detects its own uplink scheduling grant (UpLink grant, UL grant), enters a first mode, and in a first mode, autonomously scheduling an available subframe for uplink transmission
  • the overlapping subframes in the subframes of the uplink scheduling grant are transmitted according to the uplink scheduling grant UL grant, and the subframes other than the overlapping subframes in the available subframes of the autonomous scheduling uplink transmission perform autonomous scheduling uplink transmission.
  • the overlapping subframe is transmitted according to the UL grant, so that the non-overlapping sub-frame in the available subframe of the uplink transmission is autonomously scheduled.
  • the frame performs autonomous scheduling of uplink transmission, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the method further includes: if the user terminal UE does not detect its own uplink scheduling grant UL grant within a preset time, enters the second mode, and in the second mode, performs in the available subframe of the autonomously scheduled uplink transmission. Autonomously scheduling uplink transmission.
  • the embodiment provides a user terminal UE, including: a transmission module 1, based on the detection of the common physical downlink control channel C-PDCCH and its indication information, using the first parameter in the indication information.
  • the autonomous scheduling uplink transmission is performed on the corresponding resource.
  • the user terminal UE in the embodiment performs the autonomous scheduling uplink transmission by using the C-PDCCH detection and the resources corresponding to the indication information of the C-PDCCH, so that the autonomous scheduling uplink transmission can be performed by using available resources in other transmission modes. Thereby, the transmission efficiency of the autonomously scheduled uplink transmission is improved.
  • the transmission module 1 is specifically configured to perform autonomous scheduling uplink transmission using the first parameter on the autonomously scheduled uplink transmission available resources within the uplink duration UL duration of the base station eNB.
  • the first parameter is configured to enable the autonomously scheduled uplink transmission and the base station eNB to schedule the uplink transmission SUL for frequency division multiplexing, time division multiplexing, and code division multiplexing within the uplink duration UL duration.
  • the first parameter is configured to enable the autonomously scheduled uplink transmission and the base station eNB to schedule the uplink transmission SUL for frequency division multiplexing, time division multiplexing, and code division multiplexing within the uplink duration UL duration.
  • the user terminal in this embodiment performs at least one or any combination of three methods of frequency division multiplexing, time division multiplexing, and code division multiplexing in the same subframe by performing autonomous scheduling uplink transmission and SUL in UL duration. Therefore, the transmission efficiency of the autonomously scheduled uplink transmission is improved.
  • the foregoing transmission module 1 includes: an obtaining unit 11 configured to acquire the indication information by using a common physical downlink control channel (CPDCCH), and a sending unit 12, configured to determine, according to the indication information, that an available subframe of the autonomously scheduled uplink transmission is located on an uplink. Within the time UL duration, the first parameter is used to autonomously schedule uplink transmission.
  • CPDCCH common physical downlink control channel
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be located at each of the sub-positions. Before the last symbol in the frame.
  • the foregoing indication information includes a location of a downlink partial end bit subframe and an available symbol position in an end bit subframe; the sending unit 12 is specifically configured to use a symbol position in the end bit subframe and/or a next subframe in the end bit subframe. Perform autonomous scheduling of uplink transmissions.
  • the transmission module 1 is further configured to perform autonomous scheduling uplink transmission by using a second parameter in addition to the uplink duration UL duration of the base station; the first parameter is different from the second parameter.
  • the number of frequency resources corresponding to the first parameter is m1
  • the number of time domain resources corresponding to the first parameter is n1
  • the number of frequency resources corresponding to the second parameter is m2
  • the number of time domain resources corresponding to the second parameter is n2, where , m1, m2, n1, and n2 are positive integers, m1 is less than or equal to m2, and n1 is less than or equal to n2.
  • the frequency resource corresponding to the first parameter is a resource block group in the m1 uplink resource allocation type 3
  • the time domain resource corresponding to the first parameter is n1 consecutive subframes
  • the frequency resource corresponding to the second parameter is m2 uplinks.
  • the time domain resource corresponding to the second parameter of the resource block group in the resource allocation type 3 is n2 consecutive subframes.
  • the LBT configuration corresponding to the second parameter uses the first specified type
  • the LBT configuration corresponding to the first parameter uses the second specified type
  • the priority of the second specified type is higher than or equal to the first. Specifies the priority of the type.
  • the embodiment provides a user terminal UE, including: a transmission module, configured to detect a reference signal DSR if the discovery reference signal DRS of the current cell is detected within the DMTC window of the discovery reference measurement time configuration window DMTC window The self-scheduled uplink transmission is performed within the measurement time configuration window DMTC window.
  • the DMTC window is used by the eNB to send the DRS to the UE.
  • the UE may perform the autonomous scheduling uplink transmission in the remaining DMTC window to utilize the resources of the DMTC window.
  • the user terminal UE in this embodiment performs the autonomous scheduling uplink transmission in the DMTC window after receiving the DRS of the local cell, and fully utilizes the resources of the DMTC window, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the autonomously scheduled uplink transmission is configured such that the starting position is after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to end. The position is before the last symbol in each sub-frame. If the eNB needs to send the DRS to the UE of the neighboring cell, the LBT is performed on the first symbol in the subframe, and the LBT corresponding to the autonomous scheduling of the uplink transmission in the subframe is not successful, so the DRS of the neighboring cell can be avoided. interference.
  • the embodiment provides a user terminal, including: a transmission module, configured to perform autonomous scheduling uplink transmission by using a first parameter within a periodic non-anchor uplink time of a periodic non-anchored uplink based on a base station scheduling,
  • the first parameter is used to perform frequency division multiplexing and time division multiplexing on the autonomously scheduled uplink transmission and the periodic non-anchor uplink secondary non-anchor UpL ink transmission within a periodic non-anchor uplink non-anchor UpL ink time.
  • a transmission module configured to perform autonomous scheduling uplink transmission by using a first parameter within a periodic non-anchor uplink time of a periodic non-anchored uplink based on a base station scheduling
  • the first parameter is used to perform frequency division multiplexing and time division multiplexing on the autonomously scheduled uplink transmission and the periodic non-anchor uplink secondary non-anchor UpL ink transmission within a periodic non-anchor uplink non-anchor UpL ink time.
  • the user terminal in this embodiment improves the transmission of the autonomously scheduled uplink transmission by performing a frequency division multiplexing FDM or a time division multiplexing TDM for the autonomously scheduled uplink transmission and the periodic non-anchor UpLink transmission in the periodic non-anchor UpLink time. effectiveness.
  • the autonomously scheduled uplink transmission is configured to be located after the transmission location of the periodic non-anchor uplink non-anchor UpLink transmission or the next subframe of the subframe to which the transmission location belongs;
  • the autonomously scheduled uplink transmission is configured to implement frequency division multiplexing FDM using different frequency resources in the same subframe as the periodic non-anchor uplink secondary non-anchor UpLink transmission.
  • the sending position here refers to the entire uplink transmission position in one cycle, and the autonomously scheduled uplink transmission is configured as the starting position after the transmission position of the periodic non-anchor UpLink transmission or the next subframe of the subframe to which the transmission location belongs, which can be prioritized.
  • the periodic non-anchor UpLink transmission is guaranteed, and the remaining resources are then automatically scheduled for uplink transmission.
  • this embodiment provides a user terminal, including: a transmission module, configured to: if a paging wireless network temporary identifier is not detected in a specified number of consecutive serving cell subframes within a paging window POW
  • the P-RNTI scrambled physical downlink control channel PDCCH performs autonomous scheduling uplink transmission within the paging occasion window POW.
  • the user terminal UE in this embodiment improves the transmission efficiency of the autonomously scheduled uplink transmission when the UE determines that the downlink transmission is not performed in the PW by detecting the PDCCH scrambled by the P-RNTI.
  • the transmission module is specifically configured to: if the physical downlink control channel PDCCH for which the calling radio network temporary identifier P-RNTI is scrambled is not detected in a specified number of consecutive serving cell subframes within the paging window POW, the specified number is The second slot slot in the last subframe of the consecutive serving cell subframes performs autonomous scheduling uplink transmission, or the next subframe of the last subframe in the specified number of consecutive serving cell subframes Perform autonomous scheduling of uplink transmissions.
  • the autonomously scheduled uplink transmission is configured to be located after the first symbol in each subframe, and/or the autonomously scheduled uplink transmission is configured to be located at each end. Before the last symbol in the frame. In order to ensure that the autonomous scheduling of uplink transmission does not affect the transmission of subsequent paging signals.
  • the eNB will only send the paging signal to the same UE once in the POW. After the UE detects the paging signal of the UE, it can perform autonomous scheduling uplink transmission in the subsequent subframe, and assume that the eNB will send multiple paging signals in the POW. In contrast, the limitation of the starting position and the ending position of the autonomously scheduled uplink transmission is more relaxed at this time.
  • the eNB will only send the paging signal to all the UEs in the POW once. After the UE detects the PDCCH scrambled by the P-RNTI, it can autonomously schedule the uplink transmission in the subsequent subframes, and assume that the eNB will send more in the POW. Compared with the case of the secondary paging signal, the limitation of the starting position and the ending position of the autonomously scheduled uplink transmission is more relaxed at this time.
  • the embodiment provides a user terminal UE, including: a mode switching module, configured to enter a first mode if an uplink scheduling grant (UL grant) of the user terminal is detected.
  • a mode switching module configured to enter a first mode if an uplink scheduling grant (UL grant) of the user terminal is detected.
  • a transmission module configured to transmit, according to an uplink scheduling grant UL grant, an uplink subframe, in an available subframe of the autonomously scheduled uplink transmission, in an available subframe of the autonomously scheduled uplink transmission, and autonomously scheduling the uplink subframe A subframe other than the above overlapping subframes performs autonomous scheduling uplink transmission.
  • the overlapping subframes are transmitted according to the UL grant, so that the non-overlapping of the available subframes of the autonomous scheduling uplink transmission is performed.
  • the subframe performs autonomous scheduling of uplink transmission, thereby improving the transmission efficiency of the autonomously scheduled uplink transmission.
  • the mode switching module is further configured to: if the uplink grant authorization UL grant of the user terminal itself is not detected within the preset time, enter the second mode; and the transmission module is further configured to perform uplink scheduling in the second mode.
  • the autonomously scheduled uplink transmission is performed in the available subframes of the transmission.
  • the embodiment provides a user terminal, where the user terminal includes: one or more processors 610 and a memory 620.
  • processors 610 is taken as an example in FIG.
  • the electronic device can also include an input device 630 and an output device 640.
  • the processor 610, the memory 620, the input device 630, and the output device 640 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 620 is used as a non-transitory computer readable storage medium, and can be used for storing non-transitory software programs, non-transitory computer executable programs, and modules, such as program instructions/modules corresponding to the transmission methods in the embodiments of the present application (for example, The acquisition unit 11 and the transmission unit 12) shown in FIG.
  • the processor 610 executes various functional applications and data processing of the server by running non-transitory software programs, instructions, and modules stored in the memory 620, that is, implementing the transmission method in any of the above method embodiments.
  • the memory 620 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and necessary data and the like.
  • memory 620 can include high speed random access memory, and can also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Input device 630 can receive input numeric or character information and generate key signal inputs related to user settings and function controls of the user terminal.
  • the output device 640 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 620, and when executed by the one or more processors 610, perform the transmission method in any of the above method embodiments.
  • the user terminal in this embodiment of the present application exists in various forms, including but not limited to:
  • Mobile communication devices These devices are characterized by mobile communication functions and are mainly aimed at providing voice and data communication.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has mobile Internet access.
  • Such terminals include: PDAs, MIDs, and UMPC devices, such as the iPad.
  • Portable entertainment devices These devices can display and play multimedia content. Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, and smart toys and portable car navigation devices.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输方法和用户终端,涉及移动通信技术领域,能够提高自主调度上行传输的传输效率。传输方法包括:用户终端基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输。

Description

传输方法和用户终端
本申请要求于2017年02月04日提交中国专利局、申请号为201710064633.2、发明名称为“传输方法和用户终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种传输方法和用户终端。
背景技术
移动通信系统是指服务提供商通过部署无线接入网设备(如基站),和核心网设备(如归属位置寄存器,Home Location Register,HLR)等,为用户终端(如手机)提供通信服务的系统。移动通信经历了第一代、第二代、第三代、第四代。第一代移动通信是指最初的模拟、仅限语音通话的蜂窝电话标准,主要采用的是模拟技术和频分多址(Frequency Division Multiple Access,FDMA)的接入方法;第二代移动通信引入了数字技术,提高了网络容量、改善了话音质量和保密性,以“全球移动通信系统”(Global System for Mobile Communication,GSM)和“码分多址”(Code Division Multiple Access,CDMAIS-95)为代表;第三代移动通信主要指CDMA2000,WCDMA,TD-SCDMA三种技术,均是以码分多址作为接入技术的;第四代移动通信系统的标准在国际上相对统一,为国际标准化组织3GPP制定的长期演进(Long Term Evolution/Long Term Evolution-Advanced,LTE/LTE-A),其下行基于正交频分多直接入(Orthogonal Frequency Division Multiple Access,OFDMA),上行基于单载波频分多直接入(Single Carrier–Frequency Division Multiple Access,SC-FDMA)的接入方式, 依据灵活的带宽和自适应的调制编码方式,达到了下行峰值速率1Gbps,上行峰值速率500Mbps的高速传输。MulteFire为在LTER13 LAA下行传输方法的基础上,新定义上行传输方法,并且可以独立工作于非授权频段的LTE技术,即stand-alone LTE-U。在非授权频段的传输过程中,需要遵守该频段的信道接入规范,例如5GHz的非授权频段,需要进行先听后说(Listen Before Talk,LBT),即发送前需要先检测信道为空闲时才允许发送。传统LTE中由于采用基站为中心的集中式调度,对于UE的上行传输而言,需要先发起调度请求,然后等待基站(evolved Node B,eNB)的上行调度,才能发送,且其中每次发送信号前,作为传输模块的eNB或者用户终端(User Equipment,UE)都需要进行LBT,因此无论从时延,还是LBT成功概率的角度来讲,传统基于eNB调度的上行传输在非授权频段的传输中会导致上行吞吐量和时延等性能下降,尤其是当与基于分布式调度的Wi-Fi设备共享信道的时候。
针对上述传统基于基站调度的上行传输缺点,MulteFire中提出了采用基于UE的自主调度上行传输方法,即自主上行传输(Autonomous UpLink,AUL)或者无调度上行传输(Grant-less UpLink,GUL),允许UE自主发起上行传输,降低时延和LBT次数。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
在现有基于基站调度的传输中,由基站进行Cat-4LBT,信道接入成功后,在对应的最大信道占用时长(MCOT)内,eNB传输下行信号以及调度UE传输上行信号。而对于自主调度上行传输方法,UE可以采用Cat-4LBT并成功竞争信道后,即可获得当前信道接入参数所对应的,在MCOT以内的可以进行该UE自主调度的上行传输。由于自主调度上行传输不完全受eNB的调度控制,自主调度上行传输所配置的子帧不能与其他传输中的下行子帧和或上行的子帧位置相同,因此自主调度上行传输的可用资源有限,从而使自主调度上行传输的传输效率较低。
发明内容
有鉴于此,本申请实施例提供了一种传输方法和用户终端,能够提高自主调度上行传输的传输效率。
一方面,本申请实施例提供了一种传输方法,包括:
用户终端基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输。
具体地,所述用户终端基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输的过程包括:
用户终端在基站的上行持续时间之内使用第一参数进行自主调度上行传输。
具体地,所述第一参数被配置为使在所述上行持续时间之内,所述自主调度上行传输与基站调度上行传输进行频分复用、时分复用以及码分复用三者中的至少一者或任意组合。
具体地,所述用户终端在基站的上行持续时间之内使用第一参数进行自主调度上行传输的过程包括:
所述用户终端通过公共物理下行控制信道获取所述指示信息;
若所述用户终端根据所述指示信息判断所述自主调度上行传输的可用子帧位于所述上行持续时间之内,则使用所述第一参数进行所述自主调度上行传输。
具体地,在所述上行持续时间之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
具体地,上述方法还包括:
所述指示信息包括下行部分结束位子帧的位置以及所述结束位子帧中可用符号位置;
所述使用所述第一参数进行所述自主调度上行传输具体为:在所述结束位子帧中可用符号位置和/或在所述结束位子帧的下一个 子帧进行所述自主调度上行传输。
具体地,上述方法还包括:
所述用户终端在所述基站的上行持续时间之外使用第二参数进行自主调度上行传输;
所述第一参数不同于所述第二参数。
具体地,所述第一参数对应的频率资源数量为m1,所述第一参数对应的时域资源数量为n1,所述第二参数对应的频率资源数量为m2,所述第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
具体地,所述第一参数对应的频率资源为m1个上行资源分配类型3中的资源块组,所述第一参数对应的时域资源为n1个连续子帧,所述第二参数对应的频率资源为m2个上行资源分配类型3中的资源块组,所述第二参数对应的时域资源为n2个连续子帧。
具体地,所述第二参数对应的先听后说配置使用第一指定类型,所述第一参数对应的先听后说配置使用第二指定类型,所述第二指定类型的信道接入优先级高于或等于所述第一指定类型的信道接入优先级。
另一方面,本申请实施例提供了一种传输方法,包括:
若用户终端在发现参考信号测量时间配置窗口之内检测到本小区的发现参考信号,则所述用户终端在所述发现参考信号测量时间配置窗口之内进行自主调度上行传输。
具体地,在所述发现参考信号测量时间配置窗口之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
另一方面,本申请实施例提供了一种传输方法,包括:
用户终端在基于基站调度的周期性非锚定上行时间之内使用第一参数进行自主调度上行传输,所述第一参数用于使在所述周期性非锚定上行时间之内,所述自主调度上行传输与所述周期性非锚定 上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
具体地,所述自主调度上行传输被配置为起始位置位于所述周期性非锚定上行传输的发送位置之后或者所述发送位置所属子帧的下一个子帧;
或者,所述自主调度上行传输被配置为与所述周期性非锚定上行传输在同一个子帧内使用不同的频率资源实现频分复用。
另一方面,本申请实施例提供了一种传输方法,包括:
若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述寻呼时机窗之内进行自主调度上行传输。
具体地,所述若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述寻呼时机窗之内进行自主调度上行传输的过程包括:
若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙进行自主调度上行传输,或者,所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
具体地,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
另一方面,本申请实施例提供了一种传输方法,包括:
若用户终端检测到自身的上行调度授权,则进入第一模式,在所述第一模式,在所述自主调度上行传输的可用子帧中与所述上行调度授权的子帧中的重叠子帧根据所述上行调度授权进行传输,在所述自主调度上行传输的可用子帧中除所述重叠子帧之外的子帧进 行所述自主调度上行传输。
具体地,上述方法还包括:
若所述用户终端在预设时间内未检测到自身的上行调度授权,则进入第二模式,在所述第二模式,在所述自主调度上行传输的可用子帧中进行所述自主调度上行传输。
另一方面,本申请实施例提供了一种用户终端,包括:
传输模块,用于基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输。
具体地,所述传输模块具体用于,在基站的上行持续时间之内使用第一参数进行自主调度上行传输。
具体地,所述第一参数被配置为使在所述上行持续时间之内,所述自主调度上行传输与基站调度上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
具体地,所述传输模块包括:
获取单元,用于通过公共物理下行控制信道获取所述指示信息;
发送单元,用于若根据所述指示信息判断所述自主调度上行传输的可用子帧位于所述上行持续时间之内,则使用所述第一参数进行所述自主调度上行传输。
具体地,在所述上行持续时间之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
具体地,所述指示信息包括下行部分结束位子帧的位置以及所述结束位子帧中可用符号位置;
所述发送单元,具体用于在所述结束位子帧中可用符号位置和/或在所述结束位子帧的下一个子帧进行所述自主调度上行传输。
具体地,所述传输模块还用于,在所述基站的上行持续时间之 外使用第二参数进行自主调度上行传输;所述第一参数不同于所述第二参数。
具体地,所述第一参数对应的频率资源数量为m1,所述第一参数对应的时域资源数量为n1,所述第二参数对应的频率资源数量为m2,所述第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
具体地,所述第一参数对应的频率资源为m1个上行资源分配类型3中的资源块组,所述第一参数对应的时域资源为n1个连续子帧,所述第二参数对应的频率资源为m2个上行资源分配类型3中的资源块组,所述第二参数对应的时域资源为n2个连续子帧。
具体地,所述第二参数对应的先听后说配置使用第一指定类型,所述第一参数对应的先听后说配置使用第二指定类型,所述第二指定类型的信道接入优先级高于或等于所述第一指定类型的信道接入优先级。
另一方面,本申请实施例提供了一种用户终端,包括:
传输模块,用于若在发现参考信号测量时间配置窗口之内检测到本小区的发现参考信号,则在所述发现参考信号测量时间配置窗口之内进行自主调度上行传输。
具体地,在所述发现参考信号测量时间配置窗口之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
另一方面,本申请实施例提供了一种用户终端,包括:
传输模块,用于在基于基站调度的周期性非锚定上行时间之内使用第一参数进行自主调度上行传输,所述第一参数用于使在所述周期性非锚定上行时间之内,所述自主调度上行传输与所述周期性非锚定上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
具体地,所述自主调度上行传输被配置为起始位置位于所述周 期性非锚定上行传输的发送位置之后或者所述发送位置所属子帧的下一个子帧;
或者,所述自主调度上行传输被配置为与所述周期性非锚定上行传输在同一个子帧内使用不同的频率资源实现频分复用。
另一方面,本申请实施例提供了一种用户终端,包括:
传输模块,用于若在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则在所述寻呼时机窗之内进行自主调度上行传输。
具体地,所述传输模块具体用于,若在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则在所述指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙进行自主调度上行传输,或者,所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
具体地,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
另一方面,本申请实施例提供了一种用户终端,包括:
模式切换模块,用于若检测到所述用户终端自身的上行调度授权,则进入第一模式;
传输模块,用于在所述第一模式,在所述自主调度上行传输的可用子帧中与所述上行调度授权的子帧中的重叠子帧根据所述上行调度授权进行传输,在所述自主调度上行传输的可用子帧中除所述重叠子帧之外的子帧进行所述自主调度上行传输。
具体地,所述模式切换模块还用于,若在预设时间内未检测到所述用户终端自身的上行调度授权,则进入第二模式;
所述传输模块还用于,在所述第二模式,在所述自主调度上行传输的可用子帧中进行所述自主调度上行传输。
另一方面,本申请实施例还提供了一种用户终端,包括:至少 一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被设置为用于执行本申请上述传输方法。
本申请提供的传输方法和用户终端,当自主调度上行传输与其他传输方式共存时,能够利用其他传输方式中的可用资源来进行自主调度上行传输,从而提高了自主调度上行传输的传输效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例中一种传输方法的流程示意图;
图2是本申请实施例中一种用户终端的结构框图;
图3是本实施例提供的执行各传输方法的用户终端的硬件结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
本申请中描述的移动通信具体技术不限,可以为WCDMA、CDMA2000、TD-SCDMA、WiMAX、LTE/LTE-A、LAA、MulteFire以及后续可能出现的第五代、第六代、第N代移动通信技术
本申请中描述的终端,指可以支持陆地移动通信系统的通信协议的终端侧产品,特指通信的调制解调器模块(Wireless Modem),其可以被手机、平板电脑、数据卡等各种类型的终端形态集成从而完成通信功能
为方便描述,以下采用第四代移动通信系统LTE/LTE-A及其衍生的MulteFire作为举例,其中移动通信终端表示为UE(User Equipment),以下称用户终端。
实施例一
本申请实施例提供一种传输方法,包括:用户终端UE基于公共物理下行控制信道C-PDCCH(即,CC-RNTI加扰的PDCCH)的检测及其指示信息,使用第一参数在指示信息对应的资源上进行自主调度上行传输。C-PDCCH的指示信息中包含自主调度上行传输可以利 用的资源,只有当检测到C-PDCCH时才能够使用其指示信息对应的资源进行自主调度上行传输,这样,就可以利用其他传输方式中的可用资源来进行自主调度上行传输。
本实施例中的传输方法,通过C-PDCCH的检测并在C-PDCCH的指示信息对应的资源上进行自主调度上行传输,因此能够利用其他传输方式中的可用资源来进行自主调度上行传输,从而提高了自主调度上行传输的传输效率。
具体地,上述用户终端UE基于公共物理下行控制信道C-PDCCH的检测及其指示信息,使用第一参数在指示信息对应的资源上进行自主调度上行传输的过程包括:
用户终端UE在基站eNB的上行持续时间(UpLink duration,UL duration)之内的自主调度上行传输可用资源上使用第一参数进行自主调度上行传输。
具体地,第一参数被配置为使在上行持续时间UL duration之内,自主调度上行传输与基站调度上行(Scheduled UpLink,SUL)传输进行频分复用(Frequency Division Multiplexing,FDM)、时分复用(Time Division Multiplexing,TDM)以及码分复用(Code Division Multiplexing,CDM或Orthogonal Cover Code,OCC)三种方式中的至少一种或任意组合。
本实施例中的传输方法,通过在UL duration内使自主调度上行传输和基站调度上行(Scheduled UpLink,SUL)传输进行频分复用FDM、时分复用TDM以及码分复用CDM/OCC三种方式中的至少一种或任意组合,从而提高了自主调度上行传输的传输效率。
具体地,如图1所示,上述用户终端UE在基站eNB的上行持续时间UL duration之内使用第一参数进行自主调度上行传输的过程包括:
步骤101、用户终端UE进行公共物理下行控制信道(Common Physical Downlink Control Channel,CPDCCH)检测,判断是否检测到CPDCCH,若检测到CPDCCH,则进入步骤102,若没有检测到 CPDCCH,则进入步骤105;
步骤102、用户终端UE通过公共物理下行控制信道CPDCCH获取上述指示信息;
步骤103、用户终端UE根据上述指示信息判断自主调度上行传输的可用子帧是否位于上行持续时间UL duration之内,若是,则进入步骤104、使用第一参数进行自主调度上行传输,若否,则进入步骤105。需要说明的是,上述指示信息除了包括UL duration,还可以包括其他用于指示是否进行自主调度上行传输的信息。
具体地,在上行持续时间UL duration之内,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。这样,可以为LBT预留出时间,以防止对基于eNB调度的上行传输的干扰。
具体地,上述指示信息包括下行部分结束位子帧的位置以及上述结束位子帧中可用符号位置,例如空余符号位置或上行起始位置,空余符号位置和上行起始位置均为可进行自主调度上行传输的可用符号位置;上述步骤104、使用第一参数进行所述自主调度上行传输具体为:在上述结束位子帧中可用符号位置和/或下一个子帧进行自主调度上行传输。
具体地,上述方法还包括:用户终端UE在基站eNB的上行持续时间UL duration之外使用第二参数进行自主调度上行传输;第一参数不同于第二参数。即在步骤103中,若检测到自主调度上行传输的可用子帧位于上行持续时间UL duration之外,则进入步骤105、使用第二参数进行自主调度上行传输。
具体地,第一参数对应的频率资源数量为m1,第一参数对应的时域资源数量为n1,第二参数对应的频率资源数量为m2,第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
具体地,第一参数对应的频率资源为m1个上行资源分配类型3 中的资源块组,第一参数对应的时域资源为n1个连续子帧,第二参数对应的频率资源为m2个上行资源分配类型3中的资源块组,第二参数对应的时域资源为n2个连续子帧。
具体地,第二参数对应的先听后说LBT配置使用第一指定类型,例如第二参数使用类型2上行信道接入流程(one shot LBT),第一参数对应的先听后说LBT配置使用第二指定类型,例如第一参数使用类型1上行信道接入流程(cat-4LBT),第二指定类型的优先级高于或等于第一指定类型的优先级。
实施例二
本申请实施例提供一种传输方法,包括:若用户终端在发现参考信号(Discovery Reference Signal,DRS又称Discovery signal,发现信号)测量时间配置(Discovery Signals Measurement Timing Configuration,DMTC)窗口window之内检测到本小区的发现参考信号DRS,则用户终端UE在发现参考信号测量时间配置窗口DMTC window之内进行自主调度上行传输。
具体地,DMTC window用于eNB向UE发送DRS,当UE在DMTC window接收到DRS之后,既可以在剩余的DMTC window内的GUL可用子帧上进行自主调度上行传输,以利用DMTC window的资源。
本实施例中的传输方法,在UE接收到本小区的DRS后在DMTC window进行自主调度上行传输,充分利用DMTC window的资源,从而提高了自主调度上行传输的传输效率。
具体地,在发现参考信号测量时间配置窗口DMTC window之内,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。如果相同DMTC配置的同步邻小区eNB需要发送DRS,那么会在子帧内的第一个符号前进行LBT并在第一个符号开始发送DRS,则该子帧中后续自主调度上行传输对应的LBT不会成功,因此可以避免对邻小区的DRS干扰。
实施例三
本申请实施例提供一种传输方法,包括:用户终端UE在基于基站eNB调度的周期性非锚定上行(periodic non-anchor UpLink)时间之内使用第一参数进行自主调度上行传输,第一参数用于使在周期性非锚定上行periodic non-anchor UpLink时间之内,自主调度上行传输与周期性非锚定上行periodic non-anchor UpLink传输进行频分复用FDM或时分复用TDM。周期性非锚定上行(periodic non-anchor UpLink)传输又称伪周期性上行(pseudo periodic UpLink)传输。
本实施例中的传输方法,通过在periodic non-anchor UpLink时间内使自主调度上行传输和periodic non-anchor UpLink传输进行频分复用FDM、时分复用TDM以及码分复用三种方式中的至少一种或任意组合,从而提高了自主调度上行传输的传输效率。
具体地,自主调度上行传输被配置为起始位置位于周期性非锚定上行periodic non-anchor UpLink传输的发送位置之后或者发送位置所属子帧的下一个子帧;
或者,自主调度上行传输被配置为与周期性非锚定上行periodic non-anchor UpLink传输在同一个子帧内使用不同的频率资源实现频分复用FDM。
这里的发送位置是指一个周期内的整个上行传输位置,将自主调度上行传输配置为起始位置位于periodic non-anchor UpLink传输的发送位置之后或者发送位置所属子帧的下一个子帧,可以优先保证periodic non-anchor UpLink传输,剩余资源再进行自主调度上行传输。
实施例四
本申请实施例提供一种传输方法,包括:
若用户终端UE在寻呼时机窗(paging occasion window,POW)之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识(paging-Radio Network Tempory Identity,P-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel, PDCCH),则用户终端在POW之内进行自主调度上行传输。这里的指定数量可以为系统通知的没有检测到寻呼的子帧数目PagelessSfsToMonitor。
本实施例中的传输方法,在UE通过检测P-RNTI加扰的PDCCH来判断POW内不会进行下行传输时,充分利用POW的资源,从而提高了自主调度上行传输的传输效率。
具体地,若用户终端UE在寻呼时机窗POW之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识P-RNTI加扰的物理下行控制信道PDCCH,则用户终端UE在寻呼时机窗POW之内进行自主调度上行传输的过程包括:
若用户终端UE在寻呼时机窗POW之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识P-RNTI加扰的PDCCH,则用户终端UE在指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙slot进行自主调度上行传输,或者,用户终端UE在指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
假设eNB会在POW内发送多次Paging信号,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。以保证自主调度上行传输不会影响后续的Paging信号的传输。
假设eNB只会在POW内发送一次paging信号给同一UE,当UE检测到该UE的paging信号后,可以在后续的子帧进行自主调度上行传输,与假设eNB会在POW内发送多次Paging信号的情况相比,此时对于自主调度上行传输的起始位置和结束位置的限定更加宽松。
假设eNB只会在POW内发送一次paging信号给所有本小区UE,当UE检测到P-RNTI加扰的PDCCH后,可以在后续的子帧进行自主调度上行传输,与假设eNB会在POW内发送多次Paging信号的情况 相比,此时对于自主调度上行传输的起始位置和结束位置的限定更加宽松。
实施例五
本申请实施例提供一种传输方法,包括:若用户终端检测到自身的上行调度授权(UpLink grant,UL grant),则进入第一模式,在第一模式,在自主调度上行传输的可用子帧中与上行调度授权的子帧中的重叠子帧根据上行调度授权UL grant进行传输,在自主调度上行传输的可用子帧中除上述重叠子帧之外的子帧进行自主调度上行传输。
本实施例中的传输方法,当UL grant的子帧与自主调度上行传输的可用子帧重叠时,使重叠子帧根据UL grant进行传输,使自主调度上行传输的可用子帧中的非重叠子帧进行自主调度上行传输,从而提高了自主调度上行传输的传输效率。
具体地,上述方法还包括:若用户终端UE在预设时间内未检测到自身的上行调度授权UL grant,则进入第二模式,在第二模式,在自主调度上行传输的可用子帧中进行自主调度上行传输。
实施例六
如图2所示,基于实施例一,本实施例提供一种用户终端UE,包括:传输模块1,基于公共物理下行控制信道C-PDCCH的检测及其指示信息,使用第一参数在指示信息对应的资源上进行自主调度上行传输。
该传输模块1的具体工作过程和原理与上述实施例一相同,在此不再赘述。
本实施例中的用户终端UE,通过C-PDCCH的检测并在C-PDCCH的指示信息对应的资源上进行自主调度上行传输,因此能够利用其他传输方式中的可用资源来进行自主调度上行传输,从而提高了自主调度上行传输的传输效率。
传输模块1具体用于,在基站eNB的上行持续时间UL duration之内的自主调度上行传输可用资源上使用第一参数进行自主调度上 行传输。
具体地,第一参数被配置为使在上行持续时间UL duration之内,自主调度上行传输与基站eNB调度上行传输SUL进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
本实施例中的用户终端,通过在UL duration内使自主调度上行传输和SUL在同一子帧内进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合,从而提高了自主调度上行传输的传输效率。
具体地,上述传输模块1包括:获取单元11,用于通过公共物理下行控制信道CPDCCH获取上述指示信息;发送单元12,用于若根据上述指示信息判断自主调度上行传输的可用子帧位于上行持续时间UL duration之内,则使用第一参数进行自主调度上行传输。
具体地,在上行持续时间UL duration之内,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
具体地,上述指示信息包括下行部分结束位子帧的位置以及结束位子帧中可用符号位置;发送单元12,具体用于在结束位子帧中可用符号位置和/或在结束位子帧的下一个子帧进行自主调度上行传输。
具体地,传输模块1还用于,在基站的上行持续时间UL duration之外使用第二参数进行自主调度上行传输;第一参数不同于第二参数。
具体地,第一参数对应的频率资源数量为m1,第一参数对应的时域资源数量为n1,第二参数对应的频率资源数量为m2,第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
具体地,第一参数对应的频率资源为m1个上行资源分配类型3中的资源块组,第一参数对应的时域资源为n1个连续子帧,第二 参数对应的频率资源为m2个上行资源分配类型3中的资源块组第二参数对应的时域资源为n2个连续子帧。
具体地,第二参数对应的先听后说LBT配置使用第一指定类型,第一参数对应的先听后说LBT配置使用第二指定类型,第二指定类型的优先级高于或等于第一指定类型的优先级。
需要说明的是,本实施例中UE的具体传输过程和原理与实施例一相同,在此不再赘述。
实施例七
基于实施例二,本实施例提供一种用户终端UE,包括:传输模块,用于若在发现参考信号测量时间配置窗口DMTC window之内检测到本小区的发现参考信号DRS,则在发现参考信号测量时间配置窗口DMTC window之内进行自主调度上行传输。
具体地,DMTC window用于eNB向UE发送DRS,当UE在DMTC window接收到DRS之后,既可以在剩余的DMTC window内进行自主调度上行传输,以利用DMTC window的资源。
本实施例中的用户终端UE,在UE接收到本小区的DRS后在DMTC window进行自主调度上行传输,充分利用DMTC window的资源,从而提高了自主调度上行传输的传输效率。
具体地,在发现参考信号测量时间配置窗口DMTC window之内,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。如果eNB需要发送DRS至邻小区的UE,那么会在子帧内的第一个符号进行LBT,则该子帧中后续自主调度上行传输对应的LBT不会成功,因此可以避免对邻小区的DRS干扰。
实施例八
基于实施例三,本实施例提供一种用户终端,包括:传输模块,用于在基于基站调度的周期性非锚定上行periodic non-anchor UpLink时间之内使用第一参数进行自主调度上行传 输,第一参数用于使在周期性非锚定上行periodic non-anchor UpL ink时间之内,自主调度上行传输与周期性非锚定上行periodic non-anchor UpL ink传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
本实施例中的用户终端,通过在periodic non-anchor UpLink时间内使自主调度上行传输和periodic non-anchor UpLink传输进行频分复用FDM或时分复用TDM,从而提高了自主调度上行传输的传输效率。
具体地,自主调度上行传输被配置为起始位置位于周期性非锚定上行periodic non-anchor UpLink传输的发送位置之后或者发送位置所属子帧的下一个子帧;
或者,自主调度上行传输被配置为与周期性非锚定上行periodic non-anchor UpLink传输在同一个子帧内使用不同的频率资源实现频分复用FDM。
这里的发送位置是指一个周期内的整个上行传输位置,将自主调度上行传输配置为起始位置位于periodic non-anchor UpLink传输的发送位置之后或者发送位置所属子帧的下一个子帧,可以优先保证periodic non-anchor UpLink传输,剩余资源再进行自主调度上行传输。
实施例九
基于实施例四,本实施例提供一种用户终端,包括:传输模块,用于若在寻呼时机窗POW之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识P-RNTI加扰的物理下行控制信道PDCCH,则在所述寻呼时机窗POW之内进行自主调度上行传输。
本实施例中的用户终端UE,在UE通过检测P-RNTI加扰的PDCCH来判断POW内不会进行下行传输时,充分利用POW的资源,从而提高了自主调度上行传输的传输效率。
传输模块具体用于,若在寻呼时机窗POW之内的指定数量个连 续的服务小区子帧内没有检测到呼无线网络临时标识P-RNTI加扰的物理下行控制信道PDCCH,则在指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙slot进行自主调度上行传输,或者,在指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
假设eNB会在POW内发送多次Paging信号,自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。以保证自主调度上行传输不会影响后续的Paging信号的传输。
假设eNB只会在POW内发送一次paging信号给同一UE,当UE检测到该UE的paging信号后,可以在后续的子帧进行自主调度上行传输,与假设eNB会在POW内发送多次Paging信号的情况相比,此时对于自主调度上行传输的起始位置和结束位置的限定更加宽松。
假设eNB只会在POW内发送一次paging信号给所有本小区UE,当UE检测到P-RNTI加扰的PDCCH后,可以在后续的子帧自主调度上行传输,与假设eNB会在POW内发送多次Paging信号的情况相比,此时对于自主调度上行传输的起始位置和结束位置的限定更加宽松。
实施例十
基于实施例五,本实施例提供一种用户终端UE,包括:模式切换模块,用于若检测到所述用户终端自身的上行调度授权(UpLink grant,UL grant),则进入第一模式,
传输模块,用于在第一模式,在自主调度上行传输的可用子帧中与上行调度授权的子帧中的重叠子帧根据上行调度授权UL grant进行传输,在自主调度上行传输的可用子帧中除上述重叠子帧之外的子帧进行自主调度上行传输。
本实施例中的用户终端UE,当UL grant的子帧与自主调度上 行传输的可用子帧重叠时,使重叠子帧根据UL grant进行传输,使自主调度上行传输的可用子帧中的非重叠子帧进行自主调度上行传输,从而提高了自主调度上行传输的传输效率。
具体地,模式切换模块还用于,若在预设时间内未检测到用户终端自身的上行调度授权UL grant,则进入第二模式;传输模块还用于,在第二模式,在自主调度上行传输的可用子帧中进行自主调度上行传输。
实施例十一
如图3所示,本实施例提供一种用户终端,该用户终端包括:一个或多个处理器610以及存储器620,图3中以一个处理器610为例。
该电子设备还可以包括:输入装置630和输出装置640。
处理器610、存储器620、输入装置630和输出装置640可以通过总线或者其他方式连接,图3中以通过总线连接为例。
存储器620作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的传输方法对应的程序指令/模块(例如,附图2所示的获取单元11和发送单元12)。处理器610通过运行存储在存储器620中的非暂态软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述任意方法实施例中的传输方法。
存储器620可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;以及必要数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置630可接收输入的数字或字符信息,以及产生与用户终端的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器620中,当被所述一个或者多个处理器610执行时,执行上述任意方法实施例中的传输方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例的用户终端以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)其他具有数据交互功能的电子装置。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (39)

  1. 一种传输方法,其特征在于,包括:
    用户终端基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用户终端基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输的过程包括:
    用户终端在基站的上行持续时间之内使用第一参数进行自主调度上行传输。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一参数被配置为使在所述上行持续时间之内,所述自主调度上行传输与基站调度上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
  4. 根据权利要求2所述的方法,其特征在于,
    所述用户终端在基站的上行持续时间之内使用第一参数进行自主调度上行传输的过程包括:
    所述用户终端通过公共物理下行控制信道获取所述指示信息;
    若所述用户终端根据所述指示信息判断所述自主调度上行传输的可用子帧位于所述上行持续时间之内,则使用所述第一参数进行所述自主调度上行传输。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述上行持续时间之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述指示信息包括下行部分结束位子帧的位置以及所述结束位子帧中可用符号位置;
    所述使用所述第一参数进行所述自主调度上行传输具体为:在 所述结束位子帧中可用符号位置和/或在所述结束位子帧的下一个子帧进行所述自主调度上行传输。
  7. 根据权利要求2至6中任意一项所述的方法,其特征在于,还包括:
    所述用户终端在所述基站的上行持续时间之外使用第二参数进行自主调度上行传输;
    所述第一参数不同于所述第二参数。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一参数对应的频率资源数量为m1,所述第一参数对应的时域资源数量为n1,所述第二参数对应的频率资源数量为m2,所述第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一参数对应的频率资源为m1个上行资源分配类型3中的资源块组,所述第一参数对应的时域资源为n1个连续子帧,所述第二参数对应的频率资源为m2个上行资源分配类型3中的资源块组,所述第二参数对应的时域资源为n2个连续子帧。
  10. 根据权利要求7所述的方法,其特征在于,
    所述第二参数对应的先听后说配置使用第一指定类型,所述第一参数对应的先听后说配置使用第二指定类型,所述第二指定类型的信道接入优先级高于或等于所述第一指定类型的信道接入优先级。
  11. 一种传输方法,其特征在于,包括:
    若用户终端在发现参考信号测量时间配置窗口之内检测到本小区的发现参考信号,则所述用户终端在所述发现参考信号测量时间配置窗口之内进行自主调度上行传输。
  12. 根据权利要求11所述的方法,其特征在于,
    在所述发现参考信号测量时间配置窗口之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/ 或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  13. 一种传输方法,其特征在于,包括:
    用户终端在基于基站调度的周期性非锚定上行时间之内使用第一参数进行自主调度上行传输,所述第一参数用于使在所述周期性非锚定上行时间之内,所述自主调度上行传输与所述周期性非锚定上行传输进行频分复用和/或时分复用和/或码分复用。
  14. 根据权利要求13所述的方法,其特征在于,
    所述自主调度上行传输被配置为起始位置位于所述周期性非锚定上行传输的发送位置之后或者所述发送位置所属子帧的下一个子帧;
    或者,所述自主调度上行传输被配置为与所述周期性非锚定上行传输在同一个子帧内使用不同的频率资源实现频分复用。
  15. 一种传输方法,其特征在于,包括:
    若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述寻呼时机窗之内进行自主调度上行传输。
  16. 根据权利要求15所述的方法,其特征在于,
    所述若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述寻呼时机窗之内进行自主调度上行传输的过程包括:
    若用户终端在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙进行自主调度上行传输,或者,所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
  17. 根据权利要求16所述的方法,其特征在于,
    所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  18. 一种传输方法,其特征在于,包括:
    若用户终端检测到自身的上行调度授权,则进入第一模式,在所述第一模式,在所述自主调度上行传输的可用子帧中与所述上行调度授权的子帧中的重叠子帧根据所述上行调度授权进行传输,在所述自主调度上行传输的可用子帧中除所述重叠子帧之外的子帧进行所述自主调度上行传输。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    若所述用户终端在预设时间内未检测到自身的上行调度授权,则进入第二模式,在所述第二模式,在所述自主调度上行传输的可用子帧中进行所述自主调度上行传输。
  20. 一种用户终端,其特征在于,包括:
    传输模块,用于基于公共物理下行控制信道的检测及其指示信息,使用第一参数在所述指示信息对应的资源上进行自主调度上行传输。
  21. 根据权利要求20所述的用户终端,其特征在于,
    所述传输模块具体用于,在基站的上行持续时间之内使用第一参数进行自主调度上行传输。
  22. 根据权利要求21所述的用户终端,其特征在于,
    所述第一参数被配置为使在所述上行持续时间之内,所述自主调度上行传输与基站调度上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
  23. 根据权利要求21所述的用户终端,其特征在于,
    所述传输模块包括:
    获取单元,用于通过公共物理下行控制信道获取所述指示信息;
    发送单元,用于若根据所述指示信息判断所述自主调度上行传 输的可用子帧位于所述上行持续时间之内,则使用所述第一参数进行所述自主调度上行传输。
  24. 根据权利要求23所述的用户终端,其特征在于,
    在所述上行持续时间之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  25. 根据权利要求24所述的用户终端,其特征在于,
    所述指示信息包括下行部分结束位子帧的位置以及所述结束位子帧中可用符号位置;
    所述发送单元,具体用于在所述结束位子帧中可用符号位置和/或在所述结束位子帧的下一个子帧进行所述自主调度上行传输。
  26. 根据权利要求21至25中任意一项所述的用户终端,其特征在于,
    所述传输模块还用于,在所述基站的上行持续时间之外使用第二参数进行自主调度上行传输;所述第一参数不同于所述第二参数。
  27. 根据权利要求26所述的用户终端,其特征在于,
    所述第一参数对应的频率资源数量为m1,所述第一参数对应的时域资源数量为n1,所述第二参数对应的频率资源数量为m2,所述第二参数对应的时域资源数量为n2,其中,m1、m2、n1和n2为正整数,m1小于或等于m2,n1小于或等于n2。
  28. 根据权利要求27所述的用户终端,其特征在于,
    所述第一参数对应的频率资源为m1个上行资源分配类型3中的资源块组,所述第一参数对应的时域资源为n1个连续子帧,所述第二参数对应的频率资源为m2个上行资源分配类型3中的资源块组,所述第二参数对应的时域资源为n2个连续子帧。
  29. 根据权利要求26所述的用户终端,其特征在于,
    所述第二参数对应的先听后说配置使用第一指定类型,所述第一参数对应的先听后说配置使用第二指定类型,所述第二指定类型 的信道接入优先级高于或等于所述第一指定类型的信道接入优先级。
  30. 一种用户终端,其特征在于,包括:
    传输模块,用于若在发现参考信号测量时间配置窗口之内检测到本小区的发现参考信号,则在所述发现参考信号测量时间配置窗口之内进行自主调度上行传输。
  31. 根据权利要求30所述的用户终端,其特征在于,
    在所述发现参考信号测量时间配置窗口之内,所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  32. 一种用户终端,其特征在于,包括:
    传输模块,用于在基于基站调度的周期性非锚定上行时间之内使用第一参数进行自主调度上行传输,所述第一参数用于使在所述周期性非锚定上行时间之内,所述自主调度上行传输与所述周期性非锚定上行传输进行频分复用、时分复用以及码分复用三种方式中的至少一种或任意组合。
  33. 根据权利要求32所述的用户终端,其特征在于,
    所述自主调度上行传输被配置为起始位置位于所述周期性非锚定上行传输的发送位置之后或者所述发送位置所属子帧的下一个子帧;
    或者,所述自主调度上行传输被配置为与所述周期性非锚定上行传输在同一个子帧内使用不同的频率资源实现频分复用。
  34. 一种用户终端,其特征在于,包括:
    传输模块,用于若在寻呼时机窗之内的指定数量个连续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则在所述寻呼时机窗之内进行自主调度上行传输。
  35. 根据权利要求34所述的用户终端,其特征在于,
    所述传输模块具体用于,若在寻呼时机窗之内的指定数量个连 续的服务小区子帧内没有检测到寻呼无线网络临时标识加扰的物理下行控制信道,则在所述指定数量个连续的服务小区子帧中的最后一个子帧中的第二个时隙进行自主调度上行传输,或者,所述用户终端在所述指定数量个连续的服务小区子帧中的最后一个子帧的下一个子帧进行自主调度上行传输。
  36. 根据权利要求35所述的用户终端,其特征在于,
    所述自主调度上行传输被配置为起始位置位于每个子帧内的第一个符号之后,和/或,所述自主调度上行传输被配置为结束位置位于每个子帧内的最后一个符号之前。
  37. 一种用户终端,其特征在于,包括:
    模式切换模块,用于若检测到所述用户终端自身的上行调度授权,则进入第一模式;
    传输模块,用于在所述第一模式,在所述自主调度上行传输的可用子帧中与所述上行调度授权的子帧中的重叠子帧根据所述上行调度授权进行传输,在所述自主调度上行传输的可用子帧中除所述重叠子帧之外的子帧进行所述自主调度上行传输。
  38. 根据权利要求37所述的用户终端,其特征在于,
    所述模式切换模块还用于,若在预设时间内未检测到所述用户终端自身的上行调度授权,则进入第二模式;
    所述传输模块还用于,在所述第二模式,在所述自主调度上行传输的可用子帧中进行所述自主调度上行传输。
  39. 一种用户终端,其特征在于,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被设置为用于执行上述权利要求1-19任一项所述的方法。
PCT/CN2018/075280 2017-02-04 2018-02-05 传输方法和用户终端 WO2018141289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710064633.2A CN106851822B (zh) 2017-02-04 2017-02-04 传输方法和用户终端
CN201710064633.2 2017-02-04

Publications (1)

Publication Number Publication Date
WO2018141289A1 true WO2018141289A1 (zh) 2018-08-09

Family

ID=59121938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075280 WO2018141289A1 (zh) 2017-02-04 2018-02-05 传输方法和用户终端

Country Status (2)

Country Link
CN (1) CN106851822B (zh)
WO (1) WO2018141289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277345A (zh) * 2019-01-07 2020-06-12 维沃移动通信有限公司 资源分配方法、上行传输方法、终端设备及网络设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289333B (zh) * 2017-01-10 2020-12-18 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
CN106851822B (zh) * 2017-02-04 2020-05-22 北京佰才邦技术有限公司 传输方法和用户终端
DE112018000166T5 (de) * 2017-07-14 2019-08-01 Intel IP Corporation Konfiguration von "grantless uplink"-übertragungen für eine benutzerausrüstung
CN109391401B (zh) * 2017-08-10 2021-07-23 大唐移动通信设备有限公司 一种下行控制信息的传输方法、基站、终端及存储介质
CN111316737B (zh) * 2017-11-17 2022-01-11 华为技术有限公司 数据传输方法、终端设备和网络设备
CN109862616B (zh) * 2017-11-30 2021-03-30 华为技术有限公司 一种资源分配方法、终端以及基站
WO2019105434A1 (zh) * 2017-11-30 2019-06-06 华为技术有限公司 一种资源分配方法、终端以及基站
CN110366248B (zh) 2018-04-04 2024-04-30 中兴通讯股份有限公司 上行传输、通信方法、装置及基站、终端、存储介质
CN110351026A (zh) * 2018-04-08 2019-10-18 华为技术有限公司 数据传输方法、终端和网络设备
CN111193582B (zh) * 2019-03-27 2022-08-23 维沃移动通信有限公司 上行传输方法和终端
CN112118605B (zh) * 2019-06-19 2022-08-30 中国电信股份有限公司 上行载波配置方法、装置和系统
WO2021031029A1 (zh) * 2019-08-16 2021-02-25 富士通株式会社 上行信号的发送和接收方法以及装置
CN114828219A (zh) * 2019-11-08 2022-07-29 展讯通信(上海)有限公司 数据接收方法及装置、存储介质、终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053639A1 (en) * 2014-10-02 2016-04-07 Qualcomm Incorporated Contention based uplink transmissions for latency reduction
CN105991224A (zh) * 2015-02-13 2016-10-05 中兴通讯股份有限公司 一种上行数据的传输控制方法和装置
WO2017016425A1 (en) * 2015-07-27 2017-02-02 Huawei Technologies Co., Ltd. Link adaptation in grant-free multiple access systems
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088902B2 (en) * 2010-04-30 2015-07-21 Nokia Technologies Oy User equipment carrier activation
CN102932947B (zh) * 2011-08-12 2016-03-30 上海贝尔股份有限公司 用于控制用户设备在从小区上的自主的上行传输的方法
WO2013063742A1 (en) * 2011-10-31 2013-05-10 Renesas Mobile Corporation Indication for dynamic in-device interference autonomous denial
CN105991243A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 一种数据重复传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053639A1 (en) * 2014-10-02 2016-04-07 Qualcomm Incorporated Contention based uplink transmissions for latency reduction
CN105991224A (zh) * 2015-02-13 2016-10-05 中兴通讯股份有限公司 一种上行数据的传输控制方法和装置
WO2017016425A1 (en) * 2015-07-27 2017-02-02 Huawei Technologies Co., Ltd. Link adaptation in grant-free multiple access systems
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277345A (zh) * 2019-01-07 2020-06-12 维沃移动通信有限公司 资源分配方法、上行传输方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN106851822A (zh) 2017-06-13
CN106851822B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2018141289A1 (zh) 传输方法和用户终端
US11039417B2 (en) Enhanced paging schemes and connected-state DRX
CN107439030B (zh) 在lte许可协助接入操作中的drx处理
US20220417762A1 (en) Method and apparatus for performing transmission
EP3761741A1 (en) Resource allocation and ue behavior for d2d synchronization signal transmission for inter-cell d2d discovery
US20100232347A1 (en) Resource Assignments for Relay System and Method
TW201729633A (zh) 用於在未授權通訊通道中進行傳呼的方法和裝置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2012149848A1 (zh) 一种数据传输的方法、系统和设备
WO2019192345A1 (zh) 一种时域资源分配方法及装置
WO2018033106A1 (zh) 一种信道接入执行方法及装置
US20180270893A1 (en) Broadcast or multicast physical layer configuration and channel structure
WO2016070425A1 (zh) 一种信息传输方法和用户设备以及基站
WO2017128285A1 (zh) 一种上行传输方法、基站及终端设备
WO2019062838A1 (zh) 数据传输方法及装置
WO2017026324A1 (ja) 端末装置、通信方法、および、集積回路
JPWO2016163464A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
KR20190098708A (ko) 상향링크 데이터를 전송하는 방법 및 장치
WO2019062778A1 (zh) 通信网络中用于信号发送和接收的方法、装置和计算机存储介质
US11792654B2 (en) Method and apparatus for performing transmission
WO2016177137A1 (zh) 一种数据传输方法和装置
WO2019062869A1 (zh) 一种数据传输方法、网络设备及终端设备
WO2019095266A1 (en) Method and apparatus for uplink scheduling
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022143808A1 (zh) 速率匹配方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18747838

Country of ref document: EP

Kind code of ref document: A1