WO2018141199A1 - 井下油气水砂分离方法及分离器 - Google Patents

井下油气水砂分离方法及分离器 Download PDF

Info

Publication number
WO2018141199A1
WO2018141199A1 PCT/CN2018/072424 CN2018072424W WO2018141199A1 WO 2018141199 A1 WO2018141199 A1 WO 2018141199A1 CN 2018072424 W CN2018072424 W CN 2018072424W WO 2018141199 A1 WO2018141199 A1 WO 2018141199A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
liquid
gas water
cup
partition
Prior art date
Application number
PCT/CN2018/072424
Other languages
English (en)
French (fr)
Inventor
王研
王德民
钟荣
刘权
刘金堂
Original Assignee
中国石油天然气股份有限公司
大庆油田有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司, 大庆油田有限责任公司 filed Critical 中国石油天然气股份有限公司
Priority to RU2019121513A priority Critical patent/RU2019121513A/ru
Priority to CA3049491A priority patent/CA3049491C/en
Priority to US16/482,842 priority patent/US11180980B2/en
Publication of WO2018141199A1 publication Critical patent/WO2018141199A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/126Packers; Plugs with fluid-pressure-operated elastic cup or skirt
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids

Definitions

  • the invention relates to a separation method and a separator, in particular to a method and a separator for separating downhole oil and gas water sand used in the field of oil field development.
  • the existing downhole oil water or gas water separation device cannot effectively realize the separation and exploitation of oil water or gas water in high water content crude oil.
  • the object of the present invention is to provide a method for separating downhole oil and gas water sand, by which the oil or water in high-water crude oil can be quickly separated under the well.
  • Another object of the present invention is to provide a downhole oil and gas water sand separator capable of rapidly separating oil or water or water in a high water cut crude oil downhole.
  • the invention provides a method for separating downhole oil and gas water sand, which comprises the following steps:
  • Step 1 dividing a plurality of spaces in the oil jacket loop in the outflow direction of the production fluid, and providing a receiving cavity in the space communicating with the oil jacket annulus to make the oil in the oil ring
  • the liquid descending velocity in the crude oil in each accommodating chamber is decreased with respect to the liquid falling speed in the crude oil in the oil ferrule, and the oil in the crude oil in each accommodating chamber
  • the rising speed of the droplet or bubble is increased relative to the rising speed of the oil droplet or bubble in the crude oil in the oil ring annulus;
  • Step 2 in the outflow direction of the production liquid, a plurality of liquid inlet groups are opened on the liquid outlet pipe of the production liquid, and each of the liquid inlet holes is relatively connected with one of the receiving chambers;
  • Step 3 The oil of the oil jacket annulus flows into each of the accommodating chambers to perform separation of oil and gas water, and the separated oil droplets or bubbles are returned from the accommodating chamber to the oil jacket annulus, and the separated oil is collected.
  • the liquid discharge flows into the liquid outlet pipe from a plurality of the liquid inlet groups; wherein the step 3 includes:
  • the area of different oil jacket annulus and the area of the liquid outlet pipe, the pressure difference between the oil jacket annulus and the liquid outlet pipe is determined;
  • the invention also provides a downhole oil and gas water sand separator, comprising:
  • liquid discharge pipe which is provided with a plurality of liquid inlet holes, and a plurality of the liquid inlet groups are arranged along the axial direction of the liquid discharge pipe;
  • each of the settling cups has a receiving cavity that is in communication with each of the liquid inlet holes, the settling cup has Liquid inlet
  • the settling cup comprises:
  • cup body having a peripheral wall having a inner ring side and an outer ring side, the lower end of the peripheral wall being connected to an outer ring side of the bottom wall, the horizontal height of the outer ring side being higher than The horizontal height of the inner ring side, the receiving cavity is formed between the cup body and the liquid outlet pipe;
  • the cup holder has an upper end connected to the inner ring side of the bottom wall, and the cup seat is sleeved on the liquid outlet pipe.
  • the method for separating downhole oil and gas water sand according to the present invention adopting a method of designing a plurality of accommodating cavities along the flow direction of the production liquid in the liquid outlet pipe, so that the crude oil in the oil jacket ring space is respectively corresponding to one corresponding to each accommodating chamber.
  • the liquid hole group simultaneously flows into the liquid discharge pipe, and the plurality of longitudinally distributed storage chambers on the liquid discharge pipe share the flow rate of the crude oil in the oil well annulus in the entire wellbore, so that the falling speed of the crude oil in each receiving cavity can be reduced.
  • the method for separating downhole oil and gas water sand of the present invention can discharge sand from the high-water-containing crude oil from the accommodating chamber by accommodating a plurality of sand-discharging holes of the chamber, thereby realizing separation of sand and water.
  • the method for separating downhole oil and gas water sand of the present invention can improve the separation speed of oil droplets in the crude oil by providing a filter tank containing the porous medium in the accommodating chamber.
  • each settling cup corresponds to a liquid inlet hole group on the liquid discharging pipe, and is shared by a plurality of settling cups.
  • the total amount of crude oil in the entire oil jacket loop divides the crude oil in the oil jacket ring into multiple parts, so as to reduce the falling speed of the liquid in each settling cup and promote the separation of oil droplets or bubbles from water.
  • FIG. 1 is a schematic flow chart of a method for separating downhole oil and gas water sand according to the present invention.
  • FIG. 2 is a schematic view showing the specific steps of the method for separating downhole oil and gas water sand according to the present invention.
  • FIG 3 is a structural schematic view of the downhole oil and gas water sand separator of the present invention installed on a downhole oil pipe.
  • Fig. 4 is an enlarged schematic view showing a portion A of Fig. 3;
  • FIG. 5 is a schematic cross-sectional structural view of a settling cup of a downhole oil and gas water sand separator according to the present invention.
  • Figure 6 is a front cross-sectional view of the filter box of the downhole oil and gas water sand separator of the present invention.
  • Figure 7 is a bottom plan view of the filter box of the downhole oil and gas water sand separator of the present invention.
  • Figure 8 is a cross-sectional structural view showing another embodiment of the settling cup of the downhole oil and gas water sand separator of the present invention.
  • Figure 9 is a top plan view of the settling cup of Figure 8.
  • Figure 10 is a top plan view of another embodiment of the settling cup of Figure 8.
  • Figure 11 is a front elevational view of the partition of the downhole oil and gas water sand separator of the present invention.
  • Figure 12 is a top plan view of the separator of the downhole oil and gas water sand separator of the present invention.
  • Figure 13 is a schematic view showing the structure of a downhole oil and gas water sand separator installed on a downhole oil pipe according to another embodiment of the present invention.
  • Fig. 14 is an enlarged view of a portion B in Fig. 13;
  • the present invention provides a method for separating downhole oil and gas water sand, which comprises the following steps:
  • Step 1 dividing a plurality of spaces in the oil jacket loop in the outflow direction of the production fluid, and providing a receiving cavity in the space communicating with the oil jacket annulus to make the oil in the oil ring
  • the liquid descending velocity in the crude oil in each accommodating chamber is decreased with respect to the liquid falling speed in the crude oil in the oil ferrule, and the oil in the crude oil in each accommodating chamber
  • the rising speed of the droplet or bubble is increased relative to the rising speed of the oil droplet or bubble in the crude oil in the oil ring annulus;
  • Step 2 in the outflow direction of the production liquid, a plurality of liquid inlet groups are opened on the liquid outlet pipe of the production liquid, and each of the liquid inlet holes is relatively connected with one of the receiving chambers;
  • Step 3 The oil of the oil jacket annulus flows into each of the accommodating chambers to perform separation of oil and gas water, and the separated oil droplets or bubbles are returned from the accommodating chamber to the oil jacket annulus, and the separated oil is collected.
  • the liquid discharge simultaneously flows into the liquid discharge pipe from a plurality of the inlet holes.
  • the floating speed of the oil droplets or bubbles is greater than the downward flow rate of the fluid produced by the oil jacket, the oil droplets or bubbles are separated from the produced fluid.
  • the floating speed of oil droplets or bubbles can be calculated by the Stokes formula, ie
  • Q is the oil production volume of the oil well, the unit is m 3 /d;
  • A is the cross-sectional area of the oil jacket annulus, the unit is m 2 .
  • the oil production amount Q of the oil well is determined according to the parameters such as the viscosity, permeability and oil layer thickness of the crude oil in the specific reservoir, and the liquid production amount Q of the oil well and the cross-sectional area of the oil jacket annulus. A can not be changed at will, that is to say, for a specific oil well, the rate of decline of crude oil in the oil jacket is constant.
  • a plurality of spaces are divided in the oil jacket loop in the outflow direction of the production fluid, and a receiving chamber communicating with the oil jacket annulus is provided in each space;
  • a plurality of liquid inlet groups are formed in the outlet pipe of the production liquid along the outflow direction of the production liquid, and each of the liquid inlet groups is in communication with a receiving chamber.
  • the invention adopts a manner of designing a plurality of accommodating cavities along the flow direction of the production liquid in the liquid outlet pipe, so that the crude oil in the oil jacket ring air flows into the liquid discharge pipe from one corresponding liquid inlet hole group of each accommodating cavity, thereby It can be concluded that the falling speed of the crude oil in the accommodating chamber at this time becomes
  • N is the number of accommodating chambers. It is not difficult to see that the use of a plurality of longitudinally distributed storage chambers on the outlet pipe to share the flow of crude oil in the oil well annulus in the entire wellbore can reduce the rate of decline of crude oil in each containment chamber to a conventional oil well casing. The 1/N of the falling speed of the crude oil at the inlet of the annulus increases the relative velocity of the oil droplets or bubbles floating up in the crude oil, thereby finally achieving the purpose of efficient separation of oil and gas.
  • the number N of accommodating chambers required for all the inlet groups on the outlet pipe is calculated according to the following formula:
  • Q is the oil production volume
  • T t is the expected residence time of the crude oil in the accommodating chamber
  • V is the volume of the accommodating chamber.
  • the length L of the entire separator composed of a plurality of accommodating chambers can be calculated as
  • ⁇ L is the arrangement pitch of the accommodating chambers, in units of m.
  • This formula shows that the length L of the separator mainly depends on the oil production amount Q of the oil well, the expected residence time T t of the crude oil in the accommodating chamber, the volume V of the accommodating chamber, and the arrangement pitch ⁇ L of the accommodating chamber.
  • the various factors described above are variable during the design process. Firstly, it depends on the expected residence time T t of the crude oil in the accommodating cavity, generally 25s to 150s, and the influencing factors mainly include the shape of the accommodating cavity and the material required for making the accommodating cavity; secondly, the arrangement interval of the accommodating cavity ⁇ L
  • the arrangement interval ⁇ L of the accommodating chamber actually indicates the distance between two adjacent inlet groups of the liquid pipe, generally 10 mm to 55 mm, and the experimental results show that the separation efficiency is ⁇ L with the arrangement pitch of the accommodating chamber.
  • each of the liquid inlet groups includes a plurality of liquid inlet holes, and the plurality of the liquid inlet holes of each of the liquid inlet groups are along
  • the outlet pipes are spaced apart in the circumferential direction, and the diameter d of the inlet holes is calculated by the following formula:
  • v is the flow rate of the production liquid passing through the inlet hole.
  • D is the inner diameter of the liquid outlet pipe, unit m;
  • Q(x) is the flow rate at different positions x of the liquid outlet pipe, the unit is m 3 /s;
  • is the viscosity of the production liquid, the unit is Pa ⁇ s .
  • the upstream end of the liquid discharge pipe that is, in the vertical wellbore, the upstream end is the lowermost end of the liquid discharge pipe
  • the flow rate of the inlet hole at the downstream end that is, in the vertical wellbore, which is the uppermost end of the outlet pipe
  • the flow ratio ⁇ is always greater than 1.0. That is to say, due to the existence of the grinding resistance difference ⁇ pf, the flow pressure difference at the orifice at the downstream end of the outlet pipe is larger than the flow pressure difference at the orifice at the upstream end of the outlet pipe by ⁇ pf, which causes the liquid to pass through.
  • the flow rate of the inlet hole group at the downstream end of the pipe is larger than the flow rate of the liquid inlet hole group at the upstream end thereof.
  • the working pressure difference ⁇ p of the corresponding gas anchor is small, although Larger aperture is beneficial to the processing of the inlet hole, but it will cause the flow ratio to be too large.
  • the flow rate at the downstream end of the outlet pipe is much larger than the flow at the upstream end of the outlet pipe. Almost all of the liquid flows smoothly from the inlet port group at the downstream end of the outlet pipe into the outlet pipe, and the gas is carried into the anchor pipe, making the gas anchor lose its meaning.
  • the working pressure difference ⁇ p inside and outside the liquid outlet pipe can be increased by reducing the hole diameter of the liquid inlet pipe, thereby eliminating the liquid discharge as much as possible.
  • the oil production volume Q is 50 m 3 /d to 200 m 3 /d (the required separator length is 8 m to 23 m), and the diameter is 0.8 mm to 1.0 mm.
  • the inlet hole can achieve a design goal with a flow ratio of less than 1.05.
  • the downstream end of the liquid discharge pipe can be reduced by gradually increasing the diameter of the liquid inlet hole or increasing the number of the liquid inlet holes corresponding to each receiving cavity from the downstream end of the liquid outlet pipe to the upstream end of the liquid discharge pipe.
  • the liquid flow rate increases the flow rate of the liquid at the upstream end of the liquid discharge pipe, so that the flow rate in the longitudinal direction of the separator is substantially equal.
  • the step 3 includes: determining the oil ring annulus and the liquid outlet pipe according to the liquid production volume of different wells, the area of the different oil jacket annulus, and the area of the liquid outlet pipe. a pressure difference value; adjusting an overflow area of the liquid inlet group at different positions on the liquid outlet pipe according to the pressure difference value, so that the flow from each of the liquid inlet hole groups simultaneously flows into the liquid discharge pipe
  • the flow rates of the liquids are all equal (that is, the flow rates of the production fluids flowing into the liquid discharge conduit from each of the liquid inlet groups are approximately equal), and the flow principle is utilized by using a plurality of housing chambers, that is, a plurality of accommodating chambers or other similar structures in the axial direction of the liquid pipeline, so that the descending speed of the liquid in the crude oil in each accommodating chamber is lowered relative to the descending speed of the liquid in the crude oil in the oil jacket, and the oil droplets or bubbles and water in the crude oil are promoted.
  • the advantage of this arrangement can overcome the influence of the change of internal and external pressure difference on the flow variation of different parts of the outlet pipe due to the difference of flow resistance during the flow of the produced liquid in the outlet pipe and the oil casing annulus, which is beneficial to oil droplets or Rapid separation of bubbles.
  • the method for separating downhole oil and gas water sand further comprises:
  • Step 4 When a filter material is placed in each of the accommodating chambers so that oil droplets in the crude oil flow through the filter material, the oil droplets become an oil film, and the oil film is subjected to upward pressure shaving in the filter material. The downward pressure shaving promotes the oil film to slide upward within the filter material and form large oil droplets.
  • a filter box is disposed in the accommodating chamber, and the filter box is sleeved on the liquid discharge pipe, and the filter box is located corresponding to each of the accommodating chambers in an outflow direction of the produced liquid.
  • a downstream end of one of the inlet groups is connected, and a filter material is disposed in the filter box.
  • the filter material in the filter box is a porous medium capable of changing wettability, for example, oleophilic quartz sand or coated quartz sand, and the upper surface and the lower surface of the filter box are screen structures, and the screen structure
  • the mesh aperture is smaller than the particle size of the filter material.
  • the filter box utilizes the principle of phase infiltration, so that when the oil droplets in the high-water-containing crude oil flow through the filter material, the small oil droplets become oil film, and the oil film is in the filter material because the oil film is subjected to upward pressure and the pressure is more than the downward pressure.
  • the inner film slides upwards, and the oil film absorbs the pore surface in the porous medium.
  • the porous medium has a pressure gradient from bottom to top.
  • the oil film is floated by the pressure gradient, and the remaining liquid directly sinks through the porous medium to the bottom of the receiving chamber. At the outlet of the porous medium, the oil film forms large oil droplets, and the floating speed is faster, and the separation efficiency is improved.
  • the accommodating chamber has a plurality of sand discharging holes, and the plurality of sand discharging holes communicate with the oil jacket annulus.
  • the sand holes can discharge the sand in the high water-containing crude oil from the accommodating chamber to realize the separation of the sand and the water.
  • the present invention further provides a downhole oil and gas water sand separator 10, which is designed by using the downhole oil and gas water sand separation method of the first embodiment, of course, according to the implementation.
  • the method for separating the oil and gas water sand of the first method can also design a separator of other structures.
  • the separator 10 of the second embodiment is only one specific example, and a person skilled in the art designs according to the example of the second embodiment. Structured separators are all intended to be encompassed within the scope of embodiments of the invention.
  • the downhole oil and gas water sand separator 10 comprises a liquid discharge pipe 1 and a plurality of settling cups 2, wherein: the liquid discharge pipe 1 is provided with a plurality of liquid inlet holes 11 along which a plurality of the liquid inlet holes 11 are arranged The liquid pipes 1 are spaced apart in the axial direction; a plurality of settling cups 2 are connected to each other on the liquid discharge pipe 1, and each of the settling cups 2 has a housing that is in communication with each of the liquid inlet groups 11 The chamber 21, the settling cup 2 has a liquid inlet 24.
  • the plurality of settling cups 2 are connected to each other on the liquid discharge pipe 1, and the upper ends of the plurality of settling cups 2 are fixedly connected to the liquid discharge pipe 1 through the upper positioning sleeve 101, and the lower ends of the plurality of settling cups 2 are positioned downward.
  • the sleeve 102 is fixedly attached to the outlet conduit 1.
  • the downhole oil and gas water sand separator 10 of the present invention is located in the downhole casing, please refer to FIG.
  • the outlet pipe 1 of the downhole oil and gas water sand separator 10 is connected with the oil pipe 3 disposed in the casing, the casing and the oil pipe 3
  • the oil jacket annulus 31 formed between them communicates with the accommodating chamber 21 of the settling cup 2 through the liquid inlet 24 of each settling cup 2.
  • the lower end of the oil pipe 3 may be sequentially connected with a plurality of downhole oil and gas water sand separators 10, wherein the upper end of the oil pipe 3 sequentially passes through the separator joint 4, the pipe joint 5, the coupling 6 and the pumping
  • the oil pump connector 7 is connected to a pumping pump (not shown), and a plug or a well valve 8 is connected to the lower end of the plurality of downhole oil and gas water separators 10.
  • the outer diameter of the downhole oil and gas water sand separator 10 is smaller than the outer diameter of the separator joint 4.
  • the present invention provides a plurality of settling cups 2 in the axial direction of the outlet conduit 1, each of which corresponds to a set of inlet holes 11 on the outlet conduit 1, and shares the entire oil collar through a plurality of settling cups 2
  • the total amount of crude oil in the air 31 is such that the crude oil in the oil jacket annulus 31 is divided into a plurality of portions to achieve the purpose of reducing the falling speed of the liquid in each settling cup 2 and promoting the separation of the oil droplets or bubbles from the water.
  • the downhole oil and gas water sand separator 10 has n settling cups 2 (n is a natural number), and the rate of liquid drop in each settling cup 2 is 1/n of the rate of decline of all crude oil in the oil jacket annulus 31.
  • n is a natural number
  • the rate of liquid drop in each settling cup 2 is 1/n of the rate of decline of all crude oil in the oil jacket annulus 31.
  • the number of designing the settling cups 2 is selected to be 30 to 2000
  • a large number of settling cups 2 are used to share the total amount of crude oil in the entire oil jacket annulus 31, so that each of the settling cups 2
  • the liquid falling speed is reduced by 30 to 2000 times compared with the falling speed of the ordinary separator, thereby improving the separation efficiency of oil droplets or bubbles and water.
  • each of the liquid inlet groups 11 includes a plurality of liquid inlet holes 111, and each of the plurality of inlet holes 11 is The liquid holes 111 are spaced apart in the circumferential direction of the liquid discharge pipe 1, and the diameter of the liquid inlet hole 111 at the liquid discharge end 12 of the liquid discharge pipe 1 is larger than that at the end 13 of the liquid discharge pipe 1.
  • the aperture of the inlet port 111 is provided.
  • the liquid discharge pipe 1 is provided with a plurality of sets of liquid inlet holes 11 at equal intervals in the axial direction thereof, and each set of liquid inlet holes 11 has a plurality of liquid inlet holes 111 which are equally spaced along the circumferential direction of the liquid discharge pipe 1.
  • each set of the inlet holes 11 includes 2 to 12 inlet holes 111, and the inlet holes 111 have a pore diameter of 0.5 mm to 2.0 mm.
  • the diameter of the liquid inlet hole 111 located at the liquid outlet end 12 of the liquid outlet pipe 1 is designed to be larger than the diameter of the liquid inlet hole 111 located at the end 13 of the liquid outlet pipe 1,
  • the multi-cup equal flow principle is utilized, that is, a plurality of settling cups 2 or other along the axial direction of the outlet conduit 1 are utilized.
  • a similarly structured device reduces the rate of drop of liquid in each settling cup 2 and promotes the separation of oil droplets or bubbles from water.
  • the advantage of such a setting is to overcome the change of the flow rate of the different parts of the liquid discharge pipe 1 due to the difference of the internal and external pressure difference caused by the difference of the flow resistance during the flow of the produced liquid in the discharge pipe 1 and the oil jacket annulus 31.
  • the effect of the downhole oil and gas water sand separator 10 is maintained to be substantially equal in the longitudinal direction, which facilitates the rapid separation of oil droplets or bubbles.
  • a filter box 9 is disposed in the settling cup 2, and the filter box 9 is sleeved on the liquid discharge pipe 1, and the filter box 9 is along the production liquid.
  • the outflow direction is located at a downstream end of one of the inlet holes 11 corresponding to each of the accommodation chambers 21, and the filter tank 9 is provided with a filter material.
  • the filter box 9 is substantially in the shape of a flat annular cylinder.
  • the filter box 9 is composed of a chassis 91 and a cover 92 fastened above the chassis 91.
  • the chassis 91 is substantially
  • the annular cylinder has a filter tank 911 capable of containing a filter material.
  • the cover body 92 has a generally funnel-shaped annular plate shape and is fastened to the filter tank 911 of the chassis 91 to prevent the filter material from being detached from the chassis 91.
  • the bottom wall of the chassis 91 and the cover body 92 are provided with screen openings 93 for the oil droplets to flow into or out of the filter box 9.
  • the filter material in the filter box 9 is a porous medium capable of changing wettability, for example, oleophilic quartz sand or coated quartz sand, and the pore size of the sieve holes is smaller than the particle size of the filter material. .
  • the filter box 9 utilizes the principle of phase infiltration, so that when oil droplets in the high-water-containing crude oil flow through the filter material, the small oil droplets become oil film, and the oil film is filtered because the oil film is subjected to upward pressure and the pressure is greater than the downward pressure.
  • the material slides upwards, the oil film adsorbs the pore surface in the porous medium, and the porous medium has a pressure gradient from bottom to top.
  • the oil film is floated out of the filter material by the pressure gradient, and the remaining liquid directly sinks through the porous medium to the settling cup 2.
  • the oil film forms a large oil droplet at the outlet of the porous medium, and the floating speed is faster, thereby improving the separation efficiency.
  • the downhole oil and gas water sand separator 10 of the present invention adopts a structure in which a plurality of settling cups 2 are connected up and down, and a filter box 9 is provided in each settling cup 2, which realizes downhole compared with the conventional separator. Efficient separation of oil droplets or bubbles from water can be used for simultaneous injection techniques for high-water wells and for improved downhole pumping of oil wells.
  • the settling cup 2 includes a cup body 22 and a cup holder 23, wherein the cup body 22 has a peripheral wall 221 and a bottom wall 222, and the bottom wall 222 has an inner ring. a side 2221 and an outer ring side 2222, wherein a lower end of the peripheral wall 221 is connected to an outer ring side 2222 of the bottom wall 222, and a horizontal height of the outer ring side 2222 is higher than a horizontal height of the inner ring side 2221.
  • the receiving chamber 21 is formed between the cup 22 and the liquid outlet pipe 1; the upper end of the cup holder 23 is connected to the inner ring side 2221 of the bottom wall 222, and the cup holder 23 is sleeved in the liquid outlet pipe. 1 on.
  • the cup 22 is generally cylindrical in shape and has a peripheral wall 221 and a bottom wall 222.
  • the lower end of the peripheral wall 221 is connected to the outer ring side 2222 of the bottom wall 222;
  • the bottom wall 222 is substantially annular, and the outer ring side 2222 of the bottom wall 222 is seen from the front view of the settling cup 2 shown in FIG.
  • the level is higher than the level of the inner ring side 2221 of the bottom wall 222.
  • the cup holder 23 has a substantially cylindrical shape, and its upper end is connected to the inner ring side 2221 of the bottom wall 222 of the cup 22. In the present embodiment, the lower end of the cup holder 23 is spaced apart from the drain line 1 in the circumferential direction.
  • the lower end of the cup holder 23 is provided with two positioning pins 232.
  • the two positioning pins 232 are disposed diametrically opposite to each other, and two positioning holes 233 are respectively disposed at diametrically opposite positions of the upper end of the cup holder 23, and the cup holder The positions of the two positioning pins 232 of the 23 correspond to the positions of the two positioning holes 233 of the cup holder 23 up and down.
  • the settling cup 2 When the settling cup 2 is in use, a plurality of the settling cups 2 of the present invention are inserted and used up and down.
  • the two settling cups are inserted up and down as an example for description.
  • the cup holder 23-1 of the settling cup 2-1 located above is inserted into the accommodating chamber 21-2 of the cup 22-2 of the sinker cup 2-2 below, which is When the positioning pin (not shown) of the cup holder 23-1 of the settling cup 2-1 located above is inserted into the positioning hole 233-2 of the cup holder 23-2 of the sinker cup 2-2 below, Thereby, the two settling cups that are inserted into each other are positioned and connected.
  • a gap portion is formed between the outer edge of the upper end of the cup 22-2 of the lower settling cup 2-2 and the cup 22-1 of the settling cup 2-1 located above.
  • the gap portion is the liquid inlet port 24-2 of the settling cup 2-2 located below.
  • the sleeves are sleeved on the liquid outlet pipe 1 having a plurality of liquid inlet holes 11 , and the cup seats of the two settling cups are just matched with the outer peripheral wall of the liquid discharge pipe 1 .
  • the inlet hole group 11 on the liquid discharge pipe 1 is disposed opposite to the accommodation chamber 21-2 of the cup body 22-2 of the sinker cup 2-2 located below and close to the cup body 22 of the settling cup 2-2 located below.
  • the cup holder 23-1 of the settling cup 2-1 located above is inserted into the upper end of the cup holder 23-2 of the sinker cup 2-2 located below, the cup holder 23-2
  • the open groove is just opposite to the liquid inlet group 11 of the liquid discharge pipe 1 to avoid the position of the liquid inlet group 11.
  • the oil droplets or bubbles in the chamber are automatically separated from the water, thereby increasing the separation rate of the oil droplets or bubbles, thereby increasing the oil droplets or The separation speed of bubbles and water.
  • the bottom wall 222 of the cup 22 is provided with a plurality of sand holes 223 which communicate with the receiving chamber 21 of the cup 22.
  • the sand holes 223 allow the sand in the liquid to be discharged from the bottom of the cup 22 of the settling cup 2 to separate the sand from the water.
  • the sand holes 223 are equally spaced along the circumferential direction of the bottom wall 222.
  • the sand holes 223 are disposed near the inner ring side 2221 of the bottom wall 222, and the sand holes 223 on the bottom wall 222 are provided. It may be 4 to 12, and the diameter of the sand hole 223 may be 1.0 mm to 4.0 mm.
  • a gap portion is formed between the adjacent cup bodies 22, and the gap portion is the liquid inlet port 24 of the settling cup.
  • the distance between the gap portions formed between the cups 22 of the adjacent two sets of the settling cups 2 is 0.5 mm to 2.5 mm, and the distance of the gap portions may be convexly provided at the lower end of the cup holder 23 of each of the set cups 2.
  • the length of the positioning pin 232 and the depth of the positioning hole 233 recessed in the upper end of the cup holder 23 are determined.
  • the purpose of designing the gap portion is to facilitate the escape of oil droplets or bubbles from which it is separated on the one hand, and to facilitate the entry of fluid in the oil jacket annulus into the settling cup 2 on the other hand.
  • the settling cup 2 includes a cup body 22 and a cup holder 23, and the cup body 22 has a peripheral wall 221 and a bottom wall 222, the bottom wall 222 has an inner ring side 2221 and an outer ring side 2222.
  • the lower end of the peripheral wall 221 is connected to the outer ring side 2222 of the bottom wall 222.
  • the horizontal height of the outer ring side 2222 is higher than the inner ring side 2221.
  • the height of the cup 22 and the outlet conduit 1 form the receiving cavity 21; the upper end of the cup holder 23 is connected to the inner ring side 2221 of the bottom wall 222, and the cup holder 23 is sleeved in the The liquid pipe 1 is described.
  • a plurality of gathering portions sequentially connected in the circumferential direction are formed between the outer ring side 2222 and the inner ring side 2221 of the bottom wall 222 of the cup 22. 2223.
  • a zigzag outer edge 2211 is formed on the upper end of the peripheral wall 221 , and the zigzag outer edge 2211 can facilitate oil droplets or bubbles in the liquid to be separated in the cup 22 to gather at the tip of the saw tooth. It is noted that when oil droplets or bubbles collect to the serrated tip of the serrated outer edge 2211, the particle size of the oil droplets or bubbles can be significantly increased; the bottom wall 222 is generally circular, from the settling cup shown in FIG.
  • the horizontal height of the outer ring side 2222 of the bottom wall 222 is higher than the horizontal height of the inner ring side 2221 of the bottom wall 222, and the bottom wall 222 is sequentially connected by the circumferential direction of the cup 22.
  • a plurality of merging portions 2223 are formed, which can function to aggregate and polymerize oil droplets or bubbles in the high-water-containing crude oil, so that oil droplets or bubbles gather on the lower surface of the bottom wall 222 of the cup body 22, thereby Converging, forming large oil droplets or large bubbles, increasing the separation speed and separation efficiency of the oil droplets or bubbles; in the present embodiment, the bottom wall 222 formed by the gather portions 2223 is generally a ring-shaped sloping sloping plate structure.
  • the settling cup 2 in this embodiment passes through the plurality of collecting portions 2223 on the bottom wall 222 of the settling cup 2, so that oil droplets or bubbles in the high-water-containing crude oil can be raised to the collecting portion 2223, and then in the collecting portion 2223. Aggregate and polymerize to form large oil droplets or bubbles, that is, increase the particle size of oil droplets or bubbles, increase the separation rate of oil droplets or bubbles, promote the separation of oil droplets or bubbles and water, and realize high-water crude oil. Rapid separation of oil droplets or bubbles from water.
  • the merging portion 2223 includes a first inclined surface 2224 and a second inclined surface 2225.
  • the upper end of the first inclined surface 2224 is connected to the upper end of the second inclined surface 2225 to form an upper inclined rib 2226.
  • An opening 2227 is formed between the lower end of the inclined surface 2224 and the lower end of the second inclined surface 2225.
  • the upper inclined rib 2226 forms an angle ⁇ with the horizontal plane. In the embodiment, the angle ⁇ is 30°. ⁇ 60°, the advantage of designing the angle ⁇ of this angle is to facilitate the accumulation and floating of oil droplets or bubbles.
  • a pair of adjacently connected gather portions 2223 are connected to each other to form a lower inclined rib 2228, whereby the outer ring side 2222 formed by the spaced apart upper inclined rib 2226 and the lower inclined rib 2228 is zigzag shaped. It fits exactly with the zigzag outer edge 2211 at the upper end of the peripheral wall 221 of the cup 22 so that when the plurality of settling cups 2 are stacked one above the other, the outer ring of the cup 22-1 of the settling cup 2-1 located above The side is mated with the zigzag outer edge of the cup 22-2 of the sinker cup 2-2 located below, and a gap portion having a circumferential equal gap is formed.
  • the cross section of the merging portion 2223 is triangular, so that the oil droplets or bubbles in the liquid to be separated move upward when it hits the first inclined surface 2224 and the second inclined surface 2225 of the merging portion 2223.
  • the cross section of the merging portion 2223 is triangular, the oil droplets or bubbles move upward, the smaller the flow area is, the concentration increases, and the oil droplets or bubbles gather to a certain concentration to cause aggregation, so that the oil droplets or The particle size of the bubbles is increased to increase the relative rising speed of the oil droplets or bubbles, and to improve the separation efficiency of the oil droplets or bubbles from the water.
  • the merging portion 2223 can also be designed as a trapezoidal cross section or an arcuate cross section, as long as the cross section of the merging portion 2223 is gradually reduced from the opening 2227 to the upward slanting rib 2226. The purpose of collecting and gathering oil droplets or bubbles in the coalescence portion 2223 is achieved.
  • the outer surface of the bottom wall 222 of the settling cup 2 formed by the plurality of gathering portions 2223 is provided with a bump 2229 having a polygonal face shape.
  • the bumps 2229 may be a triangular facet, a quadrangular face or a pentagonal facet structure, or a more facet structure, which is not limited herein, and the bumps 2229 can further achieve oil droplets or bubbles in the gather portion.
  • the purpose of gathering and gathering in 2223 is to increase the separation speed of oil droplets or bubbles from liquid.
  • a partition 224 is disposed in the cup 22 of each of the settling cups 2, and the partition 224 is sleeved on the liquid discharge pipe 1,
  • the partition 224 is located above the corresponding inlet hole group 11 of the cup body 22 of each settling cup 2, and the partition 224 has a partition inner ring side 2241 and a partition outer ring side 2242, and the partition outer ring side 2242
  • the horizontal height is higher than the horizontal height of the inner ring side 2241 of the partition plate, and the partition outer ring side 2242 and the inner ring side 2241 of the partition are provided with a plurality of partitioning portions 2243 which are sequentially connected in the circumferential direction, each of which A plurality of through holes 2244 are formed in the partition gather portion 2243.
  • the partition 224 is generally annular, and the outer ring side 2242 of the partition 224 has a higher level than the inner ring side 2241 of the partition 224 as viewed from a front view of the partition 224 shown in FIG. a horizontal height, and the partition 224 is formed by a plurality of partition gathers 2243 connected in sequence along the circumferential direction thereof, and each of the partition gathers 2243 is provided with a plurality of through holes 2244, the partition gathers
  • the parallel portion 2243 can function to aggregate and polymerize oil droplets or bubbles in the high-water-containing crude oil, so that oil droplets or bubbles gather on the lower surface of the separator 224, collide and aggregate, and form large oil droplets or large bubbles.
  • the separation speed and separation efficiency of the oil droplets or bubbles are increased; in the present embodiment, the partition 224 formed by the partition gathers 2243 is substantially in the shape of a ring-shaped slanted sloping plate.
  • the partition 224 When in use, the partition 224 is placed in the inner cavity 21 of the cup 22 of each settling cup 2, and the inner ring side 2241 is sleeved on the liquid outlet pipe 1, and the outer ring side 2242 is radially outwardly convex.
  • the latching protrusion 2245 can be a plurality of snap blocks arranged in the circumferential direction, or the snap protrusion 2245 can be a snap ring, and the partition 224 is stuck by the snap protrusion 2245
  • the buckle groove 2212 see the snap groove 2212 in FIG.
  • the partition 224 utilizes the shallow groove principle, and the rising distance of the oil droplets or bubbles in the settling cup 2 is relatively shortened in the cup 22 of each settling cup 2, so that the oil droplets or bubbles in the settling cup 2 pass first. After a relatively short rising distance, the diaphragm 224 is contacted. When the oil droplets or air bubbles move upward and hit the plurality of partitioning portions 2243 of the partition 224, the oil droplets or bubbles collide and collide on the lower surface of the partition 224.
  • the partition 224 has a plurality of partitioning portions 2243 thereon, which relatively shortens the rising distance of the oil droplets or bubbles in each settling cup, so that the oil droplets or bubbles precede the plurality of partitions on the partition 224.
  • the slabs and portions 2243 collide with each other to form large oil droplets or bubbles, which in turn collide with each other in the merging portion 2223 of the bottom wall of the upper settling cup, and the partition 224 is disposed to effectively improve the oil droplets or
  • the separation speed of bubbles and water further promotes the separation of oil droplets or bubbles from water, and achieves the rapid separation of oil droplets or bubbles from water in high-water crude oil.
  • the partitioning portion 2243 includes a first inclined surface 2246 and a second inclined surface 2247.
  • the plurality of through holes 2244 are respectively disposed on the first inclined surface 2246 of the partition and the partition.
  • the upper end of the first inclined surface 2246 of the partition plate is connected with the upper end of the second inclined surface 2247 of the partition plate to form an inclined rib 2248 on the partition plate, and the lower end of the first inclined surface 2246 of the partition plate
  • a partition opening 2249 is formed between the lower end of the second inclined surface 2247 of the partition, and a partition angle ⁇ is formed between the inclined rib 2248 on the partition and the horizontal plane.
  • the partition The plate angle ⁇ is 30° to 60°, and the advantage of designing the angle ⁇ of the angle is to facilitate the accumulation and floating of oil droplets or bubbles.
  • the total number of the lower inclined ribs 436 and the upper inclined ribs 2248 on the partition 224 may be 6 to 12.
  • the partitioning portion 2243 has a triangular cross section so that the oil droplets or bubbles in the liquid to be separated move upward to hit the first inclined surface 2246 and the partition of the partitioning portion 2243.
  • the second inclined surface 2247 is aggregated, since the cross section of the partitioning portion 2243 is triangular, the oil droplet or the bubble moves upward, the smaller the flow area is, the concentration increases, and the oil droplet or the bubble gathers to a certain concentration to generate a poly Moreover, the particle size of the oil droplets or bubbles is increased, and the relative rising speed of the oil droplets or bubbles is further increased, and the separation efficiency of the oil droplets or bubbles and water is improved.
  • the baffle gathering portion 2243 can also be designed as a trapezoidal cross section or an arcuate cross section, as long as the cross section of the baffle collecting portion 2243 is inclined from the partition opening 2249 to the partitioning rib 2248. The direction is gradually reduced, and the purpose of collecting or gathering oil droplets or bubbles in the partitioning portion 2243 is achieved.
  • the accommodating chamber 21 of the cup 22 of each of the settling cups 2 is filled with a filter material which is a porous medium which can change the wettability, for example, oleophilic quartz sand or Coated quartz sand, etc., through the principle of phase infiltration, when the oil droplets in the high-water-containing crude oil flow through the filter material, the small oil droplets become oil film, and the oil film is filtered because the oil film is subjected to upward pressure and the shaving is greater than the downward pressure.
  • the material slides upwards, the oil film adsorbs the pore surface in the porous medium, and the porous medium has a pressure gradient from bottom to top.
  • the oil film floats out of the filter material under the influence of the pressure gradient, and the remaining liquid directly sinks through the porous medium to the bottom of the accommodating chamber. At the outlet of the porous medium, the oil film forms a large oil droplet, which has a faster floating speed and improves the separation efficiency.
  • the downhole oil and gas water sand separator 10 can efficiently separate oil and gas water sand in the well, and then the separated production liquid can be extracted through the liquid outlet pipe 1 and directly injected back into other oil layers, and the high oily liquid is produced by the oil pump.
  • the downhole oil and gas water sand separator 10 can greatly improve the pump efficiency at the same time of gas-liquid separation.
  • the separation of the gravel in the production fluid can also relatively extend the working life of the underground oil and gas water sand separator 10 and the oil pump.
  • the oil pump is started, and the crude oil in the oil jacket annulus 31 is injected into each of the settling cups 2 through a plurality of liquid inlets 24 of the underground oil and gas water sand separator 10, and the crude oil in the oil jacket annulus 31 is divided into multiple parts.
  • the cup body 22 of each settling cup 2 is subjected to gas-liquid separation, and the separated production liquid flows into the liquid discharge pipe 1 from the plurality of liquid inlet holes 111 of each group of the liquid inlet holes 11 on the liquid discharge pipe 1, and is separated.
  • the subsequent gas and/or oil droplets are discharged from the plurality of liquid inlet ports 24 to the downhole oil and gas water sand separator 10, and the separated sand is discharged from the plurality of sand discharging holes 233 to the settling cup 2.

Abstract

一种井下油气水砂分离方法及分离器(10),该井下油气水砂分离方法包括如下步骤:步骤1:在油套环空中沿采出液的流出方向分割出多个空间,每个所述空间内提供与所述油套环空相连通的容纳腔(21);步骤2:沿采出液的流出方向,在采出液的出液管道(1)上开设多个进液孔组(11),每个所述进液孔组(11)与一个所述容纳腔(21)相对连通;步骤3:所述油套环空的原油流入每个所述容纳腔(21)后进行油气水的分离,分离后的油滴或气泡自所述容纳腔(21)回流至所述油套环空,分离后的采出液同时自多个所述进液孔组(11)流入所述出液管道(1)。该井下油气水砂分离方法及分离器,可实现在井下对高含水原油中的油水或气水进行快速分离。

Description

井下油气水砂分离方法及分离器 技术领域
本发明有关于一种分离方法及分离器,尤其有关于一种油田开发领域中应用的井下油气水砂分离方法及分离器。
背景技术
随着油田进入高含水开采期,出现的同井注采技术、以及为提高泵效所需的气液分离技术,都需要高效的井下油水或气水分离技术。
现有的井下油水或气水分离装置不能有效实现对高含水原油中油水或气水的分离和开采。
发明内容
本发明的目的是提供一种井下油气水砂分离方法,通过该分离方法可实现在井下对高含水原油中的油水或气水进行快速分离。
本发明的另一目的是提供一种井下油气水砂分离器,可实现在井下对高含水原油中的油水或气水进行快速分离。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种井下油气水砂分离方法,其包括如下步骤:
步骤1:在油套环空中沿采出液的流出方向分割出多个空间,每个所述空间内提供与所述油套环空相连通的容纳腔,以使油套环空中的原油分为多份分别流入多个容纳腔中,每个容纳腔内的原油中的液体下降速度相对所述油套环空内的原油中的液体下降速度降低,且每个容纳腔内原油中的油滴或气泡的上升速度相对所述油套环空内的原油中的油滴或气泡的上升速度提高;
步骤2:沿采出液的流出方向,在采出液的出液管道上开设多个进液孔组,每个所述进液孔组与一个所述容纳腔相对连通;
步骤3:所述油套环空的原油流入每个所述容纳腔后进行油气水的分离,分离后的油滴或气泡自所述容纳腔回流至所述油套环空,分离后的采出液同时自多个所述进液孔组流入所述出液管道;其中,所述步骤3包括:
根据不同井的产液量、不同油套环空的面积及出液管道的面积,确定油套环 空与出液管道内的压差值;
根据所述压差值调整所述出液管道上不同位置处的进液孔组的过流面积,以使自各所述进液孔组同时流入所述出液管道内的采出液的流量均相等。
本发明还提供一种井下油气水砂分离器,其包括:
出液管道,其上设有多个进液孔组,多个所述进液孔组沿所述出液管道的轴向方向间隔设置;
多个沉降杯,多个所述沉降杯彼此相连套设在所述出液管道上,每个所述沉降杯具有与每个所述进液孔组相对连通的容纳腔,所述沉降杯具有进液口;
其中,所述沉降杯包括:
杯体,其具有周壁及底壁,所述底壁具有内环侧及外环侧,所述周壁的下端连接在所述底壁的外环侧,所述外环侧的水平高度高于所述内环侧的水平高度,所述杯体与所述出液管道之间形成所述容纳腔;
杯座,其上端连接在所述底壁的内环侧,所述杯座套设在所述出液管道上。
本发明的特点及优点是:
一、本发明的井下油气水砂分离方法,采用沿出液管道内的采出液的流动方向设计多个容纳腔的方式,使油套环空中的原油分别从每个容纳腔对应的一个进液孔组同时流入出液管道,利用多个纵向分布在出液管道上的容纳腔来分担整个井筒内的油套环空的原油的流量,可使每个容纳腔内的原油的下降速度减少为常规油井油套环空中进液口处的原油的下降速度的1/N(N为容纳腔的个数),即提高了油滴或气泡在原油中上浮的相对速度,从而最终达到油气水高效分离的目的。
另外,本发明的井下油气水砂分离方法,通过容纳腔的多个出砂孔,可使高含水原油中的砂子从容纳腔中排出,实现砂与水的分离。
再有,本发明的井下油气水砂分离方法,通过在容纳腔中设置盛装有多孔介质的滤料箱,可提高原油中的油滴的分离速度。
二、本发明的井下油气水砂分离器,通过在出液管道的轴向方向上设置多个沉降杯,每个沉降杯对应出液管道上的一个进液孔组,通过多个沉降杯分担整个油套环空中的原油总量,使油套环空中的原油分成多份,以实现降低每个沉降杯内液体的下降速度,促进油滴或气泡与水的分离的目的。
附图说明
图1为本发明的井下油气水砂分离方法的流程示意图。
图2为本发明的井下油气水砂分离方法的具体步骤示意图。
图3为本发明的井下油气水砂分离器安装在井下油管上的结构示意图。
图4为图3的A部放大示意图。
图5为本发明的井下油气水砂分离器的沉降杯的剖面结构示意图。
图6为本发明的井下油气水砂分离器的滤料箱的主视剖视图。
图7为本发明的井下油气水砂分离器的滤料箱的仰视图。
图8为本发明的井下油气水砂分离器的沉降杯的另一实施例的剖面结构示意图。
图9为图8所示沉降杯的俯视图。
图10为图8所示沉降杯的另一实施例的俯视图。
图11为本发明的井下油气水砂分离器的隔板的主视图。
图12为本发明的井下油气水砂分离器的隔板的俯视图。
图13为本发明的另一实施例的井下油气水砂分离器安装在井下油管上的结构示意图。
图14为图13中B部放大图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施方式一
如图1所示,本发明提供了一种井下油气水砂分离方法,其包括如下步骤:
步骤1:在油套环空中沿采出液的流出方向分割出多个空间,每个所述空间内提供与所述油套环空相连通的容纳腔,以使油套环空中的原油分为多份分别流入多个容纳腔中,每个容纳腔内的原油中的液体下降速度相对所述油套环空内的原油中的液体下降速度降低,且每个容纳腔内原油中的油滴或气泡的上升速度相对所述油套环空内的原油中的油滴或气泡的上升速度提高;
步骤2:沿采出液的流出方向,在采出液的出液管道上开设多个进液孔组,每个所述进液孔组与一个所述容纳腔相对连通;
步骤3:所述油套环空的原油流入每个所述容纳腔后进行油气水的分离,分离后的油滴或气泡自所述容纳腔回流至所述油套环空,分离后的采出液同时自多个所述进液孔组流入所述出液管道。
具体是,当油滴或气泡的上浮速度大于油套环空中采出流体向下流动的速度时,油滴或气泡才会从采出流体中分离出来。由物理化学和流体力学理论可知,油滴或气泡的上浮速度
Figure PCTCN2018072424-appb-000001
可由斯托克斯公式计算,即
Figure PCTCN2018072424-appb-000002
式(1)中:K为常数;D为油滴或气泡的直径,单位m;Δρ为油滴或气泡与采出液的密度差,单位kg/m 3;μ为采出液的粘度,单位Pa·s。对一口井而言,上述各参数都是常数,且计算结果表明气泡或油滴的上升速度很小。
常规油井油套环空中进液口处原油的下降速度为
Figure PCTCN2018072424-appb-000003
式(2)中:Q为油井产液量,单位m 3/d;A为油套环空的截面积,单位m 2
由此可看出,常规生产过程中,油井产液量Q是根据具体油藏内原油的粘度、渗透率、油层厚度等参数确定的,该油井产液量Q和油套环空的截面积A都是不能随意改变的,也就是说对某一具体油井而言,其油套环空中的原油的下降速度为常数。
在本发明的步骤1和步骤2中,在油套环空中沿采出液的流出方向分割出多个空间,且在每个空间内提供与该油套环空相连通的容纳腔;然后,沿采出液的流出方向,在采出液的出液管道上开设多个进液孔组,每个所述进液孔组与一个容纳腔相对连通。本发明采用沿出液管道内的采出液的流动方向设计多个容纳腔的方式,使油套环空中的原油分别从每个容纳腔对应的一个进液孔组流入出液管道,由此可得出,此时的原油在容纳腔中的下降速度变为
Figure PCTCN2018072424-appb-000004
式(3)中:N为容纳腔的个数。不难看出,利用多个纵向分布在出液管道上的容纳腔来分担整个井筒内的油套环空的原油的流量,可使每个容纳腔内的原油的下降速度减少为常规油井油套环空中进液口处的原油的下降速度的1/N,即提高了油滴或气泡在原油中上浮的相对速度,从而最终达到油气水高效分离的目的。
在本发明的一个实施方式中,为保证原油在容纳腔内有足够的停留时间来确保分离 效果,出液管道上所有进液孔组所需的容纳腔的数量N根据如下公式计算得出:
Figure PCTCN2018072424-appb-000005
式(4)中,Q为油井产液量;T t为原油在容纳腔中的预期停留时间;V为容纳腔的容积。
在式(4)的基础上,就可计算出多个容纳腔所组成的整个分离器的长度L为
Figure PCTCN2018072424-appb-000006
式(5)中:△L为容纳腔的布置间距,单位m。该式表明,分离器的长度L主要取决于油井产液量Q、原油在容纳腔中的预期停留时间T t、容纳腔的容积V及容纳腔的布置间距△L。
具体的,对一口井而言,上述各种因素在设计过程中是可变的。首先是取决于原油在容纳腔中的预期停留时间T t,一般为25s~150s,其影响因素主要有容纳腔的形状和制作容纳腔所需的材质;其次取决于容纳腔的布置间距△L,该容纳腔的布置间距△L实际上是指出液管道上两两相邻的进液孔组之间的距离,一般为10mm~55mm,实验结果表明分离效率随容纳腔的布置间距△L的减小而增加,反之亦然;最后是受油套环空尺寸影响的容纳腔的容积V,油井套管尺寸越大、出液管道的尺寸越小可设计出的容纳腔的容积V越大,反之可设计出的容纳腔的容积V越小,一般情况下容纳腔的容积V为50ml~250ml。由此可知,油井产液量Q是分离器总长度L的决定性因素。
在本发明的实施例中,在所述步骤2中,每个所述进液孔组均包括多个进液孔,每个所述进液孔组的多个所述进液孔沿所述出液管道的圆周方向间隔设置,所述进液孔的孔径d由如下公式计算得出:
Figure PCTCN2018072424-appb-000007
式(6)中,q为自进液孔中流过的采出液的流量;ρ为采出液的密度;Δp为出液管道的内外压差。
其中,该出液管道的内外压差Δp由如下公式(7)计算得出:
Δp=1.25ρv 2                (7)
式(7)中,v为通过进液孔的采出液的流速。
另外,自所述进液孔中流过的采出液的流量q由如下公式(8)计算得出:
Figure PCTCN2018072424-appb-000008
其中,Q为油井产液量;N为容纳腔的数量;n为每个进液孔组中的进液孔的数量。
由式(6)不难看出,进液孔的孔径d与工作压差Δp存在着一一对应的关系。进液孔的孔径d越大,越有利于机械加工,同时工作压差Δp越小,对抽油泵的工况的影响也就越小。反之,进液孔的孔径d越小,越不利于机械加工,同时工作压差Δp越大,加装气锚对抽油泵的工况的影响也就越大,同时也容易被采出液中的杂质堵塞。
至此似乎可以得到如下的结论:无论从机械加工的角度来考虑,还是从减小加装气锚对抽油泵工况影响的角度来考虑,似乎可以得出进液孔的孔径d越大越好的结论。但是,任何事务都有两面性,进液孔孔径过大又会引出下面的问题。
由于采出液在出液管道中流动时,由于粘性的作用会产生一定的磨阻压差,通过理论分析推导可以得到整个出液管道内的摩阻压差Δpf的计算公式为
Figure PCTCN2018072424-appb-000009
式(9)中:D为出液管道的内径,单位m;Q(x)为出液管道不同位置x处的流量,单位m 3/s;μ为采出液的粘度,单位Pa·s。这个摩阻压差会导致出液管道上下两端的进液孔组的工作压差存在一定的差别。由小孔口的淹没出流流量的计算公式可知,沿采出液的流动方向,出液管道上游端(也即在竖直井筒中,该上游端即为出液管道的最下端)和其下游端(也即在竖直井筒中,该上游端即为出液管道的最上端)的进液孔的流量分别为
Figure PCTCN2018072424-appb-000010
Figure PCTCN2018072424-appb-000011
现定义流量比为
Figure PCTCN2018072424-appb-000012
则有
Figure PCTCN2018072424-appb-000013
从上式可以看出,如果沿采出液的流动方向于出液管道上采用相同进液孔孔径时, 流量比α永远大于1.0。也就是说,由于磨阻压差Δpf的存在会使出液管道下游端的孔口处的流动压差比出液管道上游端的孔口处的流动压差大了Δpf,这样就会导致通过出液管道下游端处的进液孔组的流量大于其上游端处的进液孔组的流量,因此,如果采用较大的进液孔孔径,则对应的气锚的工作压差Δp较小,尽管孔径较大有利于进液孔的加工,但会造成流量比α过大的现象,严重时可能造成出液管道下游端的孔口的流量远远大于出液管道上游端的孔口的流量,采出液几乎全部从出液管道下游端的进液孔组顺畅地流入出液管道,并将气体携入锚管,而使气锚失去了意义。
为了解决出液管道上游端和下游端进液不均匀、流量比较大的问题,可以通过减小进液孔孔径的方法来增大出液管道内外的工作压差Δp,从而尽量消除由于出液管道内摩阻压差Δpf所产生的进液不均匀的影响。
由于设计前孔径、工作压差和流量比都是未知数,三者又密切相关。因此,确定合理的流量比上限值也就成为分离方法设计计算的难点和创新点,设计中一味追求流量比无限趋近于1.0是不现实的,因此在实际的设计过程中采用的流量比上限为1.05,出液管道下游端和出液管道上游端的进液孔组的流量相对差值小于5%时便可看作已经实现了等流量。
在实际测算中,参见图2所示,首先给定一个进液孔组内进液孔的孔径初始值(通常取初值为1mm),然后计算该进液孔内外的工作压差Δp及出液管道内的摩阻压差Δpf,然后再用式(12)计算出对应的流量比。如果对应的流量比大于1.05就逐步减小进液孔的孔径直至满足流量比的要求,反之如果对应的流量比小于1.05就逐步加大进液孔的孔径直至满足流量比的要求,这样设计出的进液孔的孔径既有利于进液孔的机械加工工艺,又能够满足等流量的设计目标。
根据图2的流程计算的结果表明,油井产液量Q为50m 3/d~200m 3/d(所需的分离器长度为8m~23m)的条件下,采用直径为0.8mm~1.0mm的进液孔即可达到流量比小于1.05的设计目标。
采用自出液管道的下游端至出液管道的上游端统一的进液孔的孔径进行分离方法设计计算过程中,对于产液量过大(例如大于200m 3/d)的油井也有可能出现计算出的分离器过长(例如大于30m)、孔径过小(例如小于0.8mm)的情况,既不利于机械加工也容易发生进液孔堵塞。此时,可以通过自出液管道的下游端至出液管道的上游端逐步加大进液孔孔径或增加每个容纳腔对应的进液孔的数目的方法,减小出液管道下游端的进液流量,而增加出液管道上游端的进液流量,进而使分离器保持纵向上流量基本相等。
因此,在本发明的一个实施方式中,所述步骤3包括:根据不同井的产液量、不同油套环空的面积及出液管道的面积,确定油套环空与出液管道内的压差值;根据所述压差值调整所述出液管道上不同位置处的进液孔组的过流面积,以使自各所述进液孔组同时流入所述出液管道内的采出液的流量均相等(也即,使自各所述进液孔组同时流入所述出液管道内的采出液的流量均近似相等),利用多个容纳腔等流原理,也即利用沿出液管道轴向上的多个容纳腔或其它类似结构的装置,使每个容纳腔内原油中液体的下降速度相对油套环空中原油中液体的下降速度降低,促进原油中油滴或气泡与水的分离。这样设置的好处可克服由于采出液在出液管道内和油套环空内流动过程中由于流动阻力差异导致的内外压差变化对出液管道不同部位的流量变化的影响,利于油滴或气泡的快速分离。
在本发明的一个实施方式中,所述井下油气水砂分离方法还包括:
步骤4:利用在各所述容纳腔中放置滤料,使原油中的油滴流经所述滤料时,油滴变为油膜,所述油膜在所述滤料中受到向上的压力剃度大于向下的压力剃度,促进所述油膜在所述滤料内向上滑动并形成大油滴。
具体是,所述容纳腔中设有滤料箱,所述滤料箱套设在所述出液管道上,所述滤料箱沿采出液的流出方向位于与每个所述容纳腔对应连通的一个所述进液孔组的下游端,所述滤料箱内设有滤料。
该滤料箱内的滤料为可改变润湿性的多孔介质,例如,亲油石英砂或覆膜石英砂等,滤料箱的上表面和下表面均为筛网结构,该筛网结构的筛网孔径小于滤料的粒径。
该滤料箱是利用相渗原理,使高含水原油中的油滴流经滤料时,小油滴变为油膜,由于油膜受到向上的压力剃度大于向下的压力剃度,因此油膜在滤料内向上滑动,油膜是吸附多孔介质内孔隙表面的,多孔介质从下到上存在压力梯度,油膜受压力梯度影响上浮出滤料,剩余的液体直接通过多孔介质下沉到容纳腔的底部,在多孔介质出口处油膜形成大的油滴,上浮速度更快,提高分离效率。
在本发明的实施例中,所述容纳腔具有多个出砂孔,多个所述出砂孔与所述油套环空相连通。该些出砂孔可使高含水原油中的砂子从容纳腔中排出,实现砂与水的分离。
实施方式二
如图3至图7所示,本发明还提供一种井下油气水砂分离器10,该井下油气水砂分离器10是利用实施方式一的井下油气水砂分离方法设计的,当然,根据实施方式一的井下油气水砂分离方法也可设计出其他结构的分离器,本实施方式二中的分离器10仅为其中 一个具体实例,本领域技术人员根据本实施方式二的实例设计出的类似结构的分离器都应涵盖在本发明的实施例范围内。
该井下油气水砂分离器10包括出液管道1和多个沉降杯2,其中:出液管道1上设有多个进液孔组11,多个所述进液孔组11沿所述出液管道1的轴向方向间隔设置;多个沉降杯2彼此相连套设在所述出液管道1上,每个所述沉降杯2具有与每个所述进液孔组11相对连通的容纳腔21,所述沉降杯2具有进液口24。
具体是,多个沉降杯2彼此相连套设在出液管道1上,多个沉降杯2的上端通过上定位套101固定连接在出液管道1上,多个沉降杯2的下端通过下定位套102固定连接在出液管道1。本发明的井下油气水砂分离器10位于井下套管内,请配合参阅图3所示,井下油气水砂分离器10的出液管道1与设置在套管内的油管3相连,套管和油管3之间形成的油套环空31通过每个沉降杯2的进液口24与沉降杯2的容纳腔21相连通。在一示例性实施例中,油管3的下端可依次间隔连接有多个井下油气水砂分离器10,其中,油管3的上端依次通过分离器接头4、管柱接头5、接箍6和抽油泵接头7与抽油泵(图中未示出)相连,多个井下油气水砂分离器10的下端连接有丝堵或洗井阀8。该井下油气水砂分离器10的外径小于分离器接头4的外径。
本发明通过在出液管道1的轴向方向上设置多个沉降杯2,每个沉降杯2对应出液管道1上的一个进液孔组11,通过多个沉降杯2分担整个油套环空31中的原油总量,使油套环空31中的原油分成多份,以实现降低每个沉降杯2内液体的下降速度,促进油滴或气泡与水的分离的目的。
例如,该井下油气水砂分离器10有n个沉降杯2(n为自然数),则每个沉降杯2内液体的下降速度就为油套环空31中全部原油下降速度的1/n。在一实施例中,当选择设计沉降杯2的个数为30~2000个时,让数量众多的沉降杯2来分担整个油套环空31内原油的总量,使得每个沉降杯2内的液体下降速度与普通分离器下降速度相比减少30~2000倍,从而提高了油滴或气泡与水的分离效率。
在本发明的一实施例中,请配合参阅图4所示,每个所述进液孔组11均包括多个进液孔111,每个所述进液孔组11的多个所述进液孔111沿所述出液管道1的圆周方向间隔设置,位于所述出液管道1的出液端12的所述进液孔111的孔径大于位于所述出液管道1末端13的所述进液孔111的孔径。
具体是,出液管道1沿其轴向方向等间隔设有多组进液孔组11,每组进液孔组11具有多个沿出液管道1的圆周方向等间隔设置的进液孔111,在本实施例中,每组进液孔组 11包含2~12个进液孔111,且该进液孔111的孔径为0.5mm~2.0mm。
通过实施方式一的井下油气水砂分离方法可知,将位于出液管道1的出液端12的进液孔111的孔径设计为大于位于出液管道1末端13的进液孔111的孔径,是为了使自各进液孔组11流入出液管道1内的采出液的流量均相等,这样利用多杯等流原理,也即利用沿出液管道1轴向上的多个沉降杯2或其它类似结构的装置,以降低每个沉降杯2内液体的下降速度,促进油滴或气泡与水的分离。同时,这样设置的好处是,以克服由于采出液在出液管道1内和油套环空31内流动过程中由于流动阻力差异导致的内外压差变化对出液管道1不同部位的流量变化的影响,进而使井下油气水砂分离器10保持纵向上流量基本相等,利于油滴或气泡的快速分离。
在本发明的一实施例中,所述沉降杯2内设有滤料箱9,所述滤料箱9套设在所述出液管道1上,所述滤料箱9沿采出液的流出方向位于与每个所述容纳腔21对应连通的一个所述进液孔组11的下游端,所述滤料箱9内设有滤料。
具体是,该滤料箱9大体呈扁圆环柱体形状,请配合参阅图6所示,该滤料箱9由底盘91和扣接在底盘91上方的盖体92组成,底盘91大体呈环形筒状,底盘91具有能盛装滤料的滤料槽911,盖体92大体呈漏斗形的环形板状,其扣接在底盘91的滤料槽911的上方,防止滤料从底盘91中落出;如图7所示,该底盘91的底壁以及盖体92上均设有筛孔93,该些筛孔93用于油滴流入或流出滤料箱9。在本实施例中,滤料箱9内的滤料为可改变润湿性的多孔介质,例如,亲油石英砂或覆膜石英砂等,且该些筛孔的孔径小于滤料的粒径。
该滤料箱9是利用相渗原理,使高含水原油中的油滴流经滤料时,小油滴变为油膜,由于油膜受到向上的压力剃度大于向下的压力剃度,因此油膜在滤料内向上滑动,油膜是吸附多孔介质内孔隙表面的,多孔介质从下到上存在压力梯度,油膜受压力梯度影响上浮出滤料,剩余的液体直接通过多孔介质下沉到沉降杯2的容纳腔21的底部,在多孔介质出口处油膜形成大的油滴,上浮速度更快,提高分离效率。
本发明的井下油气水砂分离器10,采用多个沉降杯2上下相连的结构,并在每个沉降杯2中设有滤料箱9,其相比传统的分离器而言,实现了井下油滴或气泡与水的高效分离,可用于针对高含水井的同井注采技术和提高油井的井下泵效。
在本发明的一实施例中,如图5所示,所述沉降杯2包括杯体22和杯座23,其中:杯体22具有周壁221及底壁222,所述底壁222具有内环侧2221及外环侧2222,所述周壁221的下端连接在所述底壁222的外环侧2222,所述外环侧2222的水平高度高于所述内环侧 2221的水平高度,所述杯体22与所述出液管道1之间形成所述容纳腔21;杯座23的上端连接在所述底壁222的内环侧2221,所述杯座23套设在所述出液管道1上。
具体是,杯体22大体呈圆柱筒形,其具有周壁221及底壁222。其中,周壁221的下端连接在底壁222的外环侧2222;底壁222大体呈圆环形,从图5所示的沉降杯2的主视图看,该底壁222的外环侧2222的水平高度高于该底壁222的内环侧2221的水平高度。
杯座23大体呈圆柱筒形,其上端连接在杯体22的底壁222的内环侧2221,在本实施例中,杯座23的下端沿圆周方向间隔设有避让出液管道1上的进液孔组11的多个开口槽231;进一步的,该杯座23的下端还可凸设有多个定位销232,杯座23的上端设有多个定位孔233,该些定位销232与该些定位孔233上下相对设置,两两相邻的所述沉降杯2通过一个所述沉降杯2的所述定位销232插接在另一所述沉降杯2的所述定位孔233内而相互连接在一起。在本发明中,杯座23的下端设有两个定位销232,两个定位销232径向相对设置,杯座23的上端径向相对的位置处分别设有两个定位孔233,杯座23的两个定位销232的位置与杯座23的两个定位孔233的位置上下相对应。
该沉降杯2在使用时,是将多个本发明的沉降杯2上下插接在一起使用,此处以两个沉降杯上下插接为例进行说明。
具体是,如图4右侧标号所示,位于上方的沉降杯2-1的杯座23-1插入位于下方的沉降杯2-2的杯体22-2的容纳腔21-2中,此时,位于上方的沉降杯2-1的杯座23-1的定位销(图中未示出)会插入位于下方的沉降杯2-2的杯座23-2的定位孔233-2中,从而将相互插接的两个沉降杯进行定位连接。当两个沉降杯上下插接定位后,位于下方的沉降杯2-2的杯体22-2的上端外缘与位于上方的沉降杯2-1的杯体22-1之间形成有间隙部,该间隙部即为位于下方的沉降杯2-2的进液口24-2。
当两个沉降杯上下插接后,套设在具有多个进液孔组11的出液管道1上,此时两个沉降杯的杯座恰好与出液管道1的外周壁相套设配合,出液管道1上的进液孔组11与位于下方的沉降杯2-2的杯体22-2的容纳腔21-2相对设置并靠近位于下方的沉降杯2-2的杯体22-2容纳腔21-2的底部,此时,位于上方的沉降杯2-1的杯座23-1在插入位于下方的沉降杯2-2的杯座23-2上端后,杯座23-2的开口槽恰好与出液管道1的进液孔组11相对,以避让出进液孔组11的位置。当需要对高含水原油或其他需要油水或气水分离的液体进行油水或气水分离时,原油会从进液口24-2流入位于下方的沉降杯2-2的杯体22-2的容纳腔21-2中,容纳腔21-2中的液体经过一定的停留时间后,其内的油滴或气泡与水会自动进行分离,提高油滴或气泡的分离上升速度,从而提高油滴或气泡与水的分离速度。
在本发明的一实施例中,所述杯体22的底壁222设有多个出砂孔223,所述出砂孔223与所述杯体22的容纳腔21相连通。该些出砂孔223可使液体中的砂子从沉降杯2的杯体22的底部排出,实现砂与水的分离。在本实施例中,该些出砂孔223沿底壁222的圆周方向等间隔设置,优选的,出砂孔223靠近底壁222的内环侧2221设置,底壁222上的出砂孔223可为4~12个,且出砂孔223的孔径可为1.0mm~4.0mm。
在本发明的实施例中,两两相邻的所述杯体22之间形成有间隙部,所述间隙部为所述沉降杯的所述进液口24。
具体是,两两相邻的沉降杯2的杯体22之间形成的间隙部的距离为0.5mm~2.5mm,该间隙部的距离大小可由凸设在每个沉降杯2的杯座23下端的定位销232的长度以及凹设在杯座23上端的定位孔233的深度决定。设计该间隙部的目的是:一方面便于分离出的油滴或气泡从此处逸出;另一方面,便于油套环空内的流体进入沉降杯2内。
在本发明的一可行实施例中,如图13、图14和图8所示,该沉降杯2包括杯体22和杯座23,杯体22具有周壁221及底壁222,所述底壁222具有内环侧2221及外环侧2222,所述周壁221的下端连接在所述底壁222的外环侧2222,所述外环侧2222的水平高度高于所述内环侧2221的水平高度,所述杯体22与所述出液管道1之间形成所述容纳腔21;杯座23的上端连接在所述底壁222的内环侧2221,所述杯座23套设在所述出液管道1上。与图5所示实施例不同的是,在该实施例中,在杯体22的底壁222的外环侧2222与内环侧2221之间形成有沿圆周方向依次相连的多个聚并部2223。
具体是,请配合参阅图9,在周壁221的上端形成有锯齿形外边缘2211,该锯齿形外边缘2211可利于杯体22内的待分离液体中的油滴或气泡在锯齿尖部聚集逸出,当油滴或气泡聚集至该锯齿形外边缘2211的锯齿尖部时,油滴或气泡的粒径能明显增大;底壁222大体呈圆环形,从图8所示的沉降杯2的主视图看,该底壁222的外环侧2222的水平高度高于该底壁222的内环侧2221的水平高度,且该底壁222为由沿杯体22的圆周方向依次相连的多个聚并部2223形成,该聚并部2223可起到对高含水原油中的油滴或气泡进行聚集并聚合的作用,使油滴或气泡在杯体22的底壁222下表面聚集进而聚并,形成大油滴或大气泡,提高油滴或气泡的分离速度和分离效率;在本实施例中,由该些聚并部2223形成的底壁222大体呈环形的瓦棱状斜板结构。
本实施例中的沉降杯2,通过沉降杯2底壁222上的多个聚并部2223,可使高含水原油中的油滴或气泡上升至聚并部2223后,在聚并部2223内聚集并聚合,以形成大的油滴或气泡,即增大油滴或气泡的粒径,提高油滴或气泡的分离上升速度,促进油滴或气泡 与水的分离,实现高含水原油中的油滴或气泡与水的快速分离。
如图9所示,该聚并部2223包括第一倾斜面2224和第二倾斜面2225,该第一倾斜面2224的上端与第二倾斜面2225的上端相连形成上倾斜凸棱2226,该第一倾斜面2224的下端与第二倾斜面2225的下端之间形成有开口2227,该上倾斜凸棱2226与水平面之间形成有一夹角θ,在本实施例中,该夹角θ为30°~60°,设计该角度的夹角θ的好处是利于油滴或气泡的聚集和上浮。两两相邻连接的聚并部2223之间相连形成有下倾斜凸棱2228,由此,由间隔设置的上倾斜凸棱2226和下倾斜凸棱2228相连形成的外环侧2222形状为锯齿形,其恰好与杯体22的周壁221上端的锯齿形外边缘2211相配合,以便在多个沉降杯2上下层叠设置的时候,位于上方的沉降杯2-1的杯体22-1的外环侧与位于下方的沉降杯2-2的杯体22-2的锯齿形外边缘插接配合,并形成周向等间隙的间隙部。
在本实施例中,该聚并部2223的截面为三角形,以便待分离的液体中的油滴或气泡向上运动碰到聚并部2223的第一倾斜面2224和第二倾斜面2225时产生聚集进而聚并,由于聚并部2223的截面为三角形,使得油滴或气泡越向上运动,过流面积越小,浓度增加,油滴或气泡聚集到一定浓度后便产生聚并,使油滴或气泡的粒径增大,从而提高油滴或气泡的相对上升速度,提高油滴或气泡与水的分离效率。当然,在其他的实施例中,该聚并部2223也可设计为梯形截面或弧形截面,只要使聚并部2223的截面从其开口2227处至上倾斜凸棱2226的方向逐渐减少即可,达到油滴或气泡在聚并部2223内聚集并聚并的目的。
进一步的,在该实施例中,如图10所示,在多个聚并部2223形成的沉降杯2的底壁222的外表面设有呈多棱面状的凸块2229。该些凸块2229可为三棱面、四棱面或五棱面结构,或者为更多棱面结构,在此不做限制,该些凸块2229能够进一步达到油滴或气泡在聚并部2223内聚集并聚并的目的,以提高油滴或气泡与液体的分离速度。
根据本发明的一个实施方式,如图11和图12所示,每个所述沉降杯2的杯体22内均设有隔板224,所述隔板224套设在出液管道1上,该隔板224位于每个沉降杯2的杯体22对应的进液孔组11的上方,该隔板224具有隔板内环侧2241及隔板外环侧2242,该隔板外环侧2242的水平高度高于隔板内环侧2241的水平高度,该隔板外环侧2242与隔板内环侧2241之间设有沿圆周方向依次相连的多个隔板聚并部2243,每个隔板聚并部2243上均设有多个通孔2244。
具体是,隔板224大体呈圆环形,从图11所示的隔板224的主视图看,该隔板224的外环侧2242的水平高度高于该隔板224的内环侧2241的水平高度,且该隔板224为由沿其 圆周方向依次相连的多个隔板聚并部2243形成,且每个隔板聚并部2243上均设有多个通孔2244,该隔板聚并部2243可起到对高含水原油中的油滴或气泡进行聚集并聚合的作用,使油滴或气泡在隔板224的下表面聚集、碰撞进而聚并,形成大油滴或大气泡,提高油滴或气泡的分离速度和分离效率;在本实施例中,由该些隔板聚并部2243形成的隔板224大体呈环形的瓦棱状斜板结构。
该隔板224在使用时,置于每个沉降杯2的杯体22内腔21中,其内环侧2241套设在出液管道1上,其外环侧2242径向向外凸设有卡扣凸部2245,该卡扣凸部2245可为多个沿圆周方向设置的卡扣块,或者该卡扣凸部2245可为卡扣环,该隔板224通过该卡扣凸部2245卡设在沉降杯2的杯体22周壁221上的卡扣槽2212(参见图8中的卡扣槽2212)内,从而实现将隔板224固定在沉降杯2的杯体22内的目的,该隔板224位于其所在的沉降杯2对应的出液管道1上的进液孔组11的上方。
该隔板224是利用了浅槽原理,在每个沉降杯2的杯体22内相对缩短了油滴或气泡在沉降杯2内的上升距离,使沉降杯2内的油滴或气泡先经过相对较短的上升距离后接触隔板224,当油滴或气泡向上运动碰到隔板224的多个隔板聚并部2243后,油滴或气泡在隔板224下表面产生聚集、碰撞进而聚并,形成粒径较大的油滴或气泡,该些较大粒径的油滴或气泡从隔板224的多个通孔2244上浮于隔板224之上,并继续在该沉降杯2内上移,直至再次碰触至位于该沉降杯上方的沉降杯的杯体22的底壁222上的多个聚并部2223,再次产生聚集、碰撞进而聚并,以进一步形成更大粒径的油滴或气泡,从而进一步增大油滴或气泡的上浮速度,快速上浮的油滴或气泡排出该井下油气水砂分离器10外实现油气高效分离。
该隔板224通过其上的多个隔板聚并部2243,相对缩短了每个沉降杯内的油滴或气泡的上升距离,使油滴或气泡先于该隔板224上的多个隔板聚并部2243相互碰撞聚合,以形成大的油滴或气泡,进而在上升至上方沉降杯的底壁的聚并部2223内相互碰撞聚合,该隔板224的设置可有效提高油滴或气泡与水的分离上升速度,进一步促进油滴或气泡与水的分离,实现高含水原油中的油滴或气泡与水的快速分离。
在本实施方式中,所述隔板聚并部2243包括隔板第一倾斜面2246和隔板第二倾斜面2247,多个通孔2244分别设置在隔板第一倾斜面2246和隔板第二倾斜面2247上,所述隔板第一倾斜面2246的上端与所述隔板第二倾斜面2247的上端相连形成隔板上倾斜凸棱2248,所述隔板第一倾斜面2246的下端与所述隔板第二倾斜面2247的下端之间形成有隔板开口2249,所述隔板上倾斜凸棱2248与水平面之间形成有一隔板夹角ε,在本实施例 中,该隔板夹角ε为30°~60°,设计该角度的夹角θ的好处是利于油滴或气泡的聚集和上浮。其中,隔板224上的隔板下倾斜凸棱436和上倾斜凸棱2248的数量总和可为6~12个。
在本实施例中,该隔板聚并部2243的截面为三角形,以便待分离的液体中的油滴或气泡向上运动碰到隔板聚并部2243的隔板第一倾斜面2246和隔板第二倾斜面2247时产生聚集,由于隔板聚并部2243的截面为三角形,使油滴或气泡越向上运动,过流面积越小,浓度增加,油滴或气泡聚集到一定浓度后产生聚并,使油滴或气泡的粒径增大,进一步提高油滴或气泡的相对上升速度,提高油滴或气泡与水的分离效率。当然,在其他的实施例中,该隔板聚并部2243也可设计为梯形截面或弧形截面,只要使隔板聚并部2243的截面从隔板开口2249至隔板上倾斜凸棱2248的方向逐渐减少即可,达到油滴或气泡在隔板聚并部2243内聚集并聚并的目的。
根据本发明的一个实施方式,每个所述沉降杯2的杯体22的容纳腔21内均填充有滤料,该滤料为可改变润湿性的多孔介质,例如,亲油石英砂或覆膜石英砂等,通过相渗原理,使高含水原油中的油滴流经滤料时,小油滴变为油膜,由于油膜受到向上的压力剃度大于向下的压力剃度,因此油膜在滤料内向上滑动,油膜是吸附多孔介质内孔隙表面的,多孔介质从下到上存在压力梯度,油膜受压力梯度影响上浮出滤料,剩余的液体直接通过多孔介质下沉到容纳腔的底部,在多孔介质出口处油膜形成大的油滴,上浮速度更快,提高分离效率。
该井下油气水砂分离器10在井下能高效的分离油气水砂,进而可将分离出的采出液通过出液管道1抽出并直接回注到其它油层,高含油的液体通过抽油泵采出地面,该井下油气水砂分离器10在气液分离的同时可以大幅度提高泵效,另外,采出液中砂砾的分离也可以相对延长井下油气水砂分离器10和抽油泵的工作寿命。
该井下油气水砂分离器10的具体工作过程如下:
启动抽油泵,油套环空31中的原油通过井下油气水砂分离器10的多个进液口24分别注入每个沉降杯2中,油套环空31中的原油分为多份后在每个沉降杯2的杯体22内进行气液分离,分离后的采出液自出液管道1上的每组进液孔组11的多个进液孔111流入出液管道1内,分离后的气体和/或油滴自多个进液口24排出所述井下油气水砂分离器10,分离后的砂子从多个出砂孔233排出沉降杯2。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (25)

  1. 一种井下油气水砂分离方法,其中,所述井下油气水砂分离方法包括如下步骤:
    步骤1:在油套环空中沿采出液的流出方向分割出多个空间,每个所述空间内提供与所述油套环空相连通的容纳腔,以使油套环空中的原油分为多份分别流入多个容纳腔中,每个容纳腔内的原油中的液体下降速度相对所述油套环空内的原油中的液体下降速度降低,且每个容纳腔内原油中的油滴或气泡的上升速度相对所述油套环空内的原油中的油滴或气泡的上升速度提高;
    步骤2:沿采出液的流出方向,在采出液的出液管道上开设多个进液孔组,每个所述进液孔组与一个所述容纳腔相对连通;
    步骤3:所述油套环空的原油流入每个所述容纳腔后进行油气水的分离,分离后的油滴或气泡自所述容纳腔回流至所述油套环空,分离后的采出液同时自多个所述进液孔组流入所述出液管道;其中,所述步骤3包括:
    根据不同井的产液量、不同油套环空的面积及出液管道的面积,确定油套环空与出液管道内的压差值;
    根据所述压差值调整所述出液管道上不同位置处的进液孔组的过流面积,以使自各所述进液孔组同时流入所述出液管道内的采出液的流量均相等。
  2. 如权利要求1所述的井下油气水砂分离方法,其中,所述容纳腔的数量N根据如下公式计算得出:
    Figure PCTCN2018072424-appb-100001
    其中,Q为油井产液量;T t为原油在所述容纳腔中的预期停留时间;V为所述容纳腔的容积。
  3. 如权利要求2所述的井下油气水砂分离方法,其中,所述原油在所述容纳腔中的预期停留时间T t为25s~150s。
  4. 如权利要求2所述的井下油气水砂分离方法,其中,所述容纳腔的容积V为50ml~250ml。
  5. 如权利要求1所述的井下油气水砂分离方法,其中,在所述步骤2中,每个所述进液孔组均包括多个进液孔,每个所述进液孔组的多个所述进液孔沿所述出液管道的圆周方向间隔设置,所述进液孔的孔径d由如下公式计算得出:
    Figure PCTCN2018072424-appb-100002
    其中,q为自所述进液孔中流过的采出液的流量;ρ为采出液的密度;Δp为所述出液管道的内外压差。
  6. 如权利要求5所述的井下油气水砂分离方法,其中,所述出液管道的内外压差Δp由如下公式计算得出:
    Δp=1.25ρv 2
    其中,v为通过所述进液孔的采出液的流速。
  7. 如权利要求5所述的井下油气水砂分离方法,其中,自所述进液孔中流过的采出液的流量q由如下公式计算得出:
    Figure PCTCN2018072424-appb-100003
    其中,Q为油井产液量;N为所述容纳腔的数量;n为每个所述进液孔组中的所述进液孔的数量。
  8. 如权利要求1所述的井下油气水砂分离方法,其中,两两相邻的所述进液孔组之间的距离为10mm~55mm。
  9. 如权利要求1所述的井下油气水砂分离方法,其中,所述井下油气水砂分离方法还包括:
    步骤4:利用在各所述容纳腔中放置滤料,使原油中的油滴流经所述滤料时,油滴变为油膜,所述油膜在所述滤料中受到向上的压力剃度大于向下的压力剃度,促进所述油膜在所述滤料内向上滑动。
  10. 如权利要求1所述的井下油气水砂分离方法,其中,所述容纳腔具有多个出砂孔,多个所述出砂孔与所述油套环空相连通。
  11. 一种井下油气水砂分离器,其中,所述井下油气水砂分离器包括:
    出液管道,其上设有多个进液孔组,多个所述进液孔组沿所述出液管道的轴向方向间隔设置;
    多个沉降杯,多个所述沉降杯彼此相连套设在所述出液管道上,每个所述沉降杯具有与每个所述进液孔组相对连通的容纳腔,所述沉降杯具有进液口;
    其中,所述沉降杯包括:
    杯体,其具有周壁及底壁,所述底壁具有内环侧及外环侧,所述周壁的下端连接在所述底壁的外环侧,所述外环侧的水平高度高于所述内环侧的水平高度,所述杯体与所述出液管道之间形成所述容纳腔;
    杯座,其上端连接在所述底壁的内环侧,所述杯座套设在所述出液管道上。
  12. 如权利要求11所述的井下油气水砂分离器,其中,所述井下油气水砂分离器位于井下套管内,所述出液管道与设置在所述套管内的油管相连,所述套管和所述油管之间形成的油套环空通过所述进液口与所述容纳腔相连通。
  13. 如权利要求11所述的井下油气水砂分离器,其中,每个所述进液孔组均包括多个进液孔,每个所述进液孔组的多个所述进液孔沿所述出液管道的圆周方向间隔设置,位于所述出液管道的出液端的所述进液孔的孔径大于位于所述出液管道末端的所述进液孔的孔径。
  14. 如权利要求11所述的井下油气水砂分离器,其中,所述沉降杯内设有滤料箱,所述滤料箱套设在所述出液管道上,所述滤料箱沿采出液的流出方向位于与每个所述容纳腔对应连通的一个所述进液孔组的下游端,所述滤料箱内设有滤料。
  15. 如权利要求11所述的井下油气水砂分离器,其中,所述沉降杯具有多个出砂孔。
  16. 如权利要求11所述的井下油气水砂分离器,其中,每个所述沉降杯的杯体内均设有隔板,所述隔板套设在所述出液管道上,所述隔板位于每个所述沉降杯的杯体对应的所述进液孔组的上方,所述隔板具有隔板内环侧及隔板外环侧,所述隔板外环侧的水平高度高于所述隔板内环侧的水平高度,所述隔板外环侧与所述隔板内环侧之间设有沿圆周方向依次相连的多个隔板聚并部,每个所述隔板聚并部上均设有多个通孔。
  17. 如权利要求16所述的井下油气水砂分离器,其中,所述隔板聚并部包括隔板第一倾斜面和隔板第二倾斜面,所述隔板第一倾斜面的上端与所述隔板第二倾斜面的上端相连形成隔板上倾斜凸棱,所述隔板第一倾斜面的下端与所述隔板第二倾斜面的下端之间形成有隔板开口,所述隔板上倾斜凸棱与水平面之间形成有一隔板夹角。
  18. 如权利要求17所述的井下油气水砂分离器,其中,所述隔板夹角为30°~60°。
  19. 如权利要求11所述的井下油气水砂分离器,其中,所述外环侧与所述内环侧之间形成有沿圆周方向依次相连的多个聚并部。
  20. 如权利要求19所述的井下油气水砂分离器,其中,所述聚并部包括第一倾斜面和第二倾斜面,所述第一倾斜面的上端与所述第二倾斜面的上端相连形成上倾斜凸棱,所述第一倾斜面的下端与所述第二倾斜面的下端之间形成有开口,所述上倾斜凸棱与水平面之间形成有一夹角。
  21. 如权利要求20所述的井下油气水砂分离器,其中,所述夹角为30°~60°。
  22. 如权利要求19所述的井下油气水砂分离器,其中,所述杯体的周壁上端形成有锯齿形外边缘,所述锯齿形外边缘与所述杯体的底壁的外环侧形状相配合。
  23. 如权利要求11所述的井下油气水砂分离器,其中,所述杯座的下端凸设有多个定位销,所述杯座的上端设有多个定位孔,所述定位销与所述定位孔上下相对设置;两两相邻的所述沉降杯通过一个所述沉降杯的所述定位销插接在另一所述沉降杯的所述定位孔内而相互连接在一起。
  24. 如权利要求11所述的井下油气水砂分离器,其中,所述杯座的下端沿圆周方向间隔设有避让所述进液孔组的多个开口槽。
  25. 如权利要求11所述的井下油气水砂分离器,其中,两两相邻的所述杯体之间形成有间隙部,所述间隙部为所述沉降杯的所述进液口。
PCT/CN2018/072424 2017-02-03 2018-01-12 井下油气水砂分离方法及分离器 WO2018141199A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019121513A RU2019121513A (ru) 2017-02-03 2018-01-12 Способ внутрискважинной сепарации нефти, газа, воды и песка и сепаратор
CA3049491A CA3049491C (en) 2017-02-03 2018-01-12 Method for separating underground oil, gas, water and sand and separator
US16/482,842 US11180980B2 (en) 2017-02-03 2018-01-12 Downhole oil, gas, water and sand separation method and separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710063173.1 2017-02-03
CN201710063173.1A CN106801599A (zh) 2017-02-03 2017-02-03 井下油气水砂分离方法及分离器

Publications (1)

Publication Number Publication Date
WO2018141199A1 true WO2018141199A1 (zh) 2018-08-09

Family

ID=58987361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072424 WO2018141199A1 (zh) 2017-02-03 2018-01-12 井下油气水砂分离方法及分离器

Country Status (5)

Country Link
US (1) US11180980B2 (zh)
CN (1) CN106801599A (zh)
CA (1) CA3049491C (zh)
RU (1) RU2019121513A (zh)
WO (1) WO2018141199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180980B2 (en) 2017-02-03 2021-11-23 Petrochina Company Limited Downhole oil, gas, water and sand separation method and separator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019333933A1 (en) 2018-09-06 2021-05-13 Sand Separation Technologies Inc. Counterflow vortex breaker
CN110454138A (zh) * 2019-07-24 2019-11-15 中国石油天然气股份有限公司 同井注采采出泵用一种能脱气、脱砂和稳定采出液含水率的稳水器
CN114718545B (zh) * 2021-01-04 2023-06-30 中国石油天然气股份有限公司 气液分离装置
CN113236194B (zh) * 2021-05-24 2023-02-07 中国海洋石油集团有限公司 一种油气水三相分离分输装置及方法
CN113323644B (zh) * 2021-06-30 2023-05-12 中国石油大学(华东) 一种气砂、水砂、或气水砂多相分离和集砂计量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2077670C1 (ru) * 1994-02-22 1997-04-20 Владимир Александрович Челбин Якорь газовый чашечный
CN1626770A (zh) * 2003-12-08 2005-06-15 大庆科达泵业有限公司 油井井下气液分离方法及多沉降杯等流型气锚
CN101377126A (zh) * 2007-08-28 2009-03-04 大庆油田有限责任公司 瓦楞状沉降杯及一种多杯等流型气锚
CN101773742A (zh) * 2010-02-21 2010-07-14 大庆油田有限责任公司 多层等流型聚并油水分离器及分离方法
CN201943683U (zh) * 2011-03-09 2011-08-24 大庆油田有限责任公司 实现井下油、水分离的皇冠状分离装置
CN103071321A (zh) * 2012-12-27 2013-05-01 中国石油天然气股份有限公司 井下液砂多级分离器
CN106801599A (zh) * 2017-02-03 2017-06-06 中国石油天然气股份有限公司 井下油气水砂分离方法及分离器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2104339A (en) * 1933-08-07 1938-01-04 Arutunoff Armals Gas separator for pumps
US4241788A (en) 1979-01-31 1980-12-30 Armco Inc. Multiple cup downwell gas separator
SU1601361A1 (ru) 1988-10-25 1990-10-23 Научно-производственное объединение по термическим методам добычи нефти "Союзтермнефть" Многосекционный газовый корь тарельчатого типа
NO924896L (no) * 1992-12-17 1994-06-20 Read Process Engineering As Nede-i-hullet prosess
CN2844437Y (zh) * 2005-04-20 2006-12-06 中国石油化工股份有限公司中原油田分公司采油工程技术研究院 井下油气分离器
WO2012119283A1 (zh) 2011-03-09 2012-09-13 中国石油天然气股份有限公司 实现井下油、水分离的皇冠状分离装置
CN203321489U (zh) * 2013-06-05 2013-12-04 中国石油天然气股份有限公司 一种大流道螺旋气砂锚
CN106137399B (zh) 2016-08-31 2018-09-04 北京术锐技术有限公司 一种基于嵌入式计算机的手术机器人集成控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2077670C1 (ru) * 1994-02-22 1997-04-20 Владимир Александрович Челбин Якорь газовый чашечный
CN1626770A (zh) * 2003-12-08 2005-06-15 大庆科达泵业有限公司 油井井下气液分离方法及多沉降杯等流型气锚
CN101377126A (zh) * 2007-08-28 2009-03-04 大庆油田有限责任公司 瓦楞状沉降杯及一种多杯等流型气锚
CN101773742A (zh) * 2010-02-21 2010-07-14 大庆油田有限责任公司 多层等流型聚并油水分离器及分离方法
CN201943683U (zh) * 2011-03-09 2011-08-24 大庆油田有限责任公司 实现井下油、水分离的皇冠状分离装置
CN103071321A (zh) * 2012-12-27 2013-05-01 中国石油天然气股份有限公司 井下液砂多级分离器
CN106801599A (zh) * 2017-02-03 2017-06-06 中国石油天然气股份有限公司 井下油气水砂分离方法及分离器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180980B2 (en) 2017-02-03 2021-11-23 Petrochina Company Limited Downhole oil, gas, water and sand separation method and separator

Also Published As

Publication number Publication date
CA3049491A1 (en) 2018-08-09
US11180980B2 (en) 2021-11-23
RU2019121513A (ru) 2021-03-03
RU2019121513A3 (zh) 2021-03-03
CA3049491C (en) 2021-12-07
US20200217187A1 (en) 2020-07-09
CN106801599A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2018141199A1 (zh) 井下油气水砂分离方法及分离器
CN1128648C (zh) 用于分离油井中流体的方法和装置
US6382317B1 (en) Apparatus and method for separating gas and solids from well fluids
EP2934714B1 (en) Inclined tubular separator for separating oil well substances
CA3076495C (en) Downhole sand and gas separation system for use with a rod pump
CA2824443C (en) Separation of two fluid immiscible phases for downhole applications
RU2570867C2 (ru) Устройство для коалесцентной сепарации смеси, содержащей две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и имеющие различную удельную плотность
RU2290505C1 (ru) Скважинная установка для разделения нефти и воды
RU2583268C1 (ru) Газожидкостный сепаратор
RU2268999C2 (ru) Скважина и способ добычи нефти из подземного пласта через скважину
CN101773742B (zh) 多层等流型聚并油水分离器及分离方法
EP3655626B1 (en) Apparatus and method for regulating flow from a geological formation
CN1246567C (zh) 用于生产脱水油的系统
RU2422622C2 (ru) Фильтр для очистки скважинной жидкости
RU48579U1 (ru) Путевой газопесочный скважинный сепаратор
RU2101471C1 (ru) Штанговая глубиннонасосная установка
CN112576233B (zh) 井筒内气液固分离装置及其制造方法
RU2531976C2 (ru) Установка для внутрискважинного разделения нефти от воды
RU2768538C1 (ru) Сепарирующее устройство и тарельчатый сепаратор для внутрискважинной сепарации воды и нефти
US6705399B1 (en) Method for transforming a gas-liquid stream in wells and device therefor
RU2522259C1 (ru) Входное устройство скважинного насоса
SU1469104A1 (ru) Газовый корь
TWM546844U (zh) 湧泉式油水分離裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3049491

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748243

Country of ref document: EP

Kind code of ref document: A1