WO2018139540A1 - 無線基地局および送受信電力制御方法 - Google Patents

無線基地局および送受信電力制御方法 Download PDF

Info

Publication number
WO2018139540A1
WO2018139540A1 PCT/JP2018/002296 JP2018002296W WO2018139540A1 WO 2018139540 A1 WO2018139540 A1 WO 2018139540A1 JP 2018002296 W JP2018002296 W JP 2018002296W WO 2018139540 A1 WO2018139540 A1 WO 2018139540A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
change amount
power change
wireless terminal
antennas
Prior art date
Application number
PCT/JP2018/002296
Other languages
English (en)
French (fr)
Inventor
友規 村上
浩一 石原
泰司 鷹取
ヒランタ アベセカラ
守 秋元
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to KR1020197020684A priority Critical patent/KR102148307B1/ko
Priority to EP18744452.6A priority patent/EP3576469B1/en
Priority to CN201880008781.5A priority patent/CN110226349B/zh
Priority to US16/480,075 priority patent/US10827436B2/en
Priority to JP2018564630A priority patent/JP6692934B2/ja
Publication of WO2018139540A1 publication Critical patent/WO2018139540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention improves throughput by controlling transmission power or reception power of each antenna in a wireless base station that performs wireless communication by sharing the same frequency channel with one or more wireless terminal stations using a plurality of antennas.
  • the present invention relates to a radio base station and a transmission / reception power control method.
  • the IEEE802.11 standard wireless LAN includes an IEEE802.11b / g / n standard wireless LAN using a 2.4 GHz band and an IEEE802.11a / n / ac standard wireless LAN using a 5 GHz band.
  • 13 channels are prepared at intervals of 5 MHz between 2400 MHz and 2483.5 MHz.
  • the channels are used so that the bands do not overlap in order to avoid interference. In that case, a maximum of 3 channels, and in some cases up to 4 channels can be used simultaneously.
  • the maximum transmission speed of the wireless LAN is 11 Mbps for the IEEE802.11b standard and 54 Mbps for the IEEE802.11a standard or the IEEE802.11g standard.
  • the transmission rate here is the transmission rate on the physical layer.
  • the transmission efficiency in the MAC (Medium Access Control) layer is about 50 to 70%
  • the actual throughput upper limit is about 5 Mbps for the IEEE802.11b standard, and 30 Mbps for the IEEE802.11a standard and the IEEE802.11g standard. Degree.
  • the transmission rate further decreases as the number of wireless base stations and wireless terminals that attempt to transmit information increases.
  • Non-Patent Document 1 As an example of the transmission power control method, there is a method of controlling the amplitude of a transmission signal using a power adjustment device such as a variable resistor or a variable amplifier.
  • FIG. 7 shows a configuration example of a wireless communication system.
  • the radio base stations 10-1 and 10-2 connected to the network 30 are configured to use the same frequency channel, and perform radio communication with the subordinate radio terminal stations 20, respectively.
  • Each of the radio base stations 10-1 and 10-2 includes a plurality of antennas and is configured to perform MIMO communication with one or a plurality of radio terminal stations 20.
  • the radio base stations 10-1 and 10-2 also have a function of adjusting the transmission / reception power of each antenna according to the destination radio terminal station.
  • the external control device 40 connected to the network 30 collects received power information at each antenna of the radio base stations 10-1 and 10-2 and designates frequency channels in the radio base stations 10-1 and 10-2. In some cases, control necessary for adjusting the transmission / reception power of each antenna is performed.
  • FIG. 8 shows a configuration example of a conventional radio base station.
  • the radio base station includes n (n is an integer of 2 or more) antennas 11-1 to 11-n, and a power changing unit 12- that changes transmission power and reception power of signals transmitted and received by each antenna. 1 to 12-n, transmission / reception units 13-1 to 13-n that perform transmission processing and reception processing of signals transmitted and received by each antenna, and signals input to and output from the network connected to the radio base station and each antenna
  • a signal processing control unit 14 that performs a conversion process with a signal transmitted and received by the mobile station, and a notification signal including a power change amount of the power changing units 12-1 to 12-n corresponding to a destination wireless terminal station of the signal transmitted and received by each antenna.
  • An output power notification unit 15 and a power control unit 16 that performs power change control of the power change units 12-1 to 12-n according to the notification signal are provided.
  • the power notification unit 15 extracts the transmission power information corresponding to each antenna with respect to the destination wireless terminal station before performing the transmission process, and notifies the power control unit 16 of the transmission power information corresponding to each antenna.
  • the power control unit 16 controls the transmission power to be changed by the power changing units 12-1 to 12-n corresponding to the antennas 11-1 to 11-n according to the notification signal from the power notification unit 15. The same applies to the control of the received power for the received signal.
  • optimal transmission power control for the destination wireless terminal station is performed, so that it is possible to simultaneously suppress interference power to other wireless stations and increase communication opportunities of the entire wireless communication system, thereby improving throughput. Be expected.
  • the power changing units 12-1 to 12-n of the radio base station shown in FIG. 8 use the power control unit 16 to control the power of signals transmitted and received by the antennas 11-1 to 11-n according to the destination radio terminal station.
  • the power change amount corresponding to each antenna is generated by the power notification unit 15 of the signal processing control unit 14 according to the destination wireless terminal station, and is notified to the power control unit 16.
  • the following two methods can be considered as the transmission form of the notification signal for notifying the power change amount corresponding to each antenna.
  • power change amounts E1 to En for controlling the power change units 12-1 to 12-n using a plurality of n control lines are set. Notify in parallel.
  • the power notification unit 15 can notify the power control unit 16 of the power change amounts E1 to En in a short time, and the power change of signals transmitted and received by each antenna can be realized at high speed.
  • a plurality of n control lines are required, there is a problem of increase in circuit scale and cost.
  • the number of antennas of the radio base station increases significantly in the future, it is necessary to solve this problem.
  • the present invention provides a radio base station and a transmission / reception power control method capable of performing transmission power and reception power change processing of signals transmitted / received by a plurality of antennas at high speed and using a small number of control lines. Objective.
  • n antennas (n is an integer of 2 or more) and n antennas N power changing units that change transmission power and reception power of signals transmitted and received by the antenna
  • a power control unit that performs power change control of the n power changing units, and reception from each wireless terminal station to n antennas
  • the common power change amount common to each antenna corresponding to the predetermined received power and the individual power corresponding to the difference in received power of each antenna with respect to the predetermined received power depending on the received power of the received signal
  • a power change amount management unit that manages the change amount, a common power notification unit that notifies the power control unit of a common power change amount according to the destination wireless terminal station before transmitting and receiving signals with n antennas, Predetermined timing
  • An individual power notification unit that notifies the power control unit in advance of an individual power change amount corresponding to each wireless terminal station, and the power
  • the power change amount management unit uses, as the predetermined received power, the received power at any one of the n antennas or the average value of the received power at the plurality of antennas It is good.
  • the destination radio terminal station of the first invention when the destination of signals transmitted and received by n antennas is a plurality of radio terminal stations, the destination radio terminal station is read as a set of a plurality of destination radio terminal stations, and the amount of power change
  • the management unit sets, as the predetermined reception power, a minimum value of reception power from a plurality of wireless terminal stations at any one of n antennas or reception power from a plurality of wireless terminal stations at a plurality of antennas.
  • a configuration may be adopted in which the common power change amount and the individual power change amount are managed for each set of a plurality of destination wireless terminal stations using an average value of the minimum values.
  • the common power change amount and the individual power change amount managed by the power change amount management unit may be provided from an external control device.
  • a configuration may be adopted in which frequency channels are rearranged between radio base stations in accordance with a change in power of signals transmitted and received by n antennas.
  • the power change amount management unit performs wireless communication according to the received power of signals received by the n antennas from each radio terminal station.
  • Managing for each terminal station, a common power change amount common to each antenna corresponding to a predetermined reception power and an individual power change amount corresponding to a reception power difference of each antenna with respect to the predetermined reception power;
  • the notifying unit notifies the power control unit in advance of the individual power change amount corresponding to each wireless terminal station at a predetermined timing, and the common power notifying unit before transmitting / receiving signals with n antennas,
  • the step of notifying the power control unit of the common power change amount according to the destination wireless terminal station, and the power control unit stores the individual power change amount notified in advance from the individual power notification unit in the storage unit, From the notification section
  • the power change amount management unit determines the received power at any one of the n antennas or the received power at the plurality of antennas as the predetermined received power. An average value may be used.
  • the destination radio terminal station when a destination of a signal transmitted / received by n antennas is a plurality of radio terminal stations, the destination radio terminal station is defined as a set of a plurality of destination radio terminal stations.
  • the re-reading and power change amount management unit has, as the predetermined reception power, a minimum value of reception power from a plurality of wireless terminal stations at any one of n antennas, or a plurality of wireless terminal stations at a plurality of antennas.
  • the common power change amount and the individual power change amount may be managed for each set of a plurality of destination wireless terminal stations, using the average value of the minimum values of the received power from.
  • the present invention presets the individual power change amount for each destination wireless terminal station and each antenna, and adds the common power change amount and the individual power change amount according to the destination wireless terminal station notified for each signal transmission / reception.
  • the power control unit By controlling the power control unit, the amount of information of the notification signal transmitted using a small number of control lines can be greatly reduced. As a result, even if the number of antennas increases, it is possible to shorten the time required for the power change process, speed up the start of signal transmission / reception, and support high-speed signals.
  • FIG. 1 shows a configuration example of a radio base station of the present invention.
  • the radio base station includes n antennas 11-1 to 11-n (n is an integer of 2 or more).
  • the power changing units 12-1 to 12-n change the transmission power and reception power of signals transmitted and received by each antenna.
  • the transmission / reception units 13-1 to 13-n perform transmission processing and reception processing for signals transmitted and received by each antenna.
  • the signal processing control unit 101 performs conversion processing between a signal input / output to / from a network connected to the radio base station and a signal transmitted / received by each antenna.
  • the power change amount management unit 102 sets the common power change amount common to the antennas for each destination wireless terminal station of signals transmitted and received by each antenna, and the destination wireless as the power change amount set in the power change units 12-1 to 12-n. It is managed separately for each terminal station and individual power change amount for each antenna.
  • the common power notification unit 103 notifies the power control unit 106 of the common power change amount corresponding to the destination wireless terminal station before signal transmission / reception processing.
  • the individual power notification unit 104 notifies the power control unit 106 of an individual power change amount preset at a predetermined timing different from the signal transmission / reception process.
  • the power control unit 106 stores the individual power change amount in the storage unit 105, and combines the common power change amount and the individual power change amount according to the destination wireless terminal station of the signal in the power change units 12-1 to 12-n. Perform power change control.
  • the amount of power change set in the power changing units 12-1 to 12-n is the difference between the received power (RSSI) of the antennas 11-1 to 11-n and a predetermined threshold (for example, ⁇ 60 dBm) for each destination wireless terminal station. Value, and changes every time a signal is sent or received. However, the difference value of the received power between the antennas for each destination wireless terminal station can be regarded as substantially constant over a certain period.
  • the difference value between the received power of one reference antenna and a predetermined threshold value among a plurality of antennas is set as the common power change amount, and the difference value between the received power of the reference antenna and the received power of each of the other antennas is individually set.
  • the amount of power change. Therefore, the difference value between the received power of each antenna and the predetermined threshold is the sum of the common power change amount and the individual power change amount for each antenna, and this is the power change amount set in the power change units 12-1 to 12-n. It becomes.
  • a difference value between an average value of each received power of a plurality of antennas and a predetermined threshold value may be used.
  • the received power at which the signals from the wireless terminal station 20-1 are received by the antennas 11-1 to 11-n is shown.
  • the received power includes an attenuation amount according to the cable length between each antenna and the power changing unit.
  • the antenna 11-1 is selected here as one reference antenna among the antennas, the difference between the received power: ⁇ 50 dBm and the threshold value: ⁇ 60 dBm is calculated: +10 dB, and the common power notification unit 103 The common power change amount notified to the power control unit 106 is used.
  • a difference value +10 dB,..., -5 dB between the received power of the reference antenna 11-1 and the received power of the other antennas 11-2,..., 11-n is calculated, and the individual power notification unit 104 stores it in the storage unit 105.
  • An example of the common power change amount and the individual power change amount for each wireless terminal station as the destination is shown in (1) IV of FIG.
  • the common power change amount changes every time a signal is transmitted / received, but the individual power change amount is almost constant in a certain period, and can be held in the storage unit 105 as prior information. Therefore, if only the common power change amount corresponding to the received power of the destination wireless terminal station is notified from the common power notification unit 103 to the power control unit 106 for each signal transmission / reception, the power control unit 106 stores the common power change amount in the storage unit 105.
  • the individual power change information corresponding to each antenna corresponding to the destination wireless terminal station is read and added. As a result, as shown in (2) IV of FIG. 3, the power change amounts of the power change units 12-1 to 12-n can be generated.
  • the plus of the power change amount is attenuation, and the minus is amplification.
  • the individual power change amount for each destination wireless terminal station and each antenna is stored in the storage unit 105 in advance, and the common power change amount corresponding to the destination wireless terminal station is transmitted to the power control unit 106 for each signal transmission / reception. Therefore, the information amount of the notification signal can be greatly reduced. As a result, even if the number of antennas increases, it is possible to shorten the time required for the power change process, speed up the start of signal transmission / reception, and support high-speed signals.
  • FIG. 4 shows a procedure for presetting the individual power change amount in the radio base station of the present invention.
  • the power change amount management unit 102 of the radio base station calculates the power change set in the power change units 12-1 to 12-n using the received power of each antenna by the calculation method shown in FIG. As the amount, the common power change amount for each destination wireless terminal station of the signal transmitted and received by each antenna and the individual power change amount for each destination wireless terminal station and each antenna are managed separately (S11).
  • the individual power notification unit 104 notifies the power control unit 106 of an individual power change amount preset at a predetermined timing different from the signal transmission / reception process (S12).
  • the power control unit 106 stores the notified individual power change amount in the storage unit 105 (S13). In addition, when the individual power change amount is updated by the power change amount management unit 102, the individual power notification unit 104 notifies the power control unit 106 again and stores it in the storage unit 105.
  • FIG. 5 shows a signal transmission procedure in the radio base station of the present invention.
  • the signal processing control unit 101 of the radio base station inputs a signal to be transmitted from an external network to the destination radio terminal station (S21)
  • the destination radio terminal station of the transmission signal is extracted and the power change amount management is performed.
  • the power change amount management unit 102 calculates the common power change amount corresponding to the destination wireless terminal station, and outputs it to the common power notification unit 103 (S22).
  • the common power notification unit 103 notifies the power control unit 106 of the common power change amount corresponding to the destination wireless terminal station (S23).
  • the power control unit 106 calculates a power change amount obtained by adding the common power change amount according to the destination wireless terminal station and the individual power change amount according to the destination wireless terminal station read from the storage unit 105, and this power change
  • the power change of the power changing units 12-1 to 12-n is controlled by the amount (S24).
  • a signal is transmitted after the power change of the power changing units 12-1 to 12-n is completed (S25).
  • the power change amount management unit 102 determines the power change amount for reception of the power change units 12-1 to 12-n. After that, it is the same as steps S22 to S24 of the signal transmission procedure. Then, after the power change of the power changing units 12-1 to 12-n is completed, a signal reception standby is performed, and a procedure for receiving is performed. Note that the common power change amount and the individual power change amount for reception use the common power change amount and the individual power change amount corresponding to the destination wireless terminal station used for the transmission power control shown in (1) IV of FIG. it can.
  • the common power change amount and the individual power change amount for the transmission power and the reception power for each destination wireless terminal station described above are those for a single wireless terminal station, but a plurality of wirelesss in MU-MIMO communication
  • the common power change amount and the individual power change amount for each combination in which the destination wireless terminal stations are 2, 3, 4,... are used.
  • FIG. 6 shows a calculation method of the common power change amount and the individual power change amount in MU-MIMO.
  • (1) in FIG. 6 is a calculation example of the common power change amount and the individual power change amount in the combination of the two wireless terminal stations 20-1 and 20-2.
  • the received power at which the signals from the wireless terminal stations 20-1 and 20-2 are received by the antennas 11-1 to 11-n is shown. However, it is assumed that the received power includes an attenuation amount according to the cable length between each antenna and the power changing unit.
  • the reception power of the antenna 11-1 from the wireless terminal station 20-2 is ⁇ 55 dBm, and so on.
  • the antenna 11-1 is selected here as one reference antenna among the antennas, and the difference value between the minimum received power: ⁇ 55 dBm and the threshold value: ⁇ 60 dBm: +5 dB is calculated, and the common power notification unit 103 is the common power change amount notified to the power control unit 106. Further, difference values +5 dB,..., +10 dB between the minimum received power of the reference antenna 11-1 and the minimum received power of the other antennas 11-2 to 11 -n are calculated, and the individual power notification unit 104 is stored in the storage unit 105. The individual power change amount to be stored is used. As described above, the common power change amount and the individual power change amount in the combination of the radio base stations 20-1 and 20-2 can be obtained.
  • (2) in FIG. 6 is a calculation example of the common power change amount and the individual power change amount in the combination of the three wireless terminal stations 20-1, 20-2, and 20-3. The calculation is the same as in the case of the two wireless terminal stations shown.
  • the received power information for each wireless terminal station received by the antennas 11-1 to 11-n of the wireless base station is collected, and the power change amount
  • the configuration may be such that the common power change amount and the individual power change amount for each destination wireless terminal station or combination of the destination wireless terminal stations performed in the management unit 102 are calculated and notified to the power change amount management unit 102.
  • the RSSI information between the own station owned by each radio base station (10-1 and 10-2 in FIG. 7) and the adjacent radio base station may be collected, and the external control device may perform control to specify the frequency channel in each radio base station based on these information.
  • An example of the frequency channel designation procedure is shown below.
  • the power information used here uses an average value or a minimum value for the common power change amount and the individual power change amount for each wireless terminal station. Alternatively, the common power change amount and the individual power change amount in a specific wireless terminal station or a combination of specific wireless terminal stations are used.
  • (2) Calculate the average or total value of the calculated amount of power change for each antenna.
  • (3) The average value or the total value calculated in (2) is subtracted from the RSSI information between the collected local station and the adjacent radio base station.
  • the frequency channel determination method is selected from a method that minimizes the RSSI, a method that maximizes the minimum throughput, and other general frequency channel allocation methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

n個のアンテナおよび電力変更部と、電力制御部と、各アンテナの受信電力に応じて、無線端末局ごとに所定の受信電力に対応する各アンテナ共通の共通電力変更量と、該所定の受信電力に対する各アンテナの受信電力差に対応する個別電力変更量とを管理する電力変更量管理部と、信号送受信前にその宛先無線端末局に応じた共通電力変更量を電力制御部に通知する共通電力通知部と、所定のタイミングで、各無線端末局に応じた個別電力変更量を電力制御部に事前通知する個別電力通知部とを備え、電力制御部は、個別電力変更量を記憶部に記憶しておき、共通電力通知部から通知された宛先無線端末局に応じた共通電力変更量と個別電力変更量を加算して電力変更制御を行う。

Description

無線基地局および送受信電力制御方法
 本発明は、複数のアンテナを用いて1台以上の無線端末局と同一周波数チャネルを共有して無線通信を行う無線基地局において、各アンテナの送信電力または受信電力を制御してスループットを改善する無線基地局および送受信電力制御方法に関する。
 近年、スマートフォン等の持ち運び可能で高性能な無線端末の普及により企業や公共スペースだけではなく、一般家庭でもIEEE802.11標準規格の無線LANが広く使われるようになっている。IEEE802.11標準規格の無線LANには、 2.4GHz帯を用いるIEEE802.11b/g/n 規格の無線LANと、5GHz帯を用いるIEEE802.11a/n/ac規格の無線LANがある。
 IEEE802.11b規格やIEEE802.11g規格の無線LANでは、2400MHzから2483.5MHz間に5MHz間隔で13チャネルが用意されている。ただし、同一場所で複数のチャネルを使用する際には、干渉を避けるために、帯域が重ならないようにチャネルを使用する。その場合、最大で3チャネル、場合によっては4チャネルまで同時に使用できる。
 IEEE802.11a規格の無線LANでは、日本の場合は、5170MHzから5330MHz間と、5490MHzから5710MHz間で、それぞれ互いに帯域が重ならない8チャネルおよび11チャネルの合計19チャネルが規定されている。なお、IEEE802.11a規格では、チャネル当たりの帯域幅が20MHzに固定されている。
 無線LANの最大伝送速度は、IEEE802.11b規格の場合は11Mbps であり、IEEE802.11a規格やIEEE802.11g規格の場合は54Mbps である。ただし、ここでの伝送速度は物理レイヤ上での伝送速度である。実際にはMAC(Medium Access Control )レイヤでの伝送効率が50~70%程度であるため、実際のスループットの上限値はIEEE802.11b規格では5Mbps 程度、IEEE802.11a規格やIEEE802.11g規格では30Mbps 程度である。また、伝送速度は、情報を送信しようとする無線基地局や無線端末が増えればさらに低下する。
 そのため、2009年に標準化が完了したIEEE802.11n規格では、これまで20MHzと固定されていたチャネル帯域幅が最大で40MHzに拡大され、また、空間多重送信技術(MIMO:Multiple input multiple output)技術の導入が決定された。IEEE802.11n規格で規定されているすべての機能を適用して送受信を行うと、物理レイヤでは最大で 600Mbps の通信速度を実現可能である。
 さらに、2013年に標準化が完了したIEEE802.11ac規格では、チャネル帯域幅を80MHzや最大で 160MHzまで拡大することや、空間分割多元接続(SDMA:Space Division Multiple Access)を適用したマルチユーザMIMO(MU-MIMO)送信方法の導入が決定している。IEEE802.11ac規格で規定されているすべての機能を適用して送受信を行うと、物理レイヤでは最大で約 6.9Gbps の通信速度を実現可能である。
 このように無線LANでは、標準化規格の進化に伴い通信速度が改善されている。しかしながら、同一周波数チャネルを複数の無線局が共有する場合には、無線局数の増加に伴う通信機会の低下によってスループットが低下することが知られている。これに対して、無線局の送信電力を通信相手の状況に合わせて適応的に制御することで各無線局への干渉電力を抑圧し、結果として各無線局の通信機会を増加させる技術が検討されている(非特許文献1)。送信電力制御法の一例として、送信信号の振幅を可変抵抗器や可変増幅器などの電力調整装置を用いて制御する方法がある。
 図7は、無線通信システムの構成例を示す。
 図7において、ネットワーク30に接続される無線基地局10-1,10-2は同一の周波数チャネルを用いる構成であり、それぞれ配下の無線端末局20と無線通信を行う。また、無線基地局10-1,10-2はそれぞれ複数のアンテナを備え、1つまたは複数の無線端末局20とMIMO通信を行う構成になっている。さらに、無線基地局10-1,10-2は、宛先の無線端末局に応じて各アンテナの送受信電力を調整する機能も備えている。また、ネットワーク30に接続される外部制御装置40では、無線基地局10-1,10-2の各アンテナにおける受信電力情報を収集し、無線基地局10-1,10-2における周波数チャネルの指定や各アンテナの送受信電力の調整に必要な制御を行う場合もある。
 図8は、従来の無線基地局の構成例を示す。
 図8において、無線基地局は、n個(nは2以上の整数)のアンテナ11-1~11-nと、各アンテナで送受信する信号の送信電力および受信電力を変更する電力変更部12-1~12-nと、各アンテナで送受信する信号の送信処理および受信処理を行う送受信部13-1~13-nと、無線基地局に接続するネットワークとの間で入出力する信号と各アンテナで送受信する信号との変換処理を行う信号処理制御部14と、各アンテナで送受信する信号の宛先無線端末局に応じた電力変更部12-1~12-nの電力変更量を含む通知信号を出力する電力通知部15と、通知信号に応じて電力変更部12-1~12-nの電力変更制御を行う電力制御部16とを備える。
 電力通知部15は、送信処理を行う前に、宛先無線端末局に対する各アンテナ対応の送信電力情報を抽出し、電力制御部16に対して各アンテナ対応の送信電力情報を通知する。電力制御部16は、電力通知部15からの通知信号に応じて、各アンテナ11-1~11-nに対応する電力変更部12-1~12-nで送信電力を変更する制御を行う。受信信号に対する受信電力の制御についても同様である。これにより、宛先無線端末局に対する最適な送信電力制御が行われるので、他の無線局への干渉電力を同時に抑圧し、無線通信システム全体の通信機会を増加させることが可能となり、スループットの向上が期待される。
Mhatre, Vivek P., Konstantina Papagiannaki, and Francois Baccelli. "Interference mitigation through power control in high density 802.11 WLANs." IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications. IEEE, 2007.
 図8に示す無線基地局の電力変更部12-1~12-nは、電力制御部16によって、宛先無線端末局に応じてアンテナ11-1~11-nで送受信する信号の電力を制御する。ここで、各アンテナ対応の電力変更量は、宛先無線端末局に応じて信号処理制御部14の電力通知部15で生成されて電力制御部16に通知される。この各アンテナ対応の電力変更量を通知する通知信号の伝送形態としては、次の2つの方法が考えられる。
 通知信号の第1の伝送形態は、図9の(1) に示すように、複数n本の制御線を用いて電力変更部12-1~12-nを制御する電力変更量E1~Enを並列に通知する。この場合には、電力通知部15から電力制御部16に対して短時間で電力変更量E1~Enを通知でき、各アンテナで送受信する信号の電力変更を高速に実現することができる。しかし、複数n本の制御線が必要になるため、回路規模やコストの増加の課題がある。さらに、将来的に無線基地局のアンテナ数が大幅に増加した場合には、この課題を解決する必要がある。
 通知信号の第2の伝送形態は、図9の(2) に示すように、1本の制御線を用いて電力変更部12-1~12-nを制御する電力変更量E1~Enを直列に通知する。この場合には、制御線の本数を1本にできるが、電力変更量E1~Enのすべての通知にアンテナ数nに応じた時間がかかる。例えば、無線パケット単位で送信電力制御を行うには、ミリ秒単位以下の制御が必要になり、通知信号の伝送時間の短縮が課題となる。
 本発明は、複数のアンテナで送受信する信号の送信電力および受信電力の変更処理を高速に行うとともに、少ない制御線を用いて実現することができる無線基地局および送受信電力制御方法を提供することを目的とする。
 第1の発明は、無線基地局と1台以上の無線端末局が同一周波数チャネルを共有する無線通信システムの無線基地局において、n個(nは2以上の整数)のアンテナと、n個のアンテナで送受信する信号の送信電力および受信電力を変更するn個の電力変更部と、n個の電力変更部の電力変更制御を行う電力制御部と、各無線端末局からn個のアンテナに受信される信号の受信電力に応じて、無線端末局ごとに、所定の受信電力に対応する各アンテナ共通の共通電力変更量と、該所定の受信電力に対する各アンテナの受信電力差に対応する個別電力変更量とを管理する電力変更量管理部と、n個のアンテナで信号を送受信する前に、その宛先無線端末局に応じた共通電力変更量を電力制御部に通知する共通電力通知部と、所定のタイミングで、各無線端末局に応じた個別電力変更量を電力制御部に事前通知する個別電力通知部とを備え、電力制御部は、個別電力通知部から事前通知された個別電力変更量を記憶部に記憶しておき、共通電力通知部から通知された宛先無線端末局に応じた共通電力変更量と、該記憶部から宛先無線端末局に応じた個別電力変更量を読み出して加算した電力変更量で、n個の電力変更部の電力変更制御を行う構成である。
 第1の発明の無線基地局において、電力変更量管理部は、所定の受信電力として、n個のアンテナのうち任意の1つのアンテナにおける受信電力または複数のアンテナにおける受信電力の平均値を用いる構成としてもよい。
 第1の発明の無線基地局において、n個のアンテナで送受信する信号の宛先が複数の無線端末局である場合に、宛先無線端末局を複数の宛先無線端末局の組と読み替え、電力変更量管理部は、所定の受信電力として、n個のアンテナのうち任意の1つのアンテナにおける複数の無線端末局からの受信電力の最小値、または複数のアンテナにおける複数の無線端末局からの受信電力の最小値の平均値を用い、複数の宛先無線端末局の組ごとに共通電力変更量および個別電力変更量を管理する構成としてもよい。
 第1の発明の無線基地局において、電力変更量管理部で管理する共通電力変更量および個別電力変更量が外部制御装置から与えられる構成としてもよい。
 第1の発明の無線基地局において、n個のアンテナで送受信する信号の電力変更に伴い、無線基地局間で周波数チャネルの再配置を行う構成としてもよい。
 第2の発明は、第1の発明の無線基地局の送受信電力制御方法において、電力変更量管理部は、各無線端末局からn個のアンテナに受信される信号の受信電力に応じて、無線端末局ごとに、所定の受信電力に対応する各アンテナ共通の共通電力変更量と、該所定の受信電力に対する各アンテナの受信電力差に対応する個別電力変更量とを管理するステップと、個別電力通知部は、所定のタイミングで、各無線端末局に応じた個別電力変更量を電力制御部に事前通知するステップと、共通電力通知部は、n個のアンテナで信号を送受信する前に、その宛先無線端末局に応じた共通電力変更量を電力制御部に通知するステップと、電力制御部は、個別電力通知部から事前通知された個別電力変更量を記憶部に記憶しておき、共通電力通知部から通知された宛先無線端末局に応じた共通電力変更量と、該記憶部から宛先無線端末局に応じた個別電力変更量を読み出して加算した電力変更量で、n個の電力変更部の電力変更制御を行うステップとを有する。
 第2の発明の無線基地局の送受信電力制御方法において、電力変更量管理部は、所定の受信電力として、n個のアンテナのうち任意の1つのアンテナにおける受信電力または複数のアンテナにおける受信電力の平均値を用いるとしてもよい。
 第2の発明の無線基地局の送受信電力制御方法において、n個のアンテナで送受信する信号の宛先が複数の無線端末局である場合に、宛先無線端末局を複数の宛先無線端末局の組と読み替え、電力変更量管理部は、所定の受信電力として、n個のアンテナのうち任意の1つのアンテナにおける複数の無線端末局からの受信電力の最小値、または複数のアンテナにおける複数の無線端末局からの受信電力の最小値の平均値を用い、複数の宛先無線端末局の組ごとに共通電力変更量および個別電力変更量を管理するとしてもよい。
 本発明は、宛先無線端末局ごとおよびアンテナごとの個別電力変更量を事前設定し、信号の送受信ごとに通知される宛先無線端末局に応じた共通電力変更量と個別電力変更量を加算して電力制御部を制御することにより、少ない制御線を用いて伝送される当該通知信号の情報量を大幅に低減することができる。その結果、アンテナ数が増えても電力変更処理にかかる時間を短縮して信号の送受信開始を早め、高速信号にも対応することが可能になる。
本発明の無線基地局の構成例を示す図である。 本発明における共通電力変更量と個別電力変更量の計算方法を説明する図である。 本発明における宛先無線端末局ごとの電力変更量の算出例を示す図である。 本発明の無線基地局における個別電力変更量の事前設定手順を示すフローチャートである。 本発明の無線基地局における信号送信手順を示すフローチャートである。 MU-MIMOにおける共通電力変更量と個別電力変更量の計算方法を説明する図である。 本発明が想定する無線通信システムの構成例を示す図である。 従来の無線基地局の構成例を示す図である。 通知信号の伝送形態を示す図である。
 図1は、本発明の無線基地局の構成例を示す。
 図1において、無線基地局はn個(nは2以上の整数)のアンテナ11-1~11-nを備える。電力変更部12-1~12-nは、各アンテナで送受信する信号の送信電力および受信電力を変更する。送受信部13-1~13-nは、各アンテナで送受信する信号の送信処理および受信処理を行う。信号処理制御部101は、無線基地局に接続するネットワークとの間で入出力する信号と各アンテナで送受信する信号との変換処理を行う。電力変更量管理部102は、電力変更部12-1~12-nに設定する電力変更量として、各アンテナで送受信する信号の宛先無線端末局ごとかつアンテナ共通の共通電力変更量と、宛先無線端末局ごとかつアンテナごとの個別電力変更量に分けて管理する。共通電力通知部103は、信号の送受信処理前に宛先無線端末局に応じた共通電力変更量を電力制御部106に通知する。個別電力通知部104は、信号の送受信処理とは別の所定のタイミングで事前設定する個別電力変更量を電力制御部106に通知する。電力制御部106は、記憶部105に個別電力変更量を記憶し、信号の宛先無線端末局に応じた共通電力変更量と個別電力変更量を合わせて電力変更部12-1~12-nの電力変更制御を行う。
 ここで、宛先無線端末局に応じた共通電力変更量と個別電力変更量について説明する。電力変更部12-1~12-nに設定する電力変更量は、宛先無線端末局ごとにアンテナ11-1~11-nの受信電力(RSSI)と所定の閾値(例えば-60dBm )との差分値になり、信号の送受信ごとに変化する。ただし、宛先無線端末局ごとにアンテナ間の受信電力の差分値は、ある一定期間においてほぼ一定と見なすことができる。
 本発明では、複数のアンテナの中の1つの基準アンテナの受信電力と所定の閾値との差分値を共通電力変更量とし、基準アンテナの受信電力と他の各アンテナの受信電力の差分値を個別電力変更量とする。よって、各アンテナの受信電力と所定の閾値との差分値は、共通電力変更量とアンテナごとの個別電力変更量の和となり、これが電力変更部12-1~12-nに設定する電力変更量となる。なお、共通電力変更量の算出に当たっては、基準アンテナの受信電力に代えて、複数のアンテナの各受信電力の平均値と所定の閾値との差分値としてもよい。
 図2に示す例では、無線端末局20-1からの信号がアンテナ11-1~11-nで受信される受信電力を示す。ただし、この受信電力には、各アンテナと電力変更部との間のケーブル長に応じた減衰量などが含まれるものとする。まず、各アンテナの中の1つの基準アンテナとしてここではアンテナ11-1を選択し、その受信電力:-50dBm と、閾値:-60dBm との差分値:+10dBを算出し、共通電力通知部103が電力制御部106に通知する共通電力変更量とする。さらに、基準アンテナ11-1の受信電力と他のアンテナ11-2,~,11-nの受信電力の差分値+10dB,…,-5dBを算出し、個別電力通知部104が記憶部105に記憶する個別電力変更量とする。宛先となる無線端末局ごとの共通電力変更量と個別電力変更量の一例を図3の(1) に示す。
 共通電力変更量は信号の送受信ごとに変化するが、個別電力変更量はある一定期間においてほぼ一定なので事前情報として記憶部105に保持することができる。よって、信号の送受信ごとに宛先無線端末局の受信電力に応じた共通電力変更量のみを共通電力通知部103から電力制御部106に通知すれば、電力制御部106では記憶部105に保持されている宛先無線端末局に応じた各アンテナ対応の個別電力変更情報を読み出して加算する。これにより、図3の(2) に示すように、電力変更部12-1~12-nの電力変更量を生成することができる。なお、ここでは電力変更量のプラスは減衰、マイナスは増幅となる。
 このように、宛先無線端末局ごとおよびアンテナごとの個別電力変更量を事前に記憶部105に保持しておき、信号の送受信ごとに宛先無線端末局に応じた共通電力変更量を電力制御部106に通知すればよいので、当該通知信号の情報量を大幅に低減することができる。その結果、アンテナ数が増えても電力変更処理にかかる時間を短縮して信号の送受信開始を早め、高速信号にも対応することが可能になる。
 図4は、本発明の無線基地局における個別電力変更量の事前設定手順を示す。
 図4において、無線基地局の電力変更量管理部102は、図2に示した計算方法により各アンテナの受信電力を用いて計算し、電力変更部12-1~12-nに設定する電力変更量として、各アンテナで送受信する信号の宛先無線端末局ごとの共通電力変更量と、宛先無線端末局ごとかつアンテナごとの個別電力変更量に分けて管理する(S11)。個別電力通知部104は、信号の送受信処理とは別の所定のタイミングで事前設定する個別電力変更量を電力制御部106に通知する(S12)。電力制御部106は、通知された個別電力変更量を記憶部105に記憶する(S13)。また、電力変更量管理部102で個別電力変更量が更新された場合には、再度、個別電力通知部104から電力制御部106に通知され、記憶部105に記憶される。
 図5は、本発明の無線基地局における信号送信手順を示す。
 図5において、無線基地局の信号処理制御部101は、外部のネットワークから宛先無線端末局に送信する信号を入力すると(S21)、当該送信信号の宛先無線端末局を抽出して電力変更量管理部102に通知し、電力変更量管理部102は宛先無線端末局に対応する共通電力変更量を計算して共通電力通知部103に出力する(S22)。共通電力通知部103は、宛先無線端末局に応じた共通電力変更量を電力制御部106に通知する(S23)。電力制御部106は、宛先無線端末局に応じた共通電力変更量と、記憶部105から読み出した宛先無線端末局に応じた個別電力変更量とを加算した電力変更量を算出し、この電力変更量で電力変更部12-1~12-nの電力変更を制御する(S24)。電力変更部12-1~12-nの電力変更完了後に信号を送信する(S25)。
 本発明の無線基地局の信号受信手順は、信号処理制御部101が信号送信の終了後に、電力変更量管理部102が電力変更部12-1~12-nの受信用の電力変更量を決定した後は、信号送信手順のステップS22~S24と同様である。そして、電力変更部12-1~12-nの電力変更完了後に信号の受信待機となり、受信する手順となる。なお、受信用の共通電力変更量および個別電力変更量は、図3の(1) に示す送信電力制御に用いた宛先無線端末局に対応する共通電力変更量および個別電力変更量を用いることができる。
 以上説明した宛先無線端末局ごとの送信電力および受信電力に対する共通電力変更量および個別電力変更量は、1つの無線端末局を宛先とする場合のものであるが、MU-MIMO通信における複数の無線端末局を宛先とする場合には、宛先となる無線端末局が2局、3局、4局、…となる組み合わせごとの共通電力変更量および個別電力変更量が用いられる。
 図6は、MU-MIMOにおける共通電力変更量と個別電力変更量の計算方法を示す。 図6の(1) は、2つの無線端末局20-1,20-2の組み合わせにおける共通電力変更量および個別電力変更量の計算例である。無線端末局20-1,20-2からの信号がアンテナ11-1~11-nでそれぞれ受信される受信電力を示す。ただし、この受信電力には、各アンテナと電力変更部との間のケーブル長に応じた減衰量などが含まれるものとする。まず、各アンテナにおける受信電力の最小値を算出すると、アンテナ11-1については無線端末局20-2からの受信電力である-55dBm となり、以下同様である。次に、各アンテナの中の1つの基準アンテナとしてここではアンテナ11-1を選択し、その最小受信電力:-55dBm と、閾値:-60dBm との差分値:+5dBを算出し、共通電力通知部103が電力制御部106に通知する共通電力変更量とする。さらに、基準アンテナ11-1の最小受信電力と他のアンテナ11-2,~,11-nの最小受信電力の差分値+5dB,~,+10dBを算出し、個別電力通知部104が記憶部105に記憶する個別電力変更量とする。以上により、無線基地局20-1,20-2の組み合わせにおける共通電力変更量と個別電力変更量が得られる。
 図6の(2) は、3つの無線端末局20-1,20-2,20-3の組み合わせにおける共通電力変更量および個別電力変更量の計算例であるが、図6の(1) に示す2つの無線端末局の場合と同様に計算される。
 ところで、ネットワークに接続される外部制御装置(図7の40)において、無線基地局のアンテナ11-1~11-nでそれぞれ受信される無線端末局ごとの受信電力情報を収集し、電力変更量管理部102で行っていた宛先無線端末局ごと、または宛先無線端末局の組み合わせごとの共通電力変更量および個別電力変更量を計算し、電力変更量管理部102に通知する構成であってもよい。
 また、ネットワークに接続される外部制御装置(図7の40)において、各無線基地局(図7の10-1,10-2)が所有する自局と隣接無線基地局との間におけるRSSI情報、各無線基地局で計算された共通電力変更量および個別電力変更量を収集し、これらの情報をもとに外部制御装置が各無線基地局における周波数チャネルを指定する制御を行ってもよい。以下に周波数チャネルの指定手順の一例を示す。
(1) アンテナごとに共通電力変更量と個別電力変更量を加算した電力変更量を算出する。ここで用いる電力情報は、無線端末局ごとの共通電力変更量および個別電力変更量に対して平均値または最小値を用いる。あるいは、特定の無線端末局または特定の無線端末局の組み合わせにおける共通電力変更量および個別電力変更量を用いる。
(2) 算出したアンテナごとの電力変更量の平均値または合計値を算出する。
(3) 収集した自局と隣接無線基地局との間におけるRSSI情報から、(2) で算出した平均値または合計値を減算する。
(4) 減算後のRSSI情報を用いて周波数チャネルの割り当てを再決定する。周波数チャネルの決定方法は、RSSIが最小となる方法、最小スループットを最大化させる方法、その他一般的な周波数チャネル割当方法などから選択する。
(5) 再決定した周波数チャネルを各無線基地局に通知する。
 10 無線基地局
 11 アンテナ
 12 電力変更部
 13 送受信部
 14 信号処理制御部
 15 電力通知部
 16 電力制御部
 20 無線端末局
 30 ネットワーク
 40 外部制御装置
 101 信号処理制御部
 102 電力変更量管理部
 103 共通電力通知部
 104 個別電力通知部
 105 記憶部
 106 電力制御部

Claims (8)

  1.  無線基地局と1台以上の無線端末局が同一周波数チャネルを共有する無線通信システムの無線基地局において、
     n個(nは2以上の整数)のアンテナと、
     前記n個のアンテナで送受信する信号の送信電力および受信電力を変更するn個の電力変更部と、
     前記n個の電力変更部の電力変更制御を行う電力制御部と、
     各無線端末局から前記n個のアンテナに受信される信号の受信電力に応じて、無線端末局ごとに、所定の受信電力に対応する各アンテナ共通の共通電力変更量と、該所定の受信電力に対する各アンテナの受信電力差に対応する個別電力変更量とを管理する電力変更量管理部と、
     前記n個のアンテナで信号を送受信する前に、その宛先無線端末局に応じた前記共通電力変更量を前記電力制御部に通知する共通電力通知部と、
     所定のタイミングで、前記各無線端末局に応じた前記個別電力変更量を前記電力制御部に事前通知する個別電力通知部と
     を備え、
     前記電力制御部は、前記個別電力通知部から事前通知された前記個別電力変更量を記憶部に記憶しておき、前記共通電力通知部から通知された前記宛先無線端末局に応じた共通電力変更量と、該記憶部から前記宛先無線端末局に応じた個別電力変更量を読み出して加算した電力変更量で、前記n個の電力変更部の電力変更制御を行う構成である
     ことを特徴とする無線基地局。
  2.  請求項1に記載の無線基地局において、
     前記電力変更量管理部は、前記所定の受信電力として、前記n個のアンテナのうち任意の1つのアンテナにおける受信電力または複数のアンテナにおける受信電力の平均値を用いる構成である
     ことを特徴とする無線基地局。
  3.  請求項1に記載の無線基地局において、
     前記n個のアンテナで送受信する信号の宛先が複数の無線端末局である場合に、前記宛先無線端末局を複数の宛先無線端末局の組と読み替え、
     前記電力変更量管理部は、前記所定の受信電力として、前記n個のアンテナのうち任意の1つのアンテナにおける前記複数の無線端末局からの受信電力の最小値、または複数のアンテナにおける前記複数の無線端末局からの受信電力の最小値の平均値を用い、前記複数の宛先無線端末局の組ごとに前記共通電力変更量および前記個別電力変更量を管理する構成である
     ことを特徴とする無線基地局。
  4.  請求項1に記載の無線基地局において、
     前記電力変更量管理部で管理する前記共通電力変更量および前記個別電力変更量が外部制御装置から与えられる構成である
     ことを特徴とする無線基地局。
  5.  請求項1に記載の無線基地局において、
     前記n個のアンテナで送受信する信号の電力変更に伴い、無線基地局間で周波数チャネルの再配置を行う構成である
     ことを特徴とする無線基地局。
  6.  請求項1に記載の無線基地局の送受信電力制御方法において、
     前記電力変更量管理部は、各無線端末局から前記n個のアンテナに受信される信号の受信電力に応じて、無線端末局ごとに、所定の受信電力に対応する各アンテナ共通の共通電力変更量と、該所定の受信電力に対する各アンテナの受信電力差に対応する個別電力変更量とを管理するステップと、
     前記個別電力通知部は、所定のタイミングで、前記各無線端末局に応じた前記個別電力変更量を前記電力制御部に事前通知するステップと、
     前記共通電力通知部は、前記n個のアンテナで信号を送受信する前に、その宛先無線端末局に応じた前記共通電力変更量を前記電力制御部に通知するステップと、
     前記電力制御部は、前記個別電力通知部から事前通知された前記個別電力変更量を記憶部に記憶しておき、前記共通電力通知部から通知された前記宛先無線端末局に応じた共通電力変更量と、該記憶部から前記宛先無線端末局に応じた個別電力変更量を読み出して加算した電力変更量で、前記n個の電力変更部の電力変更制御を行うステップと
     を有することを特徴とする無線基地局の送受信電力制御方法。
  7.  請求項6に記載の無線基地局の送受信電力制御方法において、
     前記電力変更量管理部は、前記所定の受信電力として、前記n個のアンテナのうち任意の1つのアンテナにおける受信電力または複数のアンテナにおける受信電力の平均値を用いる
     ことを特徴とする無線基地局の送受信電力制御方法。
  8.  請求項6に記載の無線基地局の送受信電力制御方法において、
     前記n個のアンテナで送受信する信号の宛先が複数の無線端末局である場合に、前記宛先無線端末局を複数の宛先無線端末局の組と読み替え、
     前記電力変更量管理部は、前記所定の受信電力として、前記n個のアンテナのうち任意の1つのアンテナにおける前記複数の無線端末局からの受信電力の最小値、または複数のアンテナにおける前記複数の無線端末局からの受信電力の最小値の平均値を用い、前記複数の宛先無線端末局の組ごとに前記共通電力変更量および前記個別電力変更量を管理する ことを特徴とする無線基地局の送受信電力制御方法。
PCT/JP2018/002296 2017-01-27 2018-01-25 無線基地局および送受信電力制御方法 WO2018139540A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197020684A KR102148307B1 (ko) 2017-01-27 2018-01-25 무선 기지국 및 송수신 전력 제어 방법
EP18744452.6A EP3576469B1 (en) 2017-01-27 2018-01-25 Base station and method of controlling transmission/reception power
CN201880008781.5A CN110226349B (zh) 2017-01-27 2018-01-25 无线基站以及收发功率控制方法
US16/480,075 US10827436B2 (en) 2017-01-27 2018-01-25 Base station and method of controlling transmission/reception power
JP2018564630A JP6692934B2 (ja) 2017-01-27 2018-01-25 無線基地局および送受信電力制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013221 2017-01-27
JP2017-013221 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139540A1 true WO2018139540A1 (ja) 2018-08-02

Family

ID=62979351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002296 WO2018139540A1 (ja) 2017-01-27 2018-01-25 無線基地局および送受信電力制御方法

Country Status (7)

Country Link
US (1) US10827436B2 (ja)
EP (1) EP3576469B1 (ja)
JP (1) JP6692934B2 (ja)
KR (1) KR102148307B1 (ja)
CN (1) CN110226349B (ja)
TW (1) TWI669006B (ja)
WO (1) WO2018139540A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188497A (ja) * 2010-03-10 2011-09-22 Fujitsu Ltd 電力分配システム及び方法
JP2012222379A (ja) * 2011-04-04 2012-11-12 Hitachi Ltd 送信電力制御を行う無線通信装置、無線通信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970716B2 (en) * 2001-02-22 2005-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Power control for downlink shared channel in radio access telecommunications network
US7359727B2 (en) 2003-12-16 2008-04-15 Intel Corporation Systems and methods for adjusting transmit power in wireless local area networks
US7120468B1 (en) 2005-04-15 2006-10-10 Texas Instruments Incorporated System and method for steering directional antenna for wireless communications
KR100849327B1 (ko) * 2007-02-09 2008-07-29 삼성전자주식회사 주파수 재활용과 공동 전력제어를 채용한분산안테나시스템에서 주파수효율과 공평성 증대를 위한조합적 스케줄링 방법 및 장치
EP2154792B1 (en) * 2008-08-13 2017-01-18 Alcatel Lucent Method for reducing interference in the downlink direction of a cellular radio communication network and corresponding base station
US8583160B2 (en) * 2009-05-04 2013-11-12 Qualcomm Incorporated Uplink power control for wireless communication
US8107965B2 (en) * 2009-05-14 2012-01-31 Telefonaktiebolaget L M Ericsson (Publ) Distributed computation of precoding weights for coordinated multipoint transmission on the downlink
US9179427B2 (en) * 2010-05-07 2015-11-03 Qualcomm Incorporated Transmission power dependent imbalance compensation for multi-antenna systems
JP2013034115A (ja) * 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
JP2013207422A (ja) * 2012-03-27 2013-10-07 Kyocera Corp 基地局および通信方法
US9300376B2 (en) * 2013-07-05 2016-03-29 Samsung Electronics Co., Ltd. Transmitting apparatus, receiving apparatus, and control methods thereof
US9775123B2 (en) * 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
KR20170125823A (ko) * 2015-03-06 2017-11-15 소니 주식회사 통신 장치, 통신 방법 및 프로그램

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188497A (ja) * 2010-03-10 2011-09-22 Fujitsu Ltd 電力分配システム及び方法
JP2012222379A (ja) * 2011-04-04 2012-11-12 Hitachi Ltd 送信電力制御を行う無線通信装置、無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576469A4 *

Also Published As

Publication number Publication date
CN110226349A (zh) 2019-09-10
EP3576469A4 (en) 2020-11-04
TW201832578A (zh) 2018-09-01
KR102148307B1 (ko) 2020-08-26
EP3576469B1 (en) 2021-10-13
US20190387482A1 (en) 2019-12-19
US10827436B2 (en) 2020-11-03
TWI669006B (zh) 2019-08-11
EP3576469A1 (en) 2019-12-04
CN110226349B (zh) 2022-08-05
JP6692934B2 (ja) 2020-05-13
JPWO2018139540A1 (ja) 2019-11-14
KR20190095400A (ko) 2019-08-14

Similar Documents

Publication Publication Date Title
US10194441B2 (en) Bandwidth reduction with beamforming and data compression
EP2890022B1 (en) Radio communication method and radio base station
US20040204105A1 (en) Method and apparatus for a base station with multiple distributed antennas to communicate with mobile stations
CN112714467B (zh) 应用于分布式蜂窝系统的通信处理方法和通信装置
EP3369266B1 (en) Method and system for transporting radio signals over copper cables
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
WO2018231646A1 (en) Massive multiple-input multiple-output (m-mimo) wireless distribution system (wds) and related methods for optimizing the m-mimo wds
Cirik et al. A subcarrier and power allocation algorithm for OFDMA full-duplex systems
KR20150134520A (ko) Mu­mimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법
JP6509758B2 (ja) 指向性切替アンテナを用いた無線基地局およびアンテナ指向性切替方法
JP6742446B2 (ja) 無線基地局およびその制御方法
JP6632768B2 (ja) 下位無線基地局、上位無線基地局および無線基地局システム
JP6692934B2 (ja) 無線基地局および送受信電力制御方法
JP2017143460A (ja) 分散アンテナを用いた無線基地局およびアンテナ切替方法
US20170134056A1 (en) Remote radio head and associated method
JP7209292B2 (ja) 無線通信システムおよび無線通信方法
CN109787666B (zh) 一种频域调度方法、装置及设备
KR102329454B1 (ko) 무선망 환경에서의 간섭정렬 및 다중안테나 신호처리 방법 및 장치
CN113632547A (zh) 用于多ap协调中上行功率控制的系统和方法
Razeghi et al. On the coverage region of mimo two-hop amplify-and-forward relay network
Taniguchi et al. Indoor experiment of multi-user MIMO user selection algorithm based on chordal distance
Bhatt et al. Comparative performance analysis LTE and A-WCDMA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020684

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744452

Country of ref document: EP

Effective date: 20190827