WO2018140620A1 - Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide - Google Patents

Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide Download PDF

Info

Publication number
WO2018140620A1
WO2018140620A1 PCT/US2018/015275 US2018015275W WO2018140620A1 WO 2018140620 A1 WO2018140620 A1 WO 2018140620A1 US 2018015275 W US2018015275 W US 2018015275W WO 2018140620 A1 WO2018140620 A1 WO 2018140620A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
oxidized
compounds
catalytic cracking
fluid catalytic
Prior art date
Application number
PCT/US2018/015275
Other languages
English (en)
Inventor
Omer Refa Koseoglu
Abdennour Bourane
Stephane Cyrille Kressmann
Original Assignee
Saudi Arabian Oil Company
Aramco Services Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/415,294 external-priority patent/US10087377B2/en
Application filed by Saudi Arabian Oil Company, Aramco Services Company filed Critical Saudi Arabian Oil Company
Priority to KR1020197023955A priority Critical patent/KR20190107099A/ko
Priority to JP2019539799A priority patent/JP6937832B2/ja
Priority to EP18705215.4A priority patent/EP3551731A1/fr
Priority to CN201880008484.0A priority patent/CN110249035A/zh
Priority to SG11201906156UA priority patent/SG11201906156UA/en
Publication of WO2018140620A1 publication Critical patent/WO2018140620A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/22Compounds containing sulfur, selenium, or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/14Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with ozone-containing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/14Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one oxidation step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step

Definitions

  • Embodiments relate to a method and apparatus for recovering sulfur and nitrogen from a hydrocarbon feedstock. More specifically, embodiments relate to a method and apparatus for oxidative desulfurization and denitrogenation of a hydrocarbon stream and the subsequent disposal of resulting oxidized sulfur and nitrogen compounds.
  • Crude oil is the world's main source of hydrocarbons used as fuel and petrochemical feedstock.
  • petroleum and petroleum -based products are also a major source for air and water pollution today.
  • the exact compositions of natural petroleum or crude oils vary significantly, all crude oils contain some measurable amount of sulfur compounds and most crude oils also contain some measurable amount of nitrogen compounds.
  • crude oils may also contain oxygen, but the oxygen content of most crude is low.
  • sulfur concentrations in crude oils are less than about 5 percent by weight (wt%), with most crude oils having sulfur concentrations in the range from about 0.5 to about 1.5 wt%.
  • Nitrogen concentrations of most crude oils are usually less than 0.2 wt%, but can be as high as 1.6 wt%.
  • motor gasoline fuel is regulated to have a maximum total sulfur content of less than 10 parts per million weight (ppmw) sulfur.
  • Crude oils are refined in oil refineries to produce transportation fuels and petrochemical feedstocks.
  • fuels for transportation are produced by processing and blending of distilled fractions from the crude oil to meet the particular end use specifications. Because most of the crudes generally available today have high concentrations of sulfur, the distilled fractions typically require desulfurization to yield products, which meet various performance specifications, environmental standards, or both.
  • the sulfur-containing organic compounds present in crude oils and resulting refined fuels can be a major source of environmental pollution.
  • the sulfur compounds are typically converted to sulfur oxides during the combustion process, which in turn can produce sulfur oxyacids and contribute to particulate emissions.
  • One method for reducing particulate emissions includes the addition of various oxygenated fuel blending compounds, compounds that contain few or no carbon-to-carbon chemical bonds, such as methanol and dimethyl ether, or both. Most of these compounds, however, suffer in that they can have high vapor pressures, are nearly insoluble in diesel fuel, or have poor ignition quality, as indicated by their cetane numbers, or combinations thereof.
  • Diesel fuels that have been treated by chemical hydrotreating or hydrogenation to reduce their sulfur and aromatics contents can have a reduced fuel lubricity, which in turn can cause excessive wear of fuel pumps, injectors, and other moving parts that come in contact with the fuel under high pressures.
  • middle distillates that is, a distillate fraction that nominally boils in the range of about 180-370°C
  • the middle distillate fraction typically includes between about 1 and 3 wt% sulfur. Allowable sulfur concentration in middle distillate fractions were reduced to 5-50 ppmw levels from 3000 ppmw level since 1993 in Europe and United States.
  • Low pressure conventional hydrodesulfurization (HDS) processes can be used to remove a major portion of the sulfur from petroleum distillates for the blending of refinery transportation fuels. These units, however, are not efficient to remove sulfur from compounds at mild conditions ⁇ that is, up to about 30 bar pressure), when the sulfur atom is sterically hindered as in multi-ring aromatic sulfur compounds. This is particularly true where the sulfur heteroatom is hindered by two alkyl groups (for example, 4,6-dimethyldibenzothiophene). Because of the difficulty in the removal, the hindered dibenzothiophenes predominate at low sulfur levels, such as 50 ppmw to 100 ppmw.
  • Severe operating conditions for example, high hydrogen partial pressure, high temperature, or high catalyst volume
  • Increasing the hydrogen partial pressure can only be achieved by increasing the recycle gas purity, or new grassroots units must be designed, which can be a very a costly option.
  • the use of severe operating conditions typically results in decreased yield, lower catalyst life cycle, and product quality deterioration (for example, color), and therefore are typically sought to be avoided.
  • Embodiments provide a method and apparatus for the upgrading of a hydrocarbon feedstock that removes a major portion of the sulfur and nitrogen present and in turn utilizes these compounds in an associated process.
  • a method of recovering components from a hydrocarbon feedstock includes supplying the hydrocarbon feedstock to an oxidation reactor, wherein the hydrocarbon feedstock includes sulfur compounds and nitrogen compounds, and contacting the hydrocarbon feedstock with an oxidizing agent in the oxidation reactor under conditions sufficient to selectively oxidize sulfur compounds and nitrogen compounds present in the hydrocarbon feedstock to produce an oxidized hydrocarbon stream that includes hydrocarbons, oxidized sulfur compounds, and oxidized nitrogen compounds.
  • the method further includes separating the hydrocarbons, the oxidized sulfur compounds, and the oxidized nitrogen compounds in the oxidized hydrocarbon stream by solvent extraction with a polar solvent to produce an extracted hydrocarbon stream and a mixed stream, the mixed stream including the polar solvent, the oxidized sulfur compounds, and the oxidized nitrogen compounds, wherein the extracted hydrocarbon stream has a lower concentration of sulfur compounds and nitrogen compounds than the hydrocarbon feedstock.
  • the method further includes separating the mixed stream using a distillation column into a first recovered polar solvent stream and a first residue stream, wherein the first residue stream including the oxidized sulfur compounds and the oxidized nitrogen compounds, and supplying the first residue stream to a fluid catalytic cracking unit, wherein the fluid catalytic cracking unit is operative to catalytically crack the oxidized sulfur and the oxidized nitrogen to produce regenerated catalyst and gaseous and liquid products and allow for recovery of hydrocarbons from the first residue stream.
  • the method includes recycling at least a portion of the liquid products to the oxidation reactor to selectively oxidize sulfur compounds in the liquid products, wherein the portion of the liquid products includes at least one of light cycle oils and heavy cycle oils.
  • the method further includes supplying the extracted hydrocarbon stream to a stripper to produce a second recovered polar solvent stream and a stripped hydrocarbon stream, and recycling the first recovered polar solvent stream and the second polar solvent stream to an extraction vessel for the separating the hydrocarbons, the oxidized sulfur compounds, and the oxidized nitrogen compounds in the oxidized hydrocarbon stream.
  • the method further includes recycling a portion of the regenerated catalyst with a fluid catalytic cracking feedstream to the fluid catalytic cracking unit, wherein the recycling further includes catalytically cracking the fluid catalytic cracking feedstream with the portion of the regenerated catalyst to recover the hydrocarbons from the first residue stream.
  • the oxidant is selected from the group consisting of air, oxygen, peroxides, hydroperoxides, ozone, nitrogen oxides compounds, and combinations thereof.
  • the contacting the hydrocarbon feedstock with an oxidizing agent occurs in the presence of a catalyst including a metal oxide having the formula M x O y , wherein M is an element selected from Groups IVB, VB, and VIB of the periodic table.
  • the sulfur compounds include sulfides, disulfides, mercaptans, thiophene, benzothiophene, dibenzothiophene, alkyl derivatives of dibenzothiophene, or combinations thereof.
  • the oxidation reactor is maintained at a temperature of between about 20 and about 350°C and at a pressure of between about 1 and about 10 bars.
  • the ratio of the oxidant to sulfur compounds present in the hydrocarbon feedstock is between about 4: 1 and about 10: 1.
  • the polar solvent has a Hildebrandt value of greater than about 19.
  • the polar solvent is selected from the group consisting of acetone, carbon disulfide, pyridine, dimethyl sulfoxide, n-propanol, ethanol, n- butanol, propylene glycol, ethylene glycol, dimethlyformamide, acetonitrile, methanol and combinations thereof.
  • the polar solvent is acetonitrile.
  • the polar solvent is methanol.
  • the solvent extraction is conducted at a temperature of between about 20°C and about 60°C and at a pressure of between about 1 and about 10 bars.
  • the method further includes supplying the extracted hydrocarbon stream to an adsorption column, wherein the adsorption column is charged with an adsorbent suitable for the removal of oxidized compounds present in the extracted hydrocarbon stream, the adsorption column producing a high purity hydrocarbon product stream and a second residue stream, the second residue stream including a portion of the oxidized compounds.
  • the method further includes supplying the second residue stream to the fluid catalytic cracking unit.
  • the adsorbent is selected from the group consisting of activated carbon, silica gel, alumina, natural clays, silica-alumina, zeolites, and combinations of the same.
  • the adsorbent is a polymer coated support, wherein the support has a high surface area and is selected from the group consisting of silica gel, alumina, silica-alumina, zeolites, and activated carbon, and the polymer is selected from the group consisting of polysulfone, polyacrylonitrile, polystyrene, polyester terephthalate, polyurethane, and combinations of the same.
  • the supplying the first residue stream to the fluid catalytic cracking unit further includes contacting the first residue stream with a fluid catalytic cracking feedstream in the presence of a catalyst to catalytically crack the fluid catalytic cracking feedstream to recover hydrocarbons from the first residue stream.
  • the fluid catalytic cracking feedstream includes vacuum gas oil, reduced crude, demetalized oil, whole crude, cracked shale oil, liquefied coal, cracked bitumen, heavy coker gas oils, light cycle oils, heavy cycle oils, clarified slurry oils, or combinations thereof.
  • a method of recovering components from a hydrocarbon feedstock includes supplying the hydrocarbon feedstock to an oxidation reactor, wherein the hydrocarbon feedstock includes sulfur compounds and nitrogen compounds, and contacting the hydrocarbon feedstock with an oxidizing agent in the oxidation reactor under conditions sufficient to selectively oxidize sulfur compounds and nitrogen compounds present in the hydrocarbon feedstock to produce an oxidized hydrocarbon stream that includes hydrocarbons, oxidized sulfur compounds, and oxidized nitrogen compounds.
  • the method further includes separating the hydrocarbons, the oxidized sulfur compounds, and the oxidized nitrogen compounds in the oxidized hydrocarbon stream by solvent extraction with a polar solvent to produce an extracted hydrocarbon stream and a mixed stream, wherein the mixed stream includes the polar solvent, the oxidized sulfur compounds, and the oxidized nitrogen compounds, and wherein the extracted hydrocarbon stream has a lower concentration of sulfur compounds and nitrogen compounds than the hydrocarbon feedstock.
  • the method further includes separating the mixed stream using a distillation column into a first recovered polar solvent stream and a first residue stream, wherein the first residue stream includes the oxidized sulfur compounds and the oxidized nitrogen compounds, supplying the first residue stream to a fluid catalytic cracking unit, and wherein the fluid catalytic cracking unit is operative to catalytically crack the oxidized sulfur and the oxidized nitrogen to produce regenerated catalyst and gaseous and liquid products and allow for recovery of hydrocarbons from the first residue stream.
  • the method includes contacting the first residue stream with a fluid catalytic cracking feedstream in the presence of a catalyst to catalytically crack the fluid catalytic cracking feedstream to recover hydrocarbons from the first residue stream, and recycling at least a portion of the liquid products to the oxidation reactor to selectively oxidize sulfur compounds in the liquid products, wherein the portion of the liquid products includes at least one of light cycle oils and heavy cycle oils.
  • the method further includes supplying the extracted hydrocarbon stream to a stripper to produce a second recovered polar solvent stream and a stripped hydrocarbon stream, and recycling the first recovered polar solvent stream and the second polar solvent stream to an extraction vessel for the separating the hydrocarbons, wherein the oxidized sulfur compounds, and the oxidized nitrogen compounds in the oxidized hydrocarbon stream.
  • the method further includes recycling a portion of the regenerated catalyst with the fluid catalytic cracking feedstream to the fluid catalytic cracking unit, wherein the recycling further includes catalytically cracking the fluid catalytic cracking feedstream with the portion of the regenerated catalyst to recover the hydrocarbons from the first residue stream.
  • the oxidant is selected from the group consisting of air, oxygen, peroxides, hydroperoxides, ozone, nitrogen oxides compounds, and combinations thereof.
  • the contacting the hydrocarbon feedstock with an oxidizing agent occurs in the presence of a catalyst including a metal oxide having the formula M x O y , wherein M is an element selected from Groups IVB, VB, and VIB of the periodic table.
  • the sulfur compounds include sulfides, disulfides, mercaptans, thiophene, benzothiophene, dibenzothiophene, alkyl derivatives of dibenzothiophene, or combinations thereof.
  • the oxidation reactor is maintained at a temperature of between about 20 and about 350°C and at a pressure of between about 1 and about 10 bars.
  • the ratio of the oxidant to sulfur compounds present in the hydrocarbon feedstock is between about 4: 1 and about 10: 1.
  • the polar solvent has a Hildebrandt value of greater than about 19.
  • the polar solvent is selected from the group consisting of acetone, carbon disulfide, pyridine, dimethyl sulfoxide, n-propanol, ethanol, n- butanol, propylene glycol, ethylene glycol, dimethlyformamide, acetonitrile, methanol and combinations thereof.
  • the polar solvent is acetonitrile.
  • the polar solvent is methanol.
  • the solvent extraction is conducted at a temperature of between about 20°C and about 60°C and at a pressure of between about 1 bar and about 10 bars.
  • the method further includes supplying the extracted hydrocarbon stream to an adsorption column, wherein the adsorption column is charged with an adsorbent suitable for the removal of oxidized compounds present in the extracted hydrocarbon stream, the absorption column producing a high purity hydrocarbon product stream and a second residue stream, the second residue stream including a portion of the oxidized compounds.
  • the method further includes supplying the second residue stream to the fluid catalytic cracking unit.
  • the adsorbent is selected from the group consisting of activated carbon, silica gel, alumina, natural clays, silica-alumina, zeolites, and combinations of the same.
  • the adsorbent is a polymer coated support, wherein the support has a high surface area and is selected from the group consisting of silica gel, alumina, and activated carbon, and the polymer is selected from the group consisting of polysulfone, polyacrylonitrile, polystyrene, polyester terephthalate, polyurethane, silica- alumina, zeolites, and combinations of the same.
  • the first residue stream and the fluid catalytic cracking feedstream are present in a weight ratio of the catalyst to the first residue stream and the fluid catalytic cracking feedstream ranges from about 1 to about 15.
  • the fluid catalytic cracking feedstream includes vacuum gas oil, reduced crude, demetalized oil, whole crude, cracked shale oil, liquefied coal, cracked bitumen, heavy coker gas oils, light cycle oils, heavy cycle oils, clarified slurry oils, or combinations thereof.
  • the contacting the first residue stream with a fluid catalytic cracking feedstream in the presence of a catalyst occurs in a temperature range of about 300°C to about 650°C.
  • the contacting the first residue stream with a fluid catalytic cracking feedstream in the presence of a catalyst occurs in a residence time of about 0.1 second to about 10 minutes.
  • the method further includes separating lower boiling components and catalyst particles from the first residue stream and the fluid catalytic cracking feedstream, and regenerating at least a portion of the catalyst particles.
  • the regenerating the at least a portion of the catalyst particles includes contacting the portion of the catalyst particles with a water-free oxygen-containing gas in a fluidized bed operated at conditions to produce regenerated catalyst and gaseous and liquid products including carbon monoxide and carbon dioxide.
  • FIG. 1 provides a schematic diagram of one embodiment of the method of upgrading a hydrocarbon feedstock.
  • FIG. 2 provides a schematic diagram of one embodiment of the method of upgrading a hydrocarbon feedstock.
  • FIG. 3 provides a schematic diagram of one embodiment of the method of upgrading a hydrocarbon feedstock.
  • FIG. 4 provides a schematic diagram of the process described in the example.
  • Embodiments address known problems associated with conventional methods of upgrading and recovering compounds from a hydrocarbon feedstock, particularly the desulfurization, denitrogenation, or both, of hydrocarbon feedstocks, and the subsequent removal and recovery of usable hydrocarbons. According to at least one embodiment, there is provided a method for the removal of sulfur and nitrogen compounds from a hydrocarbon feedstock and the use of oxidized sulfur species and oxidized nitrogen species in a FCC process.
  • upgrading or “upgraded,” with respect to petroleum or hydrocarbons refers to a petroleum or hydrocarbon product that is lighter ⁇ that is, has fewer carbon atoms, such as methane, ethane, and propane), has at least one of a higher API gravity, higher middle distillate yield, lower sulfur content, lower nitrogen content, or lower metal content, than does the original petroleum or hydrocarbon feedstock.
  • FIG. 1 provides one embodiment for the recovery of hydrocarbons.
  • Hydrocarbon recovery system 100 includes oxidation reactor 104, extraction vessel 112, solvent regeneration column 116, stripper 120, and FCC unit 130.
  • a method for the recovery of components from a hydrocarbon feedstock particularly a hydrocarbon feedstock that includes sulfur- and nitrogen-containing compounds.
  • the method includes supplying hydrocarbon feedstock 102 to oxidation reactor 104, where the hydrocarbon feedstock is contacted with an oxidant and a catalyst.
  • the oxidant can be supplied to oxidation reactor 104 via oxidant feed line 106 and fresh catalyst can be supplied to the reactor via catalyst feed line 108.
  • hydrocarbon feedstock 102 can be any petroleum based hydrocarbon, and can include various impurities, such as elemental sulfur, compounds that include sulfur or nitrogen, or both.
  • hydrocarbon feedstock 102 can be a diesel oil having a boiling point between about 150°C and about 400°C.
  • hydrocarbon feedstock 102 can have a boiling point up to about 450°C, alternatively up to about 500°C.
  • hydrocarbon feedstock 102 can have a boiling point between about 100°C and about 500°C.
  • hydrocarbon feedstock 102 can have a boiling point up to about 600°C, alternatively up to about 700°C, or, in certain embodiments, greater than about 700°C.
  • hydrocarbon feedstock 102 can include heavy hydrocarbons.
  • heavy hydrocarbons refer to hydrocarbons having a boiling point of greater than about 360°C, and can include aromatic hydrocarbons, as well as alkanes and alkenes.
  • hydrocarbon feedstock 102 can be selected from whole range crude oil, topped crude oil, product streams from oil refineries, product streams from refinery steam cracking processes, liquefied coals, liquid products recovered from oil or tar sand, bitumen, oil shale, asphaltene, hydrocarbon fractions such as diesel and vacuum gas oil boiling in the range of about 180 to about 370°C and about 370 to about 520°C, respectively, and the like, and mixtures thereof.
  • Sulfur compounds present in hydrocarbon feedstock 102 can include sulfides, disulfides, and mercaptans, as well as aromatic molecules such as thiophenes, benzothiophenes, dibenzothiophenes, and alkyl dibenzothiophenes, such as 4,6-dimethyl-dibenzothiophene.
  • Aromatic compounds are typically more abundant in higher boiling fractions, than is typically found in the lower boiling fractions.
  • Nitrogen-containing compounds present in hydrocarbon feedstock 102 can include compounds having the following structures:
  • sulfur oxidation is the limiting targeted reaction, during which nitrogen oxidation occurs.
  • Two types could be considered basic and neutral nitrogen.
  • oxidation reactor 104 can be operated at mild conditions. More specifically, in certain embodiments, oxidation reactor 104 can be maintained at a temperature of between about 30°C and about 350°C, or alternatively, between about 45°C and about 60°C.
  • the operating pressure of oxidation reactor 104 can be between about 1 bar and about 30 bars, alternatively between about 1 bar and about 15 bars, alternatively between about 1 bar and about 10 bars, or alternatively between about 2 bars and about 3 bars.
  • the residence time of the hydrocarbon feedstock within oxidation rector 104 can be between about
  • the residence time of the hydrocarbon feedstock within oxidation rector 104 is between about 15 minutes and about 90 minutes.
  • oxidation reactor 104 can be any reactor suitably configured to ensure sufficient contacting between hydrocarbon feedstock 102 and the oxidant, in the presence of a catalyst, for the oxidation of the sulfur- and nitrogen-containing compounds.
  • Sulfur and nitrogen compounds present in hydrocarbon feedstock 102 are oxidized in oxidation reactor 104 to sulfones, sulfoxides, and oxidized nitrogen compounds, which can be subsequently removed by extraction or adsorption.
  • Various types of reactors can be used.
  • the reactor can be a batch reactor, a fixed bed reactor, an ebullated bed reactor, lifted reactor, a fluidized bed reactor, a slurry bed reactor, or combinations thereof.
  • Suitable oxidized nitrogen compounds can include pyridine-based compounds and pyrrole-based compounds. It is believed that the nitrogen atom is not directly oxidized, rather it is the carbon atom(s) next to the nitrogen that is actually oxidized.
  • oxidized nitrogen compounds can include the following compounds:
  • the oxidant is supplied to oxidation reactor 104 via oxidant feed stream 106.
  • Suitable oxidants can include air, oxygen, hydrogen peroxide, organic peroxides, hydroperoxides, organic peracids, peroxo acids, oxides of nitrogen, ozone, and the like, and combinations thereof.
  • Peroxides can be selected from hydrogen peroxide and the like.
  • Hydroperoxides can be selected from t-butyl hydroperoxide and the like.
  • Organic peracids can be selected from peracetic acid and the like.
  • the mole ratio of oxidant to sulfur present in the hydrocarbon feedstock can be from about 1 : 1 to about 50: 1, preferably between about 2: 1 and about 20: 1, more preferably between about 4: 1 and about 10: 1.
  • the molar feed ratio of oxidant to sulfur can range from about 1 : 1 to about 30: 1.
  • the molar feed ratio of oxidant to nitrogen compounds can be from about 4: 1 to about 10: 1.
  • the feedstock can contain more nitrogen compounds than sulfur, such as, for instance, South American Crude oils, Africa crude oils, Russian crude oils, China crude oils, or intermediate refinery streams, such as coker, thermal cracking, visbreaking, gas oils, FCC cycle oils, and the like.
  • the catalyst can be supplied to oxidation reactor 104 via catalyst feed stream 108.
  • the catalyst can be a homogeneous catalyst.
  • the catalyst can include at least one metal oxide having the chemical formula M x O y , where M is a metal selected from groups IVB, VB, or VIB of the periodic table.
  • Metals can include titanium, vanadium, chromium, molybdenum, and tungsten. Molybdenum and tungsten are two particularly effective catalysts that can be used in various embodiments.
  • the spent catalyst can be rejected from the system with the aqueous phase (for example, when using an aqueous oxidant) after the oxidation vessel.
  • the ratio of catalyst to oil is between about 0.1 wt% and about 10 wt%, preferably between about 0.5 wt% and about 5 wt%. In certain embodiments, the ratio is between about 0.5 wt% and about 2.5 wt%. Alternatively, the ratio is between about 2.5 wt% and about 5 wt%. Other suitable weight ratios of catalyst to oil will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • Catalyst present in oxidation reactor 104 can increase the rate of oxidation of the various sulfur- and nitrogen-containing compounds in hydrocarbon feedstock 102, reduce the amount of oxidant necessary for the oxidation reaction, or both.
  • the catalyst can be selective toward the oxidation of sulfur species.
  • the catalyst can be selective toward the oxidation of nitrogen species.
  • Oxidation reactor 104 produces oxidized hydrocarbon stream 110, which can include hydrocarbons and oxidized sulfur- and oxidized nitrogen-containing species. Oxidized hydrocarbon stream 110 is supplied to extraction vessel 112 where the oxidized hydrocarbon stream and oxidized sulfur- and oxidized nitrogen-containing species are contacted with extraction solvent stream 137.
  • Extraction solvent 137 can be a polar solvent, and in certain embodiments, can have a Hildebrandt solubility value of greater than about 19. In certain embodiments, when selecting the particular polar solvent for use in extracting oxidized sulfur- and oxidized nitrogen-containing species, selection can be based upon, in part, solvent density, boiling point, freezing point, viscosity, and surface tension, as non-limiting examples.
  • Polar solvents suitable for use in the extraction step can include acetone (Hildebrand value of 19.7), carbon disulfide (20.5), pyridine (21.7), dimethyl sulfoxide (DMSO) (26.4), n-propanol (24.9), ethanol (26.2), n-butyl alcohol (28.7), propylene glycol (30.7), ethylene glycol (34.9), dimethylformamide (DMF) (24.7), acetonitrile (30), methanol (29.7), and like compositions or compositions having similar physical and chemical properties.
  • acetonitrile and methanol due to their low cost, volatility, and polarity, are preferred.
  • Methanol is a particularly suitable solvent for use in embodiments.
  • solvents that include sulfur, nitrogen, or phosphorous preferably have a relatively high volatility to ensure adequate stripping of the solvent from the hydrocarbon feedstock.
  • the extraction solvent is non-acidic.
  • acids are typically avoided due to the corrosive nature of acids, and the requirement that all equipment be specifically designed for a corrosive environment.
  • acids such as acetic acid, can present difficulties in separation due to the formation of emulsions.
  • extraction vessel 112 can be operated at a temperature of between about 20°C and about 60°C, preferably between about 25°C and about 45°C, even more preferably between about 25°C and about 35°C.
  • Extraction vessel 112 can operate at a pressure of between about 1 and about 10 bars, preferably between about 1 and about 5 bars, more preferably between about 1 and about 2 bars. In certain embodiments, extraction vessel 112 operates at a pressure of between about 2 and about 6 bars.
  • the ratio of the extraction solvent to hydrocarbon feedstock can be between about 1 :3 and about 3 : 1, preferably between about 1 :2 and about 2: 1, more preferably about 1 : 1.
  • Contact time between the extraction solvent and oxidized hydrocarbon stream 110 can be between about 1 second and about 60 minutes, preferably between about 1 second and about 10 minutes. In certain preferred embodiments, the contact time between the extraction solvent and oxidized hydrocarbon stream 110 is less than about 15 minutes.
  • extraction vessel 112 can include various means for increasing the contact time between the extraction solvent and oxidized sulfur- and oxidized nitrogen-containing hydrocarbon stream 110, or for increasing the degree of mixing of the two solvents. Means for mixing can include mechanical stirrers or agitators, trays, or like means.
  • extraction vessel 112 produces mixed stream 114 that can include extraction solvent, oxidized species (for example, the oxidized sulfur and nitrogen species that were originally present in hydrocarbon feedstock 102), and traces of hydrocarbon feedstock 102, and extracted hydrocarbon stream 118, which can include the hydrocarbon feedstock having a reduced sulfur and low nitrogen content, relative to hydrocarbon feedstock 102.
  • oxidized species for example, the oxidized sulfur and nitrogen species that were originally present in hydrocarbon feedstock 102
  • traces of hydrocarbon feedstock 102 and extracted hydrocarbon stream 118, which can include the hydrocarbon feedstock having a reduced sulfur and low nitrogen content, relative to hydrocarbon feedstock 102.
  • Mixed stream 114 is supplied to solvent regeneration column 116 where extraction solvent can be recovered as first recovered solvent stream 117 and separated from first residue stream 123, which includes oxidized sulfur and oxidized nitrogen compounds.
  • mixed stream 114 can be separated in solvent regeneration column 116 into a recovered hydrocarbon stream 124, which can include hydrocarbons present in mixed stream 114 from hydrocarbon feedstock 102.
  • Solvent regeneration column 116 can be a distillation column that is configured to separate mixed stream 114 into first recovered solvent stream 117, first residue stream 123, and recovered hydrocarbon stream 124.
  • Extracted hydrocarbon stream 118 can be supplied to stripper 120, which can be a distillation column or like vessel designed to separate a hydrocarbon product stream from residual extraction solvent.
  • stripper 120 can be a distillation column or like vessel designed to separate a hydrocarbon product stream from residual extraction solvent.
  • a portion of mixed stream 114 can be supplied to stripper 120 via line 122, and may optionally be combined with extracted hydrocarbon stream 118.
  • solvent regeneration column 116 can produce recovered hydrocarbon stream 124, which can be supplied to stripper 120, where recovered hydrocarbon stream 124 can optionally be contacted with extracted hydrocarbon stream 118 or a portion of mixed stream 114, which can be supplied to stripper 120 via line 122.
  • Stripper 120 separates the various streams supplied thereto into stripped oil stream 126, which has a reduced sulfur and nitrogen content relative to hydrocarbon feedstock 102, and second recovered solvent stream 128.
  • first recovered solvent stream 117 can be combined with second recovered solvent stream 128 and recycled to extraction vessel 112.
  • makeup solvent stream 132 which can include fresh solvent, can be combined with first recovered solvent stream 117, second recovered solvent stream 128, or both, and supplied to extraction vessel 112.
  • First residue stream 123 which includes oxidized compounds, such as oxidized sulfur and nitrogen compounds, and which can also include low concentrations of hydrocarbonaceous material, can be supplied to FCC unit 130 where liquid products (including hydrocarbons) 136 are recovered.
  • oxidized sulfur compounds, such as sulfones, and oxidized nitrogen compounds are embedded in heavy hydrocarbons, such as hydrocarbons having a boiling point in a range of about 343°C to about 524°C; or alternatively, in a range of about 360°C to about 550°C.
  • first residue stream 123 is contacted with FCC feedstream 134 in the presence of a catalyst to catalytically crack FCC feedstream 134 to recover liquid products 136 from first residue stream 123.
  • the catalyst can include hot solid zeolitic active catalyst particles.
  • the weight ratio of catalyst to FCC feedstream 134 is within a range of between about 1 and about 15 with a pressure ranging from about 1 barg (gauge pressure) to about 200 barg to form a suspension. Other suitable ratios of catalyst and FCC feedstream 134 and operating conditions will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • the suspension is then passed through a riser reaction zone or downer at a temperature (not shown) between about 300 °C and less than about 650 °C to catalytically crack the FCC feedstream 134, while avoiding thermal conversion of said feedstream 134 and providing a hydrocarbon residence time between about 0.1 second and about 10 minutes.
  • the lower boiling components and the solid catalyst particles are then separated and recovered. At least a portion of the separated solid catalyst particles is regenerated with a water-free oxygen-containing gas in a fluidized bed operated at conditions to produce regenerated catalyst 140 and gaseous products 138 consisting essentially of carbon monoxide and carbon dioxide and liquid products 136. At least a portion of the regenerated catalyst is returned and combined with FCC feedstream 134 (not shown).
  • FCC feedstream 134 not shown.
  • the types of components contained in FCC feedstream 134 can vary.
  • FCC feedstream 134 can include vacuum gas oil, reduced crude, demetalized oil, whole crude, cracked shale oil, liquefied coal, cracked bitumens, heavy coker gas oils, and FCC heavy products, such as LCO, HCO and CSO, as non-limiting examples.
  • Table 1 shows the typical yield from a FCC unit.
  • FCC feedstream 134 sent to the FCC unit 130 can have the properties shown in Table 2.
  • Other suitable compounds that can be used in FCC feedstream 134 being sent to the FCC unit 130 will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • FCC catalyst particles include a zeolitic matrix with metals selected from Groups IVB, VI, VII, VIIIB, IB, IIB, or a compound thereof, and with catalyst particles less than 200 microns in nominal diameter.
  • Other suitable types of catalysts that can be used in FCC unit 130 will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • the operating parameters for FCC unit 130 can be varied depending upon the type of FCC feedstream 134 that is sent to FCC unit 130.
  • FCC unit 130 is conducted in the temperature range of about 400°C to about 850 °C.
  • FCC unit 130 can be operated at a pressure ranging from about 1 barg to about 200 barg.
  • FCC unit 130 can be operated for a residence time ranging from about 0.1 second to about 3600 seconds.
  • Other suitable operating parameters for FCC unit 130 will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • the properties of the components recovered from FCC unit 130 will vary depending upon the composition of the hydrocarbon FCC feedstream 134.
  • FIG. 2 provides one embodiment for the recovery of hydrocarbons from a feedstream.
  • Hydrocarbon recovery system 200 includes oxidation reactor 104, extraction vessel 112, solvent regeneration column 116, stripper 120, and FCC unit 130.
  • first residue stream 123 which includes oxidized compounds, such as oxidized sulfur and nitrogen compounds, and which can also include low concentrations of hydrocarbonaceous material, can be supplied to FCC unit 130 where liquid products (including hydrocarbons) 136 are recovered.
  • oxidized sulfur compounds, such as sulfones, and oxidized nitrogen compounds are embedded in heavy hydrocarbons, such as hydrocarbons having a boiling point in a range of about 343°C to about 524°C; or alternatively, in a range of about 360°C to about 550°C.
  • first residue stream 123 is contacted with FCC feedstream 134 in the presence of a catalyst to catalytically crack FCC feedstream 134 to recover liquid products 136 from first residue stream 123.
  • the catalyst can include hot solid zeolitic active catalyst particles.
  • the weight ratio of catalyst to FCC feedstream 134 is within a range of between about 1 and about 15 with a pressure ranging from about 1 barg to about 200 barg to form a suspension. Other suitable ratios of catalyst and FCC feedstream 134 and operating conditions will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • the suspension is then passed through a riser reaction zone or downer at a temperature (not shown) between about 300 °C and less than about 650 °C to catalytically crack the FCC feedstream 134, while avoiding thermal conversion of said feedstream 134 and providing a hydrocarbon residence time between about 0.1 second and about 10 minutes.
  • the lower boiling components and the solid catalyst particles are then separated and recovered. At least a portion of the separated solid catalyst particles is regenerated with a water-free oxygen-containing gas in a fluidized bed operated at conditions to produce regenerated catalyst 140 and gaseous products 138 consisting essentially of carbon monoxide and carbon dioxide and liquid products 136. At least a portion of the regenerated catalyst is returned and combined with FCC feedstream 134 (not shown).
  • liquid products 136 is recycled via line 202 back to oxidation reactor 104, where liquid products 136 contains at least one of light cycle oils and heavy cycle oils.
  • Liquid products 136 are sulfur rich and can be desulfurized in the oxidative desulfurized process occurring in oxidation reactor 104.
  • Various types of catalysts can be used in FCC unit 130.
  • FCC catalyst particles include a zeolitic matrix with metals selected from Groups IVB, VI, VII, VIIIB, IB, IIB, or a compound thereof, and with catalyst particles less than 200 microns in nominal diameter.
  • Other suitable types of catalysts that can be used in FCC unit 130 will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • FIG. 3 provides one embodiment for the recovery of hydrocarbons from a feedstream.
  • Hydrocarbon recovery system 300 includes oxidation reactor 104, extraction vessel 112, solvent regeneration column 116, stripper 120, FCC unit 130, and adsorption column 302.
  • stripped oil stream 126 can be supplied to adsorption column 302, where stripped oil stream 126 can be contacted with one or more adsorbents designed to remove one or more various impurities, such as sulfur-containing compounds, oxidized sulfur compounds, nitrogen-containing compounds, oxidized nitrogen compounds, and metals remaining in the hydrocarbon product stream after oxidation and solvent extraction steps.
  • adsorption column 302 where stripped oil stream 126 can be contacted with one or more adsorbents designed to remove one or more various impurities, such as sulfur-containing compounds, oxidized sulfur compounds, nitrogen-containing compounds, oxidized nitrogen compounds, and metals remaining in the hydrocarbon product stream after oxidation and solvent extraction steps.
  • the one or more adsorbents can include activated carbon; silica gel; alumina; natural clays; silica-alumina; zeolites; and fresh, used, regenerated or rejuvenated catalysts having affinity to oxidized sulfur and nitrogen compounds and other inorganic adsorbents.
  • the adsorbent can include polar polymers that have been applied to or that coat various high surface area support materials, such as silica gel, alumina, and activated carbon.
  • Example polar polymers for use in coating various support materials can include polysulfones, polyacrylonitrile, polystyrene, polyester terephthalate, polyurethane, other like polymer species that exhibit an affinity for oxidized sulfur species, and combinations thereof.
  • adsorption column 302 can be operated at a temperature of between about 20°C and about 60°C, preferably between about 25°C and about 40°C, even more preferably between about 25°C and about 35°C. In certain embodiments, the adsorption column can be operated at a temperature of between about 10°C and about 40°C.
  • the adsorption column can be operated at temperatures of greater than about 20°C, or alternatively at temperatures less than about 60°C.
  • Adsorption column 302 can be operated at a pressure of up to about 15 bars, preferably up to about 10 bars, even more preferably between about 1 and about 2 bars. In certain embodiments, adsorption column 302 can be operated at a pressure of between about 2 and about 5 bar. In accordance with at least one embodiment, the adsorption column can be operated at a temperature of between about 25°C and about 35°C and a pressure of between about 1 and about 2 bars.
  • the weight ratio of the stripped oil stream to the adsorbent is between about 1 : 1 to about 20: 1; or alternatively, about 10: 1.
  • Adsorption column 302 separates the feed into extracted hydrocarbon product stream 304 having very low sulfur content (for example, less than 15 ppmw of sulfur) and very low nitrogen content (for example, less than 10 ppmw of nitrogen), and second residue stream 306.
  • Second residue stream 306 includes oxidized sulfur- and oxidized nitrogen-containing compounds, and can optionally be combined with first residue stream 123 and supplied to FCC unit 130 and processed as noted previously.
  • the adsorbent can be regenerated by contacting spent adsorbent with a polar solvent, such as methanol or acetonitrile, to desorb the adsorbed oxidized compounds from the adsorbent.
  • heat, stripping gas, or both can also be employed to facilitate the removal of the adsorbed compounds.
  • Other suitable methods for removing the absorbed compounds will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • FIG. 4 shows the process flow diagram for the oxidative desulfurization (oxidation and extraction steps) and FCC unit. Vessels 10, 16, 20 and 25 are oxidation, extraction, solvent recovery, and FCC vessels, respectively.
  • a hydrotreated straight run diesel containing 500 ppmw of elemental sulfur, 0.28 wt% of organic sulfur, density of 0.85 kilogram per liter (Kg/1) was oxidatively desulfurized.
  • the reaction conditions were as follows:
  • the FCC unit was operated at 518 °C with a catalyst to oil ratio of 5, which resulted in 67 wt% conversion of the feedstock.
  • straight run vacuum gas oil derived from Arabian crude oils was used as a blending component.
  • the feedstock contained 2.65 wt% sulfur and 0.13 wt% of micro carbon residue.
  • the mid and 95 wt% boiling points for the feedstocks were 408 °C and 455 °C, respectively.
  • Equation (1) The FCC conversion of the feedstock was calculated, using Equation (1), as:
  • the catalyst used was an equilibrium catalyst and used as is without any treatment.
  • the catalyst has 131 meter squared per gram (m 2 /g) surface area and 0.1878 centimeter squared per gram (cm 3 /g) pore volume.
  • the nickel and vanadium contents are 96 and 407 ppmw, respectively.
  • the FCC process yielded the following products and deposited coke on the catalysts.
  • LCO was recycled to the oxidation step because LCO boils in the same distillation range as the diesel used in the example.
  • the FCC unit is designed to process 10,000 Kg/h vacuum gas oil for illustration purposes.
  • the FCC unit can be designed at any capacity and the design changes can be done to the oxidation / extractions steps to handle the extra feed as will be apparent to those of skill in the art and are to be considered within the scope of the various embodiments.
  • the material balance will be proportional to the amount of the feedstock processed.
  • the process steps, oxidation, extraction and FCC are shown in Tables 6-8, respectively.
  • Ranges may be expressed as from about one particular value to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value or to the other particular value, along with all combinations within said range.

Abstract

Des modes de réalisation concernent un procédé et un appareil permettant de récupérer des constituants à partir d'une charge d'hydrocarbures. Selon au moins un mode de réalisation, le procédé consiste à alimenter une charge d'hydrocarbures dans un réacteur d'oxydation, la charge d'hydrocarbures étant oxydée en présence d'un catalyseur dans des conditions suffisantes pour oxyder sélectivement les composés soufrés et les composés azotés présents dans la charge d'hydrocarbures, séparer les hydrocarbures, les composés soufrés oxydés et les composés azotés oxydés par extraction par solvant, collecter un flux de résidus qui comprend les composés soufrés oxydés et les composés azotés oxydés, alimenter le flux de résidus dans une unité de craquage catalytique fluide, et recycler ls produits liquides générés par l'unité de craquage catalytique fluide vers le réacteur d'oxydation pour oxyder sélectivement les composés soufrés dans les produits liquides, la partie des produits liquides comprenant des huiles de cycle légères et/ou des huiles de cycle lourdes.
PCT/US2018/015275 2017-01-25 2018-01-25 Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide WO2018140620A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197023955A KR20190107099A (ko) 2017-01-25 2018-01-25 오일 분획의 산화적 탈황 및 fcc를 사용한 술폰 관리
JP2019539799A JP6937832B2 (ja) 2017-01-25 2018-01-25 Fccを用いた油分の酸化的脱硫およびスルホンの管理
EP18705215.4A EP3551731A1 (fr) 2017-01-25 2018-01-25 Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide
CN201880008484.0A CN110249035A (zh) 2017-01-25 2018-01-25 使用fcc进行油馏分的氧化脱硫和砜管理
SG11201906156UA SG11201906156UA (en) 2017-01-25 2018-01-25 Oxidative desulfurization of oil fractions and sulfone management using an fcc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/415,294 2017-01-25
US15/415,294 US10087377B2 (en) 2010-09-07 2017-01-25 Oxidative desulfurization of oil fractions and sulfone management using an FCC

Publications (1)

Publication Number Publication Date
WO2018140620A1 true WO2018140620A1 (fr) 2018-08-02

Family

ID=61224518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/015275 WO2018140620A1 (fr) 2017-01-25 2018-01-25 Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide

Country Status (7)

Country Link
EP (1) EP3551731A1 (fr)
JP (1) JP6937832B2 (fr)
KR (1) KR20190107099A (fr)
CN (1) CN110249035A (fr)
SA (1) SA519402001B1 (fr)
SG (1) SG11201906156UA (fr)
WO (1) WO2018140620A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455988B1 (ko) * 2020-10-08 2022-10-18 재단법인 포항산업과학연구원 석탄계 원료의 정제방법
CN113621407A (zh) * 2021-07-07 2021-11-09 江苏大学 一种降低催化裂化进料油中硫、氮含量的串联处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102323A1 (en) * 2004-11-23 2007-05-10 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils
US20120055844A1 (en) * 2010-09-07 2012-03-08 Saudi Arabian Oil Company Process for Oxidative Desulfurization and Denitrogenation Using A Fluid Catalytic Cracking (FCC) Unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574142B2 (en) * 2010-09-07 2017-02-21 Saudi Arabian Oil Company Process for oxidative desulfurization and sulfone management by gasification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102323A1 (en) * 2004-11-23 2007-05-10 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils
US20120055844A1 (en) * 2010-09-07 2012-03-08 Saudi Arabian Oil Company Process for Oxidative Desulfurization and Denitrogenation Using A Fluid Catalytic Cracking (FCC) Unit

Also Published As

Publication number Publication date
JP6937832B2 (ja) 2021-09-22
JP2020514485A (ja) 2020-05-21
SG11201906156UA (en) 2019-08-27
EP3551731A1 (fr) 2019-10-16
CN110249035A (zh) 2019-09-17
KR20190107099A (ko) 2019-09-18
SA519402001B1 (ar) 2022-11-25

Similar Documents

Publication Publication Date Title
US9574144B2 (en) Process for oxidative desulfurization and denitrogenation using a fluid catalytic cracking (FCC) unit
US9598647B2 (en) Process for oxidative desulfurization and sulfone disposal using solvent deasphalting
US9574143B2 (en) Desulfurization and sulfone removal using a coker
US9574142B2 (en) Process for oxidative desulfurization and sulfone management by gasification
US10081770B2 (en) Process for oxidative desulfurization and sulfone disposal using solvent deasphalting
WO2013009440A1 (fr) Procédé pour la conversion de sulfone par des super-donneurs d'électrons
EP3583191B1 (fr) Désulfuration et élimination des sulfones à l'aide d'une unité de cokéfaction
EP3583192B1 (fr) Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide
CN110446772B (zh) 使用溶剂脱沥青的氧化脱硫和砜处理方法
EP3551731A1 (fr) Désulfuration oxydative de fractions d'huiles et gestion des sulfones à l'aide d'un craquage catalytique fluide
CN110312779B (zh) 使用焦化器脱硫和除砜
WO2018140503A1 (fr) Procédé de désulfuration oxydative et de gestion des sulfones par gazéification
US10093871B2 (en) Desulfurization and sulfone removal using a coker
US10093872B2 (en) Oxidative desulfurization of oil fractions and sulfone management using an FCC
US10087377B2 (en) Oxidative desulfurization of oil fractions and sulfone management using an FCC
US10093870B2 (en) Desulfurization and sulfone removal using a coker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18705215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018705215

Country of ref document: EP

Effective date: 20190711

ENP Entry into the national phase

Ref document number: 2019539799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023955

Country of ref document: KR

Kind code of ref document: A