WO2018139641A1 - 樹脂材料及び積層体 - Google Patents

樹脂材料及び積層体 Download PDF

Info

Publication number
WO2018139641A1
WO2018139641A1 PCT/JP2018/002718 JP2018002718W WO2018139641A1 WO 2018139641 A1 WO2018139641 A1 WO 2018139641A1 JP 2018002718 W JP2018002718 W JP 2018002718W WO 2018139641 A1 WO2018139641 A1 WO 2018139641A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
aggregated particles
nitride aggregated
particles
less
Prior art date
Application number
PCT/JP2018/002718
Other languages
English (en)
French (fr)
Inventor
悠子 川原
圭吾 大鷲
剛児 足羽
匡隆 杉本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018506234A priority Critical patent/JP7150598B2/ja
Publication of WO2018139641A1 publication Critical patent/WO2018139641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a resin material containing boron nitride aggregated particles and a binder resin. Moreover, this invention relates to the laminated body using the said resin material.
  • a ceramic substrate having high thermal conductivity as a heat dissipation substrate for mounting a power semiconductor device or the like.
  • a ceramic substrate include an alumina substrate and an aluminum nitride substrate.
  • the means using the ceramic substrate has a problem that it is difficult to make a multilayer, workability is poor, and cost is very high. Furthermore, since the difference in coefficient of linear expansion between the ceramic substrate and the copper circuit is large, there is also a problem that the copper circuit is easily peeled off during the cooling and heating cycle.
  • a resin composition using boron nitride having a low coefficient of linear expansion, particularly hexagonal boron nitride has attracted attention as a heat dissipation material.
  • the crystal structure of hexagonal boron nitride is a layered structure of hexagonal network similar to graphite, and the particle shape of hexagonal boron nitride is scaly. For this reason, it is known that hexagonal boron nitride has a property in which the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction and the thermal conductivity is anisotropic.
  • boron nitride agglomerated particles in which the primary particles of hexagonal boron nitride are agglomerated as a method of reducing the thermal conductivity anisotropy of hexagonal boron nitride and improving the thermal conductivity in the thickness direction. It has been proposed to use Patent Documents 1 to 3 below disclose resin compositions using boron nitride aggregated particles.
  • Patent Document 1 discloses a thermosetting resin composition containing an inorganic filler in a thermosetting resin.
  • the inorganic filler includes a secondary aggregate (A) composed of primary particles of boron nitride having an average major axis of 8 ⁇ m or less, and a secondary aggregate composed of primary particles of boron nitride having an average major axis of more than 8 ⁇ m and 20 ⁇ m or less.
  • the next aggregate (B) is contained in a volume ratio of 40:60 to 98: 2. Content of the said inorganic filler is 40 volume% or more and 80 volume% or less.
  • Patent Document 2 discloses a curable heat radiation composition comprising two types of fillers having different compressive fracture strengths (except that the above two types of fillers are the same substance) and a curable resin (C). Things are disclosed.
  • the compression fracture strength ratio compression fracture strength of filler (A) having a high compression fracture strength / compression fracture strength of filler (B) having a small compression fracture strength
  • the filler (B) is hexagonal boron nitride aggregate particles.
  • Patent Document 3 discloses a thermosetting resin composition containing a thermosetting resin and an inorganic filler.
  • the inorganic filler is formed of secondary particles (A) formed from primary particles of boron nitride having an aspect ratio of 10 or more and 20 or less, and primary particles of boron nitride having an aspect ratio of 2 or more and 9 or less.
  • Secondary particles (B) are formed of secondary particles (A) formed from primary particles of boron nitride having an aspect ratio of 10 or more and 20 or less, and primary particles of boron nitride having an aspect ratio of 2 or more and 9 or less.
  • the area of the end face where the boron nitride aggregated particles constituting the boron nitride aggregated particles are relatively large may be small.
  • the adhesiveness between the boron nitride aggregated particles and the curable compound may be reduced, or the adhesiveness between the curable composition and the adherend may be reduced.
  • An object of the present invention is to provide a resin material that can effectively enhance insulation, can effectively suppress variations in dielectric breakdown strength, and can effectively enhance adhesion, and the resin material It is providing the laminated body using this.
  • the first boron nitride aggregated particles, the second boron nitride aggregated particles, and a binder resin wherein the pore diameter of the first boron nitride aggregated particles exceeds 0 ⁇ m, In the pore diameter distribution on the volume basis of the pore volume of the pores of 5 ⁇ m or less, the cumulative 50% pore diameter is less than 2 ⁇ m, and the pore diameter in the second aggregated boron nitride particles exceeds 0 ⁇ m and 5 ⁇ m In the pore size distribution on the volume basis of the pore volume of the following pores, the cumulative 50% pore size is 2 ⁇ m or more, and the aspect ratio of the primary particles constituting the second boron nitride aggregated particles is 7
  • the following resin material is provided.
  • the aspect ratio of the primary particles constituting the first boron nitride aggregated particles is 3 or more and 17 or less.
  • a particle diameter of the first boron nitride aggregated particles exceeds 40 ⁇ m, and an average major axis of the primary particles constituting the first boron nitride aggregated particles is 2 ⁇ m or more. , And the average major axis of the primary particles constituting the second boron nitride aggregated particles is 8 ⁇ m or less.
  • a total content of the first boron nitride aggregated particles and the second boron nitride aggregated particles in 100 volume% of the resin material is 20 volume% or more, 80% by volume or less.
  • the resin material is a resin sheet.
  • a heat conductor an insulating layer laminated on one surface of the heat conductor, and a conductive layer laminated on the surface of the insulating layer opposite to the heat conductor.
  • a laminate is provided in which the material of the insulating layer is the resin material described above.
  • the resin material according to the present invention includes first boron nitride aggregated particles, second boron nitride aggregated particles, and a binder resin.
  • the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m is 50% cumulative. Is less than 2 ⁇ m.
  • the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m is 50% cumulative.
  • the aspect ratio of the primary particles constituting the second boron nitride aggregated particles is 7 or less.
  • FIG. 1 is a cross-sectional view schematically showing a resin sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a laminate obtained using the resin material according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the relationship between the pore volume difference and the pore diameter in the present invention.
  • 4 (a) and 4 (b) are diagrams showing an example of a difference between the first boron nitride aggregated particles and the second boron nitride aggregated particles in the present invention.
  • the resin material according to the present invention includes first boron nitride aggregated particles, second boron nitride aggregated particles, and a binder resin.
  • the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m is 50% cumulative. Is less than 2 ⁇ m.
  • the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m is 50% cumulative. Is 2 ⁇ m or more.
  • the aspect ratio of the primary particles constituting the second boron nitride aggregated particles is 7 or less.
  • the first boron nitride aggregated particles are Easy to fill with binder resin. Even when a compression force such as a press is applied, the first boron nitride aggregated particles can maintain the form.
  • the second boron nitride aggregated particles have a relatively large pore diameter, the second boron nitride aggregated particles are difficult to be filled with the binder resin.
  • the binder resin adheres to the surface of the primary particles constituting the aggregated particles, voids tend to remain inside the pores.
  • a compressive force such as a press is applied to the second boron nitride aggregated particles, the second boron nitride aggregated particles are appropriately deformed or collapsed without maintaining their form. .
  • the second boron nitride aggregated particles that have been appropriately deformed or collapsed can fill the voids existing between the first boron nitride aggregated particles whose form is maintained, and the second boron nitride aggregated particles Since the voids in the boron nitride aggregated particles can be filled by deformation of the second boron nitride aggregated particles, the insulation can be effectively enhanced. Further, since the binder resin is attached to the surface of the primary particles of the second boron nitride aggregated particles, the primary particles between the second boron nitride aggregated particles after deformation can be filled with the binder resin, Insulation can be effectively increased.
  • the first boron nitride aggregated particles can be filled with the binder resin because the resin material according to the present invention uses at least two types of boron nitride aggregated particles, and the actual concentration of the first boron nitride aggregated particles is as follows. However, it is also cited as a factor that the concentration is lowered from the total concentration of the first boron nitride aggregated particles and the second boron nitride aggregated particles.
  • the first boron nitride aggregated particles cannot be eliminated by the press. Insulation properties are reduced.
  • the pressing is performed so as to eliminate the voids, even the first boron nitride aggregated particles cannot maintain their form, and the thermal conductivity in the thickness direction decreases.
  • the resin material containing only the second boron nitride aggregated particles is pressed by sheet molding or the like, the second boron nitride aggregated particles are easily deformed or collapsed by the press, It may be oriented in the plane direction and the thermal conductivity in the thickness direction may decrease.
  • the resin material according to the present invention uses two types of boron nitride agglomerated particles having different pore diameters, and the first boron nitride agglomerated particles having a relatively small pore diameter are close to each other and entangled with each other. There may be. Therefore, even if a compressive force such as a press is applied, a large number of primary particles need to be moved, so that the first boron nitride aggregated particles are unlikely to deform or collapse. As a result, it is easy to maintain its shape after pressing. Furthermore, since the first boron nitride aggregated particles are easily filled with the binder resin, the shape thereof can be more easily maintained (see FIG. 4A).
  • the second boron nitride aggregate particles having a relatively large pore diameter have few primary particle contacts in the aggregate particles. For this reason, the primary particles are unlikely to interact with each other and have a large pore diameter, so that they are easily deformed or collapsed (see FIG. 4B).
  • the second boron nitride aggregated particles are appropriately deformed or collapsed around the first boron nitride aggregated particles.
  • the 2nd boron nitride aggregated particle after compression can fill the space
  • the second boron nitride aggregated particles are easily deformed or collapsed. Therefore, the compressed second boron nitride aggregated particles and the primary particles constituting the second boron nitride aggregated particles can fill the gaps between the first boron nitride aggregated particles without any gaps. Due to the generation of voids, partial discharge (internal discharge) may occur and the dielectric breakdown strength may decrease. Since the resin material according to the present invention has the above-described configuration, it is possible to suppress the occurrence of partial discharge (internal discharge) and to effectively suppress the variation in dielectric breakdown strength. Moreover, in the resin material which concerns on this invention, since the space
  • the aspect ratio of the primary particles constituting the second boron nitride aggregated particles is relatively small, the area of the end surface of the primary particles constituting the second boron nitride aggregated particles is large.
  • Functional groups such as hydroxyl groups and amino groups are present on the end face, and the amount of functional groups such as hydroxyl groups and amino groups can be increased in the second boron nitride aggregated particles.
  • the primary particles constituting the second boron nitride aggregated particles and the second boron nitride aggregated particles can be bonded to the binder resin, the adherend, and the like via the functional group. As a result, the adhesiveness between the boron nitride aggregated particles and the binder resin and the adhesiveness between the boron nitride aggregated particles and the adherend can be effectively increased.
  • the use of the first boron nitride aggregated particles and the second boron nitride aggregated particles satisfying the relationship between the specific pore diameter and the specific aspect ratio greatly contributes.
  • the hardness of the first boron nitride aggregated particles is relatively higher than the hardness of the second boron nitride aggregated particles.
  • the hardness of the second boron nitride aggregated particles is preferably relatively lower than the hardness of the first boron nitride aggregated particles. Therefore, the compressive strength at 20% compression of the first boron nitride agglomerated particles is preferably larger than the compressive strength at 20% compression of the second boron nitride agglomerated particles. In the present invention, this 20% It is easy to satisfy the relationship of compression strength during compression.
  • the first boron nitride aggregated particles are not excessively deformed or collapsed at the initial stage of compression, and the second boron nitride aggregated particles are appropriately It is preferable to deform or collapse.
  • the cumulative 50% pore diameter of the first boron nitride aggregated particles is less than 2 ⁇ m. From the viewpoint of more effectively increasing the insulation, the cumulative 50% pore diameter of the first boron nitride aggregated particles is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less. The lower limit of the cumulative 50% pore diameter of the first boron nitride aggregated particles is not particularly limited. The cumulative 50% pore diameter of the first boron nitride aggregated particles may be 0.1 ⁇ m or more.
  • the cumulative 50% pore diameter of the second boron nitride aggregated particles is 2 ⁇ m or more. From the viewpoint of further effectively increasing the insulation, the cumulative 50% pore diameter of the second boron nitride aggregated particles is preferably 2.5 ⁇ m or more, more preferably 3 ⁇ m or more. The upper limit of the cumulative 50% pore diameter of the second boron nitride aggregated particles is not particularly limited. The cumulative 50% pore diameter of the second boron nitride aggregated particles may be 4.5 ⁇ m or less.
  • the pore size distribution on the volume basis of the first boron nitride aggregated particles and the second boron nitride aggregated particles can be measured as follows.
  • a mercury porosimeter “pore master 60” manufactured by QUANTACHROME the cumulative amount of mercury intrusion is measured against the pressure applied by the mercury intrusion method. From the obtained data, a distribution curve indicating the pore volume per unit section of the pore diameter is obtained.
  • the cumulative 50% pore size of the first boron nitride aggregated particles and the second boron nitride aggregated particles can be calculated.
  • the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m was integrated in order from the pore volume at the smallest pore diameter.
  • the pore diameter when the integrated value of the pore volume is 50% of the total pore volume of the pores having a pore diameter of more than 0 ⁇ m and 5 ⁇ m or less is defined as a cumulative 50% pore diameter.
  • the pore volume approaches 0 once in the vicinity of 5 ⁇ m. This is considered to indicate the pores inside the particles. Therefore, the sum of the pore volumes of pores having a pore diameter exceeding 0 ⁇ m and 5 ⁇ m or less is used as a reference for calculating the cumulative 50% pore diameter. Moreover, in the range of 4 ⁇ m to 5 ⁇ m, some of the pores between the aggregated particles may also enter, but the pore volume is within the error range, and the pores in the aggregated particles are uniquely defined.
  • the total pore volume of pores having a pore diameter exceeding 0 ⁇ m and not more than 5 ⁇ m is defined as the pore volume (void volume) of the aggregated particles.
  • pore volume (void volume) of the aggregated particles On the other hand, pore diameters exceeding 5 ⁇ m are considered to indicate pores between aggregated particles. This is consistent with the cross-sectional data of the aggregated particles.
  • FIG. 3 is a schematic diagram showing an example. Further, it is considered that there are closed pores without mercury intrusion, but the amount is small, and the effect of the present invention can be sufficiently achieved even by defining without considering closed pores.
  • the cumulative 50% pore diameter of the first boron nitride aggregated particles and the second boron nitride aggregated particles is the measurement result of five or more times of the cumulative 50% pore diameter obtained from the measurement result of the pore diameter distribution. It is preferable to calculate on average.
  • the particle diameter of the first boron nitride aggregated particles is preferably more than 40 ⁇ m, more preferably 50 ⁇ m. More, preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the particle diameter of the second boron nitride aggregated particles is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more. Yes, preferably 70 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the particle diameters of the first boron nitride aggregated particles and the second boron nitride aggregated particles are preferably average particle diameters obtained by averaging the particle diameters on a volume basis.
  • the particle diameters of the first boron nitride aggregated particles and the second boron nitride aggregated particles can be measured using a “laser diffraction particle size distribution analyzer” manufactured by Horiba, Ltd.
  • the particle diameters of the first boron nitride aggregated particles and the second boron nitride aggregated particles are obtained by sampling 3 g of each boron nitride aggregated particle, and averaging the particle diameter of each boron nitride aggregated particle contained therein.
  • the particle diameter (d50) of the boron nitride aggregated particles when the cumulative volume is 50% is the average particle size. It is preferable to employ the diameter.
  • the aspect ratio of the first boron nitride agglomerated particles is preferably 3 or less, more preferably 2 or less, from the viewpoint of more effectively increasing the insulation and further effectively increasing the thermal conductivity. is there.
  • the lower limit of the aspect ratio of the first boron nitride aggregated particles is not particularly limited.
  • the aspect ratio of the first boron nitride aggregated particle may be 1 or more.
  • the aspect ratio of the second boron nitride agglomerated particles is preferably 3 or less, more preferably 2 or less, from the viewpoint of more effectively increasing the insulation and further effectively increasing the thermal conductivity. is there.
  • the lower limit of the aspect ratio of the second boron nitride aggregated particles is not particularly limited.
  • the second boron nitride aggregate particle may have an aspect ratio of 1 or more.
  • the aspect ratio of the first boron nitride aggregated particles and the second boron nitride aggregated particles indicates a major axis / minor axis.
  • the aspect ratio of the first boron nitride aggregated particles and the second boron nitride aggregated particles is preferably an average aspect ratio obtained by averaging the aspect ratios of the plurality of boron nitride aggregated particles.
  • the average aspect ratio of the first boron nitride aggregated particles and the second boron nitride aggregated particles was determined by observing 50 arbitrarily selected boron nitride aggregated particles with an electron microscope or an optical microscope. It is calculated
  • the thermal conductivity of the first boron nitride aggregated particles is preferably 5 W / m ⁇ K or more, more preferably 10 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity of the first boron nitride aggregated particles is not particularly limited.
  • the first boron nitride aggregated particles may have a thermal conductivity of 1000 W / m ⁇ K or less.
  • the thermal conductivity of the second boron nitride aggregated particles is preferably 5 W / m ⁇ K or more, more preferably 10 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity of the second boron nitride aggregated particles is not particularly limited.
  • the second boron nitride aggregated particles may have a thermal conductivity of 1000 W / m ⁇ K or less.
  • the first boron nitride aggregated particles and the second boron nitride aggregated particles are contained in 100% by volume of the resin material. Is preferably 20% by volume or more, more preferably 45% by volume or more, preferably 80% by volume or less, more preferably 70% by volume or less.
  • the production method of the first boron nitride aggregated particles and the second boron nitride aggregated particles is not particularly limited, and examples thereof include a spray drying method and a fluidized bed granulation method.
  • the method for producing the first boron nitride aggregated particles and the second boron nitride aggregated particles is preferably a spray drying (also called spray drying) method.
  • the spray drying method can be classified into a two-fluid nozzle method, a disk method (also called a rotary method), an ultrasonic nozzle method, and the like depending on the spray method, and any of these methods can be applied. From the viewpoint of more easily controlling the total pore volume, the ultrasonic nozzle method is preferable.
  • the first boron nitride aggregated particles and the second boron nitride aggregated particles are manufactured using primary particles of boron nitride as a material.
  • the boron nitride used as the material of the first boron nitride aggregated particles and the second boron nitride aggregated particles is not particularly limited.
  • the boron nitride used as the material is hexagonal boron nitride, cubic boron nitride, boron nitride produced by a reduction nitriding method of a boron compound and ammonia, or nitride produced from a nitrogen compound such as boron compound and melamine.
  • Examples thereof include boron and boron nitride prepared from sodium borohydride and ammonium chloride. From the viewpoint of further effectively increasing the thermal conductivity of the first boron nitride aggregated particles and the second boron nitride aggregated particles, the boron nitride used as the material of the boron nitride aggregated particles is hexagonal boron nitride. It is preferable.
  • the first boron nitride aggregated particles are aggregates of the first boron nitride as primary particles.
  • the second boron nitride aggregated particles are preferably aggregates of second boron nitride as primary particles.
  • the first boron nitride aggregated particles are preferably secondary particles obtained by aggregating the first boron nitride that is primary particles, and the second boron nitride aggregated particles are the second particles that are primary particles. Secondary particles obtained by agglomerating boron nitride are preferable.
  • a granulation step is not necessarily required. It may be boron nitride aggregated particles formed by spontaneously concentrating boron nitride primary particles as the boron nitride crystal grows. Moreover, in order to make the particle diameter of boron nitride aggregated particles uniform, pulverized boron nitride aggregated particles may be used.
  • the first boron nitride aggregated particles are composed of two or more types of aggregated particles having the cumulative 50% pore diameter as described above and having different particle diameters. May be.
  • the second boron nitride aggregated particles have the cumulative 50% pore diameter in the above-described range, and the aspect ratio of the primary particles constituting the aggregated particles is in the range described later. And two or more types of aggregated particles having different particle diameters may be used.
  • the resin material is composed of the first boron nitride aggregated particles and the second boron nitride aggregated particles.
  • third inorganic particles that are not the first boron nitride aggregated particles and the second boron nitride aggregated particles may be included.
  • the resin material preferably contains the third inorganic particles.
  • the third inorganic particles are preferably aggregated particles.
  • the third inorganic particles are preferably secondary particles obtained by agglomerating primary particles of boron nitride.
  • Primary particles constituting the first boron nitride aggregated particle and the second boron nitride aggregated particle (first boron nitride and second boron nitride):
  • the average major axis of the primary particles (first boron nitride) constituting the first boron nitride aggregated particles is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, preferably less than 20 ⁇ m, more preferably 16 ⁇ m or less. .
  • the insulation can be more effectively improved, and the insulation Variation in fracture strength can be more effectively suppressed, and adhesion can be further effectively improved.
  • the average major axis of the primary particles (second boron nitride) constituting the second boron nitride aggregated particles is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, preferably 8 ⁇ m or less, more preferably 7.5 ⁇ m or less. It is.
  • the average major axis of the primary particles (second boron nitride) constituting the second boron nitride aggregated particles is not less than the above lower limit and not more than the above upper limit, the insulating property can be further effectively improved, and the insulation Variation in fracture strength can be more effectively suppressed, and adhesion can be further effectively improved.
  • the average major axis of primary particles (first boron nitride and second boron nitride) constituting the first boron nitride aggregated particles and the second boron nitride aggregated particles can be calculated as follows. .
  • the cross section of the laminate produced by pressing is observed with an electron microscope. From the obtained electron microscope image, the major axis of primary particles (each boron nitride) constituting 50 arbitrarily selected boron nitride aggregate particles is measured, and an average value is calculated.
  • the first boron nitride aggregated particles are configured from the viewpoint of further enhancing the insulating property, from the viewpoint of more effectively suppressing the variation in the dielectric breakdown strength, and from the viewpoint of further effectively improving the adhesiveness.
  • the aspect ratio of the primary particles (first boron nitride) is preferably 3 or more, more preferably 5 or more, preferably 17 or less, more preferably 15 or less.
  • the aspect ratio of the primary particles (second boron nitride) constituting the second boron nitride aggregated particles is 7 or less.
  • the second boron nitride aggregated particles are configured from the viewpoint of further enhancing the insulating properties, from the viewpoint of more effectively suppressing variation in the dielectric breakdown strength, and from the viewpoint of further effectively improving the adhesiveness.
  • the aspect ratio of the primary particles (second boron nitride) is preferably 6.5 or less, more preferably 6.1 or less.
  • the lower limit of the aspect ratio of the primary particles constituting the second boron nitride aggregated particles is not particularly limited.
  • the aspect ratio of the primary particles constituting the second boron nitride aggregated particles may be 2 or more.
  • the aspect ratio of the primary particles (the first boron nitride and the second boron nitride) constituting the first boron nitride aggregated particles and the second boron nitride aggregated particles indicates a major axis / minor axis.
  • the aspect ratio of primary particles (first boron nitride and second boron nitride) constituting the first boron nitride aggregated particles and the second boron nitride aggregated particles can be calculated as follows. .
  • the cross section of the laminate produced by pressing is observed with an electron microscope. From the obtained electron microscope image, the major axis / minor axis of primary particles (each boron nitride) constituting 50 arbitrarily selected boron nitride aggregated particles are measured, and the average value is calculated.
  • all the primary particles are debris.
  • the particles need not be shaped particles, and may contain at least one particle having a bent shape.
  • the bent particles are divided into two particles at the bent portion, and the major axis / minor axis of each particle is measured.
  • the major axis / minor axis of the longer major axis is the major axis / longer axis The minor axis.
  • the aspect ratio is calculated from the obtained major axis / minor axis value.
  • the first boron nitride aggregated particles relatively maintain the morphology of the aggregated particles even after pressing, so confirm from the electron microscopic image of the cross section of the sheet or laminate. it can.
  • the second boron nitride aggregated particles are deformed or collapsed while maintaining isotropic properties after pressing, the existence thereof is strongly suggested.
  • the flakes obtained by crushing the second boron nitride aggregated particles in advance (primary particles constituting the second boron nitride aggregated particles: the second boron nitride), and the first
  • a sheet or a laminate is prepared by mixing boron nitride aggregated particles and a thermosetting resin or the like
  • the above-mentioned scales are relatively easily oriented in the plane direction as compared with the aggregated particles. For this reason, it is difficult for the above-mentioned flakes to remain isotropic even after pressing, compared with the case where aggregated particles are used.
  • the first boron nitride aggregated particles having a large specific surface area and a shape that is relatively easily maintained, and the second boron nitride aggregated particles having a small porosity and a small specific surface area are used because of the large porosity. This can be judged from the electron microscope image of the cross section of the sheet or laminate even after pressing.
  • the resin material according to the present invention includes a binder resin.
  • the binder resin is not particularly limited.
  • a known insulating resin is used as the binder resin.
  • the binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component.
  • the curable component include a thermosetting component and a photocurable component.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator.
  • the binder resin preferably contains a thermosetting component. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
  • (Meth) acryloyl group means an acryloyl group and a methacryloyl group.
  • (Meth) acryl refers to acrylic and methacrylic.
  • (Meth) acrylate refers to acrylate and methacrylate.
  • thermosetting component thermosetting compound
  • thermosetting compounds include styrene compounds, phenoxy compounds, oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. Can be mentioned.
  • thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • thermosetting compound As the thermosetting compound, (A1) a thermosetting compound having a molecular weight of less than 10,000 (sometimes simply referred to as (A1) thermosetting compound) may be used. A thermosetting compound having a molecular weight (may be simply referred to as (A2) thermosetting compound) may be used, and both (A1) thermosetting compound and (A2) thermosetting compound are used. It may be used.
  • the content of the thermosetting compound in 100% by volume of the resin material is preferably 10% by volume or more, more preferably 20% by volume or more, preferably 90% by volume or less, more preferably 80% by volume or less. .
  • the content of the thermosetting compound is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further enhanced.
  • the content of the thermosetting compound is not more than the above upper limit, the coating property of the resin material is further enhanced.
  • thermosetting compound having a molecular weight of less than 10,000 As a thermosetting compound, the thermosetting compound which has a cyclic ether group is mentioned. Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
  • the thermosetting compound having a cyclic ether group is preferably a thermosetting compound having an epoxy group or an oxetanyl group.
  • thermosetting compound As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.
  • the (A1) thermosetting compound may contain (A1a) a thermosetting compound having an epoxy group (sometimes simply referred to as (A1a) a thermosetting compound), and (A1b) an oxetanyl group.
  • a thermosetting compound (which may be simply referred to as (A1b) thermosetting compound).
  • the (A1) thermosetting compound preferably has an aromatic skeleton.
  • the aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton.
  • the aromatic skeleton is preferably a biphenyl skeleton or a fluorene skeleton.
  • thermosetting compound includes an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, an epoxy monomer having a fluorene skeleton, and a biphenyl skeleton. Epoxy monomers having a bi (glycidyloxyphenyl) methane skeleton, epoxy monomers having a xanthene skeleton, epoxy monomers having an anthracene skeleton, and epoxy monomers having a pyrene skeleton. These hydrogenated products or modified products may be used.
  • thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
  • Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
  • Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl.
  • Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
  • Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
  • Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene,
  • Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2
  • Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
  • thermosetting compound examples include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylate bis [(3-ethyl- 3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, oxetane-modified phenol novolak, and the like.
  • Only 1 type may be used for a thermosetting compound and 2 or more types may be used together.
  • the (A1) thermosetting compound preferably includes a thermosetting compound having two or more cyclic ether groups.
  • the content of the thermosetting compound having two or more cyclic ether groups is preferably 70% by weight or more in 100% by weight of the (A1) thermosetting compound. More preferably, it is 80% by weight or more, and preferably 100% by weight or less.
  • the content of the thermosetting compound having two or more cyclic ether groups in 100% by weight of the thermosetting compound may be 10% by weight or more and 100% by weight or less. Further, the whole (A1) thermosetting compound may be a thermosetting compound having two or more cyclic ether groups.
  • the molecular weight of the thermosetting compound is less than 10,000.
  • the molecular weight of the thermosetting compound is preferably 200 or more, preferably 1200 or less, more preferably 600 or less, and even more preferably 550 or less.
  • the adhesiveness of the surface of the cured product is lowered, and the handleability of the resin material is further enhanced.
  • the adhesiveness of the cured product is further enhanced. Furthermore, the cured product is hard and hard to be brittle, and the adhesiveness of the cured product is further enhanced.
  • thermosetting compound (A1) when the thermosetting compound is not a polymer, and (A1) when the structural formula of the thermosetting compound can be specified. It means the molecular weight that can be calculated from the structural formula.
  • thermosetting compound (A1) when the thermosetting compound (A1) is a polymer, it means the weight average molecular weight.
  • the weight average molecular weight is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). In gel permeation chromatography (GPC) measurement, tetrahydrofuran is preferably used as the eluent.
  • the content of the (A1) thermosetting compound is preferably 10% by volume or more, more preferably 20% by volume or more, preferably 90% by volume or less, more preferably 80% by volume or less. It is.
  • the content of the thermosetting compound is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further enhanced.
  • the content of the thermosetting compound is not more than the above upper limit, the coating property of the resin material is further enhanced.
  • thermosetting compound having a molecular weight of 10,000 or more (A2) Thermosetting compound having a molecular weight of 10,000 or more: (A2) The thermosetting compound is a thermosetting compound having a molecular weight of 10,000 or more. Since the molecular weight of the (A2) thermosetting compound is 10,000 or more, the (A2) thermosetting compound is generally a polymer, and the above molecular weight generally means a weight average molecular weight.
  • the (A2) thermosetting compound preferably has an aromatic skeleton.
  • the thermosetting compound is a polymer and (A2) the thermosetting compound has an aromatic skeleton, (A2) the thermosetting compound has an aromatic skeleton in any part of the whole polymer. What is necessary is just to have, it may have in the main chain frame
  • the (A2) thermosetting compound preferably has an aromatic skeleton in the main chain skeleton.
  • A2) As for a thermosetting compound, only 1 type may be used and 2 or more types may be used together.
  • the aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton.
  • the aromatic skeleton is preferably a biphenyl skeleton or a fluorene skeleton.
  • thermosetting compound is not particularly limited. Styrene resin, phenoxy resin, oxetane resin, epoxy resin, episulfide compound, (meth) acrylic resin, phenol resin, amino resin, unsaturated polyester resin, polyurethane resin, silicone Examples thereof include resins and polyimide resins.
  • the thermosetting compound is a styrene resin, It is preferably a phenoxy resin or an epoxy resin, more preferably a phenoxy resin or an epoxy resin, and further preferably a phenoxy resin.
  • a phenoxy resin or an epoxy resin further increases the heat resistance of the cured product.
  • use of a phenoxy resin further lowers the elastic modulus of the cured product and further improves the cold-heat cycle characteristics of the cured product.
  • the (A2) thermosetting compound does not need to have cyclic ether groups, such as an epoxy group.
  • styrene resin specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Styrene polymers having a styrene-glycidyl methacrylate structure are preferred.
  • styrene monomer examples include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, p-ethyl styrene, pn- Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.
  • the phenoxy resin is specifically a resin obtained by reacting, for example, an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
  • the phenoxy resin has a bisphenol A skeleton, bisphenol F skeleton, bisphenol A / F mixed skeleton, naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton or dicyclopentadiene skeleton. It is preferable.
  • the phenoxy resin has a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, or a biphenyl skeleton, and at least one of the fluorene skeleton and the biphenyl skeleton. More preferably, it has a skeleton.
  • Use of the phenoxy resin having these preferable skeletons further increases the heat resistance of the cured product.
  • the epoxy resin is an epoxy resin other than the phenoxy resin.
  • the epoxy resins include styrene skeleton-containing epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, biphenol type epoxy resins, naphthalene type epoxy resins, and fluorene type epoxy resins. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.
  • the molecular weight of the thermosetting compound is 10,000 or more.
  • the molecular weight of the thermosetting compound is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less.
  • A2 When the molecular weight of the thermosetting compound is not less than the above lower limit, the cured product is hardly thermally deteriorated.
  • the molecular weight of the (A2) thermosetting compound is not more than the above upper limit, the compatibility between the (A2) thermosetting compound and other components is increased. As a result, the heat resistance of the cured product is further increased.
  • the content of the (A2) thermosetting compound is preferably 20% by volume or more, more preferably 30% by volume or more, preferably 60% by volume or less, more preferably 50% by volume or less. It is. (A2) When the content of the thermosetting compound is not less than the above lower limit, the handleability of the resin material is further improved. (A2) When the content of the thermosetting compound is not more than the above upper limit, the coating property of the resin material is further enhanced.
  • thermosetting component thermosetting agent
  • the thermosetting agent is not particularly limited.
  • a thermosetting agent capable of curing the thermosetting compound can be appropriately used.
  • the thermosetting agent includes a curing catalyst.
  • a thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • the thermosetting agent preferably has an aromatic skeleton or an alicyclic skeleton.
  • the thermosetting agent preferably includes an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound), or an acid anhydride curing agent (acid anhydride), and more preferably includes an amine curing agent. preferable.
  • the acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a water additive of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, It is preferable to include a water additive of an acid anhydride or a modified product of the acid anhydride.
  • the amine curing agent examples include dicyandiamide, imidazole compound, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • the amine curing agent is more preferably dicyandiamide or an imidazole compound.
  • the thermosetting agent preferably includes a curing agent having a melting point of 180 ° C. or higher, and includes an amine curing agent having a melting point of 180 ° C. or higher. Is more preferable.
  • imidazole curing agent examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl.
  • phenol curing agent examples include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly ( And di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane.
  • the phenol curing agent is a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group. It is preferable that
  • phenol curing agents include MEH-8005, MEH-8010 and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical), LA-7052, LA-7054, and LA-7751.
  • LA-1356 and LA-3018-50P all of which are manufactured by DIC
  • PS6313 and PS6492 all of which are manufactured by Gunei Chemical Co., Ltd.
  • Examples of the acid anhydride having an aromatic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride include, for example, a styrene / maleic anhydride copolymer, a benzophenone tetracarboxylic acid anhydride, and a pyromellitic acid anhydride.
  • Trimellitic anhydride 4,4'-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydroanhydride
  • Examples include phthalic acid, methylhexahydrophthalic anhydride, and trialkyltetrahydrophthalic anhydride.
  • Examples of commercially available acid anhydrides having an aromatic skeleton, water additives of the acid anhydrides, or modified products of the acid anhydrides include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (all of which are manufactured by Manac), Ricacid MTA-10, Jamaicacid MTA-15, Ricacid TMTA, Jamaicacid TMEG-100, Jamaicacid TMEG-200, Jamaicacid TMEG-300, Ricacid TMEG-500, Jamaicacid TMEG-S, Ricacid TH, Ricacid HT-1A, Jamaicacid HH, Guatemalacid MH-700, Jamaicacid MT-500, Jamaicacid DSDA and Guatemalacid TDA-100 (all manufactured by Shin Nippon Rika) EPICLON B4400, EPICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).
  • the acid anhydride having an alicyclic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, a water additive of the acid anhydride, or the A modified product of an acid anhydride, or an acid anhydride having an alicyclic skeleton obtained by addition reaction of a terpene compound and maleic anhydride, a water additive of the acid anhydride, or a modified product of the acid anhydride It is preferable. By using these curing agents, the flexibility of the cured product and the moisture resistance and adhesion of the cured product are further increased.
  • Examples of the acid anhydride having an alicyclic skeleton, a water addition of the acid anhydride, or a modified product of the acid anhydride include methyl nadic acid anhydride, acid anhydride having a dicyclopentadiene skeleton, and the acid anhydride And the like.
  • Examples of commercially available acid anhydrides having the alicyclic skeleton, water additions of the acid anhydrides, or modified products of the acid anhydrides include Jamaicacid HNA and Ricacid HNA-100 (all of which are manufactured by Shin Nippon Rika Co., Ltd.) , And EpiCure YH306, EpiCure YH307, EpiCure YH308H, EpiCure YH309 (all of which are manufactured by Mitsubishi Chemical Corporation) and the like.
  • thermosetting agent is preferably methyl nadic acid anhydride or trialkyltetrahydrophthalic anhydride. Use of methyl nadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the cured product.
  • the content of the thermosetting agent is preferably 0.1% by volume or more, more preferably 1% by volume or more, preferably 40% by volume or less, more preferably 25% by volume or less. is there.
  • the content of the thermosetting agent is equal to or higher than the lower limit, it becomes much easier to sufficiently cure the thermosetting compound.
  • the content of the thermosetting agent is not more than the above upper limit, it is difficult to generate an excessive thermosetting agent that does not participate in curing. For this reason, the heat resistance and adhesiveness of hardened
  • Photocurable component Photocurable compound
  • the said photocurable compound will not be specifically limited if it has photocurability.
  • As for the said photocurable compound only 1 type may be used and 2 or more types may be used together.
  • the photocurable compound preferably has two or more ethylenically unsaturated bonds.
  • Examples of the group containing an ethylenically unsaturated bond include a vinyl group, an allyl group, and a (meth) acryloyl group.
  • a (meth) acryloyl group is preferred from the viewpoint of effectively advancing the reaction and further suppressing foaming, peeling and discoloration of the cured product.
  • the photocurable compound preferably has a (meth) acryloyl group.
  • the photocurable compound preferably contains epoxy (meth) acrylate.
  • the epoxy (meth) acrylate preferably contains a bifunctional epoxy (meth) acrylate and a trifunctional or higher functional epoxy (meth) acrylate.
  • the bifunctional epoxy (meth) acrylate preferably has two (meth) acryloyl groups.
  • the tri- or higher functional epoxy (meth) acrylate preferably has three or more (meth) acryloyl groups.
  • Epoxy (meth) acrylate is obtained by reacting (meth) acrylic acid with an epoxy compound.
  • Epoxy (meth) acrylate can be obtained by converting an epoxy group into a (meth) acryloyl group. Since the photocurable compound is cured by light irradiation, the epoxy (meth) acrylate preferably has no epoxy group.
  • epoxy (meth) acrylate bisphenol type epoxy (meth) acrylate (for example, bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol S type epoxy (meth) acrylate), cresol novolac type Examples include epoxy (meth) acrylate, amine-modified bisphenol-type epoxy (meth) acrylate, caprolactone-modified bisphenol-type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac-type epoxy (meth) acrylate. .
  • the content of the photocurable compound is preferably 5% by volume or more, more preferably 10% by volume or more, preferably 40% by volume or less, more preferably 30% by volume or less.
  • cured material becomes still higher that content of these photocurable compounds is more than the said minimum and below the said upper limit.
  • the photopolymerization initiator is not particularly limited.
  • the photoinitiator which can harden the said photocurable compound by irradiation of light can be used suitably.
  • the photoinitiator only 1 type may be used and 2 or more types may be used together.
  • photopolymerization initiator examples include acylphosphine oxide, halomethylated triazine, halomethylated oxadiazole, imidazole, benzoin, benzoin alkyl ether, anthraquinone, benzanthrone, benzophenone, acetophenone, thioxanthone, benzoate, acridine, phenazine, Examples include titanocene, ⁇ -aminoalkylphenone, oxime, and derivatives thereof.
  • benzophenone photopolymerization initiator examples include methyl o-benzoylbenzoate and Michler's ketone. EAB (made by Hodogaya Chemical Co., Ltd.) etc. are mentioned as a commercial item of a benzophenone series photoinitiator.
  • acetophenone photopolymerization initiators examples include Darocur 1173, Darocur 2959, Irgacure 184, Irgacure 907, and Irgacure 369 (all of which are manufactured by BASF).
  • benzoin photopolymerization initiators examples include Irgacure 651 (manufactured by BASF).
  • acylphosphine oxide photopolymerization initiators examples include Lucirin TPO and Irgacure 819 (all of which are manufactured by BASF).
  • Examples of commercially available thioxanthone photopolymerization initiators include isopropyl thioxanthone and diethyl thioxanthone.
  • oxime photopolymerization initiators examples include Irgacure OXE-01 and Irgacure OXE-02 (all of which are manufactured by BASF).
  • the content of the photopolymerization initiator with respect to 100 parts by weight of the photocurable compound is preferably 1 part by weight or more, more preferably 3 parts by weight or more, preferably 20 parts by weight or less, more preferably 15 parts by weight. Less than parts by weight.
  • the photocurable compound can be favorably photocured.
  • the resin material according to the present invention may contain an insulating filler.
  • the insulating filler is not the first boron nitride aggregated particles but the second boron nitride aggregated particles.
  • the insulating filler has an insulating property.
  • the insulating filler may be an organic filler or an inorganic filler. As for the said insulating filler, only 1 type may be used and 2 or more types may be used together.
  • the insulating filler is preferably an inorganic filler. From the viewpoint of more effectively increasing the thermal conductivity, the insulating filler preferably has a thermal conductivity of 10 W / m ⁇ K or more.
  • the thermal conductivity of the insulating filler is preferably 10 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity of the insulating filler is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ⁇ K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m ⁇ K are easily available.
  • the material of the insulating filler is not particularly limited.
  • Materials for the insulating filler include nitrogen compounds (boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.), carbon compounds (silicon carbide, fluorine carbide, boron carbide, titanium carbide, tungsten carbide, diamond, etc.) ), And metal oxides (such as silica, alumina, zinc oxide, magnesium oxide, and beryllium oxide).
  • the material of the insulating filler is preferably the nitrogen compound, the carbon compound or the metal oxide, and more preferably alumina, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide. preferable. Use of these preferable insulating fillers further increases the thermal conductivity of the cured product.
  • the insulating filler is preferably spherical particles, or non-aggregated particles and agglomerated particles having an aspect ratio of more than 2. Use of these insulating fillers further increases the thermal conductivity of the cured product.
  • the spherical particles have an aspect ratio of 2 or less.
  • the new Mohs hardness of the insulating filler material is preferably 12 or less, more preferably 9 or less. When the new Mohs hardness of the insulating filler material is 9 or less, the workability of the cured product is further enhanced.
  • the material of the insulating filler is preferably boron nitride, synthetic magnesite, crystalline silica, zinc oxide, or magnesium oxide.
  • the new Mohs hardness of these inorganic filler materials is 9 or less.
  • the particle size of the insulating filler is preferably 0.1 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the particle diameter is not less than the above lower limit, the insulating filler can be easily filled at a high density.
  • the particle diameter is not more than the above upper limit, the thermal conductivity of the cured product is further increased.
  • the above particle diameter means an average particle diameter obtained from a volume average particle size distribution measurement result measured by a laser diffraction particle size distribution measuring apparatus.
  • the particle diameter of the insulating filler is preferably calculated by sampling 3 g of the insulating filler and averaging the particle diameter of the insulating filler contained therein.
  • the average particle diameter of an insulating filler it is preferable to employ
  • the content of the insulating filler in 100% by volume of the resin material is preferably 1% by volume or more, more preferably 3% by volume or more, preferably 20%. Volume% or less, More preferably, it is 10 volume% or less.
  • the resin material may contain, in addition to the components described above, other components generally used for resin materials such as dispersants, chelating agents, antioxidants, resin sheets, and curable sheets.
  • the resin material may be a paste or a curable paste.
  • the resin material may be a resin sheet or a curable sheet.
  • a cured product can be obtained by curing the resin material.
  • cured material is a hardened
  • the resin material may be prepared by laminating two or more resin sheets.
  • the resin sheet which concerns on this invention may be sufficient as one layer or more among the resin sheets of two or more layers.
  • the laminate according to the present invention includes a heat conductor, an insulating layer, and a conductive layer.
  • the insulating layer is laminated on one surface of the heat conductor.
  • the conductive layer is laminated on the surface of the insulating layer opposite to the heat conductor side.
  • the insulating layer may be laminated on the other surface of the heat conductor.
  • the material of the insulating layer is the resin material described above.
  • Thermal conductor The thermal conductivity of the thermal conductor is preferably 10 W / m ⁇ K or more.
  • An appropriate heat conductor can be used as the heat conductor.
  • the heat conductor is preferably a metal material. Examples of the metal material include a metal foil and a metal plate.
  • the heat conductor is preferably the metal foil or the metal plate, and more preferably the metal plate.
  • the metal material examples include aluminum, copper, gold, silver, and a graphite sheet. From the viewpoint of more effectively increasing the thermal conductivity, the metal material is preferably aluminum, copper, or gold, and more preferably aluminum or copper.
  • the metal for forming the conductive layer is not particularly limited.
  • the metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, and tungsten. , Molybdenum, and alloys thereof.
  • the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of more effectively increasing the thermal conductivity, aluminum, copper or gold is preferable, and aluminum or copper is more preferable.
  • the method for forming the conductive layer is not particularly limited.
  • Examples of the method for forming the conductive layer include a method by electroless plating, a method by electroplating, and a method in which the insulating layer and the metal foil are thermocompression bonded. Since the formation of the conductive layer is simple, a method of thermocompression bonding the insulating layer and the metal foil is preferable.
  • FIG. 1 is a cross-sectional view schematically showing a resin sheet according to an embodiment of the present invention.
  • the actual size and thickness are different for convenience of illustration.
  • a resin sheet 1 (resin material) shown in FIG. 1 includes a binder resin 11, first boron nitride aggregated particles 12, and second boron nitride aggregated particles 13.
  • the first boron nitride aggregated particles 12 and the second boron nitride aggregated particles 13 are preferably the first boron nitride aggregated particles and the second boron nitride aggregated particles described above.
  • the pore diameter of the first boron nitride aggregated particles 12 and the pore diameter of the second boron nitride aggregated particles 13 are different. Further, the aspect ratio of the primary particles constituting the second boron nitride aggregated particles 13 is 7 or less.
  • the binder resin 11 includes a curable component.
  • the binder resin 11 may include a thermosetting component including a thermosetting compound and a thermosetting agent, or may include a photocurable component including a photocurable compound and a photopolymerization initiator.
  • the binder resin is preferably not completely cured.
  • the binder resin may be B-staged by heating or the like.
  • the binder resin may be a B-staged product that has been B-staged.
  • the resin sheet there may be voids inside the sheet.
  • a gap may exist between the first boron nitride aggregated particles and the second boron nitride aggregated particles.
  • FIG. 2 is a cross-sectional view schematically showing a laminate obtained using the resin material according to one embodiment of the present invention.
  • the actual size and thickness are different for convenience of illustration.
  • the 2 includes a heat conductor 22, an insulating layer 23, and a conductive layer 24.
  • the heat conductor 22, the insulating layer 23, and the conductive layer 24 are the above-described heat conductor, insulating layer, and conductive layer.
  • the resin sheet 1 shown in FIG. 1 is used as the insulating layer 23.
  • the heat conductor 22 has one surface 22a (first surface) and the other surface 22b (second surface).
  • the insulating layer 23 has one surface 23a (first surface) and the other surface 23b (second surface).
  • the conductive layer 24 has one surface 24a (first surface) and the other surface 24b (second surface).
  • a conductive layer 24 is laminated on one surface 23 a (first surface) side of the insulating layer 23.
  • the heat conductor 22 is laminated on the other surface 23b (second surface) side of the insulating layer 23.
  • An insulating layer 23 is stacked on the other surface 24 b (second surface) side of the conductive layer 24.
  • An insulating layer 23 is laminated on one surface 22 a (first surface) side of the heat conductor 22.
  • An insulating layer 23 is disposed between the heat conductor 22 and the conductive layer 24.
  • the method for producing the laminate is not particularly limited. As a manufacturing method of the said laminated body, the method etc. which laminate
  • the insulating layer 23 includes the cured product portion 14, the first boron nitride aggregated particles 12, and the second boron nitride aggregated particles 13.
  • the insulating layer 23 is formed by the resin sheet 1 shown in FIG.
  • the insulating layer is preferably formed by heat-pressing the resin sheet with a vacuum press or the like.
  • the first boron nitride aggregated particles 12 are preferably not deformed or collapsed by a compression force such as a press, and the shape is preferably maintained.
  • the first boron nitride aggregated particles 12 are preferably present in the form of aggregated particles (secondary particles) in the cured product.
  • the second boron nitride aggregated particles 13 may be deformed or collapsed by a compression force such as a press.
  • the second boron nitride agglomerated particles 13 may be deformed agglomerated particles (secondary particles), or may be primary particles by the collapse of the agglomerated particles (secondary particles).
  • the second boron nitride aggregated particles 13 may exist in the form of deformed aggregated particles (secondary particles) in the cured product, and the aggregated particles (secondary particles) collapse to form primary particles. May exist.
  • the second boron nitride aggregated particles 13 are deformed or collapsed around the first boron nitride aggregated particles 12.
  • the deformed or collapsed second boron nitride aggregated particles 13 are present between the first boron nitride aggregated particles 12.
  • the deformed or collapsed second boron nitride aggregated particles 13 can fill the voids existing between the first boron nitride aggregated particles 12, and can effectively enhance the insulation.
  • the laminated body 21 can fill the gaps between the first boron nitride aggregated particles 12 without gaps by the second boron nitride aggregated particles 13, it is possible to effectively suppress variations in dielectric breakdown strength. it can.
  • the cured product portion 14 is a portion where the binder resin 11 is cured.
  • the cured product portion 14 is obtained by curing the binder resin 11.
  • the cured product portion 14 may be a portion where a thermosetting component including a thermosetting compound and a thermosetting agent is cured, or a portion where a photocurable component including a photocurable compound and a photopolymerization initiator is cured. There may be.
  • cured material part 14 is obtained by hardening a thermosetting component or a photocurable component.
  • the resin material and the cured product can be used in various applications that require high thermal conductivity, mechanical strength, and the like.
  • the laminate is used by being disposed between a heat generating component and a heat radiating component.
  • the laminated body is used as a heat radiating body installed between a CPU and a fin, or a heat radiating body for a power card used in an inverter of an electric vehicle.
  • the laminated body can be used as an insulating circuit substrate by forming a circuit of the conductive layer of the laminated body by a technique such as etching.
  • Thermosetting compound (1) “Epicoat 828US” manufactured by Mitsubishi Chemical Corporation, epoxy compound (2) “DL-92” manufactured by Meiwa Kasei Co., Ltd., phenol novolac compound
  • Thermosetting agent (1) “Dicyandiamide” manufactured by Tokyo Chemical Industry Co., Ltd. (2) “2MZA-PW” manufactured by Shikoku Kasei Kogyo Co., Ltd., isocyanuric modified solid dispersion type imidazole
  • First boron nitride aggregated particles (including alternatives): (1) “PTX60S” manufactured by Momentive (2) “PT350” manufactured by Momentive (3) Momentive “AC6091” (4) Boron nitride aggregated particles 3 (5) Boron nitride agglomerated particles 4
  • Second boron nitride aggregated particles (including alternatives): (1) Boron nitride aggregated particles 1 (2) Boron nitride agglomerated particles 2 (3) Boron nitride aggregated particles 5 (4) “AC6091” manufactured by Momentive (5) “UHP-G1F” manufactured by Showa Denko
  • Boron nitride primary particles having an average major axis of 7.2 ⁇ m and an aspect ratio of 5.3 were produced by agglomeration by a spray drying method so that the porosity was 44% and the average particle size was 40 ⁇ m.
  • the porosity was measured with a mercury porosimeter, and the porosity when only the voids of 5 ⁇ m or less were used as the intraparticle voids was calculated.
  • the porosity was measured as follows.
  • the porosity was calculated by substituting the obtained value of V into the above formula.
  • boron nitride agglomerated particles 2 Boron nitride primary particles having an average major axis of 6.5 ⁇ m and an aspect ratio of 6.1 were produced by agglomeration by a spray drying method so that the porosity was 39% and the average particle size was 30 ⁇ m.
  • boron nitride aggregated particles 3 Boron nitride primary particles having an average major axis of 7 ⁇ m and an aspect ratio of 18 were produced by agglomeration by a spray drying method so that the porosity was 68% and the average particle size was 50 ⁇ m.
  • boron nitride aggregated particles 4 Boron nitride primary particles having an average major axis of 7.3 ⁇ m and an aspect ratio of 12 were produced by agglomeration by a spray drying method so that the porosity was 65% and the average particle size was 35 ⁇ m.
  • Boron nitride primary particles having an average major axis of 8.5 ⁇ m and an aspect ratio of 6.5 were produced by agglomeration by a spray drying method so that the porosity was 25% and the average particle size was 80 ⁇ m.
  • Measuring method of pore size distribution of first boron nitride aggregated particles and second boron nitride aggregated particles based on volume Using a mercury porosimeter “pore master 60” manufactured by QUANTACHROME, the cumulative amount of mercury intrusion was measured against the pressure applied by the mercury intrusion method. 0.2 to 0.3 g of boron nitride aggregated particles were weighed and measured in a low pressure mode and a high pressure mode. From the obtained data, a distribution curve indicating the pore volume per unit section of the pore diameter was obtained.
  • the cumulative 50% pore size of the first boron nitride aggregated particles and the second boron nitride aggregated particles was calculated. Specifically, in the boron nitride aggregated particles, the pore diameter distribution on the volume basis of the pore volume of the pores having a pore diameter of more than 0 ⁇ m and not more than 5 ⁇ m was integrated in order from the pore volume at the smallest pore diameter. The pore diameter when the integrated value of the pore volume was 50% of the total pore volume of the pores having a pore diameter of more than 0 ⁇ m and 5 ⁇ m or less was defined as a cumulative 50% pore diameter.
  • the particle diameters of the first boron nitride aggregated particles and the second boron nitride aggregated particles were measured using a “laser diffraction particle size distribution measuring apparatus” manufactured by Horiba, Ltd. By sampling the particle diameters of the first boron nitride aggregate particles and the second boron nitride aggregate particles for each 3 g of the boron nitride aggregate particles, and averaging the particle diameters of the boron nitride aggregate particles contained therein Calculated.
  • the particle diameter (d50) of the boron nitride aggregated particles when the cumulative volume is 50% is the average particle size. The diameter.
  • Method for measuring aspect ratio of primary particles (first boron nitride and second boron nitride) constituting first boron nitride aggregated particles and second boron nitride aggregated particles Cross section of a laminate prepared by mixing primary particles (first boron nitride and second boron nitride) constituting the first boron nitride aggregated particles and second boron nitride aggregated particles with a thermosetting resin or the like From the electron microscope images, the major and minor diameters of primary particles (each boron nitride) constituting 50 arbitrarily selected boron nitride aggregated particles were measured, and the average value was calculated.
  • Measurement method of average major axis of primary particles constituting first boron nitride aggregated particles and second boron nitride aggregated particles:
  • primary particles first boron nitride and second boron nitride
  • second boron nitride aggregated particles with a thermosetting resin or the like
  • The difference between the maximum value and the minimum value of the dielectric breakdown strength is less than 20 kV / mm.
  • The difference between the maximum value and the minimum value of the dielectric breakdown strength is 20 kV / mm or more and less than 40 kV / mm.
  • the difference between the maximum value and the minimum value is 40 kV / mm or more
  • Adhesiveness (peel strength) The obtained curable sheet (insulating layer 350 ⁇ m) was heated at 200 ° C. for 1 hour while being pressed between an electrolytic copper foil (thickness 35 ⁇ m) and an aluminum plate (thickness 1 mm) at a pressure of 10 MPa to prepare a measurement sample. Obtained. Then, the measurement sample was cut out into 5 cm x 12 cm, only the center 1 cm x 12 cm of the short side was left, and the copper foil of the remaining part was peeled off. The peel strength between the center 1 cm electrolytic copper foil and the cured insulating layer was measured by a 90 ° peel test. Adhesiveness (peel strength) was determined according to the following criteria.
  • Peel strength is 5 N / cm or more
  • peel strength is 2 N / cm or more and less than 5 N / cm
  • Peel strength is less than 2 N / cm

Abstract

絶縁性を効果的に高めることができ、絶縁破壊強度のばらつきを効果的に抑制することができ、さらに、接着性を効果的に高めることができる樹脂材料を提供する。 本発明に係る樹脂材料は、第1の窒化ホウ素凝集粒子と、第2の窒化ホウ素凝集粒子と、バインダー樹脂とを含み、前記第1の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm未満であり、前記第2の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm以上であり、前記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、7以下である。

Description

樹脂材料及び積層体
 本発明は、窒化ホウ素凝集粒子とバインダー樹脂とを含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた積層体に関する。
 近年、電子及び電気機器の小型化及び高性能化が進行しており、電子部品の実装密度が高くなっている。このため、狭いスペースの中で電子部品から発生する熱を、如何に放熱するかが問題となっている。電子部品から発生した熱は、電子及び電気機器の信頼性に直結するので、発生した熱の効率的な放散が緊急の課題となっている。
 上記の課題を解決する一つの手段としては、パワー半導体デバイス等を実装する放熱基板に、高い熱伝導性を有するセラミックス基板を用いる手段が挙げられる。このようなセラミックス基板としては、アルミナ基板及び窒化アルミニウム基板等が挙げられる。
 しかしながら、上記セラミックス基板を用いる手段では、多層化が困難であり、加工性が悪く、コストが非常に高いという課題がある。さらに、上記セラミックス基板と銅回路との線膨張係数の差が大きいので、冷熱サイクル時に銅回路が剥がれやすいという課題もある。
 そこで、線膨張係数が低い窒化ホウ素、特に六方晶窒化ホウ素を用いた樹脂組成物が、放熱材料として注目されている。六方晶窒化ホウ素の結晶構造は、グラファイトに類似した六角網目の層状構造であり、六方晶窒化ホウ素の粒子形状は、鱗片状である。このため、六方晶窒化ホウ素は、面方向の熱伝導率が厚さ方向の熱伝導率よりも高く、かつ熱伝導率に異方性がある性質を有することが知られている。
 六方晶窒化ホウ素の熱伝導率の異方性を低減し、厚さ方向の熱伝導率を向上させる方法として、六方晶窒化ホウ素の一次粒子を凝集させた二次凝集粒子(窒化ホウ素凝集粒子)を用いることが提案されている。下記の特許文献1~3には、窒化ホウ素凝集粒子を用いた樹脂組成物が開示されている。
 下記の特許文献1には、熱硬化性樹脂中に、無機充填材を含有する熱硬化性樹脂組成物が開示されている。上記無機充填材は、平均長径が8μm以下の窒化ホウ素の一次粒子から構成される二次凝集体(A)と、平均長径が8μmを超え、20μm以下の窒化ホウ素の一次粒子から構成される二次凝集体(B)とを40:60~98:2の体積比で含む。上記無機充填材の含有量は、40体積%以上、80体積%以下である。
 下記の特許文献2には、異なる圧縮破壊強度をもつ2種のフィラー(ただし、上記2種のフィラーは同一物質である場合は除く)と、硬化性樹脂(C)とを含む硬化性放熱組成物が開示されている。上記2種のフィラーの圧縮破壊強度比(圧縮破壊強度が大きいフィラー(A)の圧縮破壊強度/圧縮破壊強度が小さいフィラー(B)の圧縮破壊強度)は、5以上、1500以下である。上記フィラー(B)は、六方晶窒化ホウ素凝集粒である。
 下記の特許文献3には、熱硬化性樹脂及び無機充填剤を含む熱硬化性樹脂組成物が開示されている。上記無機充填剤は、10以上、20以下のアスペクト比を有する窒化ホウ素の一次粒子から形成される二次粒子(A)と、2以上、9以下のアスペクト比を有する窒化ホウ素の一次粒子から形成される二次粒子(B)とを含む。
特開2011-6586号公報 WO2013/145961A1 WO2014/199650A1
 特許文献1~3に記載のような従来の窒化ホウ素凝集粒子を用いた硬化性組成物では、窒化ホウ素凝集粒子の熱伝導率の等方性を維持するために、シート成形等のプレス時に、プレスによって窒化ホウ素凝集粒子を崩壊等させない必要がある。このため、窒化ホウ素凝集粒子間に空隙が残存することがある。結果として、厚さ方向の熱伝導性を向上させることができるものの、絶縁性が低下することがある。従来の窒化ホウ素凝集粒子では、絶縁性を高めるには限界がある。
 また、従来の窒化ホウ素凝集粒子を用いた硬化性組成物では、窒化ホウ素凝集粒子間の空隙を完全に無くすことは困難であり、絶縁破壊強度にばらつきが生じることがある。
 また、従来の窒化ホウ素凝集粒子を用いた硬化性組成物では、窒化ホウ素凝集粒子を構成する窒化ホウ素の官能基が比較的多く存在する端面の面積が小さいことがある。結果として、窒化ホウ素凝集粒子と硬化性化合物との接着性が低下したり、硬化性組成物と被着体との接着性が低下したりすることがある。
 本発明の目的は、絶縁性を効果的に高めることができ、絶縁破壊強度のばらつきを効果的に抑制することができ、さらに、接着性を効果的に高めることができる樹脂材料及び該樹脂材料を用いた積層体を提供することである。
 本発明の広い局面によれば、第1の窒化ホウ素凝集粒子と、第2の窒化ホウ素凝集粒子と、バインダー樹脂とを含み、前記第1の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm未満であり、前記第2の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm以上であり、前記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、7以下である、樹脂材料が提供される。
 本発明に係る樹脂材料のある特定の局面では、前記第1の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、3以上、17以下である。
 本発明に係る樹脂材料のある特定の局面では、前記第1の窒化ホウ素凝集粒子の粒子径が、40μmを超え、前記第1の窒化ホウ素凝集粒子を構成する一次粒子の平均長径が、2μm以上、20μm未満であり、前記第2の窒化ホウ素凝集粒子を構成する一次粒子の平均長径が、8μm以下である。
 本発明に係る樹脂材料のある特定の局面では、樹脂材料100体積%中、前記第1の窒化ホウ素凝集粒子と前記第2の窒化ホウ素凝集粒子との合計の含有量が、20体積%以上、80体積%以下である。
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料が、樹脂シートである。
 本発明の広い局面によれば、熱伝導体と、前記熱伝導体の一方の表面に積層された絶縁層と、前記絶縁層の前記熱伝導体とは反対側の表面に積層された導電層とを備え、前記絶縁層の材料が、上述した樹脂材料である、積層体が提供される。
 本発明に係る樹脂材料は、第1の窒化ホウ素凝集粒子と、第2の窒化ホウ素凝集粒子と、バインダー樹脂とを含む。本発明に係る樹脂材料では、上記第1の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm未満である。本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm以上である。本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、7以下である。本発明に係る樹脂材料では、上記の構成が備えられているので、絶縁性を効果的に高めることができ、絶縁破壊強度のばらつきを効果的に抑制することができ、さらに、接着性を効果的に高めることができる。
図1は、本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。 図2は、本発明の一実施形態に係る樹脂材料を用いて得られる積層体を模式的に示す断面図である。 図3は、本発明における細孔容積差と細孔径の関係の一例を示す図である。 図4(a)及び(b)は、本発明における第1の窒化ホウ素凝集粒子と第2の窒化ホウ素凝集粒子との差異の一例を示す図である。
 以下、本発明を詳細に説明する。
 (樹脂材料)
 本発明に係る樹脂材料は、第1の窒化ホウ素凝集粒子と、第2の窒化ホウ素凝集粒子と、バインダー樹脂とを含む。
 本発明に係る樹脂材料では、上記第1の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径は、2μm未満である。
 本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径は、2μm以上である。
 本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比は、7以下である。
 本発明に係る樹脂材料では、上記の構成が備えられているので、絶縁性を効果的に高めることができ、絶縁破壊強度のばらつきを効果的に抑制することができ、さらに、接着性を効果的に高めることができる。
 本発明に係る樹脂材料では、上記第1の窒化ホウ素凝集粒子の細孔径は上記第2の窒化ホウ素凝集粒子の細孔径と比較すると相対的に小さいために、上記第1の窒化ホウ素凝集粒子はバインダー樹脂で満たされやすい。プレス等の圧縮の力が付与された場合でも、上記第1の窒化ホウ素凝集粒子は、その形態を保持することができる。また、本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子の細孔径が比較的大きいために、上記第2の窒化ホウ素凝集粒子はバインダー樹脂で満たされ難く、上記第2の窒化ホウ素凝集粒子を構成する一次粒子の表面にはバインダー樹脂が付着していても、細孔内部には空隙が残りやすい。上記第2の窒化ホウ素凝集粒子に対して、プレス等の圧縮の力が付与された場合には、上記第2の窒化ホウ素凝集粒子は、その形態が保持されずに、適度に変形又は崩壊する。このため、適度に変形又は崩壊した上記第2の窒化ホウ素凝集粒子によって、形態が保持されている上記第1の窒化ホウ素凝集粒子間に存在する空隙を埋めることができ、また、上記第2の窒化ホウ素凝集粒子内の空隙は、上記第2の窒化ホウ素凝集粒子が変形することで埋めることができるので、絶縁性を効果的に高めることができる。また、上記第2の窒化ホウ素凝集粒子の一次粒子の表面にバインダー樹脂が付着していることで、変形後の上記第2の窒化ホウ素凝集粒子の一次粒子間をバインダー樹脂により埋めることができ、絶縁性を効果的に高めることができる。
 また、上記第1の窒化ホウ素凝集粒子をバインダー樹脂で満たせるのは、本発明に係る樹脂材料では、少なくとも2種の窒化ホウ素凝集粒子を用いており、上記第1の窒化ホウ素凝集粒子の実濃度が、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の合計の濃度から下がることも要因として挙げられる。
 例えば、上記第1の窒化ホウ素凝集粒子のみを含む樹脂材料を用いて、シート成形等によりプレスを行うと、プレスによって上記第1の窒化ホウ素凝集粒子は、凝集粒子間の空隙が解消できず、絶縁性が低下する。一方、空隙を解消するほどプレスを行った場合には、上記第1の窒化ホウ素凝集粒子でも、その形態を維持することができず、厚さ方向の熱伝導性が低下する。また、上記第2の窒化ホウ素凝集粒子のみを含む樹脂材料を用いて、シート成形等によりプレスを行うと、上記第2の窒化ホウ素凝集粒子は、プレスによって凝集粒子が変形又は崩壊しやすいため、面方向に配向してしまい、厚さ方向の熱伝導性が低下する場合がある。
 本発明に係る樹脂材料は、細孔径が異なる2種類の窒化ホウ素凝集粒子を用いており、細孔径が比較的小さい第1の窒化ホウ素凝集粒子は一次粒子の相互の距離が近く、絡まり合っている場合もある。そのため、プレス等の圧縮の力が付与されても、多数の一次粒子の移動が必要となるため、第1の窒化ホウ素凝集粒子の変形又は崩壊が起こり難い。その結果、プレス後もその形状を維持しやすい。さらに、第1の窒化ホウ素凝集粒子はバインダー樹脂で満たされやすいので、その形状をより一層維持しやすい(図4(a)参照)。細孔径が比較的大きい第2の窒化ホウ素凝集粒子は凝集粒子内における一次粒子の接点が少ない。そのため、一次粒子が相互に関与し難く、細孔径が大きいので、変形又は崩壊しやすい(図4(b)参照)。プレス等によって圧縮の力が付与されると、第1の窒化ホウ素凝集粒子の周囲で第2の窒化ホウ素凝集粒子が適度に変形又は崩壊する。また、圧縮後の第2の窒化ホウ素凝集粒子は、第1の窒化ホウ素凝集粒子間の空隙を埋めることができ、絶縁性を効果的に高めることができる。
 また、本発明に係る樹脂材料では、第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が比較的小さいので、第2の窒化ホウ素凝集粒子は変形又は崩壊しやすい。そのため、圧縮後の第2の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子は、第1の窒化ホウ素凝集粒子間に存在する空隙を隙間無く埋めることができる。空隙が生じることにより、部分放電(内部放電)が発生して、絶縁破壊強度が低下することがある。本発明に係る樹脂材料では、上記の構成が備えられているので、部分放電(内部放電)の発生を抑制することができ、絶縁破壊強度のばらつきを効果的に抑制することができる。また、本発明に係る樹脂材料では、第1の窒化ホウ素凝集粒子間に存在する空隙を隙間無く埋めることができるので、長期絶縁信頼性を効果的に高めることができる。
 また、本発明に係る樹脂材料では、第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が比較的小さいので、第2の窒化ホウ素凝集粒子を構成する一次粒子の端面の面積が大きい。上記端面には、水酸基及びアミノ基等の官能基が存在しており、第2の窒化ホウ素凝集粒子では、水酸基及びアミノ基等の官能基量を増加させることができる。また、第2の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子では、上記官能基を介してバインダー樹脂及び被着体等と結合等させることができる。結果として、窒化ホウ素凝集粒子とバインダー樹脂との接着性、及び窒化ホウ素凝集粒子と被着体との接着性を効果的に高めることができる。
 このような効果を得るために、特定の細孔径及び特定のアスペクト比の関係を満足する第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を用いることは、大きく寄与する。
 本発明に係る樹脂材料では、上記第1の窒化ホウ素凝集粒子の硬さは、上記第2の窒化ホウ素凝集粒子の硬さよりも相対的に高いことが好ましい。上記第2の窒化ホウ素凝集粒子の硬さは、上記第1の窒化ホウ素凝集粒子の硬さよりも相対的に低いことが好ましい。従って、記第1の窒化ホウ素凝集粒子の20%圧縮時の圧縮強度は、上記第2の窒化ホウ素凝集粒子の20%圧縮時の圧縮強度よりも大きいことが好ましく、本発明では、この20%圧縮時の圧縮強度の関係を満足することが容易である。このため、プレス等によって圧縮の力が付与された場合において、圧縮初期では、上記第1の窒化ホウ素凝集粒子は過度に変形又は崩壊しないことが好ましく、上記第2の窒化ホウ素凝集粒子は適度に変形又は崩壊することが好ましい。
 (第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子)
 上記第1の窒化ホウ素凝集粒子の上記累積50%細孔径は、2μm未満である。絶縁性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子の上記累積50%細孔径は、好ましくは1.5μm以下、より好ましくは1μm以下である。上記第1の窒化ホウ素凝集粒子の上記累積50%細孔径の下限は特に限定されない。上記第1の窒化ホウ素凝集粒子の上記累積50%細孔径は、0.1μm以上であってもよい。
 上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径は、2μm以上である。絶縁性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径は、好ましくは2.5μm以上、より好ましくは3μm以上である。上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径の上限は特に限定されない。上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径は、4.5μm以下であってもよい。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の体積基準での細孔径分布は、以下のようにして測定できる。
 QUANTACHROME社製の水銀ポロシメーター「ポアーマスター60」を用い、水銀圧入法により印加した圧力に対して水銀の積算浸入量を測定する。得られたデータから、細孔径の単位区間あたりの細孔容積を示す分布曲線が得られる。
 上記細孔径分布の測定結果から、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径を算出することができる。具体的には、窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、最小の細孔径における細孔容積から順に積算した細孔容積の積算値が、細孔径が0μmを超え、5μm以下である細孔の細孔容積の合計の50%となるときの細孔径を、累積50%細孔径とする。また、細孔容積差と細孔径の関係において(図3参照)、本発明で用いた窒化ホウ素凝集粒子においては、5μm付近で細孔容積は一度0に近づくので、5μm以下の細孔径が凝集粒子内部の細孔を示していると考えられる。そのため、0μmを超え、5μm以下である細孔径を有する細孔の細孔容積の合計を、上記累積50%細孔径を算出する基準としている。また、4μmから5μmの範囲においては、一部凝集粒子間の細孔も入り得るが、細孔容積としては誤差の範囲であること、また、凝集粒子内の細孔を一義的に定義するということから、0μmを超え、5μm以下である細孔径を有する細孔の細孔容積の合計を凝集粒子の細孔容積(空隙体積)とする。一方、5μmを超える細孔径については、凝集粒子間の細孔を示していると考えられる。これは、凝集粒子の断面データとも矛盾がない。図3は模式図であり、一例を示した図である。また、水銀の浸入のない閉細孔も存在すると考えられるが、それは少量であり、閉細孔を考慮しない定義付けによっても、本発明の効果は十分に奏される。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径は、上記細孔径分布の測定結果で得た累積50%細孔径の、5回以上の測定結果を平均して、算出することが好ましい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子の粒子径は、好ましくは40μmを超え、より好ましくは50μmを超え、好ましくは120μm以下、より好ましくは100μm以下である。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子の粒子径は、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは70μm以下、より好ましくは50μm以下である。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の粒子径は、体積基準での粒子径を平均した平均粒子径であることが好ましい。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の粒子径は、堀場製作所社製「レーザー回折式粒度分布測定装置」を用いて測定することができる。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の粒子径は、3gの各窒化ホウ素凝集粒子のサンプリングを行い、その中に含まれる各窒化ホウ素凝集粒子の粒子径を平均し、算出することが好ましい。平均粒子径の算出方法については、第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子のそれぞれにおいて、累積体積が50%であるときの窒化ホウ素凝集粒子の粒子径(d50)を平均粒子径として採用することが好ましい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子のアスペクト比は、好ましくは3以下、より好ましくは2以下である。上記第1の窒化ホウ素凝集粒子のアスペクト比の下限は特に限定されない。上記第1の窒化ホウ素凝集粒子のアスペクト比は、1以上であってもよい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子のアスペクト比は、好ましくは3以下、より好ましくは2以下である。上記第2の窒化ホウ素凝集粒子のアスペクト比の下限は特に限定されない。上記第2の窒化ホウ素凝集粒子のアスペクト比は、1以上であってもよい。
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子のアスペクト比は、長径/短径を示す。第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子のアスペクト比は、複数の各窒化ホウ素凝集粒子のアスペクト比を平均した平均アスペクト比であることが好ましい。第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の平均アスペクト比は、任意に選択された50個の各窒化ホウ素凝集粒子を電子顕微鏡又は光学顕微鏡にて観察し、各窒化ホウ素凝集粒子の長径/短径の平均値を算出することにより求められる。
 熱伝導性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子の熱伝導率は、好ましくは5W/m・K以上、より好ましくは10W/m・K以上である。上記第1の窒化ホウ素凝集粒子の熱伝導率の上限は特に限定されない。上記第1の窒化ホウ素凝集粒子の熱伝導率は、1000W/m・K以下であってもよい。
 熱伝導性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子の熱伝導率は、好ましくは5W/m・K以上、より好ましくは10W/m・K以上である。上記第2の窒化ホウ素凝集粒子の熱伝導率の上限は特に限定されない。上記第2の窒化ホウ素凝集粒子の熱伝導率は、1000W/m・K以下であってもよい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、樹脂材料100体積%中、上記第1の窒化ホウ素凝集粒子と上記第2の窒化ホウ素凝集粒子との合計の含有量は、好ましくは20体積%以上、より好ましくは45体積%以上であり、好ましくは80体積%以下、より好ましくは70体積%以下である。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の製造方法としては特に限定されず、噴霧乾燥方法及び流動層造粒方法等が挙げられる。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の製造方法は、噴霧乾燥(スプレードライとも呼ばれる)方法であることが好ましい。噴霧乾燥方法は、スプレー方式によって、二流体ノズル方式、ディスク方式(ロータリ方式とも呼ばれる)、及び超音波ノズル方式等に分類でき、これらのどの方式でも適用できる。全細孔容積をより一層容易に制御できる観点から、超音波ノズル方式が好ましい。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子は、窒化ホウ素の一次粒子を材料として製造されることが好ましい。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の材料となる窒化ホウ素は特に限定されない。該材料となる窒化ホウ素としては、六方晶窒化ホウ素、立方晶窒化ホウ素、ホウ素化合物とアンモニアとの還元窒化法により作製された窒化ホウ素、ホウ素化合物とメラミン等の含窒素化合物とから作製された窒化ホウ素、及び、ホウ水素ナトリウムと塩化アンモニウムとから作製された窒化ホウ素等が挙げられる。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の熱伝導性をより一層効果的に高める観点からは、窒化ホウ素凝集粒子の材料となる窒化ホウ素は、六方晶窒化ホウ素であることが好ましい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子は、一次粒子である第1の窒化ホウ素の凝集物であることが好ましく、上記第2の窒化ホウ素凝集粒子は、一次粒子である第2の窒化ホウ素の凝集物であることが好ましい。上記第1の窒化ホウ素凝集粒子は、一次粒子である上記第1の窒化ホウ素を凝集させた二次粒子であることが好ましく、上記第2の窒化ホウ素凝集粒子は、一次粒子である上記第2の窒化ホウ素を凝集させた二次粒子であることが好ましい。
 また、窒化ホウ素凝集粒子の製造方法としては、必ずしも造粒工程は必要ではない。窒化ホウ素の結晶の成長に伴い、窒化ホウ素の一次粒子が自然に集結することで形成された窒化ホウ素凝集粒子であってもよい。また、窒化ホウ素凝集粒子の粒子径をそろえるために、粉砕した窒化ホウ素凝集粒子であってもよい。
 絶縁性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子は、上記累積50%細孔径が上述した範囲であり、かつ、粒子径の異なる2種類以上の凝集粒子から構成されていてもよい。絶縁性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子は、上記累積50%細孔径が上述した範囲であり、凝集粒子を構成する一次粒子のアスペクト比が後述した範囲であり、かつ、粒子径の異なる2種類以上の凝集粒子から構成されていてもよい。
 絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記樹脂材料は、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の他に、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子ではない第3の無機粒子を含んでいてもよい。絶縁性をより一層効果的に高める観点、及び熱伝導性をより一層効果的に高める観点からは、上記樹脂材料は、上記第3の無機粒子を含むことが好ましい。
 上記第3の無機粒子は、凝集粒子であることが好ましい。上記第3の無機粒子は、窒化ホウ素の一次粒子を凝集させた二次粒子であることが好ましい。
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素):
 上記第1の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素)の平均長径は、好ましくは2μm以上、より好ましくは3μm以上であり、好ましくは20μm未満、より好ましくは16μm以下である。上記第1の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素)の平均長径が、上記下限以上及び上記上限以下であると、絶縁性をより一層効果的に高めることができ、絶縁破壊強度のばらつきをより一層効果的に抑制することができ、接着性をより一層効果的に高めることができる。
 上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第2の窒化ホウ素)の平均長径は、好ましくは3μm以上、より好ましくは4μm以上であり、好ましくは8μm以下、より好ましくは7.5μm以下である。上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第2の窒化ホウ素)の平均長径が、上記下限以上及び上記上限以下であると、絶縁性をより一層効果的に高めることができ、絶縁破壊強度のばらつきをより一層効果的に抑制することができ、接着性をより一層効果的に高めることができる。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)の平均長径は、以下のようにして算出することができる。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)と熱硬化性樹脂等とを混合して作製したシート又はプレスして作製した積層体の断面を電子顕微鏡により観察する。得られた電子顕微鏡画像から、任意に選択された50個の各窒化ホウ素凝集粒子を構成する一次粒子(各窒化ホウ素)の長径を測定し、平均値を算出する。
 絶縁性をより一層効果的に高める観点、絶縁破壊強度のばらつきをより一層効果的に抑制する観点、及び接着性をより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素)のアスペクト比は、好ましくは3以上、より好ましくは5以上であり、好ましくは17以下、より好ましくは15以下である。
 本発明に係る樹脂材料では、上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第2の窒化ホウ素)のアスペクト比は、7以下である。絶縁性をより一層効果的に高める観点、絶縁破壊強度のばらつきをより一層効果的に抑制する観点、及び接着性をより一層効果的に高める観点からは、上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第2の窒化ホウ素)のアスペクト比は、好ましくは6.5以下、より好ましくは6.1以下である。上記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比の下限は特に限定されない。上記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比は、2以上であってもよい。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)のアスペクト比は、長径/短径を示す。上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)のアスペクト比は、以下のようにして算出することができる。
 上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)と熱硬化性樹脂等とを混合して作製したシート又はプレスして作製した積層体の断面を電子顕微鏡により観察する。得られた電子顕微鏡画像から、任意に選択された50個の各窒化ホウ素凝集粒子を構成する一次粒子(各窒化ホウ素)の長径/短径を測定し、平均値を算出する。
 絶縁性及び熱伝導性とをより一層効果的に高める観点からは、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子を構成する一次粒子においては、すべての一次粒子がりん片状の粒子である必要はなく、屈曲した形状の粒子を少なくとも1個以上含んでいてもよい。屈曲した形状の粒子については、屈曲部位で2つの粒子に分けて、それぞれの粒子について長径/短径を測定し、長径の長い方の粒子の長径/短径を屈曲した形状の粒子の長径/短径とする。得られた長径/短径の値から、アスペクト比を算出する。
 シート又は積層体の断面の電子顕微鏡画像では、上記第1の窒化ホウ素凝集粒子は、プレス後でも凝集粒子の形態を比較的維持しているので、シート又は積層体の断面の電子顕微鏡画像から確認できる。一方、上記第2の窒化ホウ素凝集粒子は、プレス後も等方性を保ちながら変形又は崩壊しているので、その存在は強く示唆される。仮に、上記第2の窒化ホウ素凝集粒子を事前に解砕することにより得たりん片(上記第2の窒化ホウ素凝集粒子を構成する一次粒子:上記第2の窒化ホウ素)と、上記第1の窒化ホウ素凝集粒子と、熱硬化性樹脂等とを混合してシート又は積層体を作製した場合には、上記りん片は凝集粒子と比較すると相対的に面方向に配向しやすい。このため、凝集粒子を用いた場合と比較すると、上記りん片がプレス後においても等方性を保つことは困難である。結果として、比表面積が大きく形状が比較的維持されやすい上記第1の窒化ホウ素凝集粒子と、空隙率が大きいため崩壊しやすく比表面積の小さい上記第2の窒化ホウ素凝集粒子とが使用されていることは、プレス後であってもシート又は積層体の断面の電子顕微鏡画像から判断することができる。
 (バインダー樹脂)
 本発明に係る樹脂材料は、バインダー樹脂を含む。上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、熱硬化性成分及び光硬化性成分が挙げられる。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記バインダー樹脂は、熱硬化性成分を含むことが好ましい。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基とを示す。「(メタ)アクリル」は、アクリルとメタクリルとを示す。「(メタ)アクリレート」は、アクリレートとメタクリレートとを示す。
 (熱硬化性成分:熱硬化性化合物)
 上記熱硬化性化合物としては、スチレン化合物、フェノキシ化合物、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱硬化性化合物としては、(A1)10000未満の分子量を有する熱硬化性化合物(単に、(A1)熱硬化性化合物と記載することがある)を用いてもよく、(A2)10000以上の分子量を有する熱硬化性化合物(単に、(A2)熱硬化性化合物と記載することがある)を用いてもよく、(A1)熱硬化性化合物と、(A2)熱硬化性化合物との双方を用いてもよい。
 樹脂材料100体積%中、上記熱硬化性化合物の含有量は、好ましくは10体積%以上、より好ましくは20体積%以上であり、好ましくは90体積%以下、より好ましくは80体積%以下である。上記熱硬化性化合物の含有量が、上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。上記熱硬化性化合物の含有量が、上記上限以下であると、樹脂材料の塗工性がより一層高くなる。
 (A1)10000未満の分子量を有する熱硬化性化合物:
 (A1)熱硬化性化合物としては、環状エーテル基を有する熱硬化性化合物が挙げられる。上記環状エーテル基としては、エポキシ基及びオキセタニル基等が挙げられる。上記環状エーテル基を有する熱硬化性化合物は、エポキシ基又はオキセタニル基を有する熱硬化性化合物であることが好ましい。(A1)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (A1)熱硬化性化合物は、(A1a)エポキシ基を有する熱硬化性化合物(単に、(A1a)熱硬化性化合物と記載することがある)を含んでいてもよく、(A1b)オキセタニル基を有する熱硬化性化合物(単に、(A1b)熱硬化性化合物と記載することがある)を含んでいてもよい。
 硬化物の耐熱性及び耐湿性をより一層効果的に高める観点からは、(A1)熱硬化性化合物は芳香族骨格を有することが好ましい。
 上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。硬化物の耐冷熱サイクル特性及び耐熱性をより一層効果的に高める観点からは、上記芳香族骨格は、ビフェニル骨格又はフルオレン骨格が好ましい。
 (A1a)熱硬化性化合物としては、ビスフェノール骨格を有するエポキシモノマー、ジシクロペンタジエン骨格を有するエポキシモノマー、ナフタレン骨格を有するエポキシモノマー、アダマンタン骨格を有するエポキシモノマー、フルオレン骨格を有するエポキシモノマー、ビフェニル骨格を有するエポキシモノマー、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマー、キサンテン骨格を有するエポキシモノマー、アントラセン骨格を有するエポキシモノマー、及びピレン骨格を有するエポキシモノマー等が挙げられる。これらの水素添加物又は変性物を用いてもよい。(A1a)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビスフェノール骨格を有するエポキシモノマーとしては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。
 上記ジシクロペンタジエン骨格を有するエポキシモノマーとしては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。
 上記ナフタレン骨格を有するエポキシモノマーとしては、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン等が挙げられる。
 上記アダマンタン骨格を有するエポキシモノマーとしては、1,3-ビス(4-グリシジルオキシフェニル)アダマンタン、及び2,2-ビス(4-グリシジルオキシフェニル)アダマンタン等が挙げられる。
 上記フルオレン骨格を有するエポキシモノマーとしては、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジクロロフェニル)フルオレン、及び9,9-ビス(4-グリシジルオキシ-3,5-ジブロモフェニル)フルオレン等が挙げられる。
 上記ビフェニル骨格を有するエポキシモノマーとしては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等が挙げられる。
 上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマーとしては、1,1’-バイ(2,7-グリシジルオキシナフチル)メタン、1,8’-バイ(2,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,7-グリシジルオキシナフチル)メタン、1,8’-バイ(3,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,5-グリシジルオキシナフチル)メタン、1,8’-バイ(3,5-グリシジルオキシナフチル)メタン、1,2’-バイ(2,7-グリシジルオキシナフチル)メタン、1,2’-バイ(3,7-グリシジルオキシナフチル)メタン、及び1,2’-バイ(3,5-グリシジルオキシナフチル)メタン等が挙げられる。
 上記キサンテン骨格を有するエポキシモノマーとしては、1,3,4,5,6,8-ヘキサメチル-2,7-ビス-オキシラニルメトキシ-9-フェニル-9H-キサンテン等が挙げられる。
 (A1b)熱硬化性化合物の具体例としては、例えば、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸ビス[(3-エチル-3-オキセタニル)メチル]エステル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、及びオキセタン変性フェノールノボラック等が挙げられる。(A1b)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化物の耐熱性をより一層良好にする観点からは、(A1)熱硬化性化合物は、環状エーテル基を2個以上有する熱硬化性化合物を含むことが好ましい。
 硬化物の耐熱性をより一層良好にする観点からは、(A1)熱硬化性化合物100重量%中、環状エーテル基を2個以上有する熱硬化性化合物の含有量は、好ましくは70重量%以上、より好ましくは80重量%以上であり、好ましくは100重量%以下である。(A1)熱硬化性化合物100重量%中、環状エーテル基を2個以上有する熱硬化性化合物の含有量は、10重量%以上、100重量%以下であってもよい。また、(A1)熱硬化性化合物の全体が、環状エーテル基を2個以上有する熱硬化性化合物であってもよい。
 (A1)熱硬化性化合物の分子量は、10000未満である。(A1)熱硬化性化合物の分子量は、好ましくは200以上であり、好ましくは1200以下、より好ましくは600以下、さらに好ましくは550以下である。(A1)熱硬化性化合物の分子量が上記下限以上であると、硬化物の表面の粘着性が低くなり、樹脂材料の取扱性がより一層高くなる。(A1)熱硬化性化合物の分子量が上記上限以下であると、硬化物の接着性がより一層高くなる。さらに、硬化物が固くかつ脆くなり難く、硬化物の接着性がより一層高くなる。
 なお、本明細書において、(A1)熱硬化性化合物における分子量とは、(A1)熱硬化性化合物が重合体ではない場合、及び(A1)熱硬化性化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味し、(A1)熱硬化性化合物が重合体である場合は、重量平均分子量を意味する。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算での重量平均分子量である。ゲルパーミエーションクロマトグラフィー(GPC)測定では、溶離液として、テトラヒドロフランを用いることが好ましい。
 樹脂材料100体積%中、(A1)熱硬化性化合物の含有量は、好ましくは10体積%以上、より好ましくは20体積%以上であり、好ましくは90体積%以下、より好ましくは80体積%以下である。(A1)熱硬化性化合物の含有量が、上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。(A1)熱硬化性化合物の含有量が、上記上限以下であると、樹脂材料の塗工性がより一層高くなる。
 (A2)10000以上の分子量を有する熱硬化性化合物:
 (A2)熱硬化性化合物は、分子量が10000以上である熱硬化性化合物である。(A2)熱硬化性化合物の分子量は10000以上であるので、(A2)熱硬化性化合物は一般にポリマーであり、上記分子量は、一般に重量平均分子量を意味する。
 硬化物の耐熱性及び耐湿性をより一層効果的に高める観点からは、(A2)熱硬化性化合物は、芳香族骨格を有することが好ましい。(A2)熱硬化性化合物がポリマーであり、(A2)熱硬化性化合物が芳香族骨格を有する場合には、(A2)熱硬化性化合物は、芳香族骨格をポリマー全体のいずれかの部分に有していればよく、主鎖骨格内に有していてもよく、側鎖中に有していてもよい。硬化物の耐熱性をより一層高くし、かつ硬化物の耐湿性をより一層高くする観点からは、(A2)熱硬化性化合物は、芳香族骨格を主鎖骨格内に有することが好ましい。(A2)熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。硬化物の耐冷熱サイクル特性及び耐熱性をより一層効果的に高める観点からは、上記芳香族骨格は、ビフェニル骨格又はフルオレン骨格が好ましい。
 (A2)熱硬化性化合物としては特に限定されず、スチレン樹脂、フェノキシ樹脂、オキセタン樹脂、エポキシ樹脂、エピスルフィド化合物、(メタ)アクリル樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂及びポリイミド樹脂等が挙げられる。
 硬化物の酸化劣化を抑え、硬化物の耐冷熱サイクル特性及び耐熱性をより一層高め、さらに硬化物の吸水率をより一層低くする観点からは、(A2)熱硬化性化合物は、スチレン樹脂、フェノキシ樹脂又はエポキシ樹脂であることが好ましく、フェノキシ樹脂又はエポキシ樹脂であることがより好ましく、フェノキシ樹脂であることがさらに好ましい。特に、フェノキシ樹脂又はエポキシ樹脂の使用により、硬化物の耐熱性がより一層高くなる。また、フェノキシ樹脂の使用により、硬化物の弾性率がより一層低くなり、かつ硬化物の耐冷熱サイクル特性がより一層高くなる。なお、(A2)熱硬化性化合物は、エポキシ基等の環状エーテル基を有していなくてもよい。
 上記スチレン樹脂として、具体的には、スチレン系モノマーの単独重合体、及びスチレン系モノマーとアクリル系モノマーとの共重合体等が使用可能である。スチレン-メタクリル酸グリシジルの構造を有するスチレン重合体が好ましい。
 上記スチレン系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、2,4-ジメチルスチレン及び3,4-ジクロロスチレン等が挙げられる。
 上記フェノキシ樹脂は、具体的には、例えばエピハロヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。
 上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格又はジシクロペンタジエン骨格を有することが好ましい。上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格又はビフェニル骨格を有することがより好ましく、フルオレン骨格及びビフェニル骨格の内の少なくとも1種の骨格を有することがさらに好ましい。これらの好ましい骨格を有するフェノキシ樹脂の使用により、硬化物の耐熱性がさらに一層高くなる。
 上記エポキシ樹脂は、上記フェノキシ樹脂以外のエポキシ樹脂である。上記エポキシ樹脂としては、スチレン骨格含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
 (A2)熱硬化性化合物の分子量は10000以上である。(A2)熱硬化性化合物の分子量は、好ましくは30000以上、より好ましくは40000以上であり、好ましくは1000000以下、より好ましくは250000以下である。(A2)熱硬化性化合物の分子量が上記下限以上であると、硬化物が熱劣化し難い。(A2)熱硬化性化合物の分子量が上記上限以下であると、(A2)熱硬化性化合物と他の成分との相溶性が高くなる。この結果、硬化物の耐熱性がより一層高くなる。
 樹脂材料100体積%中、(A2)熱硬化性化合物の含有量は、好ましくは20体積%以上、より好ましくは30体積%以上であり、好ましくは60体積%以下、より好ましくは50体積%以下である。(A2)熱硬化性化合物の含有量が、上記下限以上であると、樹脂材料の取扱性がより一層良好になる。(A2)熱硬化性化合物の含有量が、上記上限以下であると、樹脂材料の塗工性がより一層高くなる。
 (熱硬化性成分:熱硬化剤)
 上記熱硬化剤は、特に限定されない。上記熱硬化剤として、上記熱硬化性化合物を硬化させることができる熱硬化剤を適宜用いることができる。また、本明細書において、熱硬化剤には、硬化触媒が含まれる。熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化剤は、芳香族骨格又は脂環式骨格を有することが好ましい。上記熱硬化剤は、アミン硬化剤(アミン化合物)、イミダゾール硬化剤、フェノール硬化剤(フェノール化合物)又は酸無水物硬化剤(酸無水物)を含むことが好ましく、アミン硬化剤を含むことがより好ましい。上記酸無水物硬化剤は、芳香族骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むか、又は、脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むことが好ましい。
 上記アミン硬化剤としては、ジシアンジアミド、イミダゾール化合物、ジアミノジフェニルメタン及びジアミノジフェニルスルフォン等が挙げられる。硬化物の接着性をより一層効果的に高める観点からは、上記アミン硬化剤は、ジシアンジアミド又はイミダゾール化合物であることがより一層好ましい。樹脂材料の貯蔵安定性をより一層効果的に高める観点からは、熱硬化剤は、融点が180℃以上である硬化剤を含むことが好ましく、融点が180℃以上であるアミン硬化剤を含むことがより好ましい。
 上記イミダゾール硬化剤としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
 上記フェノール硬化剤としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、及びポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。硬化物の柔軟性及び硬化物の難燃性をより一層効果的に高める観点からは、上記フェノール硬化剤は、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂であることが好ましい。
 上記フェノール硬化剤の市販品としては、MEH-8005、MEH-8010及びMEH-8015(以上いずれも明和化成社製)、YLH903(三菱化学社製)、LA-7052、LA-7054、LA-7751、LA-1356及びLA-3018-50P(以上いずれもDIC社製)、並びにPS6313及びPS6492(以上いずれも群栄化学社製)等が挙げられる。
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’-オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸等が挙げられる。
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA-M及びPEPA(以上いずれもマナック社製)、リカシッドMTA-10、リカシッドMTA-15、リカシッドTMTA、リカシッドTMEG-100、リカシッドTMEG-200、リカシッドTMEG-300、リカシッドTMEG-500、リカシッドTMEG-S、リカシッドTH、リカシッドHT-1A、リカシッドHH、リカシッドMH-700、リカシッドMT-500、リカシッドDSDA及びリカシッドTDA-100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。これらの硬化剤の使用により、硬化物の柔軟性、並びに硬化物の耐湿性及び接着性がより一層高くなる。
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又は該酸無水物の変性物等も挙げられる。
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、リカシッドHNA及びリカシッドHNA-100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれも三菱化学社製)等が挙げられる。
 上記熱硬化剤は、メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸であることも好ましい。メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸の使用により、硬化物の耐水性が高くなる。
 樹脂材料100体積%中、上記熱硬化剤の含有量は、好ましくは0.1体積%以上、より好ましくは1体積%以上であり、好ましくは40体積%以下、より好ましくは25体積%以下である。上記熱硬化剤の含有量が、上記下限以上であると、熱硬化性化合物を十分に硬化させることがより一層容易になる。上記熱硬化剤の含有量が、上記上限以下であると、硬化に関与しない余剰な熱硬化剤が発生し難くなる。このため、硬化物の耐熱性及び接着性がより一層高くなる。
 (光硬化性成分:光硬化性化合物)
 上記光硬化性化合物は、光硬化性を有していれば特に限定されない。上記光硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光硬化性化合物は、エチレン性不飽和結合を2個以上有することが好ましい。
 上記エチレン性不飽和結合を含む基としては、ビニル基、アリル基、(メタ)アクリロイル基等が挙げられる。効果的に反応を進行させ、硬化物の発泡、剥離及び変色をより一層抑制する観点からは、(メタ)アクリロイル基が好ましい。上記光硬化性化合物は、(メタ)アクリロイル基を有することが好ましい。
 硬化物の接着性をより一層効果的に高める観点からは、上記光硬化性化合物は、エポキシ(メタ)アクリレートを含むことが好ましい。硬化物の耐熱性をより一層効果的に高める観点からは、上記エポキシ(メタ)アクリレートは、2官能のエポキシ(メタ)アクリレートと、3官能以上のエポキシ(メタ)アクリレートとを含むことが好ましい。2官能のエポキシ(メタ)アクリレートは、(メタ)アクリロイル基を2個有することが好ましい。3官能以上のエポキシ(メタ)アクリレートは、(メタ)アクリロイル基を3個以上有することが好ましい。
 エポキシ(メタ)アクリレートは、(メタ)アクリル酸とエポキシ化合物とを反応させて得られる。エポキシ(メタ)アクリレートは、エポキシ基を(メタ)アクリロイル基に変換することにより得ることができる。光硬化性化合物は光の照射により硬化させるので、エポキシ(メタ)アクリレートは、エポキシ基を有さないことが好ましい。
 上記エポキシ(メタ)アクリレートとしては、ビスフェノール型エポキシ(メタ)アクリレート(例えば、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールS型エポキシ(メタ)アクリレート)、クレゾールノボラック型エポキシ(メタ)アクリレート、アミン変性ビスフェノール型エポキシ(メタ)アクリレート、カプロラクトン変性ビスフェノール型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。
 樹脂材料100体積%中、上記光硬化性化合物の含有量は、好ましくは5体積%以上、より好ましくは10体積%以上であり、好ましくは40体積%以下、より好ましくは30体積%以下である。これらの光硬化性化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の接着性がより一層高くなる。
 (光硬化性成分:光重合開始剤)
 上記光重合開始剤は、特に限定されない。上記光重合開始剤として、光の照射により上記光硬化性化合物を硬化させることができる光重合開始剤を適宜用いることができる。上記光重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光重合開始剤としては、アシルフォスフィンオキサイド、ハロメチル化トリアジン、ハロメチル化オキサジアゾール、イミダゾール、ベンゾイン、ベンゾインアルキルエーテル、アントラキノン、ベンズアンスロン、ベンゾフェノン、アセトフェノン、チオキサントン、安息香酸エステル、アクリジン、フェナジン、チタノセン、α-アミノアルキルフェノン、オキシム、及びこれらの誘導体が挙げられる。
 ベンゾフェノン系光重合開始剤としては、o-ベンゾイル安息香酸メチル及びミヒラーズケトン等が挙げられる。ベンゾフェノン系光重合開始剤の市販品としては、EAB(保土谷化学工業社製)等が挙げられる。
 アセトフェノン系光重合開始剤の市販品としては、ダロキュア1173、ダロキュア2959、イルガキュア184、イルガキュア907、及びイルガキュア369(以上いずれもBASF社製)等が挙げられる。
 ベンゾイン系光重合開始剤の市販品としては、イルガキュア651(BASF社製)等が挙げられる。
 アシルフォスフィンオキサイド系光重合開始剤の市販品としては、Lucirin TPO、及びイルガキュア819(以上いずれもBASF社製)等が挙げられる。
 チオキサントン系光重合開始剤の市販品としては、イソプロピルチオキサントン、及びジエチルチオキサントン等が挙げられる。
 オキシム系光重合開始剤の市販品としては、イルガキュアOXE-01、及びイルガキュアOXE-02(以上いずれもBASF社製)等が挙げられる。
 上記光硬化性化合物100重量部に対して、上記光重合開始剤の含有量は、好ましくは1重量部以上、より好ましくは3重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下である。光重合開始剤の含有量が上記下限以上及び上記上限以下であると、光硬化性化合物を良好に光硬化させることができる。
 (絶縁性フィラー)
 本発明に係る樹脂材料は、絶縁性フィラーを含んでいてもよい。上記絶縁性フィラーは、上記第1の窒化ホウ素凝集粒子ではなく、上記第2の窒化ホウ素凝集粒子ではない。上記絶縁性フィラーは、絶縁性を有する。上記絶縁性フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。上記絶縁性フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 熱伝導性をより一層効果的に高める観点からは、上記絶縁性フィラーは、無機フィラーであることが好ましい。熱伝導性をより一層効果的に高める観点からは、上記絶縁性フィラーは、10W/m・K以上の熱伝導率を有することが好ましい。
 硬化物の熱伝導性をより一層効果的に高める観点からは、上記絶縁性フィラーの熱伝導率は、好ましくは10W/m・K以上、より好ましくは20W/m・K以上である。上記絶縁性フィラーの熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。
 上記絶縁性フィラーの材質は特に限定されない。絶縁性フィラーの材質としては、窒素化合物(窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化炭素、及び窒化チタン等)、炭素化合物(炭化ケイ素、炭化フッ素、炭化ホウ素、炭化チタン、炭化タングステン、及びダイヤモンド等)、並びに金属酸化物(シリカ、アルミナ、酸化亜鉛、酸化マグネシウム、及び酸化ベリリウム等)等が挙げられる。上記絶縁性フィラーの材質は、上記窒素化合物、上記炭素化合物又は上記金属酸化物であることが好ましく、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることがより好ましい。これらの好ましい絶縁性フィラーの使用により、硬化物の熱伝導性がより一層高くなる。
 上記絶縁性フィラーは、球状粒子、又はアスペクト比が2を超える非凝集粒子及び凝集粒子であることが好ましい。これら絶縁性フィラーの使用により、硬化物の熱伝導性がより一層高くなる。上記球状粒子のアスペクト比は、2以下である。
 上記絶縁性フィラーの材質の新モース硬度は、好ましくは12以下、より好ましくは9以下である。絶縁性フィラーの材質の新モース硬度が9以下であると、硬化物の加工性がより一層高くなる。
 硬化物の加工性をより一層効果的に高める観点からは、上記絶縁性フィラーの材質は、窒化ホウ素、合成マグネサイト、結晶シリカ、酸化亜鉛、又は酸化マグネシウムであることが好ましい。これらの無機フィラーの材質の新モース硬度は9以下である。
 熱伝導性をより一層効果的に高める観点からは、絶縁性フィラーの粒子径は、好ましくは0.1μm以上、好ましくは20μm以下である。上記粒子径が上記下限以上であると、絶縁性フィラーを高密度で容易に充填できる。上記粒子径が上記上限以下であると、硬化物の熱伝導性がより一層高くなる。
 上記粒子径とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径を意味する。上記絶縁性フィラーの粒子径は、3gの絶縁性フィラーのサンプリングを行い、その中に含まれる絶縁性フィラーの粒子径を平均し、算出することが好ましい。絶縁性フィラーの平均粒子径の算出方法については、累積体積が50%であるときの絶縁性フィラーの粒子径(d50)を平均粒子径として採用することが好ましい。
 熱伝導性をより一層効果的に高める観点からは、樹脂材料100体積%中、上記絶縁性フィラーの含有量は、好ましくは1体積%以上、より好ましくは3体積%以上であり、好ましくは20体積%以下、より好ましくは10体積%以下である。
 (他の成分)
 上記樹脂材料は、上述した成分の他に、分散剤、キレート剤、酸化防止剤等の樹脂材料、樹脂シート、及び硬化性シートに一般に用いられる他の成分を含んでいてもよい。
 (樹脂材料及び硬化物の他の詳細)
 上記樹脂材料は、ペーストであってもよく、硬化性ペーストであってもよい。上記樹脂材料は、樹脂シートであってもよく、硬化性シートであってもよい。上記樹脂材料が硬化性成分を含む場合には、上記樹脂材料を硬化させることにより硬化物を得ることができる。上記硬化物は、上記樹脂材料の硬化物であり、上記樹脂材料により形成されている。
 絶縁性及び熱伝導性をより一層効果的に高める観点からは、上記樹脂材料は、2層以上の樹脂シートを積層して、作製したものであってもよい。また、2層以上の樹脂シートのうち、1層以上が、本発明に係る樹脂シートであってもよい。
 (積層体)
 本発明に係る積層体は、熱伝導体と、絶縁層と、導電層とを備える。上記絶縁層は、上記熱伝導体の一方の表面に積層されている。上記導電層は、上記絶縁層の上記熱伝導体側とは反対側の表面に積層されている。上記熱伝導体の他方の表面にも、上記絶縁層が積層されていてもよい。本発明に係る積層体では、上記絶縁層の材料は、上述した樹脂材料である。
 熱伝導体:
 上記熱伝導体の熱伝導率は、好ましくは10W/m・K以上である。上記熱伝導体としては、適宜の熱伝導体を用いることができる。上記熱伝導体は、金属材を用いることが好ましい。上記金属材としては、金属箔及び金属板等が挙げられる。上記熱伝導体は、上記金属箔又は上記金属板であることが好ましく、上記金属板であることがより好ましい。
 上記金属材の材料としては、アルミニウム、銅、金、銀、及びグラファイトシート等が挙げられる。熱伝導性をより一層効果的に高める観点からは、上記金属材の材料は、アルミニウム、銅、又は金であることが好ましく、アルミニウム又は銅であることがより好ましい。
 導電層:
 上記導電層を形成するための金属は特に限定されない。上記金属としては、例えば、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。熱伝導性をより一層効果的に高める観点からは、アルミニウム、銅又は金であることが好ましく、アルミニウム又は銅であることがより好ましい。
 上記導電層を形成する方法は特に限定されない。上記導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、並びに、上記絶縁層と金属箔とを加熱圧着する方法等が挙げられる。導電層の形成が簡便であるので、上記絶縁層と金属箔とを加熱圧着する方法が好ましい。
 図1は、本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。なお、図1では、図示の便宜上、実際の大きさ及び厚みとは異なっている。
 図1に示す樹脂シート1(樹脂材料)は、バインダー樹脂11と、第1の窒化ホウ素凝集粒子12と、第2の窒化ホウ素凝集粒子13とを備える。第1の窒化ホウ素凝集粒子12及び第2の窒化ホウ素凝集粒子13は、上述した第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子であることが好ましい。第1の窒化ホウ素凝集粒子12の細孔径と第2の窒化ホウ素凝集粒子13の細孔径とは異なる。また、第2の窒化ホウ素凝集粒子13を構成する一次粒子のアスペクト比は7以下である。
 本実施形態に係る樹脂シート1では、バインダー樹脂11は、硬化性成分を含む。バインダー樹脂11は、熱硬化性化合物及び熱硬化剤を含む熱硬化性成分を含んでいてもよく、光硬化性化合物及び光重合開始剤を含む光硬化性成分を含んでいてもよい。上記バインダー樹脂は、完全に硬化していないことが好ましい。上記バインダー樹脂は、加熱等によりBステージ化していてもよい。上記バインダー樹脂は、Bステージ化させたBステージ化物であってもよい。
 上記樹脂シートでは、シート内部に空隙が存在することがある。上記樹脂シートでは、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の間に空隙が存在することがある。
 図2は、本発明の一実施形態に係る樹脂材料を用いて得られる積層体を模式的に示す断面図である。なお、図2では、図示の便宜上、実際の大きさ及び厚みとは異なっている。
 図2に示す積層体21は、熱伝導体22と、絶縁層23と、導電層24とを備える。熱伝導体22、絶縁層23、及び導電層24は、上述した熱伝導体、絶縁層、及び導電層である。図2では、絶縁層23として、図1に示す樹脂シート1が用いられている。
 熱伝導体22は、一方の表面22a(第1の表面)と、他方の表面22b(第2の表面)とを有する。絶縁層23は、一方の表面23a(第1の表面)と、他方の表面23b(第2の表面)とを有する。導電層24は、一方の表面24a(第1の表面)と、他方の表面24b(第2の表面)とを有する。
 絶縁層23の一方の表面23a(第1の表面)側に、導電層24が積層されている。絶縁層23の他方の表面23b(第2の表面)側に、熱伝導体22が積層されている。導電層24の他方の表面24b(第2の表面)側に、絶縁層23が積層されている。熱伝導体22の一方の表面22a(第1の表面)側に、絶縁層23が積層されている。熱伝導体22と導電層24との間に絶縁層23が配置されている。
 上記積層体の製造方法は、特に限定されない。上記積層体の製造方法としては、上記熱伝導体と、上記絶縁層と、上記導電層とを積層し、真空プレス等により加熱圧着する方法等が挙げられる。
 本実施形態に係る積層体21では、絶縁層23は、硬化物部14と、第1の窒化ホウ素凝集粒子12と、第2の窒化ホウ素凝集粒子13とを含む。絶縁層23は、図1に示す樹脂シート1により形成されている。上記絶縁層は、上記樹脂シートを真空プレス等により加熱圧着することで形成されることが好ましい。
 本実施形態に係る積層体21では、第1の窒化ホウ素凝集粒子12は、プレス等の圧縮の力により変形又は崩壊していないことが好ましく、形状を維持していることが好ましい。第1の窒化ホウ素凝集粒子12は、硬化物中において、凝集粒子(二次粒子)の形態で存在していることが好ましい。
 本実施形態に係る積層体21では、第2の窒化ホウ素凝集粒子13は、プレス等の圧縮の力により変形又は崩壊していてもよい。第2の窒化ホウ素凝集粒子13は、変形した凝集粒子(二次粒子)であってもよく、凝集粒子(二次粒子)が崩壊することで一次粒子となっていてもよい。第2の窒化ホウ素凝集粒子13は、硬化物中において、変形した凝集粒子(二次粒子)の形態で存在していてもよく、凝集粒子(二次粒子)が崩壊することで一次粒子の形態で存在していてもよい。
 硬化物部14中において、第2の窒化ホウ素凝集粒子13は、第1の窒化ホウ素凝集粒子12の周囲で変形又は崩壊している。変形又は崩壊した第2の窒化ホウ素凝集粒子13は、第1の窒化ホウ素凝集粒子12間に存在している。変形又は崩壊した第2の窒化ホウ素凝集粒子13は、第1の窒化ホウ素凝集粒子12間に存在する空隙を埋めることができ、絶縁性を効果的に高めることができる。また、積層体21は、第2の窒化ホウ素凝集粒子13によって、第1の窒化ホウ素凝集粒子12間の空隙を隙間無く埋めることができるので、絶縁破壊強度のばらつきを効果的に抑制することができる。
 本実施形態において、硬化物部14は、バインダー樹脂11が硬化した部分である。硬化物部14は、バインダー樹脂11を硬化させることにより得られる。硬化物部14は、熱硬化性化合物及び熱硬化剤を含む熱硬化性成分が硬化した部分であってもよく、光硬化性化合物及び光重合開始剤を含む光硬化性成分が硬化した部分であってもよい。硬化物部14は、熱硬化性成分又は光硬化性成分を硬化させることにより得られる。
 上記樹脂材料及び上記硬化物は、熱伝導性及び機械的強度等が高いことが求められる様々な用途に用いることができる。上記積層体は、例えば、電子機器において、発熱部品と放熱部品との間に配置されて用いられる。例えば、上記積層体は、CPUとフィンとの間に設置される放熱体、又は電気自動車のインバーター等で利用されるパワーカードの放熱体として用いられる。また、上記積層体の導電層をエッチング等の手法により回路形成することで、上記積層体を絶縁回路基板として用いることができる。
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。本発明は以下の実施例に限定されない。
 熱硬化性化合物:
 (1)三菱化学社製「エピコート828US」、エポキシ化合物
 (2)明和化成社製「DL-92」、フェノールノボラック化合物
 熱硬化剤:
 (1)東京化成工業社製「ジシアンジアミド」
 (2)四国化成工業社製「2MZA-PW」、イソシアヌル変性固体分散型イミダゾール
 第1の窒化ホウ素凝集粒子(その代替品を含む):
 (1)モメンティブ社製「PTX60S」
 (2)モメンティブ社製「PT350」
 (3)モメンティブ社製「AC6091」
 (4)窒化ホウ素凝集粒子3
 (5)窒化ホウ素凝集粒子4
 第2の窒化ホウ素凝集粒子(その代替品を含む):
 (1)窒化ホウ素凝集粒子1
 (2)窒化ホウ素凝集粒子2
 (3)窒化ホウ素凝集粒子5
 (4)モメンティブ社製「AC6091」
 (5)昭和電工社製「UHP-G1F」
 「窒化ホウ素凝集粒子1」の作製方法:
 平均長径7.2μm、アスペクト比5.3の窒化ホウ素の一次粒子を空隙率が44%、平均粒子径が40μmとなるようにスプレードライ法で凝集させることにより作製した。空隙率は水銀ポロシメーターで測定し、5μm以下の空隙のみを粒子内空隙とした際の空隙率を算出した。
 空隙率は、以下のようにして測定した。
 空隙率の測定方法:
 QUANTACHROME社製の水銀ポロシメーター「ポアーマスター60」を用い、水銀圧入法により印加した圧力に対して水銀の積算浸入量を測定した。窒化ホウ素凝集粒子を0.2~0.3gはかり取り、低圧モード、高圧モードでの測定を行った。得られたデータから、細孔径の単位区間あたりの細孔容積を示す分布曲線を得た。分布曲線をもとに、全空隙から粒子間空隙を差し引いた値(V)を算出した。分布曲線より、5μm以上の細孔径の空隙を粒子間空隙とした。一次粒子の窒化ホウ素粒子の密度(ρ=2.34)を用いてと空隙率(ε)は下記式で表すことができる。
 ε=V(V+(1/ρ))×100
 上記式に、得られたVの値を代入して、空隙率を算出した。
 「窒化ホウ素凝集粒子2」の作製方法:
 平均長径6.5μm、アスペクト比6.1の窒化ホウ素の一次粒子を空隙率が39%、平均粒子径が30μmとなるようにスプレードライ法で凝集させることにより作製した。
 「窒化ホウ素凝集粒子3」の作製方法:
 平均長径7μm、アスペクト比18の窒化ホウ素の一次粒子を空隙率が68%、平均粒子径が50μmとなるようにスプレードライ法で凝集させることにより作製した。
 「窒化ホウ素凝集粒子4」の作製方法:
 平均長径7.3μm、アスペクト比12の窒化ホウ素の一次粒子を空隙率が65%、平均粒子径が35μmとなるようにスプレードライ法で凝集させることにより作製した。
 「窒化ホウ素凝集粒子5」の作製方法:
 平均長径8.5μm、アスペクト比6.5の窒化ホウ素の一次粒子を空隙率が25%、平均粒子径が80μmとなるようにスプレードライ法で凝集させることにより作製した。
 (第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の体積基準での細孔径分布)
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の体積基準での細孔径分布を、以下のようにして測定した。
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の体積基準での細孔径分布の測定方法:
 QUANTACHROME社製の水銀ポロシメーター「ポアーマスター60」を用い、水銀圧入法により印加した圧力に対して水銀の積算浸入量を測定した。窒化ホウ素凝集粒子を0.2~0.3gはかり取り、低圧モード、高圧モードでの測定を行った。得られたデータから、細孔径の単位区間あたりの細孔容積を示す分布曲線を得た。
 上記細孔径分布の測定結果から、上記第1の窒化ホウ素凝集粒子及び上記第2の窒化ホウ素凝集粒子の上記累積50%細孔径を算出した。具体的には、窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、最小の細孔径における細孔容積から順に積算した細孔容積の積算値が、細孔径が0μmを超え、5μm以下である細孔の細孔容積の合計の50%となるときの細孔径を、累積50%細孔径とした。
 上記細孔径分布の測定結果から、第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の累積50%細孔径を算出した。
 (第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の粒子径)
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の粒子径を、堀場製作所社製「レーザー回折式粒度分布測定装置」を用いて測定した。第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子の粒子径を、3gの各窒化ホウ素凝集粒子のサンプリングを行い、その中に含まれる各窒化ホウ素凝集粒子の粒子径を平均することで算出した。平均粒子径の算出方法については、第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子のそれぞれにおいて、累積体積が50%であるときの窒化ホウ素凝集粒子の粒子径(d50)を平均粒子径とした。
 (第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)のアスペクト比)
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)のアスペクト比を、以下のようにして測定した。
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)のアスペクト比の測定方法:
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)と熱硬化性樹脂等とを混合して作製した積層体の断面の電子顕微鏡画像から、任意に選択された50個の各窒化ホウ素凝集粒子を構成する一次粒子(各窒化ホウ素)の長径/短径を測定し、平均値を算出することにより求めた。
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)の平均長径の測定方法:
 第1の窒化ホウ素凝集粒子及び第2の窒化ホウ素凝集粒子を構成する一次粒子(第1の窒化ホウ素及び第2の窒化ホウ素)と熱硬化性樹脂等とを混合して作製した積層体の断面の電子顕微鏡画像から、任意に選択された50個の各窒化ホウ素凝集粒子を構成する一次粒子(各窒化ホウ素)の長径を測定し、平均値を算出することにより求めた。
 (実施例1~9及び比較例1~5)
 (1)樹脂材料の作製
 下記の表1,2に示す成分を下記の表1,2に示す配合量で配合し、遊星式攪拌機を用いて500rpmで25分間攪拌することにより、樹脂材料を得た。
 (2)積層体の作製
 得られた樹脂材料を離型PETシート(厚み50μm)上に、厚み350μmになるように塗工し、90℃のオーブン内で10分間乾燥して硬化性シート(絶縁層)を形成し、積層シートを得た。その後、離型PETシートを剥がして、硬化性シート(絶縁層)の両面を、銅箔とアルミニウム板とで挟み、温度200℃、圧力12MPaの条件で真空プレスすることにより積層体を作製した。
 (評価)
 (1)熱伝導率
 得られた積層体を1cm角にカットした後、両面にカーボンブラックをスプレーすることで測定サンプルを作製した。得られた測定サンプルを用いて、レーザーフラッシュ法により熱伝導率を算出した。表1,2中の熱伝導率は、比較例1の値を1.00とした相対値である。熱伝導率の測定には、NETZSCH社製「LFA447」を用いた。
 (2)絶縁破壊強度
 得られた積層体における銅箔をエッチングすることにより、直径2cmの円形に銅箔をパターニングして、テストサンプルを得た。耐電圧試験機(ETECH Electronics社製「MODEL7473」)を用いて、テストサンプル間に0.33kV/秒の速度で電圧が上昇するように、25℃にて交流電圧を印加した。テストサンプルに10mAの電流が流れた電圧を絶縁破壊電圧とした。絶縁破壊電圧をテストサンプルの厚みで除算することで規格化し、絶縁破壊強度を算出した。絶縁破壊強度を以下の基準で判定した。
 [絶縁破壊強度の判定基準]
 ○:60kV/mm以上
 △:30kV/mm以上、60kV/mm未満
 ×:30kV/mm未満
 (3)絶縁破壊強度のばらつき
 得られた積層体のそれぞれ異なる場所から5cm角にカットし、20個の測定サンプルを得た。上記の(2)と同様にして、20個のテストサンプルを作製し、各テストサンプルについて絶縁破壊強度を算出した。絶縁破壊強度のばらつきを以下の基準で判定した。
 [絶縁破壊強度のばらつきの判定基準]
 ○:絶縁破壊強度の最大値と最小値との差が、20kV/mm未満
 △:絶縁破壊強度の最大値と最小値との差が、20kV/mm以上、40kV/mm未満
 ×:絶縁破壊強度の最大値と最小値との差が、40kV/mm以上
 (4)接着性(剥離強度)
 得られた硬化性シート(絶縁層350μm)を電解銅箔(厚み35μm)とアルミニウム板(厚さ1mm)との間に10MPaの圧力で押し付けながら、200℃で1時間加熱して、測定サンプルを得た。その後、測定サンプルを5cm×12cmに切り出し、短辺側の中央1cm×12cmのみを残し、残りの部分の銅箔を剥がした。中央1cmの電解銅箔と硬化後の絶縁層との間の剥離強度を、90°剥離試験により測定した。接着性(剥離強度)を以下の基準で判定した。
 [接着性(剥離強度)の判定基準]
 ○:剥離強度が5N/cm以上
 △:剥離強度が2N/cm以上、5N/cm未満
 ×:剥離強度が2N/cm未満
 結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 1…樹脂シート(樹脂材料)
 11…バインダー樹脂
 12…第1の窒化ホウ素凝集粒子
 13…第2の窒化ホウ素凝集粒子
 14…硬化物部(バインダー樹脂が硬化した部分)
 21…積層体
 22…熱伝導体
 22a…一方の表面(第1の表面)
 22b…他方の表面(第2の表面)
 23…絶縁層
 23a…一方の表面(第1の表面)
 23b…他方の表面(第2の表面)
 24…導電層
 24a…一方の表面(第1の表面)
 24b…他方の表面(第2の表面)

Claims (6)

  1.  第1の窒化ホウ素凝集粒子と、第2の窒化ホウ素凝集粒子と、バインダー樹脂とを含み、
     前記第1の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm未満であり、
     前記第2の窒化ホウ素凝集粒子における、細孔径が0μmを超え、5μm以下である細孔の細孔容積の体積基準での細孔径分布において、累積50%細孔径が、2μm以上であり、
     前記第2の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、7以下である、樹脂材料。
  2.  前記第1の窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比が、3以上、17以下である、請求項1に記載の樹脂材料。
  3.  前記第1の窒化ホウ素凝集粒子の粒子径が、40μmを超え、
     前記第1の窒化ホウ素凝集粒子を構成する一次粒子の平均長径が、2μm以上、20μm未満であり、
     前記第2の窒化ホウ素凝集粒子を構成する一次粒子の平均長径が、8μm以下である、請求項1又は2に記載の樹脂材料。
  4.  樹脂材料100体積%中、前記第1の窒化ホウ素凝集粒子と前記第2の窒化ホウ素凝集粒子との合計の含有量が、20体積%以上、80体積%以下である、請求項1~3のいずれか1項に記載の樹脂材料。
  5.  樹脂シートである、請求項1~4のいずれか1項に記載の樹脂材料。
  6.  熱伝導体と、前記熱伝導体の一方の表面に積層された絶縁層と、前記絶縁層の前記熱伝導体とは反対側の表面に積層された導電層とを備え、
     前記絶縁層の材料が、請求項1~5のいずれか1項に記載の樹脂材料である、積層体。
PCT/JP2018/002718 2017-01-30 2018-01-29 樹脂材料及び積層体 WO2018139641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018506234A JP7150598B2 (ja) 2017-01-30 2018-01-29 樹脂材料及び積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014014 2017-01-30
JP2017-014014 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139641A1 true WO2018139641A1 (ja) 2018-08-02

Family

ID=62979496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002718 WO2018139641A1 (ja) 2017-01-30 2018-01-29 樹脂材料及び積層体

Country Status (3)

Country Link
JP (1) JP7150598B2 (ja)
TW (1) TW201840730A (ja)
WO (1) WO2018139641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125582A (zh) * 2023-04-13 2023-05-16 Tcl华星光电技术有限公司 偏光片和液晶显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199650A1 (ja) * 2013-06-14 2014-12-18 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP2015006980A (ja) * 2013-05-27 2015-01-15 三菱化学株式会社 窒化ホウ素凝集粒子、凝集bn粒子含有樹脂組成物及び放熱シート
JP2017036190A (ja) * 2015-08-12 2017-02-16 三菱化学株式会社 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP2017128476A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006980A (ja) * 2013-05-27 2015-01-15 三菱化学株式会社 窒化ホウ素凝集粒子、凝集bn粒子含有樹脂組成物及び放熱シート
WO2014199650A1 (ja) * 2013-06-14 2014-12-18 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP2017036190A (ja) * 2015-08-12 2017-02-16 三菱化学株式会社 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP2017128476A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125582A (zh) * 2023-04-13 2023-05-16 Tcl华星光电技术有限公司 偏光片和液晶显示装置
CN116125582B (zh) * 2023-04-13 2023-08-22 Tcl华星光电技术有限公司 偏光片和液晶显示装置

Also Published As

Publication number Publication date
JPWO2018139641A1 (ja) 2019-11-14
TW201840730A (zh) 2018-11-16
JP7150598B2 (ja) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2018139644A1 (ja) 樹脂材料及び積層体
JP2022048175A (ja) 樹脂材料及び積層体
WO2018139642A1 (ja) 樹脂材料及び積層体
WO2018139643A1 (ja) 樹脂材料及び積層体
JP7036984B2 (ja) 樹脂材料及び積層体
JP7036983B2 (ja) 樹脂材料及び積層体
JP2018082164A (ja) 硬化性材料及び積層体
JP2018082165A (ja) 硬化性材料及び積層体
WO2018139641A1 (ja) 樹脂材料及び積層体
JP2018094919A (ja) 積層体
JP2018080326A (ja) 硬化性材料及び積層体
JP2018082163A (ja) 硬化性材料及び積層体
JP2018082167A (ja) 硬化性材料及び積層体
JP2018082166A (ja) 硬化性材料及び積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506234

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744563

Country of ref document: EP

Kind code of ref document: A1